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Abstract. We study large uniform random maps with one face whose genus grows linearly
with the number of edges. They can be seen as a model of discrete hyperbolic geometry. In
the past, several of these hyperbolic geometric features have been discovered, such as their
local limit or their logarithmic diameter. In this work, we show that with high probability
such a map contains a very large induced subgraph that is an expander.

Keywords. Combinatorial maps, high genus, expander graphs

Mathematics Subject Classifications. 05C10, 05C48, 60C05, 60D05

1. Introduction

Combinatorial maps Combinatorial maps are discrete geometric structures constructed by
gluing polygons along their sides to form (compact, connected, oriented) surfaces. They appear
in various contexts, from computer science to mathematical physics, and have been given a lot
of attention in the past few decades. The first model that was extensively studied is planar maps
(or maps of the sphere), starting with their enumeration [Tut62, Tut63] by generating function
methods. Later on, explicit constructions put planar maps in bijection with models of decorated
trees [Sch98, BDFG04, BF12, AP15], and geometric properties of large random uniform planar
maps have been studied [AS03, CS04, LG13, Miel3]. All these works were later extended to
maps on fixed surfaces of any genus (see for instance [WL72, BC86] for enumeration, [CMS09,
Lep19] for bijections, and [Bet16] for random maps).

High genus maps Much more recently, another regime of maps has been studied: high genus
maps, that is (sequences of) maps whose genus grows linearly in the size of the map. The main
goal is to study the geometric properties of a random uniform such map as the size tends to
infinity. By the Euler formula, the high genus implies that these maps have negative average
discrete curvature (or, equivalently, that the average degree is higher than in planar maps). They
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must therefore have hyperbolic features, some of whose have been identified in previous works
[ACCR13, Ray15, BL21, BL22, Lou22].

Mostly, two types of models of high genus maps have been dealt with. First, unicellular
maps, i.e. maps with one face, who are easier to tackle thanks to an explicit bijection [CFF13],
and then more general models of maps like triangulations or quadrangulations. It is believed
that both models have a similar behaviour.

The local behaviour of high genus maps around their root is now well understood ([ACCR13]
in the unicellular case, [BL21, BL.22] in the general case), and some global properties have been
tackled: the planarity radius [Lou22] (see also [Ray15] for unicellular maps) and the diameter
([Ray15] for unicellular maps, still open for other models).

Large expanders: a result and a conjecture In this paper we deal with yet another property:
the presence of large expanders inside our map, in the case of unicellular maps. Contrary to the
previous properties, this involves the whole geometric structure of the map. Expander graphs
are very well connected graphs, in which every set of vertices has a large number of edges going
out of it, which is a typical hyperbolic behaviour'. Unfortunately, it is impossible that the whole
map itself is an expander, since it can be shown that finite but very large trees (which have very
bad influence on the expansion of the graph) can be found somewhere in the map. However, we
will show that most of the map is an expander, in the following sense.

Let % — 6 € (0,1/2),andlet U, ,, be auniform unicellular map with n edges and genus g,,.

Theorem 1.1. For all € > 0, there exists a constant k > 0 depending only of € and 0 such that
the following is true. With high probability?, there exists an induced subgraph G,, of U,, ,, that
has at least (1 — €)n edges and is a k-expander.

It is natural to conjecture that a similar result holds for more general models of maps (i.e.,
without a fixed number of faces). For instance, let T, ;, be a uniform triangulation of genus g,
with 3n edges. The following conjecture (and the present work) comes from a question of Itai
Benjamini (private communication) about large expanders in high genus triangulations.

Conjecture 1.2. For all € > 0, there exists a x > 0 depending only on ¢ and ¢ such that the
following is true. With high probability, there exists an induced subgraph G,, of T, ,, that has
at least (1 — ¢)3n edges and is a k-expander.

This conjecture deals with the entire structure of the map, therefore we believe it is a very
ambitious open problem about the geometry of high genus maps. Some other conjectures might
be easier to tackle, see [Lou22].

Structure of the paper The proof of the main result involves the refinement/extension of sev-
eral known results (Lemma 4.1, Proposition 4.3 and Lemma 5.2). We chose to push all the
technical proofs to the appendix, in order to make it clear how we combine these results to ob-
tain the proof of our main theorem. However, each time we include a paragraph explaining the
main idea of the proof.

lindeed, for each set, a large proportion of its mass is contained on its boundary.
2throughout the paper, we will write with high probability or whp in lieu of with probability tending to 1 as
n — 0Q.
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Figure 2.1: Left: A graph G, with a vertex subset X, and the induced subgraph G[X]. Right:
Smoothing a vertex of degree 2.

The main objects are defined in the next section, then we give an outline of the proof. The
proof consists roughly of two halves: showing that the kernel is an expander (Section 4) and
showing that a well defined “almost kernel” is still an expander while having a large proportion
of the edges (Section 5). Finally, in the appendix, we give the proofs of the technical lemmas.

2. Definitions

We begin with some definitions about graphs. Note that here we allow graphs to have loops and
multiple edges, such objects are also commonly called multigraphs. The degree of a vertex v is
the number of half-edges it is incident to. In other words, each loop incident to v adds 2 to its
degree, and multiple edges contribute to 1 each to the degree of v. We will write e(G) for the
number of edges in a graph GG. An induced subgraph of a graph G is a graph obtained from G
by deleting some of its vertices and all the edges incident to these vertices. Given a subset X of
vertices of G, we write G[X] for the induced subgraph of G obtained by deleting all vertices that
do not belong to X (see Figure 2.1 left). A topological minor of a graph G is a graph obtained
from G by deleting some of its vertices, some of its edges, and by “smoothing” some of its
vertices of degree 2 as depicted in Figure 2.1 right.

We will now define the notion of expansion. More precisely, we will work with edge-
expansion. Often an alternative version, vertex-expansion, is used. Given a graph G and a
subset X of its vertices, we define vol(X) = > _ deg(v) and Oz (X) as the number of edges
of GG with exactly one endpoint in X. Then we set

Ja(X)

ha(X) = — =
min(vol(X), vol(X))

where X is the set of vertices of G that do not belong to X. The Cheeger constant h¢ of a
graph G is
hG = XI&’E%) hg<X)
X, X#0

It is easily verified that the min can be taken only on subsets X such that G[X] is connected (see
for instance [MRO04], Section 3.1). A graph G is said to be a k-expander if hg(X) > k.

A map is the data of a collection of polygons whose sides are glued two by two to form a
compact oriented surface. The interior of the polygons define the faces of the map. After the
gluing, the sides of the polygons become the edges of the map, and the vertices of the polygons
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Figure 2.2: The kernel decomposition of a unicellular map.

become the vertices of the map. Alternatively, a map is the data of a graph endowed with a
rotation system, i.e. a clockwise ordering of half-edges around each vertex. A unicellular map of
size n is the data of a 2n-gon whose sides were glued two by two to form a compact, connected,
orientable surface. The genus g of the surface is also called the genus of the map. We will
consider rooted maps, i.e. maps with a distinguished oriented edge called the root. Let U, , be
the set of rooted unicellular maps of size n and genus g. A map of U, , has exactly n + 1 — 2g
vertices by Euler’s formula. We will denote by U,, , a random uniform element of I, ,.

A (plane) tree is a unicellular map of genus 0. A bipointed tree is a plane tree with a or-
dered pair of distinct marked vertices (but without a distinguished oriented edge). The size of a
bipointed tree is its number of edges. We set bt,, to be the number of bipointed trees of size n.
The kernel of a unicellular map m, denoted ker(m), is the map obtained from m by iteratively
deleting all its leaves, then smoothing all its vertices of degree 2 (see Figure 2.2). We do not
make precise here how the root of ker(m) is obtained from the root of m, we will only explain it
in Section C (the only place where the root matters, for enumeration purposes, everywhere else
in the paper we will only need the graph structure of the kernel).

Reciprocally, m can be obtained from ker(m) in a unique way by replacing each edge
of ker(m) by a bipointed tree. More precisely, given a bipointed tree ¢ and its two distinguished
vertices v; and v9, there is a unique simple path p going from v; to vy. Let e; (resp. e;) be the
edge of p that is incident to vy (resp. vs), and let ¢; (resp. c3) be the corner that comes right
before e; (resp. e3) in the counterclockwise order around v (resp. v2). Now, we can remove an
edge e from ker(m) to obtain a map with a pair of marked corners ¢ and ¢, and we can glue ¢;
on ¢ and ¢, on ¢ (see Figure 2.3). The list of bipointed trees used to construct m from ker(m)
will be called the branches of m. We also define ker~" (m) to be the map obtained from m by
replacing all its branches of size larger or equal to M by a single edge. Notice that both ker(m)
and ker~" (m) are topological minors of .

For any sequence of integers d = d; < dy < ... < di, weset |d| = Y% d;. LetU(d)
be the set of rooted unicellular maps with vertex degrees given by d*. If m is a unicellular
map, let d(m) be the sequence of its vertex degrees in increasing order. Now, we introduce the
configuration model. The random map CM(d) is defined in the following way: let vy, v, . .., vy
be vertices such that v; has d; distinguishable dangling half-edges arranged in clockwise order
around it. Now CM(d) is the random map obtained by taking a random uniform pairing of all
the dangling half-edges, and then picking a uniform oriented edge as the root (see Figure 2.4).

*notice that if |d| is odd, or if |[d|/2 + k is even, then /(d) is empty.
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Figure 2.3: Reconstructing a map from its kernel and branches. The squares correspond to the
marked vertices of the bipointed trees.

Figure 2.4: The map configuration model for d = (3,4,4,5).

3. Strategy of proof

In this section, we give the outline of the proof of Theorem 1.1. First, the problem reduces to
finding a good topological minor, because of the following theorem:

Theorem 3.1 ([LS21], Theorem 1). For all k,a« > 0, and for all 0 < o/ < «, there exists a
constant k' > 0 such that the following holds for every (multi)graph G.
If there exists a graph H satisfying the following conditions:

* ¢(H) > ae(G),
* H is a topological minor of G,
* H is a k-expander,
then there exists a graph H* satisfying the following conditions:
e e(H*) = de(G),
* H* is an induced subgraph of G,
* H* is a K'-expander.

Furthermore, we will prove the following:
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Proposition 3.2. For all ¢ > 0, there exist M and k > 0 that depend only on 6 and ¢ such that
the following is true whp:

o ker<(U,,,,) has more than (1 — £)n edges,
 kerM(U,,,. ) is a k-expander.

It is clear that Theorem 1.1 is an immediate corollary of Theorem 3.1 and Proposition 3.2,
since ker<"(U,, ,, ) is a topological minor of U, ,, .
A key tool of the proof of Proposition 3.2 is the following result.

1

Proposition 3.3. There exists a constant 0 < 0 < ¢

such that, for all g, —— 00, whp,
n—oo
ker(U,, 4, ) is a 6-expander.

Remark 3.4. The kernel ker(U,,,, ) is always an expander (as long as g, —— 00), however,
n—oo

ker(U, 4, ) has size O(g, ), hence in the case ¢,, = o(n), this provides us only with a very small
expander inside U,, ;,, and Theorem 1.1 is not true anymore.

In the next section, we will prove Proposition 3.3, and Section 5 is devoted to the proof of
Proposition 3.2.

4. The kernel is an expander

Here, we will prove Proposition 3.3 by comparing ker(U,, ;) to a well chosen map configuration
model. We begin with two results about this model. @ We will consider sequences
d® = d; <dy < ... < dj that do not contain any 1’s or 2’s (i.e. d; > 3), with |[d®)| = 2s,
such that £ + s is odd.

Lemma 4.1. The map CM(d®)) is unicellular with probability larger than

1+o(1)
35

as s — oo, where the o(1) is independent of d'®.

Idea of proof In [BCP19], the authors study the model dual to CM(d(*)): they have a collec-
tion of polygons whose sides are given by d®), and they glue the sides two by two in a uniform
fashion. In particular, they study the number of vertices (for us, the number of faces) of the result-
ing map. Their strategy is to consider the gluings one after the other, as a process. Throughout
the process, the current map is possibly disconnected and has boundaries which consist of the
sides of the polygons that were not glued yet. At each step, two sides are picked and are glued
together to form an edge of the map, until every side has been glued to another, and the resulting
map has no boundary.

To count the number of vertices, the main idea is the following: at some time 75, the current
map has only one boundary (with size 2(s — 7;) since 7; pairs of sides have been glued together).
Let us say that this current map has X, vertices outside its boundary. This single boundary is
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a 2(s — 75)-gon, and the pairing of the remaining sides is exactly equivalent to constructing a
uniform unicellular map on (s — 75) edges, let us call Va(s—r,) the number of vertices in such a
random map. The total number of vertices in the final map is then

XTS + ‘/2(577—5) .

We will lower bound the probability that X, = 0and Vo(,_,) = 1.

Remark 4.2. In [CP16], the authors consider the structure of the faces of CM(d(S)), encoded by

a permutation 0((18) of Gy, (with an odd number of cycles), and they show that, as s — oo,

(s)

dTv(O'ds ,US) — 0, (41)

where dpy is the total variation distance and u, is a random uniform permutation of G, with
an odd number of cycles.

Heuristically, this means that CM(d®)) should be unicellular with probability 1%'(1), unfor-
tunately the rate of convergence in (4.1) is of order C'/s, with C' > 1 which does not help us to
prove Lemma 4.1. It does however provide an upper bound (which is not needed in this work):
CM(d®)) is unicellular with probability O(1/s).

This next proposition states that CM(d(*)) is an expander with very high probability.

Proposition 4.3. The map CM(d®)) is a 6-expander (with the same § as in Proposition 3.3)

with probability

1
1 — P(CM(d"®) is disconnected) — o (—)

S

as s — oo, where the o ( %) is independent of d©.

Idea of proof The proof is rather technical, but it is heavily inspired by [HLW06, KW 14].

We consider a set of vertices V' = {vy, vy, ... v} such that for all 4, v; has d; dangling half-
edges attached. Given a subset X C V/, it breaks the condition of §-expansion if and only if “too
few” half-edges inside X get paired with half-edges outside X. For each subset, X we give an
upper bound of the probability that it is a “bad subset” that depends only on its volume vol(X)
(the sum of the degrees of the vertices of X).

The idea is then to show that for 0 small enough, if vol(X) < 14, then X is a bad subset if
and only if it is disconnected from the rest of the map, and that for all the X with vol(X) > 15,
the probabilities are small enough so that their sum is o (%) , and thus we can conclude by a union
bound.

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. Let s, be the random variable that is equal to the number of edges in
ker(Upg, ), and d®") = d(ker(U,g,)). The map ker(U,, ,, ) has genus g,, — oo and by Euler’s
formula, s,, > 2g,, hence s,, — oc.

Now, conditionally on d*»), ker(U,, ,, ) is uniform in 2/(d*»)). Indeed, by definition of the
kernel, if ¢ is a unicellular map of genus g,,, the probability that ¢ = ker(U,, ;) is proportional
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to the number of lists of s bipointed trees whose total size is n, where s is the size of c. Hence,
this probability only depends on d(c).

Also, CM(d‘*»)) conditioned on having one face is uniform in 2/(d*»)). Indeed, CM(d‘*"))
is uniform in the set of maps with degrees given by d*») (for each such map, there is exactly
one pairing of the half-edges that constructs this map).

Hence, the probability of ker(U,, ;) not being a J-expander is

(CM(d(S")) is not a §-expander| CM(d*")) is unicellular)
P (CM(d*")) is not a 5-expander and is unicellular)

= . 4.2)
P(CM(d*)) is unicellular)

But we also have

(CM(d )) is not a §-expander and is unicellular)
<P (CM(d(S" ) is not a §-expander and is connected)
=1- (CM(d(S")) is a -expander or is not connected)
=1 —P (CM(d"") is a 5-expander) — P (CM(d*")) is not connected)
= o(1/s),

where in the second line we used the fact that all unicellular maps are connected, in the fourth
line we used the fact that all expanders are connected and in the last line we used Proposition 4.3.
Using this, along with (4.2) and Lemma 4.1 shows

P (CM(d d®")) is not a 5-expander| CM(d*")) is unicellular) = o(1).
This o(1) does not depend on d*»), hence the proof is finished. O

5. Almost-kernel decomposition

In this section, we prove Proposition 3.2. Our strategy is the following: now that we know
that ker(U,, 4, ) is an expander, we will add back to it the “small” branches of U, 4, to get very
close to the size of U,, ,, without penalizing the expansion too much. We start with technical
lemmas. The first one states that replacing edges by small bipointed trees does not change the
Cheeger constant too much.

Lemma 5.1. Let H be a graph and G be constructed by replacing each edge of H by a bipointed
tree of size M or less. Then
hu

> .
7 oM +1
Proof. This proof is very similar to the proof of Lemma 5 of [LS21].

In G, color in red the vertices that come from H, and the rest in black. Let Y be a subset
of V(G) such that G[Y] is connected (recall that we only need to consider connected subsets).
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Figure 5.1: Comparing the edge expansions of Y in G and X in H. Here, M = 7.

Let X be the set of red vertices in Y, and X = V(H) \ X, i.e. it is the set of red vertices in Y.
We want to lower bound hq(Y') in terms of hy(X). See Figure 5.1 for an illustration.

If X = @, then G[Y] is a tree on at most M — 1 vertices and so volg(Y) < 2(M — 1)
and e¢(Y,Y) < 2. Hence

€G(Y, Y) 1
ha(Y') 2 volg(Y) > M-1
Similarly if X = & then we use the fact that ho(Y) = hg(Y), and hence hg(Y) > 1/(M —1).
Now, consider the case X # @ and X # @. The number of edges of H which are incident
to a vertex of X is ey (X) +ep(X, X) < voly(X). Each edge of H is replaced by a tree with at
most M edges, thus of volume at most 2(M — 1). Therefore the total degree of the black vertices
in Y can be bounded above by 2(M — 1) voly (X ). Hence

volg(Y') < voly(X) 4+ 2(M — 1) voly(X) = (2M — 1) voly (X) (5.1

and similarly

volg(Y) < (2M — 1) voly(X). (5.2)

Now, each edge counted in ey (X, X) corresponds to a bipointed tree in G between Y and Y,
therefore o o
€G(Y,Y) = GH(X,X) (53)

Hence, by (5.1), (5.2) and (5.3):

This concludes the proof. 0

The next lemma states that the large branches of U, ;,, only make up for a very small pro-
portion of its size.

Lemma 5.2. Forall s > 0, there exists a constant M such that, whp, the total size of the branches
of U,, 4, that are larger than M is less than en.
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Idea of proof Conditionally on ker(U,, ,, ) having s, edges, the branches are just a random
uniform list of s,, bipointed trees with total size n (with the subtlety that the first branch in the
list, the one that will contain the root, carries an extra marked edge).

Using Poissonization and the saddle point method (see [FS09], Chapter VIII), we can replace
the list of sizes of the branches by i.i.d variables. We then show that the probability that a given
branch is larger than £ decreases exponentially in k, which then yields the result.

Remark 5.3. The local limit result of [ACCR13] allows to prove a weaker version of Lemma 5.2,
where the result holds in expectation instead of whp. Roughly speaking, a direct corollary of
[ACCR13] is that for a uniform edge of U, 4, the probability that it belongs to a large branch
is small, but we do not have information about how pairs of edges are correlated.

We are now ready to prove Proposition 3.2.
Proof of Proposition 3.2. By Lemma 5.2, we know that there exists an M depending only

on ¢ and 6 such that ker<"(U,,,, ) contains at least (1 — ¢)n edges whp. By Proposition 3.3,
ker(U,,,) is a d-expander whp. Now, ker<"(U,, ,, ) can be constructed out of ker(U,,, ) by

replacing each edge by a bipointed tree of size M or less, hence if we set k = W‘_l, then
ker<™(U,,,.) is a r-expander whp, by Lemma 5.1. O
A. Proof of Lemma 4.1

Recall that we have a sequence d = d; < dy < ... < di that does not contain any 1’s or 2’s,

with |d| = 2s, such that k + s is odd. We want to show that CM(d(*)) has only one face with
probability €2 (%) Our proof consists in estimating some quantities carefully in an argument
of [BCP19]. We however do not know of a more direct proof.

In [BCP19], the authors consider a model that is dual to ours, i.e. they glue polygons together,
with the condition that there are few one-gons and digons (our case fits into their assumptions,
since we have none). More precisely, they have as a parameter a list P; of sizes of polygons that
sum to 2s (this corresponds to our d(*)). The list P, contains %P, elements (this corresponds
to our k). An important parameter in their proofs is a random number 0 < 7, < s.

In section 4 of [BCP19], they control the number of vertices of their map, which is the
number of faces in CM(d(*)). More precisely, their equation 13 writes the number of vertices as

XTS + ‘/2(5—7'5)' (Al)

Let us define the notions used in (A.1).
It is shown in Section 4.3 that

X, drv (1+ o(1)) Poisson (log (S—L#PS)) )

(note that this o(1) can be made uniform in P by a classical diagonal argument). In particular,
since we have no one-gons or digons, we have #P, < %s. This implies that

P(X,. =0)>1/3+o(1). (A.2)
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Now let us turn to V5(5_r,). For any p, V3, is the number of vertices in a uniform unicellular
map on p edges. We can calculate P(15, = 1) foreven p :

P(Va, = 1) = # of unicellular maps on p edges with one vertex

A3
# of unicellular maps on p edges (A-3)

The denominator in the formula above is easy to enumerate, it is (2p — 1)!! (number of ways
to pair the edges in a 2p-gon). To enumerate the numerator, we will use [GS98], more precisely
equation 14 for x = 1, and then Corollary 4.2 for g = p/2:

Proposition A.1 ([GS98]). There are

(2p)!
2rpl(p + 1)

unicellular maps with p edges and one vertex.

Therefore, we have exactly
1

P(Vy, =1) = ]
if p is even. At the end of Section 4 in [BCP19] (proof of Theorem 3), it is shown that
X, + s — 75 + 1 has the same parity as s + #P,, which corresponds to n + k in our case
(and we require it to be odd), therefore s — 7; is even, if we condition on X, = 0. Hence, using
the fact that V5(,_-,) and X, are independent conditionally on 7,

1 1
P(Vas—ry =1/ X,, =0) > > .
(Vaars) X, )/S—Ts-f-l s+1

(A4)

We are ready to conclude the proof of Lemma 4.1. Conditionally on 75, by (A.2) and (A.4),
the probability that CM(d(®)) has exactly one face is

1+0(1).

]P(XTS = O)IED(‘/Q(S_TS) = 1|XTS = 0) 2 3
S

This quantity is independent of 7, and uniform in d(*), hence it finishes the proof of Lemma 4.1.

B. Proof of Proposition 4.3

We recall that we work with a sequence of vertex degrees d(*) such that |d®)| = 2s. We want to
prove that CM(d(®)) is a §-expander with very high probability, for some universal 6 > 0. For
the sake of simplicity, we will not make ¢ explicit, but we will show that it exists.

In what follows, we will consider list of vertices (vy, va, . .., v;) equipped with distinguish-
able dangling half-edges, where v; has degree d;. For all I C [k], we set vol(I) = ) .., d;, and
Ny (d®)) is the number of sets I € [k] such that vol(I) = V. We will also write v; = {v;]i € I}.

We begin by estimating Ny (d®)). All fractions are to be understood as their floor values,
which we do not write to make the notation less cumbersome.
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Lemma B.1. Let 0 <V < s, then

2s/3
Ny (d¥) < V/3 :
v <vps ()
Proof. Since for all i we have d; > 3, we have vol(/) > 3|I|, and thus if [ is such that
vol(I) =V, then |I| < V/3. Hence

V/3

Ne(d®) < 30 (k)

=1
But, since d; > 3 for all 7, we have k < 2s/3, thus

V/3

N (d®) < Z (287;/3)'

=1

Finally, since V/3 < 1(2n/3), the sequence (232/ %) is increasing in 4 in the range [1, /3], there-
fore 25/3
Ny (d®) < vy3( 27, O
v < vy,
Now, we will define a set of bad events. Let £y be the event that, in CM(d(S)), there exists
a set [ with vol(/) = V and such that among all the dangling half-edges of v, strictly less
than 6V get paired with dangling half-edges of vertices outside v;. Notice that CM(d(®)) is not
a d-expander iff at least one of the &, happens. We will separate the analysis in two regimes,
depending on the size of V. We introduce a universal, small enough n > 0. We do not make it
explicit, for the sake of simplicity, but we will show that it exists later on.

Small subsets We will tackle the case V' < ns. This proof follows the lines of the argument
in [HLWO6][Theorem 4.16] in the case of regular graphs.

First we treat the case of V' < 14. Since § < %, then if &y happens for V' < 14, it implies

that CM(d(®)) is disconnected (note that in particular £y cannot happen for odd V). Hence
P ( U 5V> < P(CM(d®) is disconnected). (B.1)
V<14

From now on, V' > 15. Given I C [k] of volume V' and H a subset of the half-edges of v; we
define the following event

Y: u = all half-edges of H are matched along themselves.

If H has cardinality A, then

(h—1)1(2s — h — 1)I!

P(Yru) = (2s — !
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By a union bound and Lemma B.1, we have

P(&) < Nvy(@dY) Y (‘;)<h—1)!!(2n—h—1)u

— 1N
(1-0)V<h <V (2s — DN

<) Wg@ﬁ)(D(h_l)(gf:)ﬁ_l)”-

(1-8)V<h <V

Note that at this point we have a bound that only depends on s and not on d*). By the

ae
b

2s¢/3\"? (Ve\" h—=1 h—3 1
< —_—
PlE)< . V/3<V/3> (h) 25 —125—3  2n—h+1

classical inequality (Z) < ( )b, we obtain

(1-8)V<h <V
< I )6
(1-8)V<h <V
s\ V/3=h/2 [T\ M2
) (1—5);/1 <V Vs <V) (E>
s\ V/3—h/2
) (16);h <V VI3 (V) ’

where in the last inequality, we used the crude bound V/2 < h < V. Now, since § < 1—15, we
have V/3 — h/2 < —% when (1 — 0)V < h <V, hence, since there are less than V' terms in
the sum above,

P (&) < V?%/3(2e)*/? (%) W?.

For n > 0 small enough (and s large enough), the RHS in the inequality above is decreasing
in V in the range V' € [15, ns], and hence

S P(E) < Y (i) = 00 x O sz ) = o1/ ®2)

uniformly in d®.

Large subsets We will now care about larger bad subsets, this time we need to control
probabilities more carefully. The following proof is adapted from [KW14][Section 7].
Given 0 < y < u < 1, let X,,, be the number of subsets / C [k] of volume us that have
exactly ys half-edges that are paired with half-edges outside /. We have (using Lemma B.1)

E(Xu,) = Nus(d) (Zi) (25;8%) (ys)!(2s — us —( é/j - 11))!!!!(u3 —ys— I

< us/3 (25/3) (“S) (23 - US> (y9)!(2 — us —ys — Dli(us —ys — DI

us/3) \ys ys (2s — !
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Therefore, by Stirling’s formula, we have

log E(Xu,y) < s(f(u,y) +o(1)), (B.3)
where
22 1/3 ul (2 _ u)Q—u
Fly) =log [(U“(Q - U)“) y(u—y) vy (2 —u— y)“y]
+ log {%y (2—u—9y)"""(u- y)“‘y)m} :
Notice that

f(u,0) = élog(u“(? —u)? ) — %log 2.

It is easily verified that this function is decreasing and tends to zero as © — (. Therefore, taking
our 7 > 0 from earlier, let —c = f(n,0)/2. We have, for all u > 7, f(u,0) < — 2c. By
continuity of f(u,y), there exists > 0 small enough such that for all u > n and y < nd

flu,y) < —c.

Hence, by (B.3), the first moment method and a union bound, we have that (again, uniformly

in d®)): X
> Fev =of;) (B.4)

V =nn

(the probabilities are actually exponentially small, but we don’t need it here).

Concluding the proof Combining (B.1), (B.2) and (B.4) yields the proof of Proposition 4.3.

C. Proof of Lemma 5.2

This section is devoted to the proof of Lemma 5.2. The general idea of the proof is to approxi-
mate the sizes of the branches in U,, ,, by random i.i.d. variables. This method is often called
Poissonization by abuse of language, and it relies on the saddle point method. We will directly
apply the results of [FS09][Chapter VIIL.8].

Counting bipointed trees We first need to compute the generating function of bipointed trees

counted by edges. Let
D(z) = Z bty 2F,

k>1
(recall that bty is the number of bipointed trees with s edges, and let
1—+v1—-14z

T(z) = s 1
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Figure C.1: Decomposing a bipointed tree along the path between its roots. The first (resp.
second root) is a box (resp. square).

be the generating function of planar rooted trees with at least one edge, counted by edges. Then,
we can prove the following formula
D=T+TD
by considering the path between the two roots of a bipointed tree (see Figure C.1). This directly
implies
D(z) —2241—-+1—-4z2
z) = .
4z —14++1—4z

Also, C' = %D is the series of bipointed trees with a marked edge, and

2(2 —2y1 —4z — 4z2)
(42 — 1+ /1 —42)2/1 -4z

(C.1)

C(z) = (C.2)

Studying the Poissonized law: defining the law For any 0 < § < 1/4, we define the two
random variables X and Y3 with laws

([z"]C(2))B"
P Xg=k)= ———""—
(Xp =Fk) i
e (241D (:))8*
ZF|D(z
P(Ys=k)= ——~—.
(Ys =k) D)
Now, fix a constant # < ¢ < 1 and s,, < n such that s,, ~ cn. We fix 3 such that
E(X3) + (s, — 1)E(Yp) = n. (C.3)
Let us first show that this [ exists. The equation above rewrites
C(B)
1+o0(l)c——= =1.
(1+ o()ep 5
Now, for 0 < ¢ < 1, the equation c% = 1l has arootin [0,1/4), that is
() .
8 8 4

Hence, by continuity, for n large enough, (C.3) has a solution 5 € [0,1/4). Notice that /3 is
decreasing in s, hence there exists 3* < 1/4 such that for all s,, > 0n, we have 5 < [*.
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Studying the Poissonized law: depoissonization probability Now, the probability gener-
ating functions (in a variable u) for Xz and Y} are respectively CC((%) and 1:;)((5;))' Let Yg 1,
Y39,...,Ys,—1 be ii.d random variables distributed like Y3, and let

S = Xﬁ + Y,B,l —+ Y/g72 4+ ...+ Yﬁ,snfl-
We have E(S) = n, therefore, by [FS09][Corollary VIII.3], we have

P(S =n) =6 (%) (C.4)

uniformly in s,, € [On,n].
Studying the Poissonized law: large deviations Next we will estimate the large deviations of
the Y;’s. Fix an A > 1 such that A5* < 1/4 (recall that 1/4 is the radius of convergence of D).
We have

D(4B) _ D(48) §
D(B) = AB D(B)

But D(z)/z is a series with positive coefficients, and hence increasing. When z — 0,
D(z)/z — 1 (the number of bipointed trees with one edge). Therefore

D(A5")

E(AY?) =

E(A) < ——— 2 = V.
(A7) < =5
Hence, by the Markov inequality,
w
P(Ys > k) < e (C.5)

Now, let YB(M) =1y-yYiand, forl <i<s, — 1, Yﬁ(im be independent instance of Yﬁ(M).

Let also
Sn—1

LOD =1y X5+ Y y M.
=1
Let us also fix 1 < B < A, and set r = B/A, we have

(1) WwrM
E(B") = 3 P0G RB < =
Z (Ys > k) w Z " 1—

E>M k>M

r Y

where the inequality follows from (C.5). From now on, and until the end of the proof, let us fix M
M

large enough such that ¥ is small enough to guarantee E(BYB( ))c < Bf/2forall ¢ € [0, 1]

1—r

in the inequality above. Note that this M is independent of s,, as long as s,, € [On, n].
We can also show E(B"¥s>**#) — O(1), hence by the Markov inequality we obtain

E( BYéM’)S”_I

Bsn

P(LM) > en) < O(1) < 2~ (Holl)n (C.6)

uniformly in s,,.
Combining (C.6) with (C.4), we obtain the following for s,, € [#n,n] and n large enough

n

P(L™M > en|S =n) < V2 . (C.7)
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Figure C.2: The kernel decomposition for the branch that contains the root. An edge is marked,
and the root is obtained by orienting this marked edge towards the second root in the clockwise
exploration order around the branch.

Sizes of the branches To go from a map to its kernel, one removes each branch and replaces
it by an edge. Since a rooted map has no automorphisms, these branches can be put in a list
of bipointed tree whose total size is the number of edges in the map. One actually needs to be
a little more careful for the branch containing the root: mark the (unoriented) edge of the root
in the bipointed tree, and replace it by a root edge with a coherent orientation (see Figure C.2).
This operation is bijective, therefore the list of sizes of the branches of U, , , conditionally
on ker(U,,,, ) having s,, edges is exactly the list of variables (Xpg, Y1,Y5,...,Y;, 1), condition-
ally on S = n.
We are ready to prove Lemma 5.2.

Proof of Lemma 5.2. Since ker(U,, ,, ) is of genus g,, and has one face, by the Euler formula, it
has s,, edges, with s,, > 2g,, > 6n (for n large enough). The number of edges of ker<" (U, ,.)
is exactly n — L(*) (conditionally on S = n). We can apply (C.7) conditionally on the number
of edges of ker(U,,,, ), and it uniformly gives

P(ker<™(U,,.,.) has less than (1 — £)n edges) < V2

which finishes the proof. [
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