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Abstract. The partition function of the Ising model of a graph G = (V,E) is defined
as ZIsing(G; b) =

∑
σ:V→{0,1} b

m(σ), where m(σ) denotes the number of edges e = {u, v}
such that σ(u) = σ(v). We show that for any positive integer ∆ and any graph G of
maximum degree at most ∆, ZIsing(G; b) ̸= 0 for all b ∈ C satisfying | b−1

b+1 | ⩽
1−o∆(1)
∆−1

(where o∆(1) → 0 as ∆ → ∞). This is optimal in the sense that 1−o∆(1)
∆−1 cannot be re-

placed by c
∆−1 for any constant c > 1 subject to a complexity theoretic assumption.

To prove our result we use a standard reformulation of the partition function of the Ising
model as the generating function of even sets. We establish a zero-free disk for this generat-
ing function inspired by techniques from statistical physics on partition functions of polymer
models. Our approach is quite general and we discuss extensions of it to certain types of
polymer models.
Keywords. Ising model, partition function, even set, polymer model, Fisher zeros, approx-
imate counting
Mathematics Subject Classifications. 05C31, 82B20, 68W25

1. Introduction

The Ising model is an important and well-studied model of ferromagnetism in statistical physics.
Its partition function encodes many physical parameters of the system and from the combinato-
rial perspective it encodes the generating function of cuts of the underlying graph. This paper
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concerns the location of the zeros of the Ising partition function, which are indicative of possible
phase transitions in the model.

Let G = (V,E) be a graph and let b ∈ C be a complex parameter called the edge
interaction. A configuration σ of the Ising model is a 2-colouring of the vertices, that is a
function σ : V → {0, 1}. The weight of σ is given by bm(σ), where m(σ) is the number of
monochromatic edges of σ, i.e. the number of edges {u, v} ∈ E satisfying σ(u) = σ(v). The
Ising partition function of G with edge interaction b is then given by

ZIsing(G; b) =
∑

σ:V→{0,1}

bm(σ). (1.1)

Note that taking b = e2β , where β is the inverse temperature, gives the equivalent, more
standard way of writing the partition function in statistical physics.

In statistical physics one is interested in the zeros of ZIsing (these are also known as Fisher
zeros [Fis65]) because they indicate the possible presence of phase transitions in the model;
here a phase transition occurs at a value of the parameter b if small deviations in b cause a large
qualitative changes in the behaviour of the model. While our interest in the present paper is
in these Fisher zeros, we note that one can also equip the model with an ‘external field’, which
transforms the partition function into a 2-variable polynomial obtained from (1.1) by multiplying
each term bm(σ) by the term λ|σ−1(0)|, for an external field like parameter λ. Zeros in the variable λ
of the partition function are called Lee–Yang zeros and are known to lie on the unit circle in the
complex plane when b > 1 [LY52]; see [PR20] for a precise description.

More recently, there has been much interest in these zeros also in theoretical computer sci-
ence (for several models including the Ising and the hard-core model) because the transition from
absence to presence of zeros often represents a computational phase transition, i.e. a transition in
the computational tractability of estimating the partition function with fast algorithms. We will
not go into the details here, but refer the reader to [Fis65, FV18] for the connection to statistical
physics and to [Bar16, PR17, LSS19b, LY52, BGPR22, GGHP22, PR22] for the connection to
algorithms. There are also connections to quantum mechanics and quantum computing where
the interest is in non-real values of b; see [MB19, MM24] and the references therein for more
details.

Graphs of bounded maximum degree form the natural setting for studying zeros of the Ising
partition function. For each positive integer ∆, we are interested in regions R of the complex
plane for which ZIsing(G; b) ̸= 0 for all graphs G of maximum degree at most ∆ and all b ∈ R.
Thus, we are interested in establishing the existence of regions R that are contained in

R∆ = {b ∈ C : ZIsing(G; b) ̸= 0 for all G of maximum degree ∆}.

• Liu, Sinclair, and Srivastava [LSS19a, Theorem 1.2] showed that for each ∆
and ε > 0 there is a thin strip S = S∆,ε ⊆ C of the complex plane containing the in-
terval [∆−2

∆
+ ε, ∆

∆−2
− ε] such that S ⊆ R∆. The height of this strip is positive and

decreases as ε decreases.

• Galanis, Goldberg, and Herrera-Poyatos [GGHP22] recently showed that for each ∆, the
disc D(ε∆) is contained in R∆, where ε∆ := tan( π

4(∆−1)
) and where for r > 0, D(r) is
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the disk defined as
D(r) := {b ∈ C :

∣∣ b−1
b+1

∣∣ ⩽ r}.

We note that for large ∆, D(ε∆) is the disc whose diameter is approximately the inter-
val [∆−π/4

∆+π/4
, ∆+π/4
∆−π/4

].

• Earlier, Barvinok [Bar16] with an extension by Mann and Bremner [MB19] established
(for each ∆) the existence of a certain disc inside R∆. These disks are contained in D(ε∆)
and so we do not detail them here (see e.g. [GGHP22] for a description). Barvinok and
Barvinok [BB21, Theorem 1.1] established the existence of a more complicated diamond-
shaped region inside R∆. We refer to [GGHP22, Figure 1] for an illustration of this
for ∆ = 3. It should be noted that the results discussed above in fact concern more
general partition functions than that of the Ising model, with the former about graph ho-
momorphism partition functions and the latter about the multivariate Ising model with an
external field.

Our main result is to give a new, near-optimal zero-free disk for ZIsing that is larger than the
regions described above.

Theorem 1.1. For each positive integer ∆ ⩾ 3 we have ZIsing(G, b) ̸= 0 for every graph G of
maximum degree at most ∆ and every b ∈ D(n∆), where

n∆ :=

(
1− 1√

2(∆−1)

)2

∆− 1
=

1− o∆(1)

∆− 1
.

Moreover, for any ε ∈ (0, 1) there exists g = g∆ ∈ N such that if G additionally has girth at
least g, then ZIsing(G, b) ̸= 0 for any b ∈ D( 1−ε

∆−1
).

We make a few remarks. Comparing to previous results, our zero-free disc D(n∆) in-
cludes the previous zero-free disc D(ε∆), (for ∆ large enough) and nearly contains the zero-free
strip S∆,ε and the diamond-shaped region from [BB21], but extends much further in the imag-
inary direction. Also, our result is optimal in the sense that we cannot replace n∆

∆−1
with c

∆−1

for any c > 1 in Theorem 1.1 unless P = NP. Indeed if we could, then we would have a zero-
free disc containing some real values 0 < b < ∆−2

∆
, and by Barvinok’s interpolation method

(see [Bar16, PR17]), we would have an FPTAS (fully polynomial-time approximation scheme)
for approximating ZIsing(G, b) for graphs of maximum degree at most ∆ and some b < ∆−2

∆
;

however such an algorithm does not exist unless P = NP by work of [SS14, GvV16].
As alluded to above, a consequence of Theorem 1.1 is that for each b ∈ D(n∆), there is an

FPTAS to compute ZIsing(G; b) for graphs of maximum degree at most ∆. On the other hand,
it was shown by Galanis Goldberg and Herrera-Poyatos [GGHP22] that it is #P-hard to approx-
imate |ZIsing(G; b)| for graphs of maximum degree at most ∆ when b is a non-real algebraic
number that satisfies | b−1

b+1
| ⩾ 1/

√
∆− 1 and b /∈ {−i, i}. Mann and Minko [MM24] build on

this to show hardness of approximation whenever b = eiθ and |θ| ⩾ 6π
5(∆−2)

. (In fact, the result
of [MM24] concerns multigraphs.)
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In terms of the complement of R∆ i.e. the locations of zeros of ZIsing, our discussion above
explains why computational hardness results such as [SS14, GvV16, MM24] imply the existence
of zeros under suitable complexity-theoretic assumptions such as P ̸= NP or #P ̸= FP. In the
absence of such assumptions, not much is known. Results from [SS14] strongly suggest (without
any complexity-theoretic assumption) that for each ∆ ⩾ 3 there exists a sequence of ∆-regular
graphs (Gi) and complex numbers (bi) such that ZIsing(Gi; bi) = 0 and bi → ∆−2

∆
.1

Finally we discuss our methods. In contrast to previous results mentioned above, the proof
of Theorem 1.1 uses the even subgraph representation of the Ising model due to Van der Waer-
den [vdW41]. Our method is based on a novel form of the polymer method based on the block
structure of subgraphs. The idea of possibly utilising the block structure in the context of the
polymer method was initiated by Jackson and Sokal [JS10] who were aiming to prove bounds on
the zeros of the chromatic polynomial. Here we give the first concrete application. We believe
this idea could have further applications, which we discuss at the end of the paper.

The paper is organised as follows. In the next section we give preliminaries on blocks and the
even set generating function. In Section 3 we prove Theorem 1.1 via Theorem 3.3. In Section 4
we generalise the main idea of our result to any partition function that behaves well on blocks,
in the hope that it might find wider applications. This is based on the master’s thesis of the third
author [Sta20]. We finish with concluding remarks in Section 5. For the reader’s convenience
we have kept the paper self-contained.

2. Preliminaries

In this section we recall the connection between the even set generating function and the pari-
tion function of the Ising model and collect some graph theoretic definitions concerning blocks
and so-called block paths that will be used throughout For standard definitions in graph theory,
see [Die17].

2.1. Even set generating function

For a graph G = (V,E) we say that F ⊆ E is even (or an even set) if each vertex in the
spanning subgraph (V, F ) has even degree. For a variable x we define the even set generating
function, Zeven(G;x), of G by

Zeven(G;x) :=
∑
F⊆E
F even

x|F |. (2.1)

It is well known that, after a change of variables, we can rewrite the Ising partition function
as the even set generating function; this goes back to Van der Waerden [vdW41].

1Indeed, they give a description of the free energy of the anti-ferromagnetic Ising model on the infinite∆-regular
tree, which appears to be non-analytic at bc = ∆−2

∆ , cf. [SS14, Figure 2(b)] (This figure is in fact for the hard-core
model, but a similar picture is expected for the anti-ferromagnetic Ising model). Non-analyticity would imply that
zeros of large girth ∆-regular graphs accumulate at bc with the aid of some complex analysis, cf. [Fis65]. It is not
clear to us how to rigorously show that the free energy is indeed non-analytic at bc.
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Lemma 2.1. Let G = (V,E) be a graph and let x ∈ C \ {1}. Then

Zeven(G;x) = (1− x)|E|2−|V |ZIsing(G; 1+x
1−x

). (2.2)

For the reader’s convenience we include a short combinatorial proof. We refer to [GJ09] for
a short probabilistic proof.

Proof. We prove this in the more general case that G is a multigraph (thus allowing multiple
edges and loops) by induction on the number of edges. In case G has no edges the result is
clearly true. Next let e be an edge of G. If e is a loop, then Zeven(G;x) = (1+x)Zeven(G\e;x),
while ZIsing(G; b) = bZIsing(G \ e; b) implying by induction that (2.2) holds for G. Next,
if e = {u, v} is not a loop, then we have

Zeven(G;x) = xZeven(G/e;x) + (1− x)Zeven(G \ e;x). (2.3)

where G/e denotes the (multi)graph obtained from G by contracting e (and retaining loops
and multiple edges). To see this, note that any even set of G either contains e or not; even
sets of the first kind correspond to even sets in G/e that are not even sets in G \ e (so con-
tribute x(Zeven(G/e;x) − Zeven(G \ e;x)), while even sets of the second kind correspond to
even sets of G \ e (so contribute Zeven(G \ e;x)). We also have

ZIsing(G \ e; b) = ZIsing(G; b) + (1− b)ZIsing(G/e; b), (2.4)

since 2-colourings σ : V (G \ e) → {0, 1} of G \ e in which u, v receive different colours
correspond to 2-colourings of G in which u, v receive different colours; 2-colourings of G \ e
in which u, v receive the same colour correspond to 2-colourings of G/e, and 2-colourings of G
in which u, v receive the same colour correspond to 2-colourings of G/e with an extra factor b.
From (2.3), (2.4), and induction, we have that (1− x)|E(G)|2−|V (G)|ZIsing(G; 1+x

1−x
) equals

(1− x)|E(G)|2−|V (G)| (ZIsing(G \ e; 1+x
1−x

)− (1− 1+x
1−x

)ZIsing(G/e; 1+x
1−x

)
)

= (1− x)Zeven(G \ e;x)− 1−x
2
(1− 1+x

1−x
)Zeven(G/e;x)

= (1− x)Zeven(G \ e;x) + xZeven(G/e;x),

which is equal to Zeven(G;x) by (2.3).

Remark 2.2. The lemma implies that if Zeven(G;x) is nonzero for all x contained in the disk of
radius r < 1 centered at 0, then ZIsing(G; b) is non zero for all b satisfying

∣∣ b−1
b+1

∣∣ ⩽ r, i.e. the
disk with diameter given by the real interval [1−r

1+r
, 1+r
1−r

].

2.2. Blocks and block paths

Let G = (V,E) be a connected graph. For U ⊆ V , we denote by E(U) the collection of
edges ab ∈ E such that a, b ∈ U . For a set of edges A ⊆ E, we denote by V (A) the collection
of vertices that are contained in some edge in A.

Recall that a graph G is 2-connected if G is connected and G − v is connected for
all v ∈ V (G). We work throughout with the convention that the edge K2 is a 2-connected
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graph (some authors require that a 2-connected graph should have at least 3 vertices). A block
of a graph G is a maximal 2-connected subgraph of G (and is therefore necessarily an in-
duced subgraph of G). Throughout, we identify blocks B with their edge sets and write V (B)
for the vertices of B. We mention here some standard properties of blocks; see e.g. [Die17].
Let G = (V,E) be a graph, let B1, . . . , Bk be its blocks, and v1, . . . , vℓ be its cut vertices.

(P1) The blocks of G decompose the edges of G, i.e. each edge of G belongs to a unique block
of G. Furthermore, any two blocks of G either have an empty vertex intersection or they
intersect in a single cut vertex of G.

(P2) The block-cutpoint graph of G is the graph with vertices {B1, . . . , Bk, v1, . . . , vℓ} and
edges of the form {Bi, vj} where vi ∈ Bj . The block-cutpoint graph of G is a forest (and
is a tree if G is connected).

We call a block B of a graph G a leaf block if it contains a single cut vertex of G; equivalently B
is a leaf block of G if it corresponds to a leaf in the block-cutpoint graph of G.

The following fact relates even sets and blocks; it is a simple exercise but we include the
proof for completeness.

Proposition 2.3. Let G = (V,E) be a graph. Then F ⊆ E is even if and only if each block of F
is even.

Proof. By considering each component of F separately, we may assume F is connected. If
all blocks of F are even then F is even since blocks are edge-disjoint (by P1). The converse
follows by induction on the number of blocks of F . If F is a block then there is nothing to prove;
otherwise let B ⊆ F be a leaf block of F , which exists by (P2). Note that the blocks of F consist
of B together with the blocks of F −B and that V (B)∩V (F −B) = {v} for some v ∈ V . This
means all vertices of B except possibly v have even degree (in B), and so v also has even degree
in B by the handshake lemma; hence B is even. This means F −B is even and by induction all
its blocks are also even, proving the lemma.

An important notion that will allow us to determine an effective recursion for the even set
generating function in the next section is that of a block path due to Sokal and Jackson [JS10].

Definition 2.4 (Block path). Let G = (V,E) be a graph with U ⊂ V and v ∈ V \ U . A block
path from v to U is a subgraph H of G satisfying

1. V (H) ∩ U consists of a single vertex u;

2. H is connected;

3. neither u nor v are cut vertices of H;

4. either H is 2-connected, or it contains exactly two leaf blocks B1 and B2 with u ∈ B1 and
v ∈ B2.

We denote the collection of all such block pathsH byBP(v, U,G) and simply writeBP(v, u,G)
if U = {u}. Again, we generally identify each block path with its edge set.
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Next we give some basic properties of block paths that we will need. First, we note below
that block paths are precisely the subgraphs whose block-cutpoint graphs are paths.

Proposition 2.5. With the definition of block paths above, we have that H ∈ BP(v, U,G) if and
only if all of the following hold:

(a) the block-cutpoint graph of H is a path P = B1v1B2v2 · · ·Bk−1vk−1Bk;

(b) V (B1) ∩ U = {u} for some u ∈ U and v ∈ V (Bk); and

(c) V (Bi) ∩ U = ∅ for i = 2, . . . , k and V (Bi) ∩ {v} = ∅ for i = 1, . . . , k − 1.

Proof. Assuming (a), (b), and (c) hold, then clearly (1) and (2) hold in the definition of
block paths. If u is a cut vertex of H , it appears in P and therefore appears in two of the
blocks B1, . . . , Bk contradicting (c), and similarly for v; hence (3) holds. If B1 = Bk,
i.e. P is a single vertex, then H is a block and so 2-connected; otherwise H has two leaf blocks,
namely B1 and Bk, and so satisfies (4).

Conversely, suppose H ⊆ G satisfies (1)-(4) of Definition 2.4. By (4), the block-cutpoint
graph of H must be a path, proving (a), and furthermore, by (4), u ∈ V (B1) and v ∈ V (Bk).
By (1) and (3) we deduce V (B1) ∩ U = {u} so (b) holds. By (3), u and v are not cut vertices,
so they can only appear in one block; hence (c) holds.

Proposition 2.6. Suppose H ∈ BP(v, u,G) for some vertices u, v ∈ V (G). For any x ∈ V (G),
there is a path Q in G from u to v that contains x.

Proof. Using the previous proposition, we know the block-cutpoint graph of H is a
path P = B1v1B2v2 · · ·Bk−1vk−1Bk with u ∈ V (B1) and v ∈ V (Bk). Assume first that x
is not a cut vertex and that x ∈ V (Br). Set v0 = u and vk = v. In each block Bi, we can find a
path Qi from vi−1 to vi and in the block Br we take a path Qr from vr−1 to vr through x (which
is possible since Br is 2-connected). Concatenating these paths gives the desired path Q. We
can similarly find the path Q if x is a cut vertex (which includes the case when Br is a single
edge).

The following technical fact will be required in the proof of Lemma 3.1 below.

Proposition 2.7. Suppose a graph G can be written as the edge-disjoint union of graphs in
two different ways: G = H1 ∪ H ′

1 = H2 ∪ H ′
2. Suppose further that H1, H2 ∈ BP(v, u,G),

where u, v ∈ V (G). Then for some i ∈ {1, 2}, H ′
i contains a connected component C

with |V (Hi) ∩ V (C)| ⩾ 2.

Proof. If V (H1) = V (H2) then since H1 and H2 are different, assume without loss of generality
that we have an edge e = xy ∈ E(H1) \ E(H2). So e ∈ E(H ′

2) and so x and y belong to the
same connected component C of H ′

2. Moreover x, y ∈ V (H2) = V (H1) as required.
If V (H1) ̸= V (H2), assume without loss of generality that x ∈ V (H1) \ V (H2). By

the previous proposition, we know there is a path Q in H1 from u to v containing x.
Since u, v ∈ V (H2), there is a subpath Q′ of Q that starts and ends in V (H2) but with all inter-
nal vertices (including x) outside V (H2). Therefore Q′ is part of some component C of V (H ′

2),
and C intersects V (H2) in at least the two endpoints of Q′.
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3. Proof of the main theorem

In this section we prove Theorem 1.1. We will require the following generalisation of the even
set generating function.

Let G = (V,E) be a graph. For U ⊂ V , we define E(G | U) to be the collection of even
sets F of G such that each component of (V, F ) contains at most one vertex of U . We define the
associated generating function by

Zeven(G | U ;x) :=
∑

F∈E(G|U)

x|F |. (3.1)

Observe that for any vertex u ∈ V we have Zeven(G | {u};x) = Zeven(G;x).
The following lemma establishes the main recursion we require in the induction step of our

main theorem.

Lemma 3.1. Let G = (V,E) be a graph and let U ⊂ V . Then for any vertex v ∈ V \ U

Zeven(G | U ;x) = Zeven(G | U ∪ {v};x) +
∑

B∈BP(v,U,G)
B even

x|B|Zeven(G | U ∪ V (B);x). (3.2)

Proof. It suffices to prove that any F ∈ E(G | U)\E(G | U ∪{v}) can be written uniquely as an
edge-disjoint union F = B ∪ F ′, where B ∈ BP(v, U,G) is even and F ′ ∈ E(G | U ∪ V (B)).

To prove this, note that by definition, any F ∈ E(G | U) \ E(G | U ∪ {v}) must contain a
(nontrivial) component C that contains the vertex v and a unique vertex u from U . The block-
cutpoint graph of C is a tree and contains a path P between the blocks containing v and u
respectively. By shortening the path if necessary we can further ensure that u and v only occur
in the leaf blocks of P , so that taking the union of the blocks that appear in P gives us a block
pathB from v to u inG (by Proposition 2.5). Furthermore,B is even by Proposition 2.3. Because
the block-cutpoint graph of C is a tree, any component of C \B intersects V (B) in at most one
vertex and does not intersect U \ V (B). Any other nontrivial component C ′ of F intersects U
in at most one vertex by construction and does not intersect V (B). Define F ′ = F \B and note
that by Proposition 2.3 each component of F ′ is even. This gives the desired pair (B,F ′).

For the uniqueness, note that we cannot have a second decomposition F = B1 ∪ F ′
1

with B1 ∈ BP(v, U,G) and F ′
1 ∈ E(G | U ∪ V (B1)) since by Proposition 2.7 we may

assume that F ′
1 has a component that intersects B′

1 in at least two vertices, contradic-
ting F ′

1 ∈ E(G | U ∪ V (B1)).

For a graph G and a vertex v of G, define Wv(G) to be the collection of walks from v to itself
in G that use each edge at most once. Let WG,v(x) denote the associated generating function,
that is,

WG,v(x) =
∑

W∈Wv(G)

x|W |,

where |W | denotes the number of edges in the walk W . The next lemma bounds the walk
generating function and is used in our proof of Theorem 3.3 below.
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Lemma 3.2. Let ∆, g ⩾ 3 be integers, let G = (V,E) be a graph of maximum degree at most ∆
and girth at least g, and let v be a vertex of G. Then for any c ∈ [0, 1), we have

WG,v(
c

∆−1
) ⩽ ∆cg

(∆−1)2(1−c)
.

Proof. The number of walks in G that start and end at v with k edges is at most ∆(∆ − 1)k−2

since there are ∆ choices for the first edge and ∆ − 1 choices for each subsequent edge except
the last, which is forced. Also each such walk has at least g edges. Therefore

WG,v;G(
c

∆−1
) ⩽

∑
k⩾g

∆(∆− 1)k−2( c
∆−1

)k = ∆cg

(∆−1)2(1−c)
.

By Lemma 2.1 and Remark 2.2 the following theorem immediately implies the ‘moreover’
part of our main result, Theorem 1.1.

Theorem 3.3. Let ε ∈ (0, 1) and let ∆, g ⩾ 3 be integers satisfying

g + 2 ⩾
log(2ε2(∆− 1)2/∆)

log(1− ε)
. (3.3)

For every graph G = (V,E) of maximum degree at most ∆ and girth at least g and every x ∈ C
satisfying |x| ⩽ (1−ε)2

∆−1
, we have Zeven(G;x) ̸= 0.

Proof. We will prove the following statement which immediately implies the theorem. Fix a = ε
and c = 1− ε with ε ∈ (0, 1) as in the statement of the theorem. For every graph G = (V,E) of
maximum degree at most ∆ and girth at least g, every U ⊂ V , every v ∈ V \U , and every x ∈ C
with |x| ⩽ c(1−a)

∆−1
, we have

(i) Zeven(G | U ;x) ̸= 0, and

(ii)
∣∣∣∣ Zeven(G | U ;x)

Zeven(G | U ∪ {v};x)
− 1

∣∣∣∣ ⩽ a.

We note that (ii) directly implies (i) and so it suffices to show (ii). We will do this by induction
on |V \U |. In case V = U we haveZeven(G | U ;x) = 1, showing (i), while (ii) is vacuous. Next,
let us assume that U ⊂ V and v ∈ V \U . By induction we know that Zeven(G | U ∪{v};x) ̸= 0
and so by Lemma 3.1 we have

Zeven(G | U ;x)

Zeven(G | U ∪ {v};x)
− 1 =

∑
B∈BP(v,U,G)

B even

x|B|Zeven(G | U ∪ V (B);x)

Zeven(G | U ∪ {v};x)
.

Given some B ∈ BP(v, U,G) as in the sum above, write V (B) = {v, b1, . . . bk, u},
where {u} = V (B) ∩ U and let Bi := {v, b1, . . . , bi} with B0 := {v}. By using (ii) induc-
tively in the telescoping product below we obtain that∣∣∣∣Zeven(G | U ∪ V (B);x)

Zeven(G | U ∪ {v};x)

∣∣∣∣ = k∏
i=1

∣∣∣∣ Zeven(G | U ∪Bi;x)

Zeven(G | U ∪Bi−1;x)

∣∣∣∣ ⩽ (
1

1− a

)|V (B)|−2

.
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Note that any even block path B must have at least as many edges as vertices. Therefore we can
replace the exponent by |B| − 2. We thus obtain,∣∣∣∣ Zeven(G | U ;x)

Zeven(G | U ∪ {v};x)
− 1

∣∣∣∣ ⩽(1− a)2
∑

B∈BP(v,U,G)
B even

(
|x|

1− a

)|B|

⩽(1− a)2
∑

B∈BP(v,U,G)
B even

(
c

∆− 1

)|B|

. (3.4)

Any even block path from v to U can be obtained in at least two ways as a closed Eulerian walk
in G starting and ending at v. Hence we can bound the right-hand side of (3.4) by half the walk
generating function, that is, by

1
2
(1− a)2WG,v;g

(
c

∆−1

)
⩽ 1

2
(1− a)2

∆cg

(∆− 1)2(1− c)

where the inequality follows by the previous lemma. To complete the induction, it is enough to
show that the above expression is bounded above by a. Recall that a = 1 − c = ε; thus the
inequality we require is

(1− ε)g+2 ⩽
2(∆− 1)2ε2

∆
,

which holds provided g + 2 ⩾ log(2ε2(∆−1)2/∆)
log(1−ε)

, as required.

We can apply the theorem to the collection of all graphs of maximum degree at most ∆ to
obtain the following, which proves the first part of Theorem 1.1 by Remark 2.2.
Corollary 3.4. Let ∆ ⩾ 3. Then for any graph G of maximum degree at most ∆ and x ∈ C
such that |x| ⩽ (1− 1√

2(∆−1)
)2/(∆− 1), Zeven(G;x) ̸= 0.

Proof. By the previous theorem it suffices to verify (3.3) with ε = 1√
2(∆−1)

and g = 3. Substi-
tuting this value of ε into (3.3) and rearranging, we see that we need(

1− 1√
2(∆−1)

)5

⩽
∆− 1

∆
,

which holds if ∆ ⩾ 2 (indeed the inequality already holds without the power of 5 on the left
hand side).

4. An extension: block polynomials

In this section we indicate how the method used to prove Theorem 1.1 generalises to a much
larger class of generating functions and discuss how this relates to the polymer method.

Let w be a graph invariant taking values in C, i.e. w is a function from the collection of all
graphs to the complex numbers such that it assigns the same value to isomorphic graphs. We
call w multiplicative if w(H1∪H2) = w(H1) ·w(H2) for any two graphs H1, H2. Here H1∪H2

denotes the disjoint union of the graphs H1 and H2. We call w 1-multiplicative if
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• w(K1) = 1, where K1 denotes the graph consisting of a single vertex,

• w is multiplicative, and

• w(H) = w(H1) · w(H2) whenever H is the union of two graphs H1 and H2 that have
exactly one vertex in common.

Note that if w is 1-multiplicative, then w(H) =
∏

B block of H w(B) by a simple induction argu-
ment.

Example 4.1 (1-multiplicative graph invariants).

(i) Define for x ∈ C and a graph H , w(H) = x|E(H)| if H is even and w(H) = 0 otherwise.
Then w is 1-multiplicative (by making use of Proposition 2.3).

(ii) Any evaluation of the Tutte polynomial is 1-multiplicative. Here we take the Tutte poly-
nomial of a graph G = (V,E) as

T (G;x, y) =
∑
F⊆E

(x− 1)k(F )−k(E)(y − 1)|F |+k(F )−|V |,

where k(F ) denotes the number of components of a graph (V, F ).

(iii) The homomorphism density into a vertex transitive graph is 1-multiplicative. We recall
that for graphs H = (V,E) and G = ([k], F ), the homomorphism density of H into G,
denoted by t(H,G), is defined as

t(H,G) =

∑
ϕ:V→[k]

∏
uv∈E 1{ϕ(u)ϕ(v)∈F}

k|V | .

Given a 1-multiplicative graph invariant w and a graph G = (V,E), define the block poly-
nomial as

Zblock(G;w) :=
∑
H⊆E

w(H) =
∑
H⊆E

∏
B block of H

w(B). (4.1)

By Example 4.1 (i), the even set generating function is an example of a block polynomial.
As in the previous section, for each set U ⊂ V , define

Zblock(G | U ;w) :=
∑

H⊆E\E(U)

w(H), (4.2)

where the sum is now restricted to those subgraphs H for which each nontrivial component
intersectsU in at most one vertex. The next lemma follows directly from the proof of Lemma 3.1.

Lemma 4.2. Let w be a 1-multiplicative graph invariant, let G = (V,E) be a graph, and
let U ⊂ V . Then for any vertex v ∈ V \ U

Zblock(G | U ;w) = Zblock(G | U ∪ {v};w) +
∑

B∈BP(v,U,G)

w(B) · Zblock(G | U ∪ V (B);w).
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With this lemma, the proof strategy of Theorem 3.3 gives the following result.

Theorem 4.3. Let w be a 1-multiplicative graph invariant and let G be a graph. Suppose there
exists a ∈ (0, 1) such that for any U ⊂ V and v ∈ V \ U it holds that

∑
B∈BP(v,U,G)

|w(B)|
(

1

1− a

)|V (B)|−2

⩽ a.

Then Zblock(G;w) ̸= 0.

For convenience of the reader we include a short proof sketch referring to the proof of The-
orem 3.3 for some of the steps.

Proof. The idea is to prove the following statement, which immediately implies the theorem.
For every graph G = (V,E) of maximum degree at most ∆, every U ⊂ V , every v ∈ V \ U ,
we have

(i) Zblock(G | U ;w) ̸= 0, and

(ii)
∣∣∣∣ Zblock(G | U ;w)

Zblock(G | U ∪ {v};w)
− 1

∣∣∣∣ ⩽ a.

We note that (ii) directly implies (i) and so it suffices to show (ii). We will do this by induction
on |V \ U |. By Lemma 4.2 and induction we have for any vertex v /∈ U ,

Zblock(G | U ;w)

Zblock(G | U ∪ {v};w)
− 1 =

∑
B∈BP(v,U,G)

w(B) · Zblock(G | U ∪ V (B);w)

Zblock(G | U ∪ {v};w)
.

By the same telescoping argument as in the proof of Theorem 3.3 and induction we can then
bound ∣∣∣∣ Zblock(G | U ;w)

Zblock(G | U ∪ {v};w)
− 1

∣∣∣∣ ⩽ ∑
B∈BP(v,U,G)

|w(B)|
(

1

1− a

)|V (B)−2

,

which is bounded by a by the assumption in the theorem. This concludes the sketch proof.

Our result gives conditions under which the block polynomial is non-vanishing; one can
think of this result as an analogue of the conditions of Gruber–Kunz [GK71, FP07], Kotecký-
Preiss [KP86] and Dobrushin [Dob96] for the non-vanishing of partition functions of polymer
models. More concretely, for a multiplicative graph invariant w one can define Zpol(G;w) for a
graph G = (V,E) (as in (4.1)) by

Zpol(G;w) =
∑
H⊆E

w(H) =
∑
H⊆E

∏
C comp. of H

w(C),

where the product runs over the components of H . This can be interpreted as the partition
function of a (subset) polymer model with polymers corresponding to connected subgraphs of
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the base graph G. The Gruber–Kunz conditions state (cf. [BFP10, Proposition 3.1]) that if the
following conditions hold for each induced subgraph H = (U, F ) of G and vertex v ∈ U ,∑

B⊆F v∈V (B)
B connected

|w(B)|
(

1

1− a

)|V (B)|−1

⩽ a, (4.3)

for some a ∈ (0, 1), then Zpol(G;w) ̸= 0. Theorem 4.3 offers two advantages over the condition
in (4.3) in case w is 1-multiplicative. First of all, the exponent of 1

1−a
is |V (B)| − 2 rather

than |V (B)| − 1 and secondly the sum is over block paths B from v to U rather than over all
connected subgraphs B that contain the vertex v. Jackson and Sokal [JS10] proved bounds for
the block path generating functions in terms of the number of edges that are better than for the
connected subgraph generating function.

5. Concluding remark and questions

We conclude with a remark and some questions, starting with an extension to the multivariate
case.
Remark 5.1. Our results also extend to a multivariate version of the partition function as follows.
For a graph G = (V,E), let (be)e∈E be a collection of complex numbers. Define

ZIsing(G; (be)) :=
∑

σ:V→{0,1}

∏
e={u,v}∈E
σ(u)=σ(v)

be.

Then if for each edge e, | be−1
be+1

| ⩽ (1 − 1√
2(∆−1)

)2/(∆ − 1), then ZIsing(G; (be)) ̸= 0, pro-

vided the maximum degree of G does not exceed ∆. This follows by defining Zeven(G; (xe))
in the obvious way and following our proof for the univariate version mutatis mutandis to show
that Zeven(G; (xe)) ̸= 0 provided each xe satisfies |xe| ⩽ (1− 1√

2(∆−1)
)2/(∆− 1). Lemma 2.1

can also easily be adjusted to the multivariate setting. Combining these gives the multivariate
result above.

Question 5.2. We know that the zero-free disk from Theorem 1.1 is essentially optimal in one of
the real directions (under the assumption that P ̸= NP). Is it also optimal in other directions, such
as the imaginary direction? This is motivated by connections to quantum computing [MB19,
MM24] as mentioned in the introduction.

Question 5.3. Can (1 − 1√
2(∆−1)

)2/(∆ − 1) be replaced by 1/(∆ − 1) in Theorem 1.1? Our
current proof of Theorem 3.3 does not appear to leave room for such an improvement, so some
new ingredient is required.
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