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Abstract Time series within fields such as finance and eco-
nomics are often modelled using long memory processes.
Alternative studies on the same data can suggest that series
may actually contain a ‘changepoint’ (a point within the time
series where the data generating process has changed). These
models have been shown to have elements of similarity,
such as within their spectrum. Without prior knowledge this
leads to an ambiguity between these two models, meaning
it is difficult to assess which model is most appropriate. We
demonstrate that considering this problem in a time-varying
environment using the time-varying spectrum removes this
ambiguity. Using the wavelet spectrum, we then use a clas-
sification approach to determine the most appropriate model
(long memory or changepoint). Simulation results are pre-
sented across a number of models followed by an application
to stock cross-correlations and US inflation. The results indi-
cate that the proposed classification outperforms an existing
hypothesis testing approach on a number of models and per-
forms comparatively across others.

Keywords Classification · Long memory · Changepoint ·
Wavelet spectrum · Non-stationarity

1 Introduction

It is not often the case that a given data set has a known
explicit model from which it is generated. Analysts will look

B Rebecca Killick
r.killick@lancs.ac.uk

Ben Norwood
b.norwood@lancs.ac.uk

1 Department of Mathematics and Statistics, Lancaster
University, LA1 4YF Lancaster, UK

to fit an appropriate model to such a series in the hopes of
understanding the underlyingmechanisms or tomake predic-
tions into the future. The models proposed are expected to
be distinct in their properties such that there is a clear preva-
lence of a suitable model for the data. However, models with
certain structural features have been known to have similar
properties to other models (Granger and Hyung 2004). This
overlap will be here referred to as an ‘ambiguity’ between
the models. This is such that either model may appear simi-
lar to one another in some metrics, but provide very different
interpretations on the data generating process, and lead to
different predictions into the future.

In this paper, we consider the ambiguity between long
memory and changepoint models. This ambiguity has been
documented in fields such as finance and economics which
are modelled using long memory models (Granger and Ding
1996; Pivetta and Reis 2007) and changepoint models (Levin
and Piger 2004; Starica andGranger 2005). Thus, it is reason-
able to assert that there is an element of ambiguity between
these two models. Following the discussion and in-depth
analysis within Diebold and Inoue (2001), it has been shown
that both models share some similar properties, especially
within the spectrum. Often a decision on a model cannot
be made with the ‘luxury’ of prior knowledge, and as such
assuming the data derives from either of these models comes
at a risk of mis-specification.

Existingwork inYau andDavis (2012) conducts a hypoth-
esis test to determine between the changepoint and long
memory model. The authors choose to use the changepoint
model as a null model with the justification that this is the
more plausible model. However, in some circumstances this
may not be the case, so it leads to the question as to which
model should be the null model. It would be entirely feasi-
ble to choose the changepoint model as the null model, not
reject H0 and then flip to have the long memory model as the
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null model and also not reject H0. This does not give a clear
answer to the question of an appropriate model.

As an alternative this paper introduces a classifier, which
places no such assumptions on which model is preferred.
Instead, the purpose of a classifier is only to give a measure
of which category provides the best fit. In the context here, it
can measure which model best describes a time series, with-
out assuming that thismodel iswhere the datawere originally
generated from. Classification of time series has been previ-
ously used in Grabocka et al. (2012) and Krzemieniewska
et al. (2014). It was shown in Yau and Davis (2012) that the
autocorrelation function and periodogram of data generated
from a changepoint model and a long memory model exhibit
similar structures (i.e. slow decay in the autocorrelation and
spectral pole at zero). However, if we consider a time-varying
periodogram, then the stationarity of a long memory model
can be seen (constant structure over time), whilst a change-
point model exhibits the piecewise stationarity expected [see
for example Killick et al. (2013)]. As the time-varying spec-
trum shows evidence of a difference between these models,
we use it as the basis for our classification procedure.

The structure of this article is as follows. The background
and methods to our approach are given in detail in Sect. 2.
A simulation study of the proposed classification method,
with a comparison to the likelihood ratio test from Yau and
Davis (2012), can be found in Sect. 3. Applications of the
classifier are then given using US price inflation and stock
cross-correlations in Sect. 4. Finally, concluding remarks and
a discussion is given in Sect. 5.

2 Methods

2.1 Changepoint and long memory models

The aim of our method is to distinguish between data which
arise from either a changepoint or a long memory model. To
define these, we first define the general autoregressive inte-
grated moving average (ARIMA) model, characterised by
its autoregressive (AR) parameters φ ∈ R

p, moving average
(MA) parameters θ ∈ R

q and the integration (I) parameter
d ∈ N. For randomvariables X1, X2, . . . , Xn this is formally
defined as,

(
1 −

p∑
k=1

φk B
k

)
(1 − B)d Xt =

(
1 +

q∑
k=1

θk B
k

)
εt

where εt ∼ N (0, σ 2) and B is the backward shift opera-
tor such that BXt = Xt−1 and Bεt = εt−1. A variation
of this, autoregressive fractional integrated moving average
(ARFIMA), is such that d ∈ R, allowing it to be fractional.
This modification allows long memory behaviour to be cap-

tured through dependence over a large number of previous
observations.

For the purpose of this paper, we define the changepoint
and long memory models as:

Xt ∼
{

μ1 + ARMA(φ1, θ1) if t = 1, 2, . . . τ

μ2 + ARMA(φ2, θ2) if t = τ + 1, τ + 2, . . . n.

(1)

Xt ∼ μ + ARFIMA(φ, d, θ) t = 1, 2, . . . , n (2)

Note that we depict a single changepoint τ = �nλ� for nota-
tional ease, but the software we provide (see Sect. 5) contains
the generalisation to multiple changes through use of the
PELT algorithm (Killick et al. 2012) and extending Eq. (1)
to include multiple τ . Other models such as ARCH models
and fractional Gaussian noise (Molz et al. 1997) could also
be used, but we restrict our consideration to ARFIMA here.
In the general case, we allow p, q ∈ N, but in the simula-
tions and applications given in Sects. 3 and 4 we restrict their
range for computational reasons.

2.2 Wavelet spectrum

The ambiguity present between diagnostics of the compet-
ing models given in Eqs. (1) and (2) can cause issues in
identifying the correct model. Figure 1 shows the average
empirical periodograms from realisations of long memory
[ARFIMA(0, 0.4, 0)] and changepoint (AR(1), λ = 0.5,
φ1 = 0.1, φ2 = 0.4, μ1 = 0, μ2 = 1) models. It can be
seen that the periodogram for the changepoint model has
a pole at zero and shows similar behaviour to that of long
memory.

Before discussing thewavelet spectrum,weprovide abrief
background towavelets and the specific spectrumwepropose
to use.

Wavelets capture properties of the data through a location–
scale decomposition using compactly supported oscillating
functions. Through dilation and translation, a wavelet is
applied across a number of a scales and locations to cap-
ture behaviour occurring over different parts of a series.
Further information on them and their application can be
found in Daubechies (1992) and Nason (2010). In this work,
we use themodel framework of the locally stationarywavelet
process which provides a stochastic model for second-order
structure using wavelets as building blocks.

We follow the definition in Fryzlewicz and Nason (2006)
for a locally stationary wavelet (LSW) process.

Definition 1 Define the triangular stochastic array{
Xt,N

}N−1
t=0 which is in the class of LSW processes given

it has the mean-square representation
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Fig. 1 Empirical periodogram and wavelet spectrum averaged over 500 realizations. a Changepoint periodogram. b Long memory periodogram.
c Changepoint wavelet spectrum. d Long memory wavelet spectrum

Xt,N =
∞∑
j=1

∑
k

W j

(
k

n

)
ψ j,k−tξ j,k,

where j ∈ 1, 2, . . . and k ∈ Z are scale and location param-
eters, respectively, ψ j = (ψ j,0, . . . , ψ j,L j−1) are discrete,
compactly supported, real-valued non-decimated wavelet
vectors of support length L j . If the ψ j are Daubechies
wavelets (Daubechies 1992) then L j = (2 j −1)(Nh −1)+1
where Nh is the lengthof theDaubechieswavelet filter, finally
the ξ j,k are orthonormal, zero-mean, identically distributed
random variables. The amplitudes Wj (z) : [0, 1] → R at
each j ≥ 1 are time-varying, real-valued, piecewise con-
stant functions which have an unknown (but finite) amount
of jumps. The constraints on Wj (z) are such that if P j are
Lipschitz constants representing the totalmagnitude of jumps
in W 2

j (z), then the variability of Wj (z) is controlled by

–
∑∞

j=1 2
jP j < ∞,

–
∑∞

j=1 W
2
j (z) < ∞ uniformly in z.

As in the traditional Fourier setting, the spectrum is the square
of the amplitudes and as such the evolutionary wavelet spec-
trum can be defined as

S j

(
k

N

)
=

∣∣∣∣Wj

(
k

N

)∣∣∣∣
2

which changes over both scale (frequency band) j and loca-
tion (time) k.

Considering both scale and location, the two dimensions
allow the differences between the proposed models to be
seen. Examples of the differences in these spectra are given
in Fig. 1 for both the changepoint and long memory mod-
els. To interpret the wavelet spectrum: scale corresponds to
frequency bands with high frequency at the bottom to low
frequency at the top. Further details on the spectrum and its
applicability can be found in Fryzlewicz and Nason (2006),
Nason (2010) and Killick et al. (2013). Note that there is
a clear difference between the wavelet spectra of the two
models with the changepoint model being piecewise station-
ary (pre- and post-change), with the change occurring in the
spectrum where the change occurs in the data. In contrast the
long memory model remains flat across each scale and time
reflecting the stationarity of the original series.

Due to the fact that the wavelet spectrum gives a distinc-
tion between the two models, we propose to use this as the
basis for our inference regarding themost appropriate model.
Whilst the Fourier spectrum could be used here as in Janacek
et al. (2005), we choose to use the evolutionary wavelet
spectrum. As shown in Fig. 1, this is advantageous for char-
acterising the non-stationarity changepoint data due to the
scale–location transformation used. This is since the Wj (z)
are constant for stationary models, but for non-stationary
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models the break in the second-order structure of the original
data causes breaks in the wavelet spectra, as described in Cho
and Fryzlewicz (2012).

In the next section, we detail how to use the wavelet spec-
trum of the two models in a classification procedure.

2.3 Classification

Testing whether a long memory or changepoint model is
more appropriate whilst under model uncertainty comes with
the hazard of mis-specification. A formal hypothesis test
places assumptions on the underlying model in both the null
and alternative, but the allocation of the null is hazardous—
should the changepoint model be the null or alternative? It
would be entirely feasible to choose the changepoint model
as the null model, not reject H0 and then flip to have the
long memory model as the null model and also not reject
H0. Given the absence of a clear null model, which result
to proceed with is unclear. Instead, it may be preferable to
quantify the evidence for each model separately. A clas-
sification method such as the one proposed here gives a
candidate series a measure of distance from a number of
groups, which can then be used to select the most appropri-
ate group.

In the previous subsection, it was demonstrated that the
wavelet spectrum can be used to distinguish the change-
point model from the long memory model, and the classifier
proposed here builds on this. However, to begin a classi-
fication method must first ‘teach’ itself on the structure of
the classes through sets of training data. These are data sets
already determined to be in each category and are the basis
for calculating the distances from each group. This previous
knowledge allows for determination of patterns and features
of each category (that are unique from other categories) for
comparison to the candidate data set. A common example
is the spam filter on mailboxes, which is trained on pre-
vious spam emails so that it can classify if a new email
that arrives is spam or not. The decision is made by com-
paring it to a number of patterns already determined to be
features in spam email for example, short messages or hid-
den sender identities. Further information on classification
methods and training them can be found within Michie et al.
(1994).

In our example, we only have a single data set of length n,
the classifier has no previous information to train on. To rem-
edy this we create training data through simulation. Given a
candidate series we first fit the competing models in Eqs. (1)
and (2) choosing the best fit for each model. For the change-
point model the best fit uses the ARMA likelihood within the
PELT multiple changepoint framework to identify multiple
changes inARMAstructure (Hyndman andKhandakar 2008;
Killick et al. 2012). When considering fitted long memory
models, a number of ARFIMA models are fitted (Veenstra

2012) and selection occurs according to Bayesian informa-
tion criterion [following Beran et al. (1998)].

Following the identification of the best changepoint and
long memory models, the training data are then simulated as
(Monte Carlo) realisations from these, denoted by

Xg
m =

{
Xg
i,m

}
i=1,2,...,n

m = 1, 2, . . . , M.

g = 1, 2.

where the group, g = 1 for changepoint simulations and
g = 2 for long memory simulations, M is the number of
simulated series and n is the length of the original series.
Note that we are not sampling from the original series, we
are generating realizations from the fitted models.

Now we have the training data and the observed data,
denoted Xo, a measure of distance of the observed data from
each group is calculated. As discussed previously, we will
use a comparison of their evolutionary wavelet spectra as the
distance metric. Before detailing the metric, we first define
the wavelet spectrum of the original series as

So = {
Sok

}
k=1,2,...n∗J

where we remove the index over scale j by concatenating
scales, hence k = 1, 2, . . . n ∗ J , where J = �log2(n)�.
Similarly we define the spectra for each simulated series:

Sgm =
{
Sgk,m

}
k=1,2,...n∗J .

To obtain a group spectra, an average is then taken over the
M simulated series at each position of each scale for each
group,

S̄
g =

{
1

M

M∑
m=1

Sgk,m

}
k=1,2,...n∗J

.

Based on these spectra, the distance metric proposed is
a variance- corrected squared distance, across all spectral
coefficients as proposed in Krzemieniewska et al. (2014),

Dg = M

(M + 1)

n∗J∑
k=1

(Sok − S̄gk )2∑M
m=1(S

g
k,m − S̄gk )2

(3)
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Note that the variance correction occurswithin the denomina-
tor to account for potentially different variability seen across
simulations for each group. This is modified from Krzemie-
niewska et al. (2014) to allow different variances within each
group. The theoretical consistency of the classification was
shown in Theorem 3.1 from Fryzlewicz and Ombao (2009)

where the error for misclassifying two spectra
{
S(1)
k

}
k
and{

S(2)
k

}
k
(whose difference summed over k is larger thanCN )

is bounded by O (
N−1 log32 N + N 1/{2 log2(a)−1}−1 log22 N

)
.

However, this result requires a short memory assumption
that is clearly not satisfied for our long memory processes.
Thus, we prove a similar bound under the assumption that the
spectra are created from ARFIMA processes. We first repli-
cate the required assumptions from Fryzlewicz and Ombao
(2009) for completeness:

Assumption 2.1 (Assumption 2.1 from Fryzlewicz and
Ombao (2009)) The set of those locations z where (possibly
infinitely many) functions S j (z) contain a jump is finite. In
otherwords, letB := {

z : ∃ j limu→z− S j (u) �= ∃ j limu→z+
}
.

We assume B := #B < ∞.

Assumption 2.2 (Assumption 2.2 from Fryzlewicz and
Ombao (2009)) There exists a positive constant C1 such that
for all j, S j (z) ≤ C12 j .

Theorem 1 Suppose that assumptions 2.1 and 2.2 hold, and
that the constants P j from definition 1 decay as O(a j ) for

a > 2. Let S(1)
j (z) and S(2)

j (z) be two non-identical wavelet

spectra from ARFIMA processes. Let I (J )
k,N be the wavelet

periodogram constructed from a process with spectrum
S(1)(z), and let L( j)

k,N be the corresponding bias-corrected
periodogram, with J ∗ = log2 N. Let

∑
j,k

{
S(1)
j (k/N ) − S(2)

j (k/N )
}2 = O(N ).

The probability of misclassifying L( j)
k,N as coming from a pro-

cess with spectrum S(2)
j (z) can be bounded as follows:

P(D1 > D2) = O
(
log22 N

[
N−1 + N

1
(2 log2 a−1) −1

])

Proof The proof is given in Appendix 1.

A summary of the proposed procedure is given in Algo-
rithm 1.

Initialization:
X : {Xi}ni=1 observed series.
n : Length of series
M : Number of bootstrap simulations
S̄1, S̄2 : Empty Spectra 1, 2.

Algorithm:

1. Fit: M1 - best changepoint model (Equation
(1)) to X.

2. Fit: M2 - best long memory model (Equation
(2)) to X.

3. Calculate training spectra
for m = 1, 2, . . . , M do
Simulate n observations from M1, denote
as Y1
Calculate Evolutionary Wavelet Spectra
S1

m of Y1

Let S̄1 = S̄1 + S1
m

Simulate n observations from M2, Y2
Calculate Evolutionary Wavelet Spectra
S2

m of Y2

Let S̄2 = S̄2 + S2
m

end
4. Calculate the average Evolutionary Wavelet

Spectra for each group S̄1 = S̄
1

M
, S̄2 = S̄

2

M
.

5. Calculate Evolutionary Wavelet Spectrum of X,
So.

6. Compute the distance D1, D2, between So and
S̄1, S̄2 respectively (Equation (3)).

Output: Distances D1, D2.

Algorithm 1: Wavelet Classifier Algorithm

3 Simulation study

To test the empirical accuracy of our proposed approach,
simulations were conducted over a number of models. Here,
these models are chosen over a number of parameter mag-
nitudes and combinations to show the effectiveness of the
approach outlined in Sect. 2. A number of these models also
appear in Yau and Davis (2012) which uses a likelihood ratio
method to test the null hypothesis of a changepoint model.
Their results for these models are correspondingly given as
a comparison.

For each model given in the tables below, 500 realisa-
tions of each model were generated and classified, using
M = 1000 training simulations for each fit. For computa-
tional efficiency, the maximum order of the fitted models is
constrained to p, q ≤ 1. Three different time series lengths
were computed for each model; 512, 1024 and 2048. It is
expected that as a series grows larger, more evidence of
long memory features will become prevalent, and as such
the effect of length of series on accuracy is investigated.
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Table 1 Changepoint
observations results with
likelihood ratio comparison
(Yau and Davis 2012)

Ref Model parameters Classification rate Y and D Likelihood ratio

λ μ φ1 θ1 φ2 θ2 n = 512 n = 1024 n = 2048 n = 500 n = 1000

1 0.5 1 0.1 0.3 0.4 0.2 1.00 1.00 1.00 0.99 0.97

2 0.5 2 0.1 0.3 0.4 0.2 1.00 1.00 1.00 0.95 0.93

3 0.5 1 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.97 0.99

4 0.5 2 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.94 0.95

5 0.7 1 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.94 0.94

6 0.7 2 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.91 0.93

We have used n = 2J as the length of the series as the
wavelet decomposition software (Nason 2016b) requires that
the series transformed is of dyadic length. This is not a desir-
able trait as data sets come in many different sizes. Thus, we
overcome this using a standard padding technique (Nason
2010) that adds 0’s to the left of each series until the data
are of length 2J . The extended wavelet coefficients are then
removed before calculating the distance metric.

3.1 Changepoint observations

For the changepoint models, we used the simulations given
inYau andDavis (2012). Table 1 gives the parameters used in
Eq. (1) along with the correct classification rate. The results
show that if the data followa changepointmodel thenwehave
a 100% classification rate. A movement of the changepoint
to a later part of the series, as in models 5 and 6, does not
appear to have an effect upon classification rates unlike for
the Yau and Davis method. It is not really a surprise that we
are receiving 100% classification rates as if a changepoint
occurs then it is a clear feature within the spectrum.

It should be noted that as the Yau and Davis method is a
hypothesis test we would expect results around 0.95 for a 5%
type I error.

3.2 Long memory observations

In contrast to the changepoint models, the classification of
a long memory model is expected to be less clear. This is
due to the variation within the wavelet spectrum of long
memory series that could be interpreted as different levels
and hence a changepoint model would be more appropriate.
To demonstrate the effect of the classifier on long memory
observations, a larger number of models were considered.
We simulated long memory models with differing levels of
long memory as measured by the d parameter, values close
to 0 are closer to short memory models and values close to
0.5 are stronger long memory models (values >0.5 are not
stationary and thus not considered).

The results in Table 2 give an indication of the accuracy
of the classifier in a number of different situations. Overall,

as the length of the time series increases we see an increase
in classification accuracy. This is to be expected as evidence
of long memory will be more prevalent in longer series. Sim-
ilarly as we increase the long memory parameter d from 0.1
to 0.4 we improve the classification rate.

Some interesting things to note include, when there are
strongARparameters (φ) such asmodels 7–10 and 19–22we
require longer time series to achieve good classification rates.
However, in contrast if there are strongMA components as in
the remaining models the classifier performs better. A larger
effect is found when the MA parameter is negative, seen
throughmodels 11–14 where the classifier performs strongly
even at n = 512. This effect is further exemplified bymodels
23–26 which include a further MA parameter and achieve
near 100% classification at n = 512. Here the maximum
used p, q was 2.

Comparing our results to that of Yau and Davis we note
that the opposite performance is seen. For the likelihood ratio
method there is high power for models with strong AR com-
ponents and poor performance for strong MA components.
Notably the strong MA performance is much worse than our
method on the strong AR components.

4 Application

To further demonstrate the usage of our approach, two appli-
cations to real data are given in this section. The first is an
economics example based on US price inflation and this is
followed byfinancial data on stock cross-correlations. A sen-
sitivity analysis was conducted over the possible maximum
values of p, q. It was found that no additional parameters
were required beyond maximum p, q = 4, thus these results
are presented here.

4.1 Price inflation

US price inflation can be determined using the GDP index.
The data set used here is available from the Bureau of Eco-
nomic Analysis, based on quarterly GDP indexes, denoted
Pt , from the first quarter of 1947 to the third quarter of
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Table 2 Long memory
observations result with
likelihood ratio comparison
(Yau and Davis 2012)

Ref Model parameters Classification rate Y and D LR power

φ d θ1 θ2 n = 512 n = 1024 n = 2048 n = 500

7 −0.8 0.1 0.6 0.42 0.61 0.79 0.63

8 −0.8 0.2 0.6 0.56 0.83 0.94 0.97

9 −0.8 0.3 0.6 0.66 0.90 0.96 0.98

10 −0.8 0.4 0.6 0.75 0.88 0.96 0.96

11 0.1 0.1 −0.8 0.74 0.87 0.95 0.08

12 0.1 0.2 −0.8 0.84 0.96 0.99 0.09

13 0.1 0.3 −0.8 0.89 0.98 1.00 0.15

14 0.1 0.4 −0.8 0.88 0.99 1.00 0.32

15 0.1 0.1 0.8 0.54 0.78 0.90

16 0.1 0.2 0.8 0.61 0.85 0.91

17 0.1 0.3 0.8 0.62 0.87 0.95

18 0.1 0.4 0.8 0.63 0.87 0.98

19 0.6 0.1 −0.8 0.33 0.45 0.65

20 0.6 0.2 −0.8 0.38 0.62 0.83

21 0.6 0.3 −0.8 0.44 0.63 0.87

22 0.6 0.4 −0.8 0.39 0.59 0.86

23 0.0 0.1 0.7 −0.7 0.94 0.97 0.99

24 0.0 0.2 0.7 −0.7 1.00 0.99 1.00

25 0.0 0.3 0.7 −0.7 1.00 1.00 1.00

26 0.0 0.4 0.7 −0.7 1.00 0.99 1.00

Fig. 2 Real data examples. a Time series of US price inflation. b Time series of the cross-correlations of American Express and Home Depot.

2006 (227 data points). Price inflation is calculated as πt =
400 ln(Pt/Pt−1) (thus n = 226). A plot of the inflation is
given below in Fig. 2a. Studies of the persistence of this data
have been conducted to determine the level of dependence
within the series. A high amount of persistence, indicating
long memory, was found in Pivetta and Reis (2007). How-
ever Levin and Piger (2004) found a structural break, which
when accounted for showed the series to have low persis-
tence, indicating the presence of changepoints with short
memory segments. Applying our classification approach to
this serieswill give an additional indication as towhichmodel
is statistically more appropriate.

The parameters of the fitted changepoint and longmemory
models are given in Table 3. Diagnostic autocorrelation and
partial autocorrelation function plots are given in Fig. 3. The
level shifts are given in respect to their position in the series,

but correspond to 1951Q3, 1962Q4, 1965Q2, 1984Q2. The
classifier returns a changepoint classification for this series.

4.2 Stock cross-correlations

Stock cross-correlation data have beenobtained from the sup-
plementary material of Chiriac and Voev (2011). The data
consist of open to close stock returns for 6 companies from
January 1st 2001 to 30th July 2008 (n = 2156). The data are
first transformed using a Fisher transformation, then corre-
lations are calculated between each stock. Here analysis will
look at the correlation between American Express and Home
Depot.

These data have been analysed previously by Bertram
et al. (2013) to determine between fractional integration (long
memory behaviour) and level shifts and are given in Fig. 2b.
Parameters for the models fitted by the algorithm are also
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Table 3 Model fits and scores for US inflation (inflation) and stock cross-correlations (stock)

Long Memory Model Score Changepoint Model Score
Data

Inflation

Stock

ARFIMA(4, 0, 0)
φ = (0.30, 0.20, 0.20,−0.16)
d = 0.31
μ = 3.29

ARFIMA(1, 0, 1)
φ = 0.30
θ = 0.58
d = 0.47, μ = 0.35

40147

12128

AR(1)
φ = 0.68, τ = 18, μ = 0
AR(1)
φ = 0.63, τ = 63, μ = 1.70
ARMA(2, 1)
φ = (−0.43,−0.33)
θ = 0.47, τ = 73, μ = 1.69
AR(1)
φ = 0.82, τ = 149, μ = 5.43
AR(3)
φ = (0.60, 0.19, 0.18)
τ = 226, μ = 0
ARMA(4, 4)
φ = (−0.05,−0.002, 0.07, 0.94)
θ = (0.17, 0.14, 0.04,−0.83)
τ = 715, μ = 0.31
AR(1)
φ = 0.29, τ = 841, μ = 0.42
ARMA(2, 1)
φ = (0.09, 0.09)
θ = −0.58, τ = 847, μ = 0.30
MA(1)
θ = −0.72, τ = 896, μ = 0.50
ARMA(3, 1)
φ = (1.12,−0.06,−0.07)
θ = −0.90, τ = 2156, μ = 0.35

Segment 1

Segment 2

Segment3

Segment 4

Segment 5

38750
Segment 1

Segment 2

Segemnt 3

Segment 4

Segment 5

5348047

Bold scores are the minimum. Each segment ending at τ is separated by a dotted line

Fig. 3 Inflation diagnostics. (Top) Left Original data with fitted
changepoint model; Middle Autocorrelation function of changepoint
model residuals; Right Partial autocorrelations of changepoint model

residuals. (Bottom) Left Original data with fitted long memory model;
MiddleAutocorrelation function of longmemorymodel residuals;Right
Partial autocorrelations of long memory model residuals
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Fig. 4 Stock diagnostics. (Top) Left Original data with fitted change-
point model; Middle Autocorrelation function of changepoint model
residuals; Right Partial autocorrelations of changepoint model residu-

als. (Bottom) Left Original data with fitted long memory model;Middle
Autocorrelation function of longmemorymodel residuals;Right Partial
autocorrelations of long memory model residuals

in Table 3. It can be seen that one of the AR coefficients is
close to 1 indicating an element of non-stationarity; however,
we conducted a test of stationarity on this segment using
the locits R package (Nason 2016a) which implements
the test of stationarity from Nason (2013) (no rejections)
and also the fractal R package (Constantine and Perci-
val 2016) which implements the Priestley–Subba Rao (PSR)
test (Priestley and Rao 1969) (time- varying p value 0.061).
This coupled with autocorrelation and partial autocorrelation
function plots given in Fig. 4meanswe conclude that the seg-
ment is stationary. Here the estimated changepoints at times
715, 841, 847 and 896 correspond 15/12/2002, 20/04/2003,
26/04/2003 and 14/06/2003. The distance scores given by
the classifier indicate a strong preference for long memory
over changepoints. This result stands against that found in
Bertram et al. (2013) which indicated a preference for a
model with similarly 4 changepoints. The difference is likely
due to the fact that in Bertram et al. (2013) the changepoint
model does not contain any short memory dependence and
we have shown here that if that short memory structure is
correctly taken into account within the sub-series then the
series shows greater evidence of long memory properties.

5 Conclusion

Thewavelet classificationprocess presentedwithin this paper
provides the user a distinct choice over a number of proposed

models, and when explicitly applied to an ambiguity such as
long memory or a changepoint as in Sect. 3, it provides an
additional piece of information to aid decision-making. The
accuracy of the classifier over a number of simulated models
has been presented within Sect. 3 and applied to data from
the financial and economic fields in Sect. 4.

The evolutionary wavelet spectrum provides a represen-
tation of non-stationarity which is lacking in the commonly
used (averaged over time) spectrum. This gives an advan-
tage when drawing comparisons between non-stationary and
stationary series, since thewavelet spectrummay appear sub-
stantially different. Quantifying this visual difference allows
for a direct comparison between the series and each proposed
model.

The variance-corrected squared distancemetric used in the
proposed classifier has been demonstrated to be quite accu-
rate under the ambiguity of long memory and changepoint
models. It is particularly effective at identifying changepoint
models correctly, as the results in Table 1 demonstrate. It was
noted that there is relatively lower variation between the sim-
ulations generated for the changepoint than the long memory
model, which reduces the distance metric significantly even
though it is variance corrected.

As mentioned in Sect. 1 there are many series that can be
found in fields such as economics and finance which show
evidence of the ambiguity investigated here. This classifica-
tion is not intended to propose a final model for these series,
but instead give additional information, treated perhaps as a
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diagnostic. This could be to begin investigation of a series, or
to confirm a previously found model fit. As this is not a for-
mal test, the lack of assumptions allows for more flexibility
in how the classification can be used. This work, however, is
not restricted only to the ambiguity mentioned here, further
work could extend it to determine between other features,
such as local trends and seasonal behaviour or combining the
behaviour of both models, i.e. a long memory model with a
changepoint.

An aspect not covered in this paper is the precise form
of ARMA and long memory models in the LSW paradigm,
i.e. how the model coefficients relate to the Wj,k’s. This is
an interesting area for future research which would cement
the LSWmodel as an encompassing model but is beyond the
scope of this paper.

An R package (LSWclassify) is available from the
authors that implements the method from the paper.
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Appendix: Proof of Theorem 1

Proof Wereplicate the steps of theproofwithin theAppendix
of Fryzlewicz and Ombao (2009) up until (A.6), where fol-
lowing this step the short memory condition is used. To
briefly summarise previous steps,

P(D1 − D2 > 0) = P(X − t > 0) ≤ E(X̃2)/t2,

(by Chebyshev’s Inequality)

E(X̃2) =: I + I I,

I ≤ C J0 J
∗

−J0∑
j=−1

−J∗∑
i=−1

2i+ j E
{
b2i, j

}
,

E
{
b2i, j

}
=: 2A + 2B.

Definitions for these components can be found in the original
proof. Component A is where we alter the proof.

Recall I (i)
k,N is the wavelet periodogram at a fixed scale

i , at position k with total length N , with d(i)
k,N the wavelet

coefficient corresponding to it through the relationship
I (i)
k,N = (d(i)

k,N )2. We continue the proof from (A.6) using the
ARFIMA assumption instead. Following from above (A.6):

A = E

{
N∑

k=1

{
I (i)
k,N − E

(
I (i)
k,N

)}
c j,k

}2

≤ 22 j
N∑

k,k′=1

∣∣∣cov (
I (i)
k,N , I (i)

k′,N

)∣∣∣
= 22 j

N∑
k,k′=1

2cov2
(
d(i)
k,N , d(i)

k′,N

)

(by Isserli’s Theorem) (4)

Jensen (2000) gives bounds for the covariance of wavelet
coefficients;

cov
(
d(m)
k,N , d( j)

n,N

)
= C1|α|2d−1−2M + R2M+1

α = 2m− j k − n, m ≥ j

|R2M+1| ≤ C2|α|2d−2−2M ,

where M ≥ 1 is the number of vanishing moments in the
wavelet used. Using |α| = |2i−i k − k′| = |k − k′| ≥ 1 and
substituting into Eq. (4):

A = 22 j+1
N∑

k,k′=1

(C3|α|2d−1−2M + R2M+1)
2

= 22 j+1
N∑

k,k′=1

|C3|α|2d−1−2M + R2M+1|2

≤ 22 j+1
N∑

k,k′=1

(

∣∣∣C3|α|2d−1−2M
∣∣∣ + |R2M+1|)2

≤ 22 j+1
N∑

k,k′=1

(C4|α|2d−1−2M + C5|α|2d−2−2M )2

As |α|2d−2−2M ≤ |α|2d−1−2M we have:

A ≤ 22 j+1
N∑

k,k′=1

(
C6|k − k′|2d−1−2M

)2

= 22 j+1
N∑

k,k′=1

C7
1

|k − k′|−2(2d−1−2M)

= 22 j+1
N−1∑
s=1

(N − s)C7
1

s−2(2d−1−2M)

= 22 j+1C7

[
N

N−1∑
s=1

1

s−2(2d−1−2M)
−

N−1∑
s=1

1

s−4(d−M)+1

]

Given that |d| < 0.5 and M ≥ 1 then 4 < −2(2d − 1 −
2M) = δ1 and 3 < −4(d − M) + 1 = δ2. We can then
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replace the sums using the definition of generalised harmonic
numbers and their convergence:

Hn,m =
n∑

k=1

1

km

Hn,m = O(1) as n → ∞ (m > 1)

Thus

A ≤ 22 j+1C7
(
NHN−1,δ1 − HN−1,δ2

) = 22 j+1C7HN ,

where HN = NHN−1,δ1 − HN−1,δ2 . Returning to con-
sider (A.4) from Fryzlewicz and Ombao (2009), we find
a bound for component I , where J0, J ∗ = log2 N and
Δ = 1

(2 log2 a−1) :

I = C8 J0 J
∗

−J0∑
j=−1

−J∗∑
i=−1

2i+ j
[
22 j+1C7

(
NHN−1,δ1

−HN−1,δ2

) + N 1+Δ2 j
]

= C8 log
2
2 N

−J0∑
j=−1

2 j
[
22 j+1C7HN

+ N 1+Δ2 j
] (

1 − 2J∗)

= C8 log
2
2 N

⎡
⎣ −J0∑

j=−1

C72
3 j+1

(
1 − 2J∗)HN

+
−J0∑
j=−1

23 j
(
1 − 2J∗) N 1+Δ

⎤
⎦

= C9 log
2
2 N

(
1 − 2−J∗)HN

−J0∑
j=−1

23 j+1

+ C8 log
2
2 N

(
1 − 2−J∗) N 1+Δ

−J0∑
j=−1

23 j

= C9 log
2
2 N

(
1 − 2−J∗)HN

2

7

(
1 − 2−3J0

)
+ C8 log

2
2 N

(
1 − 2−J∗) N 1+Δ 1

7

(
1 − 2−3J0

)
= log22 N

(
1 − N−1

) (
1 − N−3

)
×

[
C10HN + C11N

1+Δ
]

= log22 N
(
1 − N−3 − N−1 + N−4

)
×

[
C10HN + C11N

1+Δ
]

≤ C12 log
2
2 N

(
HN + N 1+Δ

)

Following this, using results in Fryzlewicz and Ombao
(2009) the probability of misclassification is:

P(X > t) = O
(
log22 N

[
N−1 + NΔ−1

])
.
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