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ASCOT: solving the kinetic equation of
minority particle species in tokamak plasmas

E. Hirvijoki∗, O. Asunta, T. Koskela, T. Kurki-Suonio, J. Miettunen, S. Sipilä, A. Snicker, S. Äkäslompolo

Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 AALTO, Finland

Abstract

A comprehensive description of methods, suitable for solving the kinetic equation for fast ions and impurity species in tokamak
plasmas using Monte Carlo approach, is presented. The described methods include Hamiltonian orbit-following in particle and
guiding center phase space, test particle or guiding center solution of the kinetic equation applying stochastic differential equations
in the presence of Coulomb collisions, neoclassical tearing modes and Alfvén eigenmodes as electromagnetic perturbations rele-
vant to fast ions, together with plasma flow and atomic reactions relevant to impurity studies. Applying the methods, a complete
reimplementation of the well-established minority species code ASCOT is carried out as a response both to the increase in com-
puting power during the last twenty years and to the weakly structured growth of the code, which has made implementation of
additional models impractical. Also, a benchmark between the previous code and the reimplementation is accomplished, showing
good agreement between the codes.

Keywords: orbit-following, impurity tracing, Monte Carlo, fast ions
PACS: 52.65.-y, 52.65.Ff, 52.25.Vy, 52.20.Dq

1. Introduction

As fusion energy research is rapidly approaching the reactor
era, the role of energetic ions, most notably fusion alphas, is be-
coming increasingly important. Numerical simulation tools for
analyzing their behavior have been available for over 20 years.
During this period, the demands of more accurate and complete
physics on one hand, and the development of computer archi-
tectures on the other hand have forced the developers to alter
and amend the codes piece by piece, easily leading to a situa-
tion where the original philosophy and structure of the code are
compromised and the full command of it is lost as a result of
what could be called organic growth. The Monte Carlo orbit-
following code ASCOT [1, 2, 3, 4, 5, 6] is no exception in this.

In this paper we introduce a code that is still called ASCOT
but has been fully rewritten. The new version is dubbed AS-
COT4 and, when necessary, the old version is referred to as
ASCOT3. Not only is the code rewritten using modern pro-
gramming conventions but, more importantly, the philosophy
behind the model has been reviewed. When doing so it was
realized that the conventional way of solving the guiding cen-
ter kinetic equation including collisional effects is in fact in-
consistent: guiding center codes typically apply a Monte Carlo
collision operator that has not been transformed to the guiding
center phase space and, strictly speaking, is valid only for the
particle phase space. Another common discrepancy is to use
different phase space coordinates for the Hamiltonian and colli-
sional parts when solving the kinetic equation with Monte Carlo
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methods. In ASCOT4, we follow recent developments regard-
ing these issues and treat the collisional and Hamiltonian parts
consistently [7, 8].

The paper is organized as follows: in Section 2, an intro-
duction to ASCOT as a test particle code is given. Section 3
forms the backbone of this paper, describing in detail how the
kinetic equation corresponding to the charged particle dynam-
ics in tokamak plasmas is solved both for the full gyro mo-
tion and in the guiding center formalism. In this context we
present the equations of motion for charged particles in elec-
tromagnetic fields, together with the integrators for advancing
these equations in time, as well as methods to account for test
particle Coulomb collisions with the bulk plasma. The initial
particle loadings corresponding to the most relevant fast ion
sources are described in Section 4. In Section 5, we discuss
how magnetohydrodynamical (MHD) effects can be included
to obtain more realistic simulations of fast ions, and Section 6
introduces models for ionization and recombination required in
impurity studies. Section 7 discusses the implementation of a
wall surrounding the tokamak plasma, i.e., the first solid sur-
face of the machine seen by the particles, and how it limits the
simulation regime. The rest of the paper includes a descrip-
tion of distributions that can be recorded during the simulation
(Sec. 8), a benchmark between the new and the old version of
the code (Sec. 9), and a section describing various features of
the code related to different platforms (Sec. 10), as well as a list
of libraries required for compiling and executing the code on
different platforms.
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2. ASCOT – Monte Carlo code for minority species in toka-
mak plasmas

The ASCOT code was originally designed for accelerated
simulation of charged particle orbits in tokamaks, and the
first targeted studies concerned runaway electrons as well as
fast ion current drive in simple axisymmetric magnetic back-
grounds [9]. Early on ASCOT was upgraded to operate with
realistic magnetic backgrounds that allowed shaped plasmas,
up-down asymmetries as well as an X-point and a scrape-off

layer (SOL). The toroidal non-uniformity included only the rip-
ple produced by the finite number of toroidal field (TF) coils,
and was given by trigonometric functions, sine or cosine, multi-
plied by an experimentally measured radial profile of the ripple
strength. With the inclusion of a radial electric field model,
ASCOT was used to model the dynamics of NBI ions at the
plasma edge in the presence of both collisions and a radial
electric field [10]. In particular, the response of ions trapped
toroidally (i.e., between two adjacent TF coils) to the appear-
ance/disappearance of the edge radial electric field was of in-
terest [11, 12, 13, 14, 15, 16, 17].

Due to the increasing size of the simulations and its practi-
cally ideal multiprocessor scalability, ASCOT was parallelized
using MPI in the late 1990’s. This made possible much larger
simulations with several hundreds and even thousands of par-
allel processes. When the polarization equation was included
in ASCOT, even bulk ions could be simulated, and the evolu-
tion of the radial electric field due to non-ambipolar currents
was calculated in conditions characteristic of a low to high (L-
H) confinement mode transition in the ASDEX Upgrade toka-
mak [18, 19, 20, 21, 22, 2]. The formation of a transport barrier
via this mechanism was also investigated for the small FT-2
tokamak at Ioffe Institute, St. Petersburg [23, 24, 25]. The
significance of ion orbit losses to the divertor power loads was
studied at JET [26, 27] and, since ASCOT allowed simulations
also in the SOL, it was used to investigate the divertor in/out
asymmetries observed at JET [28, 29, 30]. For the same reason,
ASCOT was also applied to kinetic electrons in the ASDEX
Upgrade SOL, trying to identify reasons for the discrepancy
between results from the SOLPS code and measurements [31].

For nearly ten years now, ASCOT has been used almost
solely to simulate energetic ions. About ten years ago ASCOT
also reached full maturity as far as the magnetic backgrounds
are concerned: an arbitrary 3D field can be utilized, facilitat-
ing simulations in the presence of non-periodic features such
as the test blanket modules (TBM) in ITER. At the same time
the wall collision model was also upgraded to 3D: a wall sur-
face consisting of triangular and quadrilateral elements was in-
troduced as a limit of the simulation regime. Since then, AS-
COT has been predominantly used in 3D configuration. These
studies include calculations of fast ion power loads on ITER
first wall components, including contributions from fusion al-
phas, NBI ions and ICRH-generated ions [3, 4], simulations of
first wall power loads on ASDEX Upgrade in the presence of
the then-new ELM mitigation coils [5], and simulations of the
NBI losses in the TBM mock-up experiments at DIII-D [32]. In
this context, changes in the neutron production were also eval-

uated and compared to measurements with very good agree-
ment. This required simulations of fusion-born tritium in DIII-
D, which were made possible by the recent ASCOT code en-
hancement that allows following the full gyro orbits instead of
guiding center orbits [33, 34].

The most recent application for ASCOT is found at the low
end of the energy spectrum: impurity transport, important for
tritium retention, material migration and plasma performance in
fusion reactors, is generally studied using axisymmetric codes
that have a limited computational domain. ASCOT, for its part,
offers a 3D alternative with the ability to follow particles in an
unrestricted domain ranging from the core plasma to the first
wall. For modeling impurity transport, ASCOT was enhanced
to include relevant atomic physics and a background plasma
flow pertinent to the SOL region. A trace-element injection ex-
periments carried out at ASDEX Upgrade were then simulated
using the code. The results revealed that, in contrast to the com-
monly used experimental assumption of pure toroidal symme-
try, the impurity deposition pattern can exhibit a strong toroidal
asymmetry due to the 3D features of the first wall [35]. Since
then, similar modeling has been carried out also for JET to aid
the interpretation of a beryllium migration experiment [36].

As is evident from the above history, the code has grown
tremendously since the early 1990’s as new methods and mod-
els have been incorporated. The work has been carried out by a
number of developers, using a range of programming conven-
tions. Simultaneously, the vast increase in computing resources
with new supercomputers available around the world has forced
the code out of the serial and modestly parallel processing era
to accommodate up to tens of thousands of parallel processes.

3. Kinetic equation for minority particle species

ASCOT is often used to calculate quantities such as fast ion
density and torques for other codes to use as input. Thus, solv-
ing the distribution function of the minority species forms the
backbone of the code. The time evolution of the distribution
function f (z, t) of an ensemble of test particles in a plasma is
described by the kinetic equation

∂ f
∂t

+ ż ·
∂ f
∂z

=

(
∂ f
∂t

)
coll

, (1)

where z = (r, v) is the particle phase space, ż stands for the
equations of motion, and (∂ f /∂t)coll describes the change in f
due to collisional processes. As the collisional effects, the right-
hand side of Eq. (1), are often modelled with diffusion and fric-
tion, the kinetic equation essentially becomes a six-dimensional
partial differential equation.

In practice, the high dimensionality excludes finite element
and finite difference methods for finding the solution, but as
the equations of motion conserve the phase space volume ac-
cording to the Liouville theorem, the kinetic equation can be
expressed in a form similar to the Kolmogorov forward equa-
tion

∂ f
∂t

(z, t) = −
∂

∂z
·
[
a(z, t) f (z, t)

]
+
∂

∂z
∂

∂z
:
[
c(z, t) f (z, t)

]
, (2)
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where it is important to keep in mind that the quantity a con-
tains also the equations of motion, ż. The Kolmogorov, or more
familiarly, the Fokker-Planck equation describes how the prob-
ability density for finding a test particle at phase space location
z evolves in time when the motion of an individual particle is
determined by a stochastic differential equation

dzα = aαdt + σαβdWβ, (3)

where the matrix σαβ satisfies

cαβ =
1
2
σαγσβγ, (4)

andWα are independent stochastic Wiener processes with zero
mean. This connection between stochastic processes and partial
differential equations has been known since the work of Kol-
mogorov [37, 38]. The solution to the kinetic equation is then
obtained simulating random paths and taking a statistical aver-
age of them.

In a strong magnetic field, the charged particle orbit con-
sists of rapid gyro motion around the magnetic field lines, com-
bined with various drifts brought about by the non-uniformity
of the field or by the combined effect of magnetic and electric
fields. The basic equations of motion contain all this physics.
In fusion-related applications, it is often necessary to follow
particles for millions of oscillation periods and the computa-
tional effort of numerical integration then becomes rather ex-
pensive. Furthermore, in cases where the background quanti-
ties are practically constant across the Larmor radius (i.e., have
large gradient lengths), the full gyro motion is redundant. Then,
a more attractive approach is the guiding center transformation
of the charged particle Lagrangian, leading to equations of mo-
tion where the rapid oscillatory gyro motion is isolated into only
one variable, namely the gyro-angle, that is not needed for fol-
lowing the particle’s guiding center. This formalism, although
only an approximation, is a powerful tool and significantly re-
duces the computational demands for the orbit-following, when
applicable.

The equations of motion in the particle phase space, corre-
sponding to the full gyro orbit, are introduced in Sec. 3.1, and
the ones corresponding to the guiding center formalism are de-
scribed in Sec. 3.2. The algorithms for solving these equations
are also explained. In Sec. 3.3 we describe the collision opera-
tor for the particle phase space and, in Sec. 3.4, the correspond-
ing operator is introduced for the guiding center phase space.

3.1. Hamiltonian orbit-following in electromagnetic fields:
Full gyro motion

The Lagrangian for a particle with mass m and charge e under
the influence of a magnetic vector potential A(r, t) and electric
potential Φ(r, t) is [39]

L =
1
2

mṙ · ṙ − eΦ + eṙ · A, (5)

which is equivalent to the non-canonical Hamiltonian equations
of motion

v̇ =
e
m

(E + v × B) , (6)

ṙ =v, (7)

where v is the particle velocity, and the electric and magnetic
fields are defined by

E = −
∂A
∂t
− ∇Φ, (8)

B = ∇ × A. (9)

The change in the total energy of the particle is given by

Ḣ = e
∂Φ

∂t
− e

∂A
∂t
· ṙ, (10)

which is zero for time-independent potentials, but as the equa-
tions (6) and (7) lead to a very rapidly oscillating motion with
the characteristic frequency of Ω = eB/m, implementing a nu-
merical integration scheme that would have the same property
over long time periods poses a challenge.

Advancing the equations of motion in time is the essence of
the ASCOT code. For the full gyro motion the code has two dif-
ferent options: a fourth-order Runge-Kutta method with fifth-
order error estimation [40], and a modified leap-frog method.
With rapidly oscillating non-canonical systems, e.g., Eqs. (6)
and (7), the Runge-Kutta method, however, has the well-known
tendency to cause numerical drift in the total energy. In con-
trast, a modified leap-frog method defined by

vi+1 =vi + ∆t
e
m

(
Ei +

vi+1 + vi

2
× Bi

)
,

ri+1 =ri + ∆tvi,
(11)

has the property that vi+1 · vi+1 = vi · vi if the electric field is
zero, i.e., it explicitly conserves energy.

3.2. Hamiltonian orbit-following in electromagnetic fields:
Guiding center motion

For a guiding center phase space Zγ = (R, v‖, µ, χ), i.e, lo-
cation, parallel velocity, magnetic moment, and gyro-angle, re-
spectively, the transformed Lagrangian is [39]

L = (eA + mv‖b) · Ṙ +
mµ
e
χ̇ − H, (12)

where b is the magnetic field unit vector, and the Hamiltonian
H is given by

H =
1
2

mv2
‖ + µB + eΦ = E + eΦ. (13)

The guiding center equations of motion are obtained applying
the Euler-Lagrange equation d

dt

(
∂L
∂Żγ

)
− ∂L

∂Zγ = 0 for each phase
space coordinate, yielding

χ̇ =
eB
m
, (14)

µ̇ =0, (15)

v̇‖ =
e
m

B?

B?
‖

· E?, (16)

Ṙ =v‖
B?

B?
‖

+ E? ×
b

B?
‖

, (17)
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where B?
‖

= B? · b, and the effective fields (E? = −∂A?/∂t −
∇Φ?, B? = ∇ × A?) in Eqs. (16) and (17) are defined by the
effective potentials

Φ?(R, µ, t) = Φ + µB/e, (18)
A?(R, v‖, t) = A + mv‖b/e. (19)

The time rate of change in the total energy for the guiding center
then becomes

Ḣ = e
∂Φ?

∂t
− e

∂A?

∂t
· Ṙ, (20)

and, for a static background, it is zero, as expected.
The oscillation of the guiding center orbit happens in a rad-

ically different time scale than that of the gyro motion, and a
fourth-order Runge-Kutta method with fifth-order error check-
ing [40] has proved itself adequate when numerically integrat-
ing the guiding center equations of motion.

3.3. Coulomb collisions in particle phase space

The Coulomb collisions are modelled by operators acting in
particle velocity space. The collisional part of the kinetic equa-
tion takes the form(

∂ f
∂t

)
coll

= −
∂

∂v
·

[
A f −

1
2
∂

∂v
· (D f )

]
, (21)

where the vector A can be interpreted as a friction term in ve-
locity space and the tensor D as a velocity diffusion term. Their
explicit expressions are

A = −2
∑

b

cb

(
1 +

m
mb

) ∫
dv′ fb(v′)

u
u3 (22)

D = 2
∑

b

cb

∫
dv′ fb(v′)

(
I
u
−

uu
u3

)
, (23)

where cb = e2e2
b ln Λ/(8πε2

0 m2), ln Λ is the Coulomb logarithm,
eb is the electric charge of the plasma species b, and u = v− v′.
For a comprehensive derivation of the coefficients, see [41].

In the case of a Maxwellian background plasma with no flow
velocity, the friction and diffusion coefficients are reduced to
the form

A = νsv, (24)

D = D‖
vv
v2 + D⊥

(
I −

vv
v2

)
, (25)

where the scalar coefficients are

D‖(v) =
∑

b

4nbcb

√
mb

2kTb

Ψ(x)
x

, (26)

D⊥(v) =
∑

b

2nbcb

√
mb

2kTb
(Φ(x) − Ψ(x)) , (27)

νs(v) =
∑

b

4nbcbmb

kTb

(
1 +

m
mb

)
Ψ(x), (28)

and x = v/
√

2kTb/mb. The functions Φ and Ψ are defined by

Φ(x) =
2
√
π

∫ x

0
exp (−y2)dy, (29)

Ψ(x) =
Φ(x) − xΦ′(x)

2x2 . (30)

The particle motion is then governed both by the Hamiltonian
motion, Eq. (6), and by Coulomb drag and diffusion, yielding
for the velocity

dv =

[ e
m

(E + v × B) + νsv
]

dt

+

[ √
D‖

vv
v2 +

√
D⊥

(
I −

vv
v2

)]
· dWv, (31)

while the particle location obeys Eq. (7). The deterministic part
of Eq. (31), containing both the Hamiltonian equation of motion
and the collisional friction term, can be advanced in time using
the leap-frog scheme introduced in Sec. 3.1, while the stochas-
tic part is often treated with the stochastic Euler method.

3.4. Coulomb collisions in the guiding center phase space

It is essential to understand that the guiding center trans-
formation should be applied consistently to the whole kinetic
equation, not just to the equations of motion. An exclu-
sive guiding center transformation of the kinetic equation with
Coulomb collisions included is given in [7], and the corre-
sponding stochastic differential equations for guiding center
phase space coordinates are discussed in [8]. Although the for-
malism includes the effects of magnetic drifts, within this work,
the guiding center Coulomb collision are considered only up to
zeroth order in magnetic field non-uniformity. The most evi-
dent consequence of the proper treatment of the guiding center
Coulomb collisions, the appearance of a spatial diffusion in ad-
dition to the velocity space operators, however, is present also
in zeroth order.

The simplest representation of the operators involves the
guiding center velocity v =

√
2E/m and pitch ξ = v‖/v, for

which the zeroth order Coulomb contributions to the stochastic
differential equations are

dvcoll =

(
−νv +

∂D‖
∂v

+ 2
D‖
v

)
dt +

√
2D‖dWv (32)

dξcoll = −ξ
2D⊥
v2 dt +

√(
1 − ξ2) 2D⊥

v2 dWξ. (33)

Here the frequency ν differs slightly from νs, and is defined by

ν(v) =
∑

b

4nbcbmb

kTb
Ψ(x). (34)

The guiding center equations of motion, however, are often
given for the velocity space coordinates (v‖, µ), and solving the
kinetic equation by the stochastic approach calls for a consis-
tent phase space. For the coordinates (v‖, µ) the zeroth order
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stochastic equations become

dv‖ =

[
v̇‖ − νv‖ + ξ

(
2

D‖ − D⊥
v

+
∂D‖
∂v

)]
dt

+ Σv‖v‖dWv‖ + Σv‖µdWµ (35)

dµ =

[
−2νµ +

mµ
E

(
v
∂D‖
∂v

+ 3
(
D‖ − D⊥

))
+

2mD⊥
B

]
dt

+ Σµv‖dWv‖ + ΣµµdWµ, (36)

where, in Eq. (35), v̇‖ is given by Eq. (16), and we have ne-
glected µ̇ since the magnetic moment is a constant of Hamilto-
nian guiding center motion. The matrix Σαβ is solved from the
condition ΣαγΣβγ = 2Dαβ, where the symmetric guiding cen-
ter velocity space diffusion matrix D = BYB is expressed as a
product where the diagonal matrix B has the components

Bv‖v‖ =1, (37)
Bµµ =E/(vB), (38)

and the symmetric normalized matrix Y has the components

Yv‖v‖ =
[
D‖ξ2 + D⊥(1 − ξ2)

]
(39)

Yv‖µ = 2ξ(1 − ξ2)(D‖ − D⊥) (40)

Yµµ = 4(1 − ξ2)
[
D‖(1 − ξ2) + D⊥ξ2

]
. (41)

The zeroth order Coulomb contribution to the spatial guiding
center coordinates appears as a purely diffusive process, yield-
ing for the guiding center position

dR = Ṙdt +

√
2DR

c (I − bb) · dWR, (42)

where the spatial Coulomb diffusion coefficient is

DR
c =

1
2Ω2

[
D‖(1 − ξ2) + D⊥(1 + ξ2)

]
, (43)

and Ṙ is given by Eq. (17).
As in the case of gyro orbit following, the deterministic part

of the collisional effects should be evaluated together with the
equations of motion, using the higher level integrators, while
the stochastic part can be evaluated using the Euler method.

4. Fast ion sources

The ASCOT code is often used to gather information from
fast ions. For convenience, the code has an in-built capability
to initialize test particles that represent the actual particles. The
sources listed below include energetic ions and neutrons from
fusion reactions, as well as ions generated by neutral beam in-
jection or ICRH acceleration, all relevant for studies of, e.g.,
plasma heating and current drive or fast ion power loads to
plasma facing components.

4.1. Fusion product source
Generating test particles that represent the fusion products is

a two-phase process. First, the reaction rates for the fusion re-
actions of interest are calculated onto a cylindrical grid R(R, z).
Then, test particles are generated making use of this grid. From
here on, the symbol z no longer stands for the phase space coor-
dinate but, rather, has its conventional role as one of the cylin-
drical coordinates.

The four reactions described by Bosch and Hale [42] are sup-
ported: D(d,n)3He, D(d,p)T, T(d,n)α and 3He(d,P)α. These re-
actions are considered in three different cases: thermal, beam-
target and beam-beam. For the thermal case Bosch and Hale
provide a parametrized model. The background plasma param-
eters are used directly from the input files. The beam-target and
beam-beam reaction rates are calculated as a post-processing
step where the fast ion density distribution ni(R, z, v‖, v⊥) from
an earlier run reacts either with itself (beam-beam) or with the
background plasma (beam-target).

These calculations are integrals over one or two fast ion dis-
tributions. To expedite the integral, intermediate averaged reac-
tivities are calculated. For the beam-beam reaction the fusion
cross section is first averaged over the gyro angle χ in a similar
way that NUBEAM [43, 44] does in order to get the averaged
reactivity

〈σv〉BB (vi⊥, v j⊥, |vi|| − v j|||) =

∫
σ(|g|)|g|dχidχ j (44)

where g = vi−v j. Then, the beam-beam fusion rate is calculated
according to

RBB =

∫
〈σv〉BB ni(vi⊥, vi||)n j(v j⊥, v j||)dvi||dv j||dvi⊥dv j⊥ (45)

For the beam-target reaction, the reaction rate is given by

RBT =

∫
nB(vB)nT(u + vB)σ(|u|)|u|dudvB, (46)

where nB is the fast ion density calculated by ASCOT and nT is
the Maxwellian density distribution of the background plasma.

Once the reaction rate R (reactions per volume and time) has
been calculated, there are two methods to initialize fusion prod-
ucts: a weighted initialization and a uniform weight initializa-
tion. In the weighted initialization, the coordinates (R, φ, z) are
chosen by uniformly distributed random numbers between the
minimum and maximum dimensions set by the walls and the
X-point. If the chosen location is not inside the separatrix, the
particle is discarded and a new location is picked. Once a loca-
tion inside the separatrix is found, a weight factor is calculated
as

wi =

∫ 2π

0
R(ρp,i)dφ

∫ 1
0 R(ρp)V(ρ)dρp∑N
i=1

∫ 2π
0 R(ρp,i)dφ

, (47)

where wi is the weight of the ith particle, R(ρp) is the fusion
reaction rate with R(ρp,i) being the rate evaluated at the location
of the ith particle, N is the total number of particles, V(ρp) is
the flux surface volume, ρp =

√
ψp is the square root of the

normalized poloidal magnetic flux, and φ is the toroidal angle.
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The initial velocity is chosen so that the velocity distribution is
isotropic.

In the uniform weight initialization, R, φ and z are chosen as
random numbers uniformly distributed in volume, between the
minimum and maximum dimensions set by the walls and the X-
point. Then a uniformly distributed random number X between
0 and 1 is compared against the normalized local reaction rate
RN = R/max(R). If X ≤ RN , the particle is generated. The
weight factors for all particles are now equal, calculated simply
as

wi = w =

∫ 1
0 R(ρp)V(ρ)dρp

N
. (48)

4.2. Neutral beam ion source

Due to the structure of neutral beam injectors used in fusion
devices worldwide, the produced beams consist of small sub-
beams, or beamlets. In order to model neutral beam injection
(NBI) as accurately as possible, this fine structure of the beam is
taken into account in the NBI ion source code used in ASCOT.

To generate an NBI test particle, a neutral particle from a ran-
dom beamlet is chosen. The neutral is assigned a velocity in the
direction of the beamlet, offset by a usually bi-gaussian disper-
sion, and advanced along its velocity vector until it either hits
an obstacle or enters the vacuum chamber. Once inside the ves-
sel, the neutral particle is given a uniformly distributed random
threshold value λ ∈ [0, 1] and advanced along a straight trajec-
tory until the probability, calculated for the particle to survive
further without ionization, is lower than the threshold λ.

A general probabilistic model for effective ionization and re-
combination is derived considering a large number of particles,
N, with some initial state, and assuming that each reaction s
removes particles from the initial state according to the differ-
ential equations

dNs

dx
= Σs(x)N(x), (49)

dN
dx

= −
∑

s

dNs

dx
(50)

where Ns is the number of reactions of type s that have taken
place before reaching the location x and Σs(x) is the cross-
section. Integration gives the solution

Ns(x) = N0

∫ x

0
Σs(x′) exp

−∫ x′

0

∑
k

Σk(x′′)dx′′
dx′ (51)

N(x) = N0 exp

−∫ x

0

∑
k

Σk(x′)dx′
, (52)

which satisfies
∑

s Ns(x) + N(x) = N0 and, thus, conserves the
number of particles. Letting Xs denote a random location for
the reaction s to happen, the probability for ”reaction s takes
place before reaching location x” is

Pr(Xs ≤ x) =

∫ x

0
Rs(x′) exp

−∫ x′

0

∑
k

Σk(x′′)dx′′
dx′. (53)

The model for a neutral to become ionized involves only the
effective ionization, and the cumulative probability for a neutral
to survive the interval [0, xi] is thus

Pi = exp
(
−

∫ xi−1

0
Σ(x′)dx′

)
exp

(
−

∫ xi

xi−1

Σ(x′)dx′
)

=Pi−1 exp
(
−

∫ xi

xi−1

Σ(x′)dx′
)
, (54)

where Σ is the total ionization cross-section calculated from the
analytical fits given by Suzuki et al. [45], and Pi−1 is the proba-
bility to survive the interval [0, xi−1]. In the code the integral is
discretized with small steps ∆xi = xi − xi−1, yielding

Pi = Pi−1 exp (−Σi∆xi), (55)

and once Pi ≤ λ is obtained, i.e., the probability of the particle
surviving to its current location falls below the threshold, the
particle is backtracked by a fraction of the last step to the ex-
act location where the exponential crosses the threshold value,
given by

∆xi = −
1
Σi

ln
λ

Pi−1
. (56)

At this location, a test particle is recorded. If the neutral particle
hits the wall of the device before being ionized, it is considered
shine-through.

At the time of writing, the NBI geometries of JET, ITER,
ASDEX Upgrade, DIII-D, FAST, TEXTOR, MAST, and Tore
Supra have already been implemented. Adding the NBI ge-
ometries of new devices and benchmarking the model against
existing codes is an ongoing project. A more detailed descrip-
tion of the NBI model and comparisons to other codes will be
presented in a separate publication.

4.3. Ion cyclotron resonance heated ion source
Ion Cyclotron Resonance Heated (ICRH) ions can be con-

sidered at different levels of sophistication. The most sophisti-
cated level requires a self-consistent simulation taking into ac-
count the wave field caused by the ICRH antenna and its inter-
action with the plasma. Currently only a few dedicated models
[46, 47, 48, 49, 50] exist that can provide this kind of a realistic
ICRH distribution. Often, however, it is enough to use approxi-
mations, e.g., when one is looking for the types of particle orbits
that will be lost to plasma facing components.

The ICRH ion source model for ASCOT is based on physi-
cal observations. The plasma acts as a lens for the wave field,
focusing it on the magnetic axis. Due to the effects of, e.g.,
finite wavelength, finite absorptivity and up-down asymmetry,
the focusing is not perfect, and the distribution of ICRH ions is
peaked at the magnetic axis with a finite half-width responsible
for spreading in the radial coordinate ρp. In addition, the ICRH
ions will have the banana turning point at places where the fre-
quency of the ICRH wave, ω, meets the resonance condition,
ω = nΩ, for the nth harmonic of the wave field. As Ω is pro-
portional to the magnetic field B, which is roughly a function
of the inverse major radius 1/R, the ICRH distribution will be
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roughly limited to a certain resonant major radius rather than
spreading in ρp only.

The implementation in ASCOT first samples a Gaussian dis-
tribution, with a user-defined peak location, ρpeak, and half-
width, ρhw, to get an ensemble of ρ values. The energies are
sampled from a Maxwellian distribution with a given tempera-
ture, e.g. 500 keV, and an optional cut-off energy Ec-o. After
this, the (R, z) locations for the particles are found by minimiz-
ing the function

f (R, z) = a
[
ρp(R, z) − ρ

]2
+ b [nΩ(R, z) − ω]2 , (57)

where a and b are user-defined constant parameters. Finally, the
particles are given a weight factor, scaled according to the total
ICRH power PICRH and the number of test particles created.

5. Magnetohydrodynamic activity for fast ion modelling

High performance fusion plasmas rarely are MHD quiescent.
In particular, all ITER plasmas are prone to neoclassical tearing
modes (NTM), and the advanced scenario plasmas correspond-
ing to steady-state operation are likely to exhibit significant
Alfvén activity. Both of these MHD phenomena are expected
to affect the fast ion trajectories and, therefore, possibly lead
to redistribution of the fast ion population. To account for the
physics related to such MHD activity, a new model, applicable
in 3D geometries, is incorporated in ASCOT.

The model for both stationary neoclassical tearing modes and
rotating Alfvén eigenmodes (AE) is reported in detail in [51].
The MHD activity is introduced as a perturbation in the mag-
netic vector potential, Ã = αB, while a possible time depen-
dence generates a perturbation also in the electric potential, Φ̃.
As the modes often appear as harmonic structures along the
magnetic field lines, a helical structure is assumed for the per-
turbations

α =
∑
nm

αnm(ψp) sin (nζ − mθ − ωnmt) (58)

Φ̃ =
∑
nm

Φnm(ψp) sin (nζ − mθ − ωnmt), (59)

and Boozer coordinates (ψp, θ, ζ) are currently used to map the
perturbative quantities back to cylindrical coordinates.

For NTMs, the rotation frequency ωnm is usually low, and we
may assume no electric perturbation to appear, thus neglecting
Φ̃ and ωnm. In the case of a rapidly rotating AE, the approxi-
mation that the perturbed parallel electric field vanishes due to
the rapid motion of electrons along the field line implies that
αnm(ψp) and Φnm(ψp) are related, and only one of them is re-
quired to describe the mode in the Boozer coordinates [52].
The input data for ASCOT can be obtained, e.g., from MHD
codes like LIGKA [53], and the data typically consists of radial
functions Φnm, mode numbers n and m, and frequencies ωnm.

Although the model is strongly dependent on the coordinates
(ψp, θ, ζ), it differs from previous work: the test particle guid-
ing center can be followed in any coordinate system, contrary
to previous methods restricted to field-aligned coordinates only.

Adding the electric perturbation causes no changes to the equa-
tions of motion: only the gradient of the perturbation poten-
tial is added into the electric field that already appears in the
equations. Proceeding similarly with the magnetic vector po-
tential would require calculating terms like ∇ × ∇ × (αB). This
is rendered unnecessary by adding the magnetic perturbation
only into the symplectic part of the Lagrangian, Eq. (12), and
neglecting it from the Hamiltonian. As a result, we introduce
the modified potentials (A??,Φ??) which are related to the ef-
fective potentials (A?,Φ?) by

A?? = A? + αB, (60)

Φ?? = Φ? + Φ̃. (61)

Thus, in Eqs. (16) and (17), the effective fields B? and E? are
replaced with

B?? = ∇ × A??, (62)

E?? = −
∂A??

∂t
− ∇Φ??. (63)

and also the time rate of change of the total energy is now ex-
pressed by the modified potentials

Ḣ = e
∂Φ??

∂t
− e

∂A??

∂t
· Ṙ (64)

still yielding zero for static backgrounds and time-independent
perturbations.

The implementation of the time-dependent method thus re-
quires α, ∇α, ∇Φ̃ and ∂α/∂t at given location. These quantities
are calculated with the aid of coordinate transformations from
cylindrical/Cartesian to Boozer coordinates and back.

6. Interaction models for impurity particles

In addition to fast particles, ASCOT can also be used for
modelling impurity transport. The code has been applied to,
e.g., simulating trace element injection experiments [35]. For
these purposes, the advantage of ASCOT is impurity following
in all regions of the plasma, extending from the core plasma,
scrape-off layer (SOL) and halo plasma to the wall in a fully
3D tokamak environment.

Compared to fast particles, however, impurities in the SOL
have typically very low energies (of the order of 1–100 eV).
Due to the low energy, impurities are more strongly affected
by the background plasma properties, such as the flow veloc-
ity. Additionally, the charge state of impurity particles can vary
significantly as a result of their high Z number, which further
affects their transport. Therefore, additional interaction models
are needed for realistic simulations of impurities.

6.1. Background plasma flow
Strong plasma flows with typical velocities of Mach 0.5–

1 have been measured in the SOL region of various toka-
maks [54]. Owing to the low energy of impurities, the flow has
a significant effect on their long range transport. The Coulomb
collision operators introduced in Sec. 3, however, assume the
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background plasma to have a purely Maxwellian distribution,
which neglects plasma flow.

In ASCOT simulations, the effect of background plasma flow
on Coulomb collisions can be modelled by using a frame of ref-
erence moving with the local parallel flow velocity v‖,flow of the
background plasma. As the collisions are about to be evalu-
ated, the frame of reference is switched by updating the parti-
cle velocity according to v′ = v − b̂v‖,flow and calculating the
Coulomb contribution in Eq.( 31) with v′ instead of v. This
procedure is equal to calculating the Coulomb coefficients with
drift Maxwellian backgrounds.

For a guiding center, the parallel velocity is changed ac-
cording to v′

‖
= v‖ − v‖,flow, yielding the velocity v′ =√

(v′
‖
)2 + 2µB/m and the pitch ξ′ = v′

‖
/v′. Using either of the

quantities (v′, ξ′) or (v′
‖
, µ), the Coulomb contribution is then

integrated using either Eqs. (32) and (33) or Eqs. (35) and (36)
that give new values for (ξ′, v′) or (v′

‖
, µ), which are then trans-

formed back to the laboratory frame of reference, giving new
values of the velocity space coordinates.

6.2. Atomic reactions

During a single time step, test particles can experience
several different atomic reactions, such as impact ionization,
when interacting with the background plasma. These reactions
change the charge state of the followed particles, which then
affects their transport directly through the equations of motion
described in Sections 3.1 and 3.2. For heavy impurities, such as
tungsten with Z = 74, the effect should not be neglected.

If only the changes in the charge state of the followed par-
ticle are of interest, it is not necessary to model all possible
atomic reactions individually. Instead, it is sufficient to model
the effective ionization and recombination of the particle. Dur-
ing a single time step, the particle may undergo several reac-
tions, which effectively lead to the ionization or recombination
of the particle, or to a situation where the charge state remains
effectively unchanged.

As charged particles in a magnetic field do not move lin-
early, it is more convenient to use time t and reaction rates Rs

rather than the distance x and cross sections Σs used in the NBI
model in Sec. 4.2. The probabilistic model, however, remains
unchanged. Thus, letting Ts denote a random time for reaction
s to take place during time step ∆t, Eq. (53) is approximated as

Pr(Ts ≤ ∆t) =
Rs∑
k Rk

1 − exp

−∑
k

Rk∆t

 (65)

and tested against a uniformly distributed random number
λ ∈ [0, 1] to determine whether the charge state is increased
or decreased by one or remains unchanged during the time step
∆t.

The reaction rate coefficients as a function of local electron
temperature and density are taken from the ADAS database
[55]. At the time of writing, data for carbon, beryllium, tung-
sten and nitrogen have been imported into ASCOT.

7. Wall collisions

Setting up a realistic calculation domain requires a limiting
surface to be defined. If fast ion power loads or the deposition
of impurities on the first wall are to be reliably simulated, this
limiting surface has to accurately represent the wall structures.
In ASCOT this surface is taken to be the first wall of the ves-
sel, represented by triangular and planar quadrilateral elements
as shown in Figure 1. Inside the code all given planar quad-
rangular polygons are split into two triangles, as these are the
simplest planar elements for collision detection. For each tri-
angle, the unit normal vector N and an implicit presentation of
the triangle’s plane N · P + d = 0 are defined and stored. Here,
d = −V · N and V is any vertex of the triangle. These defini-
tions are used by the wall collision detection algorithm during
simulations.
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Figure 1: A model ITER wall sector consisting of triangles and planar quadran-
gles (data provided by C. Doebert, EFDA Design Office, 2007).

For modelling a 3D wall and test particle wall collisions,
an efficient ray-polygon collision detection algorithm [56] has
been adopted in ASCOT. The test particle orbit step from r0 to
r1 = r0 + ∆r, to be tested for wall collision, is presented para-
metrically as r(t) = r0 + t∆r. The parameter t is evaluated at
the intersection of the plane of each preliminary candidate tri-
angle as t = −(d + N · r0)/(N ·∆r) and stored as ti. All triangles
for which 0 < ti ≤ 1 are stored as collision candidates. If no
such triangles are encountered, the wall collision check routine
returns a no-collision result. If collision candidate triangles are
found, the plane intersection point P = r0 + ti∆r is evaluated for
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each one of them.
A presentation based on two parameters, α and β (see Figure

2), is used to determine whether the collision with the triangle’s
plane has occurred inside the boundaries of the triangle. This is
true if α ≥ 0, β ≥ 0 and α+β ≤ 1. If several candidate triangles
fulfill this criterion, the one with the smallest ti is selected and
the wall collision point is returned by the routine.

V0

V2

P

V1

2

Figure 2: Parametric presentation for determining whether the intersection
point P of the test particle orbit step with the plane of the wall triangle is inside
the triangle.

This algorithm, originally developed for computer graphics
applications, has been optimized to use as little CPU time as
possible. A function f (r) giving a lower limit for the distance
to the wall is initialized before the actual simulation starts for
checking the possibility of a collision. In addition, the wall ele-
ments are arranged into a bounding volume hierarchy tree dur-
ing the initialization phase and, thus, the volumes that bound
the wall elements and collide with the volume bounding the
test particle orbit step from ri to ri+1 can be found in logarith-
mic search time. This twofold mechanism has proved to be the
most efficient the authors are aware of, and requires only a small
percentage of the total simulation time.

Although the guiding center formalism offers a method to
overcome the high computational demands of following full
gyro-orbits, it may lead to false interpretations of, e.g., wall
power loads. If the guiding center orbit is close to parallel to
the plane of the wall structure, the guiding center may proceed
quite far without colliding, even when it is closer than one Lar-
mor radius to the wall elements, whereas the full orbit would
collide immediately. Aware of this, we have adopted a mixed
scheme: when the particle is no more than one Larmor radius
away from the wall structures, the code starts to follow the full
gyro-orbit in addition to the guiding center, and if no collision
is observed when the particle again recedes farther away from
the wall, full orbit-following is abandoned. This approach saves
a significant amount of computation time as compared to com-
plete gyro-orbit following, doesn’t noticeably increase the com-
putational effort compared to the pure guiding center method,
and gives a more accurate estimate of the wall collision location
than pure guiding center simulation.

8. Diagnostic tools

During a simulation, test particle data can be gathered into N-
dimensional histograms called distributions. The distributions
can have up to six dimensions, and common to all are time and
test particle species. The remaining 1–4 dimensions are used

for the desired phase space coordinates. After each time step
∆t, a weight Wi is added to all active histograms, where Wi

is a physical quantity to be diagnosed. For compatibility with
transport codes, most distributions are produced as 1-D radial
profiles in ρp.

The distributions are updated after each orbit-following time
step as follows. First, the locations of the beginning and end
point of the time step are determined for each dimension of
the distribution. If the locations of the beginning and the end
of the time step differ, the value W is distributed between the
bins crossed, weighed by the fraction of the time step spent in
each bin. If W changes during the time step, the value of W is
linearly interpolated in time. The exception to this rule is the
j × B torque, as it is gathered after the simulation, as will be
described below.

The calculation of the following radial profiles is imple-
mented in ASCOT: particle density (66), energy density (67),
parallel energy density (68), parallel current (69), toroidal
current (70) collisional power deposition to the plasma (71),
toroidal j × B torque (72), toroidal collisional torque (73),
toroidal torque from changes in toroidal canonical momentum
Pφ (74), and particle and energy sources and sinks from CX
reactions. The corresponding weights are

Wn = w∆t (66)
WE = Ew∆t (67)

WE‖ = Eξ2w∆t (68)
W j‖ = ev‖w∆t (69)
W jφ = evφw∆t (70)
WP,c = −∆Edw (71)

Wτ, jxB = −e∆ψpw (72)

Wτ,c = −R
(
∆p‖,d

BT

|B|

)
w∆t (73)

Wτ,pφ = −e∆Pφw. (74)

Here w is the test particle weight factor indicating how many
real particles it represents, E the kinetic energy, ∆ψp and ∆Pφ

the changes in particle position and canonical toroidal momen-
tum due to the orbit integration, and ∆Ed and ∆p‖,d are the de-
terministic changes in energy and parallel momentum due to
collisions with the background during ∆t.

Any distribution can be produced as a function of ρp, or
(R, z). In addition, the density distribution (66) is available in
four phase space dimensions (R, z, v‖, v⊥) or (R, z, ξ, E). Distri-
butions depending on interactions with the background, i.e., the
power deposition (71) and the collisional torque (73), are pro-
duced separately for each background species. This is possible
because the collisional contributions to the torque and power
depositions are calculated directly as moments of the collisional
term in the kinetic equation: although the distribution function
is represented by the test particles, this does not mean that, e.g.,
the collisional torque deposition needs to be calculated from the
absolute change in the particle’s momentum, as is done in AS-
COT3. A proper derivation reveals that only the deterministic
particle motion contributes to the collisional depositions. This
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approach, adopted in ASCOT4, also makes it straightforward
to divide the collisional contribution between different back-
ground species.

It should be noted that the torques, Eqs. (72), (73) and (74),
contain only the component of τ parallel to ẑ, which is the
torque due to a toroidal force. The expression for j × B torque,
Eq. (72), is obtained by calculating τ jxB · ẑ = (j × B) × R · ẑ,
which, assuming an axisymmetric magnetic field B = g∇φ +

∇ψp ×∇φ, reduces to j · ∇ψp = qψ̇p. Integrating this expression
in time gives the change ∆ψp. This result is particularly useful
for numerical implementation: it becomes possible to calculate
the j× B torque as a function of ρp after the simulation is done,
simply finding out which histogram bins belong to the interval
defined by the particle’s initial and final locations in ρp.

After the simulation is finished, the distributions are normal-
ized by the volumes of the bins to obtain the density. For radial
distributions, the volumes of flux surfaces are obtained by di-
rect integration for closed flux surfaces, and by Monte Carlo
integration for open flux surfaces. For distributions in (R, z)
space, the volumes of the bins are dV(R, z) = πd(R2)dz. The
volume elements of velocity space are dV(v‖, v⊥) = dv‖dv⊥
and dV(ξ, E) = dξdE.

In addition to the distributions integrated over the history of
the particles, ASCOT also gives the detailed information on the
test particles ending up at the wall structures. Not only the lo-
cation at the wall but also the energy and direction of the parti-
cle hitting a material surface are recorded. This information is
important when the power and particle fluxes of energetic par-
ticles on plasma-facing components have to be evaluated, e.g.,
to assess that the operational limits of the wall materials are not
exceeded.

9. Benchmark between the new and old versions of ASCOT

To carry out a detailed comparison of the results produced
by ASCOT3 and ASCOT4, we have chosen an axisymmetric
JET-like magnetic background with simple 1D plasma profiles,
and carried out a slowing-down simulation of 200 000 test par-
ticles representing fast ions from neutral beam injection. The
toroidal field strength at the magnetic axis is 3 T and the plasma
current is 1.8 MA. During the slowing-down simulation, the
test particles are followed with guiding center equations of mo-
tion and Coulomb collisions are applied until the particles reach
an energy equal to the local background ion temperature. The
ion and electron temperatures and densities for the discharge
are presented in Fig. 3. Despite the capability of handling 3D
wall data, in this comparison, the wall limiting the calculation
regime is taken simply as an axisymmetric structure defined as
a contour in the poloidal plane.

As one of ASCOT’s applications is to produce source terms
for 1D transport codes (being a part of the JINTRAC suite of
codes and belonging to the European Transport Solver (ETS)
within the ITM framework), the quantities of high interest in
our benchmark are the fast ion density, toroidal current density,
toroidal j × B torque, and collisional power and torque depo-
sitions, given as a function of the radial coordinate ρp. These
distributions are presented for the current study in Figs. 4–7.
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Figure 3: Plasma density (n) and temperature (T ) profiles for the benchmark
case. The temperatures of the ion species (2

1H and 12
6 C) are assumed equal.

The overall agreement of the results is very good. The 1-D fast
ion densities and toroidal current densities in Figs. 4 and 5, re-
spectively, are practically identical. The power depositions in
Fig. 6 match well, and the small deviations reflect the differ-
ent methods for collecting the data: in ASCOT4, the deposi-
tions are calculated from the distribution function as described
in Sec. 8, and not from the absolute changes in the test particle
phase space coordinates, as is done in ASCOT3. The advan-
tages of this approach become evident in Fig. 7. The collisional
torques recorded with ASCOT4 are less noisy than the torques
recorded with ASCOT3, and simulations with a smaller number
of test particles would highlight this effect. The j × B torques
presented in Fig. 7 agree well between the codes apart from the
small anomaly in the plasma core produced by ASCOT3.
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Figure 4: The slowing-down density of fast NBI ions calculated with the old
and the new version of the code, ASCOT3 and ASCOT4, respectively.

Although only the ρp profiles are important if the output of
ASCOT is to be used as input for transport codes, a compari-
son of the 4D density distributions can be considered as a more
thorough test: the ρp profiles are moments of the actual dis-
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Figure 5: The toroidal current density of fast NBI ions calculated with ASCOT3
and ASCOT4.
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Figure 6: Collisional power deposition to different background plasma species
due to fast ions from NBI as calculated by ASCOT3 and ASCOT4.

tribution function, and integrals of two different functions may
still agree. The spatially local test particle distribution func-
tions calculated with ASCOT4 and ASCOT3 are presented in
Figures 8 and 9, respectively, for one spatial position, showing
very good agreement between the codes. In general, ASCOT4
appears to reliably reproduce the results of ASCOT3 when con-
sidering configurations where the less refined methods used in
ASCOT3 are not expected to strongly affect the results.

10. High performance and high throughput computing

The new version of ASCOT is a highly parallel code written
in modern FORTRAN. The current record (16th August 2012)
is a successful test run with 214 = 16384 parallel processes
on the International Fusion Energy Research Centre’s Helios
supercomputer in Rokkasho, Japan.
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Figure 7: The j × B and the collisional torque deposition from neutral beam
ions to the background plasma species. Notice the smoother results provided
by ASCOT4.
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distribution from ASCOT4.
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distribution from ASCOT3.

10.1. Data parallel processing

The problem of following non-interacting particles in a static
background is straightforward to parallelize because the calcu-
lations can be made independently for each particle. In a typ-
ical case, a large number of test particle initial parameters are
first stored in a file. Then multiple copies of ASCOT acquire
their own slice of the input data and perform the calculations

11



independently. Finally, the distributions as well as other output
quantities are merged. There is support for two complemen-
tary mechanisms for executing ASCOT in parallel, one for high
performance computing (HPC) and another for high throughput
computing (HTC). The former uses supercomputers while the
latter exploits idling workstations.

The widely used Message Passing Interface [57] (MPI) is the
parallelization method of choice when ASCOT is executed on
supercomputers. This allows up to thousands of parallel pro-
cesses for the calculations, while the MPI library provides for
the distribution of tasks among the parallel processes. Since
file access is often the bottleneck in large parallel jobs, ASCOT
uses a single process to read the files from the disk and broad-
cast and scatter the contents to all the parallel processes using
MPI. Similarly, only one process writes the results to the output
files.

The ASCOT code is compatible with Condor distributed
computing software [58]. Condor allows ASCOT users to har-
vest the idle time of workstations by executing ASCOT on
them. All the necessary input files and the ASCOT binary are
sent to the remote workstation by Condor, so no common file
system is needed. Each ASCOT process produces an output
file, all of which are returned to the user’s local workstation
when the process finishes. When all the processes have been
successfully finished, an auxiliary program combines the re-
sults into a single output file.

10.2. External and internal libraries
At the time of compilation, ASCOT requires only a single

external library to be provided by the host system: HDF5 [59].
Practically all ASCOT output and an increasing part of the in-
put is in the HDF5 format. It is a binary format widely sup-
ported both in HPC facilities and programming languages. Us-
ing HDF5 offers high-performance time-resilient storage for
ASCOT data. An extensive set of analysis and visualization
tools have been written for MATLAB and are available for the
users.

Inside ASCOT, parts of several large and small libraries are
used. The code is stored in a version control system and, within
this repository, the code base also includes parts of the follow-
ing libraries: PSPLINE [60] for splines, Kracken [61] for pars-
ing command line arguments, QUADPACK [62] for numerical
integration, and SLATEC [63] for elliptical integrals. The MPI
library is usually used with ASCOT, but if it is not available,
stubs [64] are used instead. For random numbers we use the
well-known Mersenne Twister algorithm and library [65].

11. Summary and future work

With the goal of providing the fusion community with a com-
prehensive test ion code optimized for fusion applications, we
have redesigned the Monte Carlo orbit-following code ASCOT.
A formalism that allows solving the kinetic equation for minor-
ity ions, be they energetic ions or impurity species, in a man-
ner where the Hamiltonian particle motion and collisions are
treated consistently, was developed both for the full gyro mo-
tion and in the guiding center formalism. To incorporate all the

relevant physics, ASCOT was written to operate in full 3D, thus
automatically including all neoclassical drifts. It uses a phys-
ical 3D bounding surface, corresponding to the first wall of a
fusion device, and includes models for MHD processes relevant
for fast ion distribution as well as background flow and atomic
reactions that are important for impurity ions. ASCOT fea-
tures first-principles sources for energetic particles correspond-
ing to alphas and neutrons from thermonuclear, beam-target and
beam-beam fusion reactions, as well as ions resulting from neu-
tral beam injection. A simple model for ICRH-accelerated ions
is also provided. Simulation results are given as N-dimensional
distributions, where up to two velocity dimensions and two spa-
tial dimensions can be assigned. Furthermore, the distribution
of ions ending up at the first wall is available, including the
information of their energy and direction. To this end, an accu-
rate and efficient description of the first wall and a sophisticated
wall-collision algorithm were incorporated into the code.

In the process of redesigning ASCOT, shortcomings in the
conventional approach were discovered and fixed. First and
foremost was the use of a full gyro motion collision operator
when the Hamiltonian motion of test ions was treated within the
guiding center formalism. Furthermore, for historical reasons,
the collision operator used different velocity space coordinates
than those used for the equations of motion. Yet another dis-
crepancy, deriving from the historical development of fast ion
codes, is the inconsistency in integrating the Hamiltonian mo-
tion with high-level integrators while often treating the deter-
ministic part of the collision operator with the very crude Euler
method.

In the new ASCOT, Coulomb collisions are now treated con-
sistently with the Hamiltonian motion and, in the guiding center
formalism, spatial diffusion, as given in Eq. (42), is introduced
in addition to the velocity space diffusion. The remaining ques-
tion is whether the collisional contribution has to be treated as
accurately as the Hamiltonian motion. Work to implement the
consistent numerical integration schemes is ongoing.

References
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