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Rapid data collection and modern computing resources provide the opportunity

to revisit the task of optimizing the model of diffraction geometry prior to

integration. A comprehensive description is given of new software that builds

upon established methods by performing a single global refinement procedure,

utilizing a smoothly varying model of the crystal lattice where appropriate. This

global refinement technique extends to multiple data sets, providing useful

constraints to handle the problem of correlated parameters, particularly for

small wedges of data. Examples of advanced uses of the software are given and

the design is explained in detail, with particular emphasis on the flexibility and

extensibility it entails.

1. Introduction

The successful integration of single-crystal diffraction data

depends on the accurate prediction of Bragg spot locations on

area-detector images. An initial model for the diffraction

geometry may be constructed from metadata provided with

the diffraction images (Parkhurst et al., 2014) or provided by

the user. This starting model is completed by estimating crystal

parameters, which are usually derived from data by an auto-

indexing procedure, such as that of Steller et al. (1997). This

model is rarely sufficient for accurate prediction throughout a

data set. Thus, a crucial step in data processing is to refine the

geometrical model by procedures that minimize the discre-

pancies between spot locations observed on the image data

and their locations as predicted from the model.

The refinement procedures employed by current software

differ in their details, yet share much common ground. In

contrast to macromolecular structure refinement, the task is

often highly overdetermined, with a large number of obser-

vations (residuals) compared with the relatively small set of

model parameters. Typically, these residuals consist of

distances in a two-dimensional space linked to the area-

detector surface (Leslie, 2006). For a rotation series, a third

dimension expressed in terms of rotation angle, or depth

within the series of diffraction images viewed as a stack, is also

commonly used (Kabsch, 2010b; Pflugrath, 1997). Additional

terms such as reciprocal-space distance between the predicted

and apparent scattering vector may also be included (Paciorek

et al., 1999). Most packages form a least-squares target func-

tion from these residuals and perform optimization using

standard methods of nonlinear least-squares minimization.

This type of refinement, in which the target function is
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expressed in terms of the discrepancies between predicted and

observed spot locations, is conventionally called positional or

centroid refinement.

A separate type of refinement may also be performed,

which can improve the accuracy of unit-cell parameter esti-

mates independently from detector positional parameters.

This type of refinement uses as its target the degree of parti-

ality of reflections recorded on two or more sequential images.

The measure of spot partiality requires both a model for the

rocking curve of the reflection and the integration of the

complete intensity of that spot (Winkler et al., 1979; Rossmann

et al., 1979; Leslie, 2006). As such, it can only be performed

after integration has taken place, and is thus known as post-

refinement. Positional and partiality refinement tasks may be

treated separately (Leslie, 2006; Kabsch, 2010b; Messer-

schmidt & Pflugrath, 1987) or together in a joint refinement

(Otwinowski et al., 2012). The refinement of all parameters

simultaneously with a sufficiently information-rich target

function is known to be effective (Pflugrath, 1997; Kabsch,

2010b; Paciorek et al., 1999). However, subsets of the full

parameter set may also be refined separately. For example,

MOSFLM refines detector parameters using only a positional

residual and uses a separate unit-cell refinement step to

improve the crystal parameters by post-refinement. This

ensures that the accuracy of refined unit-cell parameters is not

affected by correlations with parameters of the beam and

detector models.

In this paper, we discuss the implementation of three-

dimensional centroid refinement algorithms within the DIALS

framework (Waterman et al., 2013). Our software provides

global parameter refinement across one or more data sets,

using a generalized model for diffraction geometry that can be

applied to a wide variety of real instruments. Many of the core

algorithms closely follow published methods and guidelines

based on decades of expertise in the field, in particular

proposals arising from the EEC Cooperative Programming

Workshop on Position-Sensitive Detector Software (Bricogne,

1986a,b, 1987). The description of DIALS refinement here will

necessarily repeat elements of that scheme, but our focus is

on features unique to our software, including multiiple data set

refinement, smoothly varying crystal parameters, extensible

parameterization including the handling of multi-panel

detectors, and an object-oriented design that facilitates the

exchange of components such as the minimization engine. The

described software is packaged together into a command-line

program within the DIALS framework, called dials.refine.

2. Centroid refinement

A central tenet of the DIALS framework is modularity, such

that algorithms may be exchanged to alter or extend the

capability of the software. A key issue this raises is the scope

of each task. For instance, the geometry refinement should not

include models that naturally fall within the scope of inte-

gration and hence become dependent on them. Those aspects

of the global model that affect spot size and shape, such

as the crystal mosaicity and beam divergence, are more

appropriately dealt with by the part of the software that either

learns or otherwise constructs models of the reflection profiles.

This is a useful distinction, because for rotation-scan data

these parameters do not alter the central impacts determining

the recorded reflection position, only the general impacts that

determine the reflection extent (Duisenberg et al., 2003). This

distinction does not hold for data sets consisting of still shots,

because in general the reflecting condition for a central impact

is not met on a still. In this case, the distribution of observed

spots, and their partiality, is inescapably a function of general

impact parameters. In this work, we restrict our description of

geometry refinement to rotation experiments, and thereby to

refinement of parameters that affect the reflection centroids,

whilst making no assumption about parameters that contri-

bute to spot size and shape.

This distinction excludes the traditional post-refinement

residual within the global target function, as this necessarily

includes a spot-profile model. Nevertheless, we find that

refinement based on centroids alone is sufficient for accurate

reflection prediction in integration, particularly when data sets

are fine-sliced in comparison with the reflection rocking curve,

yielding more accurate empirical centroid estimates. Further-

more, the separation of centroid refinement from profile

refinement allows the use of DIALS refinement alongside

any integration algorithm. DIALS is first and foremost a

framework rather than a monolithic integration program
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Figure 1
The diffraction geometry of the simple central impact model used by
DIALS. Vectors are expressed in either a reciprocal-space or real-space
laboratory frame. The rotation axis êe intersects the origin of laboratory
space within the crystal at Oc and defines a right-handed rotation. The
direct-beam wavevector s0 passes through Oc and defines the origin of
reciprocal space Ors at its tip. A reciprocal-lattice point rotated by an
angle ’ to touch the surface of the Ewald sphere is shown by r’. The
diffracted beam wavevector s1 extends from Oc to the tip of r’. Further
projection of this vector leads to an intersection on a detector plane at the
position marked (X, Y). The detector plane is described by three vectors:
d0, which defines the origin of the detector coordinate system Od at one
corner of the plane, and a pair of mutually orthogonal unit vectors d̂dx and
d̂dy defining a Cartesian plane. The detector normal vector d̂dn ¼ d̂dx � d̂dy

completes the detector coordinate system basis. The position (X, Y) is
recorded if it is inside the pair of limits (xlim, ylim).



(Waterman et al., 2013) and therefore facilitates the

construction of various alternative workflows for performing

data-reduction tasks. Thus, implementation of traditional post-

refinement algorithms within the DIALS framework remains

an option for future work.

3. Reflection prediction with general diffraction
geometry

The general diffraction geometry for central impacts is shown

in Fig. 1. The use of arbitrary vectors to describe the experi-

mental geometry avoids limitations caused by adherence to

an idealized geometry or coordinate system for a particular

experimental method. The description that follows is a useful

abstraction for correctly capturing the geometries found in

any experimental diffractometer. Also, the implementation

details of particular pieces of hardware play no role in the

description of diffraction in these general terms. This design

dates back to the seminal workshops at which a device-

independent version of the program MADNES was planned

(Bricogne, 1986a,b, 1987), and directly influenced the dxtbx

software used by DIALS (Parkhurst et al., 2014). Here, we

follow closely the reports associated with that workshop and

repeat some of the relevant mathematical working here for

clarity, as unfortunately these documents are not widely

available.

As described previously (Parkhurst et al., 2014), a single

flat-panel detector may be modelled by a plane positioned

over the sensitive surface like a thin film. This abstract

description of a detector panel is free of any hardware-specific

effects, such as parallax and distortion corrections, as these are

encapsulated within a tailored pixel-to-millimetre mapping

function for that detector. For our purposes, it suffices to

predict the point of intersection of a scattered ray, s1, with this

plane. This is conveniently expressed using a projection along

the direction s1 by a scale constant �, to meet the plane defined

by unit vectors d̂dx and d̂dy, which are usually aligned with the

‘fast’ and ‘slow’ directions of the image array, respectively, for

convenience. For detectors where these directions are not

strictly orthogonal, another basis could be chosen, for example

by aligning d̂dx with the fast direction and d̂dy ¼ d̂dn � d̂dx, where

d̂dn is normal to the detector plane. If d0 defines the origin of

the detector coordinate system then the projection can be

expressed as

Xd̂dx þ Yd̂dy þ d0 ¼ �s1; ð1Þ

or, in matrix form,

d

X

Y

1

0
@

1
A ¼ �s1; ð2Þ

where d ¼ ðd̂dxjd̂dyjd0Þ and therefore

X

Y

1

0
@

1
A ¼ �d�1s1: ð3Þ

Defining the detector projection matrix

D ¼ d�1
ð4Þ

and a vector

v ¼

u

v

w

0
@

1
A ¼ Ds1; ð5Þ

this can be rewritten as

X

Y

1

0
@

1
A ¼ �v: ð6Þ

The point (X, Y) in millimetres on the detector plane is then

represented by homogeneous coordinates (u, v, w) such that

X = �u, Y = �v and w = 1/�. Therefore,

X ¼
u

w
and Y ¼

v

w
: ð7Þ

X and Y can then be obtained from calculation of D and

knowledge of s1. The former comes from the orientation of the

detector plane and, referring to Fig. 1, the latter is constructed

as s1 = s0 + r’.

The vector r’ is related to the reciprocal-lattice vector in the

initial orientation, r0, by

r’ ¼ R’r0; ð8Þ

where R’ represents a rotation about the axis êe by an angle ’.

Expanding this using Rodrigues’ rotation formula gives

r’ ¼ ðr0 � êeÞêeþ ½r0 � ðr0 � êeÞêe� cos ’þ ðêe� r0Þ sin ’: ð9Þ

This expression is equivalent to that presented in x2.2 of

Kabsch (2010b). DIALS follows the XDS method to solve this

for the ’ angles of up to two intersections of r’ with the Ewald

sphere. To complete the description of reflection prediction,

the reciprocal-lattice vector r0 is calculated for each integer

index vector h using the standard relation

r0 ¼ UBh; ð10Þ

where U, the orientation matrix, is a rotation matrix and B,

the reciprocal-space orthogonalization matrix, contains the

components of the reciprocal-space unit-cell vectors in an

orthogonal coordinate frame fixed to the crystal, such that B =

(a*|b*|c*).

Following the above, spot positions can be predicted in

detector space and rotation angle in the form of the triplet

(X, Y, ’). By analysis of the diffraction images the equivalent

information can be extracted for the observed spots, using a

detector-specific pixel-to-millimetre function. In order to

perform refinement, derivatives of the calculated (X, Y, ’) are

needed with respect to the parameters of the model. Abstract

expressions for these derivatives are determined that are not

dependent on the actual parameterization chosen, so that

alternate parameterizations can easily be applied. The calcu-

lation of these derivatives is described in detail in Appendix A.
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4. Model parameterization

The DIALS refinement module makes an explicit distinction

between the experimental models (beam, crystal, goniometer

and detector) and the parameterizations of these models. The

models are used throughout the DIALS framework and are

abstract descriptions of the physical components that they

represent, intended to be generally applicable to a wide

variety of experiments and to be used by all algorithms written

within the DIALS framework. A model parameterization,

in contrast, is relevant only within refinement. Each para-

meterization attaches to its model for the duration of the

refinement procedure, providing a means to express the state

of the model from the values of its parameters, to calculate

first derivatives of this state and to update the model after

each step of the refinement algorithm. This distinction enables

great flexibility, as alternative parameterizations may be

applied to a particular model to control the behaviour of

refinement. This may be used to represent different levels of

prior knowledge about an experiment. For example, the

default detector parameterization in DIALS represents the

position and orientation of each detector plane with six

degrees of freedom. For some instruments it may be appro-

priate to restrict relative offsets of individual planes to

translations, or to specify certain known mechanical axes

about which operations of translation or rotation may take

place. Such cases would be accommodated by providing an

alternative parameterization to attach to the core detector

model. This alternative parameterization would be guaranteed

to affect only the behaviour of refinement in DIALS, because

the core detector model remains unchanged.

Alternative parameterizations offer great flexibility, but it is

recognized that the majority of cases are well served by the

default set of model parameterizations provided by DIALS,

the details of which are summarized in Table 1. The gonio-

meter model is not currently parameterized in DIALS, as it is

assumed that the rotation axis is known within the laboratory

frame. Although the standard set consists of 18 parameters, it

is not possible to refine them all simultaneously: one para-

meter must be fixed relative to the laboratory-frame coordi-

nate system, otherwise it would be possible to rotate the whole

experiment freely around the rotation axis. A second direc-

tion, off the rotation axis, must also be specified in the

laboratory frame to disallow this. In fact, by convention we

adopt the imgCIF coordinate system (Bernstein, 2005), in

which the principal goniometer axis coincides with the x̂x axis

of a right-handed set and the ẑz axis is defined such that the

beam vector lies in the x̂x–ẑz plane with ẑz pointing towards the

beam source rather than towards the detector. To adhere to

this, in normal usage the parameter �1 = 0 is fixed to allow

beam movements only within this plane. This behaviour is

merely conventional: it is possible for the user to fix any other

parameter, and define the goniometer axis as some other

arbitrary unit vector, in order to parameterize the experiment

with respect to a different coordinate frame. It is required only

that the origin of the coordinate system is formed at the point

of intersection between the beam and the crystal, and that the

system forms a right-handed orthonormal basis. In addition to

prohibiting free rotation of the experiment, the beam wave-

length (parameterized as the wavenumber, the length of the s0

vector) is usually fixed, as this is fully correlated with the unit-

cell volume and is typically measured to better than one part

in 1 � 105 at most synchrotron beamlines. In situations where

the cell is known accurately but the wavelength is unknown,

this cell can be fixed and the wavelength allowed to refine, for

example for beamline calibration with a well characterized

small-molecule crystal.

Each model parameterization designates some aspect of its

model as its ‘state’. As shown in Table 1, this is either a vector

or a 3 � 3 matrix. At initialization, parameters are calculated

such that the model parameterization reproduces the current

model state and is able to compose future states as the para-

meter values change. The translational and rotational para-

meters are always associated with an axis along or about which

their action takes place. To avoid dependence on the

laboratory-frame definition, for the beam and detector para-

meterizations these axes are constructed from the initial

geometry of the models. For example, the detector p0 para-

meter is a distance along a vector normal to the initial detector

plane. Axes such as these are stored inside the model’s para-

meterization object and persist for the lifetime of the refine-

ment procedure, so although the detector plane orientation

may change during the course of refinement, the p0 parameter

always acts along this initially determined direction. As a

result, this scheme works equally well with any orientation

of the laboratory-frame axes, ensuring that the algorithm is

unaffected by this arbitrary choice. In this work, the stored

axes that are determined from the initial geometry of the

model are indicated using a superscript prime. One conse-

quence of defining the action of parameters with reference to

these axes is that absolute parameter values are not compar-

able between the output of individual refinement procedures

if their initial geometries differ. This is not a deficiency,
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Table 1
Default parameterization in DIALS for scan-static refinement using a
single-panel detector.

The vector ĉc ¼ ŝs00 � êe is defined here for convenience.

Parameterization Model state Parameters Action

Beam s0 �1 Rotation about ĉc� ŝs00
�2 Rotation about ĉc
� Set length of s0 (wavenumber)

Crystal orientation U ’1 Rotation about laboratory x̂x
’2 Rotation about laboratory ŷy
’3 Rotation about laboratory ẑz

Crystal unit cell B g�11 Set metrical matrix elements
g�22

g�33

g�12

g�13

g�23

Detector d p0 Set distance along d̂d0n
t1 Translation along d̂d0x
t2 Translation along d̂d0y
�1 Rotation about d̂d0n
�2 Rotation about d̂d0x
�3 Rotation about d̂d0y



because the parameter values are not expected to carry any

useful meaning outside of refinement. Rather, it is the set of

refined models that form the output of a refinement proce-

dure, and the states of these models that may be compared. An

advantage of this approach is that the angle parameters

describing the ‘misset’ orientation of the crystal from its initial

or datum orientation can always be set equal to zero at initi-

alization and be expected to remain small for any reasonable

refinement task; therefore, the theoretical issue of gimbal lock

is not met in practice.

In contrast to the beam and detector parameterizations, the

axes of action for the crystal orientation parameterization are

aligned with the laboratory-frame axes. The crystal orientation

is determined by Euler angles in the Tait–Bryan convention

(with rotation first around laboratory x̂x, then ŷy and finally ẑz).

Any mutually orthogonal basis would suffice and the labora-

tory basis is chosen for simplicity. Unlike the other model

parameterizations, the crystal unit-cell parameterization is not

made in terms of lengths and angles of vectors, but instead

using those elements of the reciprocal-lattice metrical matrix

that are not constrained by space-group symmetry. This allows

the use of code within the Computational Crystallography

Toolbox (cctbx; Grosse-Kunstleve et al., 2002) which auto-

matically determines which parameters are free for each space

group and setting, avoiding the use of special code to handle

each case (Sauter et al., 2006). Although elements of the

reciprocal metrical matrix G* = B>B are used as parameters,

the model state for the crystal unit cell is the reciprocal-space

orthogonalization matrix B (Busing & Levy, 1967), using the

convention defined previously (Gildea et al., 2014). The deri-

vatives of B with respect to the free elements of G* are

calculated using cctbx. The derivatives of states of the other

models (beam, crystal orientation and detector position and

orientation) are detailed in Appendix B.

When composing new model states from parameter values,

the order in which the parameter actions are applied is clearly

important. For the beam model, a new state is composed using

s0 ¼ �R�2
R�1

ŝs00; ð11Þ

where the meanings of the parameters are as described in

Table 1 and ŝs00 is the unit vector giving the beam direction in its

initial orientation.

The crystal orientation is composed by forming a misset

rotation matrix,

U ¼ R’3
R’2

R’1
; ð12Þ

that operates on the datum orientation of the crystal U0, which

is also a rotation matrix. These missets act in a coordinate

frame fixed to the crystal (i.e. equivalent to the laboratory

frame at goniometer rotation angle ’ = 0) such that the crystal

setting in the laboratory frame after a rotation by R’ is given

by

R’A ¼ R’UU0B: ð13Þ

To parameterize a detector plane, a reference coordinate

basis is formed from the orthonormal triplet fd̂d0x; d̂d0y; d̂d0ng,

consisting of a pair of in-plane axes and the plane normal

vector for the initial orientation, which may face either

towards or away from the sample. The initial orientation angle

parameters �1, �2 and �3 are set to zero. A new orientation is

composed from updated parameter values using the combined

rotation

d̂dx ¼ R�3
R�2

R�1
d̂d0x;

d̂dy ¼ R�3
R�2

R�1
d̂d0y;

d̂dn ¼ d̂dx � d̂dy: ð14Þ

The effect of the positional parameters can be shown by

defining a pair of vectors marking points on the detector

surface, as shown in Fig. 2. A vector normal to the initial

detector plane,

p0 ¼ p0d̂d0n; ð15Þ

defines the detector ‘distance’ parameter p0, while a second

vector includes the orthogonal translation parameters t1 and t2,

p1 ¼ p0 þ t1d̂d0x þ t2d̂d0y: ð16Þ

The vector p1 marks an arbitrary point on the detector plane

in its initial orientation depending on the size of these shift

parameters. To set the initial values of these parameters, a

reference point on the detector surface must be chosen. By

convention, this is set to be the centre of the detector as

defined by its rectangular extent in the d̂dx and d̂dy directions,
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Figure 2
The definition of the detector-distance parameter requires a vector p0

from the origin of the laboratory frame within the crystal, Oc, to a point
on the detector surface along the initial detector normal vector d̂d0n. The
length of this vector p0 defines the detector distance. The orthogonal shift
parameters t1 and t2 are determined with reference to the point p1 at the
centre of the detector plane, as set by the limits xlim and ylim. Note that
here t2 is negative as the shift required along d̂d0y goes against the direction
of this vector. Following location of the centre of the detector plane in its
initial orientation, rotations determined by the orientational parameters
are applied about the point p0. The action of these orientation parameters
is not shown here.



p1 ¼ d00 þ
xlim

2
d̂d0x þ

ylim

2
d̂d0y: ð17Þ

Comparison with (16) gives

t1d̂d0x þ t2d̂d0y ¼ d00 � p0 þ
xlim

2
d̂d0x þ

ylim

2
d̂d0y; ð18Þ

from which the translational shift parameters are derived,

t1 ¼ ðd
0
0 � p0Þ � d̂d

0
x þ

xlim

2
;

t2 ¼ ðd
0
0 � p0Þ � d̂d

0
y þ

ylim

2
: ð19Þ

The vector d00 � p0 gives the fixed offset of the detector

origin d00 from the reference point p0. This vector is referred to

as x ¼ ðd̂0xd0xjd̂
0
yd0yjd̂
0
nd0nÞ
>
ðd00 � p0Þ when expressed in the initial

detector coordinate frame and will be reused to determine the

updated detector origin below.

Having defined the translational parameters, rotations are

then applied to p1 about the point p0. This point was chosen as

the origin of rotation rather than the laboratory-frame origin

to reduce correlation between the translational and rotational

parameters. Firstly, p1 is rotated by an angle �1 around the axis

d̂d0n. This axis passes through the laboratory-frame origin, so

rotating either around point p0 or the origin is equivalent and

simply gives

p2 ¼ R�1
p1: ð20Þ

This is followed by a rotation of �2 around the axis d̂d0x, taken

through the point p0,

p3 ¼ R�2
ðp2 � p0Þ þ p0: ð21Þ

Finally, rotate by �3 around the axis d̂d0y through point p0 and

expand the terms:

p4 ¼ R�3
ðp3 � p0Þ þ p0;

p4 ¼ R�3
R�2

R�1
p1 � R�3

R�2
p0 þ p0: ð22Þ

The updated reference point p4 together with the updated

basis fd̂dx; d̂dy; d̂dng are used to find the new detector origin d0

from

d0 ¼ p4 þ ðd̂dxjd̂dyjd̂dnÞx: ð23Þ

The vectors d̂dx, d̂dy and d0 define the new detector matrix d.

It is trivial to extend this detector parameterization for a

single detector panel to some group of panels which are not

necessarily coplanar. The dxtbx library provides an extension

of the simple detector model to represent a hierarchical

detector in which panels are arranged into groups and form

a tree structure (Parkhurst et al., 2014). To parameterize a

hierarchical detector, a level in the hierarchy must first be

selected to specify which panel groups are to be moved as rigid

units. Each panel group k specifies its own group frame with

detector matrix dk. The reference point for the group p1
k is

chosen to be a point that intersects the group frame close to

the centre of the group of panels. The composition of a new

position and orientation of the group frame proceeds exactly

as outlined above. When the group is updated with a new

matrix dk the laboratory-frame positions and orientations of

the panel children are updated automatically by the hier-

archical model.

In addition to providing the means to compose new states

for their parameterized models, the model-parameterization

objects calculate the derivatives of these model states with

respect to the chosen parameterization. These derivatives

are passed to a higher level object that parameterizes the

prediction equation, and they are combined as described in

Appendix A. Expressions for the derivatives of each model

state with respect to the default set of parameters supplied

within DIALS are presented in Appendix B.

5. Minimization

Minimization requires three entities: a model function, a

target function and a minimization algorithm. The model

function for centroid refinement is the vector-valued reflection-

prediction equation, which for some integer index vector h

calculates the reflection centroid ðX;Y; ’Þ> according to the

model states s0, U, B and d, and a Boolean flag e 2 {true, false}

that determines whether the passage of the reciprocal-lattice

point is entering or exiting the Ewald sphere,

X

Y

’

0
@

1
A ¼ f ðh; s0;U;B; d; eÞ: ð24Þ

The first derivative of the predicted rotation angle ’ with

respect to any parameter becomes undefined when the triple

product ðêe� r’Þ � s0 approaches zero (see equation 40 in

Appendix A). A geometrical interpretation of this term is the

volume of the parallelepiped formed by the rotation axis êe,

the reciprocal-lattice vector r’ and the beam vector s0, which

approaches zero for reflections that are close to the rotation

axis. These reflections are also expected to have poorly

determined ’ centroids as the Lorentz factor exhibits the same

asymptotic behaviour. To avoid the inclusion of reflections

that destabilize the ’ derivatives this volume is calculated, and

any reflection with a volume below a user-defined cutoff (with

a default value of 0.05) is discarded.

The target function consists of the weighted sum of squared

residuals between the calculated and observed centroid posi-

tions (X, Y, ’) over the set of n reflections used in refinement:

L ¼
1

2

Pn
i¼1

wi;XðX � XobsÞ
2
þ wi;Y ðY � YobsÞ

2
þ wi;’ð’� ’obsÞ

2:

ð25Þ

The weighting scheme may be selected by the user from a

number of strategies, of which two are currently provided for

the refinement of rotation scans. The simplest is a constant

weighting scheme in which wi,X, wi,Y and wi,’ may be set to

user-defined constant values, wX, wX and w’. This may be

useful when estimates of centroid variances are not available

(such as when taking as input centroids determined by

external software). However, given the centroid positions and

their variances, as determined by the program dials.find_spots,

the default behaviour in DIALS is a statistical weighting
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scheme whereby the wi terms are set equal to the inverse

variance estimates of the observed centroids. Assuming that

these are accurately determined, each term then contributes a

unitless quantity to the target function.

The task of finding parameters that minimize L is directly

amenable to methods of nonlinear least squares. This requires

the first derivatives with respect to each parameter, p, given by

@L

@p
¼
Pn
i¼1

wi;X

@X

@p
ðX � XobsÞ þ wi;Y

@Y

@p
ðY � YobsÞ

þ wi;’

@’

@p
ð’� ’obsÞ: ð26Þ

These methods are applied using code already available in

cctbx within the lstbx subpackage (Bourhis et al., 2015). A

simple Gauss–Newton algorithm provides fast rates of

convergence; however, this is subject to failure when the

effects of pairs of parameters on the model are highly corre-

lated (Reeke, 1984). Alternatively, the Levenberg–Marquardt

algorithm may be used, improving the stability at the cost of a

few more steps to convergence. This algorithm is chosen as the

default for DIALS because of its robustness. Other methods

to minimize the target function may also be employed, as long

as they require only its first derivatives and can be adapted to

adhere to a particular interface specified by the refinement

engine base class. Alongside the nonlinear least-squares

algorithms, the opportunity to use the limited-memory

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method (Liu

& Nocedal, 1989) is provided. This is of particular value for

problems involving a large number of parameters, where

constructing the normal matrix is inefficient (discussed further

in x8).

By contrast, the usual problem of refinement for a single

rotation scan of a protein crystal is typically highly over-

determined, with a small number of parameters (tens to

hundreds) and a large number of observations (many thou-

sands). In such cases it can be appropriate to take a random

sample of the input data, if requested, rather than using all of

the strong reflections in a data set, to produce equivalent

results in a shorter execution time. For example, a test of scan-

varying refinement using the data publically available at http://

dx.doi.org/10.5281/zenodo.10271 (Winter & Hall, 2014), using

all 101 841 reflections accepted for refinement and a total of 22

parameters, completed in 26 s on a Linux desktop with an

Intel Core i7 processor operating at a 3.07 GHz clock speed,

using a single process. The refined model produced r.m.s.d.s of

0.26 pixels in X, 0.22 pixels in Y and 0.13 images in ’. Using 50

reflections per degree of the scan (4049 in total) allowed

refinement to complete in 7 s with the same r.m.s.d. values to

two decimal places.

6. Outlier rejection

The least-squares method is neither robust nor resistant,

which means that the refined parameter estimates can be

highly sensitive to extreme values in the data. These values

may result either from long-tailed error distributions or the

presence of outliers in the data (Prince & Collins, 2006). The

squaring of residuals in the target function (25) magnifies the

effect of extreme data points, such that the inclusion of even a

single severe outlier can dominate the minimization proce-

dure. As it is the form of the target function that holds this

property, altering the choice of minimization algorithm cannot

improve robustness or resistance.

Methods of robust estimation have been formulated,

including the use of M-estimates (Huber, 1973), and this

continues to be an area of active research in the field of robust

statistics. However, all such methods introduce additional

algorithmic complexity and suffer other disadvantages such as

invalidating the procedure that will be presented in x10 for

calculating parameter error estimates. A simpler approach,

which is appropriate when dealing with approximately

normally distributed data contaminated by outliers, is to

identify and remove outliers first and then proceed with the

usual minimization of the target function calculated over the

accepted subset of reflections. If only genuine outliers are

removed, the resulting parameter estimates and their errors

do not accrue bias by this procedure. In practice, it can be

difficult to distinguish outliers, especially if the true distribu-

tion of errors is not known a priori. Nevertheless, the inclusion

of outliers can be so disastrous that in their presence imperfect

outlier rejection may be better than no outlier rejection at all.

In accordance with the spirit of flexibility adopted by

DIALS, alternative outlier-rejection algorithms are offered,

with parameters available to the user to control their beha-

viour. The simplest of these algorithms is inspired by the box

plot, a nonparametric display of the variation of univariate

data. In this method, the median and the interquartile range of

the data are first calculated, giving robust estimates of both

location and scatter. Outliers are classified as any point lying

outside some multiple of the interquartile range beyond the

first and third quartiles. When this multiple is equal to 1.5 (the

default) these boundaries are equal to Tukey’s inner fences

(Tukey, 1977). For rotation data this analysis is performed on

each of the residuals in X, Y and ’. Reflections are marked as

outliers if any of the associated residuals falls outside the

boundaries. Taken in combination, these boundaries therefore

form a cuboid in the space of the residuals. This method is very

fast but has one major drawback, which is that it ignores the

multivariate nature of the centroid residuals.

For a multivariate data set, one method to determine

probable outliers is to calculate the Mahalanobis distance

(Mahalanobis, 1936) of each of the points, with a choice of

distance cutoff marking the boundary between accepted and

outlier data. The Mahalanobis distance is a multivariate

generalization of the number of standard deviations that a

point lies away from the mean of a distribution. If the data are

normally distributed then the squared Mahalanobis distances

follow a �2 distribution, so an appropriate boundary distance

can be taken from the quantile function of the �2 distribution

with the appropriate number of degrees of freedom (three for

rotation data). By default the 97.5% level is used to determine

the distance cutoff, but other levels may be selected by the

user. This method takes into account correlations in the data
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set and, in contrast to the previous method, the boundary

forms a smooth ellipsoid in the space of the residuals. By itself,

the Mahalanobis distance calculation is not resistant to the

presence of outliers in the data; therefore, it is essential to use

a robust method to estimate the central tendency and covar-

iance of the data set. We use an implementation of the FAST-

MCD algorithm to calculate the minimum covariance deter-

minant estimator of these quantities (Rousseeuw & Driessen,

1999) with corrections applied to the covariance matrix

(Croux & Haesbroeck, 1999; Pison et al., 2002).

The third outlier-rejection algorithm available in DIALS

refinement is described in Sauter & Poon (2010). This method

uses only the (X, Y) residuals on the surface of the detector

and is of particular interest for still-shot or narrow-wedge data

collections where the ’ residual is poorly determined.

7. Global refinement

A common mode of operation in current software, as exem-

plified by the programs MOSFLM (Leslie & Powell, 2007) and

XDS (Kabsch, 2010a), is to index and refine an initial model

and then process a data set in a linear fashion from beginning

to end of the sweep, alternating between refinement and

integration tasks. The integration model is localized in ’ by

refinement tasks that are specific for a small wedge of data.

The model may not be appropriate outside of this ’ window

owing to changes in the diffraction geometry such as the

crystal setting angles. However, the refined model is adequate

for spot prediction within this wedge of images and is taken as

the starting point for refinement within the next ’ window.

This method may also ‘correct’ for deficiencies in the

geometrical model that preclude a general representation for

the full data set, such as enforced ideal geometry of the

rotation method (with the spindle axis and detector plane

both at right angles to the beam) where this is not strictly

appropriate. This approach of alternating local refinement

and integration was developed when typical data-collection

experiments were slower than the computational processing,

and analysis would start before data collection was complete.

Processing only small wedges also ensured a reduced memory

requirement, which was a key issue in the design of software

for older hardware.

Modern rotation-method experiments carried out at third-

generation synchrotron beamlines combine intense beams

with fast-readout detectors, allowing shutterless data collec-

tion in which complete diffraction data may be collected in

seconds (Broennimann et al., 2006; Winter & McAuley, 2011).

Characterization of a crystal and data-collection strategy

calculation remain as important as ever, and online data

analysis may allow data collection to be terminated early if

diffraction quality fades (Zhang et al., 2006). However, it is not

generally realistic to expect high-quality data processing to be

performed in tandem with, and at the same rate as, data

collection. Given the rapid completion of most data collec-

tions, there is no significant over-

head in finishing each collection

before careful integration of

these data. As we can expect

there to be a complete data set

present for analysis at the outset,

this allows us to refactor the

workflow of data-processing

software. Rather than perform

cycles of local refinement and

integration during a linear pass

through the data, we can consider

the complete determination of a

global centroid prediction model

by a single refinement procedure

prior to carrying out the integra-

tion.

Global refinement has some

distinct advantages that stem

from the application of prior

knowledge of the experimental

design. For example, we may

know that the detector and beam

did not move appreciably during

the collection of a data set (or

even multiple data sets). Rather

than refining their parameters to

different values per image, or

periodically over the data-collec-

tion scan, we can use the global
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Figure 3
Both panels show a type of ‘corrgram’ (Friendly, 2002) providing a rapid visual indication of the sign and
magnitude of correlations between columns of the Jacobian matrix used in the final step of nonlinear least-
squares refinement. The Jacobian represents the sensitivity of the prediction formula to parameters of the
model. Parameters are listed in order along the rows and columns of a grid corresponding to a square
correlation matrix, with parameter names as defined in Table 1. The large blue circles seen down the leading
diagonal indicate the perfect correlation between the effects of parameters with themselves, while large red
circles show high anticorrelation. The colour and area of the circles between the extremes are related to the
numerical value of the correlation coefficient, so that the most important effects stand out whereas low
correlations fade to empty squares. The left panel was produced by dials.refine for refinement of a 1� data
set recorded on a cubic polyhedrin crystal (Gildea et al., 2014). The right panel results from multi-
experiment joint refinement of five 1� sweeps of data consisting of a total of 16 indexed lattices with a
shared beam and detector model. For clarity, only the crystal parameters of the same lattice as that treated
alone on the left panel are shown. Comparison between the panels shows that the inclusion of multiple
lattices significantly reduces the correlations between crystal parameters and other parameters of the
model. For example, the correlation between the detector distance and the single-crystal lattice parameter
is reduced from 0.995 to 0.323 by multiple lattice refinement.



data to find the best-fitting parameter values as a whole. When

wide wedges of data are available, global refinement also

alleviates the problem of parameter correlation. Within a

small ’ range, the errors in certain parameters are highly

correlated with others (see Fig. 3). This degeneracy makes it

troublesome to obtain accurate parameter values, and may

even lead to the failure of certain algorithms used to perform

the minimization. For nonlinear least-squares methods, the

latter may be avoided by applying eigenvalue filtering (Reeke,

1984; Bricogne, 1986b) or singular value decomposition

(Nocedal & Wright, 2006); however, this does not improve the

accuracy of refined parameter values. Apart from the issue of

parameter correlations, some parameters are poorly defined in

a local region of the rotation scan, such as when a cell direc-

tion is close to parallel to the primary beam direction. In the

case of a low-symmetry lattice it may not be possible to refine

this unit-cell parameter unless data from another orientation

are also available (Leslie, 2006). Within the local ’ window,

these issues may be of secondary concern, as the main role of

the model parameters is simply to locate the measurement

boxes correctly over the diffraction spots. Nevertheless, it is

desirable to obtain accurate unit-cell parameters for down-

stream processing of the data, for which the power of global

post-refinement is well recognized (Otwinowski & Minor,

1997).

Global refinement also enables potentially very fast inte-

gration procedures. Because the geometrical model for inte-

gration is determined prior to the integration procedure, this is

readily separable and can make use of brute-force parallelism.

This form of parallel execution is preferable to the batch

execution of refinement and integration tasks with subsets of

the full sweep, as in the latter case changes to the refined

model may vary discontinuously from batch to batch and care

must be taken to minimize the effect of this on the integrated

intensities (Kabsch, 2010a). Furthermore, the separation of

refinement increases the flexibility of integration, as different

algorithms may be compared under the same conditions.

8. Multiple-experiment refinement

The approach of global refinement presented in x7 is applic-

able to data from throughout a single-crystal data set. For

special cases, the idiom may be extended to a higher level to

encompass data from multiple experiments in a single joint

refinement. Here, the term ‘experiment’ has a precise meaning

within the DIALS framework, and refers to a set of unique

experimental models necessary to satisfy the diffraction

condition and produce a consistent set of measured intensities.

An experiment must therefore contain exactly one beam, one

crystal and one detector model. It may also contain one

goniometer and one scan model if the experiment is a rotation

scan. It is possible to jointly refine multiple experiments if

those experiments share one or more models. The commonest

example is that of multi-lattice data, in which the experiments

differ only in their crystal models. The use of DIALS multi-

lattice refinement during the indexing of small wedges of

multi-crystal data has previously been presented (Gildea et al.,

2014). Fig. 3 shows how the correlation between crystal and

detector parameters for one of these small wedges is reduced

when multiple lattices are refined together, and Fig. 4 illus-

trates the set of models used for joint refinement.

When the number of experiments in a refinement procedure

is greater than one, some parameters included in the global

model are specific only to particular experiments. This

increases the sparseness of the problem, as these parameters

contribute gradients of zero for all observations outside these

experiments. For efficiency, sparse-matrix techniques may be

used during the calculation of the normal matrix to avoid the

explicit storage of these zero elements. For large numbers of

experiments, calculating the normal matrix may be prohibi-

tively inefficient. In those cases, use of the L-BFGS method is

preferred. We are currently investigating the application of the

DIALS refinement module to large problems, such as joint

refinement of data sets consisting of multiple still shots, and

will address these issues in more detail in the future.

9. Scan-varying crystal parameterization

During data collection the crystal unit cell may change owing

to radiation-induced structural changes. Changes in the illu-

minated crystal volume during rotation or translation may

introduce undamaged regions into the beam, thereby

impacting the effective unit-cell parameters. In addition,

crystal movements or goniometer defects may lead to changes

in the crystal orientation. Where these changes occur

smoothly over the course of a rotation scan, the benefits of

global refinement of parameters can still be obtained by

explicitly including a smoothly varying parameterization of

the crystal, expressed as a function of position in the contig-

uous series of images forming the scan. For this purpose a

Gaussian smoother based upon code from AIMLESS (Evans
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Figure 4
The global model used for a complex multi-experiment refinement
procedure can be illustrated by a graph linking experimental models
labelled as follows: B, beam; G, goniometer; C, crystal; S, scan; D,
detector. A single experiment consists of a path from top to bottom
connecting one of each type of model. Shown here are the jointly refined
models for the polyhedra example discussed in the text. The experiment
highlighted in red corresponds to the parameters displayed in Fig. 3.
Where more than two crystals were present in a scan, the set of crystal
models are shown as a range. All crystals within a range share the same
connections, so for clarity only the extrema of the range are shown.



& Murshudov, 2013) is used. This provides a simple and fast

way to calculate smoothly changing values and gradients for

an arbitrary parameter without assuming any particular

functional form for the behaviour of that parameter. To set up

the smoother, a number of equally spaced points are chosen

throughout the scan, based on a user-configurable interval

width.

Each of these points is associated with a Gaussian function

and a scaling coefficient that becomes a refinable sub-

parameter of the model. At any point along the scan the

smoothed parameter value can be constructed by taking the

Gaussian-weighted sum of the nearest three subparameter

values. Initially the subparameters are all set to the same

value, so that the smoothed parameter curve is flat over the

whole scan. During refinement the subparameters are allowed

to vary in order to reduce residuals. As each subparameter has

a local effect in a Gaussian-weighted sense, this results in a

smooth curve moving from one region of a scan to the next.

This model is deemed appropriate to capture smoothly

varying physical changes during data collection.

The degree of smoothing is controlled by the number of

intervals into which the scan is divided. By default an interval

width of 36� is used, as this was found to provide suitable

results in practice for data sets collected at Diamond Light

Source. The number of sampling points is chosen to be an

integer such that the spacing between sample points is close to

the specified value, with the extreme points lying outside of

the scan range. Other parameters of the smoother are derived

automatically. For example, the number of nearest points over

which to average is set to three, as no significant advantage

was observed by increasing the number of points. In addition,

the width of the Gaussian functions is linked to the interval

width such that at the maximum of one Gaussian the adjacent

Gaussians are at 13% of their maximum values. This is also the

default behaviour of AIMLESS in the case where averaging

uses the three nearest functions. This choice appears to work

well in practice and we have found no reason to use a different

default.

9.1. Results

To demonstrate the use of a scan-varying crystal para-

meterization, we chose a well diffracting thaumatin crystal,

from which we collected a continuous 720� data set on

beamline I03 at Diamond Light Source with attenuators set to

3% transmission, delivering approximately 2.5 � 108 photons

s�1. The beam profile was measured during routine calibration

to be approximately Gaussian with a cross-section at the

FWHM with major and minor diameters of 80 and 20 mm, but

this shape was further defined by a circular aperture with a

diameter of 50 mm during data collection, limiting the hori-

zontal size. The low photon flux was chosen to reduce the

effects of radiation damage on the crystal lattice. The data

were collected on a Pilatus 6M detector with shutterless

operation at 40 Hz and an image rotation width of 0.1�. The

crystal was considerably larger than the beam, so in order to

minimize the effect of changing the illuminated volume during

the course of the data collection we aligned the beam with a

sharp corner of the crystal that protruded from the mounting

loop. This was performed to ensure that observed changes to

the unit cell are likely to be real lattice changes rather than an

effect caused by sampling different illuminated volumes.

We wished to compare the results of the smooth scan-

varying global refinement using DIALS with the usual

approach of running multiple refinement tasks, in which each

determines a static crystal model appropriate only within a

small local block. For this purpose, the data were processed

using XDS through xia2 (Winter, 2010). We also identified

strong spots using dials.find_spots and indexed the spot

centroid positions with dials.index, which performed global

scan-static refinement of the diffraction geometry and crystal

model, resulting in the identification of a tetragonal cell with

parameters a ’ 57.7 Å and c ’ 150.0 Å. This was followed by

scan-varying refinement using all indexed reflections that

passed the inclusion criteria. In this case 9300 reflections close

to the rotation axis were removed, followed by the rejection of

4135 reflections with the worst residuals, leaving 306 968

reflections in the working set. Each of the crystal parameters

(three orientation angles and two metric parameters) was

modelled using subparameters over the ’ scan. A total of 117

parameters were refined using the Levenberg–Marquardt

algorithm, including six detector parameters and one beam-

orientation angle. The final r.m.s.d.s at convergence (after nine

minimization steps) were 0.22 pixels in X, 0.25 pixels in Y and

0.14 images in ’.

The smoothed scan-varying unit-cell parameters are shown

in Fig. 5 alongside the unit-cell parameters determined in 5�

blocks by XDS. Comparison of the curves clearly shows that

both approaches produce a model for the cell that varies with

the same pattern of steadily increasing unit-cell lengths
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Figure 5
For refinement of a tetragonal thaumatin data set, scan-varying unit-cell
parameters produced by the Gaussian smoothing model in DIALS are
shown in blue, with their values refined within blocks of 5� by XDS shown
in green. The globally determined smooth curves from DIALS closely
match the trends observed in the independent locally determined
parameter values from XDS.



modulated by an oscillatory pattern. The overall increase in

the unit-cell parameters over the course of the scan is small,

with the a parameter increasing by about 0.05 Å, whilst the c

cell dimension increases by a similar proportion, by approxi-

mately 0.14 Å. The period of oscillation for the a parameter is

half that of the c parameter, namely 90� compared with 180�,

reflecting the tetragonal symmetry of the lattice. For the

higher frequency variation of a the smooth curve from DIALS

has a smaller amplitude than the curve traced between the

results of independent local refinement tasks from XDS. This

is explained by the influence of each of the 22 subparameters

for a extending well beyond the 5� block size of an individual

XDS refinement, with this influence diminishing according to

the Gaussian smoother. Compared with the set of independent

refinement tasks, the smoothing of unit-cell parameters

provides a constraint that includes prior knowledge in the

minimization problem. This knowledge is the expectation that

changes in the real lattice will occur gradually rather than

abruptly. If it is suspected from an analysis of refinement

residuals that the degree of smoothing is too great to capture

real changes that should be modelled, then decreasing the

interval width between the central positions of subparameters

will enable the modelling of higher frequency variations by

using more subparameters. The amplitudes of the oscillations

in c for the DIALS and XDS curves are similar; however, the

DIALS curve is systematically larger than that from XDS. The

discrepancy is small, with a median value of less than 0.01 Å

between the curves and a maximum of less than 0.02 Å. This

difference can partly be explained by the differences in refined

detector models and parallax correction between XDS and

DIALS. The angle between the c axis and the goniometer

rotation axis is about 13�, leading to higher correlations

between this cell dimension and the detector parameters than

for the a parameter. This demonstrates a difficulty in accu-

rately measuring unit-cell parameters by fitting a model by

positional or centroid refinement, as discussed in x7. Never-

theless, the discrepancy between the cells refined by XDS and

DIALS should not be thought to imply a worse predictive

power of one method or the other. That the DIALS results

have a good predictive power is indicated by the low r.m.s.d.s,

as reported above.

The discontinuities in the unit-cell parameter curves

resulting from independent refinement tasks in blocks by XDS

are too small in this case to have any substantial deleterious

effect on the quality of integration results. However, in cases

where the unit-cell parameters do change significantly during

the course of data collection, for example owing to radiation

damage, the step sizes of the discontinuities also increase. This

may be compounded by the common practice at synchrotron

facilities of making use of both coarse-grained and fine-

grained parallelism, where the integration of a large sweep is

split into a number of evenly sized blocks and each is inte-

grated independently on a multi-processor computer starting

from the initial model from indexing. In this situation, the size

of the discontinuities may be particularly large at the borders

between blocks, potentially giving rise to artefacts that would

not have been observed if only fine-grained parallelism were

employed. Although it is unlikely that this effect is the

deciding factor affecting data quality in typical cases, it is

worth noting that the approach taken by DIALS avoids this

issue altogether by determining a smoothly varying refined

model in advance of any integration. As a result, the inte-

gration program is free to take advantage of parallel execution

without loss of fidelity compared with serial execution. This

could be employed to provide rapid data-quality feedback

utilizing massively parallel summation integration, without

compromising on the quality of the diffraction-geometry

model.

9.2. Scan-varying prediction

Spot prediction for all reflections using a scan-varying

model is more complex than for the case of a static crystal

model. The smoother model requires an observed centroid

value k along the image-number axis to produce the crystal

setting matrix Ak for use in prediction. Clearly, observed

centroids k exist only for those strong reflections found on the

images, not for those weak reflections that were not found, so

Ak cannot in general be produced for all reflections of interest.

For some reflection h observed at image number k, the setting

matrix in the laboratory frame is given by

RkAk ¼ RkUkU0Bk: ð27Þ

In (13), the position within the scan affects only R’, and r’
takes a circular path through reciprocal space from r’ = R’Ah.

In contrast, for the general scan-varying case, the vector

rk = RkAkh will follow a path that deviates from a circle by

changes in the effective rotation axis owing to variation in Uk

and changes in the lattice metric owing to variation in Bk.

Despite this complication, the path can be sampled at any

point k. Therefore, the path can also be approximated via a

series of linear transformations in steps that are small enough

that the linear approximation is appropriate. For example, the

transformation Tk combines the change in the crystal orien-

tation and lattice from one image to the next,

TkRkAk ¼ Rkþ1Akþ1

Tk ¼ Rkþ1Ukþ1U0Bkþ1ðRkUkU0BkÞ
�1: ð28Þ

All of the terms on the right of (28) are known, thus Tk can be

calculated. Tk can be applied to a reciprocal-lattice vector at

image number k to take it to its position at image number k + 1,

Tkrk ¼ rkþ1: ð29Þ

Some reciprocal-lattice points may cross the Ewald sphere

during the transformation, as shown in Fig. 6. This is easy to

determine: for each candidate reflection h, calculate rk, then

js0 þ rkj > js0j ) rk is outside the Ewald sphere: ð30Þ

If a reflection changes status (outside to inside or vice versa)

after application of the transformation Tk then it is predicted

to be present on image k. In fact, under the linear approx-

imation, the true path in reciprocal space has been approxi-

mated by the segment Dr = rk+1 � rk. The distance to the
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Ewald sphere from rk along this segment is found by solving

the following for �:

js0 þ rk þ �Drj ¼ js0j; where 0 < � < 1: ð31Þ

The predicted image centroid is then given by

Z ¼ kþ �: ð32Þ

The algorithm for scan-varying reflection prediction in

DIALS performs these steps for candidate reflections on each

image of the scan. For efficiency, it is important to preselect

the list of candidates to remove the great majority of reflec-

tions that are not likely to cross the Ewald sphere over the

range of that single image. A version of Reeke’s algorithm for

reflection-list generation (Sweet, 1986) is used to form a shell

of reciprocal-lattice points close to the Ewald sphere, within a

resolution-limiting sphere, for each image. Only these reflec-

tions are tested for passage across the Ewald sphere. The

version of Reeke’s algorithm within DIALS is based on that

included in MOSFLM, modified to take advantage of the

generalized vector geometry of the DIALS framework.

10. Error estimates for refined parameters

When any nonlinear least-squares algorithm is used to mini-

mize the target function, the errors on the refined parameters

may be estimated by the standard procedure of inverting the

normal matrix. As these parameters may not necessarily be

relevant outside of refinement, it is more useful to convert

these to error estimates of the model states (see Table 1 for

definitions). This is achieved by the usual procedure for error

propagation, as detailed in Appendix C, and for the crystal

model estimated standard deviations of the real space unit-cell

parameters may be derived.

While these error estimates must be validated by experi-

ment, it is technically difficult to obtain real data sets drawn

from a true population differing only by random noise. While

we could use synthetic data from a simulation procedure, such

as that described by Diederichs (2009), this does not neces-

sarily include all of the subtleties of the features observed in

real experimental data. In response to this we have devised a

procedure to create ‘semi-synthetic’ data sets, described as

follows.

30 low-dose data sets (i.e. a ‘large’ number) were recorded

sequentially on beamline I04 at Diamond Light Source with

identical data-collection parameters (1027 images per data set

from a Pilatus 6M detector with an image width of 0.15� and

1% beam transmission at a wavelength of 1.2 Å). Scaling all of

the data together indicated that radiation damage across the

30 sweeps was small; however, some systematic differences

between them remained owing to factors such as beam-

intensity variation.

The photon counts from these 30 ‘original’ sweeps were

then ‘reshuffled’ to create a population of 30 equivalent ‘new’

data sets (for convenience, to allow reuse of the image

headers) by considering every active pixel in the data set (i.e.

each of around six billion) independently using the following

procedure. Firstly, create a summed data set, which we call

‘total’:

Then create 30 ‘new’ data sets with every pixel set initially

to 0, and randomly redistribute each photon count from every

pixel of the ‘total’ set to the same pixel position in one of the

30 ‘new’ sets:

This process therefore divides individual photon measure-

ment events in the ‘total’ data set into 30 equivalent data sets,

each with approximately 1/30th of the counts, that differ only

by random shot noise and can be considered statistical repli-

cates truly drawn from a parent population. This procedure

is valid, as for photon-counting detectors each photon-

measurement process is independent. Systematic experi-

mental effects such as parallax shifts, detector sensitivity and

sample absorption remain, ensuring that these data sets give

relevant insight into the analysis process.

Spots were found in all of the reshuffled data sets using the

program dials.find_spots. The mean highest resolution of these

spots accepted for use in refinement across all data sets was

1.7 Å, with 95% of all spots used in refinement within 2.3 Å.

The first of these data sets was indexed by dials.index, which

identified a tetragonal lattice. We took this solution as a

starting point to index all 30 data sets, but with the lattice

symmetry now relaxed to produce a triclinic solution so that

we could investigate the errors on the unit-cell angles. This

procedure ensured that the same basis was used for each data

set. Global scan-static refinement was performed for each data

set using all available reflections and the default outlier-

rejection algorithm (the MCD method at the 97.5% quantile

threshold). Each refinement used a similar number of reflec-

tions and resulted in comparable final r.m.s.d.s, indicating a

high degree of similarity between the models at convergence.

For comparison, we then repeated the procedure from the
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Figure 6
The linear transformation Tk operating on a reciprocal-lattice point rk to
produce point rk+1. During the course of this transformation the point
crosses the Ewald sphere. The meanings of the symbols are retained from
Fig. 1.



point of indexing onwards but this time retaining the tetra-

gonal symmetry. The results are summarized in Table 2. For

each unit-cell parameter, the observed scatter of the refined

values across all 30 runs is comparable to the mean of the error

estimates from each run. It is therefore clear that the mean

error estimates are a reasonably good predictor of the

observed scatter across the replicate data sets. Indeed, for all

parameters the standard deviation of the 30 error estimates

(not shown) was less than 0.3% of the value of the error

estimates, so any one of the estimates from refinement of a

single data set is seen to be a fair estimate of the observed

scatter across data sets that differ in random noise.

Despite the predictive power of the error estimates

reported after refinement, these must be treated with care and

understood for what they are, which are predictions of the

variability of the model in the presence of purely random

errors and not a measure of the absolute correctness of that

model. Here, it can be seen that the error estimates for each of

the unit-cell angles in the triclinic runs are more than an order

of magnitude smaller than the discrepancy between the

refined values of these angles and the expected value of 90�

considering the known tetragonal lattice. In this case, over-

parameterization of the crystal allowed the refinement to fit a

model with a high reported precision, but inaccurate on the

scale of that precision. Despite this overfitting, the r.m.s.d.s

from the triclinic refinements are similar to those from the

tetragonal refinements, indicating that either case provides a

good model to predict the location of spots throughout the

scan. For the tetragonal case, the error estimates on the a and

b parameters are correctly equal, and the error estimate of the

angle parameters is correctly zero. At no point during the

error-propagation procedure presented in Appendix C are the

symmetry constraints explicitly enforced, but these are carried

through implicitly by use of the correct derivatives.

11. Conclusions

A comprehensive description of diffraction-geometry refine-

ment within the DIALS framework has been given and the

tools made available within the command-line program

dials.refine. This program builds upon a simple but general

model for the prediction of reflection central impacts and

minimization of a least-squares residual by providing flexible

parameterization, choices of minimization algorithm and

outlier-rejection method, global scan-varying refinement of

the crystal and joint refinement of multiple experiments.

Examples of these advanced features have been shown, as well

as an analysis of the propagation of errors using a novel

method for drawing statistical replicate data sets from real

experimental data. The design of the software is explicitly

intended to facilitate extensibility and modification, and to

provide a solid platform from which future research into

advanced methods of diffraction-geometry modelling may be

performed.

APPENDIX A
First derivatives of the prediction formula

A1. Derivatives of the rotation angle

Whereas the vector v from (5) provides a way to express the

X and Y coordinates as a function of a parameterized model,

there is no equivalent expression for the rotation angle ’
immediately available. Following Bricogne (1987), such an

expression is obtained using the implicit function theorem,

which states that if there is a continuous function G(’, p) = c,

where c is a constant, then the function ’(p) has derivatives

with respect to some abstract parameter p given by (@/@p)’(p)

= �(@G/@p)/(@G/@’).

Here, the continuous function G is the diffraction condition,

which is equivalent to

s1 � s1 ¼ s0 � s0;

r’ � r’ þ 2r’ � s0 ¼ 0: ð33Þ

Changes to a parameter p imply changes to the rotation angle

’ to keep the reciprocal-lattice point in the diffracting posi-

tion. Thus,

@’

@p
¼ �

@

@p
ðr’ � r’ þ 2r’ � s0Þ

@

@’
ðr’ � r’ þ 2r’ � s0Þ

: ð34Þ

As neither the interplanar spacing nor the direction of the

beam vector are affected by rotation of the crystal, then

(@/@’)(r’ � r’) = 0 and @s0/@’ = 0. Now consider @r’/@’.

Referring to (9), this can be shown to be as follows,

@r’
@’
¼ ½ðr0 � êeÞêe� r0� sin ’þ ðêe� r0Þ cos ’; ð35Þ

but noting that the triple product

êe� ðêe� r0Þ ¼ ½ðr0 � êeÞêe� r0� ð36Þ

it is seen that
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Table 2
Results from 30 refinement runs over replicate data sets are shown first
with triclinic and then with tetragonal symmetry constraints.

The mean value of each of the refined unit-cell parameters is shown along with
its standard deviation, which can be compared with the mean of the estimated
standard deviations reported for each refinement run.

Triclinic Tetragonal

Minimum Maximum Minimum Maximum

No. of reflections 83632 84265 83911 84484
R.m.s.d. in X (pixels) 0.231 0.233 0.235 0.238
R.m.s.d. in Y (pixels) 0.195 0.197 0.201 0.203
R.m.s.d. in ’ (images) 0.147 0.149 0.150 0.152

Triclinic Tetragonal

Mean
value

Sample
s.d.

Mean
e.s.d.

Mean
value

Sample
s.d.

Mean
e.s.d.

a (Å) 121.44796 0.00069 0.00081 121.48944 0.00091 0.00062
b (Å) 121.46668 0.00068 0.00065 121.48944 0.00091 0.00062
c (Å) 56.99998 0.00036 0.00040 57.01478 0.00048 0.00036
� (�) 89.98317 0.00020 0.00022 90 0 0
� (�) 90.00865 0.00020 0.00020 90 0 0
� (�) 89.99427 0.00015 0.00020 90 0 0



@r’
@’
¼ êe� êe� r0ð Þ sin ’þ êe� r0ð Þ cos ’

¼ êe� r’: ð37Þ

Putting this into (34) and simplifying gives

@’

@p
¼ �

r’ �
@r’
@p
þ s0 �

@r’
@p
þ r’ �

@s0

@p

ðêe� r’Þ � s0

¼ �

@r’
@p
� s1 þ r’ �

@s0

@p

ðêe� r’Þ � s0

: ð38Þ

From (8), at any fixed ’

@r’
@p
¼ R’

@r0

@p
; ð39Þ

therefore

@’

@p
¼ �

R’

@r0

@p
� s1 þ r’ �

@s0

@p

ðêe� r’Þ � s0

: ð40Þ

This equation factors the calculation of derivatives of the

rotation angle into independent parameterizations. The term

@s0/@p refers to the beam parameterization, while @r0/@p refers

to the crystal parameterization. The latter can be expanded

further as

r0 ¼ UU0Bh; ð41Þ

where U0 is the datum crystal orientation matrix determined

at the moment when the crystal orientation parameters are

defined and UU0 is the crystal orientation including all

‘misset’ angles determined after some steps of refinement have

occurred. Hence,

@r0

@p
¼

@U

@p
U0BþUU0

@B

@p

� �
h; ð42Þ

where @U/@p refers to the crystal orientation parameterization

and @B/@p refers to the crystal unit-cell parameterization.

A2. Derivatives of positions in detector space

From (7), the partial derivatives with respect to an abstract

parameter p are constructed by the quotient rule,

@X

@p
¼

w
@u

@p
� u

@w

@p

w2
;

@Y

@p
¼

w
@v

@p
� v

@w

@p

w2
: ð43Þ

From (5), the partial derivatives @u/@p, @v/@p and @w/@p are

elements of

@v

@p
¼
@

@p
ðDs1Þ

¼
@D

@p
s1 þD

@s1

@p

¼ �D
@d

@p
Ds1 þD

@s1

@p
; ð44Þ

where the standard formula for the derivative of an inverse

matrix was used, @M�1/@t = �M�1(@M/@t)M�1, but as v = Ds1

and s1 = r’(p)s0 this can also be written as

@v

@p
¼ �D

@d

@p
vþD

@r’ðpÞ
@p
þ
@s0

@p

� �
: ð45Þ

Here, we are careful in the notation to make explicit the fact

that the rotation angle ’ is a function of the parameters p

necessary to satisfy the Bragg condition. In xA1 the partial

derivatives at a particular value of ’ were being evaluated. In

contrast, here the partial derivatives at the central impact

(X, Y) are required and it cannot be assumed that ’ is fixed.

Rather, the impact (X, Y) has an indirect dependence on ’
caused by the diffraction condition, which constrains r’(p) to

lie on the Ewald sphere. (39) does not apply here. Instead, we

proceed by considering r’(p) as a composition of functions.

Starting with (8), it is seen that r0 is a function of the crystal

parameters and that R’ is a function of the rotation angle ’,

which is itself a function of beam and crystal parameters. In

this situation a multivariable chain rule is used to differentiate

r’(p) with respect to some variable p,

@r’ðpÞ
@p
¼
@r’ðpÞ
@’

@’

@p
þ
@r’ðpÞ
@r0

@r0

@p
;

@r’ðpÞ
@p
¼ êe� r’ðpÞ
� � @’

@p
þ R’

@r0

@p
: ð46Þ

For those parameters p for which the gradient @’/@p (calcu-

lated in equation 40) is nonzero (i.e. beam and crystal para-

meters), this expression modifies (39) to encode the constraint

that the only changes to r’(p) allowed by the reflection-

prediction equation are those that leave the vector on the

surface of the Ewald sphere. Incorporating (46) into (45) gives

dv

dp
¼ �D

@d

@p
vþD êe� r’ðpÞ

� � @’
@p
þ R’

@r0

@p
þ
@s0

@p

� 	
: ð47Þ

This equation decomposes the calculation of derivatives into

separate, independent parameterizations of the model. The

@d/@p term refers to the detector parameterization, while the

@r0/@p and @s0/@p terms refer to the crystal and beam para-

meterizations, respectively. As before, the crystal para-

meterization is expanded further by (42).

APPENDIX B
First derivatives of model states

B1. Beam parameterization

The composition of a new beam model state from its

parameters is given by (11). The first derivatives of the state

with respect to its parameters are
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@s0

@�1

¼ �R�2

@R�1

@�1

ŝs00; ð48Þ

@s0

@�2

¼ �
@R�2

@�2

R�1
ŝs00; ð49Þ

@s0

@�
¼ R�2

R�1
ŝs00: ð50Þ

Calculation of @R�1
=@�1 and @R�2

=@�2 may proceed using

the matrix form of Rodrigues’ rotation formula,

R’ ¼ Iþ sin ’Eþ ð1� cos ’ÞE2; ð51Þ

where E is the skew-symmetric cross-product matrix,

E ¼

0 �e3 e2

e3 0 �e1

�e2 e1 0

0
@

1
A; ð52Þ

and ei are elements of êe, the axis of rotation,

@R’

@’
¼ cos ’Eþ sin ’E2;

@R’

@’
¼ cos ’

0 �e3 e2

e3 0 �e1

�e2 e1 0

0
B@

1
CA

þ sin ’

e2
1 � 1 e1e2 e1e3

e1e2 e2
2 � 1 e2e3

e1e3 e2e3 e2
3 � 1

0
B@

1
CA: ð53Þ

B2. Crystal orientation parameterization

The crystal orientation matrix is separated into the product

of a variable misset matrix (see equation 12) and a fixed datum

orientation,

U ¼ UU0 ¼ R’3
R’2

R’1
U0: ð54Þ

The first derivatives are

@U

@’1

¼ R’3
R’2

@R’1

@’1

; ð55Þ

@U

@’2

¼ R’3

@R’2

@’2

R’1
; ð56Þ

@U

@’3

¼
@R’3

@’3

R’2
R’1

: ð57Þ

Expansion of the rotation-matrix derivatives follows (53).

B3. Crystal unit-cell parameterization

The crystal unit-cell parameterization relies on code already

in cctbx under the rstbx package to calculate the derivatives of

the model state B with respect to the free elements g�ij of the

reciprocal metric matrix, G*, where

G� ¼

a� � a� a� � b� a� � c�

a� � b? b� � b� b� � c�

a� � c� b� � c� c� � c�

0
@

1
A: ð58Þ

B4. Detector parameterization

The detector state matrix d is split into vectors d̂dx, d̂dy and d0

for the purposes of calculating derivatives (see equation 2).

The detector-frame basis vectors are not affected by the

translational parameters, therefore

@d̂dx

@p0

¼
@d̂dx

@t1

¼
@d̂dx

@t2

¼ ð 0 0 0 Þ>; ð59Þ

@d̂dy

@p0

¼
@d̂dy

@t1

¼
@d̂dy

@t2

¼ ð 0 0 0 Þ>; ð60Þ

@d̂dn

@p0

¼
@d̂dn

@t1

¼
@d̂dn

@t2

¼ ð 0 0 0 Þ>: ð61Þ

Starting from (14), derivatives of the in-plane detector basis

vectors with respect to the orientational parameters are

calculated

@d̂dx

@�1

¼ R�3
R�2

@R̂R�1

@�1

d̂d0x; ð62Þ

@d̂dx

@�2

¼ R�3

@R̂R�2

@�2

R�1
d̂d0x; ð63Þ

@d̂dx

@�3

¼
@R̂R�3

@�3

R�2
R�1

d̂d0x; ð64Þ

@d̂dy

@�1

¼ R�3
R�2

@R̂R�1

@�1

d̂d0y; ð65Þ

@d̂dy

@�2

¼ R�3

@R̂R�2

@�2

R�1
d̂d0y; ð66Þ

@d̂dy

@�3

¼
@R̂R�3

@�3

R�2
R�1

d̂d0y: ð67Þ

Further expansion follows (53). Using these results, deriva-

tives for the detector normal direction are calculated, thus

completing derivatives of the basis set

@d̂dn

@�1

¼
@d̂dx

@�1

� d̂dy þ d̂dx �
@d̂dy

@�1

; ð68Þ

@d̂dn

@�2

¼
@d̂dx

@�2

� d̂dy þ d̂dx �
@d̂dy

@�2

; ð69Þ

@d̂dn

@�3

¼
@d̂dx

@�3

� d̂dy þ d̂dx �
@d̂dy

@�3

: ð70Þ
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Composition of the detector origin from new parameter

values concludes with (23). The derivatives of this with respect

to the translational parameters are

@d0

@p0

¼ R�3
R�2

R�1
d̂d0n � R�3

R�2
d̂d0n þ d̂d0n; ð71Þ

@d0

@t1

¼ R�3
R�2

R�1
d̂d0x; ð72Þ

@d0

@t2

¼ R�3
R�2

R�1
d̂d0y: ð73Þ

The derivatives with respect to orientational parameters are

@d0

@�1

¼ R�3
R�2

@R�1

@�1

p1 þ
@d̂dx

@�1





 @d̂dy

@�1





 @d̂dn

@�1

 !
x; ð74Þ

@d0

@�2

¼ R�3

@R�2

@�2

R�1
p1 � R�3

@R�2

@�2

p0 þ
@d̂dx

@�2





 @d̂dy

@�2





 @d̂dn

@�2

 !
x; ð75Þ

@d0

@�3

¼
@R�3

@�3

R�2
R�1

p1 �
@R�3

@�3

R�2
p0 þ

@d̂dx

@�3





 @d̂dy

@�3





 @d̂dn

@�3

 !
x: ð76Þ

Combining (59), (60), (62)–(67) and (71)–(76) gives the

derivatives of d with respect to its parameters.

APPENDIX C
Error propagation

Nonlinear least-squares minimization algorithms provide an

estimated covariance matrix between all parameters, Vp, as the

inverted normal matrix from the final step of refinement. We

are interested in converting this into errors in terms of the

elements of the vector or matrix models for the beam, crystal

and detector. We start by selecting only the rows and columns

of Vp corresponding to parameters of the particular model of

interest. For illustration here the model for the crystal unit cell

is used with state B, but the working is equivalent for any of

the models. The covariance matrix of parameters of the unit-

cell model is here denoted VpB
and we wish to propagate

errors to the elements of B. The standard first-order approx-

imation is used to do so (Arras, 1998), but the model state B,

which is a matrix rather than a vector, is first ‘flattened’ to

choose the order of rows and columns in VpB
. Any ordering of

elements could be used to do this, but we use row-major order.

The covariance matrix of elements of B is then given by

VB ¼ JpB
VpB

J>pB
; ð77Þ

where JpB
is the Jacobian with elements @Bi/@pj, which are

elements of the derivatives of the model state with respect to

its parameterization. The variances of elements of B can then

be obtained by taking the diagonal of VB and reversing the

row-major order flattening operation.

This procedure is sufficient for reporting errors in models in

terms of their model state elements rather than the particular

parameterizations that were chosen in refinement. However,

for the example we have chosen, unit-cell parameterization,

we prefer to propagate errors further so that we can report

standard deviations in terms of the real-space unit-cell para-

meters.

C1. Unit-cell parameters

(77) provides VB, the covariances between elements of B.

Recognizing that B consists of the reciprocal-lattice vectors a*,

b* and c*, quantities related to the reciprocal lattice can easily

be derived, such as the variances of the reciprocal unit-cell

dimensions, 	2
a� , 	

2
b� and 	2

c� . However, it is more convenient

for the user if estimated errors are expressed in terms of the

real-space cell. This requires further steps of error propaga-

tion, starting with the conversion between B, the reciprocal-

space orthogonalization matrix, and O, the real-space ortho-

gonalization matrix:

O ¼ ðB>Þ�1

¼

a1 b1 c1

a2 b2 c2

a3 b3 c3

0
B@

1
CA: ð78Þ

Propagation of errors must therefore go through a transpose

and a matrix inverse operation. The first of these is merely a

permutation of elements,

VB> ¼ PVBP; ð79Þ

where, for the choice of flattening by row-major ordering,

P ¼

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð80Þ

Accounting for the matrix inverse operation is more

involved. For this, the method of Lefebvre et al. (2000) is used.

The elements of VO, the covariance matrix of elements of O

written out in row-major order, are calculated according to

this formula, where element indices are shown inside square

brackets,

VO½3ð�� 1Þ þ �; 3ða� 1Þ þ b�

¼
P3

i¼1

P3

j¼1

P3

k¼1

P3

l¼1

O½�; i�O½j; ��O½a; k�O½l; b�

� VB> ½3ði� 1Þ þ j; 3ðk� 1Þ þ l�;

ð81Þ

and index values are chosen from �, �, a, b 2 {1, 2, 3}. Having

obtained VO, the final steps of error propagation are

performed to derive variances of each of the real-space unit-

cell parameters. For each parameter consider the function that

converts the elements of O into the value of that parameter.

For the unit-cell length a this function is simply
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a ¼ ða2
1 þ a2

2 þ a2
3Þ

1=2: ð82Þ

The Jacobian of this function is a 1 � 9 matrix,

Ja ¼
@a

@a1

@a

@b1

@a

@c1

@a

@a2

@a

@b2

@a

@c2

@a

@a3

@a

@b3

@a

@c3

� �
;

Ja ¼
a1

a
0 0

a2

a
0 0

a3

a
0 0

� �
: ð83Þ

which is used to calculate the variance in a by

	2
a ¼ JaVOJ>a : ð84Þ

The calculations for the other lengths, b and c, follow by

analogy, with

Jb ¼ 0
b1

b
0 0

b2

b
0 0

b3

b
0

� �
; ð85Þ

Jc ¼ 0 0
c1

c
0 0

c2

c
0 0

c3

c

� �
: ð86Þ

For the unit-cell angle � the following function is used:

� ¼ arccos
b � c

bc

� �
;

� ¼ arccos
b1c1 þ b2c2 þ b3c3

ðb2
1 þ b2

2 þ b2
3Þ

1=2
ðc2

1 þ c2
2 þ c2

3Þ
1=2

" #
: ð87Þ

The derivatives of � with respect to elements ai, bi and ci are

given by

@�

@ai

¼ 0;

@�

@bi

¼
bi cos�

b2 sin �
�

ci

bc sin �
;

@�

@ci

¼
ci cos �

c2 sin �
�

ci

bc sin �
: ð88Þ

These formulae are used to construct J�and hence calculate 	�
2

from

	2
� ¼ J�VOJ>� : ð89Þ

The calculations for 	�
2 and 	�

2 follow equivalently.

C2. Simulation results

The procedure presented in xC1 to propagate errors from

VB to errors in the real-space unit-cell parameters can easily

be tested against simulation. As an example, we took B and VB

after refinement for one of the 30 data sets presented in x10 for

the case where the lattice was treated as triclinic. We then used

the rmnorm function from the lmf package (Engen et al., 2012)

for the R language to generate one million matrices such that

the matrix elements were normally distributed around the

elements of B with covariances described by VB. For each trial

Bi the real-space unit-cell parameters were calculated

according to (78), (82) and (87) etc. We then compared the

sample standard deviation of the one million sets of unit-cell

parameters with the estimated standard deviation resulting

from the error-propagation procedure. For each parameter the

difference between the estimated standard deviation from

error propagation and the observed sample standard deviation

from simulation was within 0.1%, thus demonstrating that the

procedure works as expected when the data are normally

distributed.
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