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hydrogen. The mass fallback rate from weakly plunging encounters can
be super-Eddington and hydrogen-dominated. In more deeply plunging
encounters, there is a transition between envelope-fed fallback and core-
fed fallback that depends on β. . . . . . . . . . . . . . . . . . . . . . . 38

ix



2.11 Peak mass fallback rate versus time of peak for a 0.6 M� non-He WD, a
0.17 M� He WD, a 0.6 M� MS star, a 50 MJup brown dwarf, a 1 MJup

planet, and a 1.4 M� red giant at RG1 (≈ 10 R�). Encounters are
colored by BH mass. Dotted lines show where Ṁpeak×tpeak = 0.1 M� and
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and the lightest shading containing 2σ. . . . . . . . . . . . . . . . . . . 70

3.4 Left panels, top to bottom: redshift, bulge g − r, and half-light surface
brightness vs. BH mass for TDE host galaxies (numbered points) and
our reference catalog (contours). Galaxies 1-5 are used in our match-
ing analysis. BH masses for 8, 9, and 10 are determined via M?,bulge.
Contours are spaced by 0.5σ, with the darkest shading containing 0.5σ
and the lightest shading containing 2σ. Median errors in the TDE host
galaxy measurements are shown in the top left. Right panels: 1D distri-
butions in these properties in different subsamples, matched on BH mass
of TDE hosts 1-5. From top to bottom in each panel, the subsamples
are: TDE host galaxies (1-5 in red, showing both smoothed and actual
distributions, and 1-10 in dotted black), our reference catalog (black),
the strong F16 selection (orange), weak F16 selection (light blue), AGN
(green), and low-S/N AGN (purple). In the bottom-right panel, we show
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3.5 Top-left panel: galaxy Sérsic index vs. BH mass for TDE host galaxies
and our reference catalog. We use TDE hosts 1-5 in our matching anal-
ysis. BH masses for TDE hosts 8, 9, and 10 are determined via M?,bulge.
Contours are spaced by 0.5σ, with the darkest shading containing 0.5σ
and the lightest shading containing 2σ. Average errors in the TDE host
galaxy measurements are shown in the top left. The region above the
light green line contains ∼2% of our reference catalog galaxies but 5/5
(or 6/10) of our TDE host galaxies. Top-right panel: galaxy Sérsic index
distribution in different subsamples, matched on BH mass of TDE hosts
1-5. 1D histograms are smoothed and normalized to equal area. Un-
smoothed 1D histograms are also shown for TDE hosts 1-5 in solid red
and for TDE hosts 1-10 in dotted black. Bottom panels: g-band bulge-
to-total-light ratio (bulge fraction); similar description to that above.
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3.6 Left panel: galaxy asymmetry indicators in the g and r bands for TDE
host galaxies and our reference catalog. Middle panel: asymmetry indi-
cator in the g band vs. BH mass. The r band is similar. BH masses for
TDE hosts 8, 9, and 10 are determined via M?,bulge. Contours are spaced
by 0.5σ, with the darkest shading containing 0.5σ and the lightest shad-
ing containing 2σ. Average errors in the TDE host galaxy measurements
are shown in the top left (asymmetry indicators do not have associated
errors in our catalog). Right panel: asymmetry indicator distribution in
the g band in different subsamples, matched on BH mass of TDE hosts
1-5. The r band is similar. 1D histograms are smoothed (we also show
the true histogram for the TDE hosts 1-5 in red and 1-10 in dotted black)
and normalized to equal area. . . . . . . . . . . . . . . . . . . . . . . . 94

3.7 Top panels: SDSS gri images of TDE host galaxies 1-5. Bottom panels:
for each TDE host galaxy, a randomly selected galaxy matched in BH
mass and redshift to the TDE host galaxy, but with a galaxy Sérsic index,
bulge g − r, and half-light surface brightness very close to the median
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The galaxy Sérsic index of each galaxy is listed in the top right of each
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3.8 Left panel: total star formation rate vs. total stellar mass for our ref-
erence catalog and TDE host galaxies 1-8. Color corresponds to galaxy
Sérsic index, ranging from 0.5 (blue) to 8 (red); for the reference cata-
log galaxies, this is the mean within each hexagonal bin. Right panel:
normalized histograms of galaxy Sérsic index for our reference catalog
(dashed black), galaxies between the SFMS and 0.5 dex below the SFMS
(band 1; blue), galaxies between the SFMS − 0.5 dex and the SFMS
− 1.0 dex (band 2; green), and galaxies in the sF16 selection (orange).
Sérsic indices of our TDE hosts are indicated by the red vertical lines.
Here, we restrict all samples to log(M?,tot/M�) < 10.5 to roughly match
the range of TDE host galaxy values. . . . . . . . . . . . . . . . . . . . 102

3.9 Left panels, top to bottom: Dn(4000), g-band galaxy absolute magnitude,
and g-band bulge absolute magnitude vs. BH mass for TDE host galaxies
and our reference catalog. For galaxy and bulge magnitudes, the results
are similar for the r-band. BH masses for TDE hosts 8, 9, and 10 are
determined via M?,bulge. Contours are spaced by 0.5σ, with the darkest
shading containing 0.5σ and the lightest shading containing 2σ. Average
errors in the TDE host galaxy measurements are shown in the top or
bottom left. Right panels: 1D distributions of these properties in different
subsamples, matched on BH mass of TDE hosts 1-5. All 1D distributions
are smoothed and normalized to equal area. Unsmoothed 1D histogram
for TDE hosts 1-5 is shown in solid red, and for TDE hosts 1-10 in dotted
black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.10 Same description as in Figure 3.9, but galaxy g − r in the top panel and
inclination (face-on is 0◦, maximum of 85◦) in the bottom panel. . . . . 106

3.11 Correlations between many of the properties explored in this paper for
our reference catalog of ∼500,000 galaxies. From left to right along the
bottom row, the properties are BH mass, total stellar mass, total star
formation rate (in M� yr−1), redshift, g-band half-light surface brightness
(in mag/arcsec2), bulge g−r, galaxy Sérsic index (ng), and g-band bulge-
to-total-light ratio (B/T )g. Each panel contains 95% of the points. . . 109

4.1 The geometry of the disrupted star and how it can be used to calcu-
late dM/dE. The orange slice represents an equal orbital binding energy
surface, which can be approximated as an equal fallback time surface.
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(R?/rt) = q1/3 � 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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4.2 The rate of fallback of stellar debris to pericenter as a function of time
from the disruption of a 1M� star calculated using the analytic framework
used in this work (thick dark blue line), which assumes a full disruption,
compared to those calculated by Guillochon & Ramirez-Ruiz (2013a) us-
ing hydrodynamical calculations for different β values (thin colored lines).
Both calculations use Mbh = 106M� and a star that is constructed as a
self-gravitating, spherically symmetric, polytropic fluid with γ = 5/3. . 118

4.3 Compositional abundance as a function of enclosed mass in a 1M� star
at three different evolutionary stages during its MS lifetime. In this
paper, we characterize evolutionary stages by fH, the fraction of central
hydrogen that has been burned. Here we show the stellar profiles for
fH = 0.0 = fZAMS (dotted), fH = 0.60 (dashed), and fH = 0.99 (solid),
respectively. A 1M� star disrupted at later stages in its evolution should
reveal abundance anomalies: an increase in nitrogen and depletion of
oxygen, as previously argued by Kochanek (2016a). . . . . . . . . . . . . 122

4.4 Density profiles for a 1M� star at different times along its MS evolution.
The red line corresponds to ZAMS with a central density of 81 g cm−3

and the pink line corresponds to a central hydrogen fraction of 10−3 with
a central density of 500 g cm−3. These different density profiles result in
different rt and thus exhibit different vulnerability to disruption. . . . . 124

4.5 In both panels, the color scale shows the tidal radius of the disrupted
star. Left panel: Plotted are the ratio of the star’s tidal radius to the
tidal radius of that same star at ZAMS (fH = 0.0 = fZAMS). This shows
that the star’s vulnerability to disruption increases with age. This effect
is stronger for more massive stars. Right panel: Plotted are the ratio of
the tidal radius to rt,burn. Here rt,burn is defined as the tidal radius of the
star’s core undergoing active nuclear burning, where the specific power
from nuclear reactions is greater than 1 erg g−1s−1. This shows that all
of the stars in our study require deeper encounters to strip mass from
their burning regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Mass fallback rates for elements that make up 99.6% of the mass of a 1M�
tidally disrupted star at two different evolutionary stages. The star aged
nearly 5 Gyr from the dotted lines (fH = 0.0 = fZAMS) to the solid lines
(fH = 0.60). Ṁ for the total mass of the star is shown by the gray curves.
All curves are normalized to Ṁpeak and tpeak for the corresponding ZAMS
star. The main changes in fallback rates as the star evolves along the MS
are an increase in nitrogen and a decrease in carbon after tpeak due to
CNO activity in the core. . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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4.7 The fallback rate for different elements, ṀX, following the disruption of a
1M� star at three different evolutionary stages. The left and center panels
correspond to the dotted and solid lines shown in Figure 4.6, respectively.
The right panel shows Ṁ for the same star but at fH = 0.99, which
corresponds to an age of 8.3 Gyr. Time is in units of tpeak. As the star
ages we see an increase in nitrogen and a decrease in carbon abundance
but only after tpeak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8 Elemental abundance of the fallback material relative to solar following
the disruption of a 1M� at two different evolutionary stages: fH = 0.60
(left panel) and TAMS (right panel). A rapid evolution of 14N and 12C
abundance relative to the other elements is clearly seen. The solar ratios
clearly illustrate the significance of the variations in the abundances of
16O, 4He, and 20Ne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.9 The relative abundance of stellar debris as a function of fallback time
arising from the disruption of 0.8M� (top row), 2.0M� (middle row) and
3.0M� (bottom row) stars at three different evolutionary stages (fH =
0.3, 0.6 and 0.99). The change in abundance relative to solar is observed
to increase with mass and age but only after tpeak. These anomalies
appear at earlier times for higher mass stars. . . . . . . . . . . . . . . . 132

4.10 Elemental abundances relative to solar at the time the mass fallback
rate has reached one tenth of its peak value, t0.1 > tpeak, for all of the
stellar masses and ages in our sample. Elements of interest are 12C, 4He,
14N and 16O. Values are shown as a function of the star’s fractional main
sequence lifetime and stellar mass. We find carbon abundances to be more
indicative of stellar mass for M? . 1.5M�, while helium abundances are
correlated with stellar age for all masses. (X/X�)14N & 5.0 occurs only
for masses greater than 1.5M� and develops early in the star’s evolution.
We also find oxygen abundances to be primarily stellar mass dependent. 133

4.11 Same as Figure 4.10 but presented with stellar age in years (x-axis). The
white regions correspond to pre-MS (left) or post-MS (right). . . . . . . 134
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4.12 Fallback abundance at t0.1 of 4He, 12C, 14N, and 16O (clockwise from
top left) for the disruption (by a Mbh = 106M� SMBH) of 0.8M�, 1M�,
1.2M�, 1.4M�, 2.0M�, and 3.0M� stars along their MS evolution. Abun-
dances are at t0.1, but points are placed at Ṁpeak and tpeak for the dis-
ruption of each star. Abundances are quoted relative to solar. Points are
roughly equally spaced in time for each mass, with the top-left-most point
being ZAMS and the bottom-right-most point being TAMS. (This is not
strictly true for the ZAMS point of the 1M�, 1.2M�, and 1.4M� stars
as their radius slightly decreases at the very beginning of their MESA
evolution, but all other points for these stars proceed left to right with
age as the star subsequently evolves.) . . . . . . . . . . . . . . . . . . . 138

4.13 The ratio of tburn to tpeak as a function of fH and stellar mass. Here
tburn is the time when non-solar abundance ratios begin to appear in the
fallback material, specifically when the abundance of 12C and 14N deviate
from solar. We have explicitly excluded fH . 0.05 from this plot, given
that these stars experience some mild contraction early in their MESA
evolution. The ratio (tburn/tpeak) reaches a maximum (minimum) value
of 7.6 (1.15) for a 0.8M� (3M�) star at fH = 0.05 (fH = 0.23). . . . . . 142

4.14 Compositional features in the spectra of well-sampled tidal disruption
events with existing spectroscopic observations. The y- and x-axes show
luminosity and time relative to peak respectively, with different colors
corresponding to distinct events, and different symbols corresponding to
different spectral features. We show the minimum values of tburn/tpeak

(Figure 4.13) as derived from our study for a 1M� (dashed line) and 3M�
(dash-dotted line) star. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1 MESA density profiles for a 1M� star (top panels) and 3M� star (bottom
panels) along their main sequence lifetimes. X is the central hydrogen
mass fraction. Left panels: density vs. radius. Right panels: normal-
ized to central density and stellar radius. Dashed and dotted lines show
profiles for γ = 4/3 and γ = 5/3 polytropes respectively. . . . . . . . . 151

5.2 2D slices in the orbital plane of a β = 2 encounter with a 106M� BH
for a 1M� star at ZAMS, middle-age, and TAMS, at ≈ 3 tdyn after
pericenter. Color corresponds to density and contours are equally spaced
in the logarithm of the density (at ρ = 1, 10−1, 10−2 g/cm3). Videos of
the simulations are available at this URL. . . . . . . . . . . . . . . . . . 153
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5.3 Panels (a), (b), (c): mass fallback rate to the BH as a function of time for
the disruption of a 1M� star at three different ages and impact param-
eters by a 106M� BH. Panels are grouped by impact parameter β. The
result for a γ = 4/3 polytrope from Guillochon & Ramirez-Ruiz (2013a),
scaled to the radius of the ZAMS Sun, is in dotted black. The Eddington
limit for this BH, assuming a radiative efficiency of ε = 0.1 and an elec-
tron scattering opacity of κ = 0.34 cm2 g−1, is shown by the dot-dashed
line. Panel (d): mass fallback rate for full disruptions of a 1M� star and
3M� star at ZAMS and TAMS. . . . . . . . . . . . . . . . . . . . . . . 156

5.4 2D slices in the orbital plane of the mass fractions of helium and carbon
for a β = 4 disruption of a TAMS 1M� and 3M� star, at the start of
the simulation and at ≈ 1 tdyn after pericenter. Color corresponds to
the mass fraction of the element, with yellow being higher. The panels
are normalized separately. The right panels in each group of four have a
density cut of 10−4 g/cm3. . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.5 Composition (relative to solar) of the fallback material to pericenter as a
function of time (relative to the peak of the mass fallback rate). The pan-
els from left to right show full disruptions of a middle-age Sun, a TAMS
Sun, and a TAMS 3M� star. Solid lines are hydrodynamic simulation
results and dashed lines are analytic results from Gallegos-Garcia et al.
(2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.1 Specific binding energy distribution, dM/de, and resulting mass fallback
rate to the BH, dM/dt, for a 0.3M� ZAMS star constructed in MESA in a
β = 0.9 encounter with a 106M� BH; this is a full disruption. The finely
binned hydrodynamical grid data is shown in red and the B-spline fit
(this work) in black. The x- and y-axis of the dM/de plot are normalized
to the characteristic spread in binding energy, ∆e (see text). The dM/dt
plot also compares to a γ = 5/3 polytropic simulation for this β from
Guillochon & Ramirez-Ruiz (2013a), scaled to the same mass and radius
as this star, in blue. It is expected to match quite closely as the stellar
structure of a 0.3M� ZAMS star is well approximated by a γ = 5/3
polytrope (see Figure 6.17). . . . . . . . . . . . . . . . . . . . . . . . . 179
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6.2 Stellar structure, parameterized by the ratio of central density to average
density. Top: as a function of stellar mass and stellar age for MS stars,
based on finely-spaced MESA grid. x-axis is log scale. y-axis is linear
scale on left panel and log scale on right panel and its maximum is 13.8
Gyr. Dotted line corresponds to γ ≈ 5/3 polytrope (ρc/ρ̄ = 5.8, from a
ZAMS 0.3 M� star) and dashed line corresponds to γ ≈ 4/3 polytrope
(ρc/ρ̄ = 73, from a ZAMS 3 M� star). Black circles are stars for which we
have done tidal disruption simulations in FLASH (note we run multiple
β’s for each star). Bottom: density profiles for MS stars, normalized to
central density and stellar radius. Left panel is stars we have disrupted in
FLASH (numbers in legend are ρc/ρ̄) and right panel is based on finely-
spaced MESA grid. Dotted and dashed lines are γ = 5/3 and γ = 4/3
polytropes respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.3 Volume rendering of a 1M� ZAMS star at t− tp ≈ 3tdyn in a β = 1 en-
counter with a 106M� BH. Color corresponds to density, and the colorbar
and transfer function are chosen to qualitatively highlight the stratified
density structure of the debris. Videos of the simulations are available at
https://www.youtube.com/channel/UCShahcfGrj5dOZTTrOEqSOA. . . 184

6.4 2D density slices of a few different simulations. The axes of this plot
grid are central concentration (ρc/ρ̄) vs. impact parameter (β/βc). Each
row is a different star and each panel is a different impact parameter. β
increases from left to right and ρc/ρ̄ increases from top to bottom. Color
is the logarithm of density and is normalized to the initial central density
of the star, extending to 10−8 of this value. Each panel has width 10R?.
All panels are at t− tp ≈ 2tdyn. White contours correspond to densities
of 1, 10−1, and 10−2 g/cm3. . . . . . . . . . . . . . . . . . . . . . . . . 186

6.5 Top left: fractional mass lost ∆M/M? vs. impact parameter β. Top right:
x-axis is normalized to the critical impact parameter for each star (see
Table 6.2). Bottom left: x-axis is scaled with a structural parameter,
α = (ρc/ρ̄)−1/3 (see text). Bottom right: linear y-axis. Results from
Guillochon & Ramirez-Ruiz (2013a) for a γ = 5/3 and γ = 4/3 polytrope
are shown by the dotted and dashed lines respectively. . . . . . . . . . 187

6.6 Critical impact parameter for full disruption βcrit vs. ratio of stellar
central density to average density ρc/ρ̄. Triangle markers indicate lower
limits and open circles indicate extrapolation. Simple fits in red and
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6.7 Mass fallback rate dM/dt to the BH as a function of time for all of our
simulations. Each panel is a different star (stellar mass and stellar age,
labeled in top left). Colors correspond to different impact parameters β. 193
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6.8 Mass fallback rate to the BH as a function of time for all of our simu-
lations. Left panels: raw; right panels: normalized to peak. Top: only
M? = 1M�, all β’s, 3 stellar ages. Middle: color corresponds to M?.
Bottom: color corresponds to ρc/ρ̄ for the star (with the same colors as
in Figure 6.2) and the legend indicates a few reference values. . . . . . 197

6.9 Same as Figure 6.8, but only critical (full) disruptions. Top: only M? =
1M�, colored by stellar age. Middle: colored by stellar mass. Bottom:
colored by ρc/ρ̄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.10 Comparison of dM/dt curves at a fixed mass lost ∆M . Top 5 panels
are stellar ages of 0 Gyr and bottom 5 panels are stellar ages of 10 Gyr
(or TAMS for M? ≥ M�). These are interpolated dM/dt curves at the
particular β for each star that corresponds to the ∆M in the top left of
each panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.11 Time of peak (left panels) and peak mass fallback rate (right panels) as a
function of impact parameter. Results from Guillochon & Ramirez-Ruiz
(2013a) for a γ = 5/3 and γ = 4/3 polytrope are shown by the dotted
and dashed lines respectively. Bottom panels are where x-axis is scaled
with a structural parameter, α = (ρc/ρ̄)−1/3. In the bottom right panel,
Ṁpeak is normalized by the stellar mass. . . . . . . . . . . . . . . . . . 203

6.12 Ṁpeak × tpeak/M? as a function of β scaled with structural parameter
α = (ρc/ρ̄)−1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.13 Top panels: instantaneous power law index n(t) of the mass fallback
rate as a function of time. Top left: absolute units; top right: x-axis
normalized by the peak time. Blue regions correspond to this work,
while orange and green regions correspond to results from Guillochon
& Ramirez-Ruiz (2013a) for γ = 5/3 and γ = 4/3 polytropes. Bottom
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6.14 STARS library interpolated dM/dt’s for a small grid of stellar mass,
stellar age, and impact parameter, and at a single BH mass MBH =
106M�. Axes labels are removed for clarity, but are the same as in other
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from 10−4 to 10 M�/yr, both log-scaled). Note that we provide more
finely spaced interpolated grids for download (see text). The directory
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6.15 STARS library interpolated dM/dt’s, all in one plot, for a single BH
mass MBH = 106M�. Left: absolute units. right: normalized to peak
time and peak fallback rate. We applied a fill between dM/dt’s in order to
emphasize the tune-able spacing of the 3D interpolation. Three dM/dt’s
are overplotted in gray: a ZAMS 0.3M� star with β = 0.6 (dashed),
a ZAMS 1M� star with β = 4.2 (solid), and a ZAMS 3M� star with
β = 2.0 (dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.16 B-spline and analytic fits to disruption quantities ∆M/M?, tpeak, Ṁpeak,
and n∞. Note for the top left panel, we extend ∆M/M? = 1 after full
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6.17 MESA density profiles vs. γ = 5/3 and γ = 4/3 polytropes, normalized
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is ZAMS, green is MAMS (shown for M? ≥ 1M�), and orange is min(10
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6.18 Stellar density profiles after 5tdyn of relaxation onto the hydrodynamical
grid in FLASH (red), compared to initial profiles from MESA (black).
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6.19 Left: critical β vs. stellar mass. See also Figure 6.6. Right: critical
pericenter distance over gravitational radius (rp/rg) vs. stellar mass.
Points at the same stellar mass have different stellar ages. Comparison
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6.23 dM/dt’s for different resolution simulations in FLASH for a few different
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7.1 MESA evolutionary history for the 12M� primary (donor) star. Top:
radius vs. time. Red circles indicate the models we simulate in 3D hy-
drodynamics. Bottom left: focus on the first rise (expansion). Vertical
lines indicate the earliest ages where CE ejection is possible and shaded
regions indicate the radius ranges where CE ejection is possible accord-
ing to our adjusted 1D energy formalism. Red line indicates the radius
of the He core. Red ‘X’s indicate final orbital separation from our 3D
hydrodynamics simulations. Bottom right: focus on the second rise. See
§7.8 for further details on the MESA model. . . . . . . . . . . . . . . . 244

7.2 3D renderings of three fields (density, velocity, and energy) at three times:
early in the evolution (11 hr), at an intermediate time (16 hr), and at
a moderately late time (25 hr) when the envelope has just been ejected.
We show the 900R�, vi = vcirc simulation; results are qualitatively similar
for all our other simulations. 1st row: logarithm of gas density. Shells
corresponds to different density isosurfaces. 2nd row: ratio of velocity
magnitude to local escape velocity, |v|/vesc,local. Blue isosurface is at
|v|/vesc,local = 1, pink-red is < 1, green-yellow is > 1. 3rd row: sum
of specific kinetic and potential energy. Blue isosurface at ε = 0, pink-
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Abstract

Interactions between black holes, stars, and galaxies (and some string theory)

by

Jamie A.P. Law-Smith

A physical understanding of the high energy interactions between black holes

and stars, coupled with the context of their galactic birthplaces, will allow us to use

these systems as tools to better understand black holes at all masses, the lives and

deaths of stars, and the dynamics in galactic centers. This dissertation is concerned

with interactions at different physical scales: At the solar radius scale, we present the

first simulations of successful common envelope ejection leading to binary neutron star

formation in 3D hydrodynamics. At the AU scale, we discuss the tidal disruption of

a star by a supermassive black hole. We construct the “tidal disruption menu” of ob-

jects and black holes that lead to observable tidal disruption flares. We use an analytic

framework to calculate the composition of the fallback material onto the supermassive

black hole as a function of time. We present the first simulations of tidal disruptions of

stars with realistic structures and compositions, which predict abundance anomalies at

the peak timescale. We present the STARS library, a grid of simulations interpolated

to provide the mass fallback rate to the black hole for a main-sequence star of any

mass, age, and impact parameter. We show that all of our simulations can be reduced

to a single relationship. Connecting these phenomena to kpc-scale galaxy physics, we

present a systematic study of tidal disruption event host galaxies in the context of the

local galaxy population, and in particular our finding that they are highly centrally

xxvi



concentrated. Finally, at cosmological scales, we present a study on the obstacles to

constructing de Sitter space in theories of quantum gravity. We find that, within con-

trolled approximations, one lacks the tools to construct de Sitter space in string theory.
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Chapter 1

Introduction

A physical understanding of the high energy interactions between black holes

and stars, coupled with the context of their galactic birthplaces, will allow us to use

these systems as tools to better understand black holes at all masses, the lives and

deaths of stars, and the dynamics in galactic centers. This dissertation is concerned

with interactions at different physical scales: at the solar radius scale, the formation of

a binary neutron star; at the AU scale, the tidal disruption of a star by a supermassive

black hole; at the kpc scale, connecting these phenomena to their galactic birthplaces;

and finally, at cosmological scales, de Sitter space in theories of quantum gravity.

1.1 Stellar interactions in a galaxy

Before discussing the particular stellar interactions studied in this dissertation,

we make a brief overview of the possible stellar interactions in a galaxy. There are

broadly three different sites. In the center of most galaxies is a nuclear star cluster
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(with stellar densities of ∼106 stars/pc3) hosting a supermassive black hole. Here,

for example, a star can be tidally disrupted by the supermassive black hole. Or, as

another example, binary star encounters with the supermassive black hole can lead

to hypervelocity stars. There is also occasionally an actively accreting disk around the

supermassive black hole, or the remnants of a disk, and stars may interact with this disk.

A globular cluster (∼103 stars/pc3), perhaps on the outskirts of the galaxy, can host,

for example, stellar mergers, which are thought to produce the “blue stragglers” on the

HR diagram. Or, as another example, two stellar mass black holes can be dynamically

assembled into a tight binary and emit gravitational waves. Some globular clusters may

also host intermediate mass black holes, a key missing link between stellar mass black

holes and supermassive black holes. In addition to in each of these sites, the “field”

of a galaxy (∼1 star/pc3) can also host binary star systems. Binary star systems can

interact via a common envelope episode, which can lead to, for example, compact object

binaries that produce gravitational waves, X-ray binaries, supernovae, and gamma-ray

bursts.

1.2 Tidal disruptions of stars by supermassive black holes

In the center of most galaxies is a supermassive black hole. Surrounding the

black hole is a dense system of stars. The stars undergo a random walk in angular

momentum space through scatterings with other stars. An encounter with another star

can send a star onto a nearly radial “loss cone” orbit that brings it close enough to the

supermassive black hole that it is ripped apart by the black hole’s tidal field. This is a
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tidal disruption event (e.g., Hills 1975a; Carter & Luminet 1982a; Rees 1988a; Evans &

Kochanek 1989a).

Through a detailed theoretical understanding of disruption itself, coupled with

comparison to well-sampled observations, we can determine the black hole’s and star’s

properties and probe accretion/AGN physics on the timescale of weeks. Through the

relative rates and demographics of tidal disruptions, we can learn about galaxy prop-

erties, such as nuclear stellar populations and the dynamical mechanisms operating in

galactic centers. Most supermassive black holes in the local Universe are quiescent—for

every active black hole there are approximately 170 quiescent black holes (Gair et al.

2010). Tidal disruption events are a direct probe of these objects, and thus of the

supermassive black hole mass function.

In Chapter 2, we construct the “tidal disruption menu” of objects and black

holes that lead to observable tidal disruption flares. Typical white dwarfs can effectively

probe black holes with masses . 105M�, main sequence stars can effectively probe black

holes with masses 106M� . MBH . 108M�, and only evolved stars can probe black

holes with masses & 108M�. Low-mass white dwarfs with extended hydrogen envelopes

can effectively probe black holes with masses 105M� . MBH . 107M�, thus filling a

gap in the menu. We calculate the unique disruption properties of these objects.

In Chapter 4, we use an analytic framework to calculate the composition of the

fallback material onto the supermassive black hole as a function of time. This allows

for a large, inexpensive parameter space study. We predict abundance anomalies in

nitrogen, carbon, and oxygen in the fallback material that will help to constrain the
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nature of the disrupted star.

In Chapter 5, we present the first simulations of tidal disruptions of stars with

realistic structures and compositions. We construct stars in a 1D stellar evolution code

and calculate their disruption in a 3D hydrodynamics code. We find significant differ-

ences in the shape of the mass fallback rate curves from earlier results using polytropic

stellar structures. We find that strong abundance anomalies can appear before the peak

timescale, in contrast to predictions from the “frozen-in” model.

In Chapter 6, we present the STARS (Stellar TDEs with Abundances and

Realistic Structures) library, a grid of simulations interpolated to provide the mass

fallback rate to the black hole for a main-sequence star of any mass, age, and impact

parameter. In each of the key tidal disruption quantities, we are able to reduce all of our

simulations to a single relationship that depends only on stellar structure, characterized

by a single parameter ρc/ρ̄.

1.3 The common envelope phase and binary neutron star

formation

In a landmark discovery, both gravitational waves and electromagnetic radia-

tion have been observed from the same astrophysical event, a binary neutron star merger

(Abbott et al. 2017a,b; Coulter et al. 2017; Goldstein et al. 2017). However, we do not

understand how systems such as this one are formed.

Dynamical assembly is not an effective pathway for binary neutron star mergers

(e.g., Ye et al. 2020); they are instead thought to originate almost exclusively from
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interacting binaries (Tutukov & Yungelson 1973, 1993; Belczynski et al. 2016). Massive

stars are the progenitors of neutron stars and stellar mass black holes, and the majority

of massive stars are in interacting binaries (Sana et al. 2012). Binary stars must undergo

common envelope evolution (e.g., Paczynski 1976; Iben & Livio 1993), during which two

stars share an envelope, for the resulting black holes and/or neutron stars to merge via

emission of gravitational radiation within a Hubble time.

Understanding the common envelope phase has resisted five decades of re-

search, both because of theoretical challenges (e.g., the relevant physical and temporal

scales span over six orders of magnitude) and, until recently, the lack of observational

data. Besides helping to understand the origin of binary neutron star mergers, more

broadly, understanding the common envelope phase will lead to a better understanding

of the lives and deaths of massive stars and nucleosynthesis in the Universe (most of

the elements on the periodic table are produced in systems that go through a common

envelope phase).

In Chapter 7, we present the first simulations of common envelope ejection

leading to binary neutron star formation in 3D hydrodynamics. We overcome the pro-

hibitive computational cost of simulating this system by using a 1D energy formalism, a

3D “wind tunnel” study, and a 2D integrator to inform our 3D hydrodynamics simula-

tions. The theoretical framework developed with this work will allow for the modeling

of virtually any binary star system.
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1.4 Galactic birthplaces

Analysis of the host galaxies of high energy astrophysical phenomena can pro-

vide insight into the environments in which they are created and thus their physical

nature. As an example, understanding galactic birthplaces is how we first understood

the two mechanisms of supernovae, core-collapse vs. thermonuclear.

The work in this dissertation focuses on the host galaxies of tidal disruption

events—on connecting the AU-scale processes that lead to these events to global galaxy

properties and galaxy evolution. The relative rates of tidal disruption events in different

galaxy hosts can help determine the dynamical mechanisms operating in galactic nu-

clei. Tidal disruption event rates are typically calculated from two-body relaxation in a

spherical star cluster (Magorrian & Tremaine 1999a; Wang & Merritt 2004a). However,

this simple picture is likely incorrect. Stars can interact with one another coherently,

leading to rapid angular momentum evolution (Rauch & Tremaine 1996); for exam-

ple, this occurs for eccentric nuclear disks (Madigan et al. 2018). A second massive

body, such as an inspiraling moderately massive black hole, could also induce large-

angle scatterings of stars (Ivanov et al. 2005; Chen et al. 2009). These processes and

others could result in enhanced rates within particular galaxy hosts (for a review, see

Alexander 2017). Moreover, tidal disruption events have been preferentially observed in

rare quiescent Balmer-strong galaxies (also known as post-starburst galaxies, or more

restrictively as E+A galaxies; Arcavi et al. 2014a; French et al. 2016a), implying a rate

enhancement in these galaxies.

In Chapter 3, we study tidal disruption event host galaxies in the context
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of the local galaxy population. By creating matched galaxy samples, we determine

that selection effects can account for some, but not all, of the E+A overrepresentation.

We find that tidal disruption event host galaxies have atypical photometric properties

compared to similar, “typical” galaxies. In particular, we tidal disruption event host

galaxies are highly centrally concentrated, suggesting higher nuclear stellar densities

and a physical explanation for an enhanced rate. We also find that tidal disruption

event host galaxies live in the “green valley” between blue star-forming spiral galaxies

and red elliptical galaxies. The galaxy-matching framework developed with this work

is general and has recently been applied to study the host galaxies of changing-look

quasars (Dodd et al. 2021).

1.5 de Sitter space in theories of quantum gravity

The presently observed dark energy (Perlmutter et al. 1999; Percival et al.

2010; Aghanim et al. 2018) is consistent with a de Sitter solution of Einsteins equations.

Shortly after the Big Bang, the universe also likely went through a period of exponential

expansion (Guth 1987; Starobinsky 1987; Linde 1982; Albrecht & Steinhardt 1987). So

de Sitter space plays an important role in understanding our present and past universe.

However, it is difficult, and perhaps even impossible, to construct stable or metastable

de Sitter space in our current understanding of theories of quantum gravity. This fact

has implications for inflation, the nature of the presently observed dark energy, and

whether string theory is the correct theory of quantum gravity.

In Chapter 8, we study the obstacles to constructing de Sitter space in string
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theory. We find that, within controlled approximations, one lacks the tools to construct

de Sitter space in string theory. Such approximations would require the existence of

a set of (arbitrarily) small parameters, subject to severe constraints. But beyond this

one also needs an understanding of big-bang and big-crunch singularities that is not

currently accessible to standard approximations in string theory.
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Chapter 2

Low-mass White Dwarfs with

Hydrogen Envelopes as a Missing

Link in the Tidal Disruption

Menu

Abstract

We construct a menu of objects that can give rise to bright flares when dis-

rupted by massive black holes (BHs), ranging from planets to evolved stars. Through

their tidal disruption, main sequence and evolved stars can effectively probe the exis-

tence of otherwise quiescent supermassive BHs and white dwarfs can probe intermediate

mass BHs. Many low-mass white dwarfs possess extended hydrogen envelopes, which
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allow for the production of prompt flares in disruptive encounters with moderately mas-

sive BHs of 105–107 M�—masses that may constitute the majority of massive BHs by

number. These objects are a missing link in two ways: (1) for probing moderately mas-

sive BHs and (2) for understanding the hydrodynamics of the disruption of objects with

tenuous envelopes. A flare arising from the tidal disruption of a 0.17 M� white dwarf

by a 105 M� BH reaches a maximum between 0.6 and 11 days, with a peak fallback

rate that is usually super-Eddington and results in a flare that is likely brighter than

a typical tidal disruption event. Encounters stripping only the envelope can provide

hydrogen-only fallback, while encounters disrupting the core evolve from H- to He-rich

fallback. While most tidal disruption candidates observed thus far are consistent with

the disruptions of main sequence stars, the rapid timescales of nuclear transients such

as Dougie and PTF10iya are naturally explained by the disruption of low-mass white

dwarfs. As the number of observed flares continues to increase, the menu presented here

will be essential for characterizing nuclear BHs and their environments through tidal

disruptions.

2.1 Introduction

When a star wanders too close to a massive black hole (MBH), it can be

ripped apart by the hole’s tidal field (Hills 1975a; Frank 1978; Gurzadian & Ozernoi

1979; Carter & Luminet 1982a; Rees 1988a). In a typical disruption, half of the material

will be ejected on hyperbolic trajectories and half of the material will remain bound to

the MBH; the accretion of this material gives rise to a transient usually referred to
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as a tidal disruption event (TDE). With accurate theoretical modeling, TDEs allow

us to uncover the mass of the black hole, the characteristics of the surrounding stellar

population, the dynamics of the galactic nucleus, and the physics of black hole accretion

under well-defined conditions (Guillochon et al. 2014a). TDEs can also provide a direct

and unambiguous probe of the MBH occupation fraction of low-mass galaxies, which is

crucial for constraining MBH seed formation efficiency at high redshifts—a dominant

mechanism of initial galaxy formation (De Colle et al. 2012; Guillochon & Ramirez-Ruiz

2015a; Stone & Metzger 2016a; Kochanek 2016b). The opportunity to study BHs in

the local universe through TDEs is important, because for every actively accreting BH,

there are ∼ 170 quiescent BHs (Greene & Ho 2007a; Gair et al. 2010).

TDEs are observationally identified by a combination of a dramatic increase in

brightness, proximity to a non-active host galaxy’s center, and weak or no color evolution

at optical/UV wavelengths, with a decay in luminosity that is theoretically predicted

to follow a t−5/3 law (for reviews of the observations, see e.g. Komossa 2015a; Auchettl

et al. 2017a). The most compelling events are those in which the rise, peak, and decay of

the optical/UV transient are observed with frequent cadence, as each of these phases of

a TDE contain vital information about the disruption, and can be used to constrain the

properties of the host black hole and the object that was disrupted (e.g., Gezari et al.

2012a; Guillochon et al. 2014a). Taken in a statistical sense, the observed rates of tidal

disruption and, in particular, the relative rates of disruptions of different stellar objects,

will hold tremendous distinguishing power in terms of both the dynamical mechanisms

operating in galactic centers and the properties of the populations of stars themselves
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(MacLeod et al. 2012a, 2014, 2016a).

A central objective of this work is to understand the menu of all possible

TDEs about massive BHs—i.e., which objects produce tidal disruption flares for which

BH masses, and how they dictate the properties of the fallback accretion rate onto

the BH. An object of mass M and radius R can be torn apart if it crosses the tidal

radius, rt = (Mbh/M)1/3 R, of a BH with mass Mbh. Therefore, the characteristics of a

particular stellar object hold information about the nature of its disruption—whether

it occurs near the BH’s innermost bound circular orbit, and, if so, how relativistic the

encounter is. BHs with masses & 107 M� are well probed by MS stars, evolved stars,

and planets, but the debris could be ineffective at circularizing for BHs with masses

. 106 M�, as shown by semi-analytic results in Guillochon & Ramirez-Ruiz (2015a),

as well as the Newtonian and relativistic hydrodynamic simulations of Guillochon et al.

(2014a) and Shiokawa et al. (2015). BHs with masses . 105 M� could be probed by

typical white dwarfs (although BH spin could raise this limit to 106 M�; Tejeda et al.

2017a).

Thus far, most observed TDE candidates come from host galaxies with in-

ferred BH masses of & 106 M�. Even though survey selection effects make seeing TDEs

from lower-mass BHs less likely (see e.g., Kochanek 2016b), we should expect to observe

them with future surveys if the BH mass function is not truncated below 106 M�. Tidal

disruption flares are potentially a powerful probe of the galaxy occupation fraction of

these BHs, and could help discriminate between BH mass functions that are flat, rising

(as extrapolated from the M–σ relation), and/or truncated at low masses. Our ability
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to use TDEs as direct probes of black hole demographics necessitates a detailed under-

standing of how the observability of TDEs depends on the properties of the disrupted

star. Constructing a complete menu of stellar tidal disruption simulations—as we do in

this work—is an important step in addressing these questions.

Theoretical studies of stellar structure and fallback rate began with Lagrangian

(Evans & Kochanek 1989a) and Eulerian (Khokhlov et al. 1993b) calculations, and have

evolved to include detailed studies of MS stars (Lodato et al. 2009a; Ramirez-Ruiz &

Rosswog 2009; Guillochon & Ramirez-Ruiz 2013a), giant planets (Guillochon et al. 2011;

Liu et al. 2013), white dwarfs (Luminet & Pichon 1989; Kobayashi et al. 2004; Rosswog

et al. 2008a,b, 2009; Zalamea et al. 2010; Clausen & Eracleous 2011; Krolik & Piran

2011; Haas et al. 2012; Cheng & Bogdanović 2014a; MacLeod et al. 2014, 2016a; Vick

et al. 2016), and giant stars (MacLeod et al. 2012a, 2013).

A finding common to all calculations is that a more centrally concentrated

object has a quicker-peaking fallback rate and requires a deeper encounter for full dis-

ruption than a less centrally concentrated object. Here, “deeper” is in relation to the

tidal radius definition, which relates to the average density. The presence of a core is

also important in determining the fallback rate; in giant stars, the massive core plays a

key role yet typically remains intact, while in giant planets, the lighter core is much more

vulnerable. These considerations are crucial, as we expect the stellar structure to be

imprinted on the luminosity evolution of the flare. In many of the observed events, the

luminosity evolution closely follows the predicted mass fallback onto the BH (a classic

example is PS1-10jh; Gezari et al. 2012a; Guillochon et al. 2014a). This preservation of
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the fallback rate implies that circularization of the debris is prompt in these cases; the

mass feeding rate is primarily determined by fallback and is not significantly delayed

by viscous effects.

Flares can be delayed if the amount of energy dissipated per orbit—or “viscosity”—

is small. When the stream’s self-intersection point is relatively close to the BH, energy

dissipation is large, allowing the debris to circularize quickly (Bonnerot et al. 2016a).

Once the disk is formed, the viscous transport timescale (i.e., the time it takes material

to accrete) at the circularization radius is much shorter than the peak fallback timescale.

When the stream’s self-intersection point is much farther from the BH than the peri-

apse distance, however, circularization is not effective, and a highly elliptical disk is

formed (Ramirez-Ruiz & Rosswog 2009; Shiokawa et al. 2015). In this case, the viscous

timescale can be significantly longer than the peak fallback timescale (Guillochon &

Ramirez-Ruiz 2015a).

Stellar structure in tidal disruption calculations has thus far been implemented

using polytropic profiles, with the simplest examples being the single-polytrope models

of MS stars and WDs. Evolved stars and planets with cores are not well described by

a single polytrope; these objects have been studied using a nested polytrope in which

the envelope is a significant fraction of the total mass (MacLeod et al. 2012a; Liu et al.

2013).

In this work we perform the first tidal disruption calculations for objects where

the atmosphere has a small mass relative to the core, with our primary motivating

physical example being a low-mass He WD with a hydrogen envelope—though we note
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that this structure could potentially also be used to model hot Jupiters or very evolved

stars. Any WD below ≈ 0.46 M� has a helium core, and possesses a hydrogen envelope

that, despite its comparatively low mass, can extend to several times the core’s radius

(e.g., Nelemans et al. 2001). In this work, we calculate the disruption of these objects

and predict their observational properties. We argue that these objects are a missing

link in two ways: (1) for probing moderately massive BHs, and (2) for understanding the

hydrodynamics of the disruption of objects with tenuous envelopes, as such structures

have not yet been studied. We find that these low-mass WDs with hydrogen envelopes

offer prompt flares at higher-mass BHs than their more typical WD counterparts, and

occupy a unique parameter space in time and luminosity at peak.

In Section 2.2, we develop the tidal disruption menu, which is our motivation

for the hydrodynamical simulations of this paper. In Section 2.3, we discuss the partic-

ulars of He WDs. In Section 2.4, we outline our hydrodynamical setup for disrupting

these objects, and in Section 7.3 we present numerical results from these simulations.

In Section 2.6, we present an overview of tidal disruption flare demographics in terms

of peak timescales and fallback rates. In Section 7.4, we summarize our findings and

show that fast-rising events such as Dougie and PTF10iya are naturally explained by

the disruption of an He WD.

2.2 Tidal Disruption Menu

To determine whether an object is disrupted or swallowed by a black hole, we

need to compare the tidal radius, rt, to the innermost bound circular orbit of the black
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hole,

ribco =
2GMbh

c2

(
1− a∗

2
+
√

1− a∗
)
, (2.1)

where a∗ = a/M , a = J∗/M∗c, M = GM∗/c2, and M∗ and J∗ are the mass and angular

momentum of the BH, respectively (Abramowicz & Fragile 2013). For a non-spinning

BH, ribco = 4GMbh/c
2, and for a maximally spinning BH, ribco = GM/c2. If rt > ribco,

disruption is possible. Otherwise, the object is swallowed whole (e.g., East 2014). For

simplicity we assume here that disruption is only possible when the impact parameter

β = rt/rperi ≥ 1; more accurately, disruption is a smooth function of β. For a non-

spinning BH, we therefore require

Mbh ≤Mbh, lim =
R

3/2
?

M
1/2
?

(
c2

4G

)3/2

∝ ρ−1/2
? (2.2)

for disruption. The mass-radius relationship, then, determines whether an object will

be disrupted at a given BH mass. Denser objects such as WDs can only be disrupted

by lower-mass BHs while more tenuous objects such as MS or evolved stars can be

disrupted by higher-mass BHs.

We can calculate the upper limit for the disruption of a class of objects by using

the above relation. We show this menu of BH-object combinations for a non-spinning

BH, along with a prompt circularization condition explained below, in Figure 2.1. We

use mass-radius relations for WDs, MS stars, evolved stars, and sub-stellar objects. We

find that He WDs with hydrogen envelopes play a special role in this menu, as, similar

to evolved stars, they can have a wide range of radii at a given mass, depending on their

16



age. Compared to the relatively tight mass-radius relation for typical white dwarfs,

these objects allow access to a higher range of BH masses. More details on He WDs

and our stellar evolution calculations of their structure are given in Section 2.3. Our

choice of representative masses and ages is justified there.

Many of the tidal disruption candidates observed thus far show a luminosity

time evolution that closely follows the mass fallback rate from the star to the BH

(see e.g., Guillochon et al. 2014a). This suggests that current observations may select

for events in which debris circularization is prompt. Recent work suggests that prompt

circularization occurs predominantly for encounters where general relativistic effects are

important (Hayasaki et al. 2013a; Dai et al. 2015; Guillochon & Ramirez-Ruiz 2015a).

We take a “circularization condition” of rt < 10GMbh/c
2 in order to select encounters

in this regime. Following Dai et al. (2015) and Guillochon & Ramirez-Ruiz (2015a),

this corresponds to a de Sitter apsidal precession of Ω & 54◦ for non-spinning BHs.

Note that more weakly plunging encounters will still circularize some fraction of the

time, and that they may also be observable as events where the luminosity evolution is

viscously delayed; our condition is meant as a guideline for where we can expect to see

predominantly prompt circularization events for a given disruptee. Note also that most

events in the X-rays appear to be viscously delayed (Auchettl et al. 2017a).

For a non-spinning BH, our condition for prompt flares is then 4GMbh/c
2 <

rt < 10GMbh/c
2. WDs can only be disrupted by BHs with masses . 105 M�, while MS

and evolved stars only obey our prompt flare condition for BHs with masses & 106 M�.

Because of their extended radius, low-mass WDs with hydrogen envelopes can serve
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non-He WDs

He WDs

MS stars

Evolved  
stars

PlanetsBrown dwarfs

Figure 2.1: Regions where prompt tidal disruption flares are favorable in Mobj vs. Mbh

space for a non-spinning BH. Encounters have 4GMbh/c
2 < rt < 10GMbh/c

2. Note that
disruption is still possible for lower BH masses than shown in each region. We include
mass-radius relationships for typical WDs from Zalamea et al. (2010), MS stars from
Tout et al. (1996), evolved stars from Bressan et al. (2012, 2013), and sub-stellar objects
from the 1 Gyr curve of Chabrier et al. (2009). We define MS stars as M ≥ 0.085 M�,
brown dwarfs as 0.085 M� > M ≥ 13 MJup, and planets as M < 13 MJup. For evolved
stars, we choose masses above 0.9 M� (here the evolutionary time is approximately
equal to the Hubble time) and radii up to the radius at the tip of the red giant branch
for this mass star. WDs below ∼ 0.5 M� will be helium-core hydrogen-envelope WDs.
We calculate the radii of three He WDs 1 Gyr after formation and interpolate for masses
in between. We choose representative masses of 0.17 M�, 0.25 M�, and 0.38 M�, with
initial envelope masses of 0.011 M�, 0.016 M�, and 0.019 M� respectively. This is
motivated by the fact that the mass distribution of He WDs is expected to be relatively
flat (Maoz et al. 2012).
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as a missing link between these two regimes. Their envelope can be disrupted and

stripped by higher BH masses than allowed for by typical WDs. These BH masses

offer a relatively smaller fraction of prompt flares from MS stars due to their inefficient

circularization here. The constraints derived for He WDs, here assumed to be at least 1

Gyr after formation, could be extended to higher-mass BHs for younger He WDs, which

have significantly more extended envelopes. For example, a 100 Myr old 0.17 M� He

WD can have a radius of 0.5 R�, allowing it to be disrupted by a 108 M� BH.

Low-mass WDs can thus extend the range of BH masses available to the higher-

mass, single-star evolution WDs through tidal disruption.1 While these objects make

up a small fraction of the stellar population, they deserve to be examined in more detail

because of their unique location in our prompt circularization menu, which, as we argue,

makes their emerging flares more favorable to detection.

2.3 Helium-core Hydrogen-envelope WDs

2.3.1 Properties

Since WDs have an inverse mass-radius relationship, the lowest mass WDs will

be able to probe the highest mass BHs. Let us estimate the lowest mass WD available

through single-star evolution. Setting the main sequence lifetime equal to the age of

the universe (≈ 13.8 Gyr; Hurley et al. 2000) using an analytic formula for the MS

lifetime from Hinshaw et al. (2013) gives Mi ≈ 0.9 M�. Using this mass in an empirical

1There is some evidence now mounting for observational candidates of WD disruptions by intermedi-
ate mass BHs. In particular, an emerging class of ultra-long gamma-ray burst (ULGRB) sources share
similar timescales and luminosities to WD disruptions (see Levan et al. 2014; Levan 2015; MacLeod
et al. 2014, 2016a).
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Figure 2.2: Left panel: helium (blue) and hydrogen (red) abundances as a function of
radius for a 0.17 M� helium-core hydrogen-envelope WD 1 Gyr after formation. The
mass of the hydrogen envelope is only 10−2 M�, but it extends to roughly 10 times the
radius of the core. The green dashed line shows the degeneracy parameter η, indicating
the degenerate helium core. The black dashed line shows the nuclear burning fraction
εnuc, indicating the thin hydrogen burning region surrounding the core. η and εnuc are
shown normalized to their maximum values. Right panel: radius as a function of time
since formation (through a binary interaction) for this WD. Its radius is 10 times larger
than that of a WD without an envelope, shown in dashed blue, for more than 1 Gyr.
The black circle indicates the age and radius of the object we use in our disruption
calculations.
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initial–final mass relation for WDs from Catalán et al. (2008) for Mi < 2.7 M�,

Mf = (0.096± 0.005)Mi + (0.429± 0.015), (2.3)

we find that the minimum WD mass possible through single-star evolution is MWD ≈

0.5 M�.

WDs less massive than roughly half a solar mass will have formed through

binary interactions, barring cases of extreme metallicity (Kilic et al. 2007). Low-mass

WDs can be formed either through stable Roche-lobe overflow mass transfer or common-

envelope evolution (e.g., Driebe et al. 1998; Sarna et al. 2000; Nelson et al. 2004; Althaus

et al. 2013; Nandez et al. 2015). A helium-core WD forms if one component of the binary

loses its hydrogen envelope before helium burning. This object has a degenerate helium

core and is formed with an extended hydrogen envelope supported by a thin hydrogen

burning layer.

The maximum mass of an He WD is approximately 0.46 M�, and only He WDs

are formed below this mass (Sweigart et al. 1990; Nelemans et al. 2001). The final mass

of the He WD depends on the mass of the progenitor and the binary orbital properties

(e.g., Nelemans et al. 2001). The progenitor star needs a zero-age main sequence mass

below 2.3 M�, as more massive stars do not form helium cores. The strict minimum

timescale for formation of an He WD is therefore the MS lifetime of a 2.3 M� star,

tMS ≈ 1.16 Gyr (Hurley et al. 2000).

Istrate et al. (2014, 2016) performed calculations of He WD formation via

stable mass transfer; we quote some results below. After detachment from Roche-lobe
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overflow, the progenitor star enters a “bloated” proto-WD phase where much of the

hydrogen in the envelope is burned in stable hydrogen shell burning. The mass of

hydrogen left after Roche-lobe detachment is on the order of 10−2 M�, yet this can fuel

a proto-WD phase lasting up to 2.5 Gyr for the lowest mass (M . 0.20 M�) WDs.

Istrate et al. (2014) derived a timescale for hydrogen burning,

∆tproto ' 400 Myr

(
0.20 M�
MWD

)7

, (2.4)

which describes the star’s contraction from Roche-lobe detachment to its maximum

effective temperature on the cooling track. Istrate et al. (2016) also defined a cooling

timescale, tcool,L−2 , which is the time from detachment to reaching log(L/L�) = −2 on

the cooling track. This timescale is set primarily by the mass of the hydrogen envelope

left at the end of the proto-WD phase. Generally, a shorter orbital period at the onset

of mass transfer leads to a lower proto-WD mass and a higher final envelope mass.

There is a growing body of observations of these low-mass objects: the targeted

survey for extremely low-mass (ELM; M < 0.3 M�) WDs has found 76 binaries to date,

with a median primary mass of ≈ 0.18 M� (Brown et al. 2016b,c). Many of these WDs

appear to be bloated, and this bloated state can persist for a long time: Macias et al.

(2015) find that roughly half of these systems will still be burning hydrogen when

they merge. One object in this sample is the binary system NLTT 11748 (Kaplan

et al. 2014), which contains a helium-core hydrogen-envelope WD of mass 0.17 M�

and radius 0.043 R�, whereas a standard WD mass-radius relation for this mass would

give a radius of 0.02 R�. This object’s bloated size allows it to be disrupted by a
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BH of up to 3.8 × 106 M�. This WD has a cooling age of 1.6–1.7 Gyr; younger He

WDs can have much more extended envelopes, allowing them to be disrupted by even

107 M� or 108 M� BHs. As an example of this more extreme bloating, observations

and astroseismological studies of the eclipsing binary J0247–25 find a He WD with mass

0.186 ± 0.002 M� and radius 0.368 ± 0.005 R� (Maxted et al. 2013). Note that this

He WD has a larger radius than a MS star of its mass. In a study of the Galactic WD

binary population, Maoz et al. (2012) found that roughly half of WDs in binaries are He

WDs, and that the probability density distribution for He WDs is relatively flat below

0.4 M�.

It is difficult to estimate the typical age of a He WD upon disruption by a

MBH, as these objects are formed from a range of progenitor masses and undergo a

binary interaction of uncertain timescale. We do know that nuclear star clusters exhibit

a wide range of stellar ages. For example, observations of the nearby S0 galaxy NGC

404 show that half of the mass of the nuclear star cluster is from stars with ages of

≈ 1 Gyr, while the bulge is dominated by much older stars (Seth et al. 2010). In our

own Galactic center, roughly 80% of the stars formed over 5 Gyr ago and the remaining

20% formed in the last 0.1 Gyr (Pfuhl et al. 2011). In addition, TDEs have so far been

found preferentially in post-starburst galaxies, with significant 1 Gyr old or younger

stellar populations (Arcavi et al. 2014b; French et al. 2016b). Another consideration is

that in a study of a population of He WDs in the globular cluster NGC 6397, Hansen

et al. (2003) found that the progenitor binaries of the He WDs very likely underwent an

exchange interaction within the last Gyr. Finally, we note that the two-body relaxation
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time is ≈ 0.1 Gyr for a 105 M� BH and ≈ 1.8 Gyr for a 106 M� BH. Motivated by the

above considerations, in our disruption simulations we take the radius of the He WD at

1 Gyr after formation (i.e., since Roche-lobe detachment).

For the tidal disruption calculations in this work, we construct a 0.17 M� He

WD consisting of a 0.16 M� degenerate helium core and a 0.01 M� hydrogen envelope

using the MESA stellar evolution code (Paxton et al. 2011, 2013, 2015). This envelope

mass is consistent with theoretical predictions of hydrogen retention (Althaus et al.

2001; Serenelli et al. 2001; Panei et al. 2007). The left panel in Figure 2.2 shows the

relative abundance of helium and hydrogen as a function of radius for this object. The

hydrogen envelope extends to roughly 10 times the radius of the core, and is supported

by a thin hydrogen burning shell. This snapshot is at 1 Gyr after formation.

We also calculate the radius as a function of time since formation (through a

binary interaction) for several He WDs in MESA. This is shown for our 0.17 M� object

in the right panel of Figure 2.2. We show the radius of a core-only WD of the same

mass for comparison in dashed blue (here we show a fixed radius that does not evolve

with time). In a similar calculation for a 0.15 M� WD, we find that a very extended

envelope persists for > 10 Gyr.

2.3.2 Disruption and Flaring Rates

The particular tidal disruption rates of different types of objects depend on the

detailed dynamics and evolution of the dense stellar system surrounding the central BH.

Given these uncertainties, here we make a simple estimate of the relative rate of He WD

disruptions. We find that several factors could increase the rate from that suggested by
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these objects’ low population fraction. We can decompose the observed rate into (1)

the fractional disruption rate and (2) the rate of luminous flares.

Disruption

First, the fractional disruption rate. This can be written as fdisrupted = fpop×

frel, where fpop is the fraction of the stellar population that are He WDs, and frel is the

specific likelihood of an He WD being disrupted. First we estimate fpop. Modeling the

Galactic population of double WDs, Nelemans et al. (2001) found a Galactic birth rate

of close double white dwarfs of 0.05 yr−1 and a formation rate of planetary nebulae of

1 yr−1. They found that 63% of the stars in these pairs are He WDs. This implies that

the production rate of He WDs is approximately 0.05× 0.63 ≈ 0.03 times that of single

stellar evolution WDs. Choosing an age of 10 Gyr for the Galactic disk gives a turnoff

mass of approximately 1 M� for the stars in our Galaxy. We estimate the WD fraction

by dividing the number of stars with masses of 1–8 M� (those that evolve to leave WD

remnants) by the number with masses of 0.1–8 M� using a Kroupa (2001) IMF; this

gives a WD fraction of approximately 0.16. The population fraction of He WDs is then

fpop ≈ 0.16× 0.03 ≈ 0.005.

There is a concern that mass segregation might limit fpop in central cluster

regions. In clusters, low-mass stars are evaporated from the central regions as above-

average mass objects settle deeper in a trend toward energy equipartition on the cluster

relaxation time (e.g., Merritt 2013). However, binaries containing an He WD, even

though the He WD mass is low, will not be evaporated from the central regions as their

total mass is on average higher than the average mass of a typical stellar population.
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Indeed, in a study of the central regions of globular cluster NGC 6397, Strickler et al.

(2009) found a sample of He WDs with masses of 0.2–0.3 M�. These objects show

strong Hα absorption lines (indicating that they still retain their hydrogen envelopes),

and are significantly more concentrated in the cluster center than either the CO WDs

or the turnoff stars. We therefore expect that mass segregation either enhances fpop or,

at least, does not reduce it in nuclear star clusters.

This population fraction could also be larger due to the fact that in dense

stellar systems, the rate of dynamically assembled compact binaries is observed to be

enhanced by a factor of 10–100 when compared to the field (Pooley et al. 2003; Pooley &

Hut 2006). We might expect similar enhancements in the dense and dynamical nuclear

region surrounding an MBH. Note that the separation of He WDs from their companions

is observed to be 1010 cm < a < 3× 1011 cm in the ELM survey, making these binaries

stable against ionization for typical nuclear cluster conditions.

For frel, we follow MacLeod et al. (2012a) and scale the specific likelihood of dis-

ruption as frel ∝ r1/4
t . Relative to an MS star, this is frel = (RHe/RMS)1/4(MMS/MHe)

1/12,

which is of order unity for our 0.17 M� He WD and a ∼ 0.5 M� MS star. This gives

us a conservative total fractional disruption rate of fdisrupted = fpop × frel ≈ 0.005. For

a hydrogen-depleted He WD, frel is closer to 1/2. As a potential comparison, simu-

lations of star clusters by Baumgardt et al. (2004) found that the relative fraction of

WD disruptions is ≈ 0.15. Multiplying this by the relative production rate of He WDs

(roughly 0.03 for every WD in our Galaxy following Nelemans et al. 2001) suggests

a fractional disruption rate of fdisrupted ≈ 0.005, consistent with our above estimate.
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However, as mentioned, mass segregation and dynamical assembly effects can enhance

our above estimate. The estimate using star cluster simulations may also be low, as

these simulations include very low-mass BHs and a population of single stars. These

calculations therefore model the disruption of only single WDs, which also follow the

substantially more compact typical WD mass radius relation. We lack a proper N -body

simulation of the relative disruption rates for binary systems such as those that produce

He WDs.

Flaring

Second, we consider the relative rate of luminous flares arising from the dis-

ruption of He WDs. One consideration is that He WD disruptions will produce a higher

peak luminosity relative to MS stars, simply because they are more compact. For

0.5 M� WDs, MacLeod et al. (2014) showed that their disruption rate Ṅ is lower than

that of MS stars, but that, when weighted by their luminosities, the total number of

observed transients is higher for these WDs than MS stars for Mbh . 105 M�, as the

observing volume grows with luminosity. For He WDs, one can similarly expect their

luminosity-weighted rates to be higher relative to MS stars than their pure fractional

rates estimated above.

The fraction of prompt versus delayed flares is also important here. As sug-

gested earlier, prompt flares occur when general relativistic effects are important. Guil-

lochon & Ramirez-Ruiz (2015a) showed that MS stars are ineffectively circularized

for lower BH masses, leading to viscously delayed luminosity evolution. For 105 <

Mbh/M� < 106, the fraction of prompt events from MS stars is ≈ 13% (if we include
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events that are viscously slowed only as they rise to peak, this fraction is ≈ 17%). Be-

cause He WDs are disrupted in the strongly relativistic regime, these objects should be

rapidly circularized for these BH masses, as shown in Figure 2.1. As a result, He WD

disruptions should make up a higher fraction of prompt flares than their population

fraction suggests. This effect becomes especially important at lower BH masses, for

which the occupation fraction remains unconstrained (e.g. Gair et al. 2010).

As we will see, even partial disruptions of He WDs with hydrogen envelopes

can provide super-Eddington fallback onto the BH. These partial disruptions are also

favorably prompt compared to MS disruptions, and could further enhance the relative

rate of flares from He WD disruptions.

2.4 Numerical Setup

2.4.1 MESA Calculations

Using the MESA stellar evolution code, we construct a 0.17 M� white dwarf

with a 0.16 M� degenerate helium core and a 0.01 M� hydrogen envelope. As noted in

the previous section, there is a growing population of observed objects in this mass range.

In these low-mass objects, the extended envelope lasts for a long time, as ∆tproto ∝M−7
WD

(Equation 2.4). We might therefore be more likely to see flares from the stripped

envelopes of objects close to this mass, as they exist in a bloated state for longer than

their higher-mass cousins.

We approximate the core and envelope as nested polytropes (e.g., Rappaport

et al. 1983; MacLeod et al. 2012a; Liu et al. 2013), using polytropic indices ncore = 1.5
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and nenv = 3.8. Figure 2.3 shows the density versus radius profile of this object from

MESA as well as from the nested polytrope that we matched. We use this nested

polytrope as an input to our hydrodynamical simulations as it provides a reasonable de-

scription of the object’s structure, and makes possible comparisons with non-hydrogen-

envelope WD disruption calculations using polytropic equations of state (MacLeod et al.

2014).

A single polytrope is unstable to small variations in pressure p0 and volume

V0 if (∂p/∂V )0 is positive, and this occurs for polytropic indices of n > 3. However,

it is difficult to derive simple stability criteria for our nested polytrope structure, as

it is not differentiable across the core-envelope discontinuity. We instead ensure that

two heuristic tests of stability are satisfied: (1) the entropy increases with radius, or

∂S/∂r > 0, and (2) the star does not contract or relax significantly when placed on

our hydrodynamical grid structure for 20 dynamical timescales of the full star. The

dynamical timescale for the full star is tfull
dyn '

√
R3/GM = 535 s. In this work we will

often refer to the dynamical timescale of the He core of this WD for comparison; this is

tcore
dyn = 22.5 s.

2.4.2 Hydrodynamical Setup

Our simulations of tidal disruption are performed with the basic framework

and code described in detail in Guillochon et al. (2009, 2011), MacLeod et al. (2012a),

Liu et al. (2013), and Guillochon & Ramirez-Ruiz (2013a). We use FLASH (Fryxell

et al. 2000), a 3D adaptive mesh grid-based hydrodynamics code including self-gravity.

Hydrodynamics equations are solved using the using the piecewise parabolic method
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Figure 2.3: Our matching of a nested polytrope with ncore = 1.5 and nenv = 3.8 to
the MESA density versus radius profile of a 0.17 M� WD with a 0.01 M� hydrogen
envelope. We use this nested polytrope in our tidal disruption calculations as our initial
condition.

t = �24 t = 0 t = +24 t = +72 t = +168

1 R�

Figure 2.4: 2D slices in density through our 3D simulation box, zoomed in on the star,
for a 0.17 M� He WD being disrupted by a 105 M� BH. Panels from left to right show
the time evolution for a βcore = 0.7 encounter in units of the dynamical time of the core
(22.5 s), with t = 0 corresponding to pericenter.
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1 R�

�core = 0.5 �core = 0.7 �core = 0.9

Figure 2.5: Panels from left to right show the mass fraction of core (red) versus envelope
(blue) material for βcore = 0.5, 0.7, and 0.9 encounters. These respectively correspond to
a grazing encounter where just the envelope is stripped, an intermediate encounter, and
full disruption. All slices are at t = 96 tcore

dyn after pericenter. Density below 10−4 g/cm3

is shown in black.

(Colella & Woodward 1984). We refine the grid mesh on the value of the density,

and derefine by one level every decade in density below ρ = 10−4 g cm−3. All of the

simulations presented here are resolved by at least R?/∆rmin > 130, where ∆rmin is

the size of the smallest cells. We note that adaptive mesh refinement is well suited

for disruption calculations of an object with this core and envelope structure, as the

envelope occupies a large volume yet has a very low mass fraction.

We perform our calculations in the rest-frame of the star to avoid introducing

artificial diffusivity by moving the star rapidly across the grid structure. We solve the

self-gravity of the star using a multipole expansion about the center of mass of the

star with lmax = 10. We then evolve the orbit based on the center of mass of the

star and the position of a point-mass black hole (see the Appendix of Guillochon et al.

2011, for details). We use Newtonian gravity for the black hole, which is a reasonable

approximation as our star’s closest approach in any of our simulations is > 10rg, in the

weak field regime. Cheng & Bogdanović (2014a) showed that general relativistic effects
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in tidal disruption simulations should be small is this regime. Note that, because we

use Newtonian gravity, by construction, the encounters we simulate are outside of our

rapid circulation condition defined in Section 2.2. The effect of relativistic encounters

is discussed in Section 2.7.2.

We run our simulations using the 0.17 M� He WD described above and a

105 M� BH. We input the MESA profile, matched as a nested polytrope (Figure 2.3),

into FLASH. We use two different fluids in the simulation: one for the helium core and

one for the hydrogen envelope. Both have the same equation of state, with a γfluid =

5/3. This setup has an envelope composition of 100% hydrogen. More accurately, the

envelope has a residual helium abundance that will migrate toward the core over time

depending on the relative strength of mixing and gravitational settling. We relax the

object onto the grid for 5 tdyn before sending the BH toward it. We use an eccentricity

e ≈ 1, as most disrupted stars originate from orbits scattered from the sphere of influence

(Magorrian & Tremaine 1999b; Wang & Merritt 2004b). As discussed in Guillochon &

Ramirez-Ruiz (2013a), for a given stellar structure, we can understand the vast majority

of disruptions by surveying in impact parameter β = rt/rp as all other parameters

obey simple scaling relations when relativistic effects are unimportant. Similar to the

dynamical timescale, we can define β with respect to the tidal radius of the full star

or the degenerate core. We survey in βfull from 1 to 10 in 12 runs. This corresponds

to βcore of ≈ 0.1 to 1.2. We run our simulations for 21 tfull
dyn = 500 tcore

dyn , well into the

self-similar decay portion of the mass fallback rate.
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2.5 Numerical Results

2.5.1 Phenomenology: Core versus envelope

Figure 2.4 shows the time evolution of the star for a βcore = 0.7 encounter in 2D

slices in density through the 3D simulation box, zoomed in on the star. Time is labeled

in terms of the dynamical time of the core. In this moderately plunging encounter, the

star is distorted through pericenter, evolving into a surviving remnant and two tidal

tails—one bound and one unbound from the BH.

As we increase the impact parameter, the star is perturbed closer to its center.

For mildly plunging encounters, only the hydrogen envelope is stripped, while the core

survives intact. For more deeply plunging encounters, both the core and envelope are

disrupted and fed to the BH. We can see this qualitatively in Figure 2.5, where we show

slices through the simulation box zoomed in on the star for βcore = 0.5, 0.7, and 0.9

encounters. We plot the ratio of the core material to envelope material density. The

different spatial distributions of core and envelope material will result in different fall-

back times to the BH, which will result in observed light curves dominated by material

of different compositions at different times. Because of their different structures—the

envelope has a steeper density gradient than the core—these two fluids react to losing

mass in characteristically different ways, as we will see below.

2.5.2 Mass lost

Figure 2.6 shows the mass lost from the star as a function of impact parameter,

calculated at the last timestep of our simulations. We run our simulations long enough
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so that the mass lost calculated from this final timestep is asymptotically close to the

final mass lost. Note that half of the lost mass will return to the black hole and half

is ejected as an unbound debris stream. The object is smoothly disrupted with the

impact parameter, albeit with two components from the envelope and the core. This

is different from giant star disruptions (MacLeod et al. 2012a), where the core is never

disturbed, and likely arises because the density contrast between the core and envelope

is in general larger for giants than it is for He WDs.

A fitting formula from Guillochon & Ramirez-Ruiz (2013a, 2015c) for a Γ = 5/3

polytrope fits the mass lost from the core well. This is expected, as once the core has

been penetrated, the envelope has negligible dynamical effect, and the disruption will

proceed as if for a typical WD. Full disruption occurs at βcore ≈ 0.9.

This n = 1.5 polytrope has a lower critical β (for full disruption) compared

to higher index polytropes, as the mass is distributed more evenly. In addition to this,

a n = 1.5 polytrope has an inverse mass-radius relation, and so expands when mass is

removed, making the object more vulnerable to disruption. We model the envelope, on

the other hand, as an n = 3.8 polytrope, which reacts to mass removal by contracting—

“protecting” itself. Because the envelope has a steeper density gradient, its critical β is

higher than for a Γ = 5/3 polytrope. We can see this in the shallower slope of ∆M/M

versus β for envelope material relative to core material.

2.5.3 Spread in binding energy and mass fallback rate

We calculate the spread in binding energy of the star’s material to the BH,

dM/dE versus E, over time. We compute the specific binding energy of the material in
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Figure 2.6: Mass lost versus impact parameter for the disruption of a 0.17 M� He WD
with a 105 M� BH is shown in solid circles. The total mass of the envelope is shaded
in blue. A fitting formula from Guillochon & Ramirez-Ruiz (2013a) for a Γ = 5/3
polytrope is shown in dashed red. Once the core begins to be disrupted as well, the
single 5/3 polytrope yields the same amount of mass loss as the nested polytrope. The
bottom x-axis shows the β of the full star (i.e., including the envelope), and the top
x-axis shows the equivalent β of only the core.
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each cell of the simulation, which depends on its distance and velocity relative to the

center of mass of the star and to the black hole. Details of the calculation are presented

in Guillochon & Ramirez-Ruiz (2013a). Only material that is bound to the BH and not

bound to the star will contribute to the mass fallback onto the BH. We compute the

specific binding energy of the material in each cell of the simulation, which depends on

its distance and velocity relative to the center of mass of the star and to the black hole.

Figure 2.7 shows the spread in dM/dE over time for βcore = 0.5, 0.7, and

0.9 encounters, with the contribution from material unbound to the star in solid black

and contributions from the core and envelope of the remnant in red and blue. We see

that impact parameter drastically changes the spread in binding energy through and

following disruption, both for the bound and unbound material. Grazing encounters

leave the core relatively unperturbed and are able to retain more envelope material,

while deeper encounters leave a compact remnant that has been all but stripped of its

envelope.

Given dM/dE and a pericenter distance, we can calculate the mass fallback

rate onto the BH by Kepler’s third law,

dM

dt
=
dM

dE

dE

dt
=

(
dM

dE

)
1

3
(2πGMbh)2/3 t−5/3. (2.5)

The left panel of Figure 2.8 shows the spread in specific binding energy dM/dE versus

E at the last timesteps of our simulations for all impact parameters. We verify that

the binding energy has effectively “frozen in,” or converged to its final distribution,

by this timestep. The right panel shows dM/dE mapped onto dM/dt across time for
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Figure 2.7: Panels from left to right show the spread in specific binding energy for
βcore = 0.5, 0.7, and 0.9 encounters (the same as shown in Figure 2.5). Time increases
from top to bottom for each impact parameter and is labeled in terms of tcore

dyn . Material
bound to the star (the remnant) is shown in red and blue, corresponding to core and
envelope material, respectively. Material unbound to the star (the tidal tails) is shown
by the black solid line. A vertical dashed line is shown for reference at E = 0, where
material is moving with the center of mass of the star. A horizontal dashed line is shown
for reference at dM/dE = 1012 g2 erg−1. The binding energy of material both bound
and unbound to the star varies widely with β. Material spreads out in binding energy
through disruption, and higher impact parameters spread out the binding energy more
effectively. Higher impact parameters also leave a more compact remnant. A grazing
encounter retains some of the envelope, while a deeply plunging encounter loses nearly
all of it.
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Figure 2.8: Left panel: spread in specific binding energy as a function of β for a 0.17 M�
He WD disrupted by a 105 M� BH. Right panel: mass fallback rate Ṁ onto the BH
versus time for the same impact parameters, with the Eddington limit for this BH
shown in dashed black. Impact parameters range from βcore = 0.1 to 1.2 in increments
of roughly 0.1. See Figure 2.6 for the corresponding mass lost for each β.

the same impact parameters, with the Eddington limit for this BH shown in dashed

black. We take ṀEdd = 0.02 (η/0.1) (Mbh/106 M�) M�/yr with η = 0.1. Feeding

rates peak at tpeak ∼ 5 × 104 to 106 s ≈ 0.6 to 11 d depending on β. Weakly plunging

encounters peak later, while deeply plunging encounter peak earlier. Note that tpeak

evolves strongly with β (it spans more than an order of magnitude), in contrast to single

polytrope solutions where the evolution in tpeak is much more gradual (e.g., Guillochon

& Ramirez-Ruiz 2013a). This means that the He WD disruptions—and disruptions

of other objects with this core and extended envelope structure—probe a much wider

range of potential transient characteristics for a given BH mass. We see that even for

very weakly plunging encounters, for which only a fraction of the envelope is stripped

(see mass lost in Figure 2.6), the mass fallback rate is super-Eddington. Encounters

only stripping the envelope appear to have a shallower slope in early-time mass fallback

and smoother evolution near peak than encounters penetrating the core. This is due to
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their different polytropic structures.

Guillochon & Ramirez-Ruiz (2013a) presented a fitting formula for the peak

fallback rate of material onto the BH, where Ṁpeak = f(Mbh, β, γ). Figure 2.9 shows

Ṁpeak values from our simulations of the disruption of an 0.17 M� He WD compared

with those from this fitting formula for a Γ = 5/3 non-hydrogen-envelope WD with a

mass of 0.155 M�, the mass of the core of the He WD. We expect this functional form

to match for disruptions that penetrate the core. In low β encounters, the hydrogen

envelope provides mass return rates that are unavailable to WDs without envelopes.

2.5.4 Composition of debris

We track the core and envelope material separately in our simulations, which

allows us to track the composition of the debris falling onto the BH. In Figure 2.10 we

show Ṁ as a function of time for βcore = 0.5, 0.6, and 0.8, with absolute and fractional

contributions from the helium core in red and the hydrogen envelope in blue. The mass

fallback rate from weakly plunging encounters can be super-Eddington and hydrogen-

dominated. In more deeply plunging encounters, the early rise of the mass fallback rate

is fed almost entirely by the hydrogen envelope, while the peak and late time evolution

are fed by the helium core; the nature of this transition depends on β. Note that the

disruption turns the star inside out: the material that is removed first accretes first,

and is then buried underneath the material that is removed last and accretes last. The

diffuse envelope material feeds a qualitatively slower rise in the mass fallback curve

compared to the core material.

The first evidence that a range of stellar or spectral properties might be rep-
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Figure 2.9: Black filled circles show the peak mass fallback rate, Ṁpeak, versus β for the
encounters shown in Figure 2.8. The Ṁpeak fitting formula from Guillochon & Ramirez-
Ruiz (2013a) for a Γ = 5/3 polytrope with the mass of the core of this object, 0.155 M�,
is shown in dashed red. Ṁpeak values for encounters that penetrate the core are close
to those of a non-hydrogen-envelope WD, while low β encounters provide fallback rates
unavailable to WDs without envelopes.
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Figure 2.10: The tops of the panels from left to right show the mass fallback rate as
a function of time for βcore = 0.5, 0.6, and 0.8 encounters, respectively. The total Ṁ is
shown in solid black, and the Eddington limit for this BH in dotted black. Contribu-
tions from the helium core and hydrogen envelope are shown in dashed red and blue,
respectively. The bottoms of the panels show the mass fraction of Ṁ over time from
helium and hydrogen. The mass fallback rate from weakly plunging encounters can be
super-Eddington and hydrogen-dominated. In more deeply plunging encounters, there
is a transition between envelope-fed fallback and core-fed fallback that depends on β.

resented in TDEs was the discovery of a helium-rich TDE, PS1-10jh (Gezari et al.

2012a). Gezari et al. explained its hydrogen-free spectrum as the result of the tidal

disruption of the helium-rich core of a star, similar in structure to an He WD pro-

genitor. Arcavi et al. (2014b) noted that TDEs observed thus far show a continuum

of helium-rich to hydrogen-rich spectral features; there is an ongoing debate over the

origin of the strong helium emission. Kochanek (2016a) found that stellar evolution

can play a role in producing this spectral diversity. Roth et al. (2016) modeled the

emission from TDEs through an extended, optically thick envelope formed from stellar

debris. They find that due to optical depth effects, hydrogen Balmer line emission is

often strongly suppressed relative to helium line emission. For MS stars, for example,

it is possible for the hydrogen emission lines to be absent. Having said this, the spe-

cific composition of the material is expected to have consequences on the detailed line
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ratios. Line diagnostics from disruptions of He WDs could transition from hydrogen

to helium smoothly with β. An encounter stripping only the envelope could provide

a rare, (nearly) pure hydrogen-powered mass fallback. If an optically thick reprocess-

ing envelope exists, however, observational evidence of this type of encounter could be

variable.

2.6 TDE Demographics

Here we explore the tidal disruption menu of BHs and disrupted objects in

terms of the peak fallback rate and its associated peak timescale, and place our He

WDs in context. Through Kepler’s third law, we can write scalings of the peak mass

fallback rate and its associated time of peak,

Ṁpeak ∝M−1/2
bh M2

? R
−3/2
? (2.6)

tpeak ∝M1/2
bh M−1

? R
3/2
? , (2.7)

where the Ṁpeak ∝ M2
? scaling results when we assume that a constant fraction of the

star’s mass is lost in the disruption. Guillochon & Ramirez-Ruiz (2013a, 2015c) found

fitting parameters for these scaling relations that depend on the polytropic Γ and impact

parameter β. We use these below.

In Figure 2.11, we show Ṁpeak versus tpeak values for the He WD disruptions

presented in this work, as well as for several representative disruptions of other objects:

a 0.6 M� non-He WD, a 0.6 M� MS star, a 50 MJup brown dwarf (BD), a 1 MJup
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planet, and a 1.4 M�, 10 R� red giant (RG). We use fitting parameters from Equations

A1 and A2 of Guillochon & Ramirez-Ruiz (2013a) to calculate Ṁpeak and tpeak for the

other objects, and to scale with BH mass. We use a polytropic Γ of 5/3 for the WD,

MS star, BD, and planet (the values are similar if we use 4/3 for the MS star), and 4/3

for the RG. We show impact parameters that remove from ∆M/M? = 0.01 to 1 from

each object.

As in the tidal disruption menu shown in Figure 2.1, we only show encounters

with BHs obeying our prompt circularization condition, 4GMbh/c
2 < rt < 10GMbh/c

2.

Here, flares resulting from the fallback of material onto the BH are both visible (dis-

ruption occurs outside the innermost bound circular orbit) and predominantly prompt

(circularization of the debris is efficient). We color the encounters by BH mass.

There is a huge variety in the timescales and fallback rates with which stars

feed MBHs following TDEs. Prompt flares separate into different timescale classes based

on the stellar type and BH mass combination. Prompt flares also show relatively unique

timescale/BH mass combinations—i.e., a timescale and a prompt flare can imply not

only a stellar type but also a BH mass. The clean separations blur slightly if we allow

for (1) the full distribution of masses and radii available for different classes of objects,

which is especially important for He WDs, and (2) the effects of viscous delay, which

smear the effective timescales and mass fallback rates.

In Figure 2.12 we show a fallback rate curve for each of the objects in Figure

2.11, scaled to disruptions with a 106 M� BH for comparison. Note that the 0.6 M�

WD disruption would occur inside the event horizon for this BH mass. We show fallback
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from a 1.4 M� RG at two different points along the giant branch: ascending the RG

branch (RG1; R ≈ 10 R�) and the tip of RG branch (RG2; R ≈ 100 R�), from MacLeod

et al. (2012a). We show a β = 0.9 encounter (full disruption) for the non-He WD, the

MS star, and the planet, and a β = 1.5 encounter for the giant stars. We show two Ṁ

curves for the He WD: one for a full disruption (βcore = 0.9) and one for an envelope-

stripping encounter (βcore = 0.5). For a given BH mass, these objects offer distinct

fallback rates and characteristic timescales.

Converting these fallback rates into luminosities is not straightforward. In this

paper we have focused on rapidly circularized TDEs, where the accretion rate (and

so the luminosity) is expected to closely follow the fallback rate. This is predicted

to be true for emission both from the disk (Guillochon et al. 2014a) and from stream

collisions (Dai et al. 2015), and is observed to be the case in the best-sampled, non-

beamed UV/optical events (e.g., Gezari et al. 2012a; Guillochon et al. 2014a). However,

it is not evident that the luminosity will always follow the fallback rate, in particular

when circularization is inefficient or for BHs accreting at highly super-Eddington rates

(Shiokawa et al. 2015; Piran et al. 2015b). For example, the event Sw J1644+57 (Bloom

et al. 2011a) did not appear to follow a t−5/3 luminosity evolution during its prompt

decline phase. In addition, jetted emission may not be Eddington limited; its strength

depends on the radiative efficiency of the (relativistic) flow. Even in the absence of a jet,

McKinney et al. (2015) show that the radiative efficiency of super-Eddington accretion

flows can be high under certain circumstances.

While most full disruptions are expected to provide super-Eddington accretion
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Figure 2.11: Peak mass fallback rate versus time of peak for a 0.6 M� non-He WD, a
0.17 M� He WD, a 0.6 M� MS star, a 50 MJup brown dwarf, a 1 MJup planet, and a
1.4 M� red giant at RG1 (≈ 10 R�). Encounters are colored by BH mass. Dotted lines
show where Ṁpeak × tpeak = 0.1 M� and 1 M�. We show only encounters obeying our
circularization requirement, 4GMbh/c

2 < rt < 10GMbh/c
2, favoring prompt flares. We

show impact parameters that remove from ∆M/M? = 0.01 to 1 from each object.
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Figure 2.12: Mass fallback rate curves for the representative objects shown in Figure
2.11 scaled to a single BH mass (106 M�) for comparison. Colors are the same as in
Figure 2.1 menu. We show a 0.6 M� non-He WD in red, a 0.17 M� He WD in purple, a
0.6 M� MS star in blue, a 50 MJup brown dwarf in brown, a 1 MJup planet in green, and
a 1.4 M� red giant at RG1 (≈ 10 R�) and at RG2 (≈ 100 R�) in light blue. We show
a β = 0.9 encounter (full disruption) for the non-He WD, MS star, BD, and planet,
and a β = 1.5 encounter for the giant stars. For the He WD, we show two Ṁ curves
for comparison: the solid line shows a full disruption (βcore = 0.9) and the dashed line
shows an envelope-stripping encounter (βcore = 0.5).

46



rates (Figure 2.12), the observed peak luminosities of UV/optical TDEs appear to be

Eddington limited, or sub-Eddington (Hung et al. 2017a). Two possible solutions to

this are (1) that the most commonly observed events are partial disruptions, where the

fallback rate can be significantly lower (e.g., Guillochon & Ramirez-Ruiz 2013a) or (2)

that the radiative efficiency is low (e.g., Piran et al. 2015a).

Constructing this menu—which spans many orders of magnitude in BH mass,

fallback timescale, and fallback rate—is nonetheless a key step toward making mean-

ingful comparisons with observations. We have only shown a few representative objects;

the full phase space of luminosities and timescales, the effects of viscous delay, and a

comparison to observations will be explored in future work.

2.7 Discussion

2.7.1 Possible Candidates for He WD Disruption

Here we compare tpeak values from simulations to those of two particularly

rapidly rising TDE candidates, Dougie (Vinkó et al. 2015) and PTF10iya (Cenko et al.

2012a), accounting for luminosity and BH mass constraints. Vinkó et al. (2015) estimate

Dougie’s peak bolometric luminosity as Lpeak ≈ 5(±1) × 1044 erg s−1 and its rise time

as trise ∼ 10 d. They estimate a central BH mass of a few 106 to 107 M� for Dougie’s

host galaxy. Cenko et al. (2012a) estimated 10iya’s peak bolometric luminosity as

Lpeak ≈ (1 − 5) × 1044 erg s−1 and place a limit on its rise time of trise < 5 d. They

constrain the central BH mass via the observed bulge luminosity versus BH mass relation

as logMBH/M� . 7.5.
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In order to constrain the kinds of disruptions that can produce such rapid

flares, we construct a histogram of tpeak for the 0.17 M� He WD disruptions presented

in this work as well as for regular WDs, MS stars, BDs, and planets. We model regular

WDs, MS stars, BDs, and planets with M < 0.3 M� as Γ = 5/3 polytropes. We model

MS stars with M > 0.3 M� as Γ = 4/3 polytropes. The mass at which we transition

from 5/3 to 4/3 does not affect our conclusions significantly, as their tpeak values overlap.

Giant star disruptions have longer timescales than we are interested in here.

We draw from flat distributions in Mobj, with white dwarf masses of 0.2 M� <

MWD < 1 M�, MS star masses of 0.085 M� < MMS < 3 M�, BD masses of 13 MJup <

MBD < 0.085 M�, and planet masses of 1 MJup < Mpl < 13 MJup. We use only

the one 0.17 M� He WD mass. We draw from a flat distribution in BH mass with

106 < Mbh/M� < 107, roughly the BH mass constraints for Dougie and 10iya. We draw

from a flat distribution in β, discarding encounters where rp < ribco. We estimate the

peak luminosity from each encounter as Lpeak = min
(

0.1Ṁpeakc
2, LEdd

)
for the given

BH, as these events were observed in the optical/UV and we expect accretion luminosity

to be Eddington limited. We discard encounters with Lpeak < 3 × 1044 erg s−1, which

is comfortably below the errors in Dougie’s peak luminosity.

In Figure 2.13, we show the outcome of the above exercise. We find that

the only objects that satisfy the luminosity requirement are MS stars, BDs, and our

prototypical He WD. MS stars and BDs, however, cannot reproduce the rapid timescales

of Dougie and 10iya from Ṁ alone. Thermal TDEs such as PS1-10jh show a good

correspondence between the observed luminosity and the fallback rate (Guillochon et al.
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Figure 2.13: Histograms of peak timescales from the disruption of different types of
objects, normalized to area=1, as compared to the peak timescales of two rapidly rising
TDE candidates, Dougie and PTF10iya. We include non-He WDs, MS stars (in blue),
brown dwarfs (in brown), planets, and the 0.17 M� He WD (in purple). We draw
from flat distributions in object mass, BH mass, and β, as described in the text. Peak
luminosities are Eddington limited, and we require Lpeak > 3× 1044 erg s−1 in order to
reproduce Dougie’s peak luminosity.
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2014a). This simplicity makes the disruption of He WDs an appealing explanation for

rapidly rising nuclear transients.

In order to explain Dougie as a MS star disruption, models require a strong

wind component with a functional form that may not directly reflect Ṁ (Vinkó et al.

2015). A wind that carries a significant amount of kinetic and thermal energy may

be produced if the accretion rate onto the BH exceeds its Eddington limit (Strubbe &

Quataert 2009a; Lodato & Rossi 2011; Metzger & Stone 2016; Jiang et al. 2016). While

this scenario could explain Dougie and other rapidly rising TDEs such as PTF10iya,

their timescales can be naturally explained by the Ṁ from He WD disruptions.

We note that Vinkó et al. (2015) found that Dougie appears offset ≈ 3.9

kpc from the photometric center of its host galaxy. This initially seems to disfavor a

TDE interpretation. However, the photometric center of a galaxy is not necessarily its

dynamical center. Vinkó et al. also noted that lower-mass off-center BHs are rare yet

not unprecedented (e.g., Barth et al. 2008; Reines & Deller 2012), making the TDE

hypothesis tenable.

2.7.2 Caveats

Our study focuses on a single example of the disruption of a prototypical

0.17 M� He WD. However, as we saw in Section 2.3.1, these objects can have a wide

range of masses and radii, and the radius evolution even for a single mass is appreciable

(see Figure 2.2). The inclusion of hydrogen-bearing He WDs with a larger range of

core masses and envelope masses could potentially explain events with shorter or longer

timescales than the prototypical encounters presented here.
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In this work, we model the interaction between only a single He WD and a BH.

We expect, however, that many He WDs will be in binary systems as they approach

the BH, composed of either two He WDs or one He WD and one CO/ONe WD. This

suggests that some disruptions of He WDs involve two stars instead of one (Antonini

et al. 2011). The interaction of the binary with the BH can shift the distribution in

binding energy of the debris, and cause the time of peak accretion to occur either earlier

or later depending on the sign of the energy shift (a similar effect is seen in disruptions

of stars on elliptical orbits; Hayasaki et al. 2012; Dai et al. 2013a). In extreme cases,

this interaction can bind all of the material to the BH (as opposed to just half), allowing

the BH to accrete the whole star; alternatively, all of the material can become unbound,

preventing any accretion onto the BH. If the binary separation is of order the tidal

radius, double tidal disruptions are possible (Mandel & Levin 2015). However, our

single-star calculations are still applicable for double disruptions, as the hydrodynamics

of the disruption are independent for each of the components of the binary. In cases

where the outgoing debris streams from the two disrupted stars do not interact with one

another, the fallback resulting from a binary disruption can be mimicked by applying

simple shifts to the binding energy distribution of the debris of the single-star case.

We do not consider general relativistic effects in our disruption calculations—

the gravitational potential of our point mass is purely Newtonian. Cheng & Bogdanović

(2014a) investigated relativistic effects on the fallback rate of debris. For highly rel-

ativistic encounters, they found a more gradual rise and delayed peak of the fallback

compared to the Newtonian result. For a 1 M�, 1 R� MS star encounter with a 107 M�
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BH, where rp/rg ≈ 10, they found a difference in Ṁpeak of ≈ 18% and a difference in

tpeak of ≈ 10% between Newtonian and relativistic simulations. For a 0.6 M� WD

encounter with a 105 M� BH, where rp/rg ≈ 4.6, the difference in Ṁpeak is ≈ 69% and

the difference in tpeak is ≈ 49%.

For the He WD encounters presented in this work, the critical β of full dis-

ruption has rp/rg ≈ 12, and the transition between an envelope-stripping encounter

and one penetrating the core occurs at rp/rg ≈ 19. Thus, relativistic corrections to

our results should be small. In scaling to higher BH masses, however, our errors will

increase. However, this will not weaken (and will in fact strengthen) our conclusions

regarding the ability of He WDs to achieve the peak timescales of rapidly rising TDE

candidates such as Dougie and PTF10iya though Ṁ alone, as the relativistic effect is

to lengthen the peak fallback timescale.

We use a nested polytrope matched to a MESA profile of the He WD as

the initial condition in our disruption calculations. We also track only two fluids—

one for the core and one for the envelope—in the simulation, and make the simple

choice to model the core as fully helium and the envelope as fully hydrogen. A more

realistic treatment might use the MESA profile directly in the disruption calculations,

and track the composition of the object more fully. For the particular object used in

the simulations in this work, however, the gains in accuracy (aside from composition

information) in using the MESA profile directly may be minimal, as the nested polytrope

profile is very close to the true profile.
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2.7.3 Conclusions

We have modeled the tidal disruption of a new class of object: the low-mass

He WD with an extended hydrogen envelope. These objects are a missing link both

hydrodynamically and in terms of BH masses probed through prompt tidal disruption

flares. In summary, we find that:

1. Because of their lower density cores and extended envelopes, these objects extend

the potential BH masses probed by single-star evolution WDs. In general, their

peak fallback timescales will be longer that those of typical WDs and shorter than

those of MS stars.

2. Grazing encounters that strip only the envelope will be hydrogen dominated,

and—for a very small amount of mass removed—can provide high and often super-

Eddington fallback.

3. Encounters penetrating the core generally have a fallback rate that is hydrogen-

dominated in its rise and helium-dominated in its peak and decline, with relative

composition versus time a function of impact parameter.

4. The typical peak accretion rate of He WD disruptions is a few times larger than

that of a typical MS disruption. This likely makes these disruptions observable to

larger distances, which would make them a larger fraction of the observed total

than suggested by their relative population.

These objects are perhaps the last missing piece of a theoretical tidal disruption menu

that includes WDs, MS stars, planets, and evolved stars. Constructing this menu is key
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to better understanding tidal disruptions. The reader is referred to Figures 2.1, 2.11,

and 2.12 for a summary of the phase space of the menu.

This work may have particular bearing on two puzzling observational aspects of

TDEs that have emerged in the past few years. The first is their rates. There is a great

deal of uncertainty in the properties of the nuclear star clusters from which stars are

fed into disruptive orbits. Most calculations make standard assumptions of a spherical

single-mass nuclear star cluster that feeds stars to the BH by a two-body relaxation-

driven random walk in angular momentum space. These calculations predict disruption

rates of & 10−4 yr−1 per galaxy (Magorrian & Tremaine 1999b; Wang & Merritt 2004b;

Stone & Metzger 2016a), and are in general in tension with the lower observationally

derived rates of roughly 10−5 yr−1 (e.g., van Velzen & Farrar 2014). However, there can

be several complicating effects—such as secular relaxation, or the presence of a triaxial

potential, rings or disks of stars, and/or a second massive body—and there is a lack

of understanding of their relative importance in local galaxies. In addition, we need

to better understand the mass spectrum of disrupted stars, in particular given mass

segregation (e.g., MacLeod et al. 2016c).

The second puzzling observation is that a significant fraction of tidal disrup-

tions may arise from unique stellar populations. We are learning that tidal disruption

flares may occur preferentially in post-starburst galaxies (Arcavi et al. 2014b; French

et al. 2016b), and that these types of galaxies are overrepresented as TDE hosts. This

remains a mystery. Post-starburst galaxies are elliptical-type galaxies that have expe-

rienced a star formation burst that has stopped within the past ∼ 1 Gyr, leaving these
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galaxies with both old and very young stars.

If only certain types of stars (which are a small fraction of the population)

produce prompt flares for BH masses of ∼ 106 M� due to circularization effects, this

could alleviate some of the tension in the observed flaring versus disruption rate. As we

have argued in Section 2.3.2, the rate of luminous flare production can be distinct from

the disruption rate itself. We have shown in Section 2.2 and Section 2.6 that different

stellar types probe distinct islands of BH mass when we consider prompt flares. This is

strong evidence for a connection between stellar population details and the disruption

flare rates. The post-starburst galaxy preference may be due to the production of

particular stellar species in the nuclei of these galaxies, rather than in the dynamics of

their nuclei. We caution, however, that the stellar population of a galaxy as a whole

does not necessarily reflect its nuclear population.

In this work, we have argued that to effectively use TDEs to constrain the

mass function of BHs, we need to acknowledge that not all disruptions produce lumi-

nous flares. Moving forward likely involves understanding the intersection of nuclear

region stellar dynamics, stellar populations, and stellar evolution, along with the hy-

drodynamics of the disruptions themselves. Targeting the observational characteristics

of certain TDEs might offer a way to identify BHs at the low end of the supermassive

BH mass range.
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Chapter 3

Tidal Disruption Event Host

Galaxies in the Context of the

Local Galaxy Population

Abstract

We study the properties of tidal disruption event (TDE) host galaxies in the

context of a catalog of ∼500,000 galaxies from the Sloan Digital Sky Survey. We explore

whether selection effects can account for the overrepresentation of TDEs in E+A/post-

starburst galaxies by creating matched galaxy samples. Accounting for possible selection

effects due to black hole (BH) mass, redshift completeness, strong AGN presence, bulge

colors, and surface brightness can reduce the apparent overrepresentation of TDEs in

E+A host galaxies by a factor of ∼4 (from ∼×100-190 to ∼×25-48), but cannot fully
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explain the preference. We find that TDE host galaxies have atypical photometric

properties compared to similar, “typical” galaxies. In particular, TDE host galaxies

tend to live in or near the “green valley” between star-forming and passive galaxies,

and have bluer bulge colors (∆(g − r) ≈ 0.3 mag), lower half-light surface brightnesses

(by ∼1 mag/arcsec2), higher Sérsic indices (∆ng ≈ 3), and higher bulge-to-total-light

ratios (∆B/T ≈ 0.5) than galaxies with matched BH masses. We find that TDE host

galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices

and B/T fractions—on average in the top 10% of galaxies of the same BH mass—

suggesting a higher nuclear stellar density. We identify a region in Sérsic index and BH

mass parameter space that contains ∼2% of our reference catalog galaxies but ≥ 60%

of TDE host galaxies. The unique photometric properties of TDE host galaxies may

be useful for selecting candidate TDEs for spectroscopic follow-up observations in large

transient surveys.

3.1 Introduction

The cores of many galaxies undergo intense nuclear activity during their life-

times. This activity inevitably leads to the growth of the central supermassive black hole

(SMBH) but is short lived compared to galactic ages and was more prevalent when the

universe was only ∼20% of its current age (Soltan 1982; Ho 2009). Quiescent SMBHs

starved of fuel are common in the local universe (Greene & Ho 2007b) and are being

discovered in nearby galaxies.

The presence of quiescent SMBHs in the nuclei of galaxies has been directly
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inferred from the dynamics of the stars and/or gas near their centers (e.g., Kormendy

& Ho 2013; McConnell & Ma 2013). For galaxies too distant to accurately resolve the

nuclear stellar or gas kinematics, it is possible to probe the presence of an SMBH with

the fate of the central, closely-packed stars. Each star within the nuclear star cluster

traces out an intricate orbit under the combined influence of the SMBH and other stars.

The orbits are gradually altered owing to the cumulative effect of encounters. As a

result, stars that are scattered into orbits that pass too close to the central SMBH can

be ripped apart by the black hole’s tidal field in what is known as a tidal disruption event

(TDE; Hills 1975b; Frank & Rees 1976a; Rees 1988b). After the star is disrupted, up

to half of the stellar debris falls back and accretes onto the SMBH (Carter & Luminet

1982b; Evans & Kochanek 1989b; Lodato et al. 2009b; Guillochon & Ramirez-Ruiz

2013b). The accretion powers a flare that is a definitive sign of the presence of an

otherwise quiescent SMBH.

TDEs are identified by a combination of a rapid increase in flux, proximity to a

host galaxy’s nucleus, and a decay in luminosity that loosely follows the canonical t−5/3

law, though the most compelling events are those in which the rise, peak, and decay of

the transient are observed with a frequent cadence (e.g., Komossa et al. 2004; Gezari

et al. 2009, 2012b; Chornock et al. 2014a; Arcavi et al. 2014a; Holoien et al. 2014a;

Miller et al. 2015). The (well-sampled) light curves of TDEs contain vital information

about the disruption and can be used to constrain the properties of the SMBH and the

stellar object that was disrupted (e.g., Guillochon et al. 2014b; Law-Smith et al. 2017b).

A few dozen candidate TDEs have been observed in the optical, UV, and X-ray (for a
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summary, see Komossa 2015b; Auchettl et al. 2017b). Future surveys such as the Large

Synoptic Survey Telescope (LSST) will likely find hundreds to thousands more events

(van Velzen et al. 2011).

The observed rates of TDEs and, in particular, the relative rates of flares in

different galaxy hosts, hold important discriminatory power over both the dynamical

mechanisms operating in galactic nuclei and the nature of their underlying stellar pop-

ulations. However, the dynamical mechanisms that feed stars into disruptive orbits

within nuclear star clusters remain highly uncertain. Stellar tidal disruption rates have

typically been studied under the assumption of a spherical nuclear star cluster that feeds

stars to the black hole (BH) through a two-body relaxation-driven random walk in an-

gular momentum space (Magorrian & Tremaine 1999a; Wang & Merritt 2004a; Stone

& Metzger 2016b). However, disks of stars and gas, if present, could feed stars to the

BH at an enhanced rate through collisionless processes or secular instabilities (Light-

man & Shapiro 1977; Rauch & Ingalls 1998; Magorrian & Tremaine 1999a; Madigan

et al. 2009, 2011; Merritt & Vasiliev 2011; Vasiliev & Merritt 2013; Antonini & Merritt

2013). A second massive body, such as an inspiraling moderately massive BH, could

also induce large-angle scatterings of stars (Ivanov et al. 2005; Chen et al. 2009). These

processes and others could result in favorable conditions for TDEs and might manifest

as enhanced rates within particular galaxy hosts (for a review, see Alexander 2017).

Understanding the host galaxies of TDEs is thus important; however, this

understanding is in its infancy. Many uncertainties in the conditions necessary for tidal

disruption will only be resolved through an understanding of the connection between
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TDEs and their host galaxies. This connection will hopefully become clearer with a

larger sample of TDE host galaxies, but the current sample already shows hints of

being highly unusual.

TDEs appear to be observed preferentially in rare quiescent Balmer-strong

galaxies (also known as post-starburst or K+A galaxies, or more restrictively as E+A

galaxies; Arcavi et al. 2014a; French et al. 2016a). In a sample selected from the Sloan

Digital Sky Survey (SDSS), French et al. (2016a) found that a particular selection of

E+A galaxies contained only 0.2% of the sample but more than one-third of observed

TDE host galaxies, implying a drastic rate enhancement. However, it is important to

make a clear distinction between galaxies in which TDEs can occur and galaxies in

which TDEs might be observable. We need to discern among (1) the intrinsic TDE

rate based on stellar dynamics, (2) the rate of TDEs that produce luminous flares, and

(3) the potential selection effects against detecting a TDE. In this paper, we seek to

disentangle some of these issues.

We study the properties of TDE host galaxies in the context of a catalog

of ∼500,000 galaxies from the SDSS. We consider first-order physical constraints and

observational selection effects, and test whether they can account for the large preference

for E+A/post-starburst galaxy hosts. To do this, we compare a sample of TDE host

galaxies to matched control samples of galaxies in the local universe. We also find a

new (photometric) observable that may be more broadly predictive of an enhanced TDE

rate than E+A classification: the central light concentration, which is apparent in both

galaxy Sérsic index and bulge-to-total-light ratio (B/T ).
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We take our sample of TDEs from the catalog presented in Auchettl et al.

(2017b) and compile galaxy properties from the SDSS galaxy catalogs of Brinchmann

et al. (2004), Simard et al. (2011), and Mendel et al. (2014). We explore several key

properties of TDE host galaxies, including stellar mass, BH mass, redshift, star forma-

tion rate (SFR), bulge colors, surface brightness, Sérsic index, bulge-to-total-light ratio,

and galaxy asymmetry. We also compare TDE host galaxies to active galactic nuclei

(AGNs) and star-forming (SF) galaxies across these observables.

This paper is organized as follows. We describe our data in Section 3.2. We

present the uniqueness of TDE host galaxies in Section 3.3. We explore selection effects

in Section 3.4. We present a possible physical explanation for the overabundance of

TDEs in E+A/post-starburst galaxies, as well as a new unique feature of all TDE host

galaxies, in Section 3.5. We discuss and interpret our findings in Section 3.6. We study

a few other properties of TDE host galaxies in Appendix 3.7 and show correlations

between properties in Appendix 3.8.

3.2 Data

In this section, we describe our data sources as well as some conventions and

definitions we use throughout the paper.

3.2.1 Reference Catalog

Our reference catalog is contained in the SDSS (York et al. 2000; Gunn et al.

1998, 2006) DR7 (Abazajian et al. 2009) and is based on the main galaxy sample (Strauss

61



et al. 2002). We make use of the MPA-JHU catalogs2 (Brinchmann et al. 2004) of

∼700,000 galaxies, the Simard et al. (2011) catalog of bulge+disk decompositions and

photometry for 1.12 million galaxies, and the Mendel et al. (2014) catalog of bulge, disk,

and total stellar mass estimates for ∼660,000 galaxies.

We obtain redshift, bulge g− r, bulge and galaxy magnitude, galaxy half-light

radius, galaxy Sérsic index (see Equation 3.4), bulge fraction (B/T ), galaxy asymmetry

indicator, and inclination measurements from the Simard et al. (2011) catalog. We

obtain velocity dispersion, Hα equivalent width (EW), Lick HδA, Dn(4000), and star

formation rate (SFR) measurements from the MPA-JHU catalog. Here, we define Hα

EW as H ALPHA FLUX/H ALPHA CONT. We obtain total and bulge stellar masses from the

Mendel et al. (2014) catalog. We collate these measurements into a catalog of ∼610,000

galaxies.

We then apply the following quality control requirements. Following Scudder

et al. (2012), we remove all galaxies with negative flux or continuum measurements as

these are found to be unreliable. For consistency with the samples defined in French

et al. (2016a), we require z > 0.01 (to prevent severe aperture bias), reliable Hα EWs

(H ALPHA EQW ERR > -1 in the MPA-JHU catalog), and median signal-to-noise ratio

(S/N) per pixel of the integrated spectrum of greater than 10. Applying these selection

criteria leaves us with a final catalog of ∼500,000 galaxies—we refer to this as our

“reference catalog” throughout the paper. Unless otherwise specified, our quoted errors

are those provided with the measurements from their respective catalogs.

We plan to compare our sample of TDE host galaxies to AGN and SF galaxies

2http://wwwmpa.mpa-garching.mpg.de/SDSS/DR7
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within our reference catalog. The standard way of distinguishing AGN from SF galaxies

is through the so-called BPT diagram of emission-line ratios of Baldwin et al. (1981); we

use the empirical diagnostic of Kauffmann et al. (2003c) that is based on this approach.

We classify AGN and SF galaxies as those with a minimum S/N of the four spectral lines

used in the BPT classification—OIII (5007Å), Hβ, NII (6584Å), and Hα—of greater

than 3. We classify low-S/N AGN and low-S/N SF galaxies as those with a minimum

S/N of less than 3.

We use the Mbh-σe scaling from Kormendy & Ho (2013) to estimate galaxy

BH masses:

Mbh

109M�
=
(
0.309+0.037

−0.033

) ( σe
200kms−1

)4.38±0.29
. (3.1)

Equation 3.1 yields Mbh values with an intrinsic scatter of 0.29 dex. We use velocity dis-

persion measurements from the MPA-JHU catalog and perform an aperture correction

to obtain the bulge/spheroidal velocity dispersion σe, using Equation (3) in Jorgensen

et al. (1995):

log
σap

σe
= −0.065 log

(
Rap

Re

)
− 0.013

[
log

(
Rap

Re

)]2

(3.2)

where Re is the effective radius of the bulge or spheroid from the Simard et al. (2011)

catalog, Rap is the aperture radius (1.5′′), and σap is the velocity dispersion measured

within the aperture. Our errors on BH mass include the error on velocity dispersion

and the intrinsic scatter in the Mbh-σe scaling, and are ∼0.4 dex. Our uncertainties

on BH mass are relatively large, particularly for galaxies with low velocity dispersions

(a few of our TDE host galaxies have velocity dispersions near or slightly below the

63



70 km s−1 SDSS instrumental resolution).3 However, our analysis in this work is pri-

marily concerned with differences between properties of TDE host galaxies and our

reference catalog and so does not rely on accurate determinations of BH masses—only

that they are determined homogeneously in the various samples we consider. Indeed, we

often control for BH mass. We also performed our analysis using M?,bulge to determine

BH masses using the scaling from Kormendy & Ho (2013),

Mbh

109M�
=
(
0.49+0.06

−0.05

)( Mbulge

1011M�

)1.16±0.08

, (3.3)

and M?,bulge estimates from the Mendel et al. (2014) catalog, as well as using different

scalings for Mbh-σ, and our conclusions are insensitive to these choices. In fact, if we

replace BH mass with M?,total throughout our analysis, our conclusions remain the same.

When we study bulge quantities, such as the bulge color, bulge fraction (B/T ),

and bulge magnitude, obtained from the Simard et al. (2011) catalog of bulge+disk

decompositions, we will show measurements from all galaxies in our reference catalog.

Note that this will include galaxies where a second component is not statistically justified

in the fit. We can isolate a relatively “pure” sample of bulges by including only galaxies

for which the data support a bulge+disk decomposition compared to a single Sérsic fit

(for example, by requiring PpS < 0.32; see Simard et al. 2011). The size of this “pure”

bulge sample depends mostly on the data quality and so it can be highly incomplete.

3We note that Wevers et al. (2017a) recently published the first homogeneously measured BH masses
for a complete sample of 12 optical-/UV-selected TDE host galaxies. We use the SDSS velocity disper-
sions, even though they are less accurate, as our goal is to use consistent metrics in comparing between
TDE hosts and our reference catalog. That being said, the TDE host galaxy BH masses we match on
in this work are broadly consistent with the range found by Wevers et al. (2017a).
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This sample includes roughly one-third of our reference catalog and only three of our

TDE host galaxies (numbers 5, 7, and 8 in Table 3.1). Although the data quality cannot

always statistically justify the bulge+disk decomposition, bulge measurements can be

applied in a consistent way to our entire sample, and we find intriguing differences

between the TDE host galaxies and our reference catalog (see Section 3.3).

The SDSS is biased in a few ways, and this leads to some sample limitations.

Most importantly, the SDSS is inherently flux limited. This limits our sample to TDEs

that are fairly low z, but since most observed TDEs are fairly low z, this is not a

major problem. Our approach in this paper—of not just using the entire SDSS for our

comparison, but selecting matched control samples on several parameters, forcing the

parameter space to be the same—should mitigate most inherent biases in our sample.
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3.2.2 TDE Host Galaxies

We use the Auchettl et al. (2017b) catalog of 71 candidate TDEs as a parent

sample of TDE host galaxies. We remove candidates with only one observation and those

in the Not a TDE and Unknown categories, leaving us with 42 candidate TDEs. We

use the R.A., decl., and z of these host galaxies to find matches in our reference catalog

described above. Of the 42 candidate TDE host galaxies, 10 are in our reference catalog;

the relatively low number of matches is mainly due to the redshift and magnitude limits

of the various catalogs we draw from, as well as the fact that most galaxies require an

SDSS spectrum for inclusion in these catalogs. These matches and their numbering (1-

10) used throughout the paper are listed in Table 3.1, along with the relevant primary

references.

We will use TDE host galaxies numbered 1-5 in our matching analysis of the

extent of selection effects on the overrepresentation of TDEs in quiescent Balmer-strong

galaxies (Section 3.4). TDE candidates 6-9 were not identified photometrically (i.e., by

their light curves) but were instead proposed as TDE candidates due to their unique

spectra: they are “extreme coronal line emitters,” and are difficult to explain as standard

AGNs. Numbers 9 and 10 are not in the MPA-JHU catalog, and so do not have velocity

dispersion, Hα EW, Lick HδA, or SFR measurements from this catalog. Additionally,

No. 8 does not have a reliable velocity dispersion measurement from the MPA-JHU

catalog (it is flagged with a negative error). We use the Mbh-M?,bulge relation from

Kormendy & Ho (2013), using M?,bulge measurements from the Mendel et al. (2014)

catalog, to estimate BH masses for Nos. 8, 9, and 10—these BH masses do not enter
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into the analysis and are only used to place these TDE host galaxies on our 2D plots

versus BH mass. TDE hosts 1-5 are shown with red points and histograms throughout

the paper, and TDE hosts 6-10 are shown with orange points. In our 1D stacked

distributions, we will show the histograms for all TDE candidate with matches in our

reference catalog (1-10) with dotted black lines. Finally, we will show Hα EW and Lick

HδA measurements for five TDE host galaxies (labeled a-e, see Table 3.1) not in our

reference catalog in Figure 3.1. These last five are not used in our analysis, yet they

provide additional evidence of an overrepresentation of TDEs in E+A/post-starburst

galaxies. Although the small number of TDE host galaxies precludes performing detailed

statistics, we are nonetheless able to draw compelling conclusions about the uniqueness

of these galaxies.

The robustness of our conclusions may suffer from small numbers. Addition-

ally, it is possible that the 10 TDE host galaxies (and ultimately the five used in our

main analysis) are a special subset of TDE host galaxies and are not representative

of the parent sample of 42 host galaxies. The 10 TDE host galaxies in our reference

catalog are relatively low z and are not particularly faint, so that they are included in

SDSS, and are therefore the most well-characterized in terms of their host properties.

This is a potential source of bias in the TDE host sample.

Auchettl et al. (2017b) divide their candidate events into the categories X-

ray TDE, Likely X-ray TDE, Possible X-ray TDE, and Veiled TDE. We provide this

classification in Table 3.1, but the number of matches in each category is too small

to make robust conclusions about differences in TDE host galaxies between categories.
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The categorization is explained in detail in Auchettl et al. (2017b) but we summarize

it here. Events in the X-ray TDE category have a well-defined and trustworthy X-ray

light curve. Events in the Likely X-ray TDE category have very similar properties, yet

with more limited data coverage. Events in the Possible X-ray TDE category have even

more limited X-ray observations. Events in the Veiled TDE category have a well-defined

optical/UV light curve but no X-ray emission near the peak.

3.3 Uniqueness of TDE Hosts

Following French et al. (2016a), we define the following selections in order to

isolate quiescent Balmer-strong galaxies. We define the strong F16 (sF16) selection as

HδA − σ(HδA) > 4.0 and Hα EW < 3.0. Here, σ(HδA) is the error in the Lick HδA

index. Hα EW emission is an indicator of current star formation, and so this selects for

galaxies with little ongoing star formation (i.e., with specific SF rates well below the

main sequence of star-forming galaxies). HδA absorption, from A stars, indicates star

formation within the past ∼Gyr. So, sF16 galaxies have had a strong starburst in the

last ∼Gyr. We define the weak F16 (wF16) selection as HδA > 1.31 and Hα EW <

3.0. The looser cut on HδA means that wF16 galaxies could have several possible star

formation histories. Not accounting for selection effects, 0.2% of our reference catalog

falls in the sF16 selection and 2.3% falls in the wF16 selection. Throughout this paper,

we will define galaxies in the sF16 selection as “E+A” galaxies—we note that it is also

common to define E+A galaxies with a stricter cut on HδA (Goto 2007)—and galaxies in

either the wF16 or sF16 selections more generally as “quiescent Balmer-strong” galaxies.
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Figure 3.1: Hα equivalent width emission vs. Lick HδA absorption, following French
et al. (2016a), for TDE host galaxies (filled circles) and our reference catalog (contours).
Galaxies numbered 1-5 are used in our matching analysis (see text). The solid-line
selection (including errors on Lick HδA; sF16, see text) contains 0.2% of the galaxies in
our reference catalog and the dotted-line region (containing sF16; wF16) contains 2.3%.
Contours are spaced by 0.5σ, with the darkest shading containing 0.5σ and the lightest
shading containing 2σ. Median errors in the TDE host galaxy measurements are shown
in the top right.
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Figure 3.1 shows Hα EW emission versus Lick HδA absorption, following

French et al. (2016a), for TDE host galaxies and our reference catalog4. TDE hosts are

numbered following Table 3.1. Excluding TDE candidates 6, 7, and 8 (not identified

photometrically), and including candidates a-e, 3/10 = 30% of the TDE host galax-

ies fall in the sF16 selection5 and 6/10 = 60% fall in the wF16 selection. TDEs thus

remain significantly overrepresented in quiescent Balmer-strong galaxies. A straightfor-

ward comparison to all of the galaxies in our reference catalog suggests that TDEs are

overrepresented in the sF16 selection by a factor of ∼150 (or ∼190, including only the

optical/UV sample defined in French et al. (2016a)) and are overrepresented in the wF16

selection by a factor of ∼35. Of the five TDE hosts we use in our matching analysis,

1/5=20% are in the sF16 selection and 3/5=60% are in the wF16 selection. Restricting

ourselves to these five TDE host galaxies does not allow us to claim as robust an over-

representation in sF16 galaxies,6 but that is not the direct aim of this work. Our aim

is to compare a wide range TDE of host galaxy properties to a larger reference catalog

using consistent metrics. Two (of four; two do not have measurements available) of

the events in the Auchettl et al. (2017b) X-ray TDE category, ASASSN-14li and Swift

J1644, appear to be in quiescent Balmer-strong galaxies, suggesting that X-ray TDEs

share the same preference for these galaxies as do optical/UV TDEs.

Next, we show where AGN and SF galaxies fall in this Hα EW and Lick HδA

4In this and other 2D plots that follow, we use contours to show our reference catalog galaxies. Note
that for a 2D distribution, σ levels are defined differently from those for a 1D distribution. In two

dimensions, the cumulative density function of a Gaussian is F (x) = 1− e−(x/σ)2/2, meaning that “1σ”
contains 39.3% of the volume and “2σ” contains 86.5% of the volume.

5Note that the sF16 selection includes the error on Lick HδA, which excludes #4 and d.
6Though the binomial false-positive percentage here for 1/5 of the galaxies in a sample being sF16

is still relatively small, ∼1%; see Section 3.4.9.
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Figure 3.2: Hα EW vs. Lick HδA as in Figure 3.1, for our reference catalog, but split
according to AGN/SF classification following Kauffmann et al. (2003c). Low-S/N is
taken as S/N < 3.0. Left panel: AGN in red, low-S/N AGN in blue. Middle panel:
SF galaxies in red, low-S/N SF galaxies in blue. Right panel: unclassified galaxies.
Contours are spaced by 0.5σ, with the darkest shading containing 0.5σ and the lightest
shading containing 2σ. The distributions of each subsample are normalized separately,
so the relative number in each of the categories is not represented (see Table 3.2 for
this), only their relative distributions.

Table 3.2: Fraction of Reference Catalog Galaxies in the Strong and Weak F16 Selections
According to AGN/SF Classification

Category Number % in sF16 % in wF16

TDE hosts (1-5) 5 20 60
TDE hosts (1-5, a-e) 10 30 80

Full reference catalog 500,707 0.20 2.29

AGN 52,613 0.09 0.60
Low-S/N AGN 93,304 0.36 4.02
SF 110,133 0.0 0.01
Low-S/N SF 42,616 0.01 0.20
Unclassified 202,041 0.30 3.61

72



parameter space. This is important, as there may be selection effects against detecting

TDEs in some of these galaxies (in particular in galaxies hosting a strong AGN and in

strongly SF galaxies), as discussed in Sections 3.4 and 3.6. Figure 3.2 shows our reference

catalog split into AGN, low-S/N AGN, SF, low-S/N SF, and unclassified subsamples

(see Section 3.2 for definitions). The low-S/N AGN scatter into the F16 selections more

than the AGN. The unclassified galaxies also scatter into the F16 selections.

Table 3.2 shows the fraction of our reference catalog galaxies in the strong and

weak F16 selections according to AGN/SF classification. Somewhat by construction,

almost no SF or low-S/N SF galaxies are in the F16 selections. Importantly, however, if

we restrict ourselves to only low-S/N AGN or unclassified galaxies, E+A/post-starburst

galaxies are still rare, and TDE host galaxies remain overrepresented.

As a related metric of the uniqueness of TDE host galaxies, we show total star

formation rate versus total stellar mass for TDE host galaxies and our reference catalog

in the top panel of Figure 3.3. The solid blue line describes the star-forming main

sequence (SFMS; Peng et al. 2010). We assume a 1σ scatter of 0.5 dex for the SFMS—

this is the median scatter of the SFR measurements, shown by the dashed blue lines.

We conservatively define the “green valley” or “transition region” in this diagram as

being 1σ-3σ below the SFMS normalization (e.g., see Pandya et al. 2016, and references

therein)—this is between the lower blue dashed line and the orange dashed line. It is

immediately apparent from Figure 3.3 that none of our TDE host galaxies lie above the

SFMS normalization7. Instead, all of our TDE hosts lie below the SFMS normalization,

with some being within our assumed 1σ SFMS scatter and some inhabiting the green

7Though note that the errors on some of the TDE host galaxies extend above the SFMS.
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Figure 3.3: Top panel: total star formation rate vs. total stellar mass for TDE host
galaxies (numbered points) and our reference catalog (contours). Galaxies 1-5 are used
in our matching analysis. Median errors in the TDE host galaxy measurements are
shown in the top left. The blue solid line describes the main sequence of SF galaxies
(Peng et al. 2010), with dashed lines spaced by 0.5 dex (the median scatter of our
SFR measurements) above and below. The green and orange dashed lines are also
spaced by 0.5 dex, and indicate degrees of quiescence from the SFMS. Bottom panel:
the distribution for galaxies in the sF16 selection (E+A galaxies) is shown in orange
and for galaxies in the wF16 selection in light blue. sF16 galaxies account for 0.2%
of our reference catalog and wF16 galaxies for 2.3%; their distributions are normalized
separately. Contours are spaced by 0.5σ, with the darkest shading containing 0.5σ and
the lightest shading containing 2σ.
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valley. The location of the TDE host galaxies in this diagram suggests that they could

be making a transition from the SFMS toward quiescence, but additional constraints on

their stellar populations and star formation histories are needed to test this hypothesis

(also see French et al. 2017a).

The distributions of sF16 and wF16 galaxies, separately normalized to the

reference catalog’s distribution, are shown in orange and light blue in the bottom panel

of Figure 3.3. We calculate the fraction of quiescent Balmer-strong galaxies in our three

bands of increasing degrees of quiescence below the SFMS (each spaced by 0.5 dex).

Recall that the nominal percentage of sF16 (wF16) galaxies in our reference catalog is

0.2% (2.3%). Between the solid blue line and the dashed blue line, the percentage of

sF16 (wF16) galaxies is 0.5% (0.9%). Between the dashed blue line and the dashed green

line, the percentage of sF16 (wF16) galaxies is 1.1% (7.3%). Between the dashed green

line and the dashed orange line, the percentage of sF16 (wF16) galaxies is 0.1% (7.8%).

Outside of these three bands, the percentage of sF16 and wF16 galaxies drops well below

nominal. If we restrict our reference catalog to galaxies with log(M?,tot/M�) < 10.5,

to match the M?,tot values of our TDE hosts, the fractions of quiescent Balmer-strong

galaxies quoted above inside the three bands increase only slightly. Thus, quiescent

Balmer-strong galaxies reside preferentially in the green valley, and the relative fraction

of E+A/post-starburst galaxies in the band inhabited by TDE hosts 1, 3, and 4 is a

factor of five greater than nominal.
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3.4 TDE Selection Effects

As seen above, TDEs appear to show a distinct preference for quiescent Balmer-

strong (and more restrictively E+A) galaxies. Much of this preference may in fact be

due to physical and observational selection effects. In this section, we explore their

extent.

3.4.1 Matching

Our strategy is to create matched comparison samples drawn from our SDSS

reference catalog that are controls for the TDE host galaxies in various observables

related to possible selection effects, and then to calculate the fraction of quiescent

Balmer-strong galaxies in the controls. We use TDE host galaxies numbered 1-5 for

this analysis, as these TDE candidates were photometrically identified and their hosts

have measurements in our reference catalog of the properties we match. That the mea-

surements are determined consistently between the TDE host galaxy sample and the

reference catalog allows us to match and compare properties in an unbiased way. Our

results are similar if we include TDE host galaxies 6-8 (which have Hα EW and Lick

HδA measurements in our reference catalog), and if we include 9 and 10 (which do not

have Hα EW and Lick HδA measurements in our reference catalog).

As we match only on five TDE host galaxies, we implement our matching as

simple tolerances in each parameter. We match on BH mass, redshift, bulge colors, and

half-light surface brightness (motivated and discussed below). The baseline tolerance

used for matching is 1% of the “spread” (=97.5th− 2.5th percentile) in each parameter,
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which corresponds to roughly 0.0018 in z, 0.037 dex in BH mass, 0.028 mag in bulge

color, and 0.074 mag/arcsec2 in half-light surface brightness. We limit our control

sample to a maximum of 10,000 matches per TDE host galaxy; if this is not reached,

we increase the tolerance in intervals of 1%, up to a maximum of 5% of the “spread” in

each parameter. We require the same number of matches per TDE host galaxy, limited

by the TDE host with the fewest matches. We then calculate the fraction of quiescent

Balmer-strong galaxies in the control. We do this matching for one parameter at a time

and for several simultaneously. This allows us to control for possible selection effects in

different observables without needing to understand the (likely complicated) exact form

of the selection effect. Our results are relatively insensitive to the matching technique

and absolute or fractional tolerances used.
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Table 3.3: Fraction of quiescent Balmer-strong galaxies in control samples matched to
TDE hosts 1-5. We tested all combinations of these properties, but only list combina-
tions that (1) result in enough controls to compute a reliable fraction of sF16 or wF16
galaxies, (2) lead to an increase in these fractions, and (3) are interesting in comparison
with similar combinations.

Properties matched # Control # sF16 % sF16 # wF16 % wF16

Full reference catalog 500707 996 0.2 11455 2.29

TDE hosts (1-5) 5 1 20 3 60
TDE hosts (1-5, a-e) 10 3 30 8 80

z 50000 82 0.16 1089 2.18
Mbh 50000 63 0.13 1054 2.11
bulge g − r 50000 1026 2.05 2635 5.27
Σhl,g 50000 117 0.23 1564 3.13
ng 50000 76 0.15 1312 2.62
(B/T )g 50000 169 0.34 1498 3.0

z, bulge g − r 28600 227 0.79 1294 4.52
z, Σhl,g 1700 9 0.53 51 3.0
Mbh, bulge g − r 16680 81 0.49 785 4.71
Mbh, ng 6240 39 0.63 496 7.95
Mbh, (B/T )g 3655 12 0.33 241 6.59
bulge g − r, Σhl,g 14765 170 1.15 800 5.42
bulge g − r, ng 41220 277 0.67 2328 5.65
bulge g − r, (B/T )g 13120 322 2.45 1064 8.11
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Table 3.3 (cont’d): Fraction of quiescent Balmer-strong galaxies in control samples
matched to TDE hosts 1-5. We tested all combinations of these properties, but only list
combinations that (1) result in enough controls to compute a reliable fraction of sF16
or wF16 galaxies, (2) lead to an increase in these fractions, and (3) are interesting in
comparison with similar combinations.

Properties matched # Control # sF16 % sF16 # wF16 % wF16

Σhl,g, (B/T )g 17065 76 0.45 735 4.31

z, Mbh, bulge g − r 8025 40 0.5 421 5.25
z, Mbh, ng 1485 6 0.4 129 8.69
z, Mbh, (B/T )g 1560 4 0.26 114 7.31
z, bulge g − r, ng 4615 57 1.24 279 6.05
z, bulge g − r, (B/T )g 3655 35 0.96 180 4.92
z, Σhl,g, ng 185 2 1.08 9 4.86
Mbh, bulge g − r, Σhl,g 1780 7 0.39 81 4.55
Mbh, bulge g − r, ng 4390 19 0.43 321 7.31
Mbh, bulge g − r, (B/T )g 2115 12 0.57 164 7.75
Mbh, Σhl,g, ng 215 0 0.0 19 8.84
Mbh, Σhl,g, (B/T )g 580 3 0.52 48 8.28
Mbh, ng, (B/T )g 1580 10 0.63 125 7.91
bulge g − r, Σhl,g, ng 3065 24 0.78 166 5.42
bulge g − r, Σhl,g, (B/T )g 2235 46 2.06 161 7.2
bulge g − r, ng, (B/T )g 5760 66 1.15 378 6.56

z, Mbh, bulge g − r, Σhl,g 285 1 0.35 17 5.96
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Table 3.3 (cont’d): Fraction of quiescent Balmer-strong galaxies in control samples
matched to TDE hosts 1-5. We tested all combinations of these properties, but only list
combinations that (1) result in enough controls to compute a reliable fraction of sF16
or wF16 galaxies, (2) lead to an increase in these fractions, and (3) are interesting in
comparison with similar combinations.

Properties matched # Control # sF16 % sF16 # wF16 % wF16

z, Mbh, bulge g − r, ng 1105 4 0.36 91 8.24
z, Mbh, ng, (B/T )g 440 0 0.0 40 9.09
z, bulge g − r, Σhl,g, ng 110 2 1.82 7 6.36
Mbh, bulge g − r, ng, (B/T )g 945 3 0.32 79 8.36

Note. — Σhl,g is the g-band half-light surface brightness, ng is the galaxy Sérsic index,
and (B/T )g is the g-band bulge-to-total-light ratio. Bold numbers highlight particularly
large enhancements in the fraction of sF16 or wF16 galaxies.
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3.4.2 Overview of Selection Effect Matching Results

Table 3.3 lists the fraction of quiescent Balmer-strong galaxies in our control

samples for both individual and simultaneous matches. This table also includes results

from matching on galaxy Sérsic index (ng) and bulge-to-total-light ratio (B/T ), dis-

cussed in Section 3.5. We find that matching individually on redshift or BH mass slightly

decreases the fraction of quiescent Balmer-strong galaxies. Matching on bulge colors in-

creases the fraction of E+A galaxies by a factor of ∼10 (from 0.2% to 2%). Matching on

half-light surface brightness increases the fraction of quiescent Balmer-strong galaxies

only slightly. Matching on several parameters simultaneously can increase the fraction

of quiescent Balmer-strong galaxies by a factor of ∼4. The number of controls within

our tolerances is often too few to compute a reliable sF16 fraction when matching on

more than three parameters—we address this with a simple cut-based approach later in

this section, and the results of these cuts are listed in Table 3.4.

Figure 3.4 shows 2D distributions of redshift, bulge colors, and half-light sur-

face brightness versus BH mass as well as their 1D distributions matched on the BH

masses of TDE hosts 1-5 and split into different subsamples. This figure includes mea-

surements for TDE hosts numbered 6-10, though the matching analysis (resulting in

Table 3.3) uses only TDE host galaxies 1-5. The 1D distributions are all smoothed

and normalized to equal area. These are shown for presentation purposes only—the

smoothing does not enter into or affect our analysis. Red distributions correspond to

TDE host galaxies 1-5. We show the unsmoothed histograms for TDE hosts 1-5 in solid

red and those for hosts 1-10 in dotted black. The different subsamples shown on the
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right-hand side of Figure 3.4 are, from top to bottom, the TDE host galaxies, quiescent

Balmer-strong galaxies (sF16 and wF16 selections), and AGNs and low-S/N AGNs. We

compare to AGNs both to better understand the connection between TDEs and AGNs

(see, e.g., Auchettl et al. 2017c), and because there may be a bias against detecting

TDEs in galaxies hosting a strong AGN, as discussed later in this section. Table 3.5

lists the medians and spreads of these 1D distributions matched on BH mass, as well as

for some properties considered in Section 3.5 and Appendix 3.7.

3.4.3 BH Mass

The first selection effect we consider is BH mass. As presented in the tidal

disruption menu of Law-Smith et al. (2017b), most main sequence (MS) stars cannot

be disrupted outside the innermost bound circular orbit of BHs of Mbh & 107.5M�8.

Giant stars can be disrupted by higher-mass BHs, but their relative disruption rate

is lower and their flares last on the order of years (MacLeod et al. 2012b) and may

not be seen in current surveys. BHs with Mbh . 106M�, on the other hand, may

inefficiently circularize the debris from the majority of MS star disruptions (Guillochon

& Ramirez-Ruiz 2015b), leading to a delayed flare that is more difficult to detect due to

a lower luminosity and longer timescale (Hayasaki et al. 2013b; Dai et al. 2013b; Cheng

& Bogdanović 2014b; Bonnerot et al. 2016b). These lower-mass BHs can disrupt denser

objects such as white dwarfs, but we do not expect this to be a significant contribution

to the current sample of observed TDEs (MacLeod et al. 2016b).

8Though combinations of rapid BH spin and favorable orbital orientation can permit MS disruption
by BHs with masses of up to a few ×108M� (Kesden 2012b).
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BH mass is thus a primary physical constraint in whether a TDE can be

observed in a given galaxy, and we control for it by creating matched samples with

similar distributions in BH mass to the observed TDE host galaxies. We obtain BH

masses from velocity dispersions, though our conclusions are insensitive to the exact

method used to derive BH masses (see Section 3.2). As long as BH mass is determined

homogeneously between the different samples we consider, the effect of our uncertainty

on BH mass is largely mitigated; i.e., we do not rely on accurate determinations of BH

mass for our conclusions. In fact, if we simply replace BH mass with M?,tot throughout

our analysis, our conclusions remain the same. Matching on only BH mass to TDE hosts

1-5 (see Table 3.3) slightly decreases the fraction of quiescent Balmer-strong galaxies in

our reference catalog.

We expect (and find; see Figure 3.4, or Wevers et al. (2017a) for TDE hosts not

in our reference catalog) nearly all currently observed TDEs to occur in the BH mass

range of 105.5 < Mbh/M� < 107.5. TDE host galaxies thus have significantly lower BH

masses than the bulk of our reference catalog. We plot each of the properties discussed

below versus BH mass on the left-hand side of Figure 3.4, and we control for BH mass

(matching on TDE hosts 1-5) in the stacked 1D distributions on the right-hand side.

3.4.4 Redshift Completeness

The second selection effect we consider is redshift completeness. The lumi-

nosity of a tidal disruption flare depends on the stellar mass, stellar radius, BH mass,

impact parameter, and circularization efficiency of the debris. For a typical TDE, how-

ever, the maximum peak luminosity does not vary by more than an order of magnitude,
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and most observed TDEs have peak luminosities of 1043 to 1044 erg s−1. Additionally,

most TDEs appear to be sub-Eddington or Eddington limited for their BHs (Hung et al.

2017b).

A typical TDE can thus only be observed out to a redshift that depends on

the detection limits of the telescope and, especially if the flare is Eddington limited,

the mass of the BH. Strubbe & Quataert (2009b) and Kochanek (2016c) studied the

dependence of TDE rates on BH mass and redshift in detail; generally, they found that

detection rates decrease rapidly with redshift, but that future surveys such as LSST

could be sensitive to a sizable number of TDEs at z > 1. TDE detectability is a strong

function of redshift, and we control for this by creating samples matched on redshift to

the TDE host galaxies in our sample. Matching on only redshift (see Table 3.3) slightly

decreases the fraction of quiescent Balmer-strong galaxies in our reference catalog.

We show redshift versus BH mass for TDE host galaxies and our reference

catalog in the top-left panel of Figure 3.4. All but one of the TDE hosts in our sample

have z < 0.1. The top-right panel of Figure 3.4 shows that, after controlling for BH

mass, the redshift distributions of the TDE host galaxies, sF16 and wF16 galaxies, and

both low- and high-S/N AGNs are similar to that of our reference catalog. We note

that the “sF16” classification of E+A galaxies is likely to change with redshift if it is

based on a single slit width. Although this is a small effect for galaxies with z < 0.1,

it is sizable when comparing to galaxies at z > 0.2. The fraction of sF16 galaxies in

our reference catalog as a function of redshift bin (we took ∆z = 0.01), for z . 0.1, is

relatively constant at the nominal '0.2%, but for z & 0.25, it can be >5%.
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Figure 3.4: Left panels, top to bottom: redshift, bulge g − r, and half-light surface
brightness vs. BH mass for TDE host galaxies (numbered points) and our reference
catalog (contours). Galaxies 1-5 are used in our matching analysis. BH masses for 8,
9, and 10 are determined via M?,bulge. Contours are spaced by 0.5σ, with the darkest
shading containing 0.5σ and the lightest shading containing 2σ. Median errors in the
TDE host galaxy measurements are shown in the top left. Right panels: 1D distributions
in these properties in different subsamples, matched on BH mass of TDE hosts 1-5. From
top to bottom in each panel, the subsamples are: TDE host galaxies (1-5 in red, showing
both smoothed and actual distributions, and 1-10 in dotted black), our reference catalog
(black), the strong F16 selection (orange), weak F16 selection (light blue), AGN (green),
and low-S/N AGN (purple). In the bottom-right panel, we show SF galaxies, rather
than low-S/N AGN, in purple, as these have a very similar distribution to the AGN.
All 1D histograms are smoothed and normalized to equal area.
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3.4.5 Bulge Colors

The third selection effect we consider is the color of the galaxy bulge,9 as dusty,

red bulges might obscure TDEs. Indeed (see below), TDE hosts have bluer bulge colors

than most galaxies. We thus control for this possible selection effect by creating samples

matched in bulge g − r to TDE host galaxies 1-5. Controlling for only bulge g − r (see

Table 3.3) results in a large increase in the fraction of E+A galaxies in our reference

catalog: compared to the nominal percentage of 0.2% sF16 galaxies, the matched sample

has 2% sF16 galaxies, a factor of ∼10 increase. The fraction of wF16 galaxies increases

by a factor of two, from 2.3% to 5.3%. Recall that 1/5 = 20% of the TDE host galaxies

used in our matching analysis (or 3/10 = 30% including hosts not in our reference

catalog) are in the sF16 selection and 3/5 (or 8/10) are in the wF16 selection.

The middle-left panel of Figure 3.4 shows bulge g− r color versus BH mass for

the TDE host galaxies and our reference catalog. In the middle-right panel (where we

have controlled for BH mass), we see that TDE hosts have bluer bulge g− r colors than

the reference catalog, suggesting a preference against observing TDEs in redder bulges.

This is also seen clearly in the sF16 sample but only very weakly in the wF16 sample.

The AGN and low-S/N AGN samples appear similar to the reference catalog, with the

low-S/N AGN sample showing slightly bluer bulge colors than the AGN sample. TDE

hosts 1-5 have a median bulge g−r of 0.46 mag, and TDE hosts 1-10 of 0.49 mag. After

matching in BH mass to TDE hosts 1-5, the reference catalog has a median bulge g− r

of 0.78 mag, and sF16 galaxies of 0.42 mag. This is also listed in Table 3.5. So both

9The color of the core/nucleus may be more relevant for TDE detectability but this measurement is
not available for nearly as many galaxies as in our catalog drawn from SDSS.
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TDE hosts and E+A/post-starburst galaxies have median bulge colors ∼0.3 mag bluer

than the control sample.

3.4.6 Half-light Surface Brightness

The fourth selection effect we consider is on surface brightness, as image sub-

traction for transients might be more challenging for high surface brightness galaxies.

We define the half-light surface brightness, Σhl, as half the galaxy apparent magnitude

divided by the galaxy half-light size in square arcseconds. Using the Simard et al. (2011)

measurements, this is Σhl,g = (gg2d + 0.75254)/πθ2
hl, where gg2d is the g-band apparent

magnitude of the GIM2D output pure Sérsic model, gg2d + 0.75254 yields half the flux,

and θhl = Rchl,g/Scale. Rchl,g is the circular half-light radius in the g band, and Scale

is the physical scale in kpc/arcsec2 at redshift z. We use only g band, as results for r

band, or a combination of both g and r bands, are similar. Controlling for Σhl,g (see

Table 3.3) increases the fraction of quiescent Balmer-strong galaxies in our reference

catalog slightly, from 2.3% to 3.1% for wF16 galaxies.

The bottom-left panel of Figure 3.4 shows the half-light surface brightness

versus BH mass for the TDE host galaxies and our reference catalog. It is evident that

TDEs are found preferentially in galaxies with lower half-light surface brightnesses. In

the right panel (controlled for BH mass), we see that sF16 and wF16 galaxies have

slightly lower half-light surface brightnesses than the reference catalog, and that AGN

and SF10 galaxies have higher half-light surface brightnesses than either TDE hosts

10Low-S/N AGNs have a distribution in Σhl,g that is indistinguishable from that of AGNs here, so
we show SF galaxies instead.
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or quiescent Balmer-strong galaxies. TDE host galaxies 1-5 have a median half-light

surface brightness of 2.06 mag/arcsec2, and TDE hosts 1-10 of 1.95 mag/arcsec2. After

matching in BH mass to TDE hosts 1-5, the reference catalog has a median half-light

surface brightness of 0.98 mag/arcsec2, and sF16 galaxies of 1.58 mag/arcsec2; this

is also shown in Table 3.5. So, TDE hosts and sF16 galaxies have median half-light

surface brightnesses ∼1 mag/arcsec2 and ∼0.6 mag/arcsec2 fainter than the control

sample, respectively.

3.4.7 Galaxies Hosting a Strong AGN

We also consider a possible selection effect based on the presence of a strong

AGN. Observational identification of TDEs is biased against galaxies with strong AGN,

as it is difficult to distinguish a TDE signal from regular variability in a strong AGN.

Galaxies with a strong AGN are often not considered for spectral follow-up on potential

TDEs. As a first-order exploration of this selection effect, we performed a cut on all

AGNs with S/N>5 (we also tried S/N>3) from our reference catalog. Applying this

cut—both individually and in combination with controlling for other parameters—has a

relatively small effect, but does slightly increase the fraction of quiescent Balmer-strong

galaxies in our control samples. We do not show this high-S/N AGN cut in Table 3.3

for clarity, as its effect is generally small, but we show its effect in combination with

other simple cuts (described below) in Table 3.4.
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3.4.8 Cumulative Effect

Individually, controlling for BH mass or redshift slightly decreases the fraction

of quiescent Balmer-strong galaxies in our control sample, controlling for half-light sur-

face brightness slightly increases this fraction, and controlling for bulge g − r increases

the fraction of sF16 galaxies by a factor of ∼10 and of wF16 galaxies by a factor of ∼2.

Table 3.3 also lists the effect of controlling for these parameters simultaneously. Note

that this table also includes results from matching on two indicators of central light

concentration: the galaxy Sérsic index (ng) and bulge-to-total-light ratio (B/T ); we

discuss these parameters in Section 3.5. We summarize our major findings with respect

to matching on Mbh, z, bulge g − r, and Σhl,g below. Of these four observables, bulge

g−r is the most important in increasing the fraction of quiescent Balmer-strong galaxies

in our control samples. However, its effect is largest on the fraction of sF16 galaxies

(and remains similar for wF16 galaxies) when matched on individually. Matching si-

multaneously on z, Mbh, and bulge g − r increases the percentage of sF16 galaxies by

a factor of 2.5, to 0.5%. Matching simultaneously on all four parameters results in too

few controls to calculate the fraction of sF16 galaxies but increases the fraction of wF16

galaxies by a factor of 2.6, to 6%. Recall that 1/5=20% of the TDE host galaxies used

in our matching analysis (or 3/10=30% including galaxies not in our reference catalog)

are sF16 galaxies, and 3/5=60% (or 8/10=80%) are wF16 galaxies.

As matching simultaneously on z, Mbh, bulge g − r, and Σhl,g results in too

few controls to calculate the fraction of sF16 galaxies, we perform simple cuts on our

full reference catalog as a cruder probe of the extent of these selection effects; this
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is shown in Table 3.4. We chose cuts that are consistent with the properties of our

quiescent Balmer-strong TDE host galaxies: 5.5 < log(Mbh/M�) < 7.0, z < 0.09, bulge

g − r < 0.51, and Σhl,g > 2.05. This results in a sample with 0.77% sF16 galaxies (a

factor of ∼4 increase from the nominal 0.2%) and 2.74% wF16 galaxies (a factor of 1.2

increase from the nominal 2.3%). Further removing all S/N>5 AGNs increases these

numbers slightly.

In summary, the selection effects we considered in this section may reduce the

apparent overrepresentation of TDEs in E+A galaxies by a factor of ∼4 (quoting the

result from simple cuts; Table 3.4) and in quiescent Balmer-strong host galaxies more

generally by a factor of ∼2.5 (quoting the matching results; see Table 3.3, where we have

enough wF16 galaxies to calculate a reliable fraction). Comparing to TDE host galaxies

numbered 1-5 used in the matching, this reduces the TDE rate enhancement in sF16

galaxies to a factor of ∼25 (from ∼100) and in wF16 galaxies to a factor of ∼10 (from

∼26). Comparing to TDE host galaxies 1-5 and a-e (a-e are not in our reference catalog

and so we did not match on their properties), this reduces the TDE rate enhancement

in sF16 galaxies to a factor of ∼38 (from ∼150) and in wF16 galaxies to a factor of ∼13

(from ∼35).

3.4.9 Small Sample Size

As mentioned, only 1/5 of the TDE hosts we use in our matching analysis

is in the sF16 selection. This is too sensitive to small number statistics to claim a

true overrepresentation in sF16 galaxies using this sample alone. However, the sF16

overrepresentation increases with the larger sample of 10 photometrically identified TDE
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hosts with available Hα EW and Lick HδA measurements, and so it appears robust.

Restricting ourselves to the five TDE hosts we use in the matching, however, we can

test the probability of having 1/5 sF16 galaxies (i.e., the extent to which this is due to

small number statistics) in a Monte Carlo approach. We create 10,000 samples of five

galaxies drawn from our full catalog and matched in Mbh and z to the five TDE hosts.

For each of these 10,000 samples of five galaxies, we count the number (if any) that

fall in the sF16 selection. The percentage of the samples that have 1/5 or more sF16

galaxies is 1.0%; this is the chance likelihood of having 1/5 sF16 galaxies in our sample.
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Figure 3.5: Top-left panel: galaxy Sérsic index vs. BH mass for TDE host galaxies and
our reference catalog. We use TDE hosts 1-5 in our matching analysis. BH masses for
TDE hosts 8, 9, and 10 are determined via M?,bulge. Contours are spaced by 0.5σ, with
the darkest shading containing 0.5σ and the lightest shading containing 2σ. Average
errors in the TDE host galaxy measurements are shown in the top left. The region above
the light green line contains ∼2% of our reference catalog galaxies but 5/5 (or 6/10) of
our TDE host galaxies. Top-right panel: galaxy Sérsic index distribution in different
subsamples, matched on BH mass of TDE hosts 1-5. 1D histograms are smoothed and
normalized to equal area. Unsmoothed 1D histograms are also shown for TDE hosts 1-5
in solid red and for TDE hosts 1-10 in dotted black. Bottom panels: g-band bulge-to-
total-light ratio (bulge fraction); similar description to that above. Results are similar
for r band.

94



3.5 Physical Enhancements to the TDE Rate

In this section, we consider two possible alternative (physical) explanations

for the enhanced frequency of TDEs in quiescent Balmer-strong galaxies: (1) higher

central stellar densities and (2) a recent merger. In exploring the first, we find a new

unique property of all TDE host galaxies, regardless of E+A or quiescent Balmer-strong

classification.

3.5.1 Higher Central Stellar Densities

Sérsic Index

It is expected that a higher stellar density in the nuclear star cluster sur-

rounding an SMBH leads to a higher tidal disruption rate, as there are more dynamical

encounters between stars and therefore more scatterings into the loss cone (e.g., Magor-

rian & Tremaine 1999a). The galaxy Sérsic index is a broad indicator of the steepness

of a galaxy’s light profile and thus (to a certain extent) its stellar density profile. A

Sérsic profile has the form

ln I(R) = ln I0 − kR1/n, (3.4)

where I is the intensity, I0 is the intensity at R = 0, k is a constant, and n is the Sérsic

index. The higher the Sérsic index, the more centrally concentrated the galaxy’s light

profile.

The top panel of Figure 3.5 shows the galaxy Sérsic index11 versus BH mass

11This is for a single Sérsic fit, also referred to as ng throughout the paper. We show galaxy rather
than bulge Sérsic index here, as only a fraction of our TDE host galaxies and the reference catalog
have high enough resolution data to justify (see Section 3.2) free-n Sérsic fits to their bulges. We note,
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for TDE hosts and our reference catalog. Note that the Sérsic index fits are allowed

to vary from 0.5 to 8 (see Simard et al. 2011). The region above the light green line

contains ∼2% of our reference catalog galaxies but 5/5 of TDE host galaxies 1-5 (or 6/10

including the “extreme coronal line emitters” 6-9 and 10 with a BH mass determined

via M?,bulge)
12. We compute the fraction of reference catalog galaxies that have a higher

Sérsic index than each TDE host galaxy at its BH mass (in a bin of width 0.02 dex); we

find that all of the TDE host galaxies have high Sérsic indices for their BH masses. On

average, TDE hosts 1-5 have galaxy Sérsic indices in the top 10% of those of reference

catalog galaxies at their BH masses. Including TDE host galaxies 6-10 results in an

average Sérsic index in the top 15%.

In the top-right panel of Figure 3.5, we create a sample matched on the BH

masses of TDE hosts 1-5 and compare distributions between different subsamples. TDE

hosts have a much broader (toward higher values) distribution of Sérsic indices than the

control sample. The distribution for sF16 galaxies is similarly weighted toward high

Sérsic indices, and wF16 galaxies show a similar but weaker effect. AGNs and low-S/N

AGNs show a fairly similar distribution to the reference catalog, though with a slight

preference for higher Sérsic indices. TDE host galaxies 1-5 have a median galaxy Sérsic

index of 4.03, and TDE hosts 1-10 of 4.30. After controlling for BH mass, our reference

catalog has a median galaxy Sérsic index of 1.21, and sF16 galaxies of 4.33. This is also

listed in Table 3.5. So both TDE host galaxies and E+A/post-starburst galaxies have

relatively high galaxy Sérsic indices, especially after controlling for BH mass.

however, that in this justified free-nb sample, Simard et al. (2011) find that galaxies with low and high
nb values also have low and high ng values.

12Note that this region is drawn to include these TDE host galaxies.
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Importantly, all of our TDE host galaxies, regardless of E+A or quiescent

Balmer-strong classification, have high galaxy Sérsic indices for their BH masses. We

have thus identified a photometric criterion (Sérsic index) that may predict an enhanced

TDE rate more broadly than a spectroscopic criterion (E+A classification).

Bulge-to-total-light Ratio

The relatively high central concentration of light in TDE host galaxies is also

apparent in their bulge-to-total-light ratios. We show the g-band bulge fraction, (B/T )g,

in the bottom panel of Figure 3.5. Results are similar for r band. Similarly to above,

we compute the fraction of reference catalog galaxies that have a higher (B/T )g than

each TDE host galaxy at its BH mass. Again, we find that all of the TDE host galaxies

have high bulge fractions for their BH masses: on average in the top 10% for TDE host

galaxies 1-5, and in the top 20% for TDE hosts 1-10. Controlling for BH mass (right

panel), we see that both TDE host galaxies and quiescent Balmer-strong galaxies have

significantly higher bulge fractions than our reference catalog. This is related to our

galaxy Sérsic index result: observed TDEs show a preference for centrally concentrated,

bulge-dominated galaxies (and/or tend to avoid disk-dominated galaxies). The bulge

fraction and the Sérsic index are correlated—see Figure 14 of Simard et al. (2011) or

our Figure 3.11. TDE host galaxies 1-5 have a median (B/T )g of 0.56 (0.54 for TDE

hosts 1-10). Matched on BH mass to TDE hosts 1-5, the reference catalog has a median

(B/T )g of 0.06, and sF16 galaxies of 0.60. This is also listed in Table 3.5.
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Can Sérsic Index or B/T Explain the Quiescent Balmer-strong Overrepre-

sentation?

We perform matches on galaxy Sérsic index and bulge fraction, as we did for

the selection effects considered in Section 3.4, and compute the fraction of quiescent

Balmer-strong galaxies in the matched samples. The results of this matching (using

TDE hosts 1-5 as before) are listed in Table 3.3; we will summarize below. We tested

all combinations of the properties we studied, but only list combinations that (1) result

in enough controls to compute a reliable fraction of sF16 or wF16 galaxies, (2) lead

to an increase in these fractions, and (3) are interesting in comparison with similar

combinations. Matching only on Sérsic index slightly decreases the fraction of sF16

galaxies in our control sample, while matching only on (B/T )g increases the fraction of

sF16 and wF16 galaxies by a factor of ∼1.5. Matching simultaneously on ng or B/T

in combination with the selection effects we considered in Section 3.4 can increase the

fraction of quiescent Balmer-strong galaxies in our reference catalog by a factor of 3-10

depending on the combination. The highest increase in the fraction of sF16 galaxies—

from 0.2% to 2.45%—is given by matching on bulge g − r and (B/T )g. The highest

increase in the fraction of wF16 galaxies—from 2.3% to 9.1%—is given by matching on

z, Mbh, ng, and (B/T )g.

Simultaneously matching on either Sérsic index or B/T and on all of the four

parameters we considered earlier returns too few controls to compute the fraction of

quiescent Balmer-strong galaxies. We perform simple cuts on our full reference catalog

as a cruder probe of the effect of controlling for five of these properties; these are listed in
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Figure 3.6: Left panel: galaxy asymmetry indicators in the g and r bands for TDE
host galaxies and our reference catalog. Middle panel: asymmetry indicator in the g
band vs. BH mass. The r band is similar. BH masses for TDE hosts 8, 9, and 10
are determined via M?,bulge. Contours are spaced by 0.5σ, with the darkest shading
containing 0.5σ and the lightest shading containing 2σ. Average errors in the TDE
host galaxy measurements are shown in the top left (asymmetry indicators do not have
associated errors in our catalog). Right panel: asymmetry indicator distribution in the
g band in different subsamples, matched on BH mass of TDE hosts 1-5. The r band
is similar. 1D histograms are smoothed (we also show the true histogram for the TDE
hosts 1-5 in red and 1-10 in dotted black) and normalized to equal area.

Table 3.4. We chose cuts that are consistent with the properties of our quiescent Balmer-

strong TDE host galaxies: 5.5 < log(Mbh/M�) < 7.0, z < 0.09, bulge g − r < 0.51,

Σhl,g > 2.05, and ng > 2.24 and/or (B/T )g > 0.55. These result in samples with ∼1.7%

sF16 galaxies (a factor of ∼8 increase from the nominal 0.2%) and ∼5.1% wF16 galaxies

(a factor of 2.2 increase from the nominal 2.3%).

Higher galaxy Sérsic indices and/or higher bulge-to-total-light ratios could

therefore partially explain the enhanced TDE rate in quiescent Balmer-strong galaxies;

we discuss this further in Section 3.6.

3.5.2 Merger Indicators

Galaxy mergers might also enhance the TDE rate if they trigger binary BH

inspiraling. To study this, we use the RA1 2 galaxy asymmetry indicators output from
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GIM2D (as defined in Simard et al. 2002, 2009) in the g and r bands. For recent

major mergers, the asymmetry indicators can be & 0.04 (e.g., Patton et al. 2016). The

asymmetry indicators are shown plotted against each other as well as against BH mass

for TDE host galaxies and our reference catalog in Figure 3.6. In the right two panels,

we show only g-band measurements; results are similar for r band. Interestingly, our

TDE host galaxies have small asymmetry indicators, suggesting that they are not the

products of recent major mergers. It is important to note that a small SDSS asymmetry

indicator does not necessarily correspond to the lack of a merger. The major limitation

here is the SDSS resolution, along with the fact that asymmetries in mergers tend

only to be high for major mergers and gas-rich galaxies (Lotz et al. 2010; Ji et al.

2014). In the right panel (controlled for BH mass), we see that TDE host galaxies

and quiescent Balmer-strong galaxies both have a narrower distribution in asymmetry

indicator compared to the reference catalog. They do not share the reference catalog’s

tail toward high asymmetry indicators.

3.5.3 Summary of TDE Host Galaxy Properties; SDSS Images

In summary, TDE host galaxies tend to have bluer bulges, lower half-light

surface brightnesses, and more centrally concentrated light profiles (in Sérsic index and

bulge fraction) than “typical” galaxies at their BH masses. As an illustrative example

of this, in Figure 3.7, we show SDSS images13 of TDE host galaxies 1-5 as well as, for

each TDE host galaxy, a randomly selected galaxy matched in BH mass and redshift to

13Though higher resolution imaging is available for several of these galaxies, we show SDSS photometry
here as this is what was used to derive the photometric galaxy properties in our reference catalog.
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Figure 3.7: Top panels: SDSS gri images of TDE host galaxies 1-5. Bottom panels: for
each TDE host galaxy, a randomly selected galaxy matched in BH mass and redshift to
the TDE host galaxy, but with a galaxy Sérsic index, bulge g− r, and half-light surface
brightness very close to the median values of our reference catalog at that BH mass.
Images are 20′′ × 20′′. The galaxy Sérsic index of each galaxy is listed in the top right
of each image.

the TDE host galaxy, but with a galaxy Sérsic index, bulge g− r, and half-light surface

brightness very close to the median values of our reference catalog at that BH mass.

The galaxies in the bottom panels are thus “typical” galaxies in a few of the parameters

we considered above, but matched in BH mass and redshift to the TDE host galaxies.

The higher central concentration of these TDE host galaxies is visually apparent. The

galaxy Sérsic index of each galaxy is listed in the top right of each image.

3.6 Discussion

In this section, we discuss (1) whether there is a selection effect against detect-

ing TDEs in SF galaxies, (2) if the observed time delay between SF and AGN activity

can help us understand the nature of the post-starburst TDE delay, (3) if the quiescent

Balmer-strong enhancement can be understood in terms of Sérsic indices in the green
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valley, and (4) the implications of higher central light concentrations on the TDE rate.

Before discussing these issues, we list a summary of our key findings.

3.6.1 Summary

We studied TDE host galaxies in the context of a catalog of ∼500,000 SDSS

galaxies. Our main conclusions are:

1. Controlling for (by creating matched samples) selection effects due to BH mass,

redshift completeness, bulge color, and half-light surface brightness reduces the

apparent overrepresentation of TDEs in E+A host galaxies by a factor of ∼4 (from

∼×100-190 to ∼×25-48 in sF16 galaxies), but cannot fully explain the preference.

2. Controlling for BH mass, TDE host galaxies have bluer bulge g − r colors (by

∼0.3 mag) and fainter half-light surface brightnesses (by ∼1 mag/arcsec2) than

galaxies in our reference catalog. TDE host galaxies have low galaxy asymmetry

indicators, suggesting that they are not the result of a recent major merger.

3. TDE hosts and E+A galaxies have high galaxy Sérsic indices and high B/T for

their BH masses, suggesting a higher stellar density in their cores. On average,

our TDE host galaxies have galaxy Sérsic indices and bulge fractions in the top

10% of those of reference catalog galaxies at their BH masses. We identify a region

in galaxy Sérsic index versus BH mass space that contains ∼2% of our reference

catalog galaxies but 5/5 (or 6/10) of our TDE host galaxies.

We also note that Graur et al. (2017a) appeared on arXiv after submission

of this work and is an independent and complementary analysis of TDE host galaxy
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properties. They study a smaller set of host galaxy properties, but, importantly, find

that TDE host galaxies have high stellar surface mass densities. This is similar to

our finding that TDE host galaxies appear more centrally concentrated, with higher

galaxy Sérsic indices and B/T . They control for the type of galaxy in which the TDE

is found (quiescent or star-forming) and find that this result is driven particularly by

the star-forming hosts.

3.6.2 Is There a Selection Effect Against Detecting TDEs in SF Galax-

ies?

In order to understand the TDE rate enhancement in quiescent Balmer-strong

galaxies, it is important to know whether there is a selection effect against detecting

TDEs in SF galaxies. As SF galaxies are (by definition) not quiescent Balmer-strong

galaxies, if there is a bias against observing TDEs in SF galaxies, quiescent Balmer-

strong galaxies are less rare as hosts.

First, we consider whether the dust and gas associated with SF may obscure

TDEs. Certainly, starbursting galaxies have significant dust attenuation (e.g., Casey

et al. 2014), especially in the optical/UV bands where the SF occurs. Del Moro et al.

(2013) study a robust sample of 51 “hidden” radio-excess AGNs in SF galaxies, and find

that half of these are not detected in deep Chandra X-ray data, indicating that they

might be heavily obscured. As a case study, the Seyfert 2 galaxy NGC 4968 is found to

have heavy obscuration and circumnuclear SF, as well as SF-associated gas that may

increase the covering factor of the enshrouding gas and play a role in obscuring the

AGN (LaMassa et al. 2017). If a TDE occurred in NGC 4968, the large column density
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(NH > 1.25× 1024 cm−2) would prevent X-ray—and optical/UV, for dust-to-gas ratios

similar to the Milky Way—identification.

Although difficult to detect, AGNs are often found in SF galaxies14 (Bongiorno

et al. 2012; Ellison et al. 2016). Nuclear activity in SF galaxies might be fairly common,

and it is possible that TDEs are missed in these galaxies primarily due to selection

effects. We note that Tadhunter et al. (2017) discovered a TDE in a nearby ultralu-

minous infrared galaxy.15 The galaxy features suggest that there is an unusually clear

view of the nuclear star-forming region, whose obscuration is known to have a complex

structure (e.g., Buchner & Bauer 2017). Two galaxies in our TDE host galaxy sample,

SDSS J0748 and SDSS J1342 (Wang et al. 2012), are in SF galaxies. We note, however,

that both events were classified as TDEs in a search for extreme coronal line emitters,

and in both cases were not identified based on their light curve properties.

Second, we recognize that there could be a bias against TDE identification in

SF galaxies, as TDE characterization for nuclear transients is not done systematically.

In addition, current TDE host galaxies have relatively low half-light surface brightnesses,

while SF galaxies have relatively high half-light surface brightnesses (see Figure 3.4). If

image subtraction is less robust for these galaxies, this could help explain the lack of

TDEs in SF galaxies.

14Though we caution that this strongly depends on how the AGN is selected (see e.g., Ellison et al.
2016).

15This galaxy is not in our sample as it is not in the SDSS catalogs we draw from.
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3.6.3 Time Delay between SF and AGN/TDEs

If TDEs occur preferentially in post-starburst galaxies, then the TDE rate is

time dependent and, in particular, depends on the recent SF history of the galaxy. If the

starburst was caused by a galaxy merger, the second inspiraling BH could certainly en-

hance the TDE rate; we discuss this further below, but first we consider the relationship

between the SF and the TDE. After a starburst occurs, the gas is transported inwards

on some timescale and may drive an enhanced TDE rate (possibly through contributing

to disk instabilities; Madigan et al. 2017).

This transport timescale is also seen in AGN activity, and there is an intrigu-

ing connection between AGN activity and SF episodes. AGN activity appears to be

triggered by the same gas that drives SF episodes (Trump et al. 2015), but with a time

delay, presumably due to the transport timescale of gas to the BH. The post-starburst

timescale in TDE hosts appears tantalizingly similar to this observed AGN activity–SF

episode delay.

Wild et al. (2010) study a sample of 400 galaxies with BH masses of 106.5-

107.5M� that have experienced a starburst in the past 600 Myr. They find that the

average rate of accretion of matter onto the BH rises steeply ≈ 250 Myr after the

starburst begins. Similarly, Davies et al. (2007) study the nuclei of nine AGNs at

spatial scales of ≈ 10 pc and find a hint of a delay of 50-100 Myr between the onset

of star formation and accretion onto the BH. This delay is strikingly reminiscent of

the post-starburst timescale inferred for TDE hosts, which have post-starburst ages of
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10-1000 Myr (French et al. 2017a)16.

LaMassa et al. (2013) study the connection between AGN activity and star

formation with a sample of ≈ 28,000 obscured active galaxies. They find that cir-

cumnuclear star formation is associated with increased BH activity and that angular

momentum transfer through the disk limits the efficiency of mass inflow onto the BH.

Mullaney et al. (2012b) also suggest that the same secular processes that drive the bulk

of star formation are responsible for the majority of SMBH activity, which gives further

credence to the idea that the majority of moderate nuclear activity is fueled by inter-

nal mechanisms rather than violent mergers (Mullaney et al. 2012a). If the connection

between SF history and the TDE rate is analogous to the SF episode–AGN activity

connection, this could help explain the quiescent Balmer-strong galaxy preference.

3.6.4 The Green Valley, Sérsic Index, and E+A/Post-Starburst Galax-

ies

In Figure 3.3, we saw that our TDE host galaxies lie below the SFMS, but not

by more than 1.0 dex (some are in the green valley and some appear near it), and that

E+A/post-starburst galaxies inhabit a similar region. In the left panel of Figure 3.8, we

show SFR versus M∗,tot for our TDE host galaxies and the reference catalog, similarly

to Figure 3.3, but color-coded by galaxy Sérsic index; this shows the evolution of galaxy

surface density profiles in this parameter space. TDE host galaxies clearly inhabit a

transition region in Sérsic index.

In the right panel of Figure 3.8, we show normalized histograms of Sérsic

16Though note that only 4/8 of their sample have post-starburst ages of <250 Myr.
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index for different subsamples of the reference catalog: the band from the SFMS to

0.5 dex below the SFMS (band 1), the band 0.5 dex below this, from the dashed to the

dotted line (band 2), and galaxies in the sF16 selection. Though their population is

small, E+A galaxies have much higher Sérsic indices relative to the larger population

of galaxies in the green valley. If we restrict our reference catalog to galaxies with

log(M?,tot/M�) < 10.5, to match the TDE hosts, as well as to galaxy Sérsic indices

of > 2.0, the percentage of sF16 (wF16) galaxies in band 2 is 1.9% (16%). Further

restricting to galaxies with Sérsic indices > 4.0 results in 3.8% sF16 galaxies and 23%

wF16 galaxies in band 2. This cut also results in 4.9% sF16 galaxies in band 1. So, E+A

galaxies are a subset of green valley galaxies with high Sérsic indices. If, due to their

higher intrinsic rates in these galaxies, TDEs are preferentially found in post-starburst

galaxies with high central densities, then E+A/post-starburst galaxies are relatively less

rare as TDE hosts.

3.6.5 On the TDE Rate Enhancement

The increased TDE rates in E+A/post-starburst galaxies might be explained

by mergers and/or by higher nuclear stellar densities.

A merger is thought to increase the disruption rate by many orders of magni-

tude (e.g., Ivanov et al. 2005). But these rate enhancements are short lived (less than

1 Myr), so that the fraction of TDEs resulting from merging BHs is expected to be low

(Wegg & Nate Bode 2011). The asymmetry indicators for TDE hosts are comparatively

small, meaning that they show no obvious signs of recent major mergers. However,

TDE hosts could be the product of high mass ratio mergers. Indeed, unequal mass ra-
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Figure 3.8: Left panel: total star formation rate vs. total stellar mass for our reference
catalog and TDE host galaxies 1-8. Color corresponds to galaxy Sérsic index, ranging
from 0.5 (blue) to 8 (red); for the reference catalog galaxies, this is the mean within
each hexagonal bin. Right panel: normalized histograms of galaxy Sérsic index for
our reference catalog (dashed black), galaxies between the SFMS and 0.5 dex below
the SFMS (band 1; blue), galaxies between the SFMS − 0.5 dex and the SFMS −
1.0 dex (band 2; green), and galaxies in the sF16 selection (orange). Sérsic indices of
our TDE hosts are indicated by the red vertical lines. Here, we restrict all samples to
log(M?,tot/M�) < 10.5 to roughly match the range of TDE host galaxy values.

tio mergers are more effective at enhancing the TDE rate as stars are scattered into the

loss cone of disruptive orbits more efficiently (Chen et al. 2009). French et al. (2017a)

find that the post-starburst ages of TDE hosts, if the starburst arose from a galaxy

merger, are consistent with mergers of mass ratios more equal than 12:1 for most hosts,

which is still consistent with our findings.

Additionally, higher resolution observations could reveal signs of mergers that

the asymmetry indicators miss. Using MUSE integral field unit (IFU) spectroscopy

observations, Prieto et al. (2016) find that the host galaxy of ASASSN-14li shows asym-

metric and filamentary structures—signs of a recent merger—yet this galaxy has a small

RA1 2 asymmetry indicator (0.008 and 0.015 in the g and r bands, respectively).

Higher Sérsic indices and bulge-to-total-light ratios for both TDE host galaxies
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and E+A/post-starburst galaxies (see Figure 3.5) provide a natural explanation for the

enhanced disruption rates in these galaxies. Stone & Metzger (2016b) were the first to

predict that the enhanced rate in E+A/post-starburst galaxies might be due to their

large central stellar densities, as per-galaxy TDE rates scale roughly as ṄTDE ∝ ρ2
?. We

caution that our galaxy Sérsic indices were derived using measurements that typically

do not resolve the nuclear regions of the galaxy and, as such, the density of the sphere

of influence of the BH cannot be directly constrained. We note, however, that Simard

et al. (2011) isolate a subsample of ∼53,000 galaxies with justified free-n Sérsic fits to

their bulges, and they find that galaxies with low and high nbulge values also have low

and high ng values.

There is also some direct evidence that E+A galaxies have higher central stellar

densities. Stone & van Velzen (2016) find that the E+A galaxy NGC 3156 is centrally

overdense, leading to an estimated TDE rate via two-body relaxation of ∼ 10−3 yr−1,

an order of magnitude higher than for other galaxies with similar BH masses. Pracy

et al. (2012) study a sample of seven local E+A galaxies with IFU spectroscopy and find

that they have compact young cores and stellar population gradients that are predicted

from models of mergers and tidal interactions that funnel gas into the galaxy core. This

suggests that these galaxies are being seen in the late stage of a merger where the nuclei

have already coalesced.

Importantly—and separate from understanding the E+A galaxy preference—

we are able to identify a photometric criterion (light concentration, given by either the

Sérsic index or bulge fraction) that may predict a TDE overabundance more broadly
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than a spectroscopic criterion (E+A classification). For upcoming transient surveys

where there may be up to ∼105 transients discovered each year, a photometric host

galaxy selection criterion could be extremely useful for focusing limited follow-up re-

sources. For instance, choosing nuclear transients in high-Sérsic galaxies could signifi-

cantly increase the success of confirming TDEs.

3.7 Other TDE Host Galaxy Properties

Here, we discuss a few other properties of the host galaxies of TDEs. The

top-left panel of Figure 3.9 shows Dn(4000) versus BH mass for TDE host galaxies and

our reference catalog. Dn(4000) corresponds to the strength of the 4000Å break and is

an indicator of the age of the galaxy stellar population: no break means a young galaxy

and a strong break means an old galaxy. Following Kauffmann et al. (2003a,b) and

Brinchmann et al. (2004), the peak in Dn(4000) at ∼ 1.3 corresponds to galaxies with

r-band weighted mean stellar ages of ∼1-3 Gyr and mass-weighted mean ages a factor of

∼2 larger. The peak in Dn(4000) at ∼1.85 corresponds to older elliptical galaxies with

mean stellar ages of ∼10 Gyr. The TDE host galaxies lie roughly in between these two

peaks, with a peak in Dn(4000) at ∼1.5, indicating that they have mean stellar ages in

between those of these two populations. Note that this measurement is only sensitive to

the dominant stellar population and does not reveal multiple stellar populations. In the

right panel, where we match on BH mass to TDE hosts 1-5, we see that sF16 galaxies

exhibit a younger mean stellar age than wF16 galaxies. AGNs exhibit a younger mean

stellar age than low-S/N AGNs. We note that Dn(4000) is not as effective a metric
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Figure 3.9: Left panels, top to bottom: Dn(4000), g-band galaxy absolute magnitude,
and g-band bulge absolute magnitude vs. BH mass for TDE host galaxies and our
reference catalog. For galaxy and bulge magnitudes, the results are similar for the r-
band. BH masses for TDE hosts 8, 9, and 10 are determined via M?,bulge. Contours
are spaced by 0.5σ, with the darkest shading containing 0.5σ and the lightest shading
containing 2σ. Average errors in the TDE host galaxy measurements are shown in
the top or bottom left. Right panels: 1D distributions of these properties in different
subsamples, matched on BH mass of TDE hosts 1-5. All 1D distributions are smoothed
and normalized to equal area. Unsmoothed 1D histogram for TDE hosts 1-5 is shown
in solid red, and for TDE hosts 1-10 in dotted black.
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Figure 3.10: Same description as in Figure 3.9, but galaxy g − r in the top panel and
inclination (face-on is 0◦, maximum of 85◦) in the bottom panel.
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as the Hα EW and Lick HδA metric (Figure 3.1) in isolating quiescent Balmer-strong

galaxies.

The middle-left panel of Figure 3.9 shows g-band galaxy absolute magnitude

versus BH mass for TDE host galaxies and our reference catalog. Results are similar for

r band. Controlling for BH mass (right panel), TDE hosts are slightly fainter than the

catalog galaxies, and sF16 galaxies are slightly brighter than wF16 galaxies. The AGN

and SF samples have very similar distributions. The bottom panel of Figure 3.9 shows

bulge g-band absolute magnitude. Results are similar for r band. Here, controlling for

BH mass, both TDE host galaxies and (to a somewhat greater extent) sF16 galaxies

have brighter bulge magnitudes than the reference catalog. Medians and spreads on the

distributions of the galaxy and bulge absolute magnitudes are given in Table 3.5.

Lastly, we show galaxy g − r in the top panel of Figure 3.10, and galaxy

inclination (face-on is 0◦) in the bottom panel. Controlling for BH mass, the galaxy

g− r colors for TDE host galaxies and our reference catalog appear fairly similar. sF16

galaxies have bluer colors than wF16 galaxies. The inclinations of TDE hosts appear

fairly uniform, with a hint of a preference for lower inclinations. Interestingly, the

inclination distribution of sF16 galaxies appears different from that of the reference

catalog, with a preference for 20 . i . 65 in contrast to the catalog’s preference for

40 . i . 80. Medians and spreads on the distributions of galaxy colors and inclinations

are given in Table 3.5.
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3.8 Correlations

We show correlations between many of the properties explored in this paper in

Figure 3.11. We show BH mass, total stellar mass, redshift, half-light surface brightness,

bulge g − r, galaxy Sérsic index, and bulge-to-total-light ratio. The total stellar mass

behaves very similarly to BH mass in this diagram, which, in addition to it being a

more physically relevant parameter for tidal disruptions, is why we use BH mass in our

analysis. However, as mentioned in the text, if we simply replace BH mass with M?,tot

in our analysis, our conclusions remain the same.
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Figure 3.11: Correlations between many of the properties explored in this paper for
our reference catalog of ∼500,000 galaxies. From left to right along the bottom row,
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Chapter 4

Tidal Disruptions of Main

Sequence Stars of Varying Mass

and Age: Inferences from the

Composition of the Fallback

Material

Abstract

We use a simple framework to calculate the time evolution of the composition

of the fallback material onto a supermassive black hole arising from the tidal disrup-

tion of main sequence stars. We study stars with masses between 0.8 and 3.0 M�, at
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evolutionary stages from zero-age main sequence to terminal-age main sequence, built

using the Modules for Experiments in Stellar Astrophysics code. We show that most

stars develop enhancements in nitrogen (14N) and depletions in carbon (12C) and oxy-

gen (16O) over their lifetimes, and that these features are more pronounced for higher

mass stars. We find that, in an accretion-powered tidal disruption flare, these features

become prominent only after the time of peak of the fallback rate and appear at earlier

times for stars of increasing mass. We postulate that no severe compositional changes

resulting from the fallback material should be expected near peak for a wide range of

stellar masses and, as such, are unable to explain the extreme helium-to-hydrogen line

ratios observed in some TDEs. On the other hand, the resulting compositional changes

could help explain the presence of nitrogen-rich features, which are currently only de-

tected after peak. When combined with the shape of the light curve, the time evolution

of the composition of the fallback material provides a clear method to help constrain

the nature of the disrupted star. This will enable a better characterization of the event

by helping break the degeneracy between the mass of the star and the mass of the black

hole when fitting tidal disruption light curves.

4.1 Introduction

Tidal disruption events (TDEs) offer a way to study both galactic supermassive

black holes (SMBHs) and the dense stellar clusters that surround them. In these clusters,

each star traces out a complicated orbit under the combined influence of the SMBH and

all the other stars. The orbits slowly diffuse as a result of the cumulative effect of
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stellar encounters (Magorrian & Tremaine 1999b). There is a chance that one of these

interactions will rapidly shift a star onto a nearly radial orbit, bringing it close to the

SMBH. If a star wanders too close to the SMBH it can be violently ripped apart by the

SMBH’s tidal field (e.g., Rees 1988a). As a result, for a full disruption, about half of the

disrupted material eventually falls back and accretes onto the SMBH. This accretion is

expected to power a flare that contains vital information about the disruption and can

be used to constrain the properties of the SMBH and the disrupted object (Frank &

Rees 1976b).

The disruption of stars by SMBHs has been linked to tens of flares in the cores

of previously quiescent galaxies (Auchettl et al. 2017a; Komossa 2015a). Transient sur-

veys such as the Palomar Transient Factory (PTF), the All-Sky Automated Survey for

Supernovae (ASAS-SN) and the Panoramic Survey Telescope and Rapid Response Sys-

tem (Pan-STARRS) are now finding increasing numbers of these events, especially at

early times (Arcavi et al. 2014b; Holoien et al. 2014b; Gezari et al. 2012a). By capturing

the rise, peak, and decay of the flares, and with the addition of spectroscopic informa-

tion, these events are starting to provide significant information about the underlying

mechanisms (e.g., Guillochon et al. 2014a).

Modeling TDEs properly requires a prediction of the rate of mass return to the

SMBH after a disruption. While previous numerical results have provided reasonably

precise models for the fallback resulting from the disruption of stars (e.g., Guillochon

& Ramirez-Ruiz 2013a), they are incomplete in that they do not directly examine the

predicted compositional changes.17 Additionally, many previous studies have focused

17Except for the specific case of a helium white dwarf with hydrogen envelope (Law-Smith et al.
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on stars of a single structural profile, usually selected to match the Sun. However,

typical stellar mass functions in TDE host galaxies predict that tidal disruptions should

commonly involve evolved main sequence stars (Arcavi et al. 2014b; French et al. 2016b,

2017b; Law-Smith et al. 2017c; Graur et al. 2017b) whose internal structures are very

diverse.

Given that the accretion time is inferred to be significantly shorter than the

period of the returning debris in most events, the fallback rate is expected to track the

flare luminosity relatively closely (Evans & Kochanek 1989a; Strubbe & Quataert 2009a;

Ramirez-Ruiz & Rosswog 2009; Guillochon et al. 2014a). As the number of observed

disruptions increases, and as the cadence and quality of data continues to improve,

it has become increasingly important to improve models of the fallback material for

disruptions of all kinds.

The presence or absence of particular emission line features in the spectra of

TDEs might be used as a probe of the nature of the disrupted star (Wyrzykowski et al.

2017; Cenko et al. 2016; Brown et al. 2018, 2017, 2016a; Holoien et al. 2016a,c; Leloudas

et al. 2016; Merloni et al. 2015; Brown et al. 2015; Holoien et al. 2014b; Arcavi et al.

2014b; Cenko et al. 2012b; Saxton et al. 2012b; Gezari et al. 2012a). Motivated by

this, in this paper, we expand upon work by Kochanek (2016a) to further characterize

the rate of fallback and, in particular, the composition of the fallback debris. Our

results predict what happens when stars of different masses and evolutionary states are

tidally disrupted, and what composition a distant observer might be able to infer as the

signature of such events.

2017a).
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In Section 7.2, we briefly review the calculation of the mass accretion rate,

Ṁ , onto the SMBH, originally derived by Lodato et al. (2009a), and propose a simple

generalization that allows Ṁ to be estimated from realistic stars. In Section 7.3, using

this new framework, we present the accretion rate for stars ranging in mass from 0.8–

3.0 M� and in evolutionary state from zero-age main sequence to terminal-age main

sequence. In Section 7.4, we summarize our findings and discuss how our models can help

inform the emission models of tidal disruption events by providing detailed predictions

of the abundance of the radiating material.

4.2 Methods

4.2.1 The Mass Accretion Rate

If a star with mass M? and radius R? is on a parabolic orbit around a SMBH of

mass Mbh with pericenter distance, rp, less than the tidal radius, rt = R?(Mbh/M?)
1/3 =

R?q
−1/3, the star will be tidally disrupted. Here q ≡M?/Mbh is the mass ratio.

When a star is disrupted, the debris moves on approximately ballistic trajec-

tories, with a spread in specific orbital energy that is roughly frozen at rt. This spread

arises because at the time of disruption, the leading portions of the star are deeper

in the potential of the SMBH than the trailing portions, which are farther away. The

spread in specific energy of the debris, Et, can be approximated by taking the Taylor

expansion of the SMBH’s potential at the star’s location:

Et = GMbhR?/r
2
t = q−1/3E?, (4.1)
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where E? = GM?/R? is the specific self-binding energy of the star. Because most stars

that are tidally disrupted in galactic nuclei approach the SMBH on nearly zero energy

orbits, Et determines the fallback timescale for the most tightly bound debris

tt =
π

M?

(
MbhR

3
?

2G

)1/2

= 0.1 yr

(
Mbh

106M�

)1/2(M?

M�

)−1(R?
R�

)3/2

.

(4.2)

In order to form an accretion flow, the bound stellar debris must lose a sig-

nificant amount of energy by viscous dissipation (Guillochon & Ramirez-Ruiz 2015a;

Hayasaki et al. 2016; Bonnerot et al. 2016a; Shiokawa et al. 2015). If the viscosity is large

enough to allow accretion onto the SMBH on a timescale shorter than tt, the luminosity

of the flare is expected to follow the rate of mass fallback Ṁ = (dM/dE)(dE/dt) ∝ t−5/3,

where dM/dE = M?/(2Et) for a star on an initially parabolic orbit and q � 1 (Rees

1988a; Phinney 1989). The t−5/3 dependence of TDE light curves relies on the assump-

tion that the specific energy distribution of stellar debris dE/dM is roughly flat with

orbital specific energy, which is only valid at late times (Guillochon & Ramirez-Ruiz

2013a). At early times, the assumption of constant dM/dE is incorrect and depends

sensitively on the structure of the disrupted star (Lodato et al. 2009a; Ramirez-Ruiz &

Rosswog 2009) and the strength of the tidal interaction (Laguna et al. 1993; Guillochon

et al. 2009; Guillochon & Ramirez-Ruiz 2013a).

Lodato et al. (2009a) and Kesden (2012a) moved beyond this simple description

by constructing models that explicitly calculate the energy distribution of the disrupted

stellar debris to O(q1/3) for stars described by a self-gravitating, spherically symmetric,
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Figure 4.1: The geometry of the disrupted star and how it can be used to calculate
dM/dE. The orange slice represents an equal orbital binding energy surface, which
can be approximated as an equal fallback time surface. Here x is the distance from
the center of the star along the star’s orbital plane and Hx is the maximum radius of
the particular slice. When calculating the equal arrival time surfaces it is common to
neglect any azimuthal or polar deviations. These can be safely neglected given that
(R?/rt) = q1/3 � 1.

polytropic fluid. By solving the Lane-Emden equation they determined the density

profile of the star, which in turn allowed them to calculate dM/dE. In this paper we

build on their work and show how their formalism can be easily extended to estimate

the rate at which the debris falls back to pericenter and is subsequently accreted for

tidally disrupted stars with realistic profiles.

The geometrical setup envisioned here is shown in Figure 4.1. To calculate Ṁ
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we begin by using the standard assumption that the star freezes in at the moment of

disruption at rt. The specific binding energy of a fluid element in this case depends on

its position, and dM/dE can be expressed in terms of the star’s initial density profile

ρ?. The mass of a slice of stellar debris dM , defined here as having the same orbital

energy, is found by integrating

dM

dx
=

∫ Hx

0
ρ?(h)2πh dh, (4.3)

where x is measured from the center of the star, Hx is the radius of the slice at a given

x, and h is the rescaled height coordinate. If the orbital period t of a given slice is given

in terms of its orbital binding energy dE/dx, then the rate dM/dt at which mass falls

back to pericenter can be calculated by numerically integrating equation (4.3). Using

this framework, we calculate the accretion rate history for a large number of realistic

stars, whose density profiles we generate using the Modules for Experiments in Stellar

Astrophysics (MESA) code. The reader is referred to Subsection 4.2.2 for a description

of our MESA setup.

The use of this analytic method allows for an extensive study of Ṁ arising

from the disruption of different stars. While this formalism leads to a large reduction

in computational expense, it is nonetheless restricted as it relies on the assumption

of a spherically symmetric star at the time of disruption. Contrary to what can be

predicted by the simple analytical models used in this paper, the rate at which material

falls back depends strongly on the strength of the encounter, which can be measured by

the penetration factor β ≡ rt/rp.
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Figure 4.2: The rate of fallback of stellar debris to pericenter as a function of time from
the disruption of a 1M� star calculated using the analytic framework used in this work
(thick dark blue line), which assumes a full disruption, compared to those calculated
by Guillochon & Ramirez-Ruiz (2013a) using hydrodynamical calculations for different
β values (thin colored lines). Both calculations use Mbh = 106M� and a star that is
constructed as a self-gravitating, spherically symmetric, polytropic fluid with γ = 5/3.
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This is because varying β changes the amount of mass lost by the star, which

affects the rate at which the liberated stellar debris returns to pericenter (e.g., Law-

Smith et al. 2017a). In Figure 4.2 we compare fallback curves calculated using the

analytical model (thick dark blue line) to those calculated using simulations (thin colored

lines). For the purpose of comparison, both models use a 1M� star with adiabatic index

γ = 5/3 and a 106M� SMBH. We find that the broad features of Ṁ are reasonably well

captured by the simple model (the same holds true for stars constructed with γ = 4/3),

as also argued by Lodato et al. (2009a) and Kesden (2012a). This fact is extremely

powerful in that it permits a reasonable characterization of TDE signatures without the

need to run many computationally expensive simulations on the large set of stars we

study here.

What is more, for a fixed β, the time evolution of the forces applied is identical,

regardless of the ratio of the star’s mass to the mass of the SMBH. This is because the

ratio of the time the star takes to cross pericenter to the star’s own dynamical time

depends only on β. Therefore, as long as q � 1, the tidal disruption problem is self-

similar, and our results can be scaled to predict how the time (Equation 4.2) of peak

accretion rate, tpeak, and its corresponding magnitude Ṁpeak change with Mbh, M? and

R?:

Ṁpeak ∝M−1/2
bh M2

?R
−3/2
? , (4.4)

and

tpeak ∝M1/2
bh M−1

? R
3/2
? . (4.5)
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This fact is extremely powerful in that it permits us to completely characterize the

properties of a disruption of a given star with one calculation. An exception to these

simple scalings is if the star penetrates deeply enough such that rp is comparable to the

Schwarzschild radius rg. In this case, general relativistic effects can alter the outcome,

especially if the black hole is spinning (Laguna et al. 1993; Kesden 2012a).

We remind the reader that the exact value of the time of peak accretion rate

tpeak and its corresponding magnitude Ṁpeak are not precisely determined. Most of

these differences arise from how the problem was originally formulated, in which the

star’s self-gravity is ignored, and only the spread in binding energy across the star

at pericenter is assumed to be important to determining Ṁ . Our primary goal in

this paper is to develop a robust formalism for calculating the rate of fallback and its

associated chemical composition as well as conducting a preliminary survey of the key

stellar evolution parameters associated with this problem. The formalism presented in

this section is well suited to this goal.

4.2.2 Stellar Models

We use the open source MESA code (Paxton et al. 2011) to calculate the

structure and composition of the stars that will be disrupted. We generated 192 solar

metallicity stellar profiles ranging in mass from 0.8–3.0 M� and evolutionary state from

zero-age main sequence (ZAMS) to near terminal-age main sequence (TAMS). Profiles

are spaced in intervals of 0.05 in central hydrogen fraction.

The MESA setup used here is described below.18 We begin with a pre-MS

18Inlists are available upon request.
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model, use the mesa 49 nuclear network with the jina rates preference, the Asplund

et al. (2009) abundances (X=0.7154, Y=0.2703, and Z=0.0142), and mixinglengthalpha=2.0.

The final profile, which we call TAMS, is at a central hydrogen fraction of 10−3. Time

steps are limited to a maximum change in central hydrogen fraction of 1%.

We consider the mass range of 0.8–3.0 M� as stars with masses below 0.8 M�

will not evolve appreciably over the age of the universe, and stars with masses above

3 M�, with MS lifetimes < 300 Myr, are unlikely to be disrupted (the relaxation time

for most galactic nuclei is � 300 Myr).

We do not consider evolved stars for two reasons. First, the contribution of

evolved stars to the current and near-future tidal disruption population is expected to be

modest (MacLeod et al. 2012a). Second, studies of the tidal disruption of evolved stars

such as MacLeod et al. (2012a) have shown that even for large β, giant stars are effective

at retaining envelope mass and effectively retaining their cores (where the differences in

composition arise from MS and post-MS evolution). In this paper we are interested in

the evolved material in the inner-most layers of stars that can be reasonably revealed

during a TDE and thus we do not focus on significantly evolved stars.

4.2.3 Salient Model Features

Here we briefly discuss the stellar evolution features that are central to our

study; these arise from changes in mass and evolutionary state along the MS. The

two main burning processes in MS stars, the p-p chain and the CNO cycle, are highly

sensitive to interior temperatures (Kippenhahn et al. 2012) and contribute differently

to stars of varying mass. The p-p chain, which increases the abundance of 4He in
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Figure 4.3: Compositional abundance as a function of enclosed mass in a 1M� star at
three different evolutionary stages during its MS lifetime. In this paper, we characterize
evolutionary stages by fH, the fraction of central hydrogen that has been burned. Here
we show the stellar profiles for fH = 0.0 = fZAMS (dotted), fH = 0.60 (dashed), and
fH = 0.99 (solid), respectively. A 1M� star disrupted at later stages in its evolution
should reveal abundance anomalies: an increase in nitrogen and depletion of oxygen, as
previously argued by Kochanek (2016a).
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stars, roughly dominates for masses . 1.5 M�. For masses & 1.5 M� the CNO cycle

dominates. During the CNO cycle, fusing hydrogen to helium results in an increase

(decrease) of 14N (16O) abundance, with 12C acting as a catalyst for the entire cycle.

As argued by Kochanek (2016a), strong compositional variations are expected in the

fallback material of MS stars. In this paper we trace the abundance variations of the

following elements: 1H, 4He, 16O, 12C, 20Ne, and 14N. These elements make up at

least 99.6% of each star’s total mass. The 34S contribution and abundance ratio is very

similar to that of 20Ne and is thus not explicitly shown in this paper. In what follows,

we present abundances relative to solar.

As an example, in Figure 4.3 we show the compositional variations along the

MS for a 1M� star with solar abundance at ZAMS. The differently styled lines corre-

spond to different stellar ages as defined by fH, the fraction of central hydrogen burned.

A star will have fH = 0 at ZAMS and fH = 0.99 near the end of its MS lifetime. At

ZAMS the star has solar composition (dotted lines) and is roughly homogeneous. After

4.8 Gyr (dashed lines), when more than half of the central hydrogen has been processed

(fH = 0.60), the following abundance variations are seen: a significant increase of 14N,

a modest increase (decrease) of 4He (1H), a significant decrease of 12C, and a roughly

unchanged abundance of 20Ne and 16O. At TAMS (solid lines), where most of the cen-

tral hydrogen has been processed (fH = 0.99), a depletion in 16O abundance is also

observed. At this late stage, there is also a secondary increase in 14N in the core of the

star.

In summary, we see that 1H, 4He and 16O abundances evolve gradually, slowly
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Figure 4.4: Density profiles for a 1M� star at different times along its MS evolution.
The red line corresponds to ZAMS with a central density of 81 g cm−3 and the pink
line corresponds to a central hydrogen fraction of 10−3 with a central density of 500
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vulnerability to disruption.
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Figure 4.5: In both panels, the color scale shows the tidal radius of the disrupted star.
Left panel: Plotted are the ratio of the star’s tidal radius to the tidal radius of that
same star at ZAMS (fH = 0.0 = fZAMS). This shows that the star’s vulnerability to
disruption increases with age. This effect is stronger for more massive stars. Right panel:
Plotted are the ratio of the tidal radius to rt,burn. Here rt,burn is defined as the tidal
radius of the star’s core undergoing active nuclear burning, where the specific power
from nuclear reactions is greater than 1 erg g−1s−1. This shows that all of the stars in
our study require deeper encounters to strip mass from their burning regions.

extending to larger parts of the star and encompassing larger radii, while 12C and

14N abundances evolve rapidly across the burning region. All stars follow a similar

trend. The most massive star in this study (3M�) has, at TAMS, large compositional

changes across roughly half of its mass (or about 20% of its radius). As discussed

by Kochanek (2016a), in the fallback material from a TDE we expect 12C and 14N

abundance anomalies to be more noticeable and appear at earlier times than the other

elemental anomalies.

As a star evolves along the MS, its average density, ρ̄?, decreases and its core

density, ρcore, increases. This is illustrated in Figure 4.4, where we show the evolution

of the density profile for a 1M� star with initial solar abundance from ZAMS to TAMS.

Since the star’s radius increases with age while its mass remains nearly constant, ρ̄?

decreases with age. The effects of ρ̄? on the star’s vulnerability to tidal deformations
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can be readily seen by rewriting rt as rt
∼= M

1/3
bh ρ̄

−1/3
? . This scaling implies that as the

star evolves, it becomes progressively more vulnerable to tidal deformations and mass

loss. However, this scaling is unable to accurately capture the exact impact parameter

required to fully disrupt a star. This is because as the star evolves a denser core, a

surviving core is likely to persist for a disruption at rt (β = 1), which is the penetration

factor assumed for the analytical calculations. Nonetheless, we expect the time and

magnitude of the peak accretion rate to be reasonably well captured by the simple

formalism described here.

4.3 The Disruption of Evolved MS Stars

4.3.1 Tidal Vulnerability

Here we analyze how the tidal radius, rt,?, evolves with stellar mass and age

along the MS for the stars in our study. The left panel of Figure 4.5 shows rt,? normalized

to the tidal radius of the same star at ZAMS, rt,ZAMS. We plot this ratio as a function

of fH, the fraction of central hydrogen burned, and stellar mass M?. As expected, we

find that the tidal radius increases with age and evolves more dramatically with fH

throughout the lifetime of more massive stars. For example, the tidal radius of a 3M�

star increases by roughly a factor of two over its MS lifetime. As stars move along the

MS, they become progressively more vulnerable to tidal dissipation and mass stripping.

Next, we discuss how the vulnerability of regions with processed element abun-

dances compares to that of the entire star. The right panel of Figure 4.5 shows the ratio

of rt,? to rt,burn, where rt,burn is defined as the tidal radius of material within the re-
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gions of a star that exhibit active nuclear burning. This region of active nuclear burning

is defined to be where the specific power from nuclear reactions is greater than 1 erg

g−1s−1. This is a consistent way for defining the burning region throughout all of the

stellar profiles calculated here. As expected, this region is located at small radii where

the density is much higher than ρ̄
−1/3
? and thus deeper penetrations are required in

order to observe the evolved element abundances in the fallback material. Also, as this

region is located within the innermost layers of the star, the processed elements will be

revealed in the fallback material only at later times.

4.3.2 The Disruption of a Sun-like Star

Figure 4.6 shows the mass fallback rate arising from the full disruption of a

1M� star at two different evolutionary states: at ZAMS (dotted lines) and after 4.8

Gyr (dashed lines), when more than half of the central hydrogen has been processed

(fH = 0.60). These curves are normalized to the peak fallback rate and peak time of the

corresponding ZAMS star: Ṁpeak,ZAMS and tpeak,ZAMS, respectively. The compositions

of the stars before disruption are shown in Figure 4.3 as dotted (ZAMS) and dashed

(fH = 0.60) lines. The disruption of the TAMS 1M� star, whose composition is shown

by the solid lines in Figure 4.3, is expected to be similar in shape to the disruption of

the fH = 0.60 star, with an enhancement in 14N and depletion in 12C.

The smooth behavior of the fallback rates for all the plotted elements during

the disruption of the ZAMS star (dotted lines in Figure 4.3) is the result of the nearly

homogeneous elemental composition within the star. The fallback rates for the fH = 0.60

star (dashed lines in Figure 4.3), on the other hand, contain information about the
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Figure 4.6: Mass fallback rates for elements that make up 99.6% of the mass of a 1M�
tidally disrupted star at two different evolutionary stages. The star aged nearly 5 Gyr
from the dotted lines (fH = 0.0 = fZAMS) to the solid lines (fH = 0.60). Ṁ for the total
mass of the star is shown by the gray curves. All curves are normalized to Ṁpeak and
tpeak for the corresponding ZAMS star. The main changes in fallback rates as the star
evolves along the MS are an increase in nitrogen and a decrease in carbon after tpeak

due to CNO activity in the core.
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Figure 4.7: The fallback rate for different elements, ṀX, following the disruption of a
1M� star at three different evolutionary stages. The left and center panels correspond
to the dotted and solid lines shown in Figure 4.6, respectively. The right panel shows Ṁ
for the same star but at fH = 0.99, which corresponds to an age of 8.3 Gyr. Time is in
units of tpeak. As the star ages we see an increase in nitrogen and a decrease in carbon
abundance but only after tpeak.

varying nature of its elemental composition. In the fallback rates we can see an obvious

increase in 14N, decrease in 12C, and a slight increase in 4He, which is consistent with

the compositional structure of the star before disruption. These results are in agreement

with Kochanek (2016a). We note that the fallback curves for the fH = 0.60 star have

no abundance variations at t . tpeak. These compositional anomalies might provide

insight into the nature of the progenitor star near or after the most luminous time of

the tidal disruption flare.

In Figure 4.7 we show the fractional contribution to the total fallback rate

arising from each element during the disruption of a 1M� star at three different evo-

lutionary stages. From left to right, these panels correspond to the ZAMS (dotted),

fH = 0.60 (dashed), and TAMS (solid) composition profiles in Figure 4.3, respectively.

In each panel we calculate the ratio of the fallback rate for each element, ṀX, to the

total mass fallback rate, Ṁfull.
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Figure 4.8: Elemental abundance of the fallback material relative to solar following
the disruption of a 1M� at two different evolutionary stages: fH = 0.60 (left panel)
and TAMS (right panel). A rapid evolution of 14N and 12C abundance relative to the
other elements is clearly seen. The solar ratios clearly illustrate the significance of the
variations in the abundances of 16O, 4He, and 20Ne.

For the disruption of a 1M� star, it might be challenging to distinguish its

evolutionary stage using spectral information if it is only obtained at t . tpeak (although

the exact values of Ṁpeak and tpeak are expected to be distinct; Figure 4.12). This is,

however, not the case after tpeak.

Figure 4.8 shows the abundance of the fallback material relative to solar fol-

lowing the disruption of a 1M� at two different evolutionary stages: fH = 0.60 (left

panel) and TAMS (right panel). Elemental abundances relative to solar are calculated

here using

X

X�
=

ṀX/ṀH

MX/MH,�
, (4.6)

where ṀX is the fallback rate for a selected element, ṀH is the fallback rate of 1H, and

MX/MH,� is the abundance mass ratio relative to solar of element X. The disruptions
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of a fH = 0.60 and a TAMS star each show a significant increase in 14N and 4He

after tpeak. As expected, these features are more prominent for the TAMS star. Near

t = 10tpeak, Figure 4.8 shows steeper abundance gradients in the right panel compared to

the left in all elements except 12C. We note that these values are relative to 1H. This is

important in the case of 16O and 20Ne where we see an increase in their abundance. This

is because while 1H is depleted at every evolutionary stage, 16O and 20Ne abundance

remain relatively constant for a star of this mass, which results in higher solar ratios.

However, this behavior is also altered by the mass of the star as we discuss in the

following section.

4.3.3 Disruption of MS stars

For reasons discussed previously, it seems likely that the evolutionary state of a

star might be revealed by charting the compositional evolution of the fallback material,

which might be inferred from particular features in the spectra of the resulting luminous

flare. The association of a significant fraction of TDEs with post-starburst galaxies

(Arcavi et al. 2014b; French et al. 2016b, 2017b; Law-Smith et al. 2017c) has suggested

the likely presence of evolved stars in the nuclei of TDE hosts, or at least a subset

thereof. Much of our effort in this section will thus be dedicated to determining the

state of the fallback material after the tidal disruption of stars of a wide range of ages

and masses.

In Figure 4.9 we show the relative abundances of the fallback material for

three representative MS star disruptions. The first row of panels shows the abundance

of the fallback material for a 0.8M� star tidally disrupted at three different evolutionary
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Figure 4.10: Elemental abundances relative to solar at the time the mass fallback rate
has reached one tenth of its peak value, t0.1 > tpeak, for all of the stellar masses and
ages in our sample. Elements of interest are 12C, 4He, 14N and 16O. Values are shown
as a function of the star’s fractional main sequence lifetime and stellar mass. We find
carbon abundances to be more indicative of stellar mass for M? . 1.5M�, while helium
abundances are correlated with stellar age for all masses. (X/X�)14N & 5.0 occurs only
for masses greater than 1.5M� and develops early in the star’s evolution. We also find
oxygen abundances to be primarily stellar mass dependent.
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Figure 4.11: Same as Figure 4.10 but presented with stellar age in years (x-axis). The
white regions correspond to pre-MS (left) or post-MS (right).
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stages: fH = 0.3, fH = 0.6, and fH = 0.99. The abundances shown are similar to those

shown in Figure 4.8 for a 1M� star. At these low masses, we expect the abundance

anomalies to be present in the fallback material at a few times tpeak.

The second row of panels in Figure 4.9 shows the relative abundances of the

fallback material for a disrupted 2M� star. The abundance patterns are broadly similar

to those seen for the 0.8M� and 1M� stellar disruptions. However, there are three

main differences. First, in contrast to the observed increase of 16O seen in the 0.8M�

and 1.0M� disruptions, a significant decrease in 16O abundance is observed. This is an

indication of the increased CNO activity in the 2M� star. Second, two distinct bumps

are seen in the evolution of the 14N abundance, contrary to its steady increase in the

smaller mass disruptions. The first increase in 14N abundance (and the corresponding

12C depletion) is due to the local maximum of CNO burning that is located at roughly

20% of the star’s radius. There is also significant CNO and p-p chain activity in the

star’s core, which is revealed at later times in the fallback material, and leads to the

relatively delayed increase in 4He and 20Ne, the corresponding decrease of 16O, and a

secondary increase in 14N. Third, abundance variations are observed significantly closer

to tpeak in the 2M� disruptions than in the 0.8M� disruptions. This is a result of the

more extended burning region within the star, whose material is revealed at earlier times

following the disruption.

In the bottom row of panels in Figure 4.9 we show the composition of the

fallback material following the disruption of a 3M� star. The abundance variations in

these fallback curves closely resemble those for the 2M� star, but with larger variations
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appearing at earlier times. The abundance variations presented in Figure 4.9 for the few

representative stars accurately describe the overall trends in our sample. These trends

are illustrated in Figure 4.10, in which various elemental abundances are shown at the

time that the mass fallback rate has reached one tenth of its peak value, t0.1 > tpeak.

The fallback abundances at t0.1 are plotted in Figure 4.10 as a function of

the star’s fractional main sequence lifetime, t/tMS, and stellar mass. In Figure 4.11 we

show the same abundance values as in Figure 4.10 but presented with the evolutionary

age of the star in years. Some key points should be emphasized. We find carbon

decrements to be indicative of stellar mass, while helium enhancements are indicative of

age. (X/X�)14N & 5.0 occurs only for masses greater than 1.5M� and develops early in

the star’s evolution. This is due to the enhanced CNO activity inside the more massive

stars in our sample. We also find oxygen abundances to be primarily dependent on

stellar mass.

The processes discussed here suggest that TDEs may have a more complex

spectrum and time-structure than simple models suggest. The effects are especially

interesting when the accretion rate is high, as this gives rise to high luminosities, and

thus can more readily offer clues to the nature of the disrupted star. The specific values

of Ṁpeak and tpeak can further aid in distinguishing the properties of the progenitor

star before disruption. This is illustrated in Figure 4.12 where we show abundances

of carbon, helium, nitrogen and oxygen (relative to solar) in the fallback debris as

a function of Ṁpeak and tpeak. Each panel in Figure 4.12 corresponds to a different

element, the different lines correspond to different stars in our study (0.8M�, 1.0M�,
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1.2M�, 1.4M�, 2.0M�, and 3.0M�), the points are different stages in the stars’ evolution

on the MS (roughly equally spaced in time), and the color of the points is the abundance

of the fallback debris at the time that Ṁ falls to one tenth of its peak value, t0.1. We

used the fitting formulas presented in Guillochon & Ramirez-Ruiz (2013a), which give

Ṁpeak and tpeak given β, γ, M?, and R?. We used γ = 4/3 and its corresponding

penetration factor for full disruption (β = 1.85) given by Guillochon & Ramirez-Ruiz

(2013a). The values of M? and R? were taken from the MESA profiles and we have

assumed Mbh = 106M� (the reader is referred to equations 4.4 and 4.5 for the scalings

of Ṁpeak and tpeak with Mbh, respectively). The abundance values are the same as in

Figure 4.10.

The variation in elemental abundances is accompanied by a wide range in

Ṁpeak and a moderate range in tpeak; a combination of these different pieces of informa-

tion can help characterize the progenitor stars of TDEs. For example, the disruption

of a 3M� star has similar tpeak values to that of a 2M� star. While their 12C and 16O

abundances are very similar, the 3M� star’s disruption results in a higher abundance

in 14N and 4He at every stage in its evolution, along with a higher Ṁpeak. In the lower

mass stars (0.8–1.4M�) there are many degeneracies in Ṁpeak and tpeak values. Here,

the 14N, 16O, and 4He abundances are similar (over the age of the universe) but the

12C abundances vary at the early stages in these stars’ MS evolution. Compositional

information, combined with reprocessing and radiative transfer calculations (e.g., Roth

et al. 2016), can thus be used to discern the stellar mass and age of the disrupted star.
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Figure 4.12: Fallback abundance at t0.1 of 4He, 12C, 14N, and 16O (clockwise from top
left) for the disruption (by a Mbh = 106M� SMBH) of 0.8M�, 1M�, 1.2M�, 1.4M�,
2.0M�, and 3.0M� stars along their MS evolution. Abundances are at t0.1, but points
are placed at Ṁpeak and tpeak for the disruption of each star. Abundances are quoted
relative to solar. Points are roughly equally spaced in time for each mass, with the
top-left-most point being ZAMS and the bottom-right-most point being TAMS. (This
is not strictly true for the ZAMS point of the 1M�, 1.2M�, and 1.4M� stars as their
radius slightly decreases at the very beginning of their MESA evolution, but all other
points for these stars proceed left to right with age as the star subsequently evolves.)
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4.4 Discussion

4.4.1 Summary of Key Results

Motivated by the work of Kochanek (2016a), we have modeled the tidal disrup-

tion of MS stars of varying mass and age. We adopted the analytic formalism originally

presented in Lodato et al. (2009a) to study, for the first time, the time evolution of the

composition of the fallback debris onto the SMBH. We compared the analytic method

to hydrodynamic simulations in Figure 4.2 and found, similarly to Lodato et al. (2009a)

and Kesden (2012a), that the broad features of the fallback curves are reasonably well

captured by it.19 We quantify the variations in composition arising from the disruption

of 12 different stars with masses of 0.8–3.0M� at 16 different evolutionary stages along

the MS. The main results of our study are the following.

1. We predict an increase in nitrogen and depletion in carbon abundance in the

fallback debris with MS evolution for all stars in our sample (in agreement with

Kochanek 2016a). We find a decrease in oxygen with MS evolution for M? &

1.5M�, and an increase for M? < 1.5M�.

2. For all of the TDEs modeled in this study, we find that the time during the fallback

rate curve when anomalous abundance features are present, tburn, is after the time

of time of peak fallback rate tpeak.

3. Abundance variations are more significant and tburn/tpeak is smaller for stars of

larger mass.

19This work should, however, be taken only as a guide for the expected compositional trends in the
fallback material, as hydrodynamical simulations are needed to accurately predict the evolution and
characteristics of the flares.
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4. Some key variations in the compositional evolution are highlighted, along with

the types of observation that would help to discriminate between different stellar

disruptions. In particular, we find carbon and oxygen abundances to strongly

dependent on stellar mass for M? . 2M�, while helium abundances are found to

be correlated with stellar age for all masses. (X/X�)14N & 5.0 occurs only for

masses greater than 1.5M� and is observed early in the star’s evolution.

5. Studying the compositional variation in the fallback debris provides a clear method

for inferring the properties of the progenitor star before disruption.

4.4.2 Implications for Observations and Models

It is evident from the results described above that the evolution of the interior

structure of stars during their MS lifetimes is very rich. Even in the simplest case of

a Sun-like star, complex behavior with multiple abundance transitions in the fallback

material may be observed. The resulting TDE spectra are expected to depend fairly

strongly on the abundance properties of the fallback material (Roth et al. 2016). This

implies that if one can be very specific about the times at which we expect to see such

transitions in the observed emission, one can better constrain the properties of the

disrupted star.

Motivated by this, in Figure 4.13 we plot the fallback time tburn, relative to

tpeak, at which we expect to see anomalous abundance variations. Here tburn is defined as

the time at which the abundances of 12C and 14N in the fallback material, as presented

in Figures 4.8 and 4.9, both deviate from unity. tburn/tpeak is shown in Figure 4.13 as
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a function of stellar mass and age (characterized by fH). At fixed fH we see that non-

solar abundances in the fallback debris begin to appear systemically closer to tpeak as

stellar mass increases. For the 3.0M� star, tburn ≈ 1.2tpeak for fH . 0.3. For constant

M?, tburn/tpeak increases mildly with fH for stars with M? > 1.6M�. For stars with

M? < 1.6M�, this ratio remains fairly constant throughout the star’s evolution. In

summary, tburn depends strongly on M? but has a relatively weak dependence on stellar

age. It is important to note that independently of the mass and age of the disrupted

star, no anomalous abundances are expected to be observed before tpeak.

Information regarding the nature of the disrupted star should be imprinted on

the properties of the TDE light curve (e.g., tpeak and Ṁpeak) and spectrum (particularly

at t & tburn). Current observations of TDEs show clear differences in their rise and decay

properties as well as in their spectral evolution. Peculiar emission features have been

observed in their spectra, which include an array of helium, hydrogen, and nitrogen

broad line emission features. The origin of these features as well as their associated

line ratios have caused significant debate. The extreme helium to hydrogen line ratio

observed in the transient event PS1-10jh was initially proposed to be the result of the

tidal disruption of a helium-rich star (Gezari et al. 2012a). However, such line ratios

have also been shown to arise from the reprocessing of radiation through the fallback

debris of a disrupted Sun-like star (Roth et al. 2016). As for the additional presence of

rare nitrogen features, Kochanek (2016a) first proposed that the disruption of MS stars

with evolved stellar compositions could lead to enhanced nitrogen (as well as anomalous

helium and carbon abundances).
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Figure 4.13: The ratio of tburn to tpeak as a function of fH and stellar mass. Here tburn

is the time when non-solar abundance ratios begin to appear in the fallback material,
specifically when the abundance of 12C and 14N deviate from solar. We have explic-
itly excluded fH . 0.05 from this plot, given that these stars experience some mild
contraction early in their MESA evolution. The ratio (tburn/tpeak) reaches a maximum
(minimum) value of 7.6 (1.15) for a 0.8M� (3M�) star at fH = 0.05 (fH = 0.23).
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(dashed line) and 3M� (dash-dotted line) star.
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In Figure 4.14, we show compositional features in the spectra of ten observed

TDEs. We place each spectrum in the light curve of each event, relative to its peak

luminosity and peak time. Symbols indicate features present in the spectra. Bolometric

light curve fits for each event are from Mockler et al. (2018). Data is taken from Gezari

et al. (2012a, 2015); Chornock et al. (2014b); Arcavi et al. (2014b); Brown et al. (2018);

Blagorodnova et al. (2017b); Hung et al. (2017c); Holoien et al. (2014b, 2016a,c); Cenko

et al. (2016); Brown et al. (2016a, 2017); Wyrzykowski et al. (2017). Note that this figure

shows TDEs with well-sampled light curves and existing spectroscopic observations.

Several TDE spectra show compositional features at or near the peak in their light

curve. Our calculations (in particular see Section 4.3.3 and Figure 4.13) predict no

compositional abundance changes (relative to solar) in the fallback material at or near

peak due to the star. This implies that the strong suppression of hydrogen Balmer

line emission relative to helium line emission should occur even at solar composition,

as argued by Roth et al. (2016), due to optical depth effects alone. For observations

at t > tburn, we expect the reprocessing material to be enhanced in helium, yet the

optical depth effects are expected to be less important (Guillochon et al. 2014a). As

such, radiation transfer calculations are needed before firm conclusions can be derived

from observations of evolving line ratios in a given TDE.

Nitrogen emission lines, on the other hand, are only currently detected at

t & 1.2tpeak. If their presence is primarily attributed to a drastic increase in nitrogen

abundance, then based on the results shown in Figures 4.12 and 4.13, one would conclude

that M? & 1.8M� for the star whose disruption triggered the ASASSN-14li flaring event
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and M? & 3.0M� for the star whose disruption triggered iPTF16fnl. However, early UV

spectra that show a lack of nitrogen emission lines at early times are needed to support

constraints such as these. In addition, the line ratio variability of, for example, CIII and

NIII, can be used to infer the abundance evolution (as these lines have similar ionization

potentials). The timescale for chemical enrichment (i.e., tburn) can thus provide a direct

observational test of which stars are being disrupted by the central SMBH.

Much progress has been made in understanding how the feeding rate onto a

SMBH proceeds after the disruption of a particular star, and in deriving the generic

properties of the flares that follow from this. There still remain a number of mysteries,

especially concerning the identity of the star, the nature of the energy dissipation mech-

anism, and the time scales involved. The modeling of the flare itself (i.e., the dissipation

mechanism and the radiation processes) is a formidable challenge to theorists and to

numerical techniques. It is also a challenge for observers, in their quest to detect fine

details in distant, fading sources. The class of models we have presented here predict

that the spectral properties of the fading signals will turn out to be even more telling

and fascinating that initially anticipated.

Future work will include a more detailed exploration of the parameters gov-

erning the abundance of the fallback material, including hydrodynamical calculations

(e.g., Law-Smith et al. 2017a) as well as radiative transfer calculations (e.g., Roth et al.

2016) evolved over time for different properties of the reprocessing material. Studies of

this sort, in comparison with improved spectral observations of TDEs, will undoubtedly

help clarify the physics governing these transient sources.
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Chapter 5

The Tidal Disruption of Sun-like

Stars by Massive Black Holes

Abstract

We present the first simulations of the tidal disruption of stars with realistic

structures and compositions by massive black holes (BHs). We build stars in the stellar

evolution code MESA and simulate their disruption in the 3D adaptive-mesh hydrody-

namics code FLASH, using an extended Helmholtz equation of state and tracking 49

elements. We study the disruption of a 1M� star and 3M� star at zero-age main se-

quence (ZAMS), middle-age, and terminal-age main sequence (TAMS). The maximum

BH mass for tidal disruption increases by a factor of ∼2 from stellar radius changes due

to MS evolution; this is equivalent to varying BH spin from 0 to 0.75. The shape of

the mass fallback rate curves is different from the results for polytropes of Guillochon
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& Ramirez-Ruiz (2013a). The peak timescale tpeak increases with stellar age, while the

peak fallback rate Ṁpeak decreases with age, and these effects diminish with increasing

impact parameter β. For a β = 1 disruption of a 1M� star by a 106 M� BH, from

ZAMS to TAMS, tpeak increases from 30 to 54 days, while Ṁpeak decreases from 0.66

to 0.14 M�/yr. Compositional anomalies in nitrogen, helium, and carbon can occur

before the peak timescale for disruptions of MS stars, which is in contrast to predictions

from the “frozen-in” model. More massive stars can show stronger anomalies at earlier

times, meaning that compositional constraints can be key in determining the mass of

the disrupted star. The abundance anomalies predicted by these simulations provide

a natural explanation for the spectral features and varying line strengths observed in

tidal disruption events.

5.1 Introduction

The tidal disruption of a star by a massive black hole (BH) occurs when a

star is knocked onto a nearly radial “loss-cone” orbit toward the BH by a chance en-

counter with another star. The flares resulting from the disruption can offer insight into

otherwise quiescent massive BHs, the nuclear stellar populations that surround them,

the physics of super-Eddington accretion, and the dynamical mechanisms operating in

galactic centers. A detailed theoretical understanding of tidal disruptions is required

to pry this information from observations. Pioneering theoretical work includes Hills

(1975a), Carter & Luminet (1983), Rees (1988a), and Evans & Kochanek (1989a).

In this Letter, we present the first simulations of tidal disruptions of stars with
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realistic structures and compositions. We build stars using the 1D stellar evolution

code MESA (Paxton et al. 2011) and calculate their disruption in the 3D adaptive-mesh

hydrodynamics code FLASH (Fryxell et al. 2000). We track the elemental composition

of the debris that falls back onto the black hole. We study the disruption of a 1M� star

and 3M� star at three different ages.

A few dozen tidal disruption event (TDE) candidates have been observed thus

far; see Komossa (2015a) and Auchettl et al. (2017a) for a review of observations.

Nearly all of their light curves (luminosity vs. time) are well fit by a simple scaling of

mass fallback rate predictions from simulations (e.g., Mockler et al. 2019), suggesting

that circularization of the debris is prompt, and that the mass fallback rate has impor-

tant discriminatory power in determining the key properties of an observed disruption

(Ramirez-Ruiz & Rosswog 2009).

The shape of the mass fallback rate curve depends on the properties of the

BH (mass, spin), the properties of the star (structure, mass), and the parameters of

the disruption (impact parameter, orientation). Guillochon & Ramirez-Ruiz (2013a)

studied the impact of stellar structure and impact parameter on the mass fallback rate

using γ = 4/3 and γ = 5/3 polytropic stellar structures. Gafton & Rosswog (2019a)

performed a parameter space study of relativistic tidal disruptions with spinning BHs for

a γ = 5/3 stellar structure. Goicovic et al. (2019) recently simulated the disruption of

a zero-age main sequence (ZAMS) star using moving-mesh hydrodynamics and studied

the evolution of the stellar remnant, but did not track composition or study non-ZAMS

stars.
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Besides the shape of the light curve, spectroscopic information can provide

clues as to the nature of the disrupted star. Kochanek (2016a) predicted abundance

anomalies in TDEs resulting from evolved stars. Gallegos-Garcia et al. (2018) developed

a simple framework, based on the work of Lodato et al. (2009a) and Kochanek (2016a),

to calculate the mass fallback rate for the disruption of stars of many masses and ages

and to track the composition of the mass fallback. This is a useful framework that can

be used to interpret spectroscopic observations of TDEs, but, as we discuss here, the

simulations presented in this Letter make several different predictions from it.

An outstanding mystery in the field is that TDEs appear to occur preferentially

in a rare type of galaxy (Arcavi et al. 2014b; French et al. 2016b; Law-Smith et al. 2017c;

Graur et al. 2018). If we can determine the exact type of star that was disrupted in

a TDE and build a demographic sample, we may be able to better understand this

peculiar host galaxy preference. Separate from this, we may eventually be able to study

the nuclear stellar populations in other galactic centers through tidal disruption.

TDEs can be used to obtain BH masses with comparable precision to the M–σ

relation (e.g., Mockler et al. 2019). Simulations of tidal disruption using realistic stellar

models will provide a better backbone for these fitting routines and a more accurate

determination of all of the properties of the disruption.

A diversity of stellar types can contribute to tidal disruptions from 105–109M�

BHs; see the tidal disruption menu presented in Law-Smith et al. (2017a). It is impor-

tant to build a library of realistic tidal disruption simulations in order to extract the

most information from the diversity of incoming and existing observations. The simu-
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lation framework we present in this Letter enables one to simulate the tidal disruption

of any object that can be constructed in a stellar evolution code, allowing for the de-

velopment of a library of tidal disruption simulations of stars with realistic structures

and compositions.

This Letter is organized as follows. In Section 7.2 we discuss our methods.

In Sections 5.3 and 5.4 we discuss our results with regard to stellar structure and

composition respectively. In Section 7.5 we summarize and conclude.

5.2 Methods

We build stars using the 1D stellar evolution code MESA and simulate their

tidal disruption using FLASH, a 3D grid-based adaptive mesh refinement hydrodynam-

ics code. For this study, we focus on the disruption of a 1M� star at ZAMS (0 Gyr),

middle-age (4.8 Gyr), and TAMS (terminal-age main sequence; 8.4 Gyr), and a 3M�

star at ZAMS (0 Gyr) and TAMS (0.3 Gyr). We simulate an encounter with a 106M�

BH (for non-relativistic encounters, other BH masses will simply scale the properties

of the disruption; see e.g. Guillochon & Ramirez-Ruiz 2013a) at a range of impact

parameters from grazing encounters to full disruptions.

We use the following MESA setup20: we start with a pre-MS model, use the

Asplund et al. (2009) abundances (X=0.7154, Y=0.2703, and Z=0.0142), the mesa 49

nuclear network with the jina nuclear reaction rates preference (from Cyburt et al.

2010), and mixinglengthalpha=2.0 (this is the MESA default, and corresponds to

20Inlists are available upon request.
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Figure 5.1: MESA density profiles for a 1M� star (top panels) and 3M� star (bottom
panels) along their main sequence lifetimes. X is the central hydrogen mass fraction.
Left panels: density vs. radius. Right panels: normalized to central density and stellar
radius. Dashed and dotted lines show profiles for γ = 4/3 and γ = 5/3 polytropes
respectively.

setting the mixing length equal to twice the local pressure scale height21). We define

TAMS as a central hydrogen fraction of 10−3. We track 49 elements, but in our results

only show a few representative elements that have relatively high mass fractions. Full

composition (and other) results will be made publicly available with the release of our

tidal disruption library (in prep.).

21Moore & Garaud (2016) show that this is accurate for stellar masses up to 3M�.
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We map the 1D profiles of density, pressure, temperature, and composition

from MESA onto a 3D grid in FLASH, with initially uniform refinement. Some of

the details of our FLASH setup are explained in Guillochon & Ramirez-Ruiz (2013a).

The important differences from this setup are that (1) we use an extended Helmholtz

equation of state22 rather than a polytropic equation of state, (2) we map a MESA

profile onto the FLASH grid, and (3) we track the elemental composition of the debris

for 49 elements. Our setup is Eulerian, centered on the rest frame of the star. Our

domain is 1000R? on a side, and we run our simulations until the stellar debris leaves

the domain, typically 60-100 tdyn after the start of the simulation (the dynamical time

of the star is defined as tdyn =
√
R3
?/GM?). This corresponds to 23-65 hours depending

on the star and impact parameter. Note that the period of the most tightly bound

debris in our simulations is (at shortest) ≈ 110 hours, so no stream-stream collisions

occur. At initial maximum refinement, we have 131 cells across the initial diameter of

the star. This is a factor of ≈ 2.6 times better initial resolution than Guillochon &

Ramirez-Ruiz (2013a), which had ≈ 50 cells across the initial diameter. The simulation

retains this maximum refinement through pericenter and derefines as the debris spreads

out. We refine based on density, relative to the maximum density in the simulation.

All cells within 10−5 of the maximum density have the same refinement (are maximally

refined). The simulations presented in this Letter have a maximum total number of

blocks of 4.8 × 104. There are 83 = 512 cells per block, so this translates to 2.5 × 107

maximum cells in the simulation.

22This is an extension of the default FLASH Helmholtz table, based on Timmes & Swesty (2000),
and is available at http://cococubed.asu.edu/code pages/eos.shtml.
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1M⊙, age = 0 Gyr 1M⊙, age = 4.8 Gyr 1M⊙, age = 8.4 Gyr

1R⊙

Figure 5.2: 2D slices in the orbital plane of a β = 2 encounter with a 106M� BH
for a 1M� star at ZAMS, middle-age, and TAMS, at ≈ 3 tdyn after pericenter. Color
corresponds to density and contours are equally spaced in the logarithm of the density
(at ρ = 1, 10−1, 10−2 g/cm3). Videos of the simulations are available at this URL.

The impact parameter β ≡ rt/rp is defined as the ratio of the tidal radius,

rt ≡ (MBH/M?)
1/3R?, (5.1)

to the pericenter distance, rp. Note that the tidal radius is defined using the stel-

lar radius (not necessarily 1R� for a 1M� star), so that the same impact parameter

for different stellar ages corresponds to different pericenter distances. The most rel-

ativistic encounter shown in this work is a β = 3 disruption of a ZAMS Sun; here

rp ' 14GMBH/c
2. In this regime, relativistic effects on the rate of return of the fallback

material are minor (Tejeda et al. 2017b; Stone et al. 2019). Note also that in our simu-

lations the tidal radius is 100R?, meaning that the BH enters the computational domain

as it moves through pericenter. This does not lead to any issues vis-a-vis capture by the

event horizon, as the star’s deformation through pericenter only extends to a few R?,

and further, the pericenter passage takes place on the star’s dynamical timescale. Put

more precisely, the minimum angular momentum of the tidal debris is much greater
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than the threshold for capture. We begin the simulations at r = 10 rt, where tidal

effects are negligible.23 We then relax the star onto the grid for 5 tdyn before beginning

the parabolic BH orbit evolution. We verify that the stellar profiles after this relaxation

process are very similar to the intial input MESA profiles (see also e.g. Law-Smith et al.

2017a).

We calculate the mass fallback rate (Ṁ) to the BH by first calculating the

spread in binding energy dM/dE of each cell in our simulation. We smooth the dM/dE

distribution with a Gaussian filter, as it is noisy due to our fine binning, then convert

this distribution to an Ṁ curve through Kepler’s third law. Our Ṁ curves are derived

at the last time at which all of the stellar debris is within the domain, 40-80 tdyn after

pericenter; Figure 10 of Guillochon & Ramirez-Ruiz (2013a), which shows Ṁ curves

up to 550 tdyn after pericenter, demonstrates that our Ṁ curves are accurate for the

timescales we are interested in for this work. We tested that our setup can reproduce

the Guillochon & Ramirez-Ruiz (2013a) Ṁ and ∆M results for polytropes at a few

different impact parameters. We verified the resolution convergence of our results by

running a subset of our simulations with twice or four times the maximum number of

blocks stated above, finding no appreciable difference.

5.3 Stellar Structure

In this section we consider the structure evolution of a 1M� star and 3M� star

along their main sequence lifetimes as representative examples. Stars with M & 3M�
23Cf., for example, Goicovic et al. (2019), whose simulations start at 5 rt.
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will be very rare as TDEs due to their short main sequence lifetimes; stars with M .

0.6M�, on the other hand, will not significantly evolve over the age of the universe.

Figure 7.1 shows density profiles from MESA for a 1M� star and 3M� star

along their main sequence lifetimes. From ZAMS to TAMS, the Sun’s central density

increases by a factor of ≈ 6, from 80 g/cm3 to 500 g/cm3, and its radius increases by

a factor of ≈ 1.4, from 0.9R� to 1.3R�. A 3M� star’s radius increases by a factor of

1.75 over its MS lifetime. Normalized to central density and stellar radius, the profile

of a γ = 4/3 polytrope is in rough agreement with that of a ZAMS Sun and in better

agreement with that of a ZAMS 3M� star, though is not a good match for non-ZAMS

stars.

The density profile of a star determines its susceptibility to tidal disruption.

Figure 5.2 shows 2D slices in the orbital plane from simulations of the disruption of

the Sun at three different ages (ZAMS, middle-age, and TAMS) at the same impact

parameter (β = 2). For the ZAMS Sun this is a full disruption, whereas for the TAMS

Sun this is a grazing encounter in which a core survives.

As the density profile of a star changes, so does the mass fallback rate to the

BH resulting from its disruption. Panels (a), (b), and (c) of Figure 5.3 show the mass

fallback rate Ṁ to the BH as a function of time for the disruption of the Sun for three

impact parameters at three different ages (results here for the 3M� star show similar

trends). Panels are grouped by impact parameter.

Older stars are more centrally concentrated and thus more difficult to fully

disrupt, resulting in higher critical impact parameters for full disruption. At a fixed β,
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Figure 5.3: Panels (a), (b), (c): mass fallback rate to the BH as a function of time for
the disruption of a 1M� star at three different ages and impact parameters by a 106M�
BH. Panels are grouped by impact parameter β. The result for a γ = 4/3 polytrope
from Guillochon & Ramirez-Ruiz (2013a), scaled to the radius of the ZAMS Sun, is in
dotted black. The Eddington limit for this BH, assuming a radiative efficiency of ε = 0.1
and an electron scattering opacity of κ = 0.34 cm2 g−1, is shown by the dot-dashed line.
Panel (d): mass fallback rate for full disruptions of a 1M� star and 3M� star at ZAMS
and TAMS.
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the amount of mass lost ∆M decreases with stellar age.24 The shape of the Ṁ curve

also changes: at a fixed β (for the β’s shown in this work), the slope of the Ṁ curve

after peak becomes steeper with stellar age—this is mostly easily seen for the β = 2

disruptions. This behavior was also observed for partial disruptions of a given polytrope

in Guillochon & Ramirez-Ruiz (2013a).

The time of peak of the mass fallback rate, tpeak, increases with stellar age (i.e.,

younger stars can provide faster flares) and this effect diminishes with increasing β. The

peak mass fallback rate, Ṁpeak, decreases with stellar age and this effect diminishes at

high β. For β = 1, from ZAMS to TAMS for the Sun, tpeak increases from 30 days

to 54 days, while Ṁpeak decreases from 0.66 M�/yr to 0.14 M�/yr. For β = 2, tpeak

increases from 23 to 28 days, while Ṁpeak decreases from 4.1 M�/yr to 2.4 M�/yr. For

β = 3, the peak properties for the three ages are more similar. Fitting formulae will be

provided with a more extensive parameter study in impact parameter, mass, and age in

future work.

We compare to the simulation results of Guillochon & Ramirez-Ruiz (2013a)

for a γ = 4/3 polytrope (the γ = 5/3 simulations are more dissimilar), scaled to the

radius of the ZAMS Sun. For β = 1, the γ = 4/3 simulation is in rough agreement but

does not match any of the ages particularly well. For β = 2, the γ = 4/3 simulation

more closely matches the ZAMS Sun, but does not capture the shape of the Ṁ curve

for the middle-age or TAMS Suns. For β = 3, the γ = 4/3 simulation is a better

approximation of the general shape for all three ages, but is a worse match for the

24Note however that at fixed pericenter distance rp, because older stars have larger radii, for low-β
partial disruptions the mass lost is larger for older stars.
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Figure 5.4: 2D slices in the orbital plane of the mass fractions of helium and carbon
for a β = 4 disruption of a TAMS 1M� and 3M� star, at the start of the simulation
and at ≈ 1 tdyn after pericenter. Color corresponds to the mass fraction of the element,
with yellow being higher. The panels are normalized separately. The right panels in
each group of four have a density cut of 10−4 g/cm3.

TAMS Sun.

The shape of the Ṁ curve is useful in determining the properties of the dis-

ruption when fitting to observed events (e.g., Mockler et al. 2019), and a full library of

tidal disruption simulations using realistic stellar profiles will improve these determina-

tions. However, there are certain difficulties and degeneracies which can be resolved by

incorporating more information. For example, for full disruptions, there is not a large

variation in tpeak with the mass of the star. In panel (d) of Figure 5.3, we compare

the mass fallback rate for full disruptions25 of a 1M� star and 3M� star at ZAMS and

TAMS. At a given evolutionary state, the normalization of the Ṁ curve changes with

mass but the peak timescale does not vary much: it decreases by ≈ 5 days from a

25We conducted a preliminary parameter-space study to determine the approximate impact parame-
ters for full disruption (these are β ≈ 2 for ZAMS 1M�, β ≈ 3 for middle-age 1M�, β ≈ 4 for TAMS
1M�, β ≈ 2 for ZAMS 3M�, and β ≈ 4 for TAMS 3M�, with approximate uncertainty ±0.5).
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ZAMS 1M� to 3M� star. Age can increase the spread: from a ZAMS to TAMS 3M�

star, tpeak increases by ≈ 12 days. This implies that determinations of BH masses are

expected to be relatively robust, as the uncertainties associated with stellar mass and

age do not greatly alter the shape of the resultant Ṁ curves. On the other hand, using

light curves alone might be insufficient to effectively identify the nature of the disrupted

star. Using compositional information as a second axis can significantly improve our

determinations of the properties of the disruption and it is to this issue that we now

turn our attention.

5.4 Composition

Tracking compositional information in our hydrodynamical simulations cap-

tures the mixing of previously sequestered regions within a star. This mixing affects the

timing and composition of the debris returning to the BH. Figure 5.4 shows 2D slices

of the mass fractions of helium and carbon for a β = 4 disruption of a TAMS 1M� and

3M� star. Both the helium enhancement and the depletion of carbon in the stars’ cores

are mixed into the tidal tails. Note that while nuclear burning occurs primarily via

the pp chain in the 1M� star and the CNO cycle in the 3M� star, carbon is similarly

depleted in the cores of both of the stars; this is primarily because carbon is depleted

during pre-MS evolution for the 3M� star.

Figure 5.5 shows the composition of stellar material returning to pericenter as

a function of time for three full disruptions: a β = 3 disruption of a middle-age Sun, a

β = 4 disruption of a TAMS Sun, and a β = 4 disruption of a TAMS 3M� star. We
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Figure 5.5: Composition (relative to solar) of the fallback material to pericenter as a
function of time (relative to the peak of the mass fallback rate). The panels from left to
right show full disruptions of a middle-age Sun, a TAMS Sun, and a TAMS 3M� star.
Solid lines are hydrodynamic simulation results and dashed lines are analytic results
from Gallegos-Garcia et al. (2018).

define

X

X�
=

ṀX/ṀH

MX/MH,�
, (5.2)

where X is a given element, H refers to hydrogen, and the denominator is the abundance

of X relative to hydrogen in the Sun. Refer to Figure 3 of Gallegos-Garcia et al. (2018)

for the compositional evolution of the Sun along its main sequence lifetime.

For a ZAMS Sun, for all impact parameters, X/X� ' 1 for all elements as a

function of time. This follows from the fact that a 1M� star is nearly perfectly homo-

geneous at ZAMS. This is not, however, true of a ZAMS 3M� star (see below). For

stars that have evolved along the MS, X/X� can be ≈ 1 for low-β (grazing) encounters

that only strip the outside layers of the star unaffected by nuclear burning. Deeper en-

counters of non-ZAMS stars show non-solar fallback abundances. In general, abundance

variations manifest as an increase in nitrogen and helium and a decrease in carbon over

time, with an increase or decrease in oxygen depending on the mass of the star. Other

elements, such as neon, sodium, and magnesium, show an increase over time. The rel-
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ative strength and timing of these anomalies is a function of the mass and age of the

star and the impact parameter of the disruption. More massive stars, older stars, and

deeper encounters result in stronger abundance anomalies at earlier times.

For full disruptions of a middle-age Sun, TAMS Sun, and TAMS 3M� star,

abundance anomalies appear before the time of peak fallback rate. Helium, carbon,

nitrogen, and oxygen (among many other elements with lower mass fractions) can all be

enhanced or depleted before tpeak. Abundance anomalies can also appear before peak

for partial disruptions—for example, this occurs for a β = 3 disruption of a TAMS Sun.

These early variations are particularly encouraging for observations of the signatures of

these kinds of disruptions. Additionally, the N/C ratio shows even stronger variations

than the above individual elements. Though not shown here, nitrogen, helium, and

oxygen abundances continue to rise/decrease for more than one year after peak (for the

disruption of a 1M� star by a 106M� BH, until ≈ 6 years after peak). That is, at late

times, the elemental abundances asymptote to fixed values (this late-time behavior was

also predicted in our analytic framework, Gallegos-Garcia et al. 2018).

Focusing on the time at which nitrogen is enhanced by a factor of 3 as a

diagnostic of the timing of abundance anomalies: this occurs at ≈ 10 tpeak for a middle-

age Sun, at ≈ 3 tpeak for a TAMS Sun, and at ≈ tpeak for a TAMS 3M� star. There

is a similar trend in other elements—for example, for a TAMS 3M� star, carbon is

depleted by a factor of ≈ 2 at tpeak. Though not shown here, the full disruption of a

ZAMS 3M� star exhibits abundance variations in nitrogen and carbon, but at a lower

level than for the TAMS star. A TAMS 3M� star shows stronger abundance variations
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at earlier times compared to a 1M� star; thus, abundance anomalies increase with age

and M? at a fixed t/tpeak. If TDEs occur (on average) for stars of the same age in a

given nuclear stellar cluster, then more massive stars will provide stronger abundance

anomalies. Another determinant of mass is oxygen: oxygen is enhanced for the 1M�

star but depleted for the 3M� star.

If strong abundance variations are observed at early times in a TDE (in the

simple picture that abundance variations beget spectral features), this is a sign of a

higher-β disruption of a higher-mass star. Note, however, that the prospect of iden-

tifying the nature of the disrupted star is further complicated by β. For example, if

more modest abundance variations are observed, it may be difficult to discern between

a low-β disruption of a higher-mass star and a high-β disruption of a lower-mass star.

A full library of simulations with fitting formulae will help break this degeneracy.

We also compare our results to predictions from the analytic framework of

Gallegos-Garcia et al. (2018). The simulations show stronger abundance variations at

early times. We note that over longer timescales (t & 10 tpeak), the analytic framework

is in good general agreement with the simulations, but we focus on timescales near peak

here, as these are the most relevant to current observations. The analytic framework is

useful for predicting broad features of the composition of the fallback material for many

stellar masses and ages, but is limited in that it cannot probe the β parameter space

(as it is only applicable to full disruptions) and more importantly, it does not capture

the deformation and spin-up of the star at pericenter (it assumes that the star arrives

intact to pericenter, at which point the binding energy is “frozen-in”). The fact that
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at pericenter, the star is typically spun-up to a large fraction of its breakup angular

velocity and has a highly distorted shape, as well as the subsequent mixing of debris

as the disruption evolves, account for the differences between the analytic model and

the simulations. See Steinberg et al. (2019) for a more detailed examination of the

differences between the “frozen-in” model and hydrodynamical simulations.

5.5 Conclusion

We built stars with realistic stellar profiles and elemental compositions in

MESA and simulated their tidal disruption in FLASH, using a Helmholtz equation

of state and tracking the composition of the debris. The shape of the mass fallback rate

curves and the tidal susceptibility for a star at different ages along its main sequence

lifetime differ from results for polytropes from Guillochon & Ramirez-Ruiz (2013a).

tpeak increases with stellar age, while Ṁpeak decreases with age, and these effects di-

minish with increasing impact parameter. Significant mixing and rotation of the debris

occurs during disruption, leading to abundance anomalies appearing before the peak of

the mass fallback rate for some disruptions. In the fallback debris for non-ZAMS stars,

nitrogen and helium are enhanced and carbon is depleted relative to solar. Abundance

variations are stronger at earlier times for older and more massive stars.

Strong nitrogen and a lack of carbon (C III) features, and in two cases strong

oxygen features, have been observed in the four TDEs with UV spectra extending to

these wavelengths: ASASSN-14li (Cenko et al. 2016), iPTF16fnl (Brown et al. 2018),

iPTF15af (Blagorodnova et al. 2019), and AT 2018dyb (Leloudas et al. 2019a). These
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features are naturally explained by our simulations as the tidal disruptions of non-ZAMS

stars. A stronger N/C ratio at an earlier time relative to peak (such as the nitrogen

feature observed at t ≈ 1.2 tpeak in iPTF16fnl) indicates that a flare arose from the

disruption of a more massive star. Time-resolved spectroscopy extending into the UV

will be very useful for fitting to simulations and determining the mass of the disrupted

star.

It is important to note that stellar evolution along the MS leads to significant

changes in the density profile of the star, but also in its radius. The Sun’s radius

changes from 0.9R� to 1.3R� from ZAMS to TAMS. The maximum black hole mass

for disruption (assuming the same β) increases by a factor of 1.75. A 3M� star’s radius

changes from 1.9 to 3.3 R� from ZAMS to TAMS; the maximum BH mass increases by

a factor of 2.3. So the uncertainty on maximum BH mass from stellar evolution is ∼ 2.

From Figure 1 of Kesden (2012c), a factor of ∼ 2 in maximum BH mass is equivalent

to a change in black hole spin of 0 to 0.75 (from a spin of 0.75 to 1, the maximum BH

mass changes by a factor of 4). The uncertainty from stellar evolution can therefore be

of the same order as the uncertainty from BH spin—this is important as it is BH spin

that determines the cutoff of the TDE rate as a function of BH mass in Figure 4 of

Kesden (2012c) (this is also Figure 4 of Stone et al. 2019).

We plan to construct a library of tidal disruption simulations of stars built in

MESA, for different stellar masses and ages, tracking composition information. As the

present study shows, these simulations can reveal important behavior not captured by

earlier models. Now that the sample of TDEs with high quality observations has grown
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to a few dozen (and continues to grow), it is very important to construct a library of tidal

disruption simulations of realistic stars with fitting formulae for important disruption

quantities. In using simulations such as these to fit light curve and spectral information,

it may be possible to accurately determine the mass of the disrupted star, as well as

provide more accurate fits for all of the other properties of the disruption (BH mass,

spin, efficiency, etc.).

Additionally, the framework developed in this Letter can be used to study the

surviving remnants of tidal disruption. These objects can have unique compositions and

internal dynamics. For example, the late-time checkpoint of the surviving star could be

used as an input to MESA for future stellar evolution calculations.
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Chapter 6

Stellar Tidal Disruption Events

with Abundances and Realistic

Structures (STARS): Library of

Fallback Rates

Abstract

We present the STARS library, a grid of tidal disruption event (TDE) sim-

ulations interpolated to provide the mass fallback rate (dM/dt) to the black hole for

a main-sequence star of any stellar mass, stellar age, and impact parameter. We use

a one-dimensional stellar evolution code to construct stars with accurate stellar struc-

tures and chemical abundances, then perform tidal disruption simulations in a three-
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dimensional adaptive-mesh hydrodynamics code with a Helmholtz equation of state,

in unprecedented resolution: from 131 to 524 cells across the diameter of the star.

The interpolated library of fallback rates is available on GitHub (github.com/jamielaw-

smith/STARS library) and version 1.0.0 is archived on Zenodo; one can query the library

for any stellar mass, stellar age, and impact parameter. We provide new fitting formulae

for important disruption quantities (βcrit,∆M,Ṁpeak, tpeak, n∞) as a function of stellar

mass, stellar age, and impact parameter. Each of these quantities varies significantly

with stellar mass and stellar age, but we are able to reduce all of our simulations to

a single relationship that depends only on stellar structure, characterized by a single

parameter ρc/ρ̄, and impact parameter β. We also find that, in general, more centrally

concentrated stars have steeper dM/dt rise slopes and shallower decay slopes. For the

same ∆M , the dM/dt shape varies significantly with stellar mass, promising the po-

tential determination of stellar properties from the TDE light curve alone. The dM/dt

shape depends strongly on stellar structure and to a certain extent stellar mass, meaning

that fitting TDEs using this library offers a better opportunity to determine the nature

of the disrupted star and the black hole.

6.1 Introduction

Near the region of influence of a galactic massive black hole (BH), a star

scattered onto an orbit that brings it close to the BH can be tidally disrupted by the

BH’s gravitational field—this is a tidal disruption event (TDE). The stellar material

that remains bound to the BH produces a flare that is the signature of this event.
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TDEs were first explored theoretically with pioneering studies by Lidskii & Ozernoi

(1979), Hills (1975a), Carter & Luminet (1983), Rees (1988a), and Evans & Kochanek

(1989a).

Several dozen such flares have been observed at the centers of other galaxies

(for reviews of observations, see e.g. Komossa 2015a; Auchettl et al. 2017a; Hung et al.

2017c; van Velzen et al. 2020), with observations now regularly capturing both the

rise (e.g., Holoien et al. 2019a) and decay (e.g., Holoien et al. 2018; van Velzen et al.

2019) of the transient in great detail, and even signatures of an accretion disk (e.g.,

Holoien et al. 2019b; Hung et al. 2020). Fitting theoretical models to observed TDEs

allows one, in principle, to extract the properties of the disruption: BH mass, BH

spin, stellar mass, stellar age, impact parameter, and radiative efficiency. The first

attempt to systematically extract BH masses from TDEs (Mockler et al. 2019) was

remarkably successful, obtaining errors of order that of the M–σ relationship. However,

determination of other parameters is made difficult by degeneracies between stellar

properties and BH properties. One needs better theoretical models of TDEs in order to

extract more accurate information from observed events.

A combination of detailed theoretical modeling and high resolution observa-

tions can turn TDEs into unique tools to probe several astrophysical questions: (1) the

BH mass function and in particular the possible existence of a cutoff in the BH mass

function at low masses (MBH . 105M�), (2) the BH spin distribution, (3) the radia-

tive efficiency of BH accretion and other questions of accretion physics, (4) the stellar

populations (stellar masses and ages) in galactic centers, as the stars at the centers of
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distant galaxies are exposed through their disruption and accretion, (5) the dynamics

operating in galactic centers; e.g., which mechanisms (two-body, resonant relaxation,

secular effects, etc.) dominate how stars and BHs interact.

At the order-of-magnitude level, tidal disruption occurs when a star crosses

the tidal disruption radius

rt =

(
MBH

M?

)1/3

R? ∝ ρ̄−1/3
? , (6.1)

at which point a star’s self-gravity is smaller than the tidal acceleration across its radius.

The pericenter passage time of the star is approximately equal to the star’s dynamical

time, tp ∼ rp/vp ∼
√
R3
?/GM? = tdyn,?. The star is spun-up to a large fraction of its

breakup angular velocity, and a quadrupole tidal distortion develops across its surface.

These two effects are what tidally disrupt a star, and (again, at the order-of-magnitude

level) they occur over the star’s dynamical timescale, so the star does not have time to

react hydrodynamically. The impact parameter of the encounter

β ≡ rt

rp
(6.2)

is the ratio of the tidal radius to the pericenter distance; it is an order-of-magnitude

measure of the “strength” of the tidal interaction. The critical impact parameter βcrit

is defined as the smallest impact parameter of full disruption (i.e., where the entire

star’s mass is disrupted), below which are partial disruptions and above which are

“post-critical” encounters.
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The mass fallback rate dM/dt ≡ Ṁfb of debris to pericenter is a central quan-

tity of interest as it appears to track the Optical/UV luminosity evolution of observed

TDEs closely (e.g., Gezari et al. 2012a; Guillochon et al. 2014a; Mockler et al. 2019).26

For non-relativistic disruptions, one can scale mass fallback rate and time of return to

pericenter with BH mass as follows:

Ṁpeak ∝M−1/2
BH M2

? R
−3/2
? (6.3)

tpeak ∝M1/2
BH M−1

? R
3/2
? (6.4)

where the Ṁpeak ∝ M2
? scaling results when we assume that a constant fraction of the

star’s mass is lost to the BH in the disruption. Note that these formulae are for the

peak quantities of the mass fallback rate, but can be applied to scale the entire dM/dt

curve.

Because the tidal radius depends inversely on the average density of the star

(Eq. 6.1), there is a maximum BH mass for disruption outside the innermost-bound

spherical orbit for different types of stars. See Figure 1 of Law-Smith et al. (2017a) for

the phase space in Mobject and MBH of stellar objects (from planets to evolved stars) that

are expected to produce bright tidal disruption flares. We expect that most observed

TDEs will be from MS stars, and that the mass function of TDEs is relatively flat for

M? . M� (Kochanek 2016b) (see more detailed discussion in Section 7.5). Thus, it is

important to have a library of MS star simulations with which to fit observed events.

This work is aimed to be the definitive library of the MS star parameter space. One can

26In present model fitting, this is true provided a few additional free parameters (mostly related to
the photosphere size).
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extend this library to include relativistic encounters, but these are rarer, and account

for a small fraction of MS star disruptions (see discussion in Section 7.5).

Our own Galactic Center’s nuclear star cluster is host to young, massive stars,

giant-branch stars, and an old population of main sequence stars (e.g., Schödel et al.

2007). Stars in the Galactic Center also exhibit a range of metallicities, from metal-rich

to metal-poor (Feldmeier-Krause et al. 2017). In nuclear clusters outside our galaxy,

there is evidence for a diversity of stellar ages and types (Seth et al. 2010) and a wide

range of star formation histories (Georgiev & Böker 2014). Additionally, TDEs appear

to be observed preferentially in post-starburst galaxies (Arcavi et al. 2014b; French

et al. 2016b; Law-Smith et al. 2017c; Graur et al. 2018). Thus, we expect some TDEs

to be sourced by more massive stars and also by stars of varying ages and compositions.

Observations of TDEs suggest that many disruptees are non-ZAMS stars (spectra show

metal lines that evolve with time; e.g., Leloudas et al. 2019b) as is expected (this was

first argued for in Kochanek 2016a). However, the theoretical modelling of TDEs thus

far has largely ignored the stellar evolution aspect of the problem.

A brief (incomplete) summary of recent theoretical work, where we highlight

features relevant to or differing in significant ways from this work, is below. Before

discussing the simulation work, we mention the so-called “frozen-in” approximation,

studied in detail by Lodato et al. (2009a), in which the star arrives intact to pericenter.

One can then integrate across the star in equal-orbital-energy slices and determine the

mass fallback rate to the BH as a function of time analytically. In this framework, only

the structure of the star matters. This approximation can only handle full disruptions (a
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single impact parameter). Kochanek (2016a) investigated abundance anomalies using

this framework and 1D stellar evolution models from MESA. Gallegos-Garcia et al.

(2018), following the above two works, developed an analytic framework to study the

composition as a function of time following disruption, using MESA stars. In a recent

significant extension to Lodato et al. (2009a), Coughlin & Nixon (2019) developed an

analytic framework to determine the asymptotic power-law slope of the fallback rate,

finding ∝ t−5/3 for full disruptions and ∝ t−9/4 for partial disruptions, in general (but

not detailed) agreement with simulations.

Despite the success and usefulness of the “frozen-in” approximation in calcu-

lating TDE properties, we have learned from hydrodynamical simulations that the star

arrives at pericenter significantly distorted and spinning (for a detailed discussion see

Steinberg et al. 2019). Nolthenius & Katz (1982) performed the first 3D tidal disrup-

tion simulations, of a γ = 5/3 polytropic stellar structure. Khokhlov et al. (1993b,a)

were the first to study stars with different stellar structures (γ = (5/3, 1.5, 4/3)) nu-

merically. Ramirez-Ruiz & Rosswog (2009) studied the tidal disruption and initial disk

formation for γ = 5/3 and γ = 1.4 polytropes in 3D hydrodynamics. Guillochon &

Ramirez-Ruiz (2013a) performed the first systematic parameter-space study of the ef-

fect of both stellar structure and impact parameter, exploring γ = 4/3 and γ = 5/3

polytropes and a wide range of impact parameters. The effect of impact parameter made

it clear that tidal disruptions are a 3-dimensional nonlinear hydrodynamical problem

that needs to be studied by simulations, at least to a certain extent. Laguna et al.

(1993) were the first to explore relativistic tidal disruptions, on a Schwarzchild met-
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ric. Diener et al. (1997) studied the disruption of a γ = 5/3 polytrope by a rotating

BH on a Kerr metric. Haas et al. (2012) simulated the disruption of a white dwarf

by a spinning BH. Cheng & Bogdanović (2014a) and Tejeda et al. (2017b) compared

relativistic simulations to Newtonian simulations in detail, finding good agreement for

non-relativistic encounters. Gafton & Rosswog (2019b) performed a grid of general-

relativistic simulations for a γ = 5/3 polytrope, exploring higher impact parameters

and spinning BH’s, providing new fitting formulae for the relativistic regime, and again

finding good agreement for non-relativistic encounters. See also Stone et al. (2019) for

a review of the status of TDEs in general relativity. Rosswog et al. (2008a,b, 2009)

studied the tidal disruption of white dwarfs in detail for the first time, while MacLeod

et al. (2012a) were the first to study the tidal disruption of giant stars, whose highly

segregated density profiles did not allow them to be fully disrupted. Law-Smith et al.

(2017a) performed a case-study simulating realistic stellar structures and compositions,

with a hydrogen-envelope helium-core white dwarf. Golightly et al. (2019a) studied

the stellar spin dependence of fallback rates for a γ = 5/3 polytrope. Goicovic et al.

(2019) ran moving-mesh simulations of a ZAMS 1M� star with MESA stellar structure.

Their results were consistent with the γ = 4/3 result from Guillochon & Ramirez-Ruiz

(2013a). Golightly et al. (2019b) ran simulations with MESA stellar structures, for three

stellar masses and ages, at one impact parameter β = 3, and argued that the inferred

BH mass from fitting TDEs to polytropic hydrodynamical simulations can be incorrect

at the order-of-magnitude level. Law-Smith et al. (2019) performed simulations with

MESA stellar structures and a Helmholtz EOS, tracking chemical abundances for 49
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elements in the 3D hydrodynamical simulations for the first time. They found signifi-

cant differences with the polytropic results of Guillochon & Ramirez-Ruiz (2013a) and

also significant differences with the analytic predictions of the fallback-rate composition

of Gallegos-Garcia et al. (2018). Ryu et al. (2020a,b,c,d) recently posted results of a

parameter-space study using a fully general-relativistic framework, for a range of stellar

masses, impact parameters, and BH masses, and at a single stellar age (see Sections 7.2

and 7.5 for comparisons).

A number of theoretical studies have focused on the disk formation process

(e.g., Ayal et al. 2000; Hayasaki et al. 2013a; Guillochon et al. 2014a; Shiokawa et al.

2015; Piran et al. 2015b; Guillochon & Ramirez-Ruiz 2015a; Dai et al. 2015; Hayasaki

et al. 2016; Bonnerot et al. 2016a; Lu & Bonnerot 2020; Bonnerot & Lu 2020). At

present, the emission mechanism(s) responsible for the Optical/UV emission in TDE

flares is an open question—the main candidates are (1) rapid disk circularization and

accretion emission or (2) stream self-intersections and disk-formation-process emission—

, but it is clear that the Optical/UV luminosity evolution of TDEs (the “light curve”)

tracks the mass fallback rate to the BH (dM/dt, the main output of the simulations in

this work) very closely (see references above). This means that the fallback rate, which,

as we show in this paper, is nearly solely determined by stellar structure, is a useful

output.

In this paper, we study the disruption of main-sequence (MS) stars in a grid of

stellar mass, stellar age, and impact parameter. Previously published systematic studies

have used polytropic stellar structures, where P = Kργ = Kρ(n+1)/n. This work is a

180



parameter space study using realistic internal stellar structures, chemical abundances,

and equations of state (EOS). We significantly expand upon the stellar structure study

of Guillochon & Ramirez-Ruiz (2013a) by considering a wide range of density profiles

derived from more accurate stellar models (as compared to polytropes): we study 14

distinct stellar structures, corresponding to different stellar masses and ages. The EOS

is incorporated via the Helmholtz EOS, consistent with the MESA EOS of the stellar

models. We find (see Appendix) that the EOS contribution to the pressure support

is small, and we argue that one can predict many of the properties of tidal disruption

from stellar structure and impact parameter alone. In order to reduce our simulations

into one relationship for various tidal disruption quantities, we parameterize the stellar

structure by the single parameter ρc/ρ̄, the ratio of the star’s central density to its

average density. The simulations presented in this work have a full Helmholtz EOS

tracking 49 elements; however, we study the chemical abundance of the fallback debris

in a followup paper.

This paper is organized as follows: Section 7.2 describes our methods, Sec-

tion 7.3 describes our results, Section 7.5 concludes, and the Appendix describes the

interpolated STARS library tool, as well as several other issues.

6.2 Methods

We use the 1D stellar evolution code MESA (Paxton et al. 2011) to run a

grid of models from 0.1M� to 10M�, from pre-MS to zero-age main-sequence (ZAMS)

to terminal-age main-sequence (TAMS). We define TAMS as a central hydrogen mass
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fraction of 10−3. We use the mesa 49.net nuclear network, including 49 elements. See

also Gallegos-Garcia et al. (2018) and Law-Smith et al. (2019) for details on the MESA

setup. Table 6.3 in the Appendix lists relevant or non-standard parameters for the

MESA simulations. Stars with M? . 0.8M� have a MS lifetime longer than the age

of the universe; thus, for these stars, the oldest model we use in our tidal disruption

calculations is at 10 Gyr, rather than TAMS.

We then map the 1D stellar density profiles and chemical abundances into

the 3D adaptive-mesh refinement (AMR) hydrodynamics code FLASH (Fryxell et al.

2000). We use the Helmholtz EOS and an extended Helmholtz table27 that spans

10−12 ≤ ρ [g/cm3] ≤ 1015 and 103 ≤ T [K] ≤ 1013. This Helmholtz EOS is the

backbone of the EOS module in MESA, so our mapping is self-consistent. In FLASH,

we use the sinks module to integrate trajectories and to track the position of the BH

relative to the star, as in Guillochon & McCourt (2017). This is also an update from

Guillochon & Ramirez-Ruiz (2013a). We begin the simulations at r = 10rt, where tidal

effects are negligible.28 In the multipole gravity solver, we use a maximum angular

number of the multipole expansion of lm = 20. Our 3D box is 1000R? on a side and

we set the background density to 10−11 g/cm3. This is such that the mass of the box is

typically � 0.1% of the stellar mass. We use the following hydrodynamics parameters:

the interpolation order is 3rd order, the slope limiter is the “hybrid” one, and we use

the hybrid Riemann solver. We have no magnetic fields (B = 0). As in Guillochon &

Ramirez-Ruiz (2013a), in calculating the binding energy of each cell in the simulation

27Available at http://cococubed.asu.edu/code_pages/eos.shtml.
28For comparison, Goicovic et al. (2019) begin at r = 5rt.

182

http://cococubed.asu.edu/code_pages/eos.shtml


with respect to the BH and stellar debris, we shift the center of mass of the star to be on

a parabolic orbit (this is equivalent to centering the dM/de distribution at e = 0). Note

that in this paper e denotes the specific orbital energy and not eccentricity. Guillochon

& Ramirez-Ruiz (2013a) show that, because of the magnitude of this shift, it only

affects the dM/dt for t > 100 yrs. For the vast majority of events, the star is expected

to approach on a parabolic or nearly-parabolic orbit (Hayasaki et al. 2018). See also

Guillochon et al. (2009), Guillochon et al. (2011), Guillochon & Ramirez-Ruiz (2013a),

and Law-Smith et al. (2019) for details on the FLASH setup. Table 6.4 in the Appendix

lists several additional FLASH parameters, including the background grid values.

The simulations in this paper are run with 1.5× 108 maximum cells. This is a

higher maximum cell count than in Law-Smith et al. (2019). We choose the maximum

initial refinement based on the central concentration of the stellar density profile. We use

131 cells across the diameter of the star for less centrally concentrated stars (ρc/ρ̄ . 150)

and 524 cells across the diameter of the star for more centrally concentrated stars

(ρc/ρ̄ & 150). In a few test simulations, results are nearly identical if we use 262 or

524 cells across the diameter of the star for the less centrally concentrated stars as well.

See Section 6.13 for our numerical convergence study. For comparison, the simulations

in Guillochon & Ramirez-Ruiz (2013a) had ≈50 cells across the initial diameter, so our

simulations have a factor of 2.6X to 10.5X higher initial resolution. The moving-mesh

simulations of Goicovic et al. (2019) have a maximum of 2.4 × 105 cells, thus initially

≈60 cells across the diameter of the star. The simulations of Ryu et al. (2020a,b,c,d)

initially have ≈50 cells across the diameter of the star and, in an important difference,
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the final box size is 17× 9× 14R?.
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Table 6.1 lists the parameter space in stellar mass, stellar age, and impact

parameter studied in this work. For each star, we run a range of impact parameters β

(the ratio of the tidal radius to the pericenter distance) from grazing partial disruptions

to post-critical disruptions. The lowest β for a given star corresponds to 1% to 10%

mass lost (unbound) from the star in the encounter. We run one very-post-critical

(post-full-disruption) β for each star such that rp = 10rg for this highest β encounter,

where rg ≡ GM/c2 in this paper. This is for the purpose of interpolating our grid of

dM/dt curves in the maximum applicable range. We also plan to extend this library with

relativistic simulations (applicable to the small fraction of very relativistic encounters) in

future work. For comparison, the most relativistic encounter in Guillochon & Ramirez-

Ruiz (2013a) was the β = 4 for the γ = 4/3 star, which was rp = 11.8rg.

Table 6.1 also lists several other quantities, such as the ratio of the star’s

central density to average density ρc/ρ̄ (a parameterization of the central concentration

of the star that we use extensively later on), the dynamical time of the star, defined in

this paper as tdyn ≡
√
R3
?/GM?, and the ratio of pericenter distance to gravitational

radius, rp/rg, corresponding to each β. In order to extend the range of the interpolated

fallback rate library (see Appendix), we include a few results scaled from simulations

where the stellar structures are nearly identical. We scale γ = 5/3 results for the 0.1M�

stars, γ = 4/3 results for the ZAMS 3M� star, our ZAMS 1M� results for the ZAMS

10M� star, and our TAMS 3M� results for the TAMS 10M� star. Note that we do

perform a 10M�, β = 1.5 simulation in Section 6.11 in our “stellar structure vs. EOS”

study.
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Figure 6.1: Specific binding energy distribution, dM/de, and resulting mass fallback
rate to the BH, dM/dt, for a 0.3M� ZAMS star constructed in MESA in a β = 0.9
encounter with a 106M� BH; this is a full disruption. The finely binned hydrodynamical
grid data is shown in red and the B-spline fit (this work) in black. The x- and y-axis of
the dM/de plot are normalized to the characteristic spread in binding energy, ∆e (see
text). The dM/dt plot also compares to a γ = 5/3 polytropic simulation for this β from
Guillochon & Ramirez-Ruiz (2013a), scaled to the same mass and radius as this star,
in blue. It is expected to match quite closely as the stellar structure of a 0.3M� ZAMS
star is well approximated by a γ = 5/3 polytrope (see Figure 6.17).
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We run at a single BH mass of MBH = 106M�. Our simulations are directly

applicable to any non-relativistic encounter with a different BH mass, to leading order

in the “tidal approximation” (R?/r � 1), because of the scaling of t and dM/dt with

MBH in Eq. (6.4). See Figure 6.20 in the Appendix for the range of applicability of

our simulations. This grid of simulations applies to tidal disruptions from most stellar

masses, ages, impact parameters, and BH masses. For rp > 10rg, the difference in

dM/dt’s between Newtonian and relativistic simulations is . 10% (see more detailed

discussion in Section 7.5).

At the last timestep before debris begins to leave the computational domain,

we calculate the specific binding energy of every cell in the simulation relative to the BH

and the star (if any self-bound mass remains), including only material bound to the BH

and excluding material bound to the star or unbound from the BH. From this spread

in specific binding energy distribution, or dM/de, we calculate the mass return rate to

the BH (more accurately, to pericenter) as a function of time, using Kepler’s third law:

dM

dt
=
dM

de

de

dt
=
dM

de

1

3
(2πGMBH)2/3t−5/3. (6.5)

We run the simulations to a maximum time of 100tdyn and the star reaches

pericenter at approximately 20tdyn into the simulation. For moderate β’s, the debris

remains inside the box for 100tdyn, but for high β’s the debris begins to leave the

box earlier—for the most extreme β’s we study this is at approximately 50tdyn. So

dM/de distributions are calculated at 30–80tdyn after pericenter. Guillochon & Ramirez-

Ruiz (2013a) studied fallback rates at up to 550tdyn after pericenter, showing that the
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resulting shape is identical to those calculated at earlier times as we do. By not having

a large enough box to follow the entire debris for t > 100tdyn, we do not sacrifice any

accuracy in the final result, but instead gain precision as a smaller box allows for higher

resolution. Note that however, unlike in Ryu et al. (2020a,b,c,d), where debris leaves the

computational domain after a few dynamical timescales, the debris in our simulations

remains in the box for many dynamical timescales after pericenter. The effect this

difference has on fallback rate determinations is unclear.

As an example of our analysis method, Figure 6.1 shows the specific binding

energy distribution and resulting mass return rate to the BH for a 0.3M� ZAMS star

in a β = 0.9 encounter with a 106M� BH. dM/de is plotted in units of M?/∆e, where

∆e = GM
2/3
? M

1/3
BH /R?, an order-of-magnitude estimate of the range in fluid binding

energies (Stone et al. 2013). The x-axis is normalized similarly. The hydrodynamical

grid data from the simulation is binned and then fit with a B-spline. The dM/dt is

extended by finding the average slope of the last 10–20% of the dM/dt. The extended

section is not visible on this plot as it is for t & 104 s. The result for a γ = 5/3

polytrope, for this β, scaled to the same mass and radius as this star, is also shown. It

is expected to match quite closely as the stellar structure of a 0.3M� ZAMS star is well

approximated by a γ = 5/3 polytrope (see Figure 6.17 in the Appendix).

The small differences between the polytropic and MESA initial condition sim-

ulations are likely due to differences in resolution, numerical method, and smoothing

algorithm between the two works. The B-splines applied to smooth the dM/de distri-

butions in this work have been examined and calibrated in detail for the dM/de result
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from each simulation, and so the resulting dM/dt curves in this work have higher fidelity

to the raw hydrodynamical grid data.

6.3 Results

6.3.1 Stellar structure

Figure 6.2 shows the ratio of central density to average density ρc/ρ̄ for MS

stars, interpolated based on a finely-spaced MESA grid (more finely spaced than for

our TDE simulations; Table 6.1). This shows the range of stellar structures on the

main sequence. We perform TDE simulations in FLASH for structures at the extremes

and interpolate the resulting dM/dt’s in stellar mass and stellar age in between these

extremes. For some regions one can use polytropic stellar structures rather than MESA

initial conditions (e.g., for M? . 0.3M�).

The top panels show ρc/ρ̄ in the space of stellar age vs. stellar mass. Here

one sees that lower-mass stars (. 0.8M�), whose main-sequence lifetimes are & the

age of the universe, evolve slowly and have roughly constant stellar structures over 10

Gyr. More massive stars (& 0.8M�) have shorter lifetimes and evolve through different

stellar structures more rapidly. We expect a wide variety of stellar masses and stellar

ages to source observed TDEs; see Section 7.5 for discussion.

The bottom panels show normalized density profiles colored by ρc/ρ̄, both

individually for the stars we simulate in FLASH and interpolated on a more finely-

spaced grid of MESA stars. One can see that ρc/ρ̄ maps nearly 1-1 onto the stellar

density profile, at least for the main sequence. This makes it a very good single-value
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Figure 6.2: Stellar structure, parameterized by the ratio of central density to average
density. Top: as a function of stellar mass and stellar age for MS stars, based on
finely-spaced MESA grid. x-axis is log scale. y-axis is linear scale on left panel and log
scale on right panel and its maximum is 13.8 Gyr. Dotted line corresponds to γ ≈ 5/3
polytrope (ρc/ρ̄ = 5.8, from a ZAMS 0.3 M� star) and dashed line corresponds to
γ ≈ 4/3 polytrope (ρc/ρ̄ = 73, from a ZAMS 3 M� star). Black circles are stars for
which we have done tidal disruption simulations in FLASH (note we run multiple β’s
for each star). Bottom: density profiles for MS stars, normalized to central density and
stellar radius. Left panel is stars we have disrupted in FLASH (numbers in legend are
ρc/ρ̄) and right panel is based on finely-spaced MESA grid. Dotted and dashed lines
are γ = 5/3 and γ = 4/3 polytropes respectively.
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Figure 6.3: Volume rendering of a 1M� ZAMS star at t − tp ≈ 3tdyn in a β = 1
encounter with a 106M� BH. Color corresponds to density, and the colorbar and transfer
function are chosen to qualitatively highlight the stratified density structure of the
debris. Videos of the simulations are available at https://www.youtube.com/channel/
UCShahcfGrj5dOZTTrOEqSOA.

parameter to describe the stellar structure, and we use it to reduce our simulations into

a single relationship and to provide fitting formulae for each TDE quantity.

For comparison, for giant stars, ρc/ρ̄ & 106. In MacLeod et al. (2012a), due to

numerical limitations, the authors use ρcore/ρ̄ ≈ 2 × 103 for the hydrodynamical simu-

lations. They are unable to fully disrupt the giant stars, due to the highly segregated

density profile (much more centrally concentrated than that of MS stars despite the

artificial value of ρcore/ρ̄) and extended envelope structure.

Figure 6.17 in the Appendix shows density profiles for each star we simulate

as compared to γ = 5/3 and γ = 4/3 stellar structures. Also see Figure 1 in Law-Smith

et al. (2019) for the stellar structure evolution of a 1M� and 3M� star over their MS life-

times (also compared to polytropic stellar profiles). Only a few stars correspond closely

to polytropic stellar structures; for all others, MESA initial conditions are significantly
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more accurate.

6.3.2 Qualitative tidal disruption results

As an example of one of our FLASH simulations, Figure 6.3 shows a volume

rendering of the disruption of a 1M� ZAMS star at t− tp ≈ 3tdyn in a β = 1 encounter

with a 106M� BH (where tp is the pericenter time and tdyn is the dynamical time of

the star). Color corresponds to density. One can see the stratified structure following

the disruption of a star with an accurate internal stellar structure. This encounter is

a partial disruption in which a core survives. Note that this snapshot is zoomed in on

the star in order to highlight the density structure of the debris a few dynamical times

after pericenter, but that our computational domain is 1000R? on a side (roughly 100

times the size of this volume rendering), and the debris eventually expands to fill this.

As an example of the range of vulnerability to tidal disruption of our grid,

Figure 6.4 shows 2D density slices of the disruption of several different stars at different

impact parameters, all at ≈ 2tdyn after pericenter. The axes are arranged such that

β increases from left to right, and central concentration (ρc/ρ̄) increases from top to

bottom. The white contours correspond to absolute values of density (1, 10−1, and 10−2

g/cm3), illustrating the different stellar structures and also the amount the different

layers of the star are spun up. Increasing β both increasingly distorts the star and spins

it up. The more centrally concentrated stars have “layers” that are more differentiated.

This leads to the outer layers being torqued more than the inner layers, and the core

remaining sequestered and undisturbed at higher β’s for more centrally concentrated

stars. Increasing central concentration allows the star to survive higher-β encounters.
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For example, a ZAMS 0.3M� star has a larger fraction of its mass at larger radii, and

is thus fully disrupted by a β = 1 encounter, whereas a TAMS 1M� star has only a

small fraction of its mass at larger radii from its sequestered core, and is thus relatively

undisturbed by a β = 1 encounter.

6.3.3 Mass lost

Figure 6.5 shows fractional mass lost from the star ∆M/M? as a function of

impact parameter β. The x-axis in the top left panel is the raw β and the x-axis in the

top right panel is normalized to the critical β for full disruption for each star. Generally,

more massive stars and stars further along in their MS evolution are more centrally

concentrated, and thus must be disrupted deeper relative to their nominal “tidal radii”

in order to lose the same amount of fractional mass. One can see that the mass-loss

prescriptions for γ = 5/3 and γ = 4/3 polytropes are inadequate to describe the more

centrally concentrated stars, which have critical impact parameters of βcrit > 2.

The bottom panels have a scaled x-axis,

x = exp [(β/βcrit)
α − 1] , α = (ρc/ρ̄)−1/3, (6.6)

constructed by trial-and-error in order to reduce all of the simulations into a single

relationship. The physical meaning of the functional form of x is unclear at present,

but the sharp 1/3 factor suggests at least a partial physically-motivated origin as this

number appears in basic TDE theory. This formula accounts for the dependence of ∆M

vs. β on stellar structure. The fact that we are able to express all of the simulations
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Figure 6.4: 2D density slices of a few different simulations. The axes of this plot grid
are central concentration (ρc/ρ̄) vs. impact parameter (β/βc). Each row is a different
star and each panel is a different impact parameter. β increases from left to right and
ρc/ρ̄ increases from top to bottom. Color is the logarithm of density and is normalized
to the initial central density of the star, extending to 10−8 of this value. Each panel has
width 10R?. All panels are at t− tp ≈ 2tdyn. White contours correspond to densities of
1, 10−1, and 10−2 g/cm3.
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Figure 6.5: Top left: fractional mass lost ∆M/M? vs. impact parameter β. Top right:
x-axis is normalized to the critical impact parameter for each star (see Table 6.2).
Bottom left: x-axis is scaled with a structural parameter, α = (ρc/ρ̄)−1/3 (see text).
Bottom right: linear y-axis. Results from Guillochon & Ramirez-Ruiz (2013a) for a
γ = 5/3 and γ = 4/3 polytrope are shown by the dotted and dashed lines respectively.
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Figure 6.6: Critical impact parameter for full disruption βcrit vs. ratio of stellar central
density to average density ρc/ρ̄. Triangle markers indicate lower limits and open circles
indicate extrapolation. Simple fits in red and purple. See Table 6.2 as well as Figure 6.19
in Appendix for dependence of βcrit and (rp/rg)crit with stellar mass.

in a single relationship implies that ∆M depends only on ρc/ρ̄ and β. Analytic and

B-spline fits for this relation, allowing one to obtain the mass lost for any stellar mass,

stellar age, and impact parameter, are provided in the Appendix. The simulations in

this work all reduce to a single relation for other disruption quantities as well (see below

in this section).

6.3.4 Critical impact parameter

We did not sample finely enough in β to find the exact critical impact param-

eter for full disruption for each star, but we estimate this within the bounds associated

with our spacing in β and the mass lost as a function of β for the star. Figure 6.6 shows
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the critical β as a function of ρc/ρ̄. For nearly all stars, the critical β is well-fit by a

simple relation,29

βcrit ≈ 0.5

(
ρc
ρ̄

)1/3

, ρc/ρ̄ . 500. (6.7)

At the highest central concentrations (ρc/ρ̄ & 500), the critical β is higher than predicted

with this relation, and is instead better fit by a steeper relation,

βcrit ≈ 0.39

(
ρc
ρ̄

)1/2.3

, ρc/ρ̄ & 500. (6.8)

Equation (6.7) and Equation (6.8) allow one to predict the approximate critical impact

parameter for full disruption for any main-sequence star. We note that already for

ρc/ρ̄ & 100, Equation (6.7) slightly underpredicts βcrit, and that there is likely a smooth

transition between the two power-law relationships, but we fit only two equations for

simplicity. All one needs is ρc/ρ̄ for that star, obtained from, e.g., a MESA model

directly or pre-computed grids such as the MIST models (Choi et al. 2016). So the

ability to fully disrupt a star is a simple function of this ratio of densities.

Note that for 2 points at the highest central concentrations, the quoted βcrit

is obtained through extrapolation, as the maximum β simulated for that star did not

fully disrupt it. The lower limits obtained from our simulations are also shown. We

note also that the resolution (in term of maximum number of cells in the simulation)

required to precisely determine βcrit becomes significantly higher for these most centrally

concentrated stars. At the end of the simulation when the debris has expanded, and

29We note that this formula (for stars with lower central concentrations, ρc/ρ̄ . 500), is very similar
to that found by Ryu et al. (2020b).
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thus the linear resolution has decreased from the initial maximum level of refinement

(in order to resolve the same number of cells in the simulation box), the highest density

“core” of the star—for the stars with ρc/ρ̄ & 103—becomes smaller than a grid cell

and so is not resolved. However, the aim of this study is not to precisely determine

the critical impact parameter for these most centrally concentrated stars, but rather to

determine the mass fallback rate to the BH following their disruption.

Table 6.2 lists the critical impact parameter βcrit for full disruption for all stars

studied. Errors represent the grid spacing and so are overestimates. We also list the

corresponding physical pericenter distance in gravitational radii rp/rg. For stars that

do not evolve significantly in structure over 10 Gyr, their βcrit’s remain the same or very

similar. For stars that evolve significantly over < 10 Gyr, the βcrit increases dramatically

over a star’s lifetime. For example, for a 1M� star, the βcrit increases from ≈1.8 to ≈7.0,

a factor of 3.9X, over its main-sequence lifetime, a result of its ρc/ρ̄ increasing from 42

to 756. This corresponds to the critical rp/rg for full disruption decreasing by a factor

of 2.7X, from 23.4 to 8.6. Thus, a TAMS 1M� star must approach 2.7X closer the BH

in order to be fully disrupted compared to its ZAMS self. Similar trends are seen for the

1.5M� and 3M� stars, where the critical rp/rg decreases by a factor >2X from ZAMS

to TAMS. Thus, for higher-mass stars (M? & 0.8M�), at the same pericenter distance,

the ZAMS star is roughly 2X as vulnerable to tidal disruption and associated mass loss

as the TAMS star. For lower-mass stars (M? . 0.8M�), the critical rp/rg is roughly

constant over 10 Gyr. See the Appendix for the dependence of βcrit and the associated

rp/rg with stellar mass.
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Table 6.2: Critical impact parameter for full disruption βcrit and the corresponding
physical pericenter distance in gravitational radii rp/rg. † indicates extrapolation and
∗ indicates polytropic result. See also Figure 6.6, Figure 6.19.

M? R? stellar age βcrit rp/rg

0.3 M� 0.2814 R� 0 Gyr 0.9± 0.1 22.0
0.2989 R� 10 Gyr 0.9± 0.1 23.4

0.5 M� 0.4452 R� 0 Gyr 1.1± 0.1 24.0
0.4564 R� 10 Gyr 1.1± 0.1 24.7

0.7 M� 0.6485 R� 0 Gyr 1.5± 0.2 23.2
0.6793 R� 10 Gyr 1.6± 0.1 22.1

1.0 M� 0.9012 R� 0 Gyr 1.8± 0.1 23.4
1.0455 R� 4.8 Gyr 2.7± 0.2 18.1
1.2872 R� 8.4 Gyr 7.0† 8.6

1.5 M� 1.6275 R� 0 Gyr 2.7± 0.5 23.5
2.0805 R� 2 Gyr 10† 8.6

3.0 M� 1.8896 R� 0 Gyr 2.0∗ ± 0.25 30.8
3.3192 R� 0.3 Gyr 8.5± 1.5 12.7

As ρc/ρ̄ increases, the star’s expansion in response to mass loss decreases.

As a result, the star becomes less vulnerable to tidal disruption and thus the critical

impact parameter for full disruption monotonically increases with increasing ρc/ρ̄. For

example, note the transition in critical impact parameter from βcrit = 0.9 < 1 for the

0.3M� star to βcrit = 1.1 > 1 for the 0.5M� star. The 0.3M� star corresponds to a

γ = 5/3 polytrope (see Figure 6.17) and the 0.5M� star has an intermediate structure

in between a γ = 5/3 and γ = 4/3 polytrope. In the most extreme cases, for example

for giant stars (MacLeod et al. 2012a) with a sequestered core-envelope structure, the

remaining envelope contracts and thus its disruption requires increasingly higher β’s for

the same amount of mass loss (in fact, these stars are unable to be fully disrupted by

massive BHs).
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6.3.5 Mass fallback rates

All encounters

Figure 6.7 shows mass fallback rates dM/dt for all of our simulations, grouped

by star. Each panel is a particular stellar mass and age, and shows all impact parameters

β for that object. One can perhaps pick out trends in the shape of the dM/dt curves

that we will explore in more detail below. Higher β generally corresponds to shifting

the dM/dt curve upwards and to the left, giving a shorter peak timescale and higher

peak fallback rate. After the critical β for full disruption, the dM/dt curve flattens,

particularly near the peak. The rise and decay slopes also vary with stellar mass, stellar

age, and impact parameter.

The top panels of Figure 6.8 show dM/dt’s for a single stellar mass, 1M�, for

all β’s and stellar ages, in order to demonstrate the effect of stellar age. Note that

the β’s are not the same for each stellar age (see Table 6.1 or Figure 6.7). The left

panel shows the raw curves and the right panel is normalized to the peak fallback rate

(Ṁpeak) and the associated peak fallback time (tpeak) in order to focus on the rise and

decay slopes. In the left panel, the curves largely overlap, demonstrating the degeneracy

between stellar structure and β. This is similar to the shifting of dM/dt’s from γ = 5/3

and γ = 4/3 polytropes to lie on top of each other demonstrated in Guillochon &

Ramirez-Ruiz (2013a). This is why there is a degeneracy in the MOSFiT TDE fitting

between stellar mass and impact parameter (and so radiative efficiency) (Mockler et al.

2019; Mockler & Ramirez-Ruiz 2020). In the right panel, one sees that the rise and

decay slopes also largely overlap for a single stellar mass at multiple ages.
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Figure 6.7: Mass fallback rate dM/dt to the BH as a function of time for all of our
simulations. Each panel is a different star (stellar mass and stellar age, labeled in top
left). Colors correspond to different impact parameters β.
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Thus, it is more challenging to identify the age of the star by the light curve

alone, due to the degeneracy introduced by β. However, stars of different age have

significantly different compositions, and thus the stellar debris will have different chem-

ical abundances. This is a promising avenue to distinguish stellar age, and indeed also

stellar mass, if one can tie the composition of the fallback debris to observed spectral

features. See Law-Smith et al. (2019) for a first study of the chemical abundance of the

debris.

The middle and bottom panels of Figure 6.8 show dM/dt’s for all of our simu-

lations. The middle panels are colored by stellar mass, with multiple stellar ages and β’s

for each mass. From the middle left panel, evidently, more massive stars produce dM/dt

curves with higher normalizations than less massive stars, but the peak timescales are

similar if BH mass is constant. This in principle would offer a way to determine stellar

mass in an observed TDE, but there is a degeneracy between stellar mass and effi-

ciency in the current fitting of TDE observations (e.g., Mockler et al. 2019; Mockler &

Ramirez-Ruiz 2020). One can have more efficient conversion of matter to radiation with

a smaller total stellar debris mass, or a less efficient conversion of matter to radiation

with a larger total stellar debris mass.

From the middle right panel, one sees that, generally, the rise slope is shallower

with increasing stellar mass and (though this is more difficult to see) the decay slope

is steeper with increasing stellar mass. The rise slope is a stronger trend, whereas the

decay slope appears to mainly be a function of the fact that for more massive stars, a

higher fraction of encounters studied in this work are partial disruptions. Indeed, with
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lower β encounters being more likely, it is more likely to have a steeper decay slope for

a more massive star. We also tabulate the asymptotic power law indices n∞ later on in

this section.

The bottom panels are colored by ρc/ρ̄. In the bottom right panel, one can

see that more centrally concentrated stars have shallower rise slopes and (though it is

difficult to see because of the density of lines) steeper decay slopes. The fact that more

centrally concentrated stars have slower rises can be understood by thinking about

(1) the density profile of the star and (2) the hydrodynamics of disruption. First,

stars with higher values of ρc/ρ̄ have relatively more extended, lower density envelopes.

Just considering the undisturbed spherically-symmetric profile (see Figure 6.17), the

material that will be most bound to the BH has a slower transition in density, leading

to a shallower rise slope. Stars with lower values of ρc/ρ̄, on the other hand, have more

uniform density profiles, and their outer layers exhibit a sharper transition in density,

leading to a steeper rise slope. Second, there is a hydrodynamical effect that, for a more

centrally concentrated star, the outer layers are more vulnerable to tidal disruption and

this material is thus further stretched out post-disruption (compare the density contours

in Figure 6.4). This results in a greater difference in rise slopes than might be predicted

from the undisturbed density profiles alone. This can be seen more clearly in Figure 6.9,

which shows only full disruptions and has fewer profiles plotted. The fact that more

centrally concentrated stars have faster decays relates to the survivability of the core.

While full disruptions decay closer to ∝ t−5/3, the presence of a surviving core changes

the binding energies of the material bound to the BH (Guillochon & Ramirez-Ruiz
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2013a). This results in a steeper decay slope when there is a surviving core (Coughlin

& Nixon 2019, discuss this effect in more detail). See also Ryu et al. (2020c) for further

discussion. The transition between partial disruptions and full disruptions occurs at

higher β’s with increasing ρc/ρ̄; thus, more centrally concentrated stars are more likely

to exhibit steeper decays.

The structure of the star is imprinted on the shape and slope of the fallback

curve. It is thus easier to determine the stellar structure of the disrupted star in an

observed TDE than more degenerate properties such as stellar mass and stellar age. This

also hints that in principle, there may be a mapping from a single structural parameter

such as ρc/ρ̄, in combination with β, to the shape of the dM/dt. One can imagine a

mapping in which M? gives the normalization of the dM/dt while ρc/ρ̄ gives the “tilt”

corresponding to the rise and decay slopes.

Full disruptions

Figure 6.9 shows only critical (full) disruptions for all stellar masses and ages.

These encounters thus all have the same fractional mass lost ∆M/M? ≈ 1. Here the

trends are more evident than in Figure 6.8, though the decay slopes are relatively similar,

as all full disruptions give n∞ ≈ −5/3 (see below in the section). The top panels show

a single stellar mass M? = 1M� in order to highlight the stellar age dependence. Here

the actual amount of mass unbound from the star ∆M and thus the mass eventually

fed to the BH, ≈ ∆M/2, is identical between the stars. The rise slopes are shallower

with increasing stellar age.

The middle panels are colored by stellar mass. In the left panel one primarily

206



101 102 103

t [day]
10 4

10 3

10 2

10 1

100

101

M
[M

/y
r]

1M 0Gyr
4.8Gyr
8.4Gyr

100 101

t/tpeak

10 2

10 1

100

M
/M

pe
ak

1M 0Gyr
4.8Gyr
8.4Gyr

101 102 103

t [day]
10 4

10 3

10 2

10 1

100

101

M
[M

/y
r]

0.3M
0.5M
0.7M
1.0M
3.0M

100 101

t/tpeak

10 2

10 1

100

M
/M

pe
ak

0.3M
0.5M
0.7M
1.0M
3.0M

101 102 103

t [day]
10 4

10 3

10 2

10 1

100

101

M
[M

/y
r]

6
23
40
100
1000

100 101

t/tpeak

10 2

10 1

100

M
/M

pe
ak

6
23
40
100
1000

Figure 6.8: Mass fallback rate to the BH as a function of time for all of our simulations.
Left panels: raw; right panels: normalized to peak. Top: only M? = 1M�, all β’s, 3
stellar ages. Middle: color corresponds to M?. Bottom: color corresponds to ρc/ρ̄ for
the star (with the same colors as in Figure 6.2) and the legend indicates a few reference
values.
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sees the normalization to dM/dt given by M?. With increasing M?, the dM/dt curve

is shifted upwards and slightly to to the left. In the right panel, one sees that the rise

slopes are shallower with increasing stellar mass. There is a weak trend towards steeper

decay slopes with increasing stellar mass.

The bottom panels are colored by ρc/ρ̄. Here one sees perhaps most clearly

the trends discussed above, as we are coloring by the key physical parameter. It appears

that, for the same ∆M/M?, ρc/ρ̄ nearly uniquely determines the rise slope of dM/dt

(this is also true for the decay slope, but is more clear when we study n∞ vs. β below).

Increasing central concentration leads to shallower rise slopes, and, for full disruptions,

similar decay slopes. See discussion above for the physical intuition behind this effect.

At fixed mass lost

Figure 6.10 shows a comparison of dM/dt curves at fixed mass lost ∆M . This

allows one to compare fallback rates for the same amount of total material supplied to

the BH. We compare at ∆M = (0.1, 0.3, 0.5, 0.7, 1.0)M�; half of this unbound material

returns to the BH. Of course, some values of ∆M are inaccessible to some stellar masses.

To do this, we construct a very finely interpolated grid (see Appendix) of impact pa-

rameters for each star, and select the β for which the dM/dt integrates to the given

∆M .

The top five panels show stars at 0 Gyr (ZAMS) and the bottom five panels

show stars at 10 Gyr (or TAMS for M? ≥M�). If the efficiency of conversion of matter

to light is relatively constant, then the total energy radiated in a TDE is determined

by ∆M . Thus, this figure shows dM/dt’s from a stellar population at a single age, and
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Figure 6.9: Same as Figure 6.8, but only critical (full) disruptions. Top: only M? =
1M�, colored by stellar age. Middle: colored by stellar mass. Bottom: colored by ρc/ρ̄.
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(assuming constant efficiency) for a given radiated energy.

At fixed ∆M , the shape of the dM/dt’s vary significantly with stellar mass.

The peak fallback rate, the peak timescale, and the rise and decay slopes all vary

significantly. Most strikingly, for both stellar age populations, the decay slopes are

steeper with increasing stellar mass. This is because for the same ∆M , the encounter

is more of a partial disruption for higher stellar masses. Higher stellar masses also

correspond to higher Ṁpeak values (by up to a factor of ≈5) at fixed ∆M . The differences

in the shape of the dM/dt’s are not particularly more or less significant for different

values of ∆M . These differences suggest that fitting TDEs with this library of fallback

rates will allow for better determination of stellar properties, and perhaps that the

nature of the disrupted star can be determined from the light curve alone.

6.3.6 Derived quantities

Peak timescale and fallback rate

Next we discuss quantities derived from the Ṁfb results. The top panels of

Figure 6.11 show the peak mass fallback rate Ṁpeak and the associated peak time tpeak as

a function of impact parameter β. The tpeak’s are plotted with a linear y-axis and so may

appear to vary significantly, but nearly all tpeak values are ≈20–40 days. This is because

the mass-radius relationship of main sequence stars nearly cancels out the M? and R?

dependence (M−1
? R

3/2
? ) in Equation (6.4). The general trend is that tpeak decreases

sharply with β until full disruption and then increases more slowly post critical-β.

The Ṁpeak values show a marked M? dependence, and span several orders of
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Figure 6.10: Comparison of dM/dt curves at a fixed mass lost ∆M . Top 5 panels
are stellar ages of 0 Gyr and bottom 5 panels are stellar ages of 10 Gyr (or TAMS for
M? ≥M�). These are interpolated dM/dt curves at the particular β for each star that
corresponds to the ∆M in the top left of each panel.
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magnitude. We can understand this because of the M? and R? dependence (M2
?R
−3/2
? )

in Equation (6.4) has a higher power on M? than in the tpeak scaling. The general

trend is that Ṁpeak increases sharply with β until full disruption and then decreases

more slowly post critical-β. Trends for both tpeak and Ṁpeak are qualitatively similar

to the Guillochon & Ramirez-Ruiz (2013a) simulations, but our study spans a wider

range due to the many different stellar structures. Focusing on the 1M� star at 3 ages

for comparison, at the same β, the more centrally concentrated (older) star peaks later

and has a lower peak fallback rate.

In the bottom panels of Figure 6.11, the x-axis is scaled with the structural

parameter α = (ρc/ρ̄)−1/3 in the same way as in Figure 6.5. Here Ṁpeak is also nor-

malized by the stellar mass. Note that unlike for ∆M/M? in Figure 6.5, the y-axes of

these two plots are not normalized to be unitless, and so have some spread (note that

tpeak appears to have more spread, but it is on a linear scale). Despite this, nearly all of

the simulations collapse into one coherent relationship. Fitting formulae for tpeak and

Ṁpeak are provided in the Appendix, such that one can obtain the tpeak and Ṁpeak for

any stellar mass, stellar age, and impact parameter.

Figure 6.12 shows the quantity Ṁpeak × tpeak/M? vs. β scaled with struc-

tural parameter as above. To order-of-magnitude, Ṁpeak × tpeak/M? ≈ ∆Mbound/M? ≈

∆M/2M?, so this relation is similar to the bottom left panel of Figure 6.5. This is a

good internal consistency check. Note that the integrated dM/dt is only approximately

equal to the product of its peak values (e.g., for full disruptions ∆M/2M? = 0.5, while

Ṁpeak × tpeak/M? asymptotes to ≈0.25).
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Figure 6.11: Time of peak (left panels) and peak mass fallback rate (right panels) as a
function of impact parameter. Results from Guillochon & Ramirez-Ruiz (2013a) for a
γ = 5/3 and γ = 4/3 polytrope are shown by the dotted and dashed lines respectively.
Bottom panels are where x-axis is scaled with a structural parameter, α = (ρc/ρ̄)−1/3.
In the bottom right panel, Ṁpeak is normalized by the stellar mass.
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Figure 6.12: Ṁpeak × tpeak/M? as a function of β scaled with structural parameter
α = (ρc/ρ̄)−1/3.
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Power law indices

The top panels of Figure 6.13 show the instantaneous power law index n(t) of

the mass fallback rate as a function of time. The top left panel shows the parameter

space occupied by tidal disruptions of MS stars for a 106M� BH in absolute units. The

x-axis in the top right panel is normalized by the peak time, and we also compare to

the results of Guillochon & Ramirez-Ruiz (2013a) for γ = 5/3 and γ = 4/3 polytropes.

The regions are comparable, but this work covers more parameter space, as expected

by the larger range of stellar structures studied. The different range of β’s sampled may

also account for some differences.

The bottom panels of Figure 6.13 show the asymptotic decay power law index

n∞ for individual stars as a function of β, and as a function of the scaled x-axis in-

corporating stellar structure familiar from earlier figures. Partial disruptions generally

have n∞ ≈ −2.2 (≈ 9/4; Coughlin & Nixon 2019), while full and post-critical disrup-

tions generally have n∞ ≈ −5/3, though the β-dependence is more nuanced than this.

For example, n∞ peaks near the critical β for full disruption, then falls slightly for

post-critical disruptions. There is also a small region at small β where there is a sharp

transition from higher n∞ to n∞ ≈ −2.2—this was better captured in Guillochon &

Ramirez-Ruiz (2013a), who sampled β more finely in this region.

In the bottom left panel, one can see that the more centrally concentrated stars

(which correspond roughly to the more massive stars) have n∞ ≈ −2.2 for progressively

higher β’s. Aside from fitting individual TDEs, one can use this information with a

statistical population of TDEs: given that the TDE rate depends inversely on β to
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some power (see Section 7.5 for more detailed discussion), one can use n∞ as a probe

of the stellar structure and more indirectly the stellar mass and age. More specifically,

the lower-mass stars spend only a small portion of β parameter space at n∞ ≈ −2.2,

while the higher-mass stars spend much more of β parameter space here, especially

when weighted inversely by β to some power. If the stellar mass function of TDEs

is roughly flat for M? . M� (Kochanek 2016b), and especially if mass segregation in

galactic centers is important (see Section 7.5) then if an n∞ ≈ −2.2 is observed, it is

more likely due to the partial disruption of a more massive star. Less massive stars are

more likely to be full disruptions, and thus if n∞ ≈ −5/3 is observed, it is more likely

due to the full disruption of a lower-mass star.

In the bottom right panel, after rescaling the x-axis with ρc/ρ̄, the simulations

reduce into a single relationship describing n∞ for any star and impact parameter. We

provide a B-spline fit to this relation in the Appendix, so that one can obtain the n∞

for any stellar mass, stellar age, and impact parameter.
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Figure 6.13: Top panels: instantaneous power law index n(t) of the mass fallback
rate as a function of time. Top left: absolute units; top right: x-axis normalized by
the peak time. Blue regions correspond to this work, while orange and green regions
correspond to results from Guillochon & Ramirez-Ruiz (2013a) for γ = 5/3 and γ = 4/3
polytropes. Bottom panels: asymptotic decay power law index n∞ as a function of
impact parameter. (In case of confusion due to the repeated colors, the 0.3M� stars
follow the γ = 5/3 polytrope.) The bottom right panel has x-axis scaled with the critical
impact parameter and a structural parameter α = (ρc/ρ̄)−1/3.
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6.4 Conclusion

6.4.1 Comparison to other work

We compare with Guillochon & Ramirez-Ruiz (2013a) throughout, but perhaps

the most salient point is that, as we stress in this paper, every tidal disruption quantity

that we have calculated depends primarily on the stellar structure, parameterized by

ρc/ρ̄, and impact parameter β. Thus, the study of Guillochon & Ramirez-Ruiz (2013a) is

only directly applicable to stars with exactly γ = 5/3 or γ = 4/3 stellar structures, which

do not represent the range of stellar masses and stellar ages involved in TDEs. This work

offers a significant improvement upon the Guillochon & Ramirez-Ruiz (2013a) grid of

simulations, and applies to any main-sequence stellar mass and stellar age. The fitting

formulae (see Appendix) we find for key disruption quantities can be used to predict

the disruption quantities for any star, provided one knows the ρc/ρ̄. Additionally, the

STARS library tool (Law-Smith et al. 2020, see Appendix) allows one to retrieve the

dM/dt for any stellar mass and age.

Our results are consistent with the hydrodynamical simulations of Goicovic

et al. (2019), Gafton & Rosswog (2019b) in the non-relativistic limit, and Golightly

et al. (2019b) for the impact parameters and stars they consider. The asymptotic

decay power law indices we find are broadly consistent with the analytic predictions

of Coughlin & Nixon (2019) (n∞ = −9/4 for partial disruptions, n∞ = −5/3 for full

disruptions), though our results indicate a more nuanced β dependence (see Figure 6.13

and associated discussion). We note that we find n∞ ≈ −2.2 for partial disruptions,

slightly larger than the n∞ = −2.25 found by Coughlin & Nixon (2019).
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Our results are broadly consistent with those of Ryu et al. (2020a,b,c,d),

though we note some differences. Rather than comparing dM/dt’s in detail, we note

that the critical impact parameters we find for full disruption differ slightly. This is

partly due to the fact that Ryu et al. (2020a,b,c,d) study a single stellar age (MAMS),

whereas we study 2 or 3 stellar ages for each star, so a direct comparison of results for

a given stellar mass is misleading, as the stellar structures differ. See Figure 6.19 in

the Appendix for a comparison. One disagreement is at the 15% level in our βcrit = 0.9

result for the 0.3 M� star (which has an identical profile to a γ = 5/3 polytrope) for

MBH = 106M�; Ryu et al. (2020a,b,c,d) argue that this discrepancy is due to GR ef-

fects at rp = 22rg. The difference is modest, but we note that our βcrit = 0.9 result has

been independently found by other authors for polytropic stellar models, and the non-

relativistic regime is one in which our grid-based adaptive-mesh FLASH framework has

also been independently verified with two other numerical methods (SPH and moving-

mesh) and resolutions by other authors (Guillochon & Ramirez-Ruiz 2013a; Mainetti

et al. 2017; Goicovic et al. 2019; Golightly et al. 2019b; Gafton & Rosswog 2019b).

6.4.2 Caveats/extensions

Our calculations are Newtonian, and thus do not capture the minority of en-

counters in which relativistic effects significantly alter the dM/dt. Cheng & Bogdanović

(2014a), Tejeda et al. (2017b), and Gafton & Rosswog (2019b) (for a review of TDEs

in GR see also Stone et al. 2019) studied differences between the fallback rates from

relativistic versus Newtonian tidal disruption simulations in detail, and found that for

rp > 10rg, the difference is . 10%, and that the most significant corrections from
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relativistic effects are at pericenter distances smaller than this.30 They found that for

rp > 10rg the error in a non-relativistic tidal disruption simulation scales approximately

as v2
p ∼ rg/rp (though we emphasize that GR is a non-linear theory, and order unity

effects are possible for the rare extreme encounters in which GR dominates the dynam-

ics). For encounters in which relativistic effects are significant, the decay power law

index remains approximately the same, and the most important differences are that the

peak time is shifted to the right and the peak fallback rate is shifted down compared to

the Newtonian case. The fraction of disruptions that require relativistic hydrodynamics

in order to accurately model the mass fallback rate is ∼ max(1, 10rg/rt) in the pinhole

regime of loss cone repopulation, and a step function in the diffusive regime: ∼0 if

10rg < rt, and ∼1 if 10rg > rt. For a 1M�, 1R� star, this is ≈5% for a 106M� BH and

≈20% for a 107M� BH. See Figure 6.20 in the Appendix for the range of applicability

of Newtonian hydrodynamics simulations. Note that while relativistic effects may cause

significant apsidal precession, the effect on the mass fallback rate to the BH is relatively

small—and it is this quantity that tracks the luminosity evolution of TDEs so closely.

While the library presented in this paper applies to the majority of TDEs, we plan to

extend our setup to include relativistic encounters in future work.

Other extensions include studying orbits with different eccentricities, incor-

porating stellar spin (rather than performing new simulations with spinning stars, we

could scale our dM/dt results with a parameterized stellar spin dependence based on

the results of Golightly et al. 2019a), studying magnetic fields (we already have the

framework for this, first studied in Guillochon & McCourt 2017), adding more stellar

30Though we note that Ryu et al. (2020d) argue for slightly larger effects due to the inclusion of GR.
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masses and ages to the grid, sampling more finely in β (though this will not make a

significant difference because of our dM/dt interpolation), and various extensions and

upgraded functionality of the STARS library tool (Law-Smith et al. 2020). Finally, we

plan to use the interpolated fallback-rate library as the new backbone for the publicly

available TDE fitting software MOSFiT (Guillochon et al. 2018; Mockler et al. 2019).

We do not perform an analysis of TDE rates as a function of stellar mass and

stellar age, but below is a brief discussion. In terms of broad demographics, Kochanek

(2016b) calculated that for MBH . 107M�, the typical TDE is due to a 0.3M� star,

but that the mass function is relatively flat for M? . M�. This study only considered

effects due to the initial mass function (IMF) and did not include any dynamical in-

teractions between stars, such as mass segregation in galactic centers, which segregates

more massive stars closer to the BH and ejects less massive stars (e.g., Baumgardt et al.

2004; MacLeod et al. 2016c)—this would cause the stellar mass function for TDEs to

peak at higher masses than suggested by a convolution of the IMF and the luminosity

function of TDEs (De Colle et al. 2012; MacLeod et al. 2013). See also Figure 15 in

MacLeod et al. (2012a) for the fraction of stars at different evolutionary stages con-

tributing to TDE flares. For MBH . 108M�, MS stars make up >85%. In more detail,

MacLeod et al. (2012a) find that the tidal disruption rate scales with the tidal radius of

a given star as ṅ ∝ rαt , where α ≈ 0.2–0.5. Ignoring other considerations, the physical

cross-section increases with stellar age and leads to higher rates of tidal disruption for

older MS stars. However, the ∆M lost at a given β decreases as the star becomes more

centrally concentrated, leading to fainter flares.
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The dynamical mechanisms operating in the relevant galactic center and the

associated most likely age for a star to be disrupted are also important. The two-body

relaxation time, which is ≈2 Gyr for a 106M� BH (Bar-Or et al. 2013) (the MS lifetime

of a 1.5M� star), gives a characteristic limit for the approximate mass and age of a

star upon disruption. However, there are many other mechanisms that disrupt stars

earlier. Stars can interact with one another coherently inside the sphere of influence

of the BH, in contrast to two-body relaxation, leading to rapid angular momentum

evolution (Rauch & Tremaine 1996); for example, this occurs for eccentric nuclear disks

(Madigan et al. 2018). The presence of a SMBH binary can also dramatically increase

the TDE rate, driven by a combination of strong scatterings and KozaiLidov cycles

between individual stars and the SMBH binary (e.g., Li et al. 2015). Other mechanisms

that may disrupt stars over timescales� 2 Gyr include strong (non-diffusive) two-body

scatterings, which make up a fraction of the TDE rate in any galaxy (Weissbein & Sari

2017), and radially anisotropic velocity fields or unusually dense star clusters, which

may occur in post-starburst galaxies (Stone et al. 2018). Moreover, the fact that TDEs

appear to be observed preferentially in rare post-starburst galaxies (Arcavi et al. 2014b;

French et al. 2016b; Law-Smith et al. 2017c; Graur et al. 2018) means that many TDEs

are sourced by unique stellar populations with particular dynamical histories.

6.4.3 Summary

We summarize the main points of this paper below.

1. We present a grid of tidal disruption simulations of stars with accurate stellar
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structures and chemical abundances, using MESA models as initial conditions to

FLASH simulations with a Helmholtz EOS.

2. We interpolated this grid in 3D (stellar mass, stellar age, and impact parameter)

to provide the STARS library tool (see Section 6.5), where one can request the

dM/dt for any stellar mass, stellar age, and impact parameter.

3. The quantities βcrit,∆M, tpeak, Ṁpeak, and n∞ vary significantly with stellar mass

and stellar age, but can be reduced to a single relationship that depends only on

stellar structure, parameterized by ρc/ρ̄, and impact parameter β (see Figures 6.5,

6.6, 6.11, and 6.13). We provide fitting formulae for these quantities applicable to

any MS star (see Figure 6.16 in Appendix).

4. For the same ∆M , the shape of the dM/dt curve varies significantly with stellar

mass, promising the potential determination of stellar properties from the TDE

light curve alone (see Figure 6.10).

5. The critical impact parameter for full disruption increases with increasing central

concentration, and scales approximately as (ρc/ρ̄)1/3 for ρc/ρ̄ . 500 and (ρc/ρ̄)1/2.3

for ρc/ρ̄ & 500 (see Figure 6.6).

6. In general, more centrally concentrated stars have steeper dM/dt rise slopes and

shallower decay slopes (see Figures 6.8 and 6.9).

7. We show that the shape of dM/dt depends only on the stellar density profile,

and has little dependence on the internal EOS of the star (see Section 6.11 where

we compare a 1M� and 10M� star with nearly identical density profiles), thus
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extending the range of applicability of our interpolated library and fitting formulae

to any MS star.

We hope the community makes use of the STARS library tool (see Appendix),

and we look forward to incorporating this library as the new backbone of the MOSFiT fit-

ting software for TDEs, or any other TDE fitting framework, allowing for more accurate

determinations of both the nature of the disrupted star and the BH.

6.5 Interpolated fallback-rate library

The STARS library of interpolated fallback rates, as well as up-to-date in-

structions for loading and using the library, is available on GitHub31 and version 1.0.0

is archived on Zenodo (Law-Smith et al. 2020). One can create custom interpolated

grids and one can also query for any stellar mass, stellar age, and impact parameter.

The basic interpolation between dM/dt’s is the same as in the MOSFiT software

(Guillochon et al. 2018; Mockler et al. 2019). We first interpolate in β for a given stellar

mass and age. We then interpolate each of these β’s in stellar mass, for a given fractional

main-sequence stellar age (e.g., 0.3M� ZAMS to 0.5M� ZAMS). We then interpolate

in stellar age for a given stellar mass. In the query/retrieval mode, in order to retrieve

a dM/dt corresponding to a specific stellar mass, stellar age, and impact parameter

that does not already exist in the interpolated library, we perform a quick series of

interpolations on the nearest neighbor points in 3D space.

Figure 6.14 shows the STARS library interpolated dM/dt’s for a small grid in

31STARS library: github.com/jamielaw-smith/STARS library.
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stellar mass, stellar age, and impact parameter, for a single BH mass MBH = 106M�.

This grid has 10 interpolated β points, 11 interpolated mass points, and 5 interpolated

age points, with spacing in β and stellar mass logarithmic, and spacing in stellar age

linear.

Figure 6.15 shows all of the STARS library interpolated dM/dt’s in the same

plot, for a single BH mass MBH = 106M�. The left panel is in absolute units, in

order to emphasize the several orders of magnitude in Ṁ and time covered by this

grid even for a single BH mass—roughly 6 orders of magnitude in fallback rate and 4

orders of magnitude in time (we extend the dM/dt’s to later times than shown in this

plot). The right panel is normalized to peak time and peak fallback rate, in order to

emphasize the range of rise and decay slopes exhibited by the library. See Section 7.3

for more discussion of how these slopes depend on stellar structure. In general, more

centrally concentrated stars have steeper rise slopes and shallower decay slopes. The

more rounded behavior near peak is from post-critical-β disruptions; see e.g. the high-β

behavior for a given star in Figure 6.7. We also overplot three dM/dt’s in gray: a ZAMS

0.3M� star with β = 0.6, a ZAMS 1M� star with β = 4.2, and a ZAMS 3M� star with

β = 2.0.
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Figure 6.14: STARS library interpolated dM/dt’s for a small grid of stellar mass,
stellar age, and impact parameter, and at a single BH mass MBH = 106M�. Axes
labels are removed for clarity, but are the same as in other figures in this paper (x-axis
is time, from 0 to 1000 days, y−axis is Ṁ , from 10−4 to 10 M�/yr, both log-scaled).
Note that we provide more finely spaced interpolated grids for download (see text). The
directory name, in format mXX tYY, where XX is the stellar mass in M� and YY is
the fractional MS age, is in the lower left of each panel.
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Figure 6.15: STARS library interpolated dM/dt’s, all in one plot, for a single BH mass
MBH = 106M�. Left: absolute units. right: normalized to peak time and peak fallback
rate. We applied a fill between dM/dt’s in order to emphasize the tune-able spacing of
the 3D interpolation. Three dM/dt’s are overplotted in gray: a ZAMS 0.3M� star with
β = 0.6 (dashed), a ZAMS 1M� star with β = 4.2 (solid), and a ZAMS 3M� star with
β = 2.0 (dotted).

6.6 Fits to disruption quantities

Figure 6.16 shows fitted B-splines and analytic formulae for the mass lost from

the star (∆M/M?), time of peak mass fallback rate (tpeak), peak mass fallback rate

(Ṁpeak), and asymptotic decay power law index (n∞). These fitting relations allow one

to obtain the ∆M/M?, tpeak, Ṁpeak, and n∞ for any stellar mass, stellar age, and impact

parameter. One must first obtain the ρc/ρ̄ value for this star, e.g. from Table 6.1, a

MESA model directly, or a pre-packaged grid of MESA models such as the MIST models

(Choi et al. 2016).

The simple analytic fits are below. We were unable to fit the n∞ data with a
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simple formula, so the only option for this quantity is the B-spline.

∆M/M? = 1.055 tanh[(x+ 0.04)20]− 0.025 (6.9)

tpeak [day] = 2/x12 + 17x+ 8 (6.10)

Ṁpeak/(M?/M�) [M�/yr] = 0.9 sin(15x− 1.5)/x6 − 1.5x+ 4.3 (6.11)

n∞ = (unable to find simple analytic fit; (6.12)

see B spline below)

x = exp[(β/βcrit)
α − 1], α = (ρc/ρ̄)−1/3 (6.13)

βcrit ≈


0.5(ρc/ρ̄)1/3, ρc/ρ̄ . 500

0.39(ρc/ρ̄)1/2.3, ρc/ρ̄ & 500

(6.14)

The range for ∆M/M? is x ∈ [0.8, 1.0] and for tpeak and Ṁpeak is x ∈ [0.8, 1.7]. We note

that the equations for βcrit are only approximate.

Below we provide python code to read in and evaluate the B-spline fits to

the disruption quantities ∆M/M?, tpeak, Ṁpeak, and n∞. This code will reproduce the

blue lines in Figure 6.16. Note that the order of all of the splines is 3. The knots and

coefficients have been rounded to 3 decimals, which gives precision indistinguishable

from the original fitted splines.

import numpy as np

from scipy.interpolate import splev

# deltam/mstar
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knots = [0.804, 0.804, 0.804, 0.804, 0.859, 0.881, 0.892, 0.903, 0.957,

1.001, 1.001, 1.001, 1.001];

coeffs = [0.028, 0.068, 0.027, 0.159, 0.234, 0.416, 0.745, 0.97, 1.015,

0.0, 0.0, 0.0, 0.0]

# tpeak

knots = [0.804, 0.804, 0.804, 0.804, 1.082, 1.638, 1.638, 1.638, 1.638];

coeffs = [40.874, 27.579, 24.097, 39.004, 33.804, 0.0, 0.0, 0.0, 0.0]

# mdotpeak/mstar

knots = [0.804, 0.804, 0.804, 0.804, 0.897, 0.943, 1.082, 1.638, 1.638,

1.638, 1.638];

coeffs = [0.167, 0.127, 2.617, 3.477, 1.714, 2.034, 2.024, 0.0, 0.0,

0.0, 0.0]

# ninf

knots = [0.804, 0.804, 0.804, 0.804, 0.897, 0.943, 0.99, 1.036, 1.082,

1.175, 1.268, 1.314, 1.499, 1.638, 1.638, 1.638, 1.638];

coeffs = [-2.079, -2.212, -2.19, -2.218, -1.333, -1.637, -1.652, -1.675,

-1.73, -1.701, -1.671, -1.656, -1.695, 0.0, 0.0, 0.0, 0.0]

# evaluate B-splines

x = np.linspace(min(knots), max(knots), 100);

y = splev(x, [knots, coeffs, 3])
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Note that in order to use the B-splines to retrieve values for a specific star,

one needs to use the scaled x-axis, and thus input the ρc/ρ̄ and βcrit values for the star.

ρc/ρ̄ can be obtained as above and βcrit can be obtained from either Table 6.2 or our

simple formula (Eq. 6.14). Then one plugs these into

x = exp[(β/βcrit)
α − 1], α = (ρc/ρ̄)−1/3. (6.15)

This x is the value to plug into the B-spline in order to retrieve the desired y-axis value.

6.7 MESA profiles vs. polytropes

Figure 6.17 shows MESA density profiles vs. γ = 5/3 and γ = 4/3 polytropes,

normalized to central density and stellar radius. One can see where a polytropic stellar

model is sufficient and where we need to use a MESA stellar model as initial conditions

for the FLASH simulations. For M? = 0.1, 0.3M�, the profiles are nearly identical to

γ = 5/3 polytropic stellar structures. For M? = 0.5, 0.7M� the profiles are in between

γ = 5/3 γ = 4/3 polytropic stellar structures, and could in principle be simulated with

a polytropic simulation using a γ that has been matched to this star. For M? & 1M�, as

the star evolves off the ZAMS, the profile becomes more centrally concentrated than γ =

4/3 and thus cannot be simulated self-consistently with a polytropic stellar structure,

as these are unstable for γ . 4/3. One requires a Helmholtz EOS in order to provide

hydrodynamic support for these non-ZAMS stars. Note that the ZAMS M? & 1M�

stars are not uniformly well represented by γ = 4/3 polytropes—the only star that is

quite well approximated by a γ = 4/3 polytrope is the 3M� ZAMS star. Though we
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do not do FLASH simulations for intermediate ages between ZAMS and TAMS for the

1.5M�, 3M�, and 10M� stars in this work (we interpolate instead; see Section 6.5),

we show a MAMS profile at age t ≈ tTAMS/2 for these higher mass stars (including

for the 1M� star, which we do simulate) for comparison. While the TAMS profiles are

clearly much more centrally concentrated than a γ = 4/3 profile, the MAMS profiles

are somewhat closer to the polytropic approximation, though still not a good fit.

One can also see that ρc/ρ̄ does not map 1-1 exactly to the stellar density

profile, though it is a very good approximation. Consider the 10Gyr 0.7M� star (ρc/ρ̄ =

36) and the ZAMS 10M� star (ρc/ρ̄ = 38). The 10M� star has a slightly higher value of

ρc/ρ̄ but its density profile is slightly less centrally concentrated than that of the 0.7M�

star.
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Figure 6.17: MESA density profiles vs. γ = 5/3 and γ = 4/3 polytropes, normalized
to central density and stellar radius. Each panel is a different mass. Blue is ZAMS,
green is MAMS (shown for M? ≥ 1M�), and orange is min(10 Gyr, TAMS).

233



6.8 Initial profiles after relaxation

Figure 6.18 shows the stellar density profiles after 5tdyn of relaxation onto the

hydrodynamical grid in FLASH, compared to initial profiles from MESA. To be clear,

these two profiles match exactly at the start (t = 0) of the FLASH simulation, but

here they are shown after 5tdyn. Our setup has been tested such that the density profile

does not change significantly after ≈ 100tdyn of relaxation onto the hydrodynamical grid

(without a BH present) in Guillochon et al. (2009).

As mentioned in Section 7.2, the most centrally concentrated stars, for which

ρc/ρ̄ & 150, have a higher initial resolution in FLASH of 512 cells across the diameter of

the star. Stars with ρc/ρ̄ . 150 are initially resolved by 131 cells across their diameters.
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Figure 6.18: Stellar density profiles after 5tdyn of relaxation onto the hydrodynamical
grid in FLASH (red), compared to initial profiles from MESA (black). These two profiles
match exactly at the start of the simulation (t = 0).
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6.9 Critical impact parameter and pericenter distance vs.

stellar mass

Figure 6.19 shows critical β and critical pericenter distance over gravitational

radius (rp/rg) as a function of stellar mass. See also Figure 6.6 for critical β as a

function of ρc/ρ̄, in which there is a simple power-law relationship. We find large ranges

in critical β and critical rp/rg, especially with stellar age for M? & 0.8M�. At a fixed

stellar mass, βcrit can vary by a factor of ≈4. We also compare to the results from

Ryu et al. (2020a,b,c,d). To avoid repetition, see Sections 7.2 and 7.5 for discussion of

the differences between these works. We note that these authors studied only a single

stellar age, so a direct comparison is often not possible. For physical pericenter distance,

our average from 0.3 to 3M� is rp/rg ≈ 20.4. Our results are consistent with those of

Ryu et al. (2020a,b,c,d) for a MBH = 105M�, and for a MBH = 106M� Ryu et al.

(2020a,b,c,d) find rp/rg ∼ 26.9, averaging from 0.15M� to 3M�.
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Figure 6.19: Left: critical β vs. stellar mass. See also Figure 6.6. Right: critical
pericenter distance over gravitational radius (rp/rg) vs. stellar mass. Points at the
same stellar mass have different stellar ages. Comparison to Ryu et al. (2020a,b,c,d) in
blue.

6.10 Range of applicability of nonrelativistic TDE hydro-

dynamics simulations

Figure 6.20 shows regions where rp > 10rg for a few stars (0.1M�, 1M�,

10M�). This is where we expect nonrelativistic tidal disruption simulations to have

.10% error. For more detailed discussion of relativistic effects, see Section 7.5. Note

that the BH masses of the host galaxies of observed TDEs, found independently through

new observations and the M–σ relationship (Wevers et al. 2017b, 2019), lie in the range

3 × 105M� ≤ MBH ≤ 2 × 107M� and peak at 106M�. The stellar masses obtained

through fitting TDEs (Mockler et al. 2019) are almost all M? . 1M�.
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and we expect nonrelativistic simulations to have .10% error.
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6.11 Test of stellar structure vs. EOS

In this paper we claim that stellar structure is the sole determinant of several

tidal disruption quantities. To make this claim more robust we must first disentangle

the effects of the equation of state. As a test of the effects of stellar structure vs. the

EOS, we run simulations of two stars that have very similar density profiles but different

energy support (radiative vs. convective). We use a ZAMS 1M� star (36 Myr) and a

close-to-ZAMS 10M� star (4 Myr). The 10M� star is at central hydrogen fraction of

X = 0.65, compared the ZAMS value of X = 0.71. The 1M� and 10M� star have very

similar (but not identical) normalized density profiles, and ρc/ρ̄ = 42 for the 1M� star

and ρc/ρ̄ = 45 for the 10M� star. We chose to have the profiles match nearly exactly,

rather than have the ρc/ρ̄ values match. We ran one simulation at β = 1.5 for each, a

“solid” partial disruption.

Figure 6.21 shows a comparison of the density profiles for these two stars.

They are very different in absolute scales, but normalized to ρc and R?, the profiles are

nearly indistinguishable.

Figure 6.22 shows the dM/dt’s, absolute and scaled with M? and R?. The

1M� star has ∆M/M = 0.581 and the 10M� star has ∆M/M = 0.583. The dM/dt’s

are very similar, which supports the argument advanced in this paper that the shape of

the dM/dt curve is determined by the stellar density profile, and allows us to provide

the fitting formulae as a function of only ρc/ρ̄ and β for disruption quantities for any

stellar mass and age within our simulation grid range. In fact, if, from this initial study

of stellar structure vs. EOS, we can conclude that these fitting formulae are robust for
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Figure 6.21: Density profiles for two stars in our “stellar structure vs. EOS” study.
Left: absolute; right: normalized.

any star, then we can extend the scalings to stars with masses outside our grid range, as

their different EOS’s will have only a small effect on the resulting disruption quantities.

The differences in shape between these two dM/dt’s could be due partially to

the slightly different density profiles (note the small “notch” in the profile for the 10M�

star in Figure 6.21) and values of ρc/ρ̄ of these two stars. However—and this is the

motivation for this test—it could be due to differences in the EOS of the two stars.

In particular, the change in slope at t ≈ 100 days may be due to different transitions

between γ = 5/3 and γ = 4/3 pressure support in the ρ–T plane for these two stars

(e.g. see Figure 7 in Murguia-Berthier et al. 2017).
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Figure 6.22: dM/dt’s for two stars in our “stellar structure vs. EOS” study. Left:
absolute; right: normalized using stellar mass and radius scalings (Eq. 6.4).

6.12 MESA and FLASH parameters

In Table 6.3 and Table 6.4 we list a few relevant parameters for the MESA and

FLASH simulations. See Section 7.2 for explanations. MESA inlists are available upon

request. We also turn on overshooting (not shown in the table) for M? > 3M� using

the same parameter choices as in the MIST models (Choi et al. 2016).
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Table 6.3: Relevant MESA parameters.

Parameter Value

create pre main sequence model .true.

new net name ‘mesa 49.net’

new rates preference 2 ! jina

kappa file prefix ‘a09’

initial zfracs 6 ! AGSS09

kappa lowT prefix ‘lowT fa05 a09p’

kappa CO prefix ‘a09 co’

initial z 0.0142d0

initial y 0.2703d0

Lnuc div L zams limit 0.999d0

mixing length alpha 2

delta lg XH cntr hard limit 0.00432d0

do element diffusion .true.

xa central lower limit species(1) ‘h1’

xa central lower limit(1) 0.001d0

Table 6.4: A few relevant FLASH parameters. xmax is in units of R? and tmax is in
units of the stellar dynamical timescale tdyn.

Parameter Value

xmax 1.e3

tmax 1.e2

mpole lmax 20

eos tolerance 1.e-6

smalle 1.e7

smallt 1.e3

smlrho 1.e-12

smallp 1.e0

sim rhoAmbient 1.e-11

sim pAmbient 1.e1

sim tAmbient 1.e3

order 3

slopeLimiter ‘‘hybrid’’

charLimiting .true.

use 3dFullCTU .true.

use hybridOrder .true.

RiemannSolver ‘‘HYBRID’’
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Table 6.4 (cont’d): A few relevant FLASH parameters. xmax is in units of R? and tmax

is in units of the stellar dynamical timescale tdyn.

Parameter Value

shockDetect .true.

6.13 Numerical convergence

Figure 6.23 shows dM/dt’s for different resolution simulations in FLASH,

demonstrating numerical convergence for the resolutions we choose in this paper: 131

cells across the diameter of the star for less centrally concentrated stars (ρc/ρ̄ . 150)

and 524 cells across the diameter of the star for highly centrally concentrated stars

(ρc/ρ̄ & 150). We show results for a ZAMS 0.3 M� star (less centrally concentrated,

ρc/ρ̄ = 6), a MAMS 1M� star (moderately centrally concentrated, ρc/ρ̄ = 138) and

a TAMS 3M� star (highly centrally concentrated, ρc/ρ̄ = 1198). We note that past

simulations have had difficulty reaching convergence on the low-mass, “high-energy”,

tightly bound tail of debris that returns first to the BH. This tail is of observational

interest, and we achieve convergence here.
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Figure 6.23: dM/dt’s for different resolution simulations in FLASH for a few different
examples. Lines are labeled by the number of cells across the diameter of the star.
Central concentration (parameterized by ρc/ρ̄) is shown in the bottom left. Left: 0.3M�,
0 Gyr (a less centrally concentrated star; we use 131 cells here). Middle: 1.0M�, 4.8
Gyr (a moderately centrally concentrated star; we use 131 cells here). Right: 3.0M�,
0.3 Gyr (a highly centrally concentrated star; we use 524 cells here).
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Chapter 7

Successful Common Envelope

Ejection and Binary Neutron Star

Formation in 3D Hydrodynamics

Abstract

The coalescence of two neutron stars was recently observed in a multi-messenger

detection of gravitational wave (GW) and electromagnetic (EM) radiation. Binary neu-

tron stars that merge within a Hubble time, as well as many other compact binaries,

are expected to form via common envelope evolution. Yet five decades of research on

common envelope evolution have not yet resulted in a satisfactory understanding of

the multi-spatial multi-timescale evolution for the systems that lead to compact bina-

ries. In this paper, we report on the first successful simulations of common envelope
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ejection leading to binary neutron star formation in 3D hydrodynamics. We simulate

the dynamical inspiral phase of the interaction between a 12M� red supergiant and a

1.4M� neutron star for different initial separations and initial conditions. For all of our

simulations, we find complete envelope ejection and a final orbital separation of ≈ 1.1–

2.8R�, leading to binary neutron stars that merge within a Hubble time. We find an

αCE-equivalent efficiency of ≈ 0.1–0.4 for the models we study, but this may be specific

for these extended progenitors. We fully resolve the core of the star to . 0.005R� and

our 3D hydrodynamics simulations are informed by an adjusted 1D analytic energy for-

malism and a 2D kinematics study in order to overcome the prohibitive computational

cost of simulating these systems. The framework we develop in this paper can be used

to simulate a wide variety of interactions between stars, from stellar mergers to common

envelope episodes leading to GW sources.

7.1 Introduction

Until now, the majority of astrophysical sources detected by the advanced

Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo observatory

have involved stellar mass binary black hole (BBH) mergers, with the two most no-

table exceptions being the (likely) binary neutron star (BNS) mergers GW170817 and

GW190425 (Abbott et al. 2017a, 2020). While dynamical encounters may play a role in

the origin of BBHs, they are not an effective pathway for the assembly of binary neu-

tron star mergers (e.g., Ye et al. 2020), which are thought to form almost exclusively in

interacting binaries (Tutukov & Yungelson 1973, 1993; Belczynski et al. 2016).
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Massive stars are the progenitors of neutron stars and black holes, and the

majority of massive (i.e., type B and O) stars are in close enough binaries such that

interaction is inevitable as the stars evolve (Sana et al. 2012; Moe & Di Stefano 2017).

A BNS is expected to form from the cores of well-evolved stars, and thus have much

lower orbital energy and angular momentum than the original binary progenitor. For

BNSs that merge in a Hubble time, after one of the progenitor stars evolves through

the red giant phase and overflows its Roche lobe, the original binary is believed to

significantly shrink during a phase of unstable mass transfer, which leads to a spiral-in

of the binary and ejection of the envelope—this is collectively commonly referred to

as common envelope (CE) evolution (e.g., Ritter 1975; Paczynski 1976; Iben & Livio

1993; Ivanova et al. 2013b). If this process leads to a deposition of orbital energy

that is sufficient to eject the envelope of the giant, the predicted properties of the

resulting compact binary could match the observed properties of the BNS population.

Past attempts to model this process have failed because they cannot reproduce these

observed properties. A more complete (and in particular, multidimensional) theoretical

description is required in order to provide an accurate description of the evolution of a

NS embedded in a common envelope. This work focuses on the decades-long pursuit of

this elusive phenomenon.

A critical juncture in the life of a binary occurs just after mass transfer com-

mences in the system. The system either coalesces or may survive to become an inter-

acting binary. This is the case of the recently discovered M Supergiant High Mass X-Ray

Binary (HMXB) 4U 1954+31 (Hinkle et al. 2020), which contains a late-type supergiant
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of mass 9+6
−2M�; it is the only known binary system of its type. It is difficult and rare

to observe a system in this state, as the system evolves rapidly, yet this discovery may

be the first observation of a system similar to the progenitor studied in this work. If

mass transfer becomes unstable in this system it could lead to a CE episode. Two out-

comes are then possible: (1) one star has a clear core/envelope separation and the other

star is engulfed into its envelope, or (2) both stars have a core/envelope separation and

the envelopes of the two stars overfill their Roche lobes (see e.g., Vigna-Gómez et al.

2020). Usually, the term CE is used to describe a situation in which the envelope is not

co-rotating with the binary and is not necessarily in hydrostatic equilibrium. The state

of the primary at onset of CE evolution is determined by the initial separation and the

orbital evolution of the binary (see e.g., Klencki et al. 2021)—generally, it will begin

when the radius of the primary overflows its Roche lobe. The outcome of the CE phase

can be either a stellar merger or the formation of a close binary. If the binary remains

bound and on a tight orbit after the second NS has been created, the system will merge

due to the dissipation of gravitational waves (GWs). The merger timescale depends on

the final orbital separation and energy of the binary; if these are small enough such that

the binary merges within a Hubble time, the stellar remnants—either black holes, neu-

tron stars, or white dwarfs—will merge and produce GW and possibly electromagnetic

(EM) radiation.

In particular, BNS mergers expel metallic, radioactive debris (the light from

which is referred to as a kilonova) that can be seen by telescopes (e.g., Kasen et al.

2017). In August 2017, for the first time, we detected both GWs and EM radiation
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(e.g., Coulter et al. 2017; Abbott et al. 2017b; Goldstein et al. 2017) coming from the

same astrophysical event. This landmark discovery, which has opened up new lines of

research into several areas in astrophysics and physics, makes the study of interacting

binaries and common envelope in particular, even more essential in our attempts to

discern the assembly history of these probes of extreme physics. Yet, their formation

process remains an open question.

In this work we present the first 3D hydrodynamics simulations of successful

CE ejection leading to a BNS system. Simulations of this kind have not been performed

so far due to the prohibitive computational cost—the relevant dynamic ranges of density

and physical distance are &106 (e.g., the global problem must resolve a R ≈ 106 cm

neutron star within the envelope of a R ≈ 1013 cm giant star, whose density varies from

ρ ≈ 106 g/cm3 to ρ ≈ 10−9 g/cm3 within the relevant regions). Most 3D hydrodynamics

simulations of CE evolution have been at relatively equal mass ratios and for relatively

low stellar masses (M? . 3M�) (e.g., Zhang & Fryer 2001; Ricker & Taam 2008, 2012;

Passy et al. 2012; Nandez & Ivanova 2016; Ohlmann et al. 2016; Iaconi et al. 2017,

2018; Prust & Chang 2019; Kramer et al. 2020; Sand et al. 2020; Chamandy et al.

2020), and there has been an early attempt and characterization of the difficulties faced

by simulating a massive star binary by Ricker et al. (2019). Higher mass ratios involving

NSs have been studied in 1D (e.g., MacLeod & Ramirez-Ruiz 2015a; Fragos et al. 2019).

In contrast to other contemporary studies, the initial conditions of our 3D hy-

drodynamics simulations are informed by an adjusted 1D analytic energy formalism and

a 2D kinematics study. We start the 3D hydrodynamics simulation once the secondary
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has reached a relatively small radius (after ejecting < 0.1% of the star’s binding energy,

at r ≈ 10R�) compared to the full radius of the star. In contrast to other contemporary

work in which the core is often replaced with a point mass, we fully resolve the core to

. 0.005R�.

This paper is organized as follows. §7.2 describes our methods, including the

1D analysis, 2D kinematics, and 3D hydrodynamics, §7.3 describes our results, §7.4

compares to other work and discusses caveats and future work, and §7.5 concludes.

7.2 Methods

We simulate the CE evolution of an initially 12M� red supergiant primary

(donor) and a 1.4M� point mass secondary (NS) in 3D hydrodynamics, for different

initial separations and initial conditions. We build the primary with a 1D stellar evo-

lution code (MESA). We use an adjusted 1D energy formalism to predict the likely CE

ejection regime, and we use a 2D kinematics study to inform the initial conditions of the

3D hydrodynamics simulations. We import the stellar model to the 3D hydrodynamics

simulation (FLASH), in which we excise the outermost layers of the star with negligible

binding energy and start the secondary relatively close to the core of the primary where

the CE ejection is predicted to take place.

7.2.1 MESA model

We use the 1D stellar evolution code MESA v8118 (Paxton et al. 2011, 2013,

2015) to construct the primary. We use an inlist from Götberg et al. (2018), which
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is publicly available on Zenodo.32 We construct a 12M� solar-metallicity (X=0.7154,

Y=0.270, Z=0.0142; Asplund et al. 2009) single-star primary as this is a typical mass

to form a NS (Heger et al. 2003). In §7.3 we show the evolutionary history of this model

and in §7.8 and §7.9 we show mass, density, composition, and binding energy profiles

for the models we simulate in 3D hydrodynamics.

See Section 2.1 of Götberg et al. (2018) for details on the MESA setup. Ad-

ditional uncertainties in the MESA modeling are discussed in Section 7.4. In brief, our

setup is to use the mesa 49.net nuclear network of 49 isotopes, account for overshooting

following Brott et al. (2011), and account for mass loss using the wind schemes of de

Jager et al. (1988) and Vink et al. (2001).

7.2.2 Energy formalism

We perform CE energy formalism (α formalism; Livio & Soker 1988; van den

Heuvel 1976; Webbink 1984; de Kool 1990; Iben & Livio 1993) calculations on the

profiles to predict the radius ranges in which CE ejection is possible and to inform the

initial conditions of the 3D hydrodynamics simulations. As in Wu et al. (2020a), we

calculate the gravitational binding energy and orbital energy loss profiles (see §7.9) for

the MESA model at all ages throughout its giant branch evolution. These profiles help

determine the predicted ejection ranges (see §7.3). See Wu et al. (2020a) and Everson

et al. (2020) for further details of these calculations.

Local 3D hydrodynamical simulations of CE have shown that during dynam-

ical inspiral, the energy deposition from the secondary’s plunge extends inward from

32MESA inlists, v8118: https://zenodo.org/record/2595656.
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the secondary’s location, heating and unbinding deeper envelope material (see, e.g.,

MacLeod et al. 2017a; De et al. 2020). To incorporate the effects of this energy deposi-

tion on the ejection radius range, we also apply an adjusted α formalism (Everson 2020)

that requires the orbital energy loss to overcome the binding energy at radii deeper than

that given by the orbital separation, corresponding to r − Ra (where Ra is the Bondi

accretion radius) or r − RRoche (where RRoche is the Roche radius); see below. The

ejection ranges shown in Figure 7.1 were calculated using this adjusted α formalism as

well as using work from Everson et al. (2020).

All α formalism calculations in, e.g., Figure 7.10, are based on, e.g., Ivanova

et al. (2013b) and Kruckow et al. (2016). The change in orbital energy is defined as in

Eqn. 2 of Kruckow et al. (2016):

∆Eorb = −GMcoreMsecondary

2af
+
GMdonorMsecondary

2ai
, (7.1)

where ai is the initial orbital separation and af is the final orbital separation, and the

gravitational binding energy is defined as

Ebind = −
∫
Gm

r
dm. (7.2)

For the r−Ra adjusted formalism we use the accretion radius as defined in, e.g., Bondi

& Hoyle (1944) and Hoyle & Lyttleton (1939):

Ra =
2GMsecondary

v2∞
(7.3)

252



and for the r−RRoche adjusted formalism we use the Roche radius (the radius equivalent

to the volume of the Roche lobe) as in the approximation of Eggleton (1983).

We adapted a 2D integrator used to study the kinematics of CE inspiral with

drag (MacLeod et al. 2017a) with the results from a 3D study of drag coefficients in CE

evolution with density gradients (De et al. 2020) to determine an initial velocity vector

for the radius at which we begin our 3D hydrodynamics simulations. We also compare

to results using a circular initial velocity vector.

7.2.3 FLASH setup

The outline of our 3D hydrodynamics setup is the following: (1) excise the

tenuous outer layers of the primary (donor) star, (2) initialize the primary on the grid,

(3) relax the point particle secondary (neutron star) onto the grid, (4) initialize the

point particle’s velocity vector based on the 2D kinematics results, and (5) simulate the

system in 3D hydrodynamics until the orbital separation stalls and “parks”.

In this paper, we focus on evolutionary stages which we expect that will lead to

a CE ejection a priori and then use 3D hydrodynamics to simulate the crucial dynamical

inspiral phase of the CE evolution.

Numerical diffusion prohibits us from evolving the system for & 30 orbits, since

for many orbits, numerically-driven drag results in the companion inspiraling toward

the core of the donor. See §7.4 for a detailed discussion of this. Thus, we consider

only evolution in the 3D hydrodynamics on a timescale much shorter than the thermal

timescale, to prevent including artificially merging or ejected cases.

We use a custom setup of the 3D adaptive-mesh refinement (AMR) hydrody-
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namics code FLASH (Fryxell et al. 2000), version 4.333. Our FLASH setup is based

on that of Wu et al. (2020a), which was based on that of Law-Smith et al. (2019) and

Law-Smith et al. (2020a), which was in turn based on that of Guillochon et al. (2009)

and Guillochon & Ramirez-Ruiz (2013a). See these references for more details on the

numerics. A brief summary including salient features and changes to the setup is below.

We use an Helmholtz equation of state with an extended Helmholtz table34

spanning 10−12 ≤ ρ [g cm−3] ≤ 1015 and 103 ≤ T [K] ≤ 1013. The Helmholtz equation

of state assumes full ionization (Timmes & Swesty 2000) and thus does not include

recombination energy in the internal energy. We track the same chemical abundances

in the 3D hydrodynamics as in the MESA nuclear network for the star, for all elements

above a mass fraction of 10−5 (this value is somewhat arbitrary but does not affect the

results); this is 22 elements ranging from hydrogen (1H) to iron (56Fe). While including

an arbitrary number of the elements tracked in MESA is possible, including all of the

elements would unnecessarily increase the memory load of the 3D hydrodynamics.

We excise the outer envelope of the primary donor star, which constitutes

< 0.1% of the total binding energy (see §7.2.2, §7.3, and §7.8 for further discussion)

and is easily ejected, trimming the star to R = 10R�. Our box size is ∆Xmax = 40R�

on a side. This technique was also employed in Wu et al. (2020a). We refine such that

∆Xmin . 0.005R� within a factor of 100 of the maximum density, then derefine in the

AMR with decreasing density, for N ≈ 272 cells across the diameter of the star for the

nominal simulations presented in this paper. We verified the hydrostatic equilibrium of

33The updates in later versions do not affect our setup.
34As of time of writing available at http://cococubed.asu.edu/code_pages/eos.shtml.
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our initial conditions for several dynamical timescales of the star (and 100s of dynamical

timescales of the core). Hydrostatic equilibrium following the relaxation scheme in our

setup has also been tested in e.g., Law-Smith et al. (2020a). We initialize the secondary

point mass (NS) at r = 8R�, well within the envelope of the 10R� trimmed star. After

initializing the star on the grid, we gradually introduce the point mass secondary inside

the envelope of the primary by gradually increasing its velocity to its initial velocity

vector (see also §7.2.2). This technique is also used in MacLeod et al. (2017a) and Wu

et al. (2020a).

We note that we performed an additional convergence simulation (in addition

to the numerical convergence simulations discussed in §7.12) where the neutron star was

initialized at r = 16R�, twice that in our nominal study, and verified that it reaches

the same radius at which we start our nominal simulations (i.e., it does not “stall”

exterior to our initial conditions if we start our simulation further out). More realistic

initial conditions would start at the point of Roche lobe overflow to take into account

the transfer of energy and angular momentum from the orbit to the envelope, but this

is computationally prohibitive for a R? ≈ 1000R� primary with a density range of 15

orders of magnitude (from ρ ≈ 106 to ρ ≈ 10−9 g/cm3). However, we argue that the

initial conditions used in this work are similar to the configuration if we had begun the

simulation at this earlier stage and evolved it to the time we start our simulation. This

is justified in §7.8 and using the methods of §7.2.2.

We use two initial velocity vectors: (1) circular and (2) informed by a 2D

kinematics study using the stellar density profile. The 2D kinematics velocity vectors
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are derived from orbits that are more eccentric than a circular orbit. However, we find

that the initial velocity vector does not have a significant effect on the final outcome of

the simulation, with both velocity vectors leading to qualitatively similar results. This

weak dependence on the initial velocity vector is due to the fact that the point mass

relatively quickly encounters drag and spirals inward dynamically, as was also found in

Wu et al. (2020a).

We also perform a numerical convergence study (see §7.12 for details). For this,

we run two simulations with the same initial conditions but one with 2.5 times higher

linear resolution than the other, and find very similar results in the orbital evolution

and energy of the envelope, verifying that our nominal resolution of ∆Xmin . 0.005R�

is converged.

7.3 Results

7.3.1 1D modeling

The top panel of Figure 7.1 shows radius vs. time for the initially 12M� donor,

evolved as a single star using the setup of Götberg et al. (2018). The red circles indicate

the three different initial conditions we simulate in 3D hydrodynamics: near the first

peak (R? = 750R�, M? = 11.8M�), on the second rise (R? = 900R�, M? = 9.9M�), and

at the second peak (R? = 1080R�, M? = 9.8M�). The first peak corresponds to RLOF

(Roche-lobe overflow) during late hydrogen-shell burning (case B; e.g., Kippenhahn &

Weigert 1967) and the second peak to RLOF after core-helium burning (case C; e.g.,

Lauterborn 1970). In all three cases, the donor has a deep convective envelope and the
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Figure 7.1: MESA evolutionary history for the 12M� primary (donor) star. Top: radius
vs. time. Red circles indicate the models we simulate in 3D hydrodynamics. Bottom
left: focus on the first rise (expansion). Vertical lines indicate the earliest ages where
CE ejection is possible and shaded regions indicate the radius ranges where CE ejection
is possible according to our adjusted 1D energy formalism. Red line indicates the radius
of the He core. Red ‘X’s indicate final orbital separation from our 3D hydrodynamics
simulations. Bottom right: focus on the second rise. See §7.8 for further details on the
MESA model.
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mass transfer is dynamically unstable.

In the bottom panels, we zoom in on the first and second rises (expansions).

The radius of the He core is shown in red (defined by the he core mass attribute

in MESA, using he core boundary h1 fraction ≥ 0.01 and min boundary fraction

≥ 0.1). It is Rcore = 0.31R� for the first peak, Rcore = 0.36R� for the second rise,

and Rcore = 0.8R� for the second peak. For a given stellar age, the predicted radius

ranges where CE ejection is possible as predicted by the three 1D energy formalisms

(standard α formalism, r−Ra adjusted formalism, and r−RRoche adjusted formalism)

are shown in shaded blue, orange, and green respectively (see §7.2.2). We start the

FLASH simulations just within these ranges (see §7.2). Red ‘X’s indicate the time at

which the envelope is ejected in our 3D hydrodynamics simulations (see Figure 7.4).

The bottom left panel focuses on the first rise. The earliest ages at which CE

ejection is possible from the 1D energy formalisms are indicated by the vertical lines.

The bottom right panel focuses on the second rise. Here the different energy formalisms

predict a similar range of radii for possible CE ejection, and in the 3D hydrodynamics

we eject the envelope within these ranges.

We calculate the minimum radius on the second rise in which Roche-lobe

overflow is possible, accounting for orbital widening of the binary as a result of mass

loss by fast stellar winds during its prior evolution (see §7.10 for discussion and details

on this). We find that after the first peak (at R? = 757R�), for radii less than R? =

900R� on the second rise, RLOF will not occur. Thus, we simulate three models in 3D

hydrodynamics that are chosen to span the range of stellar structures in which dynamical
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CE ejection is possible for a 12M� primary: near the first peak (R? = 750R�), on the

second rise (R? = 900R�), and at the second peak (R? = 1080R�). We note that the

750R� and 1080R� models may appear fine-tuned in isolation, but they are chosen so

that our suite of 3D hydrodynamics simulations in this paper span the parameter space

of stellar structures that will lead to dynamical CE ejection.

7.3.2 3D hydrodynamics

Figure 7.2 shows 3D volume renderings of three fields (density, velocity, and

energy) at three times: early in the evolution (11 hr), at an intermediate time (16 hr),

and at a relatively late time (25 hr) when the envelope has just been ejected. We show

renderings for the 900R�, vi = vcirc (circular initial velocity) simulation. Results are

qualitatively similar for all of the other simulations. The volume renderings are of the

bottom half of the orbital plane (z < 0, with Jorb ‖ z), with a color map and transfer

function chosen to highlight the dynamic range and structure of the field being studied.

See §7.6 for the detailed time evolution of these three fields and a zoom-in on the core.

The 1st row of Figure 7.2 shows the logarithm of gas density. In the first panel,

one can see the density shells that are progressively disturbed as the secondary sweeps

through the primary’s envelope. At late times, the structure is quite disturbed and

resembles a differentially rotating disk, though at even later times, the secondary stalls

and “parks” at its final orbital separation (see Figure 7.3).

The 2nd row of Figure 7.2 shows the ratio of absolute magnitude of velocity

to the local escape velocity for each cell, |v|/vesc,local. Pink corresponds to gas that

is bound to the system (values < 1) and green corresponds to gas that is not bound
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Figure 7.2: 3D renderings of three fields (density, velocity, and energy) at three times:
early in the evolution (11 hr), at an intermediate time (16 hr), and at a moderately
late time (25 hr) when the envelope has just been ejected. We show the 900R�, vi =
vcirc simulation; results are qualitatively similar for all our other simulations. 1st row:
logarithm of gas density. Shells corresponds to different density isosurfaces. 2nd row:
ratio of velocity magnitude to local escape velocity, |v|/vesc,local. Blue isosurface is at
|v|/vesc,local = 1, pink-red is < 1, green-yellow is > 1. 3rd row: sum of specific kinetic
and potential energy. Blue isosurface at ε = 0, pink-purple corresponds to bound (ε < 0)
and yellow corresponds to unbound (ε > 0). White ‘+’ indicates position of secondary.
Videos available at https://youtube.com/channel/UCShahcfGrj5dOZTTrOEqSOA.
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to the system (values > 1). The blue isosurface is at |v|/vesc,local = 1. At late times

(after a few orbits of the secondary), nearly all of the envelope is at |v| > vesc,local and

is gravitationally unbound from the star. Some of the envelope material is shocked to

|v| & 6vesc,local on the leading edge of a spherically expanding shell. One can see the

envelope being shocked and swept preferentially outwards as the secondary orbits the

center of mass of the primary. As the secondary moves through the envelope of the

primary, it acts as a local diffusive source term, giving surrounding material roughly

outward velocities. We also analyzed the velocity vectors of each grid cell, and found

that they are nearly all pointed outwards from the core as a result of the secondary’s

repeated passages, ejecting the envelope.

The 3rd row of Figure 7.2 shows specific energy (the sum of specific kinetic and

potential energy, internal energy is not included). Pink-purple corresponds to bound

(ε < 0) and yellow corresponds to unbound (ε > 0). There is a blue isosurface at

ε = 0. At early times, the binding energy of most cells is negative. At late times, nearly

all of the material in the box (except for the surviving core) has positive energy. The

core and secondary have separate Roche lobes, and the equipotential surface of ε = 0

(blue isosurface) is confined to a small region around the core. The size of this region

decreases with time and number of orbits until the secondary stalls at its final orbital

separation. This qualitatively shows complete envelope ejection.

In the bottom left panel of Figure 7.2 one can see a crescent-shaped sliver

of material on the left hand side of the panel that becomes unbound. This is due

to the change in the mass distribution interior to the radius of this sliver (initially
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Figure 7.3: Trajectory and orbital separation for two 900R� simulations with different
initial velocities. Black is 900R�, vi = vintegrator,∆Xmax = 100R�, red is 900R�, vi =
vcirc. Blue and green ‘X’s mark the time at which the envelope is ejected for the vcirc

and vintegrator runs respectively (see Figure 7.4). Left: trajectory. Black/red line is
secondary (NS), red dot is center of mass of primary (donor star). Right: separation
a(t) between center of mass of primary and position of point mass secondary vs. time.

at r ≈ 10R�) caused by the secondary sweeping out mass on the right hand side.

The gravitational potential due to the enclosed mass changes and this sliver of material

becomes unbound due to gravitational effects (acting nearly instantaneously) as opposed

to hydrodynamical effects (acting on the dynamical time).

We now discuss the orbital parameters of the two objects and in particular

the secondary as it orbits the center of mass of the primary donor star. The left

panel of Figure 7.3 shows the trajectory of the center of mass of the primary and

the secondary as a function of time in two of our simulation box coordinates (x and

y; because our simulation is symmetric along the z-axis, there is little evolution of the

center of masses in z). We show the evolution for the two 900R� simulations, with

vi = vcirc and vi = vintegrator, where vintegrator is the initial velocity vector informed by

the 2D kinematics study. Blue and green ‘X’s mark the time at which the envelope is
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ejected (see Figure 7.4).

The right panel of Figure 7.3 show the separation a(t) between the center of

mass of the primary and the position of the point mass secondary vs. time for the same

two simulations. Results for our other simulations are qualitatively similar. The final

orbital separations and the energies as a function of time for all simulations are shown

in Figure 7.1 (and the next paragraph) and Figure 7.4 respectively. Several “bounces”

are observed as the secondary orbits the core.

The initial velocity vector informed by the 2D kinematics (see Section 7.2)

occurs near the pericenter of an eccentrically inspiraling orbit and it is thus higher

energy (larger velocity) than the circular initial velocity. The run using this vector

stalls and “parks” at an orbital separation of af ≈ 2.8R�. The circular initial velocity

simulation parks at an orbital separation of af ≈ 1.2R�. For reference, the final orbital

separation of the 750R� simulation is af ≈ 1.1R� and the final orbital separation of

the 1080R� simulation is af ≈ 1.4R�. After supernova kicks (calculated with 1000

randomly oriented kicks and a kick magnitude drawn from a Maxwellian distribution

with 1D RMS σ = 265 km/s; Hobbs et al. 2005), we calculate that a significant fraction

of these systems will form binary neutron stars that merge within a Hubble time. See

§7.11 for details of this calculation.

We estimate the αCE-equivalent efficiency, where α = Ebind,env/∆Eorb ≈

2afEbind/(GMcoreMsecondary). For the R? = 900R� run, we take af = 2.8R�, Mcore =

4.5M�, Msecondary = 1.4M�, and a binding energy at 2.8R� of Ebind ≈ 5.5 × 1047 erg

(see Figure 7.11). This gives an αCE-equivalent efficiency of αCE ≈ 0.13. Similarly, for
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the R? = 750R� run, taking af = 1.1R�, we find αCE ≈ 0.38. For the R? = 1080R�

run, taking af = 1.4R�, we find αCE ≈ 0.08. Thus, the αCE is small for the models we

study, but we note that this may be specific for these extended progenitors.

In comparison, based on their final orbital separation, the 1D MESA study

of Fragos et al. (2019) (who studied a different primary model; see Figure 7.10) find

a high αCE-equivalent efficiency of ≈ 5, though we note that this study finds envelope

ejection in the self-regulated regime and αCE is calculated after a mass-transfer phase

which occurs after the envelope is ejected. After envelope ejection, in our simulations,

we expect a stable mass transfer phase to occur between the surviving core and the NS

(as in Fragos et al. 2019), which will further alter the separation before the supernova

takes place.

We now turn to a calculation of the energy of each cell in the simulation box

as a function of time. Figure 7.4 shows specific energy (ε = εkin + εgrav) vs. time,

for material outside of the current orbit of the secondary (see Figure 7.3) for all of

the models we simulate in 3D hydrodynamics. We note that the recombination energy,

while not included in our simulations, is small compared to the binding energy of the

envelope here; for hydrogen, εrecomb ≈ 13.6 eV/mp ≈ 1019 erg/g, whereas the envelope

energy is ε ≈ 1021 erg/g (Figure 7.4). The energy of this material increases with time,

transitioning from negative (bound) to positive (unbound) at t ≈ 15–20 h. Small-scale

variations correspond to the “bounces” in orbital separation as a function of time with

each successive orbit of the secondary (Figure 7.3).

We successfully eject the envelope for all of our simulated models, which span
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the range of stellar age and radii in which dynamical CE ejection is predicted to be

possible for an initially 12M� primary. We note that we do not include internal or

recombination energy in calculation of the envelope energy (which some contemporary

studies do, and which is a positive quantity that helps with envelope ejection; however

(see above), these energies are negligible for the models we study), only kinetic and

gravitational potential energy.

As a second verification of envelope ejection, we also calculate the mass ejected

(unbound) from the primary as a function of time. We find that the secondary ejects

the entire mass of the envelope, including the mass interior to the neutron star’s orbit

and exterior to the Roche radius of the core (see Figure 7.14).

The mass enclosed inside the orbit of the secondary does not change apprecia-

bly over the course of the simulation; we verify that mass does not “leak” significantly

from the inner regions of the star due to numerical effects (see §7.12). Thus, we esti-

mate that the inspiral is not driven by the increased numerical drag due to the core

mass leaking out towards the secondary (because none of this leaked mass reaches the

secondary’s orbit) but is instead driven by regular numerical drag due to the 3D hy-

drodynamical grid that is a resolution-dependent effect (see §7.12 for our numerical

convergence study).

We now briefly discuss the chemical abundance of the ejecta. Figures 7.5 shows

3D renderings of the mass fraction of hydrogen, helium, and nitrogen, at three times for

the (900R�, vi = vcirc) run. Hydrogen, helium, and nitrogen mix with the outer debris;

results for other runs are qualitatively similar. See §7.8 for 1D composition profiles of
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these elements at the beginning of the simulation. All composition data is available

upon request.

7.3.3 Recombination Transient

The most notable result is that the hydrogen envelope is completely ejected

at late times; this implies no hydrogen will be visible in the spectrum of the surviving

stripped star as the surface hydrogen mass fraction is essentially zero (it is comparable

to the core’s hydrogen abundance). The expanding hydrogen bubble is observable as

a hydrogen recombination transient (or a luminous red nova) Ivanova et al. (2013a).

We use Eqns. (A1), (A2), and (A3) of MacLeod et al. (2017b), based on Ivanova

et al. (2013a)’s application of the analytic theory of recombination transients (e.g.,

Popov 1993; Kasen & Woosley 2009; Kasen & Ramirez-Ruiz 2010) to estimate the

luminosity, timescale, and total energy of this recombination transient (see §7.7 for

details of the calculation). Using Rinit ≈ 2R� (approximate stalling orbital separation

of the secondary across our models), ∆M ≈ 5M� (the entire mass of the envelope),

vej ≈ 18 km/s (the velocity at 10R� at the end of our simulation), κ ≈ 0.32 cm2 g, and

Trec ≈ 4500 K, we find Lp ≈ 1037 erg s−1, tp ≈ 274 d, and Erad,p ≈ 2 × 1044 erg. The

mass of the stripped star is M? ≈ 4.5M�, radius R? ≈ 1R�. We note a stripped star

and neutron star are also interesting as a “living” gravitational wave source potentially

observable with LISA (Götberg et al. (2020); for lower mass systems see also Nelemans

et al. (2004); Yungelson (2008); Wu et al. (2020b)). If the system is tight enough, the

future evolution is determined by the radiation of GWs and no longer the evolution of

the stripped star. See §7.4 for discussion on extensions to our framework to study the
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remnant in more detail and for longer timescales.

Roughly 10% of the brightest luminous red novae (LRN) transients, which

have been previously associated with stellar mergers and common-envelope ejections,

are predicted to occur at some point in binary neutron star forming systems (Howitt

et al. 2020; Vigna-Gómez et al. 2020). LRN have come to be associated with stellar

mergers through detailed study of a few landmark events. M31 RV was one of the first

LRN to be identified, in 1988, but the light curve of the transient is only captured

during the decline (e.g., Mould et al. 1990). The galactic transient V1309 Sco proved

essential in establishing the nature of these events as stellar mergers (Mason et al. 2010;

Nicholls et al. 2013). Noteworthy transients arising from a relatively massive stars

include M31LRN 2015 with a progenitor of M? ≈ 3–5.5M� (MacLeod et al. 2017b) and

M101 OT2015-1 with a progenitor of M? ≈ 18M� (Blagorodnova et al. 2017a).
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Figure 7.5: 3D renderings of mass fraction of hydrogen, helium, and nitrogen as a
function of time, for the (900R�, vi = vcirc) run. Results for other simulations are
qualitatively similar. The colormap is the same for each element but note that the
scale changes for each element in order to highlight the structure. For hydrogen and
helium, mass fractions range from 0 (dark purple) to 1 (light yellow). For nitrogen,
mass fractions range from 0 (dark purple) to 0.01 (light yellow).
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7.4 Discussion

Here we briefly compare to other work, discuss uncertainties in the 1D stel-

lar modeling, resolution-dependent effects in the 3D hydrodynamics, and comment on

future work.

7.4.1 Comparison to other work

We briefly compare to other work below, though we note that no other 3D

hydrodynamics simulations have been conducted to simulate CE ejection leading to a

binary neutron star system, thus with our mass ratios (which are more extreme than

the current literature) or stellar radii (which are also relatively larger than the current

literature). The main difference with these works, besides the star studied, is that the

initial conditions of our 3D hydrodynamics simulations are informed using an adjusted

1D energy formalism (see §7.2) and a 2D kinematics study.

There has been five decades of work on the CE phase (see e.g., Ivanova et al.

2013b), and there is an extensive literature on CE ejection (we review some below);

however, the most relevant comparison for our work is to the 1D study of Fragos et al.

(2019), who also study BNS formation through the CE phase. These authors study a

different (though comparable) MESA model to ours (see Figure 7.10) and thus a direct

comparison is not possible.

We note our 1D formalism predicts that the model studied by Fragos et al.

(2019) is in a boundary region where the outcome of CE evolution is unclear. The

authors find CE ejection in the self-regulated regime. We study CE ejection in the
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dynamical regime, and find that for all of the models we simulate in 3D hydrodynamics,

the envelope is ejected in the dynamical regime. Fragos et al. (2019) find a final orbital

separation of af ≈ 3.3–5.7R�. We find final orbital separations of af ≈ 1.1–2.8R�. While

it is valuable to model the CE evolution from start to finish, the 1D treatment that is

necessary to facilitate this has inherent limitations. For example, Fragos et al. (2019)

assume complete and instantaneous spherically symmetric sharing of orbital energy

with the envelope. This is an nonphysical assumption that can only be addressed by

3D hydrodynamics.

Results from other studies of CE ejection for lower mass ratio systems are

listed below. Generally, contemporary studies have been unable to eject the envelope in

the course of the 3D simulation. The fact that we are able to successfully and robustly

eject the envelope, without including internal or recombination energy (which is claimed

to be essential to CE ejection in some contemporary work at lower masses; see below),

is likely due to the fact that we study an evolved 12M� red supergiant primary; thus,

the secondary encounters a very different density profile during its inspiral that the

density profiles in the works listed below. Sandquist et al. (1998) find 23-31% envelope

ejection in simulations with 3M� and 5M� AGB primaries. Staff et al. (2016) find

25% envelope ejection with a 3.05M� (3.5M� ZAMS mass) AGB primary. Sand et al.

(2020) find <20% envelope ejection when not accounting for recombination energy, and

complete envelope ejection when including recombination energy, for a 1M�, 174R�

early-AGB star with companions of different masses. Chamandy et al. (2020) find an

envelope unbinding rate of 0.10.2M� yr−1, implying envelope unbinding in <10 yr, for
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a 1.8M�, 122R� AGB primary with 1M� secondary. Note that these studies calculate

envelope energy outside of the Roche radius of the core, so we cannot compare results

directly.

We note that many contemporary studies that attempt to simulate systems

in which one star is highly centrally concentrated have replaced the core of that star

with a point mass, and the core’s density profile with a much less centrally-concentrated

polytrope. It is possible that this creates artificial diffusion at the boundary, making it

easier to eject the envelope. In this work we fully resolve the core of the star, allowing

for a realistic treatment of the inspiral and material interior to the secondary’s location

as it stalls and “parks” at a final orbital separation.

7.4.2 Uncertainties due to prior evolution

There are four main disclaimers to our analysis, and indeed to our initial stellar

models in general:

First, our model of the 12M� donor was evolved as a single star. However,

for the progenitor system of a BNS merger, the typical scenario includes a stable mass

transfer phase before the formation of the NS (e.g., Tauris et al. 2017). Therefore, the

donor star at the CE phase is the initially less massive star which has possibly accreted

mass from the NS progenitor and survived the passage of the supernova shock. While

the latter has only a moderate effect on the stellar structure (e.g., Hirai et al. 2018), the

phase of stable mass transfer can lead to high rotation (e.g., Hut 1981; Cantiello et al.

2007; de Mink et al. 2013), chemical pollution with He (e.g., Blaauw 1993), and mixing

of fresh hydrogen in the core. These effects can influence the stellar radius significantly
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(e.g., rotation can increase the equatorial radius, He-richness can contribute to keep the

star more compact), and most importantly change the density profile just outside the

core (i.e., in the domain of our 3D simulation) with the rejuvenation-inducing mixing. A

second order effect is the impact on the wind mass loss rate (and thus orbital evolution)

of the system (e.g., Renzo et al. 2017). While these require further investigation, our

models provide a proof-of-concept of our methods that could be applied to more realistic

post-RLOF CE donors.

Second, we do not accurately know the distribution of separations that systems

have at the time when star one is a neutron star and the other star is a red supergiant

(e.g., Vinciguerra et al. 2020; Langer et al. 2020).

Third, in considering the orbital evolution prior to filling the Roche lobe, we

use the Jeans approximation for widening as a result of stellar wind mass loss (see

§7.10). The Jeans approximation may not actually hold for the donor star. The mass

loss occurs in the late phases and the systems of interest in this work will be very

close to Roche-lobe filling at this stage. We may have wind focusing (e.g., Mohamed &

Podsiadlowski 2007). It is possible that the systems shrink instead of widening. In that

case, the forbidden region (see §7.10) might no longer be forbidden.

Fourth, our results depend on how accurate our progenitor models are (e.g.,

Farmer et al. 2016). These are subject to all of the uncertainties that affect massive star

evolution, most notably those related to mass loss (e.g., Renzo et al. 2017) and internal

mixing (e.g., Davis et al. 2019). These affect the final structure and core mass at the

moment of Roche-lobe filling.
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7.4.3 Numerical resolution

Our resolution is sufficient to achieve common envelope ejection and stall/“park”

at a final orbital separation of af ≈ 1.1–2.8R� in our simulations. However, there is mass

leakage and redistribution from the highly centrally concentrated core (ρc ≈ 103–106

g/cm3) at radii R < 0.3R� (see Section 7.12). Because it occurs at radii significantly

smaller than the position of the secondary, this redistribution of mass should not have

an effect on the secondary’s orbit (Gauss’ theorem). The largest numerical effect on the

secondary’s orbit is the numerical diffusion introduced by the grid (as in any 3D hydro-

dynamics simulation). This effect decreases with increasing resolution. We discuss this

further in Section 7.12.

Our FLASH setup uses a cartesian grid, which does not conserve angular

momentum L (this happens any time there is rotational motion across a grid cell).

This causes the point mass to inspiral more rapidly. This is in comparison to explic-

itly Galilean-invariant codes such as moving-mesh codes. For example, Ohlmann et al.

(2016) quote that L was conserved during their run with an error below 1%. Technically,

our FLASH setup violates Galilean invariance, as do other conventional grid-based hy-

drodynamics codes (when altering the background velocity at the same resolution), but

as Robertson et al. (2010) showed, this is a resolution-dependent effect, and L in grid

codes approaches perfect conservation at very high resolutions. The non-conservation

of L becomes larger with each orbit (the longer the simulation is run). Thus, if we have

successful CE ejection, which we do, this likely represents a “lower limit” of possible

CE ejection, because with perfect conservation of L the point mass would orbit more
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times and have longer to strip and eject the CE. While our detailed results are some-

what resolution-dependent to a certain extent (though not significantly; see §7.12), the

main result of this work—successful CE ejection leading to binary neutron star forma-

tion for all of the models we study—is robust and will only become stronger at higher

resolutions.

7.4.4 Future work

The framework developed in this work can be used to study various binary

stellar phenomena. First, we can study the large parameter space of systems that can

be accurately modeled as a star–point mass interaction, including different mass ratios,

primary/donor stars, and metallicities. We plan to perform a parameter-space study of

CE systems leading the binary neutron stars and black hole/neutron star binaries. We

also plan to study the long-term evolution by exporting the FLASH simulation back to

MESA (this capability was already explored in Wu et al. 2020a).

We plan to accurately calculate and include the effects of accretion onto the

neutron star and the associated feedback and energy injection in the envelope. This

has not been studied in sufficient detail yet. MacLeod & Ramirez-Ruiz (2015b) found

that accretion onto the neutron star is suppressed by one to two orders of magnitude

compared to the Hoyle-Littlelon prediction, and that during the CE phase neutron stars

accrete only modest amounts of envelope material, . 0.1M�. Holgado et al. (2021) claim

that the energy that accretion liberates via jets can be comparable to the orbital energy.

The astrophysical context provided by a detailed physical understanding of the

CE phase allows one to use GW and EM observations of binary neutron star mergers
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as tools to answer a broader set of questions than the raw GW data alone can answer,

for example, on the lives and deaths of stars, the difficult-to-probe physics of the deep

interiors of stars, and how nucleosynthesis operates in the Universe.

In another direction, we can adjust our framework to follow the ejected material

in more detail to inform our understanding of supernovae that interact with material

from CE ejections. This may also help to understand some stars in the Galaxy that

have interacted with CE material.

In the longer term, we plan to extend our FLASH setup to initialize two

separate MESA stars. This would (in theory) allow us to study the entire parameter

space of star-star interactions, leading to both stellar mergers and CE ejections.

7.5 Conclusion

The main points of this paper are summarized below.

1. We study the dynamical common envelope evolution of an initially 12M� red

supergiant star and a 1.4M� neutron star in 3D hydrodynamics.

2. Most earlier studies have focused on low mass stars. This is the first successful 3D

hydrodynamics simulation of a high mass progenitor that will result in a binary

neutron star that merges within a Hubble time.

3. We fully resolve the core of the star to . 0.005R� and our 3D hydrodynamics

simulations are informed by an adjusted 1D analytic energy formalism and a 2D

kinematics study.
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4. We study different initial separations where the donor fills its Roche lobe during

the first ascent of the giant branch and after the completion of central helium

burning.

5. We find complete envelope ejection (without requiring any other energy sources

than kinetic and gravitational energy) during the dynamical inspiral for all of the

models we study.

6. We find a final orbital separation of af ≈ 1.1–2.8R� (before any supernova kick)

for the models we study, which span the range of initial separations in which

dynamical CE ejection is possible for a 12M� star. A significant fraction of these

systems will form binary neutron stars that merge within a Hubble time. We find

an αCE-equivalent efficiency of ≈ 0.1–0.4 for the models we study, but this may

be specific for these extended progenitors.

7. The framework developed in this work can be used successfully to study the di-

versity of common envelope progenitors in 3D hydrodynamics.

7.6 Detailed time evolution

Here we show the evolution during the neutron star’s inspiral for the (900R�,

vi = vintegrator) run. See Figure 7.3 for the trajectory and orbital separation as a function

of time (black line). The animated video Figure 7.6 shows a 3D rendering of the material

near the core of the primary, from initial inspiral through common envelope ejection
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and stalling (“parking”) of the neutron star at its final orbital separation. Different

shells corresponds to different density isosurfaces. While the material inside the core of

the primary remains relatively undisturbed (as the closest approach of the secondary

is r ≈ 2R� and the radius of the core is Rcore ≈ 0.35R�), the material outside the

core (both interior to and exterior to the orbit of the neutron star) is swept away and

cleared with each successive passage of the neutron star. Red ‘+’ (or ‘→’ if it is outside

the domain) indicates the position of the neutron star. It is apparent that the neutron

star is able to effectively clear the material interior to its orbit but outside the core (in

addition to ejecting the envelope), allowing it to “park” at a final orbital separation (for

this simulation) of af ≈ 2.8R�.

The animated video Figure 7.7 shows a 3D rendering of the material for the

entire domain, as opposed to a zoom-in on the material near the core in Figure 7.6.

While in Figure 7.6 we saw that the core remained relatively undisturbed and that

there was not significantly more material in between the orbit of the neutron star and

the core, here the focus is the severely disturbed material in the envelope. One can

see the “spiral-wave” feature as the neutron star sweeps out envelope mass with each

successive passage in its orbit. One can also see that some of the higher density material

closer to the core is moved outward toward the periphery as the neutron star ejects this

material.

The animated video Figure 7.8 shows a 3D rendering of the ratio of the velocity

magnitude to the local escape velocity, |v|/vesc,local as a function of time. As the neutron

star orbits the center of mass of the red supergiant star, it strips off the envelope
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Figure 7.6: Video figure (viewable online). Video shows a 3D rendering of the logarithm
of gas density ([g/cm3]) for material near the core of the primary (the domain is of the
video here is x ≈ 10R� on a side) during the neutron star’s inspiral for the (900R�,
vi = vintegrator) run. Shells correspond to different density isosurfaces; white is highest
density, dark purple is lowest density. Video shows that the neutron star significantly
disturbs the density structure of the envelope as it orbits and “stalls” at a final orbital
separation, but that the core of the star remains largely undisturbed. Position of the
neutron star is indicated by the red ‘+’, or ‘→’ if it is outside the domain. Videos also
available at https://youtube.com/channel/UCShahcfGrj5dOZTTrOEqSOA.
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Figure 7.8: Video figure (viewable online). Video shows a 3D rendering of the ratio
of velocity magnitude to local escape velocity for the full domain for the (900R�, vi =
vintegrator) run. Blue isosurface is at |v|/vesc,local = 1, pink-red is < 1, green-yellow is
> 1. Position of the neutron star is indicated by the white ‘+’. Videos also available at
https://youtube.com/channel/UCShahcfGrj5dOZTTrOEqSOA.

material outside its orbit, unbinding it and shocking this material to velocities in excess

of 6vesc,local. These large velocities are an indication of how efficiently the orbital energy

of the neutron star is transferred to the energy of the envelope.

The animated video Figure 7.9 shows a 3D rendering of the sum of the specific

kinetic and potential energy as a function of time. There is a blue isosurface at ε = 0,

pink-purple corresponds to bound material (ε < 0), and yellow corresponds to unbound

material (ε > 0). As in Figure 7.8, the envelope gains more energy with each orbital
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Figure 7.9: Video figure (viewable online). Video shows a 3D rendering of the sum of
specific kinetic and potential energy for the full domain for the (900R�, vi = vintegrator)
run. Blue isosurface at ε = 0, pink-purple corresponds to bound (ε < 0) and yellow cor-
responds to unbound (ε > 0). Position of the neutron star is indicated by the white ‘+’.
Videos also available at https://youtube.com/channel/UCShahcfGrj5dOZTTrOEqSOA.

passage of the neutron star and becomes progressively more unbound (the colors become

a brighter yellow with time).

7.7 Hydrogen recombination transient

Here we outline the details of our estimate of the properties of the hydrogen

recombination transient from the ejected hydrogen envelope (see §7.3). We use Eqns.
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(A1), (A2), and (A3) of MacLeod et al. (2017b), based on Ivanova et al. (2013a)’s ap-

plication of the analytic theory of recombination transients (e.g., Popov 1993; Kasen &

Woosley 2009; Kasen & Ramirez-Ruiz 2010) to estimate the luminosity, timescale, and

total energy of the hydrogen recombination transient predicted by our 3D hydrodynam-

ics simulations:

Lp ≈ 4.2× 1037 erg s−1

(
Rinit

10R�

)2/3( ∆M

0.1M�

)1/3( vej

100 km s−1

)5/3

×
(

κ

0.32 cm2 g−1

)−1/3( Trec

4500 K

)4/3

, (7.4)

tp ≈ 42 d

(
Rinit

10R�

)1/6( ∆M

0.1M�

)1/3( vej

100 km s−1

)−1/3

×
(

κ

0.32 cm2 g−1

)1/6( Trec

4500 K

)−2/3

, (7.5)

Erad,p ≈ 1.5× 1044erg

(
Rinit

10R�

)5/6( ∆M

0.1M�

)2/3( vej

100 km s−1

)4/3

×
(

κ

0.32 cm2 g−1

)−1/6( Trec

4500 K

)2/3

. (7.6)

Using Rinit ≈ 2R� (approximate stalling orbital separation of the secondary across our

models), ∆M ≈ 5M� (the entire mass of the envelope), vej ≈ 18 km/s (the velocity

at 10R� at the end of our simulation), κ ≈ 0.32 cm2 g, and Trec ≈ 4500 K, we find

Lp ≈ 1037 erg s−1, tp ≈ 274 d, and Erad,p ≈ 2× 1044 erg.
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7.8 MESA profiles

Here we provide more detail on the 1D stellar models (the initial conditions

for the 3D hydrodynamics) built in MESA. Our primary is constructed using the setup

of Götberg et al. (2018), but for a single star. The top row of Figure 7.10 shows

density profiles (vs. radius and mass coordinate) for the three models we simulate in

3D hydrodynamics. The bottom left panel shows the mass enclosed vs. radius. We

also compare to the primary from the 1D MESA study of CE ejection of Fragos et al.

(2019), which was 12M� and ≈500R�. The density profiles are all very similar, being

highly centrally concentrated with a core of ≈ 5M� sequestered at . 1R�. The greatest

difference is in the inner 0.1R�, where the least centrally concentrated model (750R�)

has a central density of ρc ≈ 103 g/cm3 and the most centrally concentrated model

(1080R�) has a central density of ρc ≈ 106 g/cm3. The density drops from a central

value of ρc ≈ 103–106 g/cm3 to ρ . 10−5 g/cm 3 by R = 10R�.

The bottom right panel of Figure 7.10 shows the 1D composition profiles for

hydrogen, helium, carbon, and nitrogen at the beginning of the simulation (thus, they

are identical to the MESA composition profiles) for the 900R� star. See Figure 7.5 for

3D renderings of the chemical abundance of the system as a function of time. Note

that the abrupt changes in composition are a result of the well-defined compositional

layering from the MESA model (this is mapped exactly into FLASH, thus this is the

same as the MESA composition profile).
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Figure 7.10: Top: MESA density profiles vs. radius and mass coordinate for the three
models that we simulate in 3D hydrodynamics (see Figure 7.1) and for the primary from
Fragos et al. (2019). Bottom left: enclosed mass vs. radius. Bottom right: initial 1D
composition profiles of hydrogen, helium, carbon, and nitrogen for the 900R� star.
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7.9 Adjusted 1D energy formalism

Here we provide more detailed results of our 1D energy formalism (method

discussed in §7.2.2). Figure 7.11 shows binding and orbital energies vs. radius and

mass for the three models from that we simulate in 3D hydrodynamics (see Figures 7.1,

7.10). In the 1st row we compare gravitational binding energy Egrav between all three

models. In other rows we show detailed results for each model including binding energy

from the standard α formalism (Egrav), the Bondi radius adjusted formalism (Egrav,Ra),

the Roche radius adjusted formalism (Egrav,RRoche
), and the change in orbital energy

(∆Eorb). In general, we see that the binding energy profiles, similar to the density

profiles (Figure 7.10), are also highly centrally concentrated and that < 0.1% of the

binding energy is at radii larger than 10R�. The different calculated energies (for the

standard α formalism and for the r−Ra and r−RRoche adjusted formalism) are used to

determine the predicted envelope ranges in the 1D energy formalism (see Section 7.2.2).
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Figure 7.11: Absolute value of binding and orbital energies vs. radius and mass for
the three models we simulate in 3D hydrodynamics (see Figure 7.1). Top: comparison
of the binding energy Egrav between all three models. Other rows: detailed results for
each model, including binding energies from the standard α formalism (Egrav), the Bondi
radius adjusted formalism (Egrav,Ra), the Roche radius adjusted formalism (Egrav,RRoche

),
and the change in orbital energy (∆Eorb). Vertical line indicates radius of the core
(defined by he core mass attribute in MESA).
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7.10 Forbidden donor radii

The star cannot fill its Roche lobe at an arbitrary moment in its evolution;

it needs to have a size large enough such that it would not have filled its Roche lobe

before. Simply including stellar ages where the stars radius exceeds any earlier radius it

had is not sufficient, as the orbit is changing as well due to wind mass loss and possibly

tidal interactions.

A standard assumption is to think about the orbital changes in the Jeans mode

approximation, where the orbital change is a very simple function of the mass loss. It

relies on the assumption that (i) mass loss is steady (i.e., in a smooth wind, not a

sudden supernova explosion) and (ii) it is lost with a velocity that is high compared

to the orbital velocities (such that, e.g., it cannot have any tidal interaction with the

system) and (iii) it is lost from the vicinity of the mass-losing star in a spherically

symmetric fashion in the reference frame of the mass-losing star.

This gives the following simple analytical result that a×(M1+M2) = constant.

In this work, this means that any time t the separation a(t) is the following function of

the masses and initial parameters:

a(t) = a(t = 0)× Md(t = 0) +MNS

Md(t) +MNS
(7.7)

We calculate the size of the Roche radius of a system with an initial separation

of a = 1301R�—this is the initial separation of the widest system to fill its Roche lobe

on the first ascent. The system widens with time due to the Jeans mode mass loss. A

system with an initial separation slightly larger than a = 1301R� would fill its Roche
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lobe on the second ascent. But because of mass loss, the system will have widened in

the meantime and the star needs to be R? = 900R� or larger. The star can thus not

fill its Roche lobe for ages between t(R = 757R�) and t(R = 900R�), between the first

peak and the second rise (see Figure 7.1).

In practice this means that the stellar models available to us in this work are:

(a) stars that fill their Roche lobe on the first ascent, that is with radius smaller than

757R�, and (b) stars that fill their Roche lobe on the second ascent, provided their

radius is larger than 900R�. In other words, we avoid using models with “forbidden

radii” (radii between 757–900R�).

7.11 Merger time distribution

In order to estimate the merger time distributions of these binary neutron star

systems, we take a linear distribution in separations before the supernova (SN) from

1.1–2.8R�. We then take each separation and run 1000 randomly oriented kicks. We

sample kick magnitudes from a Maxwellian distribution with a 1D RMS σ = 265 km/s

(following Hobbs et al. 2005)35 and the final mass of the new neutron star after the SN

is 1.4M�. To calculate the post-SN orbit we use Eqns. (7) and (8) of Andrews & Zezas

(2019) and to calculate the merger times of these post-SN orbits we use Peters (1964).

Figure 7.12 shows the merger time distribution of the two resulting neutron stars using

this procedure.

The fraction of bound binaries after the SN is ≈38%. Of the binaries that

35This is likely an overestimate, as in a study of Galactic binary neutron stars, Beniamini & Piran
(2019) find that a majority had a kick velocity much lower than those of standard pulsars (i.e., the
distribution of Hobbs et al. 2005), with vkick . 30 km/s.
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Figure 7.12: Merger time distribution of the two resulting neutron stars for supernova
kick velocities drawn from a Maxwellian distribution with a 1D RMS σ = 265 km/s
(following Hobbs et al. 2005). Dashed line indicates the age of the Universe.

remain bound after the SN, ≈79% will merge within a Hubble time.36 We caution the

reader that after envelope ejection we expect a stable mass transfer phase (case BB) to

occur that will likely tighten the binary (see, e.g., Tauris et al. 2017; Dewi et al. 2002;

Vigna-Gómez et al. 2020). As such, this calculation should be taken as a robust upper

limit for the merger timescale.

36This is likely a conservative estimate, as in a delay time distribution study of Galactic binary neutron
stars, Beniamini & Piran (2019) find that & 40% of BNSs have merger times less than 1 Gyr.
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7.12 Numerical convergence

Here we present a brief numerical convergence study of the effect of numer-

ical diffusion on the simulation results. The 1st row of Figure 7.13 shows trajec-

tories and orbital separation vs. time for two different resolution criteria for the

(900R�, vi = vintegrator) run. We use the same refinement criteria but two different

box sizes: ∆Xmax = (100R�, 40R�), translating to a factor of 2.5X increase in linear

resolution between the two simulations. The secondary does not inspiral as deeply for

the higher resolution run. The higher resolution run stalls and attains a final orbital

separation of af ≈ 3.1R�, while the lower resolution run attains a final orbital separation

of af ≈ 2.8R�.

The 2nd row of Figure 7.13 shows the density profile along one direction in

the orbital plane (other directions are similar) at a few different times throughout the

simulation for the same two runs. For reference, the relaxation process is trelax ≈

100tdyn,core ≈ 6 hr. After relaxation onto the grid, the central density decreases by a

factor of ≈ 5. The lower resolution run (∆Xmax = 100R�) shows lower core densities

at radii of (r < 1R�) and higher densities at radii of r > 1R�, especially at later times,

whereas the higher resolution run conserves its density profile to late times. This mass

leakage from the core in the lower resolution run leads to a higher envelope density and

thus a higher drag force (as Fdrag ∝ ρ) for the lower resolution run. This likely explains

its slightly deeper inspiral.

The 3rd row of Figure 7.13 shows mass enclosed vs. time at several radii for

the same two runs. The ∆Xmax = 40R� run conserves the inner mass shells much
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better than the ∆Xmax = 100R� run. However, for both runs, while the innermost

core expands and the mass spreads to somewhat larger radii, this has no effect on the

secondary’s orbit as the orbital separation is always at least r & 1R�, whereas the mass

is redistributed within r . 0.5R�.

Figure 7.14 shows the clearing of material interior to the neutron star’s orbit

and exterior to the Roche radius of the core, which is necessary to successfully “park”

the neutron star to a final orbital separation. The left panel shows mass enclosed

as a function of time in a (time-evolving) annulus from the Roche radius of the core

(RRoche,core ≈ 1.3R�) to the radius of the neutron star’s orbit (rsec). The mass inside

this annulus is initially ≈0.045M�; this mass is successfully ejected. The initial rise

and decline are due to mass leakage from the core and subsequent mass leakage from

this annulus (see also Figure 7.13). The oscillatory “bumps” in the mass enclosed are

a result of the shock produced by the neutron star’s orbit, which successively ejects a

mass >0.45M� from this region; compare to the “bumps” in the orbital separation as a

function of time (Figure 7.3). The right panel shows mass enclosed inside three different

radial locations: total mass inside the box, mass inside the radius of the neutron star’s

orbit, mass inside the Roche radius of the core. While there is mass leakage from the

box at late times (see also Figure 7.13), mass is successfully ejected from the annulus

interior to the neutron star’s orbit and exterior to the Roche radius of the core.
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Figure 7.13: Numerical convergence study. 1st row: orbital separation vs. time for the
(900R�, vi = vintegrator) run, with box size ∆Xmax = 100R� (black) and ∆Xmax = 40R�
(red, 2.5X linear resolution of other simulation) on a side. Green and blue ‘X’s mark
the time at which the envelope is ejected for the black and red lines respectively (see
Figure 7.4). 2nd row: density profile along one direction in FLASH as a function of
time. Left panel is the ∆Xmax = 40R� run and right panel is the ∆Xmax = 100R� run.
3rd row: mass enclosed vs. time at several radii as a function of time.
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Chapter 8

Obstacles to Constructing de

Sitter Space in String Theory

Abstract

There have been many attempts to construct de Sitter space-times in string

theory. While arguably there have been some successes, this has proven challenging,

leading to the de Sitter swampland conjecture: quantum theories of gravity do not

admit stable or metastable de Sitter space. Here we explain that, within controlled

approximations, one lacks the tools to construct de Sitter space in string theory. Such

approximations would require the existence of a set of (arbitrarily) small parameters,

subject to severe constraints. But beyond this one also needs an understanding of

big-bang and big-crunch singularities that is not currently accessible to standard ap-

proximations in string theory. The existence or non-existence of metastable de Sitter
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space in string theory remains a matter of conjecture.

8.1 Introduction: The de Sitter Swampland Conjecture

The observable universe appears to have emerged from a period of high cur-

vature. Almost certainly, if we run the clock backwards, we encounter a period where

classical general relativity does not apply. Remarkably, while string theory has provided

tools to think about many questions in quantum gravity, cosmologies resembling our

own remain inaccessible to controlled approximations in the theory. Conceivably the

observed big bang is not described by a quantum theory of gravity or requires some still

larger structure, but it would seem more likely that this simply represents a failure of

our present collection of theoretical tools.

Strong evidence from supernovae (Perlmutter et al. 1999), CMB (Aghanim

et al. 2018), and Large Scale Structure observations (Percival et al. 2010) suggest that

our universe has entered a stage of exponential expansion, well-described as a de Sitter

solution of Einstein’s equations. At a time shortly after the big bang, there is good

reason to think that the universe also went through a period of exponential expansion

(Guth 1987; Starobinsky 1987; Linde 1982; Albrecht & Steinhardt 1987). So de Sitter

space seems likely to play an important role in any understanding of our present and

past universe. The inflationary period lasted only for a brief moment; our limited

understanding of how de Sitter space might arise in string theory would suggest that

even our present de Sitter universe is metastable.

The notion of a cosmic landscape introduces another role for spaces of positive
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cosmological constant (c.c.). In particular, such a landscape might allow a realization of

anthropic selection of the c.c. (Weinberg 1989), but would seem to require the existence

of a vast set of metastable, positive c.c. vacua.

Given these considerations, the conjecture of Obied et al. (2018) that metastable

de Sitter space lies in the swampland of quantum gravity theories is particularly inter-

esting, with possible implications for inflation, the nature of the currently observed dark

energy, and implementing the anthropic explanation of the c.c. We will not address the

conjecture in its full generality, but we will examine the starting point. Obied et al.

(2018) begin with the observation that it has proven difficult to construct de Sitter

space in string theory. While there are constructions that appear to achieve a positive

cosmological stationary point in a suitable effective action (Andriot 2019a,b), it is not

clear that they are in any sense generic.

But one should first ask: what would it mean to construct de Sitter space

in string theory? In most constructions, one starts with some classical solution of the

equations of critical string theory. These solutions invariably have moduli or pseudo-

moduli. Then one adds features, such as fluxes, branes, and orientifold planes which

give rise to a potential for these moduli, and looks for a local minimum with positive

four-dimensional c.c. These attempts to construct de Sitter space generally raise two

questions. First, what is the approximation scheme that might justify any such con-

struction? Second, any would-be de Sitter space found in this way is necessarily, at

best, metastable: inevitably there is a lower energy density in asymptotic regions of

the original moduli space. Quantum mechanically, the purported de Sitter state cannot
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be eternal. It has a history; it will decay in the future and must have been created by

some mechanism in the past. The quantum mechanics of this process is challenging to

pin down. In this paper, we will see that already classically, the notion of an eternal

de Sitter space in string theory is problematic; small perturbations near the de Sitter

stationary point of the effective action evolve to singular cosmologies.

In more detail, there are at least two challenges to any search for metastable

de Sitter space in string theory:

1. One requires a small parameter(s) allowing a controlled approximation to finding

stationary points of an effective action. Here one runs into the problem described

in Dine & Seiberg (1985). Without introducing additional, fixed parameters (i.e.,

introducing parameters not determined by moduli), would-be stationary points

in the potential for the moduli lie at strong coupling. Typically, attacks on this

problem (and the question of de Sitter space) exploit large fluxes37. If there

is to be a systematic approximation, it is necessary that the string coupling be

small and compactification radii large at any would-be stationary point found in

this way. If the strategy is to obtain inverse couplings and radii scaled by some

power of fluxes, it is also important that these fluxes (and possibly other discrete

parameters) can be taken arbitrarily large, without spoiling the effective action

treatment. Even allowing uncritically for this latter possibility, we will see that

it is quite challenging to realize arbitrarily weak string coupling and large radius,

with positive or negative c.c.38

37The KKLT (Kachru et al. 2003) constructions are, in some sense, an exception, which we will discuss
later.

38This point has been noted earlier (Junghans 2019; Cribiori & Junghans 2019; Banlaki et al. 2019).
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2. If one finds such a stationary point, one must ask about stability. More precisely,

in string theory, we are used to searching for suitable background geometries

and field configurations by requiring that the evolution of excitations about these

configurations is described by a unitary S matrix. Classically, at least in a flat

background, this is the statement that any initial perturbation of the system has

a sensible evolution to some final perturbation. Again, we will see that this re-

quirement is problematic for any would-be classical de Sitter stationary point in

such a theory; even if all eigenvalues of the mass-squared matrix (small fluctua-

tion operator) are positive, large classes of small perturbations evolve to singular

geometries.

The problem of evolution of small perturbations is connected with the prop-

erties of the moduli of string compactifications, described above. We consider, in par-

ticular, disturbances of the moduli fields in a classical, eternal de Sitter space. We will

see in this paper that some small fluctuations in the far past are amplified, rolling over

the barrier to a contracting universe that culminates in a big crunch singularity. As a

result, already classically, there is no notion of an S matrix (in the sense of describing

the future of any small disturbance of the system), even restricted to very small per-

turbations localized near the metastable minimum of the potential. Within our current

collection of calculational tools, we lack any framework in string theory to study such

singularities. As a result, we will explain, the problem of constructing de Sitter space

in string theory is not, at least at present, accessible to systematic analysis.

Overall, then, we will argue that we lack theoretical methods to address, in any

A broad critique, applicable to many non-perturbative scenarios, has been put forward in Sethi (2018).
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systematic fashion, the problem of constructing de Sitter space in string theory, much

as we lack the tools to understand big bang or big crunch singularities in any controlled

approximation. The existence of metastable de Sitter states may be plausible or not,

but it is a matter of speculation.39 The failure to find such states in any controlled

analysis appears, at least at present, inevitable.

8.2 The S Matrix and Classical Field Evolution

Much of our focus will be on the evolution of classical perturbations in metastable

de Sitter space. We will argue that many of these perturbations evolve towards a big

crunch singularity, and that this is outside of the scope of current methods in string

theory/quantum gravity. In critical string theory, the object of interest is the S matrix.

A classical solution of the string equations corresponds to a space-time for which one

can define a sensible scattering matrix. The connection to classical scattering, in field

theory and string theory, arises from considering the evolution of small disturbances.

These correspond to initial and final isolated, localized states, with large occupation

numbers. These can be considered as coherent states. For a single real scalar field, for

example, one can develop a classical perturbation theory. Start, at lowest order, with a

39Grimm et al. (2020) gives non-perturbative arguments for the absence of de Sitter vacua in controlled
approximations. Various scenarios for how de Sitter might arise, and how this might be understood,
even lacking a systematic approximation, have been put forward. Among many examples, Garg &
Krishnan (2019) and Garg et al. (2019) argue for a more refined version, based on explicit constructions;
Heckman et al. (2019a,b) consider F-theory compactifications and associated prospects. Geng (2020)
proposes another way in which de Sitter might arise. March-Russell & Petrossian-Byrne (2020) takes
a phenomenological view of the problem. An alternative discussion of de Sitter space in flux vacua
appears in Sethi (2018), who argues against flux stabilization on rather general grounds. Cicoli et al.
(2019) takes an optimistic view of the prospects for such constructions and Cicoli et al. (2012, 2014,
2016) put forth several scenarios.
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field configuration of the form

φ(x) = φ~p1(x) + φ~p2(x) + φ~k1(x) + φ~k2(x) (8.1)

where each term represents a localized wave packet with mean momentum ~ki. Mo-

mentum conservation requires ~p1 + ~p2 = ~k1 + ~k2 within the momentum uncertainty,

and non-trivial scattering requires that the wave packets all overlap at a point in space-

time. Quantum mechanically, the scattering problem we have outlined here corresponds

to some large number of particles of each momentum in both the initial and final states.

Making a decomposition into positive and negative frequency components:

φ(x) = φ+(x) + φ−(x)→


φ+(x)|Φ〉 = Φ(x)|Φ〉

〈Φ|φ−(x) = 〈Φ|Φ∗(x)

. (8.2)

In momentum space, Φ±(~k)ei
~k·~x∓iωt corresponds to the positive and negative frequency

components. Reality requires Φ±(~k) = Φ±∗(−~k). Occupation numbers scale as |Φ±(~k)|.

Order by order in the interaction, λφ4, we can compute corrections to the

classical scattering,

δφ(x) = δφ~p1(x) + δφ~p2(x) + δφ~k1(x) + δφ~k2(x). (8.3)

Evaluated at the interaction point, δφ defines an S matrix (more precisely a T matrix)

on the space of coherent states. This can be decomposed as an S matrix on states

of definite particle number; the classical approximation is valid when the occupation
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numbers are large.

Phrased this way, the statement that one can construct an S matrix for large

occupation numbers in initial and final states is the statement that one has sensible

evolution from any initial classical configuration (described by ~p1, ~p2) to any final con-

figuration (~k1,~k2).

In the case of de Sitter space, the question of the existence of an S matrix

is subtle (Marolf et al. 2013). We will focus, instead, on what we view as a minimal

requirement that all classical perturbations in a would-be metastable de Sitter vacuum

have a sensible evolution arbitrarily far into the future. We will see that some subset of

possible perturbations evolve to singular geometries, over which we have no theoretical

control. We argue that this means that one does not have a controlled construction of

such spaces. The existence, or not, of such metastable de Sitter spaces then becomes a

matter of conjecture.

8.3 Searching for Stationary Points of an Effective Action

We first explore some of the challenges to the construction of stationary points

of the effective action with positive c.c. Typically, these efforts involve the introduction

of branes, orientifold planes, and fluxes (Andriot 2019a). One searches for particular

stationary points of the action with positive cosmological constant, and asks whether

the string coupling is small and the compactification radii large at these points (Andriot

et al. 2020a,b). This, by itself, does not address the question of whether there is a sys-

tematic approximation. The system with branes and fluxes is not a small perturbation
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of the system without, and the range of validity of the expansion in one is not related to

that of the other. If there is to be a systematic approximation of any sort, one requires

a sequence of such stationary points as one increases the flux numbers; the would-be

small parameters are the inverse of some large flux numbers. In our discussion we will

assume that it makes sense to take such numbers arbitrarily large. Then the goal is to

find stable, stationary points of the action where

1. The string coupling is small.

2. All compactification radii are large.

3. The cosmological constant is small and positive.

As reviewed in Andriot (2019b), satisfying this set of constraints is challenging. We

review some of the issues in this section. Similar analyses, with similar conclusions,

have appeared in Junghans (2019), Cribiori & Junghans (2019), and Banlaki et al.

(2019). Our point of view is that this is not surprising. Searches at weak coupling were

not likely to yield non-supersymmetric metastable vacua, dS or AdS, and provide little

information about the existence or non-existence of such states. For the dS case, it is

hard to see how such states could be understood without a much broader understanding

of their cosmology, as we will discuss subsequently.

We follow Andriot (2019a) in studying type II theories in the presence of an

Op plane, and a background geometry with metric

ds2 = gµνdx
µdxν + ρ g0

IJ dy
IdyJ . (8.4)
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Here g0
IJ represents a background reference metric for the compactified dimensions. gµν

represents the metric of four dimensional space-time, which we hope to be de Sitter.

Andriot (2019a) distinguishes directions parallel and perpendicular to the orientifold

plane with an additional modulus σ; for simplicity, we assume σ ∼ 1; this assumption

can be relaxed without severe difficulty. We ignore other light moduli as well. We also

include NS-NS 3-form and R-R q-form fluxes, H
(n)
IJK , F

(n)
q .

The fluxes will be understood as taking discrete, quantized values. The de-

pendence of terms on the moduli ρ and τ = ρ3/2 e−φ is given in Andriot (2019a), and

is readily understood from the following considerations:

1. In the NS-NS sector, there is a factor 1/g2 = e−2φ in front of the action. The

four-dimensional Einstein term has a coefficient τ2 = ρ3/g2. This can be brought

to canonical form by the Weyl rescaling, gµν → gµντ
−2. The moduli τ and ρ will

be our focus.

2. Again in the NS-NS sector, terms involving the three-index tensor, before rescal-

ing, contain a factor τρ−3; after the Weyl rescaling, they acquire an additional

factor of τ−3 in front. Terms involving the six-dimensional curvature similarly

scale as ρ−1τ−3.

3. In the RR sector, the flux terms have, before rescaling, no factors of 1/g. They

have various factors of ρ depending on the rank of the tensor. The Weyl rescaling

introduces a factor of τ−4.
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The resulting action is (Andriot 2019a):

V = −τ−2

(
ρ−1R6(σ)− 1

2
ρ−3

∑
n

σ6n−3(p−3)
∣∣∣H(n)

∣∣∣2)− τ−3ρ
p−6
2 σ

(p−3)(p−9)
2

T10

p+ 1

+
1

2

τ−4
4∑
q=0

ρ3−q∑
n

σ6n−q(p−3)
∣∣∣F (n)
q

∣∣∣2 +
1

2
τ−4ρ−2

∑
n

σ6n−5(p−3)
∣∣∣F (n)

5

∣∣∣2
 .

(8.5)

Again, we will ignore the index (n) in what follows and set σ = 1. To illustrate the

issues, we will consider large F2 and F4. These fluxes satisfy, with H3 = 0, Bianchi

identities, with a source for F4. These equations can be satisfied with large fluxes

through two and four cycles.

For 3 ≤ p ≤ 7 and choosing T10 = 1, R6 ∼ 1, we can drop the T10 term

because the R6 term will dominate. We can attempt to find large τ and ρ by turning

on F2 = n2 and F4 = n4 (other combinations of fluxes give similar results). Then one

has the relevant terms:

−τ−2ρ−1R6 +
1

2
τ−4

(
n2

2ρ+ n2
4ρ
−1
)
. (8.6)

Differentiating with respect to ρ and τ , for n4 � n2 � 1, one has then

ρ−2R6 +
1

2
τ−2

(
n2

2 − n2
4ρ
−2
)

= 0 (8.7)
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and

ρ−1R6 − τ−2
(
n2

2ρ+ n2
4ρ
−1
)

= 0. (8.8)

We get a solution of the form:

ρ2 = −1

3

(
n4

n2

)2

; τ2 =
2

3

n2
4

R6
. (8.9)

Negative ρ2 is not acceptable. But even if somehow ρ2 had been positive, we would

have had:

g2 =
ρ3

τ2
∝ R6

(
n4

n3
2

)
; (8.10)

so the string coupling would not have been weak. The other terms we have neglected

are suppressed at this point. For example, the term proportional to T10ρ
−3/2τ−3 is

suppressed by (n2/n4)2.

For p = 8, which corresponds to the T10 term dominating, turning on, again,

n4 and n2, one finds that ρ2 = −7n2
4/n

2
2, which is also negative. Parameterically, one

now has g2 ∝ n3
4/n

7
2, so again, even if one ignored signs, this regime would give large ρ

and τ but also large g.

An interesting case is provided by p = 8 with n0 and n2 non-zero. In this case,

one finds that

ρ2 =
1

5

n2
2

n2
0

; τ =
8

5
n2

2 (8.11)

306



so one requires n2 � n0. Both quantities are now positive, but the cosmological con-

stant, consistent with expectations of Andriot (2019a), is negative, corresponding to

AdS space. Setting this aside, one has that

g2
s ∝

1

n2
2

(8.12)

so the string coupling is small. But this is not good enough. If one considers higher

derivative terms in the effective action at tree level (α′ expansion) these are not sup-

pressed. Writing the action in ten dimensions, the terms (written schematically)

∫
d4xd6y

√
g4
√
g6

(
FIJF

IJ +
(
FIJF

IJ
)2)

(8.13)

are both of the same order in the large flux, n2
2, due to the two extra factors of ρ−2

coming from the two extra powers of inverse metric in the second term. For all values

of p, if we just consider the H and Fq terms, ∂V/∂τ = 0 gives negative ρ2.

In other cases, one finds these and other pathologies—AdS rather than dS

stationary points and instabilities. Searches involving broader sets of moduli (Andriot

et al. 2020a,b) seem to allow at best a few isolated regions of parameter space where such

solutions might exist. Whether these might exhibit a sensible perturbation expansion

is currently an open question, but our results above suggest that the combination is a

tall order. So, even with the large freedom in flux choices we have granted ourselves,

metastable de Sitter stationary points would appear far from generic in regimes where

couplings are small and compactification radii are large.
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8.4 Expectations for Evolution of Perturbations in de Sit-

ter Space

String theory has had many dramatic successes in understanding issues in

quantum gravity. But one severe limitation is its inability, to date, to describe cosmolo-

gies resembling our own, which appear to emerge from a big bang singularity or evolve

to a big crunch singularity. This could reflect some fundamental limitation; more likely,

it reflects the inadequacy of our present theoretical tools to deal with situations of high

curvature and strong coupling. For example, consider a pseudomoduli space where the

potential falls to zero for large fields in the positive direction. If one starts the system

in the far past with expanding boundary conditions, then further in the past there is

a big bang singularity; if one starts with contracting boundary conditions, there is a

big crunch in the future (Banks & Dine 2001). These high curvature/strong coupling

regions are inevitable, despite the system being seemingly weakly coupled through much

of this history. It is possible that in any string cosmology, there need not be an actual

curvature singularity, but the growth of the curvature means that the system enters a

regime where any conventional sort of effective action or conventional weak coupling

string description breaks down. It seems hard to avoid the conclusion that there is such

a singularity (regime of high curvature) in the past or future of cosmological solutions

on a moduli space. These problems might be avoided in some more complete treatment

of the problem within the framework of a single cosmology, or perhaps something else,

such as eternal inflation in a multiverse, is needed. In any case, the problem is beyond

our present theoretical reach.
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Our question, in this section, is: are things better for metastable de Sitter space-

times? In particular, in efforts to construct de Sitter space-times in string theory, the

strategy is to search some effective action for a positive c.c. stationary point, separated

by a finite potential barrier from a region in field space where, asymptotically, the

potential tends to zero. If we start the system at the local minimum of the potential,

classically, it will stay there eternally. But how do small fluctuations evolve? Might

there be small disturbances that drive the field to explore the region on the other side

of the barrier, exhibiting the pathologies of the system on pseudomoduli spaces of Banks

& Dine (2001)?

In one presentation of de Sitter space (which covers all of the space):

ds2 = −dτ2 + cosh2(Hτ)
[
dχ2 + sin2 χdΩ2

2

]
. (8.14)

A homogeneous scalar field in this space, φ(τ), obeys

φ̈+ 3H
sinh(Hτ)

cosh(Hτ)
φ̇+ V ′(φ) = 0. (8.15)

The equation is slightly more complicated if φ depends on r as well.

The metric of equation 8.14 respects an SO(4, 1) symmetry, as well as a Z2 that

reverses the sign of τ . Suppose, first, the potential for φ rises in all directions about

a minimum (taken at φ = 0 for simplicity). For large positive τ , any perturbation

of φ about a local minimum damps; for large negative τ , the motion is amplified as τ

increases (it damps out in the past). Correspondingly, in the far past and the far future,
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the field approaches the local minimum (to permit a perturbative discussion, we must

require that the maximum value of the disturbance at all times is small). Starting in the

far past, we can think in terms of a localized disturbance in space (e.g., due to a source

localized in space time) and study the Fourier transformed field. If the disturbance

has some characteristic momentum k, this momentum will blueshift exponentially as

τ → 0, and the amplitude will grow. For τ > 0, the distribution will damp and redshift

to longer wavelengths.

If the perturbation has scale smaller than H−1 (and in particular if the Hubble

constant is small compared to the curvature of the potential), then the space-time

near the disturbance is approximately flat, and, assuming rotational invariance, the

disturbance breaks SO(3, 1) × translations to SO(3). In terms of the full symmetry

of de Sitter space, the perturbation breaks SO(4, 1) to SO(3). To summarize, any

approximately homogeneous disturbance in eternal de Sitter corresponds to a solution

that grows in the far past and decreases in the future. One can define past and future

relative to the point where the scalar field is a maximum. The location of this point

breaks much of the continuous symmetry of de Sitter space but leaves SO(3) × Z2,

where the Z2 represents time reversal about the point where the amplitude of the

field oscillation is a maximum. The maximum of the field, indeed, provides a natural

definition of the origin of time. At this point, the time derivative of the field vanishes.

Now for a potential that has a local minimum with positive energy density,

and that falls to zero for large |φ|, we might expect that if we create a small, localized

perturbation at some (r0, τ0) this perturbation will damp out if τ0 � 0. But if τ0 � 0,

310



the perturbation will grow, possibly crossing over the barrier while τ � 0. In this case,

the emergent universe on the other side of the barrier is contracting, and we might

expect the system to run off towards φ =∞, until the universe undergoes gravitational

collapse. If this is the case, then the Z2 symmetry might be said to be spontaneously

broken; one has a pair of classical solutions, one with a singularity in the past, one in

the future, related by the Z2 symmetry.

Before establishing this fact, it is helpful to review some aspects of the Coleman-

De Luccia (CDL) bounce from this perspective (Coleman & De Luccia 1980).

8.4.1 The Coleman-De Luccia bounce as a solution of the field equa-

tions with Minkowski signature

We are interested in disturbances which lead to motion over a barrier, rather

than tunneling. We might expect, however, that once the system passes over the barrier,

its subsequent evolution is not particularly sensitive to whether it passed over the barrier

or tunneled through it. In the case of a thin-wall bubble, before including gravity, at

large times, the bubble wall becomes relativistic, and the bubble radius is of order t,

so one expects that the bubble energy is proportional to t3, dwarfing any difference in

the energy of order the barrier height at the time of bubble formation. The same is

true for a thick-walled bounce connecting two local minima of some potential. In other

words, at large time, at least for very small GN , we might expect the solution to be a

small perturbation of the bounce solution of Coleman (1977) and Coleman & De Luccia

(1980), which we will review briefly.
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8.4.2 Tunneling with GN = 0

Consider, first, the bounce solution without gravity. We consider a potential,

V (φ), with local minima at φtrue, φfalse, where V (φfalse) > V (φtrue). Starting with the

field equations,

�Φ + V ′(φ) = 0, (8.16)

for points that are space-like separated from the origin (the center of the bubble at the

moment of its appearance), we introduce ξ2 = r2 − t2, in terms of which

d2φ

dξ2
+

3

ξ

dφ

dξ
− V ′(φ) = 0. (8.17)

This is the Euclidean equation for the bounce.

For points that are time-like separated, calling τ2 = t2 − r2,

d2φ

dτ2
+

3

τ

dφ

dτ
+ V ′(φ) = 0. (8.18)

These equations are related by ξ = iτ .

On the light cone, ξ = τ = 0, we have dφ/dτ = dφ/dξ = 0, and we have to

match φ(0) = φ0. In the tunneling problem (Coleman 1977), φ0 is determined by the

requirement that φ→ φfalse as ξ →∞; this can be thought of as a requirement of finite

energy relative to the configuration where φ = φfalse everywhere.

Independent of the quantum mechanical tunneling problem, the bounce is a
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solution of the source-free field equations for all time (positive and negative) and ev-

erywhere in space. In the time-like region, the solution for negative time is identical

to that for positive time. Translation invariance is broken, but SO(3, 1) invariance and

the Z2 invariance are preserved.

8.4.3 Classical perturbations of the false vacuum with GN = 0

Without gravity, we might consider starting the system in the false vacuum

and giving it a “kick” so that, in a localized region, the system passes over the barrier.

On the other side, the system looks like a bubble, but not of the critical size. We might

expect that the evolution of the bubble, on macroscopic timescales, is not sensitive to

the detailed, microscopic initial conditions. For a thin-walled bubble, for example, we

can think of configurations, as in Coleman (1977), where at time t = 0, one has a bubble

of radius R0, inside of which one has true vacuum, outside false vacuum, and a transition

region described by the kink solution of the one dimensional field theory problem with

nearly degenerate minima. Take the case of a single real field, φ, with potential:

V (φ) = −1

2
µ2φ2 +

1

4
λφ4 + εφ+ V0.

For small ε, the minima of the potential lie at

φ± ≈ ±
√
µ2

λ
. (8.19)
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We can define our bubble configuration, with radius R large compared µ−1, as the kink

solution of the one dimensional problem,

φB(r;R) =
φ+ − φ−

2
tanh

(
µ(r −R)√

2

)
+
φ+ + φ−

2
. (8.20)

For our problem, we want to treat R→ R(t) as a dynamical variable. If R0(t) is slowly

varying in time (compared to µ−1), then we can write an action for R,

S =

∫
dt

∫
r2drdΩ

(
1

2
(∂tφB(r;R(t)))2 − (~∇φB(r,R(t)))2 − V (φB(r,R(t)))

)
(8.21)

≈
∫
dt4πR2

∫ R+δ

R−δ
dr

(
1

2
(∂rφ)2

)(
Ṙ2 − 2

)
,

where we have used the thinness of the wall to reduce the three-dimensional integral

to a one-dimensional integral, and the fact that for the kink solution, the kinetic and

potential terms are equal, to write the second term. We will restore the ε term in a

moment.

The integral over the bounce solution is straightforward, yielding
√

2/3. So

we have the effective action for R,

S = 4π

∫
dt

(√
2

3
µ3(R2Ṙ2 − 2R2) +

ε

3
R3

)
. (8.22)

Correspondingly, the energy of the configuration is:

E(R, Ṙ) = 4π

(√
2

3
(R2Ṙ2 + 2R2 − 1

3
εR3)

)
≡ M(R)

2
Ṙ2 + V (R). (8.23)
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We can extract several results from this expression. In particular we have:

1. The point where the potential vanishes, R = R1 = 2
√

2µ3

ε .

2. The location and value of the potential at the maximum: R = R2 = 4
√

2µ3

3ε .

3. We can determine Ṙ as a function of R and the initial value of R (for simplicity

assuming Ṙ(0) = 0).

We have checked, numerically, that starting with a field configuration corre-

sponding to φ(x, t = 0) = φB(r;R), φ̇(x, t = 0) = 0, to the left of the barrier, the

bubble collapses. Starting slightly to the right, the wall quickly becomes relativistic

and expands. This is consistent with an intuition that the energy of conversion of false

vacuum to true is largely converted into the energy of the wall.

We can make this latter statement more precise. If we write:

φ(r, t) = φcr(t, r) + χ(t, r), |χ| � φcr, (8.24)

where φcr is the critical bubble solution, then

(∂2 +m2(r, t))χ = 0. (8.25)

Here m2 is essentially a θ function, transitioning between the mass-squared of χ in the

false and true vacua. Since the bubble wall moves at essentially the speed of light, and

undergoes a length contraction by t ∼ γ, we have that

m2(t, r) ≈ m2(t2 − r2) (8.26)
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and the χ equation is solved by

χ =
1

r
χ(t2 − r2). (8.27)

So the amplitude of χ decreases with time, and the energy stored is small compared to

that in the bubble wall.

We expect the same to hold for a thick-walled bounce.

8.4.4 Behavior of the disturbance with small GN

Consider the same system, now with a small GN . Again, our disturbance, after

a short period of time, approaches the critical (GN = 0) bubble. At larger time, it will

then agree with the Coleman-De Luccia solution, including the small effects of gravity.

As we will see in the next section, for the asymptotically falling potential,

with expanding boundary conditions, the evolution of the configuration is non-singular.

But with contracting boundary conditions, one encounters, as expected, a curvature

singularity.

8.5 Behavior of the Bounce with Asymptotically Falling

Potential

We have argued that, independent of the microscopic details of the initial

conditions, in the case of a disturbance that connects two metastable minima of a scalar

potential, the large time evolution of an initial disturbance that crosses the barrier is
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that of the critical bubble, in the limit of small GN . We expect that the same is true for

a potential that falls asymptotically to zero. Once more, the underlying intuition is that

at late times, the energy released from the change of false to true vacuum overwhelms

any slight energy difference in the starting point. So we expect the solution to go over to

φ(τ). So in this section, we will focus principally on the behavior of the critical bubble,

φ(τ).

8.5.1 Field evolution with small GN

For small but finite GN , there is a long period where GN × T00 × τ2 � 1,

gravitation is negligible, and the picture of the previous section of the flat-space evo-

lution of the bubble (or disturbance) is unaffected. For a vacuum bubble in de Sitter

space, gravitational effects become important, for fixed r � H−1, for example, only

once t ∼ H−1. Provided the bubble has evolved to a configuration approximately that

of the critical bubble, we can take over the critical bubble results (with gravity).

So we consider the bubble evolution in the region of Minkowski signature.

Writing the metric in the form

ds2 = −dτ2 + ρ(τ)2
(
dσ2 + sinh2(σ)dΩ2

2

)
, (8.28)

the equations for ρ and φ are:

φ̈+ 3
ρ̇

ρ
φ̇+ V ′(φ) = 0 (8.29)
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and

ρ̇2 = 1 +
κ

3

(
1

2
φ̇2 + V (φ)

)
ρ2. (8.30)

Note that if the bubble emerges in a region of large ρ (κρ2V � 1) then, for

the asymptotically falling potential, the kinetic term quickly comes to dominate in the

equation for ρ; the system becomes kinetic energy dominated. This is visible in the

numerical results we describe subsequently.

We should pause here to consider the tunneling problem. We will see in the

next section that if we take the positive root in equation 8.30, one obtains an expanding

universe in the future, but there is a singularity in the far past (before the appearance

of the bubble). Alternatively, if we take the negative root, the singularity appears in

the far future. Which root one is to take brings us to questions of the long-time history

of the universe, i.e., how the universe came to be in the metastable false vacuum. The

point of our discussion in this paper is that this issue already arises classically.

8.5.2 Behavior of the equations for large τ

Before describing our numerical results, it is helpful to consider some crude

approximations which give insight into the behavior of the system. In the region with

ξ = iτ , the equations become those of CDL in the time-like region:

φ̈+ 3
ρ̇

ρ
φ̇+

dV

dφ
= 0, (8.31)
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ρ̇ = ±
√

1 +
κ

3
ρ2

(
1

2
φ̇2 + V (φ)

)
. (8.32)

We argued at the end of the previous section that we might expect that the potential is

not particularly relevant in the φ equation for large ρ(0). Ignoring the potential, we can

also ask, self consistently, whether the second term in the ρ̇ equation dominates over

the first. If it does, we have an FRW universe with k = 0 and

ρ ∝ (τ − τ0)1/3, τ > τ0; ρ ∝ (τ0 − τ)1/3, τ < τ0. (8.33)

(These are the results for a universe with p = wρ; w = 1.) We can see this directly

from the equations. We have

ρ̇

ρ
= ±

√
κ

6
φ̇. (8.34)

So

d2φ

dτ2
±
√

3κ

2
φ̇2 = 0. (8.35)

We look for a solution of the form

φ̇ = α(τ − τ0)−1, (8.36)

α =

√
2

3κ
. (8.37)
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Figure 8.2: φ crosses the barrier.

Plugging this back into the ρ̇ equation gives

ρ̇

ρ
= ±1

3

1

τ − τ0
, (8.38)

which is consistent with the expected (τ − τ0)1/3 behavior. So we have a singularity in

the past or the future.

For numerical studies, we designed a potential with a local de Sitter minimum
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Figure 8.3: ρ(τ) ∼ (τ0 − τ)1/3; τ0 ≈ 159.5.

that tends to zero for large φ

V (φ) =
1

2
e−φ + φ2e−φ

2
, (8.39)

This is plotted in Figure 8.1; the local minimum lies near φ = 0.2. The

potential blows up for negative φ, but this will not concern us. We solve equations 8.31

and 8.32 with φ0 taken to be not too far from the local minimum, with small dφ/dτ

and with the negative sign in the root of the ρ equation: φ(τ = 0) = 1/2; φ′(τ = 0) =

−10−6; ρ(τ = 0) = 10. One sees (Figure 8.2) the scalar field roll over the barrier after

some number of oscillations. The ratio of potential to kinetic energy quickly tends to

zero after the crossing. As we expect, we find a singularity at a finite time in the future,

and indeed ρ(τ) behaves as (τ0 − τ)1/3 (Figure 8.3).

We have argued that for more general initial conditions, provided gravity is

sufficiently weak, the system evolves quickly to the bounce configuration with GN ≈ 0.

Its evolution will then be as above.
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8.5.3 Implications of the singularity

Our main concern with the singularity is whether it is an obstruction to any

sort of systematic analysis. If we have a weak coupling, small curvature description of

the system, allowing a perturbative analysis, we expect to be able to write an effec-

tive Lagrangian including terms of successively higher dimension—higher numbers of

derivatives—such as:

L =
√
g

(
1

GN
R+R2 +

1

M2
R4 + . . .

+(∂µφ)2 +
1

M4
(∂µφ)4

)
. (8.40)

If one tries to analyze the resulting classical equations perturbatively, in the presence

of φ̇ ∼ 1/(t− t0) and R ∼ 1/(t− t0)2, at low orders, the terms in the expansion diverge

and the expansion breaks down. This is similar to the phenomena at a big bang or big

crunch singularity.

8.6 Conclusions

We have argued, from two points of view, that one cannot construct de Sitter

space in any controlled approximation in string theory. First, we have seen that even

allowing the possibility of arbitrarily large fluxes, it is very difficult to find stationary

points for which both the string coupling is small and compactification radii are large,

even before asking whether the corresponding cosmological constant is positive or nega-

tive. We have seen that typically when sensible stationary points exist, even if formally
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radii are large and couplings small, higher order terms in the expansions are not small.

Related observations have been made in Ooguri et al. (2019), based on conjectures about

the behavior of quantum gravity systems.

But our second obstacle seems even more difficult to surmount: a set of small

perturbations of any would-be metastable de Sitter state, classically, will evolve to

uncontrollable singularities.

This is not an argument that metastable de Sitter states do not exist in quan-

tum theories of gravity; only that they are not accessible to controlled approximations.

The problem is similar to the existence of big bang and big crunch singularities; we

have empirical evidence that the former exists in the quantum theory that describes our

universe, but we do not currently have the tools to describe these in a quantum theory

of gravity.

Kachru et al. (2019) have considered the question from the perspective of the

KKLT (Kachru et al. 2003) constructions. These involve vacua with fluxes, but the

small parameter is not provided by taking all fluxes particularly large; rather, it arises

from an argument that there are so many possible choices of fluxes that in some cases,

purely at random, there is a small superpotential. In other words, there is conjectured

to be a vast set of (classically) metastable states of which only a small fraction permit

derivation of an approximate four-dimensional, weak coupling effective action. Kachru

et al. (2019) argue that such a treatment is self consistent. We are sympathetic to the

view that such an analysis provides evidence that if in some cosmology one lands for

some interval in such a state, the state can persist for a long period. But a complete
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description of such a cosmology is beyond our grasp at present.

In considering the cosmic landscape, one of the present authors has argued

that, even allowing for the existence of such states in some sort of semiclassical analysis,

long-lived de Sitter vacua will be very rare, unless protected by some degree of approxi-

mate supersymmetry (Dine et al. 2009). The breaking of supersymmetry would almost

certainly be non-perturbative in nature; searches for concrete realizations of such states

(as opposed to statistical arguments for the existence of such states, along the lines of

KKLT) would be challenging.

Ultimately, at a quantum level, reliably establishing the existence of metastable

de Sitter space appears to be a very challenging problem. One needs a cosmic history,

and it would be necessary that this history be under theoretical control, both in the

past and in the future. As a result, the significance of failing to find stationary points of

an effective action describing metastable de Sitter space is not clear. We have seen that

even thought of as classical configurations, there are questions of stability and obstacles

to understanding the system eternally, once small perturbations are considered. We

view the question of the existence of metastable de Sitter space as an open one.
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Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574
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