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Abstract

If computer-based instructional systems are to reap
the benefits of natural language interaction, they
must be endowed with the properties that make hu-
man natural language interaction so effective. To
identify these properties, we replaced the natural
language component of an existing Intelligent Tu-
toring System (ITS) with a human tutor, and gath-
ered protocols of students interacting with the hu-
man tutor. We then compared the human tutor’s
responses to those that would have been produced
by the ITS. In this paper, I describe two critical fea-
tures that distinguish human tutorial explanations
from those of their computational counterparts.

Introduction

There is growing interest in teaching real world
problem-solving tasks using computer-based intel-
ligent apprenticeship environments in which stu-
dents learn by doing (Gott, 1989). Such skills
typically involve complex chains of hidden reason-
ing and one goal of an apprenticeship environ-
ment is to help externalize the cognitive processes
that usually take place only mentally. Collins
and Brown (1988) argue that reflection on the dif-
ferences between novice and expert performance
provides one means of externalizing complex cog-
nitive processes. Moreover, psychological experi-
mentation, e.g., (Owen and Sweller, 1985; Sweller,
1988) indicates that learning from task situations
requires significant cognitive effort, and therefore
some argue that much of the instruction should ac-
tually take place in post-problem reflective follow-
up (RFU) sessions in which students review their
own actions and compare them to expert behavior
(Lesgold, in press). Collins and Brown (1988) fur-

*The research described in this paper was sup-
ported by the Office of Naval Research, Cognitive
and Neural Sciences Division, and a National Sci-
ence Foundation Research Initiation Award.
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ther propose that computers can be a powerful tool
for learning through reflection because they make
it possible to represent and record the processes by
which a novice or expert carries out a complex task.
They argue that such a process trace, “properly ab-
stracted and structured”, can help students improve
their performance on complex cognitive tasks by
allowing them to systematically examine and com-
pare their performance to that of more expert per-
formers.

Although many have argued that reflective in-
teractions can be an important part of the learn-
ing process, there has been no systematic attempt
to develop a model of the type of dialogue that
will facilitate learning through reflection. Experi-
ence with the SHERLOCK system (Lesgold et al.,
1992), an intelligent apprenticeship environment
that trains avionics technicians to troubleshoot
complex electronic devices, has shown that build-
ing a system to participate in reflective dialogues
in a complex domain poses a difficult challenge. A
rudimentary RFU facility has been implemented in
SHERLOCK. Using this facility, students replay their
solution one step at a time, and can ask the system
to comment on their actions, justify its conclusions
about the status of components, or explain what
step an expert would have performed. SHERLOCK
produces responses to these queries by filling in and
printing templates selected on the basis of the ques-
tion type and the particulars of the student’s action
and the problem situation. Due to the complexity
of the domain, there is frequently a large amount
of information that is potentially relevant to the
student’s question. Experience with the system has
shown that explanations often become long and dif-
ficult to understand. This is not surprising since the
current explanation facility simply patches together
all of the appropriate message templates.

Clearly, if computers are to realize their potential
as a powerful tool for facilitating learning through
reflection, we must identify models for effective re-
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flective interactions. Our research is aimed at iden-
tifying strategies for choosing what information to
include in in responses to students’ questions during
RFU and for organising and presenting that infor-
mation in a manner that is intelligible to students.
In order to develop such strategies, we studied
human-human reflective interactions in the SHER-
LOCK domain, and compared these to the human-
computer interactions. Reflecting on the differences
between these interactions enabled us to identify
features of the human-human interaction that we
believe are critical for effective tutoring in complex
domains.

The Protocol Study

To identify the strategies that human tutors use
when participating in reflective dialogues, we col-
lected protocols of tutors interacting with students
in post-problem RFU sessions. For each protocol,
the student solved a troubleshooting problem us-
ing SHERLOCK, and engaged in an RFU session to
review his or her problem-solving. To collect the
protocols, the system was used to replay each step
of the student’s solution. After a step is replayed,
the human tutor critiques it by marking the action
as “good” (<+>) or as “could be improved” (<-
>)). During our experiments, students were not
allowed to view any of the template-based explana-
tions that SHERLOCK could provide. Instead, they
were instructed to address all of their questions to
the human tutor. The student and tutor commu-
nicated by writing messages with pad and pencil.
They were physically arranged so that they could
each view a screen image of the SHERLOCK simula-
tion, but they were prevented from communicating
in any way other than writing messages on the pad.
Because SHERLOCK keeps a records of all student
actions for each problem session, the student traces
can be replayed at any time. After each RFU pro-
tocol was gathered, we replayed the trace of the
student’s actions and collected the messages that
SHERLOCK would have produced.

To date, we have collected data from 24 student-
tutor interactions with 14 different students and
3 different tutors. This corpus contains approxi-
mately 1725 sentences in approximately 232 ques-
tion/answer pairs. We have analyzed the protocol
data, and have identified several features of human
expert explanation that are lacking in the template-
based approach currently employed in SHERLOCK.

Critical Features of Human Discourse

We found two striking differences between the ex-
planations produced by the human tutor and those
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produced by SHERLOCK. First, human tutors freely
refer to the previous dialogue in their subsequent
explanations. This facilitates understanding and
learning by relating new information to recently
conveyed material, and avoiding repetition of old
material that would distract the student from what
is new.

Second, human tutors make extensive use of dis-
course markers. These markers express relation-
ships among individual units of information, thus
adding structure to complex explanations and mak-
ing them easier to understand. Such rhetorical de-
vices affect text cohesion, and research in read-
ing comprehension shows that these devices in-
crease the learner’s ability to construct a coherent
mental representation of the incoming information,
e.g., (Brewer, 1980; Goldman and Durédn, 1988;
Meyer, Brandt and Bluth, 1980).

Referring to Previous Discourse

In the protocol study, we found that the human ex-
planations were affected by the context created by
prior discourse. For example, when students asked
follow-up questions, human tutors interpreted and
answered these questions in the context of their
previous explanations. Clarifying and elaborating
on prior explanations requires explainers to under-
stand what they have said previously in order to
provide additional, corrective information, and to
avoid repeating information that has already been
conveyed. Furthermore, even when answering ques-
tions that were not follow-up questions, human tu-
tors frequently referred to a previous explanation,
e.g., in order to point out similarities (or differ-
ences) between the material currently being ex-
plained and material presented in earlier explana-
tion(s).

The computer-generated utterances, which do
not draw on previous discourse, seem awkward and
unnatural. A more serious problem is that in cases
where students performed two or more actions that
indicated some of the same misconceptions, SHER-
LOCK simply generated the same comments over
and over again. In addition to being frustrating,
the system missed out on opportunities to help stu-
dents form useful abstractions by pointing out the
reasons why several specific actions were all symp-
tomatic of the same general type of error.

As an example, consider the dialogue with Sher-
lock shown in Figure 1. This figure shows the tu-
tor’s critique of the action of testing pin 38, fol-
lowed by the action of testing pin 28. Note several
things from this example. First, although these two
actions are suboptimal for one of the same reasons,



ACTION: You made a non-informative test on the RAG’'s A1A3A15.

VDC test from pin 38 to ground with a meter. The reading was 28.0000 VDC.

SHERLOCK'S COMMENTS
Student tested off the active circuit path.
Student did not completely test main data signals to the active relay. It is generally
more efficient to completely test the main data signals to the active relay.

You tested the data flow input low side, but not the high side.

ACTION: You attempted to verify the secondary data signals affecting the signal
path for the RAG’s A1A3A15. You made the following measurement:

VDC test from pin 28 to ground with a meter. The reading was 28.0000 VDC.

SHERLOCK'S COMMENTS
Student did not completely test main data signals to the active relay. It is generally
more efficient to completely test the main data signals to the active relay.

You tested the data flow input low side, but not the high side.

Figure 1: Sherlock’s Comments on Student Actions

TUTOR
STUDENT
TUTOR

TUTOR
STUDENT
TUTOR

TUTOR
STUDENT
TUTOR

<->You tested pin 38 of the A1A3A15.
Why is testing pin 38 not considered a good step?

For two reasons. First, because you did not completely test the inputs needed to set relay B24
(you tested the low input but not the high input). These two inputs are critical for the TO
test step and are highly suspect when a relay appears to be reset. Secondly, the data input
at pin 38 has no effect on the path that is being created between pins 67 & 58 and the output
at 11 & 12. Relay B26 could be set or reset — it just doesn’t matter.

<-> You tested pin 28 of the A1A3A15.
Why is testing pin 28 not a good step?

As ezplained before, the main data inputs to relay B24 are highly suspect at this time. You
have tested the low input to B24 but not the high one. Since it is more likely that there may
be a problem with the main data signals to relay B24 than with the secondary data signals to
relays B25-B30, the main data signal should be tested first. Testing pin 28 is not a bad step,
it is just more likely (on the average) that the main data signals are causing the problem.

<->You tested pin 36 of the A1A3A15.
Don’t I need to test pin 367

You might have to, but for the same reasons given when you tested pin 28, it is generally
more efficient to test the main control data signals first, and then test the secondary control

(1]
(2]
(3]

(4]
(5]
(6]

(7]
(8]
(9]

data signals if necessary.

Figure 2: Human Tutor’s Comments on Student Actions

this is not explicitly stated in the texts. (For expos-
itory purposes, italics are used to highlight the sim-
ilar portions of the explanations in Figure 1.) The
student must perform a detailed comparison of the
two texts to determine whether and in what ways
the two situations are similar and in what ways they
differ.

Contrast SHERLOCK’s explanations with those
produced by a human tutor in Figure 2. This figure
shows the human tutor’s explanations for 3 actions,
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the first two of which are the same as those cri-
tiqued in the SHERLOCK-generated example above.
The human tutor’s explanations make it clear that
testing pin 28 is bad for one of the same reasons
as testing pin 38, and testing pin 36 is bad for pre-
cisely the same reason as testing pin 28. In Fig-
ure 2, italics are used to highlight what we catego-
rize as contextual effects on the explanations given.
For example, when explaining why testing pin 28
is bad (turn 6), the tutor refers back to one of the



reasons given in the explanation in turn 3, and reit-
erates the fact that the main data inputs are highly
suspect and have not been completely tested (sig-
nalled by “As explained before”). The tutor then
introduces the notions of main and secondary data
control signals and justifies why the main data sig-
nal should be tested first. Later, when explaining
why testing pin 36 is bad in turn 9, the tutor refers
back to the explanation given when assessing the
test of pin 28 and states a generalization explaining
why these two actions are considered suboptimal,
i.e., that the main data signals should always be
tested before secondary data signals. The tutor ex-
pects the student to be able to make use of the
explanation given in turn 6 (and therefore turn 3)
by indicating that it is relevant to the current sit-
uation (“for the same reasons given ...” serves this
purpose). Accordingly, the tutor does not repeat
the detailed explanation of why the main control
data signals are suspect, nor why they should be
tested first. By generating the explanation in turn
9 in such a way that it meshes with the previous
two, not only does the tutor correct the student’s
error, but forces the student to consider how the
three situations are similar. Pointing out this simi-
larity may facilitate the student in forming the do-
main generalisation and recognizing how the three
instances fit this generalization.

Based on our study of human-human reflective
dialogues, we are developing a taxonomy that classi-
fies the types of contextual effects that occur in our
data according to the explanatory functions they
serve. Thus far, we have identified four main cate-
gories:

e explicit reference to a previous explanation (or
portion thereof) in order to point out simi-
larities (differences) between the material cur-
rently being explained and material presented
in earlier explanation(s),

e omission of previously explained material to
avoid distracting the student from what is new,

e explicit marking of repeated material to dis-
tinguish it from new material (e.g., “As I said
before, ...”)

e elaboration of previous material in the form of
generalizations, more detail, or justifications.!

We are also performing a more detailed study
of the corpus in order to determine the conditions
under which human tutors refer to previous expla-
nations. In RFU interactions the most commonly

1This category breaks up into a number of sub-
categories in our taxonomy.
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asked question is a request to justify the tutor’s
assessment of a student action (42% of all ques-
tions asked during RFU). We found that 27% of
the answers to such questions involved references
to previous justifications of assessments in order to
point out similarities or differences. However, it is
important to note that not all justifications of as-
sessment provide opportunities for referring to pre-
vious explanations. In order to estimate the per-
centage of cases in which human explainers referred
to previous justifications when an appropriate op-
portunity arose, we devised a case-based reasoning
(cBR) algorithm? to find relevant prior justifica-
tions. The algorithm computes similarity of student
actions based on a set of features that were derived
from a cognitive task analysis aimed at identifying
the factors that expert avionics tutors use in assess-
ing student’s troubleshooting actions (Pokorny and
Gott, 1990). We found that human tutors explicitly
referred to a prior justification (as in Figure 2) in
73% of the cases identified by the cBR algorithm.
Therefore, human explainers refer to previous ex-
planations in the vast majority of the cases where
it makes sense to do so, at least when answering
this type of question.

Use of Discourse Markers

The second distinguishing feature of human tuto-
rial explanations is the extensive use of discourse
markers. As an illustration, consider the two ex-
planations appearing in Figures 3 and 4. The ex-
planation appearing in Figure 3 was produced by
SHERLOCK, whereas the one appearing in Figure 4
was produced by a human tutor. Note that Sher-
lock’s explanation is difficult to understand because
it does not indicate how the parts of the text are
related to one another. For example, SHERLOCK's
explanation does not make it clear that the material
in 3 elaborates 2 by citing a general principle about
troubleshooting, nor that 2 and 3 together provide
evidence for the tutor’s assessment of the student’s
step as bad. In addition, 4 provides an additional,
independent piece of evidence for why the student’s
action is considered bad. Next, 5 elaborates to ex-
plain how the student can find out more about the
status of components. Finally, 6 is a concession in-
dicating that the student’s action was correct in one
way (a voltage test was appropriate at this location
in the circuit.) It is difficult to understand 6 when
it appears, because the concession relationship be-
tween it and the text in 2-5 (the tutor’s evidence
supporting the claim that the student’s action is

3See (Rosenblum and Moore, 1993) for details.



ACTION: <-> VDC test from pin 33 to ground on A1A3AS.
SHERLOCK’S COMMENTS ON YOUR SYSTEM UNDERSTANDING:

(1]

Student space-split between the UUT, the stimulus and the measurement areas

(or between the UUT and the measurement area, if there is no stimulus) before

testing the measurement signal path.

SHERLOCK’S COMMENTS ON YOUR STRATEGIC SKILL:

(2]
(3]

Student tests data before input/output signals.

An efficient testing strategy is to verify that there is a problem on a component’s

signal path before investigating the component’s control data signals. If the signal
going through the component is good, then the control data signals are also good.

(4]
(5]

verified by prior TO test.

Student tests pins of unverified component which have been

By clicking on a component on the circuit diagram, Sherlock will tell

you what parts of a component are not verified for each troubleshooting step.

(6]

Student performs a correct type of test.

Figure 3: Sherlock’s comments on student action

TUTOR <-> VDC test from pin 33 to ground on A1A3AS.
STUDENT Why is testing pin 33 considered a bad move?
TUTOR For several reasons. First, although you know that the UUT is good, you should eliminate

(1]
(2]
(3]

the test package before troubleshooting inside the test station. This is because the test
package is moved frequently and is thus more susceptible to damage than the test station.
Also, it is more work to open up the test station for testing and the process of opening drawers
and extending cards may induce problems which did not already exist. Second, it is usually a
better strategy to locate a problem along the signal flow path before suspecting that the data
signals are causing the fail. You really should test the signal flow input and output signals
first and then decide if testing the data flow signals is necessary. Finally, since TO test 2
passed, you should already know that the input on pin 33 is probably good (TO test 2 used
TPA63 which needs the same input on 33). Therefore, testing pin 33 is really a redundant

move.

Figure 4: Human tutor’s critique of student action

bad) is not signalled.

Contrast this with the human tutor’s explana-
tion, which clearly states that there are several rea-
sons why the student’s action was assessed nega-
tively. In explaining each of the reasons, the hu-
man tutor supplies justification for the claim that
the student’s action can be considered bad. Note
that the human tutor’s explanation includes many
discourse markers that convey important relation-
ships between the information that appears in the
text. (These appear in bold type in Figure 4.) For
example, the tutor signals evidence for a claim with
markers such as “because” and “since”. When he
argues from evidence to claim, as in “the test pack-
age is moved frequently and is thus more suscepti-
ble to damage ...”, he uses markers such as “thus”
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and “therefore” to indicate the claim. Finally, he
indicates where the argument for each reason starts
and ends with the markers “First,” “Second,” and
“Finally.” The marker “also” is used to indicate ad-
ditional justification within a reason. These mark-
ers make explicit the intentional and informational
(semantic) relationships between the parts of this
complex text, and thus make it easier to under-
stand.

The problem of determining when discourse
markers should be used, and which markers would
be most effective in increasing the student’s com-
prehension of the explanation is an open research
problem. To tackle this problem, we have begun
a detailed linguistic analysis of the explanations in
our corpus. From a pilot study, we have reason to



hypothesize that marker selection is influenced by
the intentional and informational relations (Moore
and Pollack, 1992) between text segments, the topic
structure of the text, the size of the segments being
related, and the embedding of relations in the hier-
archical structure of the text. From this study, we
expect to develop a catalogue of the discourse mark-
ers used in explanations in the SHERLOCK domain
and the features that predict usage of each marker.
This information will then be used to construct a
computational model that will enable our explana-
tion generator to select appropriate discourse mark-
ers.

Conclusions

Comparison of human explanations with those pro-
duced by a computer system using a template-
based explanation process has enabled us to iden-
tify two properties of human discourse that seem
crucial for producing effective explanations in re-
flective interactions. The next step is to build com-
putational systems that are capable of producing
explanations that have these properties. We have
already made progress toward building a system
that takes prior utterances into account when plan-
ning explanations. In (Carenini and Moore, 1993;
Rosenblum and Moore, 1993), we describe the
strategies we have implemented for identifying rel-
evant prior explanations, and the mechanisms that
enable our explanation planner to exploit the in-
formation stored in its discourse history in or-
der to omit information that has previously been
communicated, to point out similarities and differ-
ences between entities and situations, and to mark
re-explanations in circumstances where they are
deemed appropriate. In future work, we will im-
plement strategies for selecting discourse markers
to convey the relationships between units of infor-
mation in complex texts.

In order to evaluate the effectiveness of the prop-
erties we have identified, we are designing our expla-
nation facility so that the abilities to integrate pre-
vious explanations into current explanations, and
to employ discourse markers, are optional facilities
that can be enabled or disabled. Thus we will be
able to systematically evaluate the effect of these
two capabilities on students’ satisfaction with the
system, their comprehension of explanations, and
their learning of complex problem-solving strate-

gies.
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