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Variability in communication contexts determines the convexity of semantic
category systems emerging in neural networks

Vlad C. Nedelcu (v.c.nedelcu @sms.ed.ac.uk), Daniel Lassiter, Kenny Smith
School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9AD

Abstract

Artificial neural networks trained using deep-learning methods
to solve a simple reference game by optimizing a task-specific
utility develop efficient semantic categorization systems that
trade off complexity against informativeness, much like the
category systems of human languages do. But what exact type
of structures in the semantic space could result in efficient cat-
egories, and how are these structures shaped by the contexts
of communication? We propose a NN model that moves be-
yond the minimal dyadic setup and show that the emergence
of convexity, a property of semantic systems that facilitates
this efficiency, is dependent on the amount of variability in
communication contexts across partners. We use a method
of input representation based on compositional vector embed-
dings that is able to achieve a higher level of communication
success than regular non-compositional representation meth-
ods, and can achieve a better balance between maintaining the
structure of the semantic space and optimizing utility.

Introduction

Recent work has attempted to understand whether the regu-
larities and structural properties found in human language are
also found in the representations that emerge between neural
networks placed in similar communication settings. These
properties include compositionality (Guo et al., 2019), word
ordering preferences (Chaabouni et al., 2019), and efficiency
in the sense of optimizing a trade-off between complexity
and informativeness (Chaabouni et al., 2021). Artificial neu-
ral networks (NNs) have only recently started being used for
understanding and modelling human language, where more
explainable learning methods are typically preferred as they
allow to easily pick apart individual factors of interest and test
how they determine system behavior (L Griffiths et al., 2008).
Of particular importance are models based on Bayesian in-
ference, which allow for elegant formulations at the compu-
tational level and benefit from the explicit use of prior as-
sumptions. However, one important limitation of Bayesian
formulations is that they are often intractable (Van Rooij et
al., 2019), which raises a more important scalability prob-
lem: do the results of these models hold in larger and more
naturalistic settings? State of the art NN architectures trained
using deep-learning methods are known to tractably scale to
natural languages (Hawkins et al., 2022) and thus could offer
a viable way of modelling more complex situations.

In the domain of semantic categorization, work by
Chaabouni et al. as well as Kagebick et al. has demonstrated
that emergent category systems in a color-communication

task trade off complexity against informativeness (i.e. they
are distributed along the optimal frontier of category systems
which are as simple as possible for a given level of informa-
tiveness, and as informative as possible for a given level of
complexity), closely matching the distribution of color nam-
ing systems found in human languages. Chaabouni et al. con-
clude from these results that the root of efficiency in semantic
categorization is not related to specific biological constraints
of the human mind, and point to the negotiation of signalling
conventions on a discrete signal channel as a possible key
factor. However, beyond these observations, prior work that
uses NNs to study categorization does not address the ques-
tion of what exact type of structures or regularities in the se-
mantic space could result in efficient categories. At the same
time, these studies lack a clear mechanistic account of how
categories actually become efficient. Specifically, they only
investigate rather minimal convention-formation processes.
These concerns have been addressed somewhat by studies
that use Bayesian modelling or artificial language learning
experiments. Some of the mechanisms found to be possi-
bly involved in the evolution of efficient semantic categories
include cultural transmission (Carstensen et al., 2015), com-
munication (Carr et al., 2020), the interaction of these two
(Silvey et al., 2019), as well as rapid adaptation to partners
with divergent communicative needs (Nedelcu et al., 2023).
In terms of regularities that could facilitate this efficiency,
Nedelcu et al. showed using Bayesian simulations that in het-
erogeneous communities, where communicatively relevant
semantic distinctions differ across a focal individual’s com-
municative partners, category systems evolve to reflect the
structure of the semantic space, with categories forming con-
vex regions in the meaning space. Meanwhile, in homoge-
neous communities, languages tend to evolve so as to reflect
the specific communicative needs of these communities, pos-
sibly compromising on perfect convexity when a non-convex
system that uses fewer categories can satisfy these needs. The
fact that a social factor like the partner adaptation mechanism
could shape the structure of categories would be in line with
the hypothesis by Wray & Grace (2007) that some of the lin-
guistic features regarded as universal today (e.g. composi-
tionality) may have only evolved in response to changing so-
cial structures. Specifically, they argue that as communities
expanded and became more heterogeneous, in the sense that
inter-group interactions would have become increasingly fre-
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quent, interlocutors could not consistently rely on common
ground to make themselves understood, so they had to ex-
press their messages in a more systematic manner, making as
few assumptions as possible about their communication part-
ner. These conditions would have thus favoured the evolution
of regular, context-independent features.

However, one important limitation of the Bayesian study
by Nedelcu et al., echoing the aforementioned critiques of
Bayesian models of these processes, is that the explored com-
munication setting is very limiting: the meaning space con-
sists of 12 meanings, agents are allowed to use a maximum of
3 categories, and the contexts in which they communicate are
significantly constrained to ensure computational feasibility.
Critically, these parameters also do not allow the placement
of each meaning in a separate category, forcing the agents to
make generalizations in order to solve the task effectively. In
this paper, we set to explore the partner adaptation mecha-
nism and the conditions in which convex categories emerge
using deep-learning methods, and to test more complex set-
tings. To do so, we move beyond the minimal dyadic setup
and study reference games with multiple agents.

Another way in which we explore convexity is in the con-
text of a trade-off faced by NN agents trying to find a solution
to a communicative task: the tension between maintaining
the structure of the input space (a form of sticking to a prior
“bias”), on the one hand, and optimizing utility (with the risk
of overfitting and not being able to generalize effectively),
on the other. In models of categorization the meanings to be
communicated are typically placed in a geometric space and
the metric over such a space is related to similarity between
meanings (Mollica & Zaslavsky, under review). In such a se-
mantic space, the emergence of a categorization system with
perfect convexity is a reflection of agents strongly maintain-
ing the structure of the input space. We are interested in ex-
ploring whether the method of input representation will bias
the agents in one of the two directions. We argue that in their
model of color categorization, Chaabouni et al. use a type of
representation which strongly favors categorizations that re-
flect the input space. At the other extreme are representations
that use one-hot encodings, where there is no similarity be-
tween meanings (beyond identity), yielding a completely un-
structured input space. We use a form of compositional vector
embeddings as a middle ground between the two approaches:
binding the two features directly using a literal composition
instead of sending them separately means that the composed
structure of the object space is more inherent in the input rep-
resentation given to our agents; while the larger number of
parameters resulting from the larger input representation al-
lows agents to make more complex and flexible predictions
that can suppress some of the power of the geometric space.

Model
Semantic space

We consider a semantic space that consists of 2 distinct fea-
tures, each having 20 possible values, for a total of 400 dis-

tinct meanings. The size of this space is similar to that of the
World Color Survey (which has 330 color chips) and allows
us to compare our results more easily to the work on color
categorization of Chaabouni et al. and Kagebick et al..

We represent meanings as compositional vector embed-
dings based on the tensor product representation method pro-
posed by Smolensky (1990). We first generate separate vector
embeddings for each possible value of each semantic feature,
using a strategy that captures the similarity relations in the
space. Specifically, the vector embeddings associated with
the first value (v = 0) of each feature will be filled with 20
random numbers from a normal distribution with mean 0 and
variance 1. To generate the vector associated with value v=n
we take the embeddings corresponding to v =n — 1 and ran-
domly resample without replacement one of the 20 numbers.
This strategy makes sure that for each of the two features the
vector embeddings associated with two neighbouring values
only differ in 1 number. We calculate cosine similarity be-
tween the resulting vectors to confirm we are preserving the
ordered relation. Finally, to represent a meaning character-
ized by features [x,y] we take the vector embeddings of x and
y and combine them using their outer product; the rows of the
resulting matrix are concatenated to produce the final repre-

sentation (see Figure 1).
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Figure 1: Exemplification of how the compositional input
representation of one meaning is calculated. In the figures, we
represent meanings using “Shepard circles” (Shepard, 1964)
where the two features are the radius of the circle (X axis)
and the angle at which the line is oriented (Y axis).

Communication game

Our setup consists of an asymmetric reference game, where
a sender interacts with four receivers over a given number of
rounds. The sender is presented with the representation of a
target object o, randomly selected from the set of objects O
and sends a word from its vocabulary V (with [V| =|0| =
400) to help the current receiver identify o, from a context
containing o; and a distractor o;. The sender interacts with
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its partners in separate blocks, starting with the first receiver,
then moving on to the next one, until it has interacted with
all four. Critically, each receiver has a different set of associ-
ated contexts from which one [o;,04] is randomly drawn for
a given round. The extent to which these sets of contexts are
similar or different across the receivers will determine if the
communication scenario is homogeneous or heterogeneous.

To be able to model the partner adaptation mechanism,
we extend the EGG framework (Kharitonov et al., 2019) to
support games with more than two agents, and change the
method for sampling communication contexts to allow part-
ners to sample from different contexts.

Both the sender and the receiver networks are feed-
forward: the sender is comprised of three linear layers of
size 250 with leaky ReL.U activation functions, while the re-
ceivers consist of a single simple layer of size 20. The sizes
of the networks were chosen after preliminary simulations
with a more comprehensive parameter exploration left for fu-
ture work. The receivers are optimized using ADAM. As
we cannot backpropagate through the discrete channel into
the sender, we instead optimize using Gumbel-Softmax (GS)
sampling with a temperature of 1.5.

(4,14) (2,8)
(2.8)
1]
l 5
P, S 3
O @ 92 @
I\':I
[M| = 20x20 T
V] = 400

Figure 2: One round of the reference game: a sender is faced
with a meaning, selects a signal from its vocabulary that is
then sent to a receiver who has to decide which of the two
meanings in its context the sender is referring to.

The context sets determine which meanings must be distin-
guished from each other during communication, and are gen-
erated as follows: the 20x20 input space (i.e., 400 objects) is
divided into 16 equal sections of size 5x5, so that any two ob-
jects situated in the same section are never placed in the same
context; the 16 sections are then split into 10 groups, with
12 of the sections randomly chosen to form groups of size
two and the remaining 4 sections forming groups of size one,
thus creating a semantic configuration (see Figure 3 for an
example configuration); the set of contexts for a receiver will
finally be generated exhaustively from the semantic configu-
ration associated with that receiver with the added constraint
that two objects from the same group cannot be placed in the
same context. For a homogeneous audience, all four receivers
are attributed the same configuration, whereas for a heteroge-
neous one, they are each attributed a different configuration.

While rather artificial, this context generation method has
two major benefits. First, it reflects the observation that real-

world categories tend to have what Rosch & Mervis (1975)
call a ”family resemblance” structure, with meanings that are
part of the same category sharing graded similarity on mul-
tiple dimensions. This is possible because humans do not
always need to distinguish between objects that are slightly
different, as otherwise, categories would need to encode very
fine-grained distinctions that are not cognitively feasible and,
in an extreme case, would need to contain a single meaning
to fully satisfy the communicative needs of its users. Thus,
our sections could be considered a minimal granularity be-
low which meanings need not be discriminated for successful
communication. Second, the random grouping of sections
means that, depending on the details of that grouping, agents
would not need to distinguish between meanings from some
non-neigbouring sections, enabling them to lexicalize seman-
tically distant meanings with the same word. Crucially, this
can be done without any negative consequences for commu-
nication, but would result in the emergence of non-convex
categories. The idea that agents might need to explicitly dis-
criminate between similar concepts but not between very dis-
similar concepts is consistent with studies on homophones.
Corpus studies show that semantically highly similar homo-
phones are dispreferred by natural languages (Dautriche et
al., 2018). Experimental work also shows that children’s abil-
ity to learn homophones depends on context, with pairs of
homophones being more learnable when the two meanings
associated with the phonological form are more semantically
distant (Dautriche et al., 2018). This is argued to be a con-
sequence of natural contexts already providing enough infor-
mation to implicitly distinguish very dissimilar concepts.
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Figure 3: Example configuration, colors indicate grouped
sections; to generate a context: sample two numbers from the
matrix, then sample one object for each of the two numbers.

Objective function

Since we are aiming to explore what regularities of the se-
mantic space result in efficient category systems rather than
just if such systems can naturally emerge, we want to directly
control for vocabulary size so as to cover a wider array of pos-
sible categorization systems. One option would be to directly
limit the maximum number of categories that agents are per-
mitted to use, and run the model with different maximum val-
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ues. However, this would require retraining the agents from
scratch for each maximum vocabulary size. We instead opted
for adding an additional term to the regular task-specific util-
ity, term which acts as a penalty on more complex systems
and is based on the objective function proposed by Tucker et
al.. This measure is grounded in rate-distortion theory, and is
equal to the KL divergence between the softmax distribution
from which the one-hot vector was sampled using GS and a
uniform categorical distribution. While this measure does not
exclusively capture vocabulary size, it has one major advan-
tage: it can be computed with very low computational effort
using the model parameters, which is crucial for integration
into an objective function. At the same time, the additional
penalization of other aspects of complexity other than vocab-
ulary size is not a concern in our case, as this penalty will be
applied identically in both conditions, and exclusively in the
generation process. We thus make sure that it cannot have
any impact on the complexity comparison between our two
main conditions. To sum up, the sender S and receiver R are
trained to jointly maximize the objective:

L(S,R) = y Esr[U(x,y)] —AcCs (1)

where U (x,y) represents the utility associated with sender in-
put x and receiver action y, Cs represents the complexity of
the system, and Ay and A¢ control the relative weights of util-
ity and complexity, respectively.

We set Ay = 1 and vary A¢ using deterministic anneal-
ing. We first trained agents for 80 epochs with a negligible
value for A¢ (set to 0.05 rather than O to prevent numerical
instability) so as to obtain communicatively-optimal systems
before beginning to anneal the penalty term for the next 40
epochs, increasing A¢ by 0.1 during each epoch. This will
result in systems with increasingly smaller vocabularies that
nonetheless maintain communicative optimality, which, as
mentioned earlier, allows us to compare convexity between
systems emerging from the two context conditions at multi-
ple vocabulary sizes. We chose not to anneal for more than
40 epochs as we found that systems suffer a significant drop
in success rates around this point, as they become too simple
to permit encoding all communicatively relevant distinctions.

Convexity measures

While convexity understood as the property of category sys-
tems that form convex regions in meaning space is binary, we
are also interested in assessing to what extent a system leans
towards convexity. Thus, by degree of convexity of a system
we will refer to the compactness and tightness of the clusters
formed in meaning space by the system’s categories. In or-
der to quantify the degree of convexity in the agents’ category
systems we first need to estimate the probability distribution
over signals P(s|o) associated with each object. To capture
the potential uncertainty of the sender, we sample 20 signals
s with replacement for each object o from the sender network
after convergence, each time using a different context. To get
a representation that is not context dependent we would need

to use maximally sized contexts in this process. However, due
to technical limitations, we instead use contexts of size 40
with the target being the object for which we are estimating
the distribution and the 39 distractors being randomly gener-
ated again for each of our 20 samples. Thus, if the sender
has no uncertainty about the signal associated with object o,
the same signal will be obtained from all 20 samples. Finally
we associate a single most sampled signal for each object to
obtain our estimation of the sender’s category system.

To compare the systems emerging from the homogeneous
and heterogeneous conditions, we use a complexity measures
from Fass & Feldman (2002) as adapted by Carr et al. (2020).
In contrast to the vocabulary size measure used in the ob-
jective function, we do not care as much about the compu-
tational cost of the measure, but are critically interested that
it incorporates some cognitively-grounded assumptions about
the properties that make a semantic category system simple,
specifically in our case, convexity. Consequently, we de-
fine complexity as the minimum description length in bits,
with descriptions being constructed using a predefined set
of rectangular sections that together fully partition the sim-
ilarity space in various ways. To obtain the complexity of
a system, the minimum description lengths of all contained
categories are summed. The minimal description of a cate-
gory is given by the minimal set of rectangular sections that
losslessly encapsulate the region covered by that category in
similarity space. While this measure can capture whether cat-
egories tend more or less towards convexity, it is also influ-
enced by the number of categories in the system, with systems
featuring more categories having higher complexity. We will
thus use this measure exclusively to compare systems of the
same number of categories to eliminate this factor, effectively
transforming the complexity measure into one of convexity.

We predict that for a sender interacting with a homo-
geneous set of partners, given that the same meaning dis-
tinctions are communicatively relevant for all partners, the
emerging systems will score lower on convexity, and this ef-
fect will be stronger for systems resulting from later epochs
(i.e., with a higher pressure for a low number of categories).
This is because the agents will be able to leverage the invari-
able set of contexts to come up with a communicatively opti-
mal system that also uses fewer categories. Conversely, with
a heterogeneous set of partners, as the contexts are more vari-
able across partners, the best solution will be a categorization
system that leverages on the structure of the semantic space.

Results
Heterogeneous vs. homogeneous context sets

We ran 20 simulations for each condition, each simulation
with a different set of contexts generated by a different ran-
dom seed, and obtained the category systems that are used
in our analysis as follows: once we start to anneal the com-
plexity term after the 80 burn-in epochs, we sample a system
every two epochs over the next 40 using the method described
in the Model section, resulting in 20 systems per simulation.
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Figure 4: Each point represents one category system emerging in the heterogeneous (red) and homogeneous (blue) conditions
on the complexity/vocabulary-size plane, for the compositional (a) and non-compositional (b) input representations. Lines are
calculated using Loess regression while standard error bars are computed using a t-based approximation. Observe that in (a),
for any given number of categories below 34, blue points tend to be situated above red points.

Table 1: Success rates for each context condition and both
types of input representation methods.

Communication success rates

Representation Homo | Hetero | Homo | Hetero
avg. avg. best best

Comp. 98.04% | 95.22% | 99.48% | 97.53%

Non-comp. 95.12% | 92.86% | 97.31% | 95.88%

In the first row of Table 1 we report the average accuracy
on the test set for the 20 systems per simulation obtained af-
ter the burn-in period, as well as the average accuracy for
the systems generated in the last burn-in epoch of each sim-
ulation (i.e., with no vocabulary size penalty). For both sets
of figures, the systems emerging in the homogeneous con-
dition achieve higher success compared to the ones in the
heterogeneous condition. This can be explained by the rel-
atively smaller number of meaning distinctions that need to
be made across partners in the homogeneous condition, and
by the larger consistency of such distinctions across partners.

As our complexity measure is influenced by the number
of categories in a system, we assess convexity by directly
comparing systems of equal number of categories. Figure 4a
shows that systems in the heterogeneous condition of equal
number of categories to those in the homogeneous condition
have noticeably lower levels of complexity; a visual inspec-
tion of the category systems confirms that there are more
non-convex and non-compact categories in the heterogeneous
condition. We can explain this result by considering that due
to our randomized context generation method a system that

leverages the common ground (i.e., the distinctions that are
known to be needed in communication) between partners has
to go against the structure observed in the input space, as it
would require meanings from adjacent sections to be part of
separate categories and meanings from far-away sections to
be part of the same category. The sender in the homogeneous
condition is aided by a coherent common ground across part-
ners that it can leverage, as object-category associations are
being reinforced over interactions with successive partners.
However, the sender in a heterogeneous condition encoun-
tering receivers with highly varying contexts is required to
continuously adapt its categories to support communication
of different sets of meaning distinctions. This sender would
thus have to overcome the additional hurdle of an incoher-
ent common ground across partners. Instead, it will favor
leveraging on the input space structure, which is shared by
all agents, leading to categories that form tight clusters in
similarity space. We also notice two distinct patterns, with
differences in complexity between the two conditions being
evident for systems with fewer categories, but less apparent
in systems with the largest number of categories. This is in
line with our predictions, as there is little incentive to try to
overcome the biases originating from the input space struc-
ture and form less convex categories if larger systems that
would adhere to these biases are not additionally penalized.

Effects of the type of input representation

We compare the systems that emerge using our composi-
tional input representation method with the systems emerg-
ing using the non-compositional representation method used
by Chaabouni et al.. To encode a meaning composed of mul-
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Figure 5: Comparison of the category systems emerging from the compositional and non-compositional input representation
methods in terms of complexity (a), number of categories (b), and complexity divided by number of categories (c).

tiple semantic features using this non-compositional method,
each feature value is simply encoded as a single numerical
value and the values that make up the meaning are placed
in a vector (e.g., in our case, a 2D vector). We first show
in Figure 3 and Table 1 (rows 1 and 2) that compositional
representations result in systems that are less complex, have
a smaller number of categories, and achieve higher success
than non-compositional representations. The average com-
plexity of a category is also lower, which would suggest that
the systems emerging with the compositional representation
are more aligned with properties of the semantic space that
we look for with our complexity measure (i.e., convexity). A
visual inspection of the outputs of both models suggests that
systems emerging with compositional embeddings do tend to
be much more rectangular and less spread out, being better at
capturing the square-like semantic configurations used in our
context sets. We infer that the differences are a consequence
of the composition of the two features being made explicit
with our representation. Second, if we tease apart the cate-
gory systems emerging in the two context conditions, we also
observe (Figure 4, a vs. b) that the compositional method re-
sults in a much larger difference in complexity between these
conditions for systems with the same number of categories.
We suspect this is due to a higher number of non-convex cat-
egories in the systems resulting from our method. Specifi-
cally, the dimensionality of our embeddings is much higher
than that of the vectors used in the non-compositional repre-
sentation (i.e., 400 vs. 2 elements), which results in more pa-
rameters, allowing agents to encode more complex patterns.
We leave the testing of this hypothesis to future work.

Bayesian vs. NN category systems

We can conclude that the results obtained by Nedelcu et
al. using Bayesian agents also hold for NN agents playing
the same type of communication game, with more convexity
emerging in the heterogeneous condition compared to the ho-
mogeneous condition. Using neural networks allowed us to
explore a much larger vocabulary (400 words for 400 mean-
ings vs. 3 words for 16 meanings), which means that the
agents are not required to make any generalizations in order
to solve the task accurately, as they could in principle use one
word for each meaning (although the number of categories in

the emerging systems is always much smaller than this even
when no penalty for vocabulary size is applied; this result was
also obtained by Chaabouni et al. who explained it by the dis-
creteness of the signal channel). Additionally, given that the
bias of adhering to the semantic similarities of the input space
in strong enough, the smaller the penalty for large vocabulary
sizes, the less the incentive to form non-convex categories. As
such, we would expect that, without added constraints, our
NN agents are less inclined to form non-convex categories
compared to the Bayesian agents. While we have no way
of comparing convexity between the two types of architec-
tures, this effect seems to be confirmed by our simulations,
as smaller penalties do result in less non-convexity. Second,
we use a much more extensive set of contexts (4 vs. over 50
000 contexts per agent), which is also necessary given that
NN agents can potentially memorize the contexts if diverse
enough learning examples are not provided. However, this
also means that the incentive is even higher to stick to the
input representation because agents might require even more
evidence to learn how to leverage on a very large set of con-
texts, even if that set is consistent across partners.

Conclusion

Artificial neural networks trained to solve a simple refer-
ence game by optimizing a task-specific utility develop effi-
cient semantic categorization systems that trade off complex-
ity against informativeness, much like the category systems
of human languages do. But what exact type of structures
in the semantic space could result in efficient categories, and
how are these structures shaped by the contexts of commu-
nication? We use a population-level NN model to show that
agents develop category systems that are more convex when
encountering partners with highly varying contexts than when
encountering partners with invariable contexts. We also pro-
pose a method of input representation based on compositional
vector embeddings, which, to the best of our knowledge, has
not been previously applied in emergent communication. We
show that this method results in a higher level of communi-
cation success than regular non-compositional methods, and
can also achieve a better balance between maintaining the
structure of the semantic space and optimizing utility.
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