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Abstract

Fluorescence microscopy with fluorescent reporters that respond to environmental cues are a 

powerful method for interrogating biochemistry and biophysics in living systems. Photoinduced 

electron transfer (PeT) is commonly used as a trigger to modulate fluorescence in response to 

changes in the biological environment. PeT based indicators rely either on PeT into the excited 

state (acceptor PeT) or out of the excited state (donor PeT). Our group has been developing 

voltage-sensitive fluorophores (VF dyes) that respond to changes in biological membrane potential 

(Vm). We hypothesize that the mechanism of voltage sensitivity arises from acceptor PeT (a-

PeT) from an electron-rich aniline-containing molecular wire into the excited state fluorophore, 

resulting in decreased fluorescence at negative Vm. Here we reverse the direction of electron flow 

to access donor-excited PeT (d-PeT) VF dyes by introducing electron-withdrawing (EWG), rather 

than electron-rich molecular wires. EWG-containing VF dyes show voltage-sensitive fluorescence, 

but with the opposite polarity: hyperpolarizing Vm now give fluorescence increases. We use a 

combination of computation and experiment to design and synthesize five d-PeT VF targets, two 

of which are voltage sensitive.
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Biological membrane potentials (Vm) arise from differences in ion concentrations across a 

selectively-permeable lipid bilayer and are a defining feature of life.1 Visualizing cellular 

Vm with fluorescent indicators offers a powerful complement to traditional electrode 

methods and seeks to address problems of low-throughput, poor spatial resolution, and 

invasiveness associated with electrophysiology.2 Fluorescent dyes have long been used to 

monitor biologically relevant analytes, reactions, and properties. Modulating photoinduced 

electron transfer (PeT) is a powerful method for designing fluorescent reporters.3-6 By 

controlling PeT into or out of the excited state of a fluorophore based on the binding or 

reaction withanalytes like ions7-8 and reactive metabolites,9-11 PeT provides a generalizable 

trigger for designing fluorescent reporters.

Our group has been exploring the application of PeT-based triggers for monitoring Vm.12 

We postulate that voltage sensitivity within Voltage-sensitive Fluorophores (or VF dyes) 

arises from a Vm-sensitive electron transfer (Scheme 1);13-14 therefore, the direction of 

the electron transfer matters. At hyperpolarized Vm, the electron moves from a molecular 

wire buried in the plasma membrane into a fluorophore on the extracellular face PeT is 

occurring and the dye is dim. At depolarized Vm, the voltage decreases the rate of PeT, 

allowing fluorescence to occur, and the dye brightens. Consistent with this hypothesis, VF 

dyes possess fluorescence turn-on responses upon membrane depolarization,12 nanosecond 

response kinetics,15 and voltage-dependent fluorescence lifetimes.16

To date, all VF dyes make use of an aniline-containing molecular wire to achieve voltage 

sensitivity in an acceptor-PeT (a-PeT) configuration in which the fluorophore acts as the 

electron acceptor.

However, if the hypothesis about the mechanism of voltage sensing is correct, replacing 

the electron-rich aniline with an electron-withdrawing group (EWG) should decrease the 

frontier molecular orbital energies of the wire and enable donor-excited PeT (d-PeT) 

(Scheme 1, Figure 1a-b). In this configuration, hyperpolarized Vm decreases the rate of 

PeT. This results in fluorescence brightening at hyperpolarized potentials and would provide 

the first example of a molecular sensor architecture with bi-directional electron flow for 

sensing in a-PeT or d-PeT configurations.
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Here we show that electron-poor molecular wires with EWG substituents can be 

incorporated into a VF dye scaffold, reversing the direction of electron flow, and inverting 

the sign of the fluorescence response to Vm changes. We calculate the HOMO/LUMO 

energies of a series of EWG-containing molecular wires, synthesize 5 new EWG-VF 

dyes, characterize their spectroscopic properties, and evaluate their voltage sensitivity in 

mammalian cells. Two of the new dyes show voltage sensitivity, but with an inverted polarity 

relative to previously reported aniline-containing VF dyes.17-19

To investigate the possibility of reversing the polarity of VF dyes through d-PeT, we 

performed DFT calculations to estimate the relative HOMO/LUMO energies of the 

orthogonal fluorophore and molecular wire systems. Complete EWG-VFs were modeled 

in two components, the fluorophore and the molecular wire (Figure 1c, d, S1). Geometries 

were optimized using def2-TZVP/ωB97XD, and calculated HOMO/LUMO values (Figure 

1e) were normalized to a shared sulfonate orbital (Figure S2) to allow direct orbital 

energy comparison between molecules.20-21 The HOMO/LUMO values calculated using the 

individual components gave values that matched well with those calculated using the entire 

VF dye (Figure S1). Component-based computationscut CPU time by nearly two-thirds and 

enable a mix-and-match comparison of fluorophores and molecular wires.

For aniline-substituted VF2.1.Cl,17-19 the molecular wire and fluorophore HOMO is higher 

than the fluorophore HOMO, with a HOMO-HOMO (H-H) gap of approximately −0.05 

eV, indicating the possibility of a-PeT (wire-to-fluorophore). Conversely, the molecular wire 

LUMO of VF2.1.Cl is higher than the LUMO of 2',7'-dichloro-3-sulfonofluorescein, with a 

LUMO-LUMO (L-L) gap of approximately +0.27 eV, indicating that d-PeT (fluorophore-to-

wire) is unlikely for this molecule (Figure 1).

For EWG-VF dyes like 4-NO2-VF, we find the complementary configuration: the wire 

LUMO of 4-NO2-VF is lower than the fluorescein LUMO by −0.58 eV, indicating 

the possibility of d-PeT.20 We calculated the orbital energies for other EWG-containing 

molecular wires, 2,4-diNO2, 3-NO2, 4-CN, and 4-SO2Me (Scheme 2, Figure 1). Both 

4-NO2-VF and 2,4-diNO2-VF possess L-L gaps of around −0.6 eV or larger. 3-NO2-VF 

has an intermediate L-L gap value of −0.33 eV, while the L-L gaps for 4-CN-VF and 

4-SO2Me-VF decrease substantially to −0.18 and −0.07 eV, respectively (Figure 1, Table 1). 

For comparison, the L-L and H-H gaps for non-voltage sensitive VF2.0.Cl (4-H), are +0.12 

eV and +0.61 eV, respectively. Based on these data, we hypothesize that strongly EWG 

substitutions, like 4-NO2 and 2,4-diNO2, might enable d-PeT VF dyes because of their large, 

negative L-L gaps.

To test the hypothesis that VF dyes could be “run in reverse”, we synthesized 5 different 

EWG-substituted stilbene derivatives. 4-NO2, 3-NO2, and 4-CN stilbenes could all be 

accessed via sequential Wittig/Heck/Wittig reactions, with the Wittig reactions carried out 

with K2CO3 as the base (Scheme S1). We synthesized 2,4-diNO2 and 4-SO2Me stilbene 

(2b, 2e) via a Horner-Wadsworth-Emmons reaction (Scheme S2), since we observed 

decomposition under Wittig conditions. Pd-catalyzed cross coupling of the EWG-substituted 

stilbenes (2a-e) with 5-bromo-2',7'-dichloro-3-sulfono-fluorescein (1) afforded EWG-VF 

dyes (3a-e).
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All of the EWG-VF dyes display an invariant absorption maximum at 511 nm and emission 

maximum at 527 nm, owing to the common fluorophore (Figure 2). The molecular wire 

absorbance varies for EWG-VF dyes (Figure 2, Table 1). The quantum yield of fluorescence 

(Φfl) for EWG-VF dyes ranges from 0.09 to 0.71 (Table 1). Both 4-NO2-VF and 2,4-diNO2-

VF have low Φfl values, indicating a high degree of PeT quenching. The pKa values of the 

phenolic oxygen of fluorescein of the EWG-VF dyes range from 4.8 to 5.7 (Figure S3, Table 

S2). In the presence of high concentrations of thiols (2 mM glutathione), EWG-VFs display 

stability comparable to VF2.1.Cl (p = 0.4, Figure S4).

All of the EWG-VF dyes stain the plasma membranes of HEK293T cells (Figure 3a-f). 

Widefield epifluorescence microscopy reveals a “chicken-wire” pattern of cellular staining, 

indicating localization to the plasma membrane. 4-NO2-VF has the brightest membrane 

staining, 2-fold brighter than VF2.1.Cl (Figure 3a, f, g, Table 1). We assessed the voltage 

sensitivity of the new, EWG-VF dyes in HEK293T cells using whole-cell patch clamp 

electrophysiology (Figure 4a-e). EWG-VF dyes with 4-nitro substituents show voltage 

sensitivity, but with a reverse polarity. Unlike VF2.1.Cl, which displays a fluorescence 

increase upon membrane depolarization, the fluorescence of 4-NO2-VF and 2,4-diNO2-VF 

decreases upon depolarization and becomes brighter upon hyperpolarization (Figure 4f).

Despite a higher nominal voltage sensitivity, 2,4-diNO2-VF shows very low cellular 

fluorescence (Figure 3a, b, S5), ~40-folder lower than 4-NO2-VF, making 4-NO2-VF the 

most useful EWG-VF for cellular voltage imaging. 4-NO2-VF is capable of monitoring 

evoked action potentials (APs) in cultured rat hippocampal neurons (Figure S6). In a single 

trial, 4-NO2-VF reports on APs with an average ΔF/F of −1.3% (±0.14, n = 17, standard 

deviation) and a signal-to-noise ratio (SNR) of 9.1 (±1.0, n = 17). The response to neuronal 

AP depolarization is a fluorescence decrease, showing that d-PeT indicators function in 

complex cellular contexts.

At hyperpolarizing potentials more negative than −100 mV, 4-NO2-VF becomes even 

brighter, achieving a turn on response for hyperpolarization of +2.4% (Figure 5a-b). At 

extreme hyperpolarized potentials, the optical response deviates from the linearity observed 

between −100 mV and +100 mV (Figure 5b). Hyperpolarized potentials play important roles 

in inhibitory neurotransmission and more broadly, in the physiology of mitochondria, where 

resting mitochondrial potentials are in the range of −100 to −200 mV.22-23

Finally, we show that 4-NO2-VF can be used in simultaneous, two-color mapping of Vm 

dynamics along with a far-red voltage indicator, BeRST-1 (Figure 5c-e, S7).24 4-NO2-VF 

exactly follows the time course of BeRST-1, indicating that the d-PeT method provides fast 

response kinetics and is compatible with two color imaging (Figure 5f).

In summary, we report the design, synthesis, and validation of d-PeT based VFs for 

voltage imaging. DFT was used to determine the orbital energies of molecular wires with 

EWGs and 2',7'-dichloro-3-sulfonofluorescein. Five d-PeT VFs were synthesized to test 

the computational method. Both 4-NO2-VF and 2,4-diNO2-VF are voltage sensitive, acting 

as turn-on indicators for hyperpolarization. While a-PeT and d-PeT have been used to 

design fluorescent reporters,5 this is the first demonstration that HOMO/LUMO levels can 
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be tuned to access both a-PeT and d-PeT for detection of a biologically-relevant analyte 

with the same fluorophore scaffold. Future directions include improving voltage sensitivity 

by pairing electron-deficient molecular wires with electron-rich fluorophores and applying 

reverse VFs to biological contexts where the Vm polarity is switched compared to plasma 

membranes, for example in mitochondria25 and organelles.26

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Controlling photoinduced electron transfer processes in voltage-sensitive fluorophores. 

Frontier molecular orbital diagrams for fluorescein and either a) electron-rich molecular 

wires that exhibit acceptor-excited PeT (a-PeT) or b) electron-poor molecular wires 

that exhibit donor-excited PeT (d-PeT). c) Structure and LUMO of 2',7'-dichloro-3-

sulfonofluorescein. d) Structure and LUMO of variousmolecular wires. This specific 

example is 4-NO2-VF, but R can equal any of the substituents indicated in panel (e). e) Plot 

of calculated energy levels (eV) of 2',7'-dichloro-3-sulfonofluorescein and various molecular 

wires with the indicated R group.
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Figure 2. 
UV-vis and emission spectra of reverse VF dyes. Plot of relative intensity vs wavelength 

for reverse VF dyes. Absorbance is shown in solid lines; emission is shown in dashed lines. 

Spectra are normalized to the λmax and acquired with 1.25 μM dye in 0.1M KOH in EtOH. 

Excitation provided at 480 nm.
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Figure 3. 
Live cell imaging with reverse VF dyes. Widefield epifluorescence images of HEK293T 

cells treated with either a) 4-NO2-VF (6), b) 2,4-diNO2-VF (13), c) 3-NO2-VF (17), d) 
4-SO2Me-VF (23), e) 4-CN-VF (27), or f) VF2.1.Cl (4-NMe2). All dyes were loaded at 

250 nM. Scale bar is 20 μm. g) Plot of cellular fluorescence intensity of HEK293T cells 

loaded with the indicated dye. Data are mean ± S.E.M. for n = 6 independent experiments. 

For each experiment, or coverslip, we analyzed between 80 – 100 cells and took the mean 

fluorescence intensity.
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Figure 4. 
Voltage sensitivity of EWG-containing VF dyes in living cells. Plots of ΔF/F vs time 

for HEK293T cells loaded with either a) 4-NO2-VF, b) 2,4-diNO2-VF, c) 3-NO2-VF, d) 
4-CN-VF, or e) 4-SO2Me-VF. Cells were held at −60 mV under whole-cell voltage-clamp 

conditions and then stepped to potentials ranging from −100 mV to −100 mV in 20 mV 

increments. f) Plot of ΔF/F per 100 mV vs Vm (in mV) for 4-NO2-VF (green, n= 8), 2,4-

diNO2-VF (magenta, n = 5), 3-NO2-VF (red, n = 5), 4-CN-VF (blue, n = 3), 4-SO2Me-VF 

(gray, n = 4), or VF2.1.Cl (black). Data are mean ± S.E.M. VF2.1.Cl data is from Turnbull, 

et al.21
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Figure 5. 
Voltage sensitivity of 4-NO2-VF at hyperpolarized potentials. a) Plot of ΔF/F vs time 

for HEK293T cells loaded with 4-NO2-VF. Cells were held at −60 mV under whole-cell 

voltage-clamp conditions and stepped to potentials ranging from +100 mV to −200 mV in 

20 mV increments. b) Plot of ΔF/F vs Vm (in mV) for 4-NO2-VF. Data are mean ± SEM for 

n = 5 cells. Fluorescence images of a HEK cell stained with c) BeRST-1 and d) 4-NO2-VF. 

e) Plot of ΔF/F vs time for the same cell imaged with both BeRST and 4-NO2-VF. f) 
Zoomed-in region of e.
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Scheme 1. 
PeT in Voltage-sensitive Fluorophores (VF) dyes
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Scheme 2. 
Synthesis of EWG-containing VF dyes
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