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Introduction

To ensure adequate brain perfusion, cerebral blood flow is tightly regulated through 

myogenic, neurogenic, metabolic and endothelial processes known as autoregulation.1 

Cerebral vasospasm is a complex disease process involving multiple mechanisms that 

results in reversible narrowing of blood vessels, often leading to permanent stroke and 

poor patient outcomes.2 It occurs in up to 50–90% of patients with aneurysmal subarachnoid 

hemorrhage, and 60% of patients with traumatic brain injury, making it one of the leading 

causes of preventable morbidity in these patients.3,4 Yet, there are limited durable treatment 

modalities for patients experiencing cerebral vasospasm; intra-arterial calcium channel 

blockers are moderately effective but short-acting, and balloon angioplasty has limited 

access to distal vessels with higher risks of vessel dissection and rupture. Hence, targeted 

therapies to augment cerebral blood flow in disease states of cerebral hypoperfusion, such as 

cerebral vasospasm, are of immediate clinical importance.

One of the key mechanisms underlying vasospasm is likely sympathetically-mediated 

vasoconstriction.5–8 Cerebral arteries are innervated by the autonomic nervous system; 

vasoconstriction and vasodilation are mediated by sympathetic and parasympathetic 

activation, respectively.9–12 Numerous studies have shown increased catecholamine release 

in patients with non-traumatic subarachnoid hemorrhage and cerebral vasospasm, consistent 

with increased sympathetic activation.5,6,8 Intracranial sympathetic perivascular nerve fibers 

have been found to primarily originate from the ipsilateral superior cervical ganglion 
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(SCG).13–15 Inhibition of SCG suppressed intracerebral vasoconstriction in rat models with 

subarachnoid hemorrhage or global cerebral ischemia.16,17 In fact, a regional percutaneous 

anesthetic block to the cervical sympathetic ganglion in a small clinical study involving nine 

patients with vasospasm after aneurysmal subarachnoid hemorrhage was shown to improve 

cerebral perfusion.18

There is a need to better understand and define the role of sympathetic-mediated vasospasm, 

but to date, a robust animal model does not exist, limiting mechanistic understanding and 

therapeutic development. Our study aims to further elucidate the role of SCG in modulating 

the sympathetic tone of cerebral vasculature and to demonstrate that its hyperactivity can 

result in significant cerebral hypoperfusion in large mammals. We also demonstrate that 

direct inhibition of the superior cervical ganglion with local anesthetic is able to inhibit its 

effects and restore normal cerebral perfusion.

Methods

Animal Care

Use of animals, associated housing/handling and all related experiments were reviewed and 

approved by the institution’s Institutional Animal Care and Use Committee and Animal 

Research Committee and Division of Laboratory Animal Medicine. All procedure was done 

in accordance with the Association for Assessment and Accreditation of Laboratory Animal 

Care International guidelines.

Anesthesia

Yorkshire pigs (Sus scrofa) of either gender between 40–50kg were used. Animals were 

pre-sedated with intramuscular Telazol and transitioned to inhaled isoflurane for intubation 

and intravenous (IV) access. General anesthesia was maintained with inhaled isoflurane 

during the surgical preparation and transitioned to α-chloralose upon completion of the 

neck dissection to minimize blunting of the autonomic reflexes by isoflurane. Α-chloralose 

was prepared and administered as previously described.19 All computed tomography images 

were obtained at least 30 minutes after completely weaning off of the isoflurane. Vitals were 

continuously measured and recorded every five minutes. All animals were ventilated with 2L 

of supplemental oxygen, with tidal volume of 400mL and respiratory rate of 12 per minute.

Neck Dissection

After standard preparation of the surgical field, high anterolateral cervical incisions were 

made bilaterally along the medial border of the sternocleidomastoid muscles and dissection 

was carried down to the carotid sheath in a typical carotid endarterectomy approach. 

Contents of the carotid sheath were identified (Figure 1), while preserving the anatomical 

integrity of the sympathetic trunk in close proximity to the carotid artery. The SCG was 

reliably identified near the branch point of the ascending pharyngeal artery.

SCG Stimulation

Bipolar needles (platinum iridium) were inserted into the identified SCG and was stimulated 

electrically using a Grass Stimulator. Square wave stimulation began at 1mA and increased 
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in 0.5mA increments until ipsilateral mydriasis was noted with fixed supramaximal 

frequency (10Hz) and pulse-width (4ms). SCG was stimulated at twice the magnitude of 

current required to induce ipsilateral mydriasis to ensure adequate stimulation. Computed 

tomography perfusion (CTp) scans were obtained at least 30 seconds after the onset of 

SCG stimulation. SCG stimulation was discontinued after completion of the CT scan, and a 

minimum of 15 minutes were allotted to ensure all effects of the stimulation had returned to 

baseline physiologic state, prior to further testing.

CTp Scan

Images were obtained using a 2012 Siemens SOMATOM Definition AS Computed 

Tomography scanner (Spatial resolution: 30lp/cm. Temporal resolution: 150ms). Each scan 

had an acquisition time of 38.63 seconds, consisting of 25 passes with 1.50 seconds per 

pass. These parameters were selected to fully capture the contrast bolus passing through 

the cerebral vasculature. Bayer HealthCare MEDRAD Stellant contrast injector was used 

to deliver 50mL of Omnipaque (iohexol) 300 into the ear vein at a rate of 5mL/s with a 

pressure limit of 325psi. Imaging acquisition was started before the contrast bolus to capture 

peak and trough contrast enhancement throughout the study.

Lidocaine Injection to SCG

A 29G needle was used to deliver 0.3mL of 2% Lidocaine HCL to the identified SCG. 

Electrical stimulation of the SCG was initiated at least 90 seconds after the lidocaine 

injection to ensure adequate time for the lidocaine to take effect.

Image Processing and Analysis

CTp data were analyzed with the commercially available and clinically utilized 

software, Syngo.via (Siemens Healthcare, Germany). Each scan was evaluated using time-

enhancement curves with user-selected references for arterial and venous phases at the 

common carotid artery and superior sagittal sinus, respectively. Algorithm inherent to the 

software was used to determine cerebral blood flow (CBF), cerebral blood volume (CBV), 

mean transit time (MTT) and time-to-maximum (TMax). Regions of interest (ROI) were 

selected on the right hemisphere at frontal, temporal, parieto-occipital and posterior-fossa 

regions (Figure 2). A duplicate corresponding ROI was automatically generated on the left 

side by the software, by mirroring the right ROI across the mid-sagittal plane (Figure 3). 

Mean values for each ROI were calculated and used for subsequent analyses.

Statistics

To account for variability between animals and between scans, ROIs described above were 

analyzed in relation to the laterality of the stimulus (i.e., ipsilateral SCG stimulated ROI as 

a percentage of contralateral non-SCG stimulated ROI). The percent difference of each ROI 

compared to contralateral unaffected side was determined. Two-tailed student’s t-test was 

used to compare the generated means of the difference with or without SCG stimulation to 

determine statistical significance between different parameters. The significant level for all 

tests was set at p=0.05.
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Results

Seventeen Yorkshire swine were used for the study. Two animals were excluded due to 

difficulty identifying the SCG and failure to elicit ipsilateral pupillary dilation with electrical 

stimulation. Mean weight of animals was 43.2 ± 2.95kg; mean temperature was 100.3 ± 

0.88°F; mean heart rate was 88 ± 15bpm; mean oxygen saturation was 97.3 ± 3.85%; 

mean systolic blood pressure was 112 ± 21.9mmHg; mean diastolic blood pressure was 

71.0 ± 21.1mmHg; mean mean arterial pressure was 80.0 ± 28.6mmHg; mean end tidal 

carbon dioxide was 41.5 ± 2.39mmHg. There were no significant changes to temperature 

or hemodynamic parameters during SCG stimulation to indicate a systemic sympathetic 

response. CTp data at baseline and with SCG stimulation was obtained for 29 SCGs (15 

left and 14 right stimulations). CTp for SCG blockade with stimulation was obtained for 14 

SCGs (8 left and 6 right stimulations).

SCG stimulation causes ipsilateral cerebral perfusion deficit

At baseline, there was no difference in CBF, CBV, MTT and TMax between the right and 

left side in the frontal, temporal parieto-occipital and posterior-fossa regions of interest as 

measured by CTp. Stimulation of the SCG caused ipsilateral global reduction in CBF as 

measured by CTp in all ROI (Figure 3).

There was an approximate 20–30% reduction in ipsilateral CBF with SCG stimulation 

compared to the contralateral non-stimulated side (Figure 4). Mean CBF decreased by 

27.4% and 26.3% in frontal regions, 30.8% and 30.4% in temporal regions, 30.8% and 

30.3% in parieto-occipital regions, and 23.0% and 19.0% in posterior-fossa regions with 

right and left side SCG stimulations respectively, compared to non-stimulated contralateral 

side (all p-values < 0.001).

CBV also decreased by approximately 10–25% with ipsilateral SCG stimulation (Figure 

4). Mean CBV decreased by 17.8% and 20.6% in frontal regions, 23.0% and 25.1% in 

temporal regions, 22.0% and 22.2% in parieto-occipital regions, and 14.0% and 9.69% in 

posterior-fossa regions with right and left sided SCG stimulations respectively (all p-values 

< 0.01).

Although, both MTT and TMax increased with ipsilateral SCG stimulation, consistent with 

perfusion deficit, there was greater variability in the mean change (Figure 4). Mean MTT 

increased by 21.9% and 10.7% in frontal regions (p=4.16×10−3 and p=1.03×10−3), 21.6% 

and 13.0% in temporal regions (p=0.010 and p=0.047), and 21.7% and 15.7% in parieto-

occipital regions (p=2.09×104 and p=2.24×10−3) with right and left sided SCG stimulation 

respectively. While left SCG stimulation caused a 17.9% increase in MTT posterior-fossa 

regions that was statistically significant (p=7.16×10−3), right SCG stimulation caused a 

15.6% increase in MTT that was approaching significance (p=0.068). Mean Tmax increased 

by 42.4% and 33.3% in frontal region, 59.1% and 46.7% in the temporal region, 46.3% and 

38.2% in the parieto-occipital region, and 35.8% and 25.5% in posterior-fossa region with 

right and left sided SCG stimulation respectively (all p-values < 0.01).
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Prior SCG blockade prevents cerebral hypoperfusion in setting of SCG stimulation

Prior lidocaine administration to the SCG inhibited the effects of SCG stimulation described 

above and restored cerebral perfusion. Mean CBF was less than 10% different from all 

measured regions compared to contralateral non-stimulated regions and this difference was 

not statistically significant compared to baseline (all p>0.10) (Figure 5). Similarly mean 

CBV was less than 5% different from all measured regions compared to contralateral non-

stimulated regions and this difference was not statistically significant compared to baseline 

(all p>0.10).

Again, there was more variability with MTT and Tmax parameters when lidocaine was 

administered prior to SCG stimulation. Apart from the left frontal region, which had a mean 

5.82% increase in MTT compared to the non-stimulated right frontal region (p=0.0144), 

and the right temporal region, which had a mean 4.13% decrease in MTT compared to the 

non-stimulated left temporal region (p=8.06×10−3), all other measured MTT means were 

within 15% of the non-stimulated contralateral side without statistical difference. For mean 

Tmax, measured values were within 20% of the non-stimulated contralateral side without 

statistical difference, except for the left frontal region that showed an 8.80% increase in 

mean Tmax compared to the non-stimulated right frontal region (p=2.10×10−3).

Discussion

To our knowledge, we are the first group to demonstrate true cerebral hypoperfusion 

from direct activation of the sympathetic nervous system in a large mammal. We used 

Yorkshire swine to develop a large mammal model of sympathetically-mediated cerebral 

hypoperfusion for translation into clinical application. Large mammals, such as the swine, 

more closely resemble human anatomy without the cost and other restrictions associated 

with canine and primate models. Additionally, swine cardiovascular anatomy is similar to 

that of humans and prior studies have used swine as experimental models to study cerebral 

vasospasm.20–24

An essential component to our model was the use of α-chloralose. α-chloralose is the 

preferred anesthetic for animal studies evaluating autonomic function as it provides depth of 

anesthesia, while maintaining high level of basal autonomic tone that is easily modified to 

produce robust responses.22,25,26

While the SCG is recognized to have sympathetic efferents, information regarding synaptic 

coverage, number of synapses and variability dependent on animal size and weight have 

not been well-characterized.27 Hence, although we used ipsilateral mydriasis as a means 

to confirm sympathetic activation, we decided to stimulate the SCG at twice the current 

required to achieve mydriasis in order to ensure we elicited a robust activation of the SCG.

In addition to cerebral hypoperfusion, SCG stimulation induced a more striking perfusion 

deficit in extra-cranial regions evident on the CTp scans. This change was most evident 

in the snout, where there was blanching of the skin on the side of SCG stimulation. 

Although the carotid system in animals have greater proportional contribution to the external 

carotid distribution than seen in humans to supply the larger facial and masticatory muscles, 
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studies have shown anastomoses between external and internal carotid arteries in the 

swine that contribute to cerebral blood supply.28–30 Therefore, we cautiously speculate that 

sympathetically-mediated hypoperfusion may have a greater effect on cerebral perfusion in 

humans than shown in our swine model, as the swine brain is more protected by significant 

extra-cranial collateral flow. Despite this added “protection,” we were able to demonstrate 

significant cerebral perfusion deficits.

With respect to SCG blockade, we decided against using a longer-acting agent (i.e. 

Marcaine, acetylcholine receptor inhibitors), as doing so would increase the time required 

to recover to baseline and thereby unnecessarily lengthen the overall anesthesia time. In 

our study, we used a readily-available, short-acting sodium channel blocker, lidocaine. 

Although the exact duration of this effect was not measured, we found that we were able 

to re-demonstrate SCG-mediated ipsilateral perfusion deficit approximately 30 minutes after 

lidocaine administration (data not shown). Additionally, we did not see an increase in 

ipsilateral cerebral perfusion with lidocaine administration alone (in the absence of SCG 

stimulation) (data not shown). This suggests either low baseline sympathetic tone or a 

robust baseline brain perfusion that exceeds any hyper-perfusion attempts made with SCG 

inhibition alone.

The results of our work contribute to the current literature regarding sympathetic control 

in cerebral autoregulation. There have been controversial outcomes regarding the role 

of sympathetic nervous system in cerebral autoregulation. While some showed that 

resection of carotid sinus nerves in dog models abolished effect of cerebral autoregulation, 

others demonstrated that monkeys with chronic sympathetic denervation showed preserved 

cerebral autoregulation.31,32 Controversial outcomes are also prevalent in human studies: 

Gierthmuhlen and colleagues demonstrated preserved cerebral autoregulation in patients 

with infarcted dorsolateral medulla oblongata (part of the sympathetic pathway)33 but 

Zhang and colleagues showed significant changes to cerebral autoregulation response 

with sympathetic ganglion blockade.34 Guo and colleagues suggest that such controversial 

results may be due to multiple compensatory mechanisms of cerebral autoregulation, 

heterogenous innervation of cerebral vasculature by the sympathetic nervous system and 

small samples size of prior studies.35 Indeed, Gelpi and colleagues demonstrated that 

while cerebral autoregulation was preserved in subjects undergoing reflex sympathetic 

activation regardless of their history of recurrent postural syncope, those prone to postural 

syncope displayed more greater vagal withdrawal and less sympathetic activation associated 

orthostatic stressors.36–40 Whereas the majority of prior studies have shown the effects of 

sympathetic blockade and/or denervation on cerebral autoregulation, our study provides a 

unique insight as we were able to stimulate the sympathetic nervous system to show a 

true cerebral perfusion deficit. Our results suggest that while other mechanisms of cerebral 

autoregulation may compensate for lack of sympathetic tone, overactivation of sympathetic 

nervous system at the level of SCG is sufficient to significantly alter cerebral blood flow in a 

swine model.

The role of parasympathetic activity in cerebral perfusion is still under investigation. 

While Yarnitsky et al have shown dilation of cerebral vessels with parasympathetic 

stimulation in a subarachnoid hemorrhage induced model of vasospasm in dogs, it is 
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unclear whether sympathetic hyperactivity or parasympathetic underactivity has a stronger 

influence on cerebral vasospasm.41 Regardless, the ability to modulate both sympathetic and 

parasympathetic nervous systems remains a promising potential therapeutic intervention for 

cerebral ischemia associated with vasospasm, and deserves further investigation.

The main limitation to our study is perhaps, the simplification of using sympathetically-

mediated hypoperfusion as a model for cerebral vasospasm. Recent studies show strong 

sympathetic activity in subarachnoid hemorrhage induced vasospasm in numerous animal 

models and suggest sympathetic modulation as a promising therapy.19,21,42,43 We recognize 

that true cerebral vasospasm involves a complex interplay between various factors, but 

ultimately the clinically relevant end result of hypoperfusion is what we were able to achieve 

in our model.

Another limitation arises from the differences in swine and human cerebrovascular anatomy. 

Unlike in humans, swine common carotid artery bifurcates into the external carotid artery 

and the ascending pharyngeal artery, which later forms a rete mirabile before giving rise to 

internal cerebral arteries.27,43 The rete mirabile, an arterial meshwork, is thought to have 

an evolutionary role in maintaining cerebral blood flow and blood temperature regulation 

in many mammalian species.42,45 As such, the presence of carotid rete mirabile in swine 

may help guard against cerebral perfusion deficit. It is our belief that the observed perfusion 

deficit would have been even more pronounced without the protection of the rete mirabile 

and the extensive external to internal collaterals. While this is a limitation of the model, 

it may imply that the results are even more translatable to humans, who do not have such 

pronounced vascular protection mechanisms.

Intracranial pressure (ICP) can significantly affect the cerebral perfusion. Although it would 

have been interesting to measure ICP during our experiments, we did not do so for several 

reasons. Placing an ICP monitor introduces potential new variables, such as brain trauma, 

bleeding, or contamination of the intracranial space that may result in cerebral vasospasm 

and influence the outcomes of the SCG stimulation. Furthermore, ICP is arguably a global 

measure of the entire intracranial pressure and therefore significant changes in ICP would 

affect global cerebral perfusion. In this study, we stimulated the SCG one side at a time 

and observed differences in cerebral perfusion between the two hemispheres with a built-in 

contralateral control. We were unable to determine if SCG stimulation results in significant 

global ICP changes and if these changes affect the perfusion of the stimulated and/or 

non-stimulated side compared to baseline. Regardless, we believe our results are still quite 

valid given use of a contralateral built-in control.

Some have challenged the notion that vasospasm is the primary causative mechanism for 

delayed cerebral ischemia (DCI) following subarachnoid hemorrhage, endorsing spreading 

depolarization, microcirculatory dysfunction, disrupted cerebral autoregulation, and early 

brain injury as separate contributing factors.46,47 While the exact pathophysiology of DCI 

in this setting remains unclear, resolution of vasospasm continues to be associated with 

good neurologic outcomes in patients following subarachnoid hemorrhage. Accordingly, 

reversal of cerebral vasospasm remains the standard of care and discovery of new methods 
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for reversing vasospasm continues to be an area of interest in the cerebrovascular research 

community.48,49

Conclusion

Our study demonstrates that sympathetic hyperactivity can lead to true cerebral 

hypoperfusion in a large mammal swine model. Furthermore, this activity can be 

inhibited with SCG blockade to restore cerebral perfusion. Accordingly, we propose 

further investigations into inhibition of SCG as a potential therapeutic option for cerebral 

hypoperfusion.
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Figure 1: 
Swine left neck dissection photograph

After proper intubation and sedation of the animal a vertical incision was made in the ventral 

left side of the animal’s neck to expose the SCG.
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Figure 2: 
Representative Regions of Interest

Examples of representative regions of interest (ROI) in Frontal, Temporal, Parieto-Occipital 

and Posterior Fossa regions. Red circles show representative ROIs on sagittal, coronal and 

axial views of the right hemisphere. White circles show applied ROIs on processed coronal 

cerebral blood flow (CBF) imaging. Right sided ROI was auto-mirrored to left hemisphere 

for comparison.
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Figure 3: 
Computed Tomography Perfusion Scans

CTp coronal view in standard radiographic orientation of fronto-temporal area of swine 

brain. White dashed box shows the location of swine brain. Cerebral blood flow (CBF), 

cerebral blood volume (CBV), mean transit time (MTT) and time-to-maximum (Tmax) 

shown in different columns. CTp of swine at baseline, with stimulation of right SCG with 

and without prior lidocaine administration shown in different rows.
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Figure 4: 
CTp parameters in intracranial areas

Measurements ipsilateral to side SCG stimulation represented as a percentage of non-

stimulated contralateral side. Baseline (no SCG stimulation) shows right cerebral blood 

flow as a percentage of L side. (A) Cerebral blood flow (CBF); (B) Cerebral blood volume 

(CBV); (C) Mean transit time (MTT); (D) time-to-maximum. Box indicates first to third 

quartile of data points. Whiskers indicate data set range within 1.5 times interquartile range 

from the box. Line within box indicates median. “X” within box indicates mean. Black: 

baseline (no SCG stimulation); Red (solid): right SCG stimulation; Blue (solid): left SCG 

stimulation; (*: p < 0.05; **: p < 0.001; ***: p < 0.0001)
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Figure 5: 
CTp parameters with SCG blockade in intracranial areas

Measurements ipsilateral to side of SCG stimulation represented as a percentage of non-

stimulated contralateral side. Baseline (no SCG stimulation) shows right cerebral blood 

flow as percentage of left side. (A) Cerebral blood flow (CBF); (B) Cerebral blood volume 

(CBV); (C) Mean transit time (MTT); (D) time-to-maximum. Box indicates first to third 

quartile of data points. Whiskers indicate data set range within 1.5 times interquartile range 

from the box. Line within box indicates median. “X” within box indicates mean. Black: 

baseline (no SCG stimulation); Red (empty): right SCG stimulation with 2% lidocaine 

administration; Blue (empty): left SCG stimulation with 2% lidocaine administration. (*: p < 

0.05; ns: non-significant)
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