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A HYDROLOGIC APPROACH TO

BIOT’S THEORY OF POROELASTICITY

D. B. SILIN, V. A. KORNEEV, G. M. GOLOSHUBIN, AND T. W. PATZEK

Abstract. A simplified asymptotic representation of the reflec-
tion of seismic signal from a fluid-saturated porous medium in the
low-frequency domain has been obtained.

First, the equations of low-frequency harmonic waves in a fluid-
saturated elastic porous medium from the basic concepts of filtra-
tion theory has been derived. It has been verified that the obtained
equations can be related to the poroelasticity model of Frenkel-
Gassmann-Biot, and to the pressure diffusion equation routinely
used in well-test analysis. Thus, it has been confirmed that main
equations of the poroelastic and filtration theories can be derived
based on the common assumptions. Moreover, the Biot’s tortuos-
ity parameter has been related to the relaxation time in dynamic
Darcy’s law.

Second, the reflection of a low-frequency signal from a plane in-
terface between elastic and elastic fluid-saturated porous media has
been studied. An asymptotic scaling of the frequency-dependent
component of the reflection coefficient with respect to a dimension-
less parameter depending on the frequency of the signal and the
reservoir fluid mobility has been obtained. The dependence of this
scaling on the relaxation time and tortuosity has been investigated
as well.

1. Introduction

When a seismic wave interacts with a boundary between elastic and
fluid-saturated media, some energy of the wave is reflected and the rest
is transmitted or dissipated. It is known that both the transmission
and reflection coefficients from a fluid-saturated porous medium are
functions of frequency [18, 15, 35, 12]. Recently, low-frequency signals
were successfully used in obtaining high-resolution images of oil and gas
reservoirs [19, 20, 10] and in monitoring underground gas storage [23].
Therefore, understanding the behavior of the reflection coefficient at
the low-frequency end of the seismic spectrum is of special importance.

Date: April 26, 2004.
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The main objective of this paper is to obtain a simplified asymptotic
representation of the reflection of seismic signal from a fluid-saturated
porous medium in the low-frequency domain. More specifically, we de-
rive a relatively simple formula, where the frequency-dependent com-
ponent of the reflection coefficient is proportional to the square root
of the product of frequency of the signal and the mobility of the fluid
in the reservoir. To obtain wave propagation equations, we apply a
somewhat nontraditional approach by deriving them from the basic
principles of the theory of filtration. This is done, in particular, to
verify that both the filtration and poroelasticity theories are based on
common foundation.
Indeed, both filtration theory [29, 31, 6, 3] and the theory of poroe-

lasticity [16, 17, 7, 8, 9, 37] study, in particular, fluid flow in an elastic
porous medium. The filtration theory, usually assumes steady-state or
transient processes where the macroscopic transition times are signif-
icantly longer than the transition times of the local microscopic pro-
cesses. The poroelasticity theory includes a model of acoustic wave
propagation in fluid-saturated elastic media, where the macroscopic
transition times are short and, therefore, the concept of steady-state
fluid flow may be inapplicable.
To obtain a system of equations characterizing fluid and solid inter-

action in a macroscopically homogeneous elastic fluid-saturated porous
medium, we adopt relaxation filtration [2, 27, 26], which employs re-
laxation time to account for the inertial and non-equilibrium effects
in fluid flow, thus extending the classical Darcy’s law [11, 21, 22].
Originally, Darcy’s law was formulated for steady-state flow [11]. It
is recognized that non-equilibrium effects are important in two-phase
flow [5, 4], see also [36]. However, due to local heterogeneities, they are
important in single-phase flow as well.
Further, it is demonstrated in Sections 2 and 3 that under different

assumptions, the equations obtained here can be transformed either
into Biot’s wave equations [7, 8, 9], or into the elastic drive pressure
diffusion equation [29, 25, 3].
Originally, in the derivation of the wave equations of poroelasticity,

the Hamiltonian principle of least action was applied [7, 8, 9]. In order
to close the system, an introduction of a parameter having dimension
of density was needed. This parameter was then related to a dimen-
sionless tortuosity factor characterizing the complex geometry of the
pore space in natural rocks. There are several definitions of tortuosity
in the literature, see e.g., [6]. In Biot’s derivation, the tortuosity factor
statistically characterizes the heterogeneity of the local fluid velocity
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field [9]. The way this tortuosity factor and the above-mentioned re-
laxation time enter the equations leads to the conclusion that both are
linearly related to each other. The magnitude of the relaxation time
and, hence, the value of the tortuosity, affects the way the reflection
coefficient depends on frequency. Since the magnitude of the tortuosity
in Biot’s equations ranges, in general, between one to infinity [28], it
is very important to know typical tortuosity factors for different types
of rock. Microscopic-scale flow modeling on pore networks [30] can
provide such an estimate.
During the last fifty years, a significant effort has been spent on the

investigations of attenuation of Biot’s waves, see e.g., [33, 34] and the
references therein. It has been noticed that there must be a relation
between the dependence of the attenuation on the wave frequency and
the permeability of the reservoir [32]. In many cases, the attenuation
coefficient can be obtained in an explicit, but quite cumbersome, form.
Computation of the reflection coefficient is even more complex because
it additionally requires inversion of a matrix, so even under simplifying
assumptions the formula is cumbersome. In this study, we obtain a
simplified asymptotic expression where the role of the reservoir fluid
mobility is transparent. We focus on the simplest case of normal p-
wave reflection. In addition, we assume that the grains of the solid
skeleton are practically incompressible, so that all deformations of the
rock and the pore space are due to the rearrangements of the grains.
The layout of the paper is as follows. In the next section, the main

equations of the model are derived from the principles of filtration the-
ory. In Section 3, the obtained relationships are compared with the
Biot’s equations and the pressure diffusion model. Then, in Section 5,
we obtain a harmonic wave solution to the equations obtained in Sec-
tion 2. A dimensionless small parameter for the asymptotic analysis
is introduced in the same section. In the next section, the boundary
conditions for the reflection problem are formulated. An asymptotic
expression for the reflection coefficient with respect to the small pa-
rameters introduced in Section 5 is obtained in Section 6. In Section 7,
we elaborate on how the relaxation time and tortuosity affect the as-
ymptotic analysis. We end the paper with conclusions and acknowl-
edgments.

2. Fluid-solid skeleton interaction equations

Consider a homogeneous porous mediumM whose pore space is filled
with a viscous fluid and the grains of the solid skeleton are displaced
by an elastic wave. It is assumed that a planar p-wave is propagating
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along the x-axis of a fixed Cartesian coordinate system. Thus, after
averaging over a plane orthogonal to x, the only non-zero component
of the displacement is the x-component, and the mean displacement
is one-dimensional. Due to the deformation of the skeleton, the grains
are rearranged. We assume that the rearrangement occurs through
elastic deformations of the cement bonds between the grains. Such an
assumption is natural in many situations considered in hydrology and
is quite common in the geophysical literature as well, see, e.g., [12].
In general, deformations result in energy dissipation. In this paper,

for simplicity, it is assumed that these energy losses are much smaller
than the losses through the viscous friction in the cross-flow of the
reservoir fluid. Further, we assume that the rock is “clean”, so that
the total mass and volume of the bonds is small relative to those of the
grains. Thus, for the bulk density of the “dry” skeleton % we have

% = (1− φ)%g (1)

where %g is the density of the grains and φ is the porosity. If we neglect
the microscopic rotational motions of the grains, the mean density of
momentum of a drained skeleton is given by

%
∂u

∂t
= (1− φ)%g

∂u

∂t
(2)

where u is the mean displacement of the skeleton grains in the x-
direction and t denotes time.
Deformations of the skeleton change the stress field. It is natural to

assume that the shear stresses are, on average, uniformly distributed in
any direction orthogonal to x. In general, even uniformly distributed
shear stress influences the rearrangement of the skeleton. However, the
assumption of stiff grains and small-volume bonds allows us to neglect
this influence. The x-component of the stress caused by a displacement
u, σx, can be measured by the elastic forces acting on a unit (bulk) area
in a plane orthogonal to x. Linear elasticity hypothesis suggests that
for small displacements the total stress σx, and the displacement u are
linearly related:

σx =
1

β

∂u

∂x
(3)

Here β = 1/K is the drained bulk compressibility, or the inverse of
the bulk modulus K. We retain subscript x in equation (3) just to
emphasize that here we focus on a one-dimensional case only.
The motion of the reservoir fluid can be characterized by the superfi-

cial or Darcy velocityW measured relative to the skeleton. This means,
that if we imagine a small surface element moving along with the local
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displacement of the grains, then the volumetric fluid flux through this
surface is equal to the projection of W on the unit normal vector to
the surface. The average velocity vf of the fluid relative to the skeleton
is related to the Darcy velocity by equation

φvf =W (4)

We assume that both the motion of the skeleton u and Darcy velocity
W are just small perturbations near some equilibrium values. The same
applies to the fluid pressure p.
The fluid pressure gradient has a two-fold impact on the total mo-

mentum balance in the fluid-solid system [31, 37]. First, the net force

exerted by the fluid pressure on the solid grains is equal to (1− φ)
∂p

∂x
.

Second, since the fluid and the skeleton may move with different ve-
locities, there is momentum transfer between the solid and the fluid
through viscous friction at the pore walls. This second component is

equal to −φ∂p
∂x

and is usually called seepage drag. Below, we con-

sider only small perturbations of the pressures and densities near the
respective equilibrium condition. Therefore, the gravity effects, includ-
ing fluctuations of the hydraulic head, can be neglected.
Thus, the total fluid pressure-related force acting on the solid skele-

ton is equal to −∂p
∂x
. A small volume of the medium, δV , contains

%δV mass of rock material and φ%fδV mass of fluid. Here %f is the
density of the fluid. Hence, the momentum of moving fluid per unit
bulk volume is

φ%f

(

∂u

∂t
+ vf

)

= φ%f
∂u

∂t
+ %fW (5)

Thus, the momentum balance per unit bulk volume is:

%b
∂2u

∂t2
+ %f

∂W

∂t
=
1

β

∂2u

∂x2
− ∂p

∂x
(6)

Here %b is the bulk density of the fluid-saturated medium:

%b = (1− φ)%g + φ%f = %+ φ%f (7)

Now, let us consider in more detail the motion of the fluid. According
to Darcy’s law, at steady-state conditions,

W = −%f
κ

η

∂Φ

∂x
(8)
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where κ is the permeability of the medium, η is the viscosity of the
fluid and Φ is the flow potential [21, 22]. We consider only small per-
turbations near an equilibrium configuration and the Darcy velocityW
is measured relative to the porous medium. Hence, the gravity term
in the differential of potential Φ is replaced with a term characterizing
additional pressure drop due the accelerated motion of the skeleton

dΦ =
dp

%f
+
∂2u

∂t2
dx (9)

Darcy’s law (8) is for steady-state flow. If the flow is transient, e.g.,
due to abrupt changes in the pressure field, equation (8) may need
to be modified in order to account for inertial and non-equilibrium
effects. As the pressure gradient changes, the local redistribution of
the pressure field does not occur instantaneously because it includes
microscopic fluid flow along and between the pores. Using dimensional
considerations and linearization, we replace equation (8) with a non-
equilibrium relationship

W + τ
∂W

∂t
= −%f

κ

η

∂Φ

∂x
(10)

Here τ is a characteristic redistribution time. Such a modification was
proposed by Alishaev [1, 2].
In multiphase flow, similar considerations were used to model non-

equilibrium effects at the front of water-oil displacement and sponta-
neous imbibition [5, 4]. Some results on estimation of the relaxation
time based on interpretation of experiments were reported in [27, 26,
13]. Apparently, the relaxation time is a function of pore space geome-
try and fluid viscosity η and compressibility βf . Dimensional consider-
ations suggest that τ = ηβfF (κ/L

2), where L is the characteristic size
of an elementary representative volume of the medium and F is some
dimensionless function. Time τ is apparently related to the tortuosity
factor [9]. This relationship is discussed in more detail below.
Thus, summing up, we arrive at the following equation characterizing

the dynamics of fluid flow

W + τ
∂W

∂t
= −κ

η

∂p

∂x
− %f

κ

η

∂2u

∂t2
(11)
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The mass balances for the fluid and the solid skeleton are

∂(%fφ)

∂t
= −

∂

(

%fW + φ%f
∂u

∂t

)

∂x
(12)

∂%

∂t
= − ∂

∂x

(

%
∂u

∂t

)

(13)

For the fluid, we apply the isothermal compressibility law [24], that is,
for small fluid pressure perturbation

d%f
%f
= βfdp (14)

Hence, Eq. (12) can be rewritten as

∂φ

∂t
+ φβf

∂p

∂t
= −∂W

∂x
− φ

∂2u

∂x∂t
−W

∂%f
∂x
− 1

%f

∂

∂x
(φ%f )

∂u

∂t
(15)

Due to the smallness of the perturbations, the last two terms in equa-
tion (15) are small of a higher order and can be neglected.
With ρ = (1− φ)ρg, Equation (13) takes on the form

−∂φ
∂t
+(1−φ) 1

%g

∂%g
∂t
= − 1

%g
(1−φ)∂%g

∂x

∂u

∂t
+
∂φ

∂x

∂u

∂t
−(1−φ) ∂

2u

∂x∂t
(16)

Again, the smallness of the perturbations implies that the first two
terms on the right-hand side of the last equation can be dropped. Fur-
ther on, perturbation of the grain density is a linear function of the
perturbations of the stress and fluid pressure, that is

1

%g
d%g = βgsdσx + βgfdp (17)

where βgs and βgf are the respective compressibility coefficients. Thus,
equation (16) can be written as

∂φ

∂t
= (1− φ)βgf

∂p

∂t
+ (1− φ)

(

1 +
βgs
β

)

∂2u

∂x∂t
(18)

A combination of this last result with equation (15) leads to the fol-
lowing relationship

(

1 + (1− φ)
βgs
β

)

∂2u

∂x∂t
+ (φβf + (1− φ)βgf )

∂p

∂t
= −∂W

∂x
(19)

Under the assumptions formulated above, the compressibility of the
grains is much smaller than the compressibility of the fluid and the
skeleton:

βgf ¿ βf and βgs ¿ β (20)
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This means that the deformation occurs only through the porosity per-
turbations. Thus, equation (19) can be further reduced to

∂2u

∂x∂t
+ φβf

∂p

∂t
= −∂W

∂x
(21)

Equation (21) states that the amount of fluid volume packed into a
unit bulk volume per unit time is equal to minus the divergence of the
absolute fluid velocity. The fluid volume can be packed into the bulk
volume because the fluid is compressible and the pressure increases, and
because the porosity can also increase. Note that mathematically there
is no qualitative difference between equations (19) and (21). Below,
we use mass balance equation in the form (19) wherever it does not
exceedingly complicate the calculations.
To summarize, we have obtained a closed system of three equa-

tions (6), (11), and (19) with three unknown functions of t and x:
skeleton displacement u, fluid pressure p, and Darcy velocity W .

3. Relationship to Biot’s poroelasticity and pressure

diffusion equations

In this section, we demonstrate that under the assumptions formu-
lated in Section 2 equations (6), (11), and (19) can be reduced to the
system of equations obtained by Biot [7, 9], see also [14]. At the same
time, neglecting the inertial terms in these equations, leads to the pres-
sure diffusion equation used in hydrology and petroleum engineering for
well test analysis, see [25, 3].
We begin with Biot’s theory. We will perform the calculations using

the assumption of grain incompressibility, Eq. (20). As we consider
only small oscillatory deformations of the skeleton and fluctuations of
the fluid flow, a “superficial” displacement of the fluid relative to the
skeleton w can be introduced, so that

W =
∂w

∂t
(22)

Note that inasmuch as w is related by Eq. (22) to the Darcy velocity of
the fluid, it is different from the average microscopic fluid displacement.
Substitution of (22) into equation (21) yields

∂2u

∂x∂t
+ φβf

∂p

∂t
= − ∂2w

∂t∂x
(23)

By integration in t and differentiation in x, we obtain

∂p

∂x
= − 1

φβf

∂2u

∂x2
− 1

φβf

∂2w

∂x2
(24)
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Here we have utilized the assumption of the smallness of the rock-fluid
system oscillations near an equilibrium configuration. Otherwise, due
to the integration, equation (24) should include an unknown function
of x. Now, let us substitute (22) and the result (24) in equations (6)
and (11):

%b
∂2u

∂t2
+ %f

∂2w

∂t2
=

(

1

β
+

1

φβf

)

∂2u

∂x2
+

1

φβf

∂2w

∂x2
(25)

%f
∂2u

∂t2
+ τ

η

κ

∂2w

∂t2
=

1

φβf

∂2u

∂x2
+

1

φβf

∂2w

∂x2
− η

κ

∂w

∂t
(26)

Under the assumptions formulated above, equations (25) – (26) are
equivalent to the Biot system of equations (8.34) [9]:

∂2

∂t2
(%bu+ %fw) =

∂

∂x

(

A11
∂u

∂x
+M11

∂w

∂x

)

∂2

∂t2
(%fu+mw) =

∂

∂x

(

M11
∂u

∂x
+M

∂w

∂x

)

− η

κ

∂w

∂t

Comparing the individual terms, we can establish a relationship be-
tween the relaxation time and the tortuosity factor. Namely, the re-
laxation time τ is related to the dynamic coupling coefficient m [9]
through the inverse mobility ratio η/κ. The dynamic coupling coeffi-
cient is often expressed through the tortuosity factor T : m = T%f/φ.
Hence, for the tortuosity and relaxation time, we obtain the following
relationship:

T = τ
ηφ

κ%f
or τ = T

κ%f
ηφ

(27)

Comparison of the elastic coefficients reveals that under the assumption
of isotropic porous medium and incompressible grains (the Biot-Willis
coefficient α = K/H ≈ 1, and Ku = K +Kf/φ), the Biot coefficients
are constant and equal to

A11 = Ku ≈
1

β
+

1

φβf
and M11 =M = KuB ≈

1

φβf
(28)

where Ku is the undrained bulk modulus, and B = R/H is Skempton’s
coefficient, 1/H being the poroelastic expansion coefficient, and 1/R
the unconstrained specific storage coefficient.
Now, let us derive the pressure diffusion equation. Assume that

the characteristic time tD of the process is large in comparison with
the relaxation time τ and the displacements of the skeleton are much
smaller then the characteristic length scale of the process L:

tD À τ and u¿ L (29)
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Under this assumption, the second order time derivatives of displace-
ment u and time derivatives of Darcy velocity W in equations (6)
and (11) can be dropped:

∂p

∂x
=

1

β

∂2u

∂x2
(30)

W = −κ
η

∂p

∂x
(31)

By integrating equation (30) in x and differentiating in t, we obtain

∂2u

∂t∂x
= β

∂p

∂t
(32)

Formally, integration by x is defined up to a function of time. Assuming
a constant pressure at infinity, this function of time also is constant.
This constant is then cancelled by the differentiation with respect to
t. Finally, by a substitution of equations (31) and (32) into (21), we
obtain

φ(β/φ+ βf )
∂p

∂t
=
κ

η

∂2p

∂x2
(33)

This last equation is the pressure diffusion equation routinely used in
well test analysis [25, 3].

4. Plane compressional wave: an asymptotic solution

Let us consider the system of equations obtained in Section 2. We
introduce the dimensionless pressure

P = φβfp (34)

and the hydraulic diffusivity

D =
κ

φβfη
(35)

Dividing equation (6) by %b and putting

v2
b =

1

β%b
and v2

f =
1

φβf%b
(36)

we obtain

∂2u

∂t2
+
%f
%b

∂W

∂t
= v2

b

∂2u

∂x2
− v2

f

∂P

∂x
(37)

λf

∂2u

∂t2
+W + τ

∂W

∂t
= −D∂P

∂x
(38)

γ1
∂2u

∂x∂t
+ γ2

∂P

∂t
= −∂W

∂x
(39)
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where

λf = %f
κ

η
(40)

is the “kinematic” mobility of the fluid, and

γ1 = 1 + (1− φ)
βgs
β

and γ2 = 1 + (1− φ)
βgf
φβf

(41)

Clearly, λf has the dimension of time. The assumptions (21) imply
that both dimensionless coefficients γ1 and γ2 are close to one. We
seek a planar wave solution to the equations (37)–(39) in the form

u = Use
i(ωt−kx), W = Wfe

i(ωt−kx), P = P0e
i(ωt−kx) (42)

Substitution of Eq. (42) into (37)–(39) produces a system of algebraic
equations















−ω2Us + iω
%f
%b
Wf = −v2

bk
2Us + iv2

fkP0

−λfω
2Us + iτωWf = iDkP0 −Wf

kωγ1Us + iωγ2P0 = ikWf

(43)

Using the last equation, Wf can be eliminated from the system (43).
Indeed, we get

Wf = −iωγ1Us + ωγ2
P0

k
(44)

and

iωWf = ω2γ1Us + iω2γ2
P0

k
(45)

Hence,










−ω2

(

1− %f
%b
γ1

)

Us + iω2γ2
%f
%b

P0

k
= −v2

bk
2Us + iv2

fkP0

−(λf − τγ1)ω
2Us + iτω2γ2

P0

k
= iDkP0 + iωγ1Us − ωγ2

P0

k
(46)

Now, let us introduce two new variables

v =
ω

k
and ξ = − iP0

kUs

(47)

Note, that v has the dimension of velocity and, in general, v is a com-
plex quantity. The variable ξ and equation (44) relate all three ampli-
tudes Us, Wf , and P0. In particular,

Wf = iω(−γ1 + γ2ξ)Us =
ω

k

(

−γ1

ξ
+ γ2

)

P0 (48)
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In terms of variables v and ξ defined in Equation (47), the system of
equations (46) takes on the following form











v2

(

1− γ1
%f
%b

)

+ v2γ2
%f
%b
ξ = v2

b + v2
fξ

(λf − τγ1)v
2 + τv2γ2ξ = Dξ +

i

ω
v2 (−γ1 + γ2ξ)

(49)

or, equivalently,














v2

(

1− γ1
%f
%b
+ ξγ2

%f
%b

)

= v2
b + v2

fξ

v2

[

λf −
(

τ − i

ω

)

(γ1 − γ2ξ)

]

= Dξ
(50)

Denote

τD =
D

v2
f

=
κ%b
η
, γv =

v2
b

v2
f

=
φβf
β

and γ% =
%f
%b

(51)

The parameters γv and γ% are dimensionless. Taking into account equa-
tion (40),

λf = γ%τD (52)

The dimensionless relaxation time and angular velocity are defined as

θ =
τ

τD
and ε = τDω (53)

Dividing equations (50) by v2
f and putting V = v/vf , we obtain











V 2 (1− γ1γ% + ξγ2γ%) = γv + ξ

V 2

[

γ% −
(

θ − i

ε

)

(γ1 − γ2ξ)

]

= ξ
(54)

By eliminating V ,

V 2 =
γv + ξ

1− γ1γ% + γ2γ%ξ
(55)

we obtain a quadratic equation with respect to ξ:

(γ2 + iε (−γ2γ% + θγ2)) ξ
2

+(−γ1 + γ2γv + iε [−1 + γ1γ% + (γ% − θγ1) + θγ2γv]) ξ

+(−γ1γv + iεγv(γ% − τγ1)) = 0

(56)

At ε = 0, Equation (56) reduces to

γ2ξ
2 + (−γ1 + γ2γv)ξ − γ1γv = 0 (57)

The latter equation admits two real roots

ξ
(1)
0 =

γ1

γ2

and ξ
(2)
0 = −γv (58)



HYDROLOGIC APPROACH 13

By virtue of equations (20) and (41), the absolute value of the first
root ξ1

0 is close to unity, whereas the absolute value of the second one

is equal to
φβf
β
, that is usually larger than one. Using equation (55),

we obtain two asymptotic values for the complex velocity v

v
(1)
0 = 0 and v

(2)
0 = vf

√

γv +
γ1

γ2

(59)

The first solution corresponds to the slow wave, whereas the second
one is related to the fast wave. Naturally, this appearance of slow and
fast waves is in agreements with Biot’s theory [7, 9].
The exact solution to Eq. (56) can be easily obtained, but the ex-

pression is quite cumbersome. Instead, let us look for an asymptotic
solution. Note that if we assume the permeability κ ∼ 1 Darcy, that is
κ ∼ 10−12 m2, the viscosity of the fluid η ∼ 1 cP = 10−3 Pa-s, and the
bulk density of the rock %b ∼ 103 kg/m3, then τD ∼ 10−6 and ε ¹ 10−3

for frequencies ω not exceeding ∼ 1 kHz. Inasmuch as γ1 and γ2 are
of the order of unity, ε (more accurately, iε) is a small parameter in
equation (56) and we can look for a solution in the form

ξ = ξ0 + ξ1iε− ξ2ε
2 . . . (60)

Using notations

A0 = γ2 A1 = −γ2γ% + θγ2

B0 = γ2γv − γ1 B1 = −1 + γ%(1 + γ1) + θ(γ2γv − γ1)

C0 = −γ1γv C1 = γv(γ% − θγ1)
(61)

we obtain

ξ1 = −
A1ξ

2
0 +B1ξ0 + C1

2A0ξ0 +B0

(62)

Thus, the solutions corresponding to the slow and fast waves have,
respectively, the following forms

ξ
(1)
1 = γv

1− γ%(γ2γv + γ1)

γ1 + γ2γv
(63)

and

ξ
(2)
1 =

1

γ2

γ1 − γ%(γ2γv + γ1)

γ1 + γ2γv
(64)
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Note, that since both γ1 ≈ 1 and γ2 ≈ 1, equations (63) and (64) can
be simplified

ξ
(1)
1 = γv

1− γ%γv − γ%
1 + γv

(65)

ξ
(2)
1 =

1

γ2

γ1 − γ%γv − γ%
1 + γv

(66)

In particular, ξ
(1)
1 and ξ

(2)
1 are independent of the permeability of the

formation and the viscosity of the fluid. Note that the relaxation time
also disappears from the first-order approximation of ξ for both the
slow and fast wave. The latter circumstance is discussed in Section 7
below.
Using equation (55), we obtain that

v(1) = ±vb

√

iε

γ1 + γ2γv
+ . . . (67)

and

v(2) = ±vf
√

γv +
γ1

γ2

+ vfV1iε+ . . . (68)

where V1 is the first coefficient of the expansion of V in the powers of
iε. The last two equations, in a combination with equation (63), imply
that

k(1) = ± 1

τDvb

√
γ1 + γ2γv

√
−iε+ . . . (69)

k(2) = ± 1

τDvf

1
√

γv +
γ1

γ2

ε+ . . . (70)

The imaginary part of k must be negative, therefore, from (69) we infer
that

k(1) =
1

τDvb

√
γ1 + γ2γv

1− i√
2

√
ε+ . . . (71)

and, respectively,

v(1) = vb

√

1

γ1 + γ2γv

1 + i√
2

√
ε+ . . . (72)

By virtue of equations (58) and (48)

Wf = −iω(γ1 − γ2ξ)Us (73)

Furthermore, using equations (60), we get for the fast wave

W fast
f = −εωγ2ξ

(2)
1 U fast

s + . . . (74)
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The right-hand side of the last equation is small with respect to ε.
That means that at low frequencies, the fast wave is actually a coherent
oscillation of the skeleton and the fluid. At the same time, for the slow
wave we obtain a finite nonzero limit if the Darcy velocity amplitude is
compared with the amplitude of the time-derivative of the displacement

W slow
f = −iω (γ1 + γ2γv)U

slow
s + . . . (75)

%1, v1

%2, v2, κ

Medium 1

Medium 2

Impermeable interface
x = 0

Displacement

Figure 1. One dimensional propagation of a low-
frequency disturbance perpendicular to the impermeable
interface between medium M1 and porous, permeable
solid M2 fully saturated with a liquid.

5. Boundary conditions

Consider a normal incidence of a compressional elastic wave upon
a plane interface x = 0 separating media M1 and M2 occupying half-
spaces x < 0 and x > 0, respectively, see Figure 1. Their properties
are characterized by the bulk densities %i and the speeds of sound vi,
i = 1, 2. The medium M2 is porous and saturated by a fluid, that is,
it consists of a solid skeleton and fluid-filled pore space. We assume
that the boundary between the media is impermeable for fluid flow and
the permeability of medium M2 is characterized by a coefficient κ. To
calculate the reflection coefficient, boundary conditions at the interface
between the media, i.e., at x = 0, must be formulated.
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Under the assumptions of Section 3, and neglecting the heterogenei-
ties of the materials, we can assume that the displacements of the solid
particles composing the media are parallel to x, and so is the flux of the
fluid in the pore space. There is an important difference between the
fluid and solid motion. The solid particles move more or less coherently
near the respective equilibrium positions, whereas fluid particles move
in a much more dispersed manner implied by the complexity of the pore
space geometry. Only the mean volumetric flux or Darcy velocity of
the moving fluid is parallel to x. This quantity is the result of averaging
the microscopic fluid velocity field over a representative volume. In the
case under consideration, such an averaging can be performed over a
plane x = Const > 0.
Denote by u1 and u2 the displacements of the solid particles in media

M1 and M2, respectively.
First, the continuity of the displacements and microscopic stresses

requires that

u1|x=0 = u2|x=0 (76)

− 1
β 1

∂u1

∂x

∣

∣

∣

∣

x=0

= −1− φ

β2

∂u2

∂x

∣

∣

∣

∣

x=0

+ φp|x=0 (77)

Zero fluid flux through the boundary implies

Wf |x=0 = 0 (78)

Boundary conditions (76)–(78) will be used in the next section for
investigation of the reflection coefficient.

6. Reflection coefficient

To calculate the reflection coefficient, we have to equate the sum of
incident and reflected displacements in medium M1

u1 = U1e
i(ωt−k1x) +RU1e

i(ωt+k1x) (79)

with the sum of slow and fast waves transmitted into medium M2

p =
1

φβf
P s

0 e
i(ωt−ksx) +

1

φβf
P f

0 e
i(ωt−kfx) (80)

u2 =
1

1− φ
U s

2e
i(ωt−ksx) +

1

1− φ
U f

2 e
i(ωt−kfx) (81)

using boundary conditions (76), (77) and (78). We assume zero atten-
uation in medium M1, therefore k1 > 0 is real and ωk1 = v1 is the
p-wave velocity in this medium.
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Utilizing the first equation (48), we obtain











































(1 +R)U1 = U s
2 + U f

2

ik1

β1

(1−R)U1 =
iks2
β2

U s
2 +

ikf2
β2

U f
2

+
P f

0 + P s
0

βf
0 = iω(−γ1 + γ2ξ

s)U s
2 + iω(−γ1 + γ2ξ

f )U f
2

(82)
Further, by virtue of equation (47), we get























−(1 +R)U1 + U s
2 + U f

2 = 0

−k1

β1

(1−R)U1 + ks2

(

1

β2

+
ξs

βf

)

U s
2 + kf2

(

1

β2

+
ξf

βf

)

U f
2 = 0

(γ1 − γ2ξ
s)U s

2 + (γ1 − γ2ξ
f )U f

2 = 0

(83)
Note that in medium M1 we have

k1 =
1

v1

ω (84)

where v1 is the speed of sound, i.e., a characteristic of the medium,
which does not depend on the frequency.
Dividing through by U1 and putting Z1 = R, Z2 = U s

2/U1, and

Z3 = U f
2 /U1, we obtain the following system of equations























−Z1 + Z2 + Z3 = 1

ωZ1 + v1k
s
2

(

β1

β2

+ ξs
β1

βf

)

Z2 + v1k
f
2

(

β1

β2

+ ξf
β1

βf

)

Z3 = ω

(γ1 − γ2ξ
s)Z2 + (γ1 − γ2ξ

f )Z3 = 0
(85)

Hence, using equations (70) and (69) and notation (53), the system of
equations (85) can be presented in the following asymptotic form



















−Z1 + Z2 + Z3 = 1
√
εZ1 + A22Z2 + A23

√
εZ3 =

√
ε

(

A
(1)
32 + A

(2)
32 iε

)

Z2 + A33iεZ3 = 0

(86)
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The expressions for the coefficients Aij can be obtained from the as-
ymptotic formulae (60), (63), (64), (70), and (71):

A22 =
v1

vb

√
γ1 + γ2γv γs

1− i√
2

(87)

A23 =
v1

vf

√

γ2

γ1 + γ2γv
γf (88)

A
(1)
32 = γ1 + γ2γv (89)

A
(2)
32 = −γ2γv

1− γ%(γ2γv + γ1)

γ1 + γ2γv
(90)

A33 = −γ%γ1 − γ1 + γ%
γ1 + γ2γv

(91)

Here we used the notations

γs = β1

(

1

β2

− γv
1

βf

)

and γf = β1

(

1

β2

+
γ1

γ2

1

βf

)

(92)

From the last equation (86),

Z2 = −
A33

A
(1)
32

iεZ3 + . . . (93)

This means that at low frequencies (i.e., at ε→ 0), the slow wave dis-
placement is scaled with the velocity of fast displacement and, there-
fore, is one order of magnitude smaller. In other words, the slow part
of the signal practically does not propagate and is mostly responsible
for the reflection.
Substitution of (93) into the first two equations (86) yields























−Z1 +

(

1− A33

A
(1)
32

iε

)

Z3 = 1

√
εZ1 +

(

A23

√
ε− A22

A33

A
(1)
32

iε

)

Z3 =
√
ε

(94)

Cancelling the
√
ε in the second equation (94) and dropping terms of

the order higher than
√
ε, we obtain that

Z3 = Z1 + 1 (95)

Consequently,

Z1 =

1− A23 + A22
A33

A
(1)
32

i
√
ε

1 + A23 − A22
A33

A
(1)
32

i
√
ε

(96)
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Again, retaining only the terms of the order
√
ε, we finally obtain

Z1 =
1− A23

1 + A23

+
√
2
Ã22A33

A
(1)
32

1

(1 + A23)2
(1 + i)

√
ε (97)

where
Ã22 =

v1

vb

√
γ1 + γ2γv γs (98)

Analysis of the expression (88) yields that in practicalsituations, the co-
efficient A23 is greater than one. Therefore, the frequency-independent
component of the reflection coefficient is negative. The frequency-
dependent component of the reflection has the same sign as Ã33. The
latter is positive if and only if

γ% <
γ1

1 + γ1

(99)

The right-hand side of the last inequality is approximately equal to 0.5.
Hence, roughly speaking, Ã33 is positive when the fluid density is at
least twice less than the bulk density of the saturated medium. In such
a case the maximum of the absolute value of the reflection coefficient
is attained at ε = 0. At the same time, for dense fluids, the first-order
term of the asymptotic expansion, which is proportional to the square
root of ε, may vanish and the first frequency-dependent term will be
linear. In this case, the tortuosity coefficient becomes an important
factor.
In the original variables (51), equation (97) takes on the form

R =
1− A23

1 + A23

+
√
2
Ã22A33

A
(1)
32

1

(1 + A23)2
(1 + i)

√

κ%b
η
ω (100)

Note that the last equation relates the reflectivity to the frequency

through the factor of τD =
κ%b
η
having the dimension of time. It

involves a property of the rock, the permeability coefficient, a property
of the fluid, the viscosity, and a property of the coupled fluid-rock
system, the bulk density. Note that the frequency scaling proposed
here is similar to but not the same as the scaling introduced in [18].

7. The role of relaxation time and tortuosity

The asymptotic calculations presented above show that the dimen-
sionless parameter θ, related to both relaxation time and tortuosity
factor, disappears from the first-order terms. However, if θ is large,
then some expansions obtained in Sections 4 and 6 have to be reviewed.
Practically, the range of frequencies is limited by the specifications of
the available tools. Therefore, it may happen that within the range of
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frequencies available for analysis the product θε is not negligibly small,
and the theoretical passage to the limit as ε → 0 should be replaced
with analysis at some intermediate finite values of ε. In such a case,
the asymptotic analysis must be performed differently. In this section,
we consider two examples of such analysis.
First, let us assume that within the range of available frequencies, the

parameter εθ is of the order of one. In original variables, this condition
is equivalent to

ω ∼ 1
τ

(101)

Regrouping the coefficients in the Equation (56) and dividing through
by 1 + iθε, we obtain

(A0 + Aθ
1iε)ξ

2 + (B0 +Bθ
1iε)ξ + C0 + Cθ

1 iε = 0 (102)

where the coefficients with zero indices are the same as in equation (61),
and

Aθ
1 = − γ2γ%

1 + iθε

Bθ
1 =

−1 + γ%(1 + γ1)

1 + iθε

Cθ
1 =

γvγ%
1 + iθε

(103)

Hence, the frequency-independent zero-terms of asymptotic expansions
of the solutions ξ are the same as in Equation (58). To calculate the
first order coefficients, we note that formally the coefficients (103) are
equal to the respective coefficients in Equations (61) evaluated at τ = 0
and divided by 1 + iθε. This fact, in conjunction with the observation
that the asymptotic expansion of the reflection coefficient (100) does
not depend on τ , significantly simplifies the calculations. Indeed, for
the first-order coefficients of asymptotic expansion for ξ we can reuse
equations (63) and (64) if we put there τ = 0 and multiply the right-

hand sides by an additional factor of
1

1 + iθε
. Clearly, the calculations

for the first order terms of expansions of v and k can be carried out in
a similar manner. The final result is that the reflection coefficient in
the asymptotic expression (100) takes on the form

R =
1− A23

1 + A23

+ 2
A22A33

A
(1)
32

1

(1 + A23)2

√
i− θε

√

κ%b
η
ω (104)

Thus, in a case where τω = O(1), the relaxation time and tortuosity
affect both the amplitude and the phase shift of the reflected signal.
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Now, consider another extreme situation where θ À 1, so that after
a division of equation (56) by θ all terms with θ in the denominator
can be neglected. In such a case, we obtain a quadratic equation

iε(A0ξ
2 +B0ξ + C0) = 0 (105)

The latter implies that the frequency dependence of ξ (and, therefore,
of the reflection coefficient as well) vanishes. This conclusion means
that at a very large relaxation time (or, equivalently, at a very large
tortuosity), the inertial term in equation (38) makes the dissipation
term on the right-hand side unimportant. Consequently, the fluid-
saturated medium acts as an elastic composite medium and we arrive
at a classical frequency-independent elastic wave reflection.

8. Conclusions

Equations of elastic waves propagation in fluid-saturated porous me-
dia have been obtained form the basic principles of hydrology. It has
been demonstrated, that under different assumptions, these equations
can be reduced either to Biot’s poroelasticity model or to the pressure
diffusion equation. The tortuosity factor entering Biot’s equations has
been expressed through the relaxation time from the dynamic version
of Darcy’s law. This result can be used for evaluating tortuosity from a
macroscopic flow experiment. The low-frequency asymptotic behavior
of the reflection of a planar seismic signal from an interface between
an elastic medium and fluid-saturated porous medium has been inves-
tigated. The frequency-dependent component of the reflection coeffi-
cient has been scaled with the square root of the characteristic time,
which depends on the reservoir fluid mobility. The dependence of this
characteristic time properties of the medium and the fluid has been
investigated.
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forsch Ges. Zürich 96 (1951), 1–23.

[18] J. Geertsma and D. C. Smit, Some aspects of elastic wave propagation in fluid-
saturated porous solids, Geophysics 26 (1961), no. 2, 169–181.

[19] G. M. Goloshubin and A.V. Bakulin, Seismic reflectivity of a thin porous
fluid-saturated layer versus frequency, 68th SEG Meeting (New Orleans), 1998,
pp. 976–979.

[20] G. M. Goloshubin and V. A. Korneev, Seismic low-frequency effects from fluid-
saturated reservoir, SEG Meeting (Calgary), 2000.

[21] M. King Hubbert, The theory of ground-water motion, Journal of Geology 48

(1940), 785–943.



HYDROLOGIC APPROACH 23

[22] , Darcy’s law and the field equations of the flow of underground fluids,
Trans. AIME 207 (1956), no. 7, 222–239.

[23] V. A. Korneev, G. M. Goloshubin, T. M. Daley, and D. B. Silin, Seismic
low-frequency effects in monitoring of fluid-saturated reservoirs, Geophysics
69 (2004), no. 2, 522–532.

[24] L. D. Landau and E. M. Lifschitz, Fluid mechanics, Series in advanced physics,
vol. 6, Addison-Wesley, Reading, MA, 1959.

[25] C. S. Matthews and D. G. Russell, Pressure buildup and flow tests in wells,
Monograph Series, Society of Petroleum Engineers, New York, 1967.

[26] Yu. M. Molokovich, Problems of filtration theory and mechanics of oil recovery
improvement, Nauka, Moscow, 1987.

[27] Yu. M. Molokovich, N. N. Neprimerov, B. I. Pikuza, and A. V. Shtanin, Re-
laxational filtration (in Russian), Kazan University, Kazan, 1980.

[28] L. N. Molotkov, On coefficients of pore tortuosity in an effenctive Biot model
(in russian), Transactions of St.-Petersburg branch of Steklov mathematical
institute 257 (1999), 157–164.

[29] M. Muskat, The flow of homogeneous fluids in porous media, McGrow-Hill,
1937.

[30] T. W. Patzek, Verification of a complete pore network simulator of drainage
and imbibition, SPE Journal 6 (2001), no. 2, 144–156.

[31] P. Y. Polubarinova-Kochina, Theory of groundwater movement, Princeton Uni-
versity Press, Princeton, N. J., 1962.

[32] S. R. Pride, J. M. Harris, D. L. Johnson, A. Mateeva, K. T. Nihei, R. L.
Noeack, J. W. Rector, H. Spelzler, R. Wu, T. Yamomoto, J. G. Berryman,
and M. Fehler, Permeability dependence of seismic amplitudes, The Leading
Edge (2003), 518–525.

[33] Steven R. Pride and James G. Berryman, Linear dynamics of double-porosity
dual-permeability materials. I. Governing equations and acoustic attenuation,
Physical Review E 68 (2003), no. 3, 036603.

[34] , Linear dynamics of double-porosity dual-permeability materials. II.
Fluid transport equations, Physical Review E 68 (2003), no. 3, 036604.

[35] J. E. Santos, J. M. Corbero, C. L. Ravazzoli, and J. L. Hensley, Reflection and
transmission coefficients in fluid-saturated porous media, Journal of Acoustical
Society of Amerika 91 (1992), no. 1, 1911–1923.

[36] D. B. Silin and T. W. Patzek, On Barenblatt’s model of spontaneous counter-
current imbibition, Transport in Porous Media 54 (2004), no. 3, 297–322.

[37] Herbert F. Wang, Theory of linear poroelasticity, Princeton Series in Geo-
physics, Princeton University Press, Princeton, NJ, 2000.



24 D. B. SILIN, V. A. KORNEEV, G. M. GOLOSHUBIN, AND T. W. PATZEK

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS

90-1116, Berkeley, CA 94720, USA

E-mail address: DSilin@lbl.gov

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS

90-1116, Berkeley, CA 94720, USA

Department of Geosciences, University of Houston, 504 Science and

Research Bldg 1 Houston, TX 77204-5006

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS

90-1116, Berkeley, CA 94720, USA




