
UCLA
UCLA Electronic Theses and Dissertations

Title
Merging Meaning for Product Attribute Extraction

Permalink
https://escholarship.org/uc/item/2q96n31f

Author
Carbone, Nicholas

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2q96n31f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Merging Meaning for Product Attribute Extraction

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Applied Statistics

by

Nicholas Carbone

2022

© Copyright by

Nicholas Carbone

2022

ABSTRACT OF THE THESIS

Merging Meaning for Product Attribute Extraction

by

Nicholas Carbone

Master of Applied Statistics

University of California, Los Angeles, 2022

Professor Yian Nian Wu, Chair

Companies that can leverage their product descriptions to find meaningful insights have a competitive

advantage in reaching and understanding their consumer. In practice, however, this is a challenging task.

Product descriptions may be written by a number of different individuals with inconsistent formatting.

They may contain typos, inaccurate representations and complex terminology so unique to a single

product as to be meaningless to analyze alongside other products.

For this reason, the study of Product Attribute Extraction (PAE) aims to extract meaningful at-

tributes from product descriptions with the goal of producing a structured dataset of attribute-value

pairs. Prior work has focused largely on conventional natural language processing (NLP) techniques to

identify such relationships. In this paper, we combine the architecture of transformers and variational

autoencoders (VAE) to merge and format semantically similar product descriptions with the goal of

decreasing the complexity of PAE. We demonstrate examples of the feasibility of this approach and assess

its potential, shortcomings and application to the field.

ii

The thesis of Nicholas Carbone is approved.

Frederic R. Paik Schoenberg

Tao Gao

Yian Nian Wu, Committee Chair

Unversity of California, Los Angeles

2022

iii

Contents

1 Introduction 1

2 Background 2

2.1 Product Attribute Extraction . 2

2.2 Transformers . 3

2.2.1 General Architecture . 3

2.2.2 BERT . 4

2.2.3 BART . 4

2.2.4 Sentence-BERT . 4

2.3 Variational Autoencoders . 5

2.3.1 General Architecture . 5

2.3.2 InfoVAE . 7

2.3.3 Annealing . 8

3 Dataset 8

3.1 Overview . 8

3.2 Preprocessing . 11

4 Methodology 11

4.1 Training . 11

4.2 Inference . 13

5 Results 14

5.1 Training . 14

5.1.1 Phase 1 . 14

5.1.2 Phase 2 . 16

5.1.3 Phase 3 . 18

5.2 Inference . 19

6 Conclusions 23

iv

7 Appendix 24

7.1 Model Layer Sizes . 24

7.2 Phase 2 Training Hyperparameters . 24

7.3 Inference Results for Gamma = 0.9 . 24

v

List of Figures

1 Top 10 term frequencies and TF-IDF for the dataset . 8

2 Frequency distribution of the dataset . 9

3 An example network structure from a community . 10

4 The full VAE model . 11

5 The BART model trained to reconstruct outputs from the VAE model 13

6 The averaging of samples to combine a community into a single representation for inference 13

7 Loss curves for phase 1 (smoothed over 25 steps) . 15

8 Entropy in output probabilities for phase 1 (smoothed over 25 steps) 15

9 Loss curves for phase 2 (smoothed over 25 steps) . 16

10 Entropy in output probabilities for phase 2 (smoothed over 25 steps) 16

11 Reconstruction loss curves for phase 2 (smoothed over 25 steps) 16

12 KL divergence (KLD) loss curves for phase 2 (smoothed over 25 steps) 17

13 MMD loss curves for phase 2 (smoothed over 25 steps) . 17

14 Loss curves for phase 1 (smoothed over 25 steps) . 18

15 Entropy in output probabilities for phase 1 (smoothed over 25 steps) 18

16 Sample of γ = 0.95 averaged latent embeddings for our model compared to BART; sequences
begin at the top of the y-axis . 22

17 Sample of γ = 0.9 averaged latent embeddings for our model compared to BART; sequences
begin at the top of the y-axis . 26

vi

List of Tables

1 Sample reconstructions at different points in the training process for phase 1 15

2 Sample reconstructions at different points in the training process for phase 2 18

3 Sample reconstructions at different points in the training process for phase 3 19

4 Outputs from conducting recreations . 19

5 Sample of γ = 0.95 singular community reconstructions for our model compared to
reconstructions created by averaging BART’s embeddings 21

6 Layer sizes for the VAE model . 24

7 Training hyperparameters for phase 2 . 24

8 Sample of γ = 0.9 singular community reconstructions for our model compared to recon-
structions created by averaging BART’s embeddings . 25

vii

List of Algorithms

1 A community detection algorithm using cosine similarity 5

viii

1 Introduction

Product attribute extraction (PAE) aims to improve the quality of a business’s understanding of its

own products. Often times, product descriptions are handled by marketers, merchandisers and product

managers who possess detailed knowledge and insight on the products, but might not have the technical

ability to organize their descriptions into a unified style. Admittedly, this would be challenging for any

one individual as descriptions, especially in an online marketplace, may come from multiple companies

and within those companies there may be multiple people on different teams writing descriptions.

This leads to a scenario where, while individual people at a company may understand a product, a

company is unable to analyze its products with maximum granularity. Consider a company that sells

t-shirts with a number of different fabric blends. Its customer base may decide subconsciously that their

favorite blend is a 90/10 mix of cotton and polyester. The business sees 2 of its t-shirts with this blend

selling very well. The descriptions contain phrases like "90% cotton / 10% polyester" and "ninety percent

cotton with ten percent polyester fabric blend". While we can read these and understand them to mean

the same thing, there’s no direct mapping between them to associate them with each other. Thus, the

business doesn’t learn a key quality about its customers and cannot capitalize by selling products tuned

to their preferences.

In this paper, we seek to provide a consistent framework to extract attributes from products. Our goal is

not to directly extract the attributes, but to develop a system to take much guesswork out of parsing

sentences to identify attributes. To achieve this end, we combine transformer models with variational

autoencoders to provide a smooth distribution over contextual embeddings. Our findings show that it is

possible to recreate quality embeddings with a VAE by making use of a few different contributions to

each architecture. Our final output condenses similar product descriptions into a single representation

and then reconstructs the output. With this singular output, businesses would be able to format their

product descriptions in kind and the uniformity should open the door for more simple parsing strategies

to unlock the value contained in the attributes’ information.

We begin by reviewing research within the field, then describing our dataset and methodology and finally

discussing the results.

1

2 Background

2.1 Product Attribute Extraction

While text mining has been a longstanding area of research, product attribute extraction has only more

recently been given serious attention. This is due in part to an explosion of e-commerce, accounting

for 14.3% of total US retail sales in the first quarter of 2022, which is more than double the sector’s

share in 2013.1 As demand shifts online, supply naturally shifts in kind and the result is an enormity of

products, each with uniquely crafted descriptions. It is thus of increasing importance for businesses to

get an adequate handle on consistently managing the information regarding all these new products.

One of the earliest attempts to extract attributes from products was provided by Ghani et al.[1] Ghani et

al. used the MiniPAR dependency parser[2] to identify attribute-value relationships and the Expectation-

Maximization algorithm to extend their labelled training set. Putthividhya and Hu frame the problem

through the named entity recognition lens and demonstrate the merits of a conditional random field

model.[3] Petrovski and Bizer develop rule-based parsing strategies for descriptions contained in HTML

tables to extract attributes.[4] Zheng et al. builds upon the bidirectional Long Short-Term Memory-

Conditional Random Field (LSTM-CRF) sequence tagging model by adding an attention mechanism and

using bootstrapped labeling to overcome the dependence on predefined attribute lists. [5] More recently,

Lin et al. proposed using generative models to extract attributes from product images.[6]

The majority of these models are aimed at directly extracting attributes from product descriptions.

However, each of the aforementioned papers notes the assumptions and limitations of their preceding

authors’ methods. For the ever-growing list of products, it’s incredibly challenging to come up with a

one-size-fits-all method to extracting attributes. In mathematics, when a problem is exceedingly difficult,

a common approach is to try and recast it into an alternate, typically equivalent, form. For example, when

it was found that the Support-Vecotr Machine optimization objective was too computationally complex,

the kernel trick came about to recast the dot product into the inner product in a higher-dimensional

feature space. Our work seeks to provide a similar easing of the problem of product attribute extraction

by dealing with one particular challenge: removing noise in semantically similar product descriptions. It

is our hope that by developing a framework for this, both past and future methods can enjoy increased

accuracy and decreased complexity by trivializing a number of edge cases PAE models are expected to

handle.
1(3 p.) Published: 4th Quarter 2021, Source: U S Department of Commerce, Record Number: 2022 ASI 2322-6.61529

2

2.2 Transformers

2.2.1 General Architecture

Common in earlier Recurrent Neural Network (RNN) encoder-decoder models, the standalone usage of

an attention mechanism which forms the basis of the transformer model was popularized by Vaswani et

al.[7] Transformers offer much more natural parallelism which allow them to tackle much larger and more

complex problems in natural language processing.

The main component of any modern transformer model consists of self-attention blocks. Each of these

blocks contains the following

WQ (query weight matrix - n x k)

WK (key weight matrix - n x k)

WV (value weight matrix - n x k)

f (feed-forward neural network)

An embedding matrix, for m words with dimension n, is an m x n matrix used to associate each word

with a dense vector of real values. Each row can be thought of as the dense representation of a particular

word. We use this matrix as a look-up table to embed words in an n-dimensional space.

Now suppose we have a d-length sequence that’s been embedded into dimension n, thus forming a d x n

input, x. We then produce

Q = xWQ (query matrix - d x k)

K = xWK (key matrix - d x k)

V = xWV (value matrix - d x k)

At timestep t of the input sequence, we then generate

st = KQ⊤
t (score - d x 1)

zt = s⊤t V (attention output - 1 x k)

We return a d x k matrix representing the contexts at each timestep in the input sequence. We then

apply the softmax function and pass this through a feed-forward neural network, completing the block.

3

2.2.2 BERT

Arguably the most well-known example of a transformer model is BERT.[8] While other transformer

models had already been proposed such as GPT[9], BERT demonstrated that by pre-training a transformer

on a task involving attending to multiple directions of an input sequence, the model could come to

a more complete contextual understanding of the data. The task in particular was masked language

modeling, where the model would have to predict a missing token among an input sequence. Borrowing its

architecture from Vaswani et al., BERT has now become a seminal example of the pre-trained transformer

model with many future models building upon it.

2.2.3 BART

BART[10] is one of the models to expand upon BERT and GPT. BART is an encoder-decoder architecture

that remains the same as the Vaswani et al. implementation, except that it replaces the ReLU activations

at the output of the decoder with GeLU. BART differs in that it is trained by taking intentionally

corrupted input sequences and attempting to reconstruct the original uncorrupted documents. It is this

denoising property that provides particular interest for the field of PAE, where inputs can be incredibly

noisy with significant deviations in the structure of two descriptions with the same meaning.

2.2.4 Sentence-BERT

Another offshoot of BERT came in the form of Sentence-BERT (SBERT). [11] While BERT has been

shown to produce high-quality token embeddings, it was not designed with full sentence embedings in

mind. In semantic similarity conducted with BERT, a cross-encoder would be typically used. With a

cross-encoder, both sentences are passed to the network simultaneously and an output score between 0 and

1 is given indicating their similarity. While this can produce quality scores, its computational complexity

is O(n2) and thus inefficient for very large collections of sentences. SBERT solved the efficiency problem

by adding a pooling operation to BERT’s output. This enabled SBERT to produce fixed-size embeddings

based on BERT’s outputs which could be computed independently and then compared using metrics

such as dot product scores or cosine similarity.

A typical algorithm for finding communities among these embeddings is as follows 2

2Notably, this algorithm will not cluster every individual product detail. Product descriptions with low cosine similarity
to any others would be discarded. We would argue that product details so unique as to fall into this category are of lesser
relevance to business needs as they offer minimal information content that can be compared across products.

4

Algorithm 1: A community detection algorithm using cosine similarity
let E be an mxn matrix of embeddings
let C be an nxn matrix of zeros
let L be an empty list of communities
let l′ be an empty list
initialize a threshold γ
for i = 1, ..., n do

for j ̸= i do
compute c′ =

ei·ej
||ei||||ej ||

set cij = c′

for i = 1, .., n do
for j ̸= i do

if cij < γ then
next

else
append j to l′

set c·j = 0

append l′ to L
set l′ to an empty list

2.3 Variational Autoencoders

2.3.1 General Architecture

We’ll analyze the VAE architecture through its probabilistic formulation. Suppose we have our input, x,

and our latent variables, z, and define their joint probability distribution p(x, z). We assume a distribution

for our latent variables z and thus the prior p(z) is known. We can represent the joint probability as such

p(x, z) = p(x|z)p(z)

In generation (or decoding), we can sample from z and then sample x given z. Now consider the following

formulation of the posterior

p(z|x) = p(x|z)p(z)
p(x)

The posterior provides the requisite mapping (or encoding) of x into z for our data. The denominator

p(x) is the marginal distribution of x, known as the "evidence", which we could calculate like so

p(x) =

∫
p(x|z)p(z)dz

However, this integral is intractable. Instead, we’d like to approximate the posterior over a family of

distributions qλ(z|x) where λxi
indicates the parameters of the distribution for each xi. For instance, if

5

the family were normal, λxi
:= (µxi

, σxi
).

In order to determine how well our approximation of the posterior is, we can use the Kullback-Leibler

(KL) divergence, which we define as

KL(qλ(z|x)||p(z|x)) = Eq

log
qλ(z|x)
p(x|z)p(z)

p(x)

 = Eq

log
qλ(z|x)
p(x,z)
p(x)

= Eq [log qλ(z|x)]− Eq [log p(x, z)] + Eq [log p(x)]

= Eq [log qλ(z|x)]− Eq [log p(x, z)] + log p(x)

The KL divergence is a distance measure of the difference between two probability distributions. Unfortu-

nately, though, we’re still stuck with the the evidence in the equation. Let’s consider the evidence lower

bound (ELBO)

ELBO(λ) = Eq [log p(x, z)]− Eq [log qλ(z|x)]

With this, we can rearrange our equation to be

log p(x) = ELBO(λ) +KL(qλ(z|x)||p(z|x))

By Jensen’s Inequality, the KL divergence is greater than or equal to 0. Since p(x) is fixed, this must

mean that the KL divergence is minimized when ELBO(λ) is maximized, and thus our optimization

problem should seek to maximize ELBO(λ), a tractable function.

We can now reformulate our problem in terms of a neural network with the following equations

ELBO(θ, ϕ) = Eqϕ(z|x) [log pθ(x, z)]− Eqϕ(z|x) [log qϕ(z|x)]

= Eqϕ(z|x) [log pθ(x|z) + log pθ(z)]− Eqϕ(z|x) [log qϕ(z|x)]

= Eqϕ(z|x) [log pθ(x|z)] + Eqϕ(z|x) [log pθ(z)]− Eqϕ(z|x) [log qϕ(z|x)]

= Eqϕ(z|x) [log pθ(x|z)]− Eqϕ(z|x) [log qϕ(z|x)− log pθ(z)]

= Eqϕ(z|x) [log pθ(x|z)]− Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z)

]
= Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|x)||pθ(z))

where ϕ and θ represent the parameters of our encoder and decoder, respectively.

The last component needed is the reparameterization trick. In backpropogation, we need to compute the

6

gradients with respect to ϕ of a function of our sample from qϕ(z|x). Instead of dealing with with the

probability distribution directly, we can sample z according to

z = µx + σx ⊙ ϵ = gθ(x, ϵ)

where ϵ ∼ N (0, 1). Now let log pθ(x|z) = f(z). Then

Eqϕ(z|x) [log pθ(x|z)] = Eqϕ(z|x) [f(z)]

= Ep(ϵ) [f(gθ(x, ϵ))]

The Monte-Carlo estimate, with L samples, for this expectation becomes

Eqϕ(z|x) [log pθ(x|z)] ≈
1

L

L∑
l=1

f(gθ(x, ϵl))

And we can then take the gradient with respect to θ for this function, where our desired parameters are

deterministic.

2.3.2 InfoVAE

InfoVAE makes two main improvements on the vanilla VAE implementation.[12] The authors note that

for a significantly flexible class of functions qϕ : xi → N(µi, σi), an optimal solution exists where µi → ∞

and σi → 0+. It’s hypothesized that the KL divergence term should regulate this behavior; however, in

practice this has been shown to not always be the case. The authors thus propose adding coefficients λ

and α to the loss function as well as a Maximum-Mean Discrepancy (MMD) term D(qϕ(z)||p(z)) where,

letting z be a vector of independent standard normal random variates and z′ the vector of samples drawn

from the outputs of the encoder distribution

D(qϕ(z)||p(z)) = E[e−ϵ||z′−z′|| + e−ϵ||z−z|| − 2e−ϵ||z−z′||] (1)

The loss function becomes

LInfoVAE = Eqϕ(z|x) [log pθ(x|z)]− (1− α)KL(qϕ(z|x)||pθ(z))− (α+ λ− 1)D(qϕ(z)||p(z)) (2)

7

2.3.3 Annealing

In another attempt to stabilize VAE training, Fu et al. propose a cyclical annealing schedule, whereby a

coefficient applied to the KL divergence term would be gradually increased throughout training.[13] In

practice, it was found that often times in training VAEs, the KL divergence would vanish early on in

training as the model would lean too heavily on minimizing the encoder’s distance from a standard normal

distribution. This resulted in poor quality reconstructions. To rectify this, we set the KL divergence

coefficient to 0 at the beginning of training and gradually increase it to 1. The goal is for the model

to explore the latent space early on, generating a diverse set of outputs before the KL penalty forces

the model to impose a more defined structure in its latent space. In the InfoVAE implementation, this

implies setting the coefficient α to 1 and gradually decreasing it to 0.

3 Dataset

3.1 Overview

Our dataset was borrowed from research performed by Ni et al.[14] The dataset contains the information

for over 2.6 million clothing products scraped from Amazon. Collectively, the products total over 15.5

million product details, which are the primary focus of our analysis. We provide some common text

mining statistics on the dataset in Figures 1 and 2. We also depict the network structure that arises by

applying spaCy’s dependency parsing to a community identified by Algorithm 1 in Figure 3.

Figure 1: Top 10 term frequencies and TF-IDF for the dataset

8

Figure 2: Frequency distribution of the dataset

9

Figure 3: An example network structure from a community

10

3.2 Preprocessing

We try to minimize any preprocessing of the product details to keep the model as flexible as possible.

This keeps in line with most of the research on transformer models where handling of arbitrary text is

preferable. Our only transformation is to truncate the maximum token length to a size of 23.3 This is

helpful in training the model on a single GPU, allowing us to take larger batch sizes and speed up training.

Sequences are also padded to 23 to improve I/O efficiency as well as to provide consistent comparisons in

the latent space.

4 Methodology

Figure 4: The full VAE model

4.1 Training

Our training methodology can be broken out into three distinct phases:

1. Fine-tuning a fully-connected layer on top of BART to reconstruct the product details

2. Using the pre-trained fully-connected layer, training a VAE model in between BART’s encoder and
decoder

323 is the 90th percentile unadjusted length of tokens in our dataset.

11

3. Fine-tuning another BART model to reconstruct the original product details from the outputs of
the VAE model

Training was performed on a single RTX2070 GPU. Total training time was approximately 144 hours, or

6 days. Details on training steps and hyperparameters used can be found in the appendix in 7.

Phase 1 We begin by training a language modeling (LM) head on top of BART. In this stage, we

freeze BART’s weights to utilize the inherent power of the pre-trained model. The model is trained with

a batch size of 64 and gradients are accumulated every 4 steps, for an effective batch size of 256. The

model is optimized over 392,268 steps, covering over 100 million non-unique training samples. We use the

Adam optimizer with a learning rate of 1x10−4 throughout training.

Phase 2 In the next step, we begin training our core VAE model. Here, we insert a VAE model between

BART’s encoder and decoder as in Figure 4. We chose to use 256 as the size of the latent dimension.

The last layer of the model is taken from the pre-trained LM head we produced in step 1. For this part of

training, we keep the weights frozen for the LM head. Again, we freeze BART’s weights and allow our

VAE model to train on its own.4 We train with a batch size of 64, accumulating gradients every 2 steps

for an effective batch size of 128. The model is optimized over 821,110 steps, covering over 100 million

non-unique training samples. We use the Adam optimizer with a learning rate of 1x10−4 throughout

training.

We use the loss function as defined by InfoVAE and allow the hyperparameters for ϵ and α to vary

throughout training as in equations 1 and 2, respectively. Our key finding in producing quality outputs is

the need to begin VAE training for this problem by setting alpha equal to 1 in the beginning of training.5

We believe this encourages the model to explore a more diverse manifold of the latent space prior to

requiring it to maintain a more well-defined structure. Our primary goal as we decrease the value of α is

to maintain a consistent value for our reconstruction loss. If α changes too quickly, the model will resort

to minimizing the KL divergence and lose quality in its outputs. We don’t impose a specific schedule on

any hyperparameter changes, instead changing parameters by observing points in which the model settles

into convergence.

Full model layer sizes and hyperparameters can be found in Tables 6 and 7, respectively, in the appendix.

4We initially attempted to fine-tune BART’s weights and train the VAE simulataneously, but found that BART diverged
too quickly from its precomputed weights to make training stable.

5Without this restriction, the model always became stuck in a local minimum by minimizing the KL divergence too
quickly.

12

Figure 5: The BART model trained to reconstruct outputs from the VAE model

Phase 3 The final phase is to train a new BART model to reconstruct the corrupted sequences from

the VAE model as is depicted in Figure 5. Generally, the VAE model recreates most input sequences

with reasonable accuracy. However, we hypothesized that due to BART’s specific design to work with

corrupted input, this would provide us with greater accuracy given we can’t guarantee quality output

from the VAE model. Here, we allow BART’s weights to be fine-tuned at the same time as the LM head

sitting upstream. We train with a batch size of 64, accumulating gradients every 2 steps for an effective

batch size of 128. The model is optimized over 393,105 steps, covering over 50 million non-unique training

samples. We use the Adam optimizer and a learning rate of 1x10−4 for the LM head and 1x10−6 for the

BART model throughout training.

4.2 Inference

Figure 6: The averaging of samples to combine a community into a single
representation for inference

Our inference methodology can be broken out into two distinct phases:

13

1. Use sentence transformers to embed product details and cluster them using a community detection

algorithm

2. Merge the intermediate model outputs for an entire cluster to produce a single representation for

that cluster

Phase 1 In this phase, we seek to cluster product details based on their semantic similarity. In order to

do this, we must first embed our sentences. We use MPNet[15] as the encoder producing embeddings

for each of our product details. We then identify communities among these embeddings according to

Alogorithm 1. Since our dataset is approximately 15 million records, computing and comparing the

cosine similarity for every embedding requires a significant amount of memory and time. Due to this

computational limitation, we choose to take random samples of 50,000 product details at a time and form

communities from these. We experimented with multiple values for γ and found that γ = 0.95 generally

provided the best balance between the diversity and the consistency within the cluster structure to work

with the model.

Phase 2 Once we have our communities, we now need to find a way to generate a single representation

from these. Our point in implementing the VAE was to model the distribution of samples, so our

hypothesis is that the VAE’s outputs should be robust to noise within our communities, treating it

similarly to the stochastic nature of its distribution. For this reason, we choose to average the VAE’s

outputs as shown in Figure 6. We then pass this singular input through the rest of our VAE model,

reconstruct a sentence from its output and pass these through the secondary BART model to achieve a

final output.

5 Results

5.1 Training

5.1.1 Phase 1

14

Figure 7: Loss curves for phase 1 (smoothed over 25 steps)

From Figure 7 we can see that the training for our language modeling head is relatively stable. We would

expect this as this is a routine fine-tuning task for a transformer model.

With each phase of our training we also want to monitor the amount of entropy in the distribution our

model creates over the input sequences. As the loss decreases, we expect the model to become more

confident in its predictions, thus lowering the amount of entropy. We confirm this by viewing Figure 8.

Figure 8: Entropy in output probabilities for phase 1 (smoothed over 25 steps)

And as we inspect some of reconstructions throughout training, we can generally see an improved

reconstructed sentence that makes logical sense, as shown in Table 1. The reconstructions are not perfect,

but we assess them to be reasonable enough to proceed with phase 2.

Start Middle End
Climate oriaddenribe... Package Dimensions: ... 100% Cairoic
Climate requested... Shipping Weight: 1 p... Fpageine reasons pie...

Climate contemplatio... Package Dimensions: ... Heel measures approx...
Climate oriaddenribe... 10% Polyester/10% in... 12 wide
Climate requestedadd... Shipping Information... Product Dimensions: ...
Climate portablecart... Vs size for is appro... Package Dimensions: ...
Climateadden tried s... idis USic optionally... Pure tryingDig Women...
Climatepx landlords... Shipping Weight: 11.... Dable and white cons...
requested alumni952... Large The- the Looklight and unique...
Climate oriaddenribe... We% Fabricel, 5% Spa... 100% guitarucing

Table 1: Sample reconstructions at different points in the training process for
phase 1

15

5.1.2 Phase 2

In phase 2, we have a number of new metrics that we need to track.

Figure 9: Loss curves for phase 2 (smoothed over 25 steps)

Beginning with the overall loss in Figure 9, we see a generally smooth decline early on in training. There

are some jumps in the graph, but we note these as points in training where hyperparameters were changed,

thus altering the weighting of different loss components in the overall loss. The important takeaway is

that the loss does not continue to increase at these points in time.

Figure 10: Entropy in output probabilities for phase 2 (smoothed over 25 steps)

Our entropy in Figure 10 remains at a consistently low level throughout training, which indicates that

the changing of hyperparameters did little to impact our model’s predictions.

Figure 11: Reconstruction loss curves for phase 2 (smoothed over 25 steps)

16

We see the reconstruction loss in Figure 11 holds relatively constant throughout the training process. This

is especially important because this is our primary goal as we decrease α throughout training. The model

is able to learn to provide quality samples and maintains this knowledge even as its latent distribution is

coerced to one with more defined structure.

Figure 12: KL divergence (KLD) loss curves for phase 2 (smoothed over 25
steps)

We see from Figure 12 how the KL divergence’s loss curves respond rapidly to changes in α. Early on in

training when α = 1, the KL divergence is allowed to spike. Since there’s no penalty at this rate, it could

theoretically increase infinitely, but generally settles around a value of 1,000. When we compare this

to Figure 11, we see that it’s over this time period where the VAE model minimizes its reconstruction

loss. As we decrease the value of α, the KL divergence rapidly begins to decrease. We chose to complete

training at α = 0.99, due to the fact that absent other hyperparameter changes, this is where we began

to see large divergence in the reconstruction loss.

Finally, we view our MMD loss which shows how initially the MMD settles around a local optima and

gradually begins to increase as the reconstruction loss is minimized. However, as we decrease the value of

epsilon, the loss incurs a greater penalty and is quickly minimized further to a state of relative convergence.

Figure 13: MMD loss curves for phase 2 (smoothed over 25 steps)

Our reconstructions in Table 2 show similar quality to those from phase 1 and we conclude that the VAE

has succeeded in modeling the distribution of BART’s embeddings.

17

Start Middle End
View songs Fam FamTr... Package Dimensions: ... 55% Cotton wash% Pol...
erslowslowpointslow ... Shipping Weight: Tam... We dress that you du...

Musprogram Fam Fam a... Go to Your Orders to... Y% Polyester/4% 100a...
Mus tro trooungeoung... Package Dimensions: ... Rream Spor laborl
Drawrett alarms cont... Shipping Weight: 3.2... Imported
Mus tro tro troician... Shipping Weight: 7.2... Please for your Casu...
Setprogram alarms al... Package Dimensions: ... ColorSuggest checkro...

MusMus alarms alarms... One Size (Fits lava ... Shaft measures appro...
shoulder troouch al... Long sleeve p Reetta... nt in the box
elastic 332 Plan tr... KILL-l optionallyiz... Material: Z Tyson me...

Table 2: Sample reconstructions at different points in the training process for
phase 2

5.1.3 Phase 3

In our last phase we only have two metrics to monitor. The first of these is the loss curve.

Figure 14: Loss curves for phase 1 (smoothed over 25 steps)

Figure 14 shows that the BART model achieves remarkable performance when training on the corrupted

inputs from the VAE model, which demonstrates the viability of BART’s construction. In fact, the

reconstruction loss is actually minimized beyond what was achieved in phase 1 with non-corrupted inputs.

The entropy in Figure 15 also appears to decline steadily in line with the other phases. Ultimately, we

are satisfied that this will improve our interpretation of the VAE model’s outputs.

Figure 15: Entropy in output probabilities for phase 1 (smoothed over 25 steps)

18

In viewing our recreations in Table 3, we see some of the best reconstructions of any of the phases, which

provides further confidence in our model’s ability.

Start Middle End
nan Imported Package Dimensions: ...

Shipping Weight: 7.2... Package Dimensions: ... Package Dimensions: ...
Fiagoamsole: Shipping Information... It is cured with hea...

in of Package Dimensions: ... Material:Cotton
happ [|% Shaft height measure... Package Dimensions: ...

100% Leather Brown l durable mine... Women
, Wireless squeezed Sn welcomed cotton, ... Sun UPF 50+ sun sun ...

3.5% Lightweight material Package Dimensions: ...
– neck pockets Machine Wash This classic necklac...

- 1„ Authentings makes c... Lobster-claw clasp

Table 3: Sample reconstructions at different points in the training process for
phase 3

5.2 Inference

Table 4 depicts the numerical results of our inference methodology. We first apply Algorithm 1 to a

random sample of 50,000 of our product details. We perform this algorithm for α ∈ {0.9, 0.95}. We then

apply our model to each community detected. We also thought to construct a methodology by simply

averaging BART’s encoder embeddings across the community and feeding that through to the decoder as

a baseline comparison. As a test metric, we wanted to know how the singular community representation

compared to the individual embeddings in the community, so we’ve computed the mean squared error

between the individual embeddings from BART and the embedding returned by passing the singular

representation to BART’s encoder.

What we find is that our VAE model typically outperforms BART both in terms of average distance from

the individual embeddings as well as entropy, meaning our model has greater confidence in it’s predictions

of the averaged values. We choose to analyze the outputs for γ = 0.95 in this section but include the

same analysis for γ = 0.9 in Table 8 and Figure 17 in the appendix.

γ
Total

Commu-
nities

Average
Size

Average
Entropy
(BART
with

VAE) 6

Average
Entropy
(BART)

Average
MSE

(BART
with
VAE)

Average
MSE

(BART)

0.95 13 22.6923 0.0 0.0418 0.0401 0.0418
0.9 45 23.8 0.0 0.0463 0.0453 0.0463

Table 4: Outputs from conducting recreations

We show our singular reconstructions in Table 5, as well those created by averaging BART’s embeddings
6Values are small positive numbers that have been rounded to 0.

19

and passing them to the decoder and two representative product details for each community. While

imperfect, we believe that our preliminary results show that we’ve constructed sentences that make some

logical sense to a human reader. When compared to the BART-only model, the VAE model seems to

produce more cohesive results. The logical structure of some of the reconstructions indicates that the

VAE model has been helpful in retaining information across the merging of embeddings.

To understand why this is the case, we sought to examine the actual inputs from when the latent

representations are merged. We visualize this in Figure 16. In the case of the VAE model, the embeddings

are averaged immediately after reparameterization before the sequence is fed through the first decoder

input layer. For BART, averaging occurs right after it’s decoder and before the sequence is fed to the

decoder. We plot a heatmap for this averaged matrix of the tokens against the latent dimension, with

the first token positioned at the top of the figure. What we see for the VAE model is that the entire

distribution is variable both in dimension and token position. For BART, there exists some less prevalent

variation for non-special tokens at the top of the graph and the graph generally remains consistent for

later tokens, likely indicating that these are padding tokens. We believe this increased variation across

the latent dimension is a strength of our model. Whereas BART seeks to provide some regularity across

the latent dimension, our model learns to recreate quality sequences from almost entirely from noisy

input. By learning with such a disadvantage, it’s able to better generalize its performance and proves

more robust against the averaged values.

7The model almost appears as if it’s actively trying to total its numbers to 100 for fabric percentages, which would be a
significant insight if it had developed that intuition. More work would be needed to confirm this, however, and it’s left to
future research.

20

Rep. 1 Rep. 2 BART with
VAE 7 BART

56% Cotton/38%
Polyester/6%

Spandex

57% Cotton/38%
Polyester/5%

spandex

65% Cotton, 25%
Polyester, 16%

Spandex

100% Cotton,
distracted%

Polyester/ 11%
Spandex

70% rayon, 26%
nylon, 4%
spandex

65% Rayon, 31%
Nylon, 4%
Spandex

65% Rayon, 27%
Acylon,08%

Spandex

100% Linon/%
Apexon/ 11%

Spandex
Material: 90

percent polyester
10 percent
spandex

Material:90%
Polyester 10%

Spandex

Material: 80%
Polyester,13%

Spandex

Material:rate%
Polyester,8%

Spandex

70%cotton
30%polyester

70% polyester/
30% cotton

65% Cottonx,%%
nylon

100% Cotton
Cotton%
Polyester

74% Nylon/26%
Spandex

85% nylon, 15%
spandex

65% Nylon/20%
Spenduedex in

82% Nylon/%
GHz Kevand [|

56% Cotton/25%
Polyester/17%
Viscose/2%
Elastane

68% Cotton, 28%
Polyester, 3%
Viscose, 1%

Elastane

57% Cotton/23%
Xester/13% Elast

100% Cotton/24%
Poly metal/ 11%

Vastose

50% Cotton/25%
Polyester/15%

Rayon

50%
Polyester/25%
cotton/25%

Rayon

50% Cotton/24%
Acrylic, 25%

Rayon

50% Cotton/24%
Brandotton/10%

lewdon

Model Number:
654486010

Model Number:
654468400

Model Number: 6
joked001001

Model CA:
Whitman402430

Weight: 3.6
Grams

weight: 2.84
grams

Weight: 2.65
grams Weight: 8.5 grams

Measurement
(tested sz 6,

approx.): Heel
4.25" Shaft

(w/heel) 7.5"
Opening 9", True

to size, Brand
new with original
or Alrisco shoe

box.

Measurement
(tested sz t6,
approx.): Heel

0.25" Shaft
(w/heel) 5.75"
Opening 11",
True to size,

Brand new with
original or Alrisco

shoe box.

Measurement
(tested sz 6,

approx.): Heel
4.5"

Shaft3ference/

Measure.
(TiciansIZ 6,/
briefUpel 5

325"illaft"(the/

92% Cotton+8%
Spandex

96% Cotton 4%
Spandex

97% Cot-
ton,%,Spandex

92% Cotton 24
14% Spandex

85% Rayon,15%
Polyester

95% Rayon, 5%
Polyester

65%
Polyamide,13%

Cashbed

55% Polyester
short cavalry% [|

[|

90%
POLYESTER,

10% ELASTANE

95%
Polyester/25%

Elastane

84%
Polyester,13%

Elastane

8% Polyester
cavalry

6%ritastane

Table 5: Sample of γ = 0.95 singular community reconstructions for our model
compared to reconstructions created by averaging BART’s embeddings

21

Figure 16: Sample of γ = 0.95 averaged latent embeddings for our model
compared to BART; sequences begin at the top of the y-axis

22

6 Conclusions

From our model’s results, we believe we’ve demonstrated the viability of an approach to providing

consistent descriptions of product details for attribute extraction. While the model is imperfect in its

current state, an increased access to computational resources would allow further fine-tuning to achieve

better performance. We do not directly address the problem of mapping individual descriptions to the

singular description, but we do note that this should fall under the well-developed scope of neural machine

translation research.

Future expansions upon this work should derive methods for such a mapping, as well as focus on better

tuning to the hyperparameters of the model. Additionally, this model may greatly benefit by attaching a

penalty to the objective function of the VAE model that is more directly correlated with constructing a

singular community representation. One such example may be utilizing a penalty similar to the MSE

inference metric comparing the singular reconstruction the individual community embeddings. This would

also enable the use of pooling layers such as in SBERT through which we could backpropagate.

23

7 Appendix

7.1 Model Layer Sizes

Layer Layer Type Input
Dimension

Output
Dimension

Encoder Output Layer Fully-connected 768 512
Mu Head Fully-connected 512 256

Sigma Head Fully-connected 512 256
Decoder Input Layer 1 Fully-connected 256 512
Decoder Input Layer 2 Fully-connected 512 768

LM Head Fully-connected 768 50265

Table 6: Layer sizes for the VAE model

7.2 Phase 2 Training Hyperparameters

Last Training Step γ α λ
203,838 2.0 1.0 5.0
379,390 10.0 0.9999 5.0
637,288 10.0 0.9950 5.0
821,110 10.0 0.9900 5.0

Table 7: Training hyperparameters for phase 2

7.3 Inference Results for Gamma = 0.9

24

Rep. 1 Rep. 2 BART with
VAE BART

65% Polyester,
30% Cotton, 5%

Spandex

70% Polyester,
20% Cotton, 10%

Spandex

65% Cotton/,%
POL Fiber,13%
Angats prescrip-

tionsexating

100% Cotton,
curious%%ric,8%

C Cexex

Pendant Size: 2
inch (4.5cm) L x
0.7 inch (2cm) W

Pendant Size: 1
(2.5 cm) L x 1 (4

cm) W

Pendant Size:
2.5„.5„

sides:0.In,Chain.

P py Size:
2.7"(8.8,” Width:

0.8"(:.
Heel height:

approximately 3.5
inches

Approximately
3.75" heel height

Heel Height: 2,
Platform"2)

Heel Height: 2
777

63% Acrylic/29%
Wool/8% Nylon

60%acrylic,
25%Nylon,
15%Wool

49%rasile,24%
Rubber„

scenario%
Fiber,8%

60%
Polyrylic/100%
Kev,8%% Pink,

C%

Machine wash
warm, do not
bleach, tumble

dry low

Machine wash
cold. Do Not

Bleach. Tumble
Dry Low

Machine wash
cold,res note„000
fade, high Proof„

Dry clean,

Machine
washMus, advise

vowel vowel
optionally C iron

ironoptumble
bleachumble. ...

weight: 2.84
grams

Weight: 2.10
Grams

Weight: 2.08
grams Weight: 8.9 grams

Size:M
Bust:88CM/34.7"

-
Shoulder:37CM/15.4"

-
Sleeve:17CM/7.9"

-
Length:55CM/24.4"

M: Bust:
108CM/42.5",

Sleeve:
25CM/9.8",

Length:
62CM/24.4"

Size:Dim„„ „ „ „ „ „ „ „
Size:12,B”,777
WcmSh,HT”,)

Cann,

94% Nylon, 6%
Elastane

94% nylon/6%
elastane

72% Polyester,
54% TherNutAM

Co

8% 12ester,%%
Linastane

Model Number:
654486010

Model Number:
654468400

Model Number: 2
downfall0000

Model cavalry:
Whitman-

NAME2430

59% Rayon, 41%
Nylon

50% Nylon, 50%
Rayon

65% Polyylon,
15%

conventionide,

100% Polyon,%%
dragged Wooden

Table 8: Sample of γ = 0.9 singular community reconstructions for our model
compared to reconstructions created by averaging BART’s embeddings

25

Figure 17: Sample of γ = 0.9 averaged latent embeddings for our model
compared to BART; sequences begin at the top of the y-axis

26

References

[1] Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema, and Andrew Fano. Text mining for product

attribute extraction. SIGKDD Explorations, 1:41–48, 2006.

[2] DEKANG LIN and PATRICK PANTEL. Discovery of inference rules for question-answering. Natural

Language Engineering, 7(4):343–360, 2001.

[3] Duangmanee Putthividhya and Junling Hu. Bootstrapped named entity recognition for product

attribute extraction. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language

Processing, pages 1557–1567, Edinburgh, Scotland, UK., July 2011. Association for Computational

Linguistics.

[4] Petar Petrovski and Christian Bizer. Extracting attribute-value pairs from product specifications on

the web. In Proceedings of the International Conference on Web Intelligence, WI ’17, page 558–565,

New York, NY, USA, 2017. Association for Computing Machinery.

[5] Guineng Zheng, Subhabrata Mukherjee, Xin Dong, and Feifei Li. Opentag: Open attribute value

extraction from product profiles. Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, 2018.

[6] Rongmei Lin, Xiang He, Jie Feng, Nasser Zalmout, Yan Liang, Li Xiong, and Xin Luna Dong. Pam:

Understanding product images in cross product category attribute extraction. In KDD 2021, 2021.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. 2017.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. 2018.

[9] Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.

2018.

[10] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training for

natural language generation, translation, and comprehension. CoRR, abs/1910.13461, 2019.

[11] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.

CoRR, abs/1908.10084, 2019.

[12] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximizing variational

autoencoders. 06 2017.

27

[13] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Çelikyilmaz, and Lawrence Carin. Cyclical

annealing schedule: A simple approach to mitigating kl vanishing. In NAACL-HLT (1), pages

240–250, 2019.

[14] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled

reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 188–197, Hong Kong, China, November 2019. Association for

Computational Linguistics.

[15] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted

pre-training for language understanding. CoRR, abs/2004.09297, 2020.

28

	Introduction
	Background
	Product Attribute Extraction
	Transformers
	General Architecture
	BERT
	BART
	Sentence-BERT

	Variational Autoencoders
	General Architecture
	InfoVAE
	Annealing

	Dataset
	Overview
	Preprocessing

	Methodology
	Training
	Inference

	Results
	Training
	Phase 1
	Phase 2
	Phase 3

	Inference

	Conclusions
	Appendix
	Model Layer Sizes
	Phase 2 Training Hyperparameters
	Inference Results for Gamma = 0.9

