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Abstract

Electron microscopy touches on nearly every aspect of modern life, underpinning materials 

development for quantum computing, energy and medicine. We discuss the open, highly integrated 

and data-driven microscopy architecture needed to realize transformative discoveries in the 

coming decade.

From its inception nearly a century ago, transmission electron microscopy (TEM) has 

emerged as a cornerstone of characterization in materials science, chemistry, physics 

and medicine1. TEM provides rich, directly resolved information about the structure and 

dynamics of phenomena spanning atoms to micrometres that are of great fundamental and 

practical significance to society. It has played a key role in protein and drug discovery2, 

redefined our understanding of crystalline solids3 and catalysed the electronics revolution 

that gave rise to today’s massively interconnected world4.

In spite of these numerous successes, many grand materials challenges remain outside of 

our present capabilities. Mastery of quantum phenomena, for example, requires insight into 

subtle and dilute electronic perturbations that can only be probed through sensitive multi

modal analyses closely linked to theory. Control of chemical reaction pathways in catalysts 

depends on access to interchangeable, finely tuned environments and the cumulative 

knowledge of a large library of prior experiments. True combinatorial engineering of 

high-entropy alloys demands on-the-fly experimental decision-making based on automated 

characterization. In these domains and more, a reimagined microscopy paradigm is needed 

to unlock entirely new classes of materials and functionality.

As in many other areas of science5, advances in TEM instrumentation now permit the rapid 

generation of vast data sets across a range of modalities, in which important connections 

might be more easily overlooked. Counterintuitively, microscopists focus on the methods 

already familiar to them, rather than harnessing more suitable tools from the full suite at 

their disposal. This situation is compounded by the growing complexity and closed-source 

nature of modern microscopes, which limit our ability and motivation to fully understand 

and customize their operation. Due to these barriers, the much-lauded promise of artificial 

intelligence (AI) and machine learning (ML) to revolutionize TEM experiment design, 

execution and analysis has not yet been realized. In contrast, other fields such as X-ray 

crystallography that have adopted open, standardized methods and data exchanges have 

witnessed enormous success6. Automated X-ray experimentation is now routinely conducted 

at scale, aided by easily accessible libraries of past work to plan and interpret future 

studies. Additive manufacturing is another area in which shared repositories of blueprints 

and techniques have empowered end users to conduct experimentation never imagined by 

their original creators. In electron microscopy, the growth of single-particle cryo-imaging 

demonstrates the untapped potential of automated ‘big data’ tools7 to transform our 

understanding of metals, semiconductors, ceramics and more.

Sweeping changes precipitated by recent technological innovations and the growth of 

modern data science tools call for a re-examination of the electron microscopy framework, 

shown in Fig. 1. This framework aims to discover knowledge about an unknown materials 
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structure or process, employing a priori assumptions and an array of microscopy tools to 

probe different features of the unknown system. These features can then be distilled into 

salient physical mechanisms and quantifiable metrics through the eyes of various scientific 

disciplines. While there are many ways to define this framework, we broadly divide it 

into three overlapping categories: experiment design, feature extraction and knowledge 

discovery. These generally applicable categories provide a basis to understand the present 

state-of-the-art and its shortcomings, with a focus here on the application of data techniques 

to the physical sciences. In particular, we argue that an open, highly integrated and 

data-driven framework will transform characterization in the next-generation transmission 

electron microscope, benefitting both the physical and the biological sciences.

Experiment design

The first step in the analysis process involves the definition of unknowns and the selection 

of appropriate techniques to explore them, as shown in the top of Fig. 1. This stage is by 

its very nature based on pre-existing knowledge of a system or process, derived through 

prior work, intuition and an understanding of the characterization tools available to the 

researcher. In such an analysis, the investigator leverages the complementary strengths of 

both parallel-beam and scanning TEM (STEM) imaging and spectroscopy, which have 

enabled study of the structure and local properties of materials at high resolution. Recent 

developments such as ultra-stable cryo stages8, data-rich high-speed detectors9, and atomic

scale electron tomography10 have provided a wealth of new imaging modalities waiting 

to be exploited. For example, hybrid pixel detectors9 now offer sufficient dynamic range 

and sensitivity to record full diffraction patterns at each point on a sample, enabling 

ptychographic reconstruction and unprecedented spatial resolution at low voltages11. An 

alternative detector technology, back-thinned monolithic active pixel sensors that can count 

individual incident electrons12, has greatly improved electron energy-loss spectroscopy 

(EELS) capabilities13.

However, to harness these developments to solve evolving materials challenges, 

experimentation must become far more data-driven, integrated and automated, as noted in 

recent agency reports14. The current experiment design process is heavily biased towards 

techniques and features already familiar to the human operator. Microscopists are prone 

to rote analyses based on their prior experience; while this allows them to rapidly triage 

complex, novel scenarios, it can also blind them to more optimal approaches that may be 

outside their expertise. To adequately bound the parameters of an experiment (represented 

by the grid at the top of Fig. 1), we must carefully consider the full array of tools at our 

disposal.

Here, simulations and data science can help intelligently plan experiments by quantifying 

the strengths and weaknesses of each technique before the first sample is measured. Newly 

developed high-throughput graphics processing unit (GPU)-accelerated simulations15 can 

estimate detection limits of various imaging methods (for example, high-angle annular dark 

field, annular bright field, and so on) and their ability to detect low-contrast single-atom 

defects of the kind found in diamond qubit materials, for instance16. The speed, cost and 

efficacy of these methods may then be compared against spectroscopic approaches such 
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as EELS, considering the effect of beam parameters, sample characteristics and ionization 

edges of interest. Performing a quick simulation before labour-intensive experimentation can 

yield both tremendous cost and time savings.

The overarching goal of successful experiment design is to build a pipeline to translate 

microscope- and experiment-specific data (starting from raw data streams from detectors and 

cameras) into materials-specific descriptors and functionalities. As the number of imaging 

and sample parameters grows, it becomes increasingly difficult for a human operator alone 

to select the best combination of techniques. AI and ML methods, which can efficiently 

evaluate behaviours over higher-dimensional parameter spaces, are well suited to this kind of 

predictive costing analysis17. Prior to undertaking an experiment, ML could be used to mine 

open databases of past work, harvesting appropriate imaging techniques and experimental 

parameters from related systems. These parameters could then be compared to the specifics 

of the system under study, validated against simulations, and presented to the user in real 

time to estimate what descriptors could be confidently measured. At present, no widely 

used database of prior work exists and such a highly integrated level of planning is simply 

not possible, leading to failure-prone or information-poor experimentation. The proposed 

approach leverages the strength of AI to very quickly operate with large volumes of data, 

augmenting the intrinsic depth and domain expertise of the human operator. Ongoing active 

research in human–computer interaction will continue to define best practices in this area. 

Beneficially, this approach will unlock the full range of analytical modes available on 

modern instrumentation for many more users of all experience levels.

Feature extraction

After the experimental parameter space has been defined and techniques have been selected 

to probe those parameters, we consider the process of feature extraction, shown in the 

middle of Fig. 1. Each technique provides a window into one or more features of the 

sample, convoluted with artefacts introduced during the recording process. For example, 

atomic-scale STEM imaging and spectroscopy create a two-dimensional projection of a 

three-dimensional crystal structure, but beam broadening and channelling can degrade 

resulting data fidelity, thereby complicating inverse structure determination. In addition, 

the beam itself may change (damage) the sample, or the instrument alignment may drift, 

effectively introducing noise that obscures the original object. For this reason, a combination 

of several complementary analysis techniques is usually required to arrive at more unique 

solutions by probing different characteristics of the underlying sample.

Unfortunately, data collection is presently highly disconnected and prescriptive. We choose 

imaging modes and detectors based on the features we expect to find and then acquire data 

in a linear and serial fashion, overlooking higher-dimensional or low-contrast correlations 

by neglecting to use all available data streams. We contrast this with the emerging data

rich 4D-STEM technique18, in which entire diffraction patterns are collected across the 

two-dimensional space of a sample and then post-processed to generate particular contrast 

modes and signals. In effect, nearly all the transmitted beams from a sample are recorded, 

which can be used to reconstruct multiple signals on the fly or after the fact. This capability 

improves our ability to detect features that may be weakly represented in any one isolated 
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dataset. Access to complete data streams is essential, especially during initial acquisition 

when the experimental parameters can still be adjusted.

Feature extraction is also increasingly constrained by the manual nature of traditional 

experimentation. To their credit, vendors have improved automation of microscope 

alignment, now offering software that can optimize the instrument faster and more 

accurately than most human operators. However, flexible and truly automated data 

collection integrating a full suite of modalities is far from being realized. At present, most 

investigations of unknown samples are similar: we manually scan many regions, searching 

for predetermined features of interest or deviations from known structures. One can envision 

batch experimentation, where the stage movement, alignment, focusing and image capture 

allow for the rapid surveying of a sample overnight. Key regions could then be highlighted 

without human bias using a ML network trained on the sum of prior knowledge and 

presented to the operator in the morning for further examination. This kind of pipeline has 

been established to a degree in semiconductor failure analysis and single-particle imaging, 

where repeated sample configurations lend themselves well to automation. However, to 

extend this approach to other domains, such as metallurgy and catalysis, we must have direct 

access to open, low-level microscope controls (for example, at a minimum stage position, tilt 

and defocus) and analysis routines to define flexible characterization workflows. In turn, this 

ability will help enrich the efficiency and quality of the entire characterization process.

Probing the temporal evolution of materials requires additional considerations, such as the 

need to precisely correlate observations with experimental parameters that may themselves 

be difficult to accurately measure. Understanding many important phenomena, including 

electrochemical cycling of batteries and the nature of low-temperature electronic phase 

transitions, requires a high degree of control over multiple experimental sub-systems. 

At present, instruments explore a limited in situ parameter space and there is little 

interoperability between platforms supplied by different vendors. In situ experiments can 

be roughly divided into two main groups: those where an experiment is built into a 

special holder19 (for example, liquid/gas stage, biasing/heating stage, mechanical strain 

stage and so on) and those where the microscope itself is directly modified to create a 

desired environment (for example, gas, irradiation, deposition and so on) using a differential 

pumping mechanism20 or other means. The microscope pole piece gap is a limiting factor 

that determines the kind of experiments that can be performed in the materials science 

toolbox21. A wide variety of holders and experiment types exist that all require different 

sample configurations, so tightly integrated, cross-correlative work is challenging and more 

hardware co-development is needed. Beyond holders, the gains made in detectors have 

allowed for in situ data to be accessed and integrated in a more efficient fashion, even at 

speeds as high as 4,000 frames per second9,13. Much can be learned from the astronomy 

community22 as we continue to advance this aspect of microscopy hardware.

As a promising alternative, a modular system in which in situ capabilities are built into the 

objective lens pole piece could be built to accommodate interchangeable ‘lab-in-the-gap’ 

modules23. Similar concepts have been successfully developed in the past, but only for 

a limited range of options (for example, environmental cell experiments24 or magnetic 

imaging using a low-magnetic-field pole piece25). The advantage of this approach is that 
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the whole pole piece gap can be utilized, allowing for more complex in situ capabilities, 

but also requiring more intricate engineering for the necessary gas, liquid, electrical and 

other connections. Such an instrument would permit high-throughput TEM for a variety of 

experiments, for example in the area of catalysis26. One could consider a microscope fitted 

with several pole piece modules in a carousel (analogous to an optical microscope with 

several objective lenses) or a cartridge system, which would enable several experiments to 

be queued up ahead of time. Just as important, an open library of prior experiments and 

conditions should be developed alongside hardware to guide the planning and execution of 

in situ experiments, analogous to biological protein and emerging materials science data 

banks (examples include: the Protein Databank (https://www.rcsb.org/), the Materials Data 

Bank (http://www.materialsdatabank.org/), the Materials Research Data Council (https://

www.mardac.org/), the Open Quantum Materials Database (http://www.oqmd.org/) and 

Citrination (https://www.citrination.com/)). Once such a framework is broadly established, 

AI could optimize experimental conditions and acquisition parameters on the fly. With 

standardization of methods and analysis, multiple laboratories around the world could 

contribute to ambitious ‘crowdsourced’ experimentation to more quickly and effectively 

tackle problems, such as combinatorial materials screening. These developments would help 

realize unprecedented experiments to target a wide range of impactful questions, including:

1. What are the far-from-equilibrium states and rate parameters of materials during 

fast and non-repeatable phase transformations?

2. What is the nature of the soft–hard (liquid–solid) interfaces present in chemical 

and biological reactions?

3. What are the chemical states and bonding structure of materials during reactions, 

especially considering complex reaction dynamics and radiation chemistry?

4. How can we reliably characterize beam-sensitive materials?

5. What behaviour do light atoms, vacancies and point defects exhibit in extreme, 

reactive environments where they are hard to visualize?

Knowledge discovery

Throughout the characterization process our goal is to identify statistically significant 

features in large, noisy and potentially incomplete data streams, aiming to build libraries 

of possible structures and spectra to aid in knowledge discovery27. All domains of electron 

microscopy are producing ever-expanding amounts of data spanning a range of formats that 

must be appropriately distilled through the interpretive frameworks shown in the lower half 

of Fig. 1. While, in principle, more data is a positive development, our ability to process and 

extract meaning from ballooning data sets has not kept pace. As shown in Fig. 2a, epochs 

in data production have been punctuated by advances in detector technology. Following the 

initial development of the microscope, data volumes remained relatively flat until the advent 

of digital imaging (because of the rate limiting time and cost of film processing), after which 

they experienced rapid growth during the transition from slow scintillators to fast direct 

detector technologies. Computing power improved at a similar rate and data production 

is now several orders of magnitude higher than it was a few decades ago. Technological 
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upgrades are becoming more frequent and disruptive, motivating an urgent need for new 

analysis methods.

As already mentioned, growing data volumes are well suited to interpretation by AI and ML 

methods trained on established physical models. When grounded in physically meaningful 

frameworks, these approaches can apply constraints to the classification of multidimensional 

features, using domain knowledge from materials science, chemistry, physics and biology. 

Recently introduced deep learning methods have demonstrated extreme efficiency in such 

feature finding problems27. However, a basic problem is that data are typically encoded 

in limited proprietary formats and there is no good way to assess the amount of useful 

information obtained in an experiment. We currently lack metrics for data quality and 

guidelines to determine whether present measurements are even comparable to past work, 

leading to the manual analysis workflow shown in Fig. 2b. While this workflow has 

yielded important scientific discoveries, it is limited in its scalability and its ability to 

efficiently incorporate a wide variety of multidimensional data streams. At the heart of 

this issue is poor cross-platform support and dialogue between the different microscope, 

camera, holder and other hardware vendors in terms of signal channels, naming conventions, 

file formats and metadata. The absence of interoperability severely hampers experiment 

repeatability, portability and user training. Without a common language for experimental 

electron microscopy, we cannot properly curate data acquisition and analysis processes 

in order to ensure scientific integrity of our experiments. This situation also makes it 

extremely difficult to integrate electron microscopy data with other techniques (for example, 

scattering, mechanical testing, transport and so on) that would help ML algorithms arrive at 

more unique solutions for a structure or process. We emphasize that data science can only 

augment human intuition and domain expertise, but not replace it. Rather, we must strive 

to achieve synergy between conventional and data-driven methods, seeking to harness the 

unique strengths of each analysis approach for the problem at hand.

While the challenges for data interpretation are great, there has been some progress17. 

New software toolsets28 allow researchers to store and share their analysis workflows in 

various forms. Following trends in the data science community, Jupyter Notebooks and their 

Google Colab implementations have become more widespread and mainstream, enabling 

the dissemination of ML code and trained neural networks27. (Commercial equipment, 

instruments, software or materials are identified only in order to adequately specify certain 

procedures. In no case does such identification imply recommendation or endorsement by 

the National Institute of Standards and Technology, nor does it imply that the products 

identified are necessarily the best available for the purpose.) Still, more development of 

open-source platforms using the FAIR—findable, accessible, interoperable and reusable—

principles29 is needed to standardize best practices, as well as streamline the training 

of early-career researchers. A repository for data of all formats would also help address 

the crisis of experimental reproducibility by unlocking a whole class of meta-analyses, 

which are almost non-existent in microscopy, but routine in fields such as astronomy, 

high-energy physics, scattering, thermodynamics, genomics and medicine. The community 

has also recognized the need for greater convergence of microscopists, data scientists 

and manufacturers to implement the proposed architecture. We believe the time is right 

for new national initiatives to catalyse adoption of a common experimental language, 
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establish standards and shared methodologies, and provide the infrastructure for data-driven 

partnerships between hardware and software developers. Inspiration can be drawn from light 

and neutron sources, which showcase the power of highly integrated, interoperable and open 

experimentation. The benefits to microscopy and the broader scientific community will be 

enormous.

Looking to the future

Today’s microscopes are capable of producing so much data that it can no longer be 

effectively analysed by human intuition and experience alone. Next-generation microscopy 

will require entirely new ways of thinking about experiment design, execution, analysis 

and sharing. Data science tools must become more tightly integrated into the operation of 

the instrument, helping to distil vast multidimensional datasets into meaningful descriptors 

linked to underlying physical models. An open platform for data collection and analysis 

will intelligently highlight latent features and help extract deep insight from complex, 

multifaceted observations. Importantly, this platform must continue to evolve to meet 

domain needs and keep pace with instrumentation developments.

Truly adaptive microscopy, where data dynamically inform the next steps of an experiment 

on the fly has not yet been realized. In such a microscope, for example, tracking a reaction 

in a liquid cell would be done by comparing multiple, automatically selected signals 

quantitatively interpreted through fast simulations based on theory models. A ML network 

would control the stage and imaging parameters to best highlight features of interest, 

providing guidance at each stage of the experiment. Data capture, storage and distribution 

would all be routed through an open framework accessible to the broad community. Data 

and metadata could be compared in real-time to large databases of similar experiments 

to predict possible next steps, augmenting human intuition and experience. This stage in 

the analysis process would then iteratively inform experiment design to build a virtuous 

augmented workflow, as shown in Fig. 2b. The outcome of such an experiment would be 

richly quantifiable, repeatable and meaningful at a level far beyond our present capabilities. 

Bold national initiatives and visionary leadership are strongly needed to realize this future. 

Collectively, these efforts will enable the ground-breaking discoveries required to solve the 

pressing global challenges of the next decade.
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Fig. 1 |. The electron microscopy framework.
The framework for translating unknown structures or processes into quantifiable, physically 

meaningful descriptors and model representations.
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Fig. 2 |. Microscopy data-production rates and analysis workflows.
a, Effective maximum microscope data-production rates by year, showing the rapid increase 

associated with better detector technologies. Estimates are constrained by the overhead 

associated with processing and transfer of data. b, Present and emerging microscopy 

analysis workflows harnessing new methods of data collection and interpretation.
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