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Complete Genome Sequence of Geobacter sp. Strain FeAm09, a
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ABSTRACT A moderately acidophilic Geobacter sp. strain, FeAm09, was isolated from
forest soil. The complete genome sequence is 4,099,068bp with an average GC content
of 61.1%. No plasmids were detected. The genome contains a total of 3,843 genes and
3,608 protein-coding genes, including genes supporting iron and nitrogen biogeo-
chemical cycling.

Microbial reduction of iron [Fe(III)] oxide minerals plays a significant role in coupled
biogeochemical cycles in unsaturated soils (1, 2) and in saturated soils and sedi-

ments (3–6). To date, very few Fe(III)-reducing bacteria have been isolated from unsatu-
rated soils. Here, we report the complete genome of Geobacter sp. strain FeAm09, which
was isolated as an Fe(III)-reducing bacterium from moderately acidic unsaturated tropical
forest soil in Puerto Rico (7) following enrichment in piperazine-N,N9-bis(3-propanesulfonic
acid) (PIPPS)-buffered medium (pH 5.0) amended with synthetic ferrihydrite (8) under an
anoxic atmosphere, transfer to medium containing Fe(III)-nitrilotriacetic acid (NTA), and iso-
lation with anaerobic shake tubes (80:20 N2/CO2 atmosphere) (9, 10).

Cells of Geobacter sp. strain FeAm09 were cultivated with fumarate (40mM) and ac-
etate (20mM) under an anoxic atmosphere (100% argon). Cultures were incubated at
37°C in the dark until mid-log phase (approximately 48 h), harvested by centrifugation
(5min at 12,000� g), and resuspended in DNA extraction buffer (11). Cells were imme-
diately lysed by heating (95°C for 15 min). Genomic DNA from the lysate was extracted
using phenol-chloroform-isoamyl alcohol (25:24:1) followed by ethanol precipitation
(12). PacBio 20-kb SMRTbell library preparation (P6-C4 chemistry) using the PacBio RS
platform was completed by the University of Delaware DNA Sequencing and Genotyping
Center. A total of 45,767 reads with a mean read length of 12,898 nucleotides were
assembled into a single contig using the PacBio Hierarchal Genome Assembly Process
(HGAP) pipeline version 3.0 with default parameters in single-molecule real-time (SMRT)
Portal version 2.3.0 (13). The assembly revealed a single circular chromosome with a GC
content of 61.1%. Genome annotation using PGAP version 4.8 predicted 3,843 total genes
(14, 15). Totals of 6 rRNAs, 52 tRNAs, 1 transfer-messenger RNA, and 3,608 protein-coding
sequences were identified (Fig. 1).

Geobacter sp. strain FeAm09 belongs to the Geobacteraceae family and is a Gram-
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negative bacterium. Similar to other known Fe(III)-reducing Geobacter spp., the anno-
tated genome of strain FeAm09 revealed putative genes for c-type cytochromes and
type IV pili. The only nitrate reduction genes identified in the genome were for dissimi-
latory nitrate reduction to ammonium (nitrate reductase and nitrite reductase). Genes
annotated for reduction of dimethyl sulfoxide (DMSO), thiosulfate, and sulfite were also
identified, as were cytochrome bd ubiquinol terminal oxidase (cydB and cydA), similar to
Geobacter sulfurreducens (16, 17). Hemerythrin and genes associated with oxidative stress
tolerance (catalase peroxidase and rubrerythrin) were also identified. In addition to genes
that support heterotrophy through the use of organic electron donors (formate dehydro-
genase and citrate lyase), a NiFe hydrogenase (hydB) capable of converting H2 to H1 was
found, which would enable lithotrophic growth. Genes associated with the reverse tricar-
boxylic acid (TCA) cycle (mdh, fumB, frdA, frdB, sucC, sucD, korA, korB, icdI, acnB, and citC)
were identified, which could support autotrophy (18–20). Genes linked to assimilatory sul-
fate reduction and nitrogen fixation were also identified. Together, these physiological
capabilities of Geobacter sp. strain FeAm09 indicate a diverse lifestyle that can adapt to
fluctuating environmental conditions commonly found in soil systems.

Data availability. The genome sequence was deposited in GenBank under BioProject
PRJNA555606, with the accession numbers CP042466 and SRX9278424.
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FIG 1 Circular genome map of Geobacter sp. strain FeAm09, generated by using DNAPlotter from Artemis version 18.1.0 (Wellcome Sanger Institute) (21).
From the outside to the center: circle 1, DNA base position; circle 2, genes on the forward strand (color by Clusters of Orthologous Groups of proteins
[COG] category); circle 3, genes on the reverse strand (color by COG category); circle 4, RNA genes (tRNAs, blue; rRNAs, red; other RNAs, black); circle 5, GC
content plotted using a 10-kb window size (purple represents values below average, while olive represents values above average); circle 6, GC skew [(G 1
C)/(G – C)] plotted using a 10-kb window size (purple indicates values below average, while olive represents values above average).
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