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Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and

it is responsible for around 200,000 deaths each year worldwide. The standard

therapy for GBM treatment includes surgical resection followed by temozolomide-based

chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM

patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment

modalities for GBM treatment are urgently needed. Mounting evidence indicates that

non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long

non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied

ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all

tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been

identified in GBM cell lines and GBM tumor samples. Some of them have been

proposed as diagnostic and prognostic markers, and as targets for GBM treatment.

Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of

short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life

of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides

but for therapies designed for brain-related conditions, is the presence of the blood-brain

barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable

agents. Although some NPs have been derivatized at their surface to cross the BBB,

optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently

unavailable. In this review, we describe first the current treatments for GBM therapy.

Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for

GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs)

for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB,

and the strategies to overcome this barrier. Finally, we categorize the critical points where

research should be the focus in order to design optimal NPs for drug delivery into the

brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the

clinical setting.
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INTRODUCTION

GBM is the most common and aggressive malignant brain
tumor in adults accounting for around 48% of all primary
malignant brain tumors. The majority (90%) of GBMs develop
de novo (primary glioblastoma) and 10% progress from
lower astrocytomas. Most GBM occurs spontaneously, although
familial gliomas have also been noted (1). The lethality of GBMs
is mostly due to the ability of cancerous cells to spread over
the brain parenchyma and its high level of vascularization (2).
Evidence has shown that the mean survival rate for diagnosed
GBM is 8–15 months and for recurring GBM the mean survival
rate is 3–9 months. The 5-year survival rate is only 5% (3).
The standard treatment for GBM patients includes surgery (to
remove tumors, when possible) combined with radiotherapy
(RT) and/or temozolomide (TMZ)-based chemotherapy (4).
TMZ is a prodrug, which converts into its active metabolite via
a non-enzymatic pathway (5). The active metabolite of TMZ
targets guanine at the position of O6 and N7, preventing DNA
replication and inducing apoptosis (6). Data from the European
and Canadian trial (EORTC 26981/22981-NCIC) demonstrated
that RT, followed by 6monthly cycles of TMZ provides significant
survival benefits with minimal additional toxicity in patients with
GBM. They reported a median survival of 14.6 months with RT
plus TMZ vs. 12.1 months with RT alone (6–8).

Other FDA approved treatment modalities for GBM
treatment include bevacizumab (Avastin) an antibody against
the Vascular Endothelial Growth Factor Receptor (VEGFR),
carmustine (BCNU) also known as gliadel wafers (4, 8). The
latter are composed of nitrosoureas which alkylate DNA
by forming inter-strand crosslinks to prevent DNA from
replication or transcription when implanted in the cavity of
the resected tumor (9), lomustine, another alkylating agent
of the nitrosourea type is highly lipid-soluble and able to
crosses the BBB (10). Several therapeutic modalities for GBM
in clinical trials include monoclonal antibodies targeting
Epidermal Growth Factor Receptor (EGFR) (alone or conjugated
with other drugs), chemotherapeutic agents (procarbazines,
hydroxyureas, irinotecan, erlotinib, cyclophosphamide, and
mTOR inhibitor), tumor treating fields (TTF) therapy,
immunotherapies (vaccination, adoptive cell therapy, and
immunostimulants), epigenetic therapy, oncolytic virus therapy,
and gene therapy (11, 12). Despite all available diagnostic,
prognostic, and therapeutic modalities, the GBM prognosis
remains poor. It has been speculated that tumor heterogeneity
and the presence of cancer stem cells in the tumors are major
reasons for therapy resistance of GBM cells (13). Therefore,
novel therapeutic approaches are needed to improve the survival
and quality of life for GBM patients.

In the last two decades, ncRNAs have gained significance as
potential targets against many cancer types, including GBMs
(14). NcRNAs represent more than 60% of the human genome
(15), and based on their length they are usually divided
into two major types, small non-coding RNAs (sncRNAs),
and long non-coding RNAs (lncRNAs). ncRNAs can also be
divided into structural and regulatory functions. Structural
ncRNA includes t-RNA, r-RNA, snRNAs, and snoRNAs, among

others (16). Regulatory ncRNA includes mainly, the Xist (the
ncRNA responsible for female X chromosome inactivation
early during embryogenesis), the microRNAs (miRNAs), and
lncRNAs. Although the role of miRNAs as posttranscriptional
regulators of gene expression has been well-documented,
the multiple potential roles of lncRNAs are presently under
extensive investigation. In any case, dysregulation of miRNAs
and ncRNAs in most cancer types including GBMs and
therefore, these molecules have been considered as diagnostic,
prognostic and therapeutic tools. MiRNA-based therapies are
designed to target upregulated miRNAs with oligonucleotide
miRNA inhibitors (OMIs) or against downregulated miRNAs
with oligonucleotide miRNA mimics (OMMs) (17). LncRNAs
and mRNA-coding genes are targeted with double-stranded
RNAs (small interference RNA, siRNA). OMIs, OMMs and
siRNA-based molecules are all referred to as interference RNA
(RNAi) (17).

In the next sections, we discuss the current status of the
RNAi-based therapies under investigation for GBM treatment,
the proposed delivery methods for drug delivery into the brain,
and finally, we address the research status of the strategies to
overcomes the BBB for GBM treatment.

DEREGULATION OF NON-CODING RNAS
IN GBM

After their discovery in Caenorhabditis elegans by Lee et al.
(18) miRNAs were soon associated with the regulation of
gene expression at the posttranscriptional (mRNA) level.
Early expression profile studies showed deregulation of several
miRNAs in many diseases including cancer (19, 20). Similarly,
Brannan et al. in 1990 reported for the first time H19 as a
lncRNA (21), and in 1991 Brown et al. reported the lncRNA
Xist as responsible for the X-chromosome inactivation (22). All
these efforts along with the sequencing of the human genome in
2001 made clear that close to 80%) of the DNA encode ncRNAs.
Further evidence confirmed that ncRNAs play a central role
in the regulation of gene expression (23, 24). Remarkably, for
Xist and other lncRNAs, such as in Air, only small segments
in their sequences are highly conserved (25, 26). For instance,
nearly 5% of mammalian lincRNAs (long intergenic non-coding
RNAs that constitute more than half of lncRNAs transcripts in
humans), which are typically restricted to short polynucleotide
stretches, are conserved in zebrafish (27). Some mouse and
human lncRNAs orthologs were able to phenotypically rescue
zebrafish lincRNA loss of function indicating that at least some
lincRNAs are functionally conserved across species (26).

Unlike lncRNAs, miRNAs are well-conserved across a diverse
range of species (15). It is thought that due to the short size
of the miRNA molecules, any change in their sequences will
result in major effects on their functions (25). McCreight et al.
analyzed the miRNA sequences of 13 primate species (Apes, Old
World monkeys, New World monkeys, and Strepsirrhines) and
observed that not only the seed region and the mature miRNA
but also the pre-miRNA hairpin sequences are highly conserved
across primates (28).
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Several studies have confirmed the relationship between
ncRNAs expression and human diseases including cancer
(29–31); neurological and neurodegenerative diseases such
as Alzheimer’s, Schizophrenia, Autism spectrum disorder,
Parkinson’s, Angelman syndrome, Huntington’s disease
among others (30). Deregulation of ncRNAs has also been
associated with diseases related to endocrinology, reproduction,
metabolism, immunology, neurobiology, muscle biology, and
cancer (32).

MicroRNAs
MiRNAs are endogenous sncRNAs of around 22–24 nucleotides
long which regulate gene expression at the posttranscriptional
level by binding mainly to the 3′ untranslated (3’ UTR) regions
of mRNAs (33). The genesis of miRNAs has been extensively
described in the literature (34). Several expression profile
studies using cell lines and tumor samples have identified many
dysregulatedmiRNAs in GBM cell lines and GBM tumor samples
compared with normal control samples (35, 36). Deregulation
of those miRNAs could play important role in all steps of
GBM initiation, progression, and tumor maintenance (37). Some
of these miRNAs and their downstream molecular have been
proposed as targets for GBM therapy (36, 38).

MiR-21, one of the first discovered miRNAs was shown to
exhibit oncogenic properties (oncomiR) (39). MiR-21 regulates
several tumor suppressor genes including PTEN, TIMP3,
PDCD4, among others (39). Corsten et al. reported that
suppression of miR-21 with locked nucleic acid (LNA)-antimiR-
21 oligonucleotides increased caspase activity and decreased
cell viability of human GBM cells (A172 and U-87MG). LNA
against miR-21 also had beneficial effects on intracranially
implanted GBM mouse models (40). Inhibition of miR-21
expression in T98G human GBM cells with catalytic nucleic
acids (hammerhead ribozymes and DNAzymes) increased PTEN
expression and decreased cell proliferation and invasion (41).
Inhibition of miR-21 also increased apoptosis and sensitized
chemo- or radiotherapy-resistant cells to other treatments (41).
Piwecka et al. performed miRNA expression studies using
miRNA microarrays, deep sequencing, and meta-analysis in
GBM and peritumoral brain tissues obtained from the patients
during surgery and compared their findings with normal brain
tissues (42). Their findings identified 35 miRNAs which were
either upregulated or downregulated in GBM vs. control samples.
They proposed 30 of these miRNAs as novel biomarkers for
GBM (42).

By using COX regression analysis, Srinivasan et al. identified
10 significant dysregulated miRNAs in GBM patients compared
with normal brain samples (43). These miRNA signatures were
able to discriminate between patients with high vs. low survival
rates (43). Similarly, Jin and workers proposed a novel method
for the prioritization of candidate cancer-related miRNAs which
alter the expression of other miRNAs and coding genes across
an entire biological network (44). To do this, they selected
three important features: the average expression of a miRNA in
multiple cancer samples, the average of the absolute correlation
values between the expression of a miRNA and expression of
coding genes, and the number of predicted miRNA target genes.

The clinical relevance of the top 20 miRNAs of this study was
interrogated using microarray and/or RNA-Seq datasets available
in “The Cancer Genome Atlas” (TCGA) data portal (http://
cancergenome.nih.gov) (44). MiR-22 emerged as the top relevant
miRNA in GBM (44). An additional study reported that miR-
22 was downregulated in GBM tissue samples and GBM cell
lines as compared with non-tumor tissues and normal human
astrocytes, respectively (45). MiR-22 downregulation correlates
with the upregulation of SIRT1 (NAD-dependent deacetylase
sirtuin-1), a gene associated with the repression of p53-mediated
apoptosis (46). Therefore, therapies increasing the miR-22 levels
could have beneficial effects in GBM patients (45, 46).

In the most recent work, Boissinot et al. performed a
high-throughput screen study in adult (U251) and pediatric
GBM cells (KNS42) using a synthetic oligonucleotide library
that mimics the annotated mature miRNAs (miRBase v16.0)
and measured the reduction of cell proliferation in the cell
lines following transfection of the mimics. This screening
identified ∼100 significantly cytotoxic miRNAs. Mir-1300 was
shortlisted as the most potent and robust candidate miRNA.
Further experiments revealed that ectopic expression of miR-
1300 decreased tumor growth in an orthotopic U-87MG mouse
model, indicating that miR-1300 is a potential candidate for
therapeutic applications (47). Recently, miR-29a, a miRNA with
tumor suppressor capabilities, was reported downregulated in
GBM cells (U-251MG, U-87MG, U-373MG, U-1242MG, and
T98G), glioma stem cells (GSCs) (GSC-11, GSC-20, GSC-28,
GSC-267, GSC-295, and GSC-627), and human GBM tumors
samples as compared with normal human astrocytes (NHAs)
and normal brain tissues, respectively (48). When miR-29a
was exogenously expressed in GBM (U-87MG) and GSCs
(GSC267) cells, it induced apoptosis and inhibited cell growth,
migration and invasion (48). In addition to miR-29a, miR-
370 was found to be downregulated in human glioma tissue
samples, U-87MG and U-251MG cells as compared with control
samples. Decreased levels of miR-370 have been associated with
the malignant transformation of astrocytes into glioblastomas
and astrocytomas (49). Transfection of OMIs or OMMs in U-
87MG and U-251MG cells showed that downregulation of miR-
370 is negatively associated with β-catenin (upregulation) and
positively linked with nuclear FOXO3a (forkhead box protein)
(49). β-catenin is a downstream molecule of the Wnt and
Hedgehog signaling, the main pathway of GSCs renewal (50).
Additionally, miR-320 was decreased while forkhead box protein
M1 (FoxM1) was increased in radioresistant glioma tissues
obtained from GBM patients (51). The direct binding of miR-
320 to FoxM1 was confirmed by bioinformatics and luciferase
reporter assays (51). MiR-320 overexpression in U 251MG
and U-87MG cells followed by infrared exposure, reduced
cell survival, and increased apoptosis compared with controls
(51). These findings also showed that miR-320 improves the
radiosensitivity of glioma cells via down-regulation of Sirt1.

Collectively, numerous studies have demonstrated that several
miRNAs are deregulated in GBM cell lines and GBM tumor
samples. The selection of appropriate miRNAs as a target for
GBM therapy (or any other disease) should identify the precise
miRNA target genes as a single miRNA can regulate tumor
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suppressors and/or oncogenes at the same time (52). Similarly,
a gene can be regulated by more than one miRNA (53). During
the course of the disease, the expression of a particular miRNA
may change, especially, in cancer stem cell populations, drug-
resistant cell populations, or in response to therapy (radiotherapy
and/or chemotherapy). Also, the expression of a miRNA may
be different (even opposite) in GBM cancer cells vs. the
tumor microenvironment. Table 1 summarizes some relevant
miRNAs that have been targeted with OMIs or OMMs in GBM
mouse models.

Long Non-coding RNAs
LncRNAs are RNAs longer than 200 nucleotides that are
not translated into proteins (32). Based on their genomic
localization, orientation, and processing lncRNAs are divided
into at least five categories: intergenic, intronic, bidirectional,
and antisense lncRNAs (60). Classification of lncRNAs according
to their function, is possible (61, 62). A study by Ma et al.
revealed that the human genome expresses at least 270,044
lncRNAs (63). LncRNAs play important roles in the regulation
of various biological processes in the nucleus, cytoplasm,
and even in the extracellular space by mechanisms that
include lncRNA-protein, lncRNA-RNA, lncRNA-miRNA, and
lncRNA-DNA interactions (64). Moreover, evidence indicates
that lncRNAs play a central role in other molecular events
including regulation of mRNA stability, RNA splicing, chromatin
structure, miRNA mediated gene regulation, protein, and
enzyme function, and as extracellular signaling molecules
(65). Similar to miRNAs, deregulation of lncRNAs includes,
duplications/translocations/mutations in DNA sequences coding
the lncRNAs, alteration in signaling molecules and transcription
factors responsible for the lncRNAs regulation, modifications
in the RNA recognition sites, and alterations in the levels of
molecules interacting with a particular lncRNAs (66). However,
the entire biological roles andmolecular mechanisms of lncRNAs
are still under investigation.

Deregulation of lncRNAs has been associated with all steps
of carcinogenesis in most cancer types, including GBM (67).
For example, the lncRNA LINC00152 is upregulated in GBM
patients and was correlated with poor prognosis (68, 69). SiRNA-
mediated LINC00152 silencing suppressed tumor growth and
invasion in both in vitro and in an intracranial GBM (U87-
MG cells) mouse model (68). Further experiments showed
that LINC00152 regulates a miR-612/AKT2/NF-κB pathway
to promote proneural–mesenchymal transition (PMT) (68). A
recent study using available clinical and molecular GBM patient
information and bioinformatics tools identified 10 lncRNAs that
can be used as an independent prognostic factor for high-grade
gliomas (70). Li et al. reported that an extremely poor overall
survival of GBM patients was linked to the upregulation of
the linc00645 lncRNA (71). ShRNA-mediated knockdown of
linc00645 in U-251MG and T98G GBM cells inhibited colony
formation, invasion, and migration while the self-renewal ability
(neurosphere formation) of these cells was reduced (71). In
vivo studies where Linc00645 was knocked-out in U-251 MG-
Luc cells and intracranially injected nude mice reduced the
tumor growth compared with a lncRNA control (71). Further

molecular signaling pathway analysis showed that linc00645
targets the miR-205-3/Zinc Finger E-box-Binding Homeobox 1
(ZEB1) pathway (71). In other studies, Ren et al. demonstrated
that siRNA knock-down of the lncRNA SNHG7 (small nucleolar
RNA host gene 7, a lncRNA upregulated in several cancers,
including GBM tissues and cell lines) in A172 and U-87MG
cells reduced cell proliferation, migration and invasion, and
activated apoptosis. SiRNA-mediated SNHG7 knockdown also
reduced tumor growth and metastasis in GBM xenograft (s.c.)
mouse model (72). Ren et al. proposed that SNHG7 directly
inhibits miR-5095 and activates the Wnt/βcatenin signaling
pathway. Additionally, inhibition of miR-5095 in A172 and U-
87MG cells increased the expression of CTNNB1, the gene
encoding β-catenin (72). More recently, Chen et al. reported that
SNHG7 acts as a miRNA sponge by reducing miRNA-449b-5p
levels, increasing MYCN (a miRNA-449b-5p target gene), and
promoting GBM progression (73). In other studies, Han et al.
reported that the Wnt/β-catenin signaling pathway in GBM is
inhibited by the lncRNA MIR22HG through the loss of miR-
22-3p and miR-22-5p (74). Furthermore, MIR22HG was highly
abundant in GBM patient samples and its expression correlated
with poor prognosis. This research team also identified SFRP2
and PCDH15 as direct targets of miR-22-3p and miR-22-5p
in GBM cells. Additionally, they designed a small inhibitor
(AC1L6JTK) inhibited tumor growth in s.c. GBM mouse
model (74).

Another lncRNA that is increased in GBM tumor samples
compared to normal brain tissues is the NF-kappa B interacting
lncRNA (NKILA). High levels of NKILA correlated with reduced
GBM patient survival (75). An shRNA containing lentiviral
vector against NKILA showed that this lncRNA stimulates the
activity of the hypoxia signaling pathway, the Warburg effect,
and angiogenesis in GBM cells (75). These effects were reversed
when 20(S)-Rg3 monomers (an anti-cancer agent and apoptotic
inducer that interfere with multiple signaling pathways) (76)
were injected s.c. in LN229 or U-87MG tumor-bearing mice.
Furthermore, 20 (S)-Rg3 inhibited the expression of NKILA and
reversed the stimulation of the Warburg effect and angiogenesis
in LN229 and T98G glioma cells (75).

Many reports have shown a direct correlation between
lncRNA expression levels and TMZ resistance (77–80). For
instance, Cai et al. showed that the lncRNA MALAT1 was
significantly upregulated in TMZ-resistant U251 GBM cells.
Lentiviral-based knockdown of MALAT1 decreased TMZ
resistance in GBM cells as confirmed by the reduction of
cell growth and increased apoptotic rates (77). A significant
reduction in tumor volume and tumor weight was observed
when U251/TMZ cells were injected s.c. in nude mice. Further
experiments indicated MALAT1 suppressed the expression of
miR-101, suggesting a potential mechanism for MALATI in
TMZ resistance (77). In separate experiments, Wu et al.
performed a lncRNA microarray of RNA extracted from patient-
derived LN229 cells and its TMZ resistant counterpart 229R
GBM cells. The microarray identified lnc-TALC (temozolomide-
associated lncRNA in glioblastoma recurrence) as one of themost
abundant LncRNAs that was expressed differently between the
two cell types. CRISPR-Cas9-mediated knockdown of lnc-TALC
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TABLE 1 | List of most relevant MiRNAs as potential targets against GBM.

MicroRNA Up-or-down

regulated

Biological role GBM model and therapy delivery

method

References

miR-10b Upregulated OncomiR, promotes proliferation of

GBM and GSCs

Human GSC (GBM8) and mouse

GL261 cells implanted InCr. Therapy:

anti-miR IT, IV, and with osmotic

pumps.

(54)

miR-486-5p Upregulated OncomiR, enhances the survival of

GBM stem cells

Neurosphere-derived xenografts

(GBM1A and Mayo39 cells) implanted

InCr. Therapy: nano formulation of

anti-miRs, InCr

(55)

miR-21-5p Upregulated OncomiR, promotes tumor cell

survival and invasiveness, involved in

TMZ resistance

U-251MG cells implanted SC

Therapy: antisense miR-

21/oligofectamine, IT

(56)

miR-34a Downregulated Tumor Suppressor, modulates EGFR U-87MG cells implanted SC and InCr.

Therapy: miR-34 as

polyglycerol-based polyplex

formulation, IT and IV

(57)

miR-128-3p Downregulated Tumor suppressor, inhibits metastasis

and epithelial-mesenchymal transition

U-251GM cells implanted SC

Therapy: LV-miR +/- TMZ: IP

(58)

miR-143-3p Upregulated OncomiR, increase cell proliferation U-87 GM cells implanted SC.

Therapy: liposomal anti-miR, IP

(59)

miR-148a/miR-296-5p Controversial OncomiR or Tumor suppressor Human GBM derived neurospheres

(GBM1A) implanted InCr. Therapy:

PBAE nano-miRs mimics NPs, InCr

(55)

InCr, intracranial; IT, intratumoral; IP, intraperitoneal; IV, intravenously; NPs, nanoparticles.

significantly decreased cell viability, promoted cell apoptosis,
and inhibited colony formation and proliferation following
TMZ treatment of TMZ- resistant GBM cells. By contrast,
overexpression of lnc-TALC in LN229 and HG7 GBM cells
reduced apoptosis and increased cell proliferation and colony
formation after TMZ treatment. Tomography studies in mice
implanted intracranially with LN229 and 229R cells revealed that
TMZ resistant tumors did not respond to TMZ treatment while
knockdown of lnc-TALC restored the sensitivity to the drug (78).
Further evidence showed that lnc-TALC binds to miR-20b-3p
with the concomitant expression of c-Met (78).

Similarly, it has been found that levels of the lncRNA
SOX2OT are higher in TMZ resistant cells and recurrent GBM
patient samples comparedwith normal human astrocytes (NHA).
Knockdown of SOX2OT suppressed cell proliferation, promoted
apoptosis, and enhanced TMZ sensitivity (79). Further studies
showed that TMZ resistance was achieved by the interaction
of SOX2OT with ALKBH5, a mammalian dioxygenase that
oxidatively demethylates m (6) A in the mRNA (79). Recent
studies confirmed that knockout of ALKBH5 enhanced the
efficiency of immunotherapy and prolonged survival of mouse
pre-implanted with B16 mouse melanoma or CT26 colorectal
carcinoma cells (81). Mazor et al., using mathematical models to
analyze multiple molecular pathways at the same time (82), RNA
sequencing, and gene expression profiling datasets identified
TP73-AS1 lncRNA as overexpressed in primary GBM samples
and GSCs compared with normal brain tissues. To clarify the
role of this lncRNA, the authors of this study performed a
viral infection of a CRISPR interference (CRISPRi) targeting
TP73-AS1. Results indicated that TP73-AS1 enhances TMZ

resistance by promoting the expression of ALDH1A1 (aldehyde
dehydrogenase 1 family member A1) (82). ALDH1A1 is a
well-known marker of cancer stem cells and a drug resistance
promoter in cancer cells (82).

Together, several dysregulated lncRNAs have been identified
in GBM cell lines and GBM tumor samples, including TMZ
resistant cells. More studies are needed to clarify the role of
lncRNA in GBM initiation, progression, and drug resistance.
Additional, therapeutic experiments using orthotopic and
patient-derived GBM cells are required to confirm the beneficial
effects of targeting specific lncRNAs in GBM tumors. Table 2
summarizes lncRNA that have been targeted with siRNAs or
small molecule inhibitors in GBMmouse models.

DELIVERY STRATEGIES FOR RNAi-BASED
THERAPIES AGAINST GBM

Several factors limit the use of RNAi-based therapy for cancer
treatment. RNAi-based molecules are rapidly degraded in the
circulation and cleared by the renal system. They activate
immune responses, and due to their negative charge, they
are not able to cross the cell membrane (84). Part of these
obstacles has been solved using NPs which extend the half-life
of RNAi molecules in the circulation. However, once inside cells,
NPs-RNAi are entrapped in the endolysosomal pathway and
degraded (84).

Many NPs have been proposed for the systemic delivery
of RNAi-based molecules, including liposomes, polymeric NPs,
micelles, dendrimers, artificial DNA nanostructures, silica NPs,
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TABLE 2 | List of relevant deregulated lncRNAs proposed as therapeutic targets against GBM (GBM mouse models used in the study).

LncRNA Up-or-down

regulated

Biological role Mouse model used for therapy References

SNHG7 Upregulated Inhibition of miR-5095 and activation

of Wnt/β-catenin signaling pathway.

xenograft experiments in nude mice (72)

MALT1 Upregulated EGFR-induced NF-κB activation U-87MG cells implanted InCr

Therapy: MI-2 small molecule

inhibitor, IP

(83)

lncRNA- TALC Upregulated in

TMZ resistant cells

Promotes O6-methylguanine- DNA

methyltransferase expression, TMZ

resistance

GBM cells (LN229/229R and 229R

Scra/229R KD_lnc) implanted InCr.

Therapy: TMZ, IP

(78)

SOX2OT Upregulated in

TMZ resistant cells

IncreasesSOX2 expression and

activate the Wnt5a/β-catenin

signaling pathway, TMZ resistance

U87TR-sh-NC and

U87TR-sh-SOX2OT cells implanted

SC. Therapy: TMZ, IP

(79)

MIR22HG Upregulated Inducer of the Wnt/β-catenin signaling

pathway

U-87MG cells implanted SC.

Therapy: AC1L6JTK small-molecule

inhibitor, IP

(74)

InCr, intracranial; IT, intratumoral; IP, intraperitoneal; IV, intravenously; NPs, nanoparticles.

nanotubes, metal NPs (mostly, Fe-, Au, and Se-based), and
quantum dots, among many others (85–90). Although all of
these NPs have been proposed as drug carriers for cancer
treatment, few have been tested in relevant animal models
of cancer. NPs are modified with ligands to increase their
stability in serum (i.e., using polyethylene glycols, PEG) and/or
to improve the endosomal escape (i.e., with polyethylenimine,
PEI) (passive targeting). Depending on the constructionmaterial,
NPs are derivatized with peptides, antibodies, carbohydrates,
or other cell or tissue-specific markers (active targeting) (84,
91, 92). Important parameters to take into account with NPs
for cancer treatment are their size, charge, and biodegradability
(in particular, metal NPs accumulate in the organs and are
therefore toxic) (90, 93–97). It is speculated that 50–200 nm in
diameter are an ideal NP size for effective retention on the tumor
tissues, and 20–50 nm for drug delivery through the BBB (90, 98)
(see section Viral-Based Delivery for the discussion of RNAi
delivery through the BBB). In terms of the charge, positively
charged NPs enter easily inside cells and therefore are more
toxic compared with negatively charged or neutral NPs (97, 99).
However, positively charged NPs are more rapidly phagocytized
by the mononuclear phagocyte system which negatively impacts
their accumulation in the tumors (100). Also„ the NP surface
is cover with different proteins which could change their size
and their surface characteristics as they travel in the circulation
and organs (101). These modifications (protein corona) are
not well-investigated.

PEI-coated Fe3O4 NPs with siRNA were used for the silencing
of the repressor element 1-silencing transcription factor (REST)
gene in U-87MG and U-251 GBM cells. The inhibition of
REST significantly decreased cell viability and migration in
these cells (90). Qui et al. effectively silenced Bcl-2 and VEGF
in U-87MG cells when siRNAs were delivered as a complex
with β-cyclodextrin (β-CD)-modified dendrimer-entrapped gold
nanoparticles (Au DENPs) (102). More recently, Li et al.
proposed a composite NP of cationic liposomes loaded with YAP
(yes-associated protein 1)-targeting siRNA and doxorubicin and

coated on the exterior with gold nanorods. These NPs silenced
YAP in GBM cells and reduced tumor growth when systemically
injected in orthotopic GBM mouse models (103). Currently,
most of these metal NPs as well as liposomes, polymeric NPs,
and other composites are used in combination (i.e., gold NPs
and liposomes) and/or modified with ligands to improve their
stability and specificity (see below).

Liposomes and Polymeric NPs
Liposomes are artificial phospholipid vesicles that form a “core-
shell” structure and can be readily loaded with therapeutic
agents (104). Lipids commonly used for liposome preparation
are biocompatible, biodegradable, and of low toxicity. Liposomes
increase the distribution of delivered agents, reduce toxicity,
and extend half-life. Liposomes can be customized based on
the feasibility of the target cell or tissue by modifying their
surfaces with a variety of functional moieties (17, 105, 106).
For in vivo applications, PEGylation (mostly with PEG-2000)
on the liposome surface is commonly used (107). PEGylated
liposomes acquire hydrophilicity on the surface, which might
minimize the non-specific interaction with serum components by
involving steric shielding and thereby increasing circulation time
and overall stability of the NP (108). Some disadvantages of using
PEGylated liposomes include the activation of immune responses
and allergies (109). Furthermore, the PEG moiety hinders the
interaction of liposomes with the target cell surface which could
either decrease their cellular uptake, reduce their endosomal
escape, and promote the degradation of the cargo in lysosomes
(110). It is speculated that liposomes are accumulated in tumor
tissues by passive targeting by virtue of an apparent tumor
property known as “Enhanced Permeability and Retention”
(EPR) effect vs. other tissues of the body, (110). The molecular
and biological basis of the EPR are not well-understood (111).

Numerous studies have reported effective delivery of
liposomes to glioblastoma cells. Ravi et al. used a liposomal
formulation loaded with ferritin heavy chain 1 (FTH1)-targeted
siRNAs to treat patient-derived xenograft glioblastoma initiating
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cells (GIC) (112). Kato et al. delivered (intratumorally) MGMT-
targeted siRNAs loaded LipoTrust EXOligo cationic liposomes in
s.c. implanted Glioma-initiating cells (GIC)-derived tumors, and
by osmotic pumps (s.c. implanted) in intracranially implanted
GIC tumors (113). Their results showed that GIC tumors were
sensitized to TMZ treatment (113). Our research team showed
that a liposomal formulation of OMIs against miR-143 reduced
tumor growth in a xenograft (s.c.) GBM mouse model (59).
Despite their extensive use and their excellent biocompatibility,
liposomes possess some disadvantages such as drug leakage
and poor stability on storage leading to a short shelf-life (88).
Although some siRNA-liposome formulations have advanced
to clinical trials, and one to the clinic, none of them have been
intended for brain tumors.

Polymeric NPs are solid-like colloidal particles synthesized
with biodegradable polymers such as chitosan, collagen, or non-
biodegradable polymers such as poly (lactic acid) (PLA) and
poly (lactic-co-glycolic acid) (PLGA) having a size range of
50–300 nm,. It is speculated that compared with liposomes,
polymeric NPs accumulate in cells of the target site due to
their small size and penetration through capillaries. However,
their synthesis is more complex than liposomes (88, 105) and
additional optimization procedures are required. Danhier et al.
used convention enhanced delivery (CED) (see section Viral-
Based Delivery) to deliver EGFR- and galectin-targeted siRNAs
as chitosan lipid nanocapsides to orthotopic (U-87MG cells)
GBM mouse models (114). They observed that the survival was
increased significantly in mice treated with this formulation
when compared with mice injected with each siRNA-chitosan
formulation independently (114). Van Woensel et al. delivered
a Galectin (Gal-1)-targeted siRNA-chitosan NPs intranasally
to GBM mouse models (intracranially implanted GL261-WT
or GL261-BFP tumor cells). Gal-1 which is overexpressed
in GBM, was reduced by more than 50% as a result of
this treatment (115). Intranasal delivery of the Gal-1-targeted
siRNA-chitosan formulation in murine GBM models altered
the tumor microenvironment, incremented CD4+ and CD8+
T cell numbers, sensitized cells to chemo and immunotherapy,
and prolonged the animal survival (116). In other experiments,
Ye et al. developed an angiopep-2-modified cationic PLGA
nanoparticle to deliver Gefitinib (a tyrosine kinase inhibitor) and
showed that this formulation effectively crossed the BBB and
reduced the tumor growth in GBMmouse models (117).

Hybrids of lipids and polymeric particles have also been
developed to deliver small molecules and siRNAs (118, 119).
Dahlman et al. prepared a lipopolymer NP (LPNP) by
conjugating epoxide-terminated lipids to low-molecular-weight
polyamines (119). Yu et al. used this LPNP formulation to
transfect siRNAs in brain tumor-initiating (BTIC) GBM cells
(94). BTIC are present in brain tumors and possess stem cell
properties including self-renewal and differentiation capacity
into neural lineages (120). Moreover, BTIC are involved in tumor
initiation, recurrence, and therapy resistance (94). BTIC are
small in numbers relative to GBM cells, but their eradication is
challenging as they survive chemotherapy and radiotherapy; they
also reside in sites/conditions where therapies are less effective.
Additionally, BTIC are heterogeneous in nature, stimulate

epigenetic abnormalities, and rapidly migrate to normal cell
sites to generate new GBM cell populations. However, targeting
BTIC compared with other GBM cells could be a more effective
approach for non-recurrent GBM treatment (87, 94). Yu et al.
used LPNPs loaded with siRNAs against four transcription
factors (SOX2, OLIG2, SALL2, and POU3F2); all responsible for
proneural BTIC acquisition (94). Compared with non-targeted
siRNA control NPs, intratumoral injection of siRNAs containing
LPNPs increased the median survival of patient-derived BTIC
xenograft in GBM mouse models (94). Likewise, Guerrero-
Cázares et al. developed biodegradable poly (β-amino esters)
(PBAEs) to deliver DNA in to BTIC (87). PBAEs are considered
advanced cationic NPs which have been successfully used for
gene delivery (121). The ester bonds of PBAE are readily cleaved
by hydrolysis with effective release of the payload with minimum
cytotoxicity (89). Green et al. used PBAE NPs to deliver miRNA
mimics of miR-148a and miR-296-5p in orthotopic human GBM
xenograft mouse models (89). Intratumoral administration of
these NPs inhibited tumor growth and prolonged the survival
of the animals (89, 122, 123). More recently, the same research
group showed that the delivery of various siRNAs (against Robol,
YAP1, NKCC1, EGFR, and survivin) within the same PBAE
nanoparticle caused GBM cell death and reduced GBM cell
migration (96). Intratumoral administration of this formulation
reduced tumor burden in a xenograft (SC) GBM mouse model
(96). More studies in relevant orthotopic GBM mouse models
are needed to confirm that systemic administration of all of these
NPs are able to cross the BBB and deposit their cargo in the
tumor cells.

Bacterial Toxins
Bacterial toxins (specifically AB-type toxins), such as anthrax
toxin (AT) and diphtheria toxin (DT) or Pseudomonas exotoxin
have been tested as promising tools for RNAi delivery (124). As
these toxins have natural mechanisms to penetrate the cells, they
can be further modified for drug delivery purposes (124–126).
Besides, their distinctive structure allows their natural transport
via receptor-mediated endocytosis and crossing the endosomal
membranes via a transmembrane pore (124). When detoxified
DT chimeras were used as protein-delivery vectors, high
translocating efficiencies of cargo proteins of variable sizes (>100
kDa), structural motifs, and diverse stabilities were obtained
(125). Dyer et al. successfully delivered Syntaxin5 (Synt5)-
targeted siRNA in various primate cell lines (HeLa, THP-1 and
Vero) using deactivated AT. Following transfection, a significant
downregulation of Synt5 expression was observed compared
with siRNA transfection with the nucleofection methods (126).
Arnold et al. explored whether attenuated diphtheria toxin (aDT)
could be used as a delivery vehicle for siRNAs against integrin-β1
(ITGB1)- and eukaryotic translation initiation factor 3 subunit
b (eIF-3b)-targeted siRNAs in patient-derived GBM cells. First,
they conjugated DT with cysteine (Cys); next, the Cys was
modified with a maleimide cross-linked to dibenzocyclooctyne
(DBCO) group and the siRNA molecules were attached to
the DBCO. When the conjugated DT was added to GSCs,
significant reductions in the mRNA levels of ITGB1 and eIF-
3b were observed (127). More studies using bacterial toxins for
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RNAi delivery should be performed in GBM cells and GBM
mouse models.

Stem Cell-Derived Exosomes
Besides their use in prognosis, exosomes have gained potential
use as drug delivery vehicles (128, 129). Compared with other
NPs, exosomes exhibit less immunogenicity when derived from
autologous cells and therefore they are less toxic compared with
other artificial delivery vehicles (130). Due to the phospholipid
bimolecular layer, exosomes can cross the plasma membranes
(131). Their small size can facilitate their extravasation and
diffusion in tumor tissues which can facilitate their transport
across the BBB. Katakowski et al. used mesenchymal stromal
cell (MSCs)-derived exosomes as carriers for miRNA delivery.
They transfected MSCs with miR-146b-expressed plasmid and
the isolated exosomes were injected intracranially in a xenograft
rat model. The miR146b-exosomes reduced the tumor volume
5 days after the treatment (132). In another study, secreted
exosomes were obtained from patient-derived GSCs engineered
to express the miR-302-367 (133). Exosomes were delivered into
naïve neighboring GSCs and resulted in repression of target
genes, CXCR4/SDF1, SHH, cyclin D, cyclin A, and E2F1. The
orthotopic xenograft of both naïve and ectopically expressing
miR-302-367 GSCs altered the tumor development in mouse
brain (133). The microRNA cluster miR-302-367 has previously
been considered as a potential treatment for glioblastoma (134).

In a similar study, Lee et al. utilized MSCs to deliver miR-
124 mimics in glioma xenograft mouse models. They transfected
the MSCs with Cy3-labeled miR-124 mimics and administered
them intracranially in the U-87-MG derived xenograft GBM
mouse model (135). The results indicated that MSCs were
able to deliver the synthetic exogenous miRNA mimics to
glioma cells and glioma stem cells. However, the therapeutic
potential of the formulation was not evaluated (135). Wang
et al. studied the inhibitory effect of human bone marrow-
derived mesenchymal stem cell (hBMSC)-derived exosomes in
GBM tumor progression. They observed that hBMSC-derived
exosomes overexpressing miR-34a suppressed MYCN expression
and decreased cell proliferation, invasion, and migration; it
reduced tumor growth in xenograft mouse models (136). Yu
et al. have observed the inhibition of glioma progression by
downregulation of AGAP2 (ArfGAP with GTPase domain,
ankyrin repeat and PH domain 2) when exosomes were released
from miR-199a-overexpressing MSCs in vitro and in vivo
experiments (137). Despite the enormous potential of exosomes
as RNAi carriers, additional in vivo experiments using orthotopic
GBMmouse models should be performed.

Viral-Based Delivery
Viral vectors including retrovirus, adeno-associated virus (AAV),
and herpes simplex virus (HSV) have been studied for several
years as a tool for gene therapy and as drug delivery vehicles
(138–140). Lentiviral vectors have also emerged as efficient
delivery vehicles for stable gene expression of shRNA in GBM
cells (141). Yang et al. used lentivirus-based siRNA delivery to
target small supernumerary marker chromosomes 1A (SMC1A).
This gene plays an important role in genome stability including

DNA replication, repair, and engaging proteins of cell-cycle
networks (142). After infection of GBM cells with lentivirus
containing SMC1A-targeted siRNAs, a 50 and 100% reduction
in cell proliferation were obtained at 5 and 14 days, respectively
(142).Matsuda et al. performed a remarkable study by developing
a Hemagglutinating virus of Japan envelope (HVJ-E) which was
obtained with inactivated Sendai virus. HVJ-E could be used as
a delivery vector of siRNA, DNA, proteins, and other anti-cancer
drugs (143). In this study, siRNA was incorporated in the HVJ-
E vector to knockdown mitotic motor protein Eg5, which has
important functions in the early stages of mitosis, centrosome
separation, and formation of the bipolar mitotic spindle (143).
Therefore, knockdown of Eg5 is beneficial as it is able to arrest the
cell in the mitotic stage and leading to apoptosis. One of the most
significant outcomes of this study was the complete eradication
of all the intradermal U-118MG tumors and approximately 80%
of intracranial implanted U-118MG tumors (143).

In another study, epidermal growth factor receptor (EGFR)
gene silencing was performed in human gli36-Luc glioma
cells. HSV-1-based amplicons expressing EGFR specific siRNAs
against two different locations pHSVsiEGFR I and pHSVsiEGFR
II, respectively, were constructed. The knockouts at both loci
resulted in a significant growth reduction of glioma cells in
vitro and in vivo studies (144). HSV-1 vector was also employed
in post-transcriptional inhibition studies of Rad51 protein in
gli36-luc glioma cells containing target-specific siRNA combined
with radiation therapy. Rad51 performs an important function
in homologous strand exchange, which is a key step in DNA
repair through homologous recombination (HR). Results of
this study confirmed that the silencing of Rad51 improves
the radiation-induced death of tumor cells (145). In another
study, a recombinant adeno-associated virus (rAAV) expressing
short hairpin RNA (shRNA) was produced in the vertebrate
Spodoptera frugiperda (Sf9) cell line. This vector reduces the
expression of Hec1 protein (highly expressed in cancer 1) which
is responsible for the beginning of the anaphase by regulating
chromosomal segregation, microtubule interactions, and spindle
checkpoint signaling. When the vector (rAAV-shHec1) was
injected intratumorally it selectively killed mitotically active
glioma tumor cell (U251) in the xenografts tumor model (146).
Lee et al. developed three-way-junction (3WJ)-based RNA NPs
(RNP) derived from a well-established bacteriophage phi29
packaging RNA (pRNA) system. These bacteriophage-derived
NPs were resistant to clinically relevant doses of I-125 and Cs-131
radiation (147). Further studies with multi-valent folate (FA)-
conjugated 3WJ RNP loaded with LNA against miR-21 reduced
the expression of this miRNA and incremented the expression of
its target genes (PCDD4 and PTEN) in GBM cells in vitro and in
vivo (148).

Despite the significant advancement with the use of viral
vectors as cytotoxic agents and/or for gene therapy, clinical trials
have failed (149–151). None of the proposed viral vectors against
GBM have been approved clinically (152, 153). Nevertheless, a
new category of AAV vector associated with exosomes, which
are termed as vexosomes, has been reported (150, 154) and
their applications were studied recently (149, 150, 154). These
vectors were efficiently transduced and were more resistant in
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FIGURE 1 | (A–E) Delivery strategies by liposomes nanoparticles, polymeric nanoparticles, bacterial toxin, exosomes, and viruses. Created with BioRender (https://

Biorender.com/).

neutralizing anti-AAV antibodies compared to conventionally
purified AAV (149). Although these vectors have not been
investigated as delivery carriers for GBM treatment, they were
very efficient in delivering DNA to the central nervous system
(CNS) in mouse studies (150). Vexosomes were also used to
deliver inducible caspase 9 (iCasp9) in Huh7 hepatic cancer
cells and in hepatocellular carcinoma (HCC) xenograft mouse
models (154).More exploratory studies are neededwith the use of
Vexosomes as drug delivery vehicles. Figures 1A–E summarizes
the current delivery strategies under investigation for drug
delivery into the brain.

THE BLOOD-BRAIN BARRIER IS THE
CRITICAL FACTOR FOR THE
SUCCESSFUL DESIGN OF USEFUL
DRUGS FOR GBM TREATMENT

The Blood-Brain Barrier (BBB) is the physical/anatomical barrier
that protects and regulates the homeostasis of the Central
Nervous System (CNS) (Figure 2). It is located between the
blood microcirculation system and the brain parenchyma. The
BBB is composed mainly of a non-fenestrated layer of brain
microvascular endothelial cells, which are tightly bound together
by Tight Junctions (TJ), surrounded by a specialized basal
lamina that is shared with pericytes and astrocytic endfeet,
and interconnected by neural endings and microglia (155, 156).
TJ’s, known also as Zona Occludens, contain major integral
membrane proteins such as claudins and occudins. These
proteins interact with peripheral membrane proteins known as
Zonula Occludins (ZO) in order to maintain the integrity of
the BBB. This integrity allows the BBB to be highly selective
and regulate the entry of nutrients, ions, and other molecules.
It also protects the CNS against neurotoxic substances. Likewise,

pericytes are key regulators of vascular function throughout the
body as they communicate with astrocytes and support BBB
maintenance in the postnatal brain. Pericytes also regulate the
expression of transporters such as the lysophosphatidylcholine
(LPC) transport catalyzed by the Na+-coupled LPC symporter 1
(NLS1) which is responsible for the transport of docosahexaenoic
acid (DHA, an omega-3 fatty acid) across the BBB (157).
Pericytes enfold the CNS endothelium which forms a basal
lamina that attracts astrocytic endfeet during development (158,
159). Astrocytes, the most abundant cell type in the brain, are
important metabolic sensors and make a significant contribution
to BBB development and function (160). Astrocytes regulate
signaling pathways that maintain junctional complexes and
produce an additional barrier called the glia limitans (161, 162).
Together, astrocytes and pericytes play an important role in the
integrity of the BBB (163).

Generally, the BBB precludes brain entry of 100% of large
molecules and 98% of small molecules (164, 165). Although
the BBB is compromised in GBM patients, this barrier is
considered the rate-limiting factor for the development of all new
therapeutics for the treatment of GBM; and other neurological
disorders (163). Thus, research efforts are focused on finding
ways to breach, bypass, and target the BBB to successfully
develop optimal treatments against CNS-related conditions.
Breaching the BBB consists of disrupting the neurovascular
junction by chemical or mechanical insults, allowing treatments
to enter the brain parenchyma. One example of this is the
focused ultrasound-induced BBB opening (FUS-BBB) (166).
Here, microbubbles are administered into the circulation and a
non-invasive FUS is performed in the brain region of interest.
When submitted to the low-energy toned ultrasound, the
microbubbles burst and transiently permeate the BBB, causing
a physical cavitation effect. This technique is being evaluated
for the treatment of Alzheimer’s disease (AD), amyotrophic
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FIGURE 2 | Transport mechanisms through the BBB. Created with BioRender (https://Biorender.com/).

lateral sclerosis (ALS), Parkinson’s disease, and GBM (166). Due
to successful preclinical studies in GBM, FUS-BBB is being
evaluated under Phase I clinical trials for chemotherapy with
doxorubicin and carboplatin (167).

Bypassing the BBB consists on finding new ways to
deliver CNS treatments to the brain without dealing with
the BBB. One way of achieving this is trading the oral, the
intravenous (i.v.) or the intraperitoneal (IP) administration
with non-conventional routes such as convection-enhanced
delivery (CED), delivery to the cerebrospinal fluid (CSF) via
intrathecal (IT) or intraventricular (IVN) routes, and intranasal
delivery (168). Direct intratumoral drug administration and
subcutaneous (s.c.) implantation of osmotic pumps have also
been used for drug delivery using GBM mouse models (54, 55).
In CED a pressure gradient is generated in a tip of an infusion
catheter implanted in the interstitial spaces of the CNS. CED
was used to deliver chitosan-siRNA NPs in GBM mouse models
(114). Kim et al. implanted U-87MG cells in the brain of
mice and compared the tumor distribution of OMI (targeting
Let-7) administered intratumorally (IT), intrathecally (ITc) and
intraventricularly (Ivn). IT administration led to a high rate of
OMI accumulation in the brain tumor cells (169). However,
Ivn administration showed a greater distribution of the OMI
in the brain tissues (169). Seo et al. used an orthotopic GBM
mouse model (intracranial cell implantation) to deliver by CED

NPs formulations loaded with miR-21 inhibitors (170). This
treatment prolonged the survival of mice when combined with
chemotherapy. Although CED has been used in preclinical and
clinical studies, this procedure constitutes a very invasive method
of drug delivery. Preclinical and clinical trials using CED to treat
GBM and other brain-related conditions have not produced the
expected results (171–173).

Another approach to bypass the BBB is intranasal (IN)
drug delivery. IN delivery has been used to deliver chitosan-
siRNA NPs in murine GBM mouse models (174). Sekerdag
et al. administered (IN and i.v.) farnesylthiosalicylic acid (FTA)
loaded (lipid-cationic) lipid-PEG-PLGA hybrid NPs in the brain
of rat glioma (RG2) cell-bearing rats (175) and observed a
55.7% reduction in tumor area. Although both, i.v. and IN
administration routes had a significant anti-cancer effect in
vivo, IN delivery might be a better choice of treatment due to
its low plasma levels and its non-invasive methods and lower
systemic side-effects (175). More studies in GBM mouse models
are needed before proposing IN drug administration as a real
method to treat brain tumors. Additional procedures to optimize
IN RNAi-NP formulations are also required.

A less invasive approach to cross the BBB is the systemic
drug administration (Figure 2). For systemic administration,
drugs should be modified to cross the BBB and reach the
tumor cells in the brain. These modifications could allow drugs
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to cross the BBB using natural transport routes. Transport
through BBB includes passive diffusion, paracellular trafficking,
facilitated transport, adsorptive endocytosis, and/or receptor-
mediated transcytosis (176). First, a drug that crosses the BBB
through passive diffusion (lipid-mediated transport) needs to be
small (<400 Da) and it must have high lipid solubility (< 7
hydrogen bonds with solvent water) (177). For example, TMZ
crosses the BBB since it has a molecular weight of 194 Da and it
is highly lipophilic. One study revealed that of the >6,000 drugs
in the Comprehensive Medical Chemistry database, only 6% are
active in the brain (178). Second, small molecules could reach
the brain paracellularly, between brain capillary endothelial cells.
Under normal physiological conditions, there is no paracellular
pathway from blood to the brain (179). This is because adjacent
endothelial cells are cemented together through tight junctions,
giving the BBB its high resistance property (180). However, in
GBM and other neurological disorders, paracellular trafficking
of small hydrophilic compounds can occur because the BBB
is compromised (163). Also, new imperfect blood vessels are
formed in GBM tumors, making the BBB leaky. Hence small
NPs can be retained in the tumor tissue by the EPR (181). In
addition to structural or architectural vascular abnormalities,
impairment of lymphatic drainage and permeability enhancing
factors contribute to the EPR effect (111, 182–184). In fact,
a number of vascular mediators are utilized to augment the
EPR effect. One of these mediators is Nitric Oxide (NO), an
endogenous mediator that causes vessels to dilate and lower
blood pressure, thus promoting EPR (181). A recent study by
Yasuda et al. demonstrated that the use of NO-releasing agents
has enhanced effects on cancer therapy (185).

Third, therapies can be modified to enable facilitated
transport, also known as carrier-mediated transport (CMT),
across the BBB. CMT comprises stereospecific pore-based
transporters localized in the blood side and the brain side
of the brain capillary endothelial cells (164, 165). These are
dependent on chemical/electrical gradients (mostly dependent
on sodium) and require certain structural characteristics for their
affinity (186). Some examples of carrier-mediated transporters
are glucose, lactate, amino acid, and adenosine transporters
(GLUT1, MCT1, LAT1, and CNT2, respectively). Many drugs
against brain-related disorders are designed to cross the BBB by
using CMT (187). For example, L-DOPA for Parkinson’s disease
and gabapentin an anti-epileptic drug crosses the BBB through
the L-type amino acid transporter 1 (LAT1) (188). Melphalan, an
anticancer drug used mainly against multiple myeloma and other
cancers, including recurrent brain tumors, crosses the BBB via
LAT1 (189). Another anticancer agent that expresses an affinity
for the BBB LAT1 transporter is Buthionine Sulfoximine (BSO).
BSO is a glutathione synthesis inhibitor that has been used to
enhance alkylating drug cytotoxicity and limit development of
drug resistance (187). Additional drugs which cross the BBB
via CMT should be designed and tested using brain tumor
mouse models.

Fourth, effective therapeutic agents could penetrate the
brain through adsorptive mediated endocytosis. Adsorptive
mediated endocytosis is a vesicle mediated transport system
that occurs upon non-specific interactions between positively

charged macromolecules and the cell membranes of all cells,
including brain capillary endothelial cells (190). Cationic NPs
and other drugs conjugated to cell penetrating peptides (CPPs)
can enable this type of transport in GBM. CPPs are short
peptides derived from a protein-transduction domain that have
the ability to enter into most type of cells and promote the
delivery of conjugated biomolecules (191). Since most peptide-
and nucleic acid-based drugs are poorly taken up by cells, the use
of conjugated therapeutic agents to CPPs has become a subject of
interest in improving drug delivery. Although the mechanisms of
internalization of CPPs are not well-understood, recent studies
have demonstrated that CPPs does not involve endocytosis
nor specific protein transporters, but rather a possible direct
transport through the lipid bilayer of membranes (192–194).
Studies by Lakkadwala et al. evaluated the influence of inserting
a CPP (TAT or QLPVM) in brain targeted with doxorubicin
containing liposomes (195). They showed that CPPs significantly
improved the systemic delivery of these liposomes across the
BBB into glioblastoma tumor cells. Results of this study also
demonstrated a higher accumulation of doxorubicin in the
mouse brains as compared to free drug without toxicity (195).
Although CPP exhibit great delivery potential to send drugs
across the BBB, most CPPs are not cell specific, which limits their
application in drug delivery.

Fifth, targeting brain capillary endothelial cells could improve
drug delivery into brain tumors. Receptor mediated transcytosis
(RMT) is one of the most promising mechanisms for systemic
delivery for GBM treatment. Here, either small or largemolecules
can bind to specific receptors on the luminal (blood side)
surface of capillary endothelial cells and cross the BBB by
transcytosis mechanisms (196). Once macromolecules interact
with their target receptor, they are internalized by endocytosis,
transported across the cell’s cytoplasm, and externalized by
exocytosis from the abluminal (brain side) surface of capillary
endothelial cells (197). In particular, peptides of apolipoprotein
E (ApoE) which bind to low density lipoprotein (LDL) Receptor
(198), angiopep-2 which binds to the receptor-related protein
1 (LRP-1) (199), hyaluronan (HA) which binds to CD44
receptor, and transferrin which binds to transferrin receptor
have been used (200). For example, Gutkin et al. prepared
hyaluronan (HA)-grafted lipid NPs (LNPs) loaded with Polo Like
Kinase 1 (PLK1)-targeted siRNA. HA binds to CD44 receptor
variant-containing cells (201). Intracranial administration of this
formulation in tumor bearing mice (U-87MG cells implanted
intracranially) reduced PLK1 protein levels and prolonged the
survival of the mice. Also, the LNPs were accumulated in
the tumor tissue when they were systemic administered in
C57Bl/6 mice (intracranially implanted with GSCs). Published
data from Böckenhoff and collaborators demonstrated that
ApoE, in comparison to other BBB permeable therapeutic
polypeptides including Angiopep (Ang-2), Apolipoprotein B
(ApoB), and Transactivator of Transcription (TAT) exhibited
the highest brain accumulation of the lysosomal enzyme
Arylsulfatase A (ASA) (202). Studies by Fu et al. demonstrated
that incorporating a glucose-RGD derivative into paclitaxel
containing liposomes for dual targeting [via GLUT1 (glucose)
and integrin αvβ3 (RGD)] increased liposome accumulation in
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Kunming mice bearing C6 glioma tumors compared to paclitaxel
alone (203).

Saw et al. developed aptamer-like peptide (aptide)-decorated
liposomal nanoplatform for siRNA delivery into GBM cells. The
NPs were decorated with PEG and with a surface-encoded aptide
to precisely target the extra-domain B (EDB) of fibronectin, a
glycoprotein overexpressed on glioma cells. They used siRNA to
target cyclophilin A (CypA), a gene upregulated in brain cancer
cells that plays a critical role in malignant transformation and
maintenance of glioma cell stemness (204). This aptamer NP
formulation decreased cell growth in vitro, and when administed
IV. reduced tumor growth in a s.c. GBMmouse model. Recently,
Zou et al. used an angiopep-2-decorated nanocapsule with
PLK1-targeted siRNA inside (205). Systemic administration of
this NPs formulation in an orthotopic GBM mouse model
(intracranial implantation of U-87MG cells) increased their
circulation in plasma and their accumulation in the GBM
cells (205).

Another modification to improve systemic treatments against
CNS disorders is the conjugation of drugs with peptide sequences
from neurotropic viruses—capable of invading and infecting
neural tissue. Some viruses, like the West Nile virus, are able
to get through the BBB by infecting immune cells that enter
the CNS (206), while others like the ZIKA virus have shown
to directly infect the BBB endothelial and glial cells (207).
However, most viruses enter the CNS through the peripheral
nervous system (PNS), using the nerve tracts to transit from
the periphery to the CNS, evading the BBB (208). The rabies
virus is an example of a neurotropic virus that uses axonal
transport (209). This virus contains a rabies virus glycoprotein
(RVG) which is the part of the virus responsible for neural
interaction and which has been used for drug delivery to the
brain (210). Evidence indicates that RVG interacts specifically
with the nicotinic acetylcholine receptor (nACnR) in neural cells
(211–214). Early studies by Kumur et al. showed that RVG
peptide significantly increased oligonucleotide delivery (siRNA)
to brain (p = 0.001) in comparison to other organs (liver
and spleen), making it an excellent candidate to improve RNA
delivery to brain tumors (212). In a recent study, our research
team compared the accumulation levels of RVG- and ApoE-
decorated liposomal nanoparticles (with AuNPs-OMI inside
liposomes) in orthotopic GBM mouse models (106). We showed
that ApoE decorated NPs accumulate to a higher degree in GBM
cells compared with RVG-decorated NPs (106). In a separate
study, Kong et al. prepared arginine-glycine-aspartic (RGD)
functionalized dendrimer-entrapped AuNPs (Au DENPs) and
polyethylene glycol (PEG) spacers attached to siRNA molecules
against vascular endothelial growth factor (VEGF) and B-cell
lymphoma/leukemia-2 (Bcl-2). Effective silencing of both, VEGF
and Bcl-2 was observed in both in vitro and in vivo studies
(215, 216). Similar results were obtained when dendrimers were
replaced by polyethyleneimine (PEI) (217).

Molecular Trojan horse (MTH) is an engineered endogenous
peptide monoclonal antibody (MAb) that can undergo receptor
mediated transport across BBB (218). Several species-specific
Mab MTHs have been developed for brain drug delivery
(219). In humans, a genetically engineered form of human

insulin receptor (HIR) Mab have been produced to enable
drug delivery into the brain. RNAi-based molecules can be
attached to MTH by avidin-biotin conjugation (219). This
attachment has no effect on the hybridization of the RNAi
molecule with its RNA target (219). A combination of MTH
and liposomes, called Trojan Hourse Liposomes (THL), have
been used for siRNA delivery. Zhang et al. implanted U-87MG
cells in the brain of nude mice and 5 days later injected
(i.v.) a EGFR-targeted short hairpin RNA loaded PEGylated-
liposomes. Liposomes were derivatized with two monoclonal
antibodies, a murine MAb to the human insulin receptor
and a rat MAb to the mouse transferrin receptor. Weekly
administration of this THL increased mouse survival by
88% while EGFR expression was significantly reduced. Other
THL formulations for drug delivery into the brain are being
developed (220).

CONCLUSIONS AND FUTURE REMARKS

Currently, an arsenal of technologies for GBM diagnosis are
available in the clinical setting. Also, the classification of CNS
tumors according to pathological and molecular parameters is
an advantage as more precise GBM diagnostic and prognostic
tools are now possible. Although many therapies for GBM
treatment are in the clinic and in clinical trials, GBM is
still an incurable and deadly disease. Deregulation of several
miRNAs and lncRNAs have been reported in GBM cell lines
and GBM tumor samples and they represent promising targets
against GBM. Given the nature of miRNA binding to multiple
mRNAs, the precise molecular and biological consequences of
targeting a miRNA should be carefully studied. These studies
should be conducted not only in the tumor cells but also in
tumor microenvironment. Regarding the lncRNAs, more studies
are needed to fully understand the role of these regulatory
and signaling molecules in health and disease. Targeting some
miRNAs and lncRNAs with RNAi molecules in GBM cell lines
and GBM mouse models have resulted in beneficial effects.
However, the delivery of RNAi molecules to the brain is a
challenge as BBB precluded the passage of most substances into
the brain.

Biodegradable NPs are ideal carriers to delivery RNAi
molecules to GBM tumors. IN and i.v. delivery are the least
invasive routes to deliver RNAi-NPs (and other drugs) to
the brain. Although thousands of NPs have been suggested
for the delivery of RNAi molecules for GBM treatment, few
have been tested in animal models. Some reports have shown
that IV delivery of RNAi-NPs cross the BBB (by RMT) and
efficiently accumulate in the tumor cells of orthotopic GBM
mouse models. More studies implanting patient derived GBM
tumors and/or GBM cell lines in the mouse brain (intracranial,
orthotropic) are required. Also, to model a genuine treatment,
the therapy should be administrated IV or IN. Although,
the use of SC GBM mouse models to test the therapeutic
benefits of a novel RNAi-based therapies is a first approach,
this does not represent a real GBM model, mainly because
the tumor microenvironment and the presence of BBB are
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not considered. Designing NPs able to discriminate tumor vs.
normal cell is another critical challenge to overcomes. Therefore,
multidisciplinary research teams should work together in order
to design rational NPs able to cross the BBB. In this way
the RNAi-based therapies for GBM treatment will become a
clinical reality.
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