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Systems/Circuits

Differential Excitability of PV and SST Neurons Results in
Distinct Functional Roles in Inhibition Stabilization of
Up States

Juan L. Romero-Sosa,1,2 Helen Motanis,1,3 and Dean V. Buonomano1,2
1Department of Neurobiology, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California 90095,
2Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095, and 3Department of Neurosurgery, University of
California, Los Angeles, Los Angeles, California 90095

Up states are the best studied example of an emergent neural dynamic regime. Computational models based on a single class
of inhibitory neurons indicate that Up states reflect bistable dynamic systems in which positive feedback is stabilized by
strong inhibition and predict a paradoxical effect in which increased drive to inhibitory neurons results in decreased inhibi-
tory activity. To date, however, computational models have not incorporated empirically defined properties of parvalbumin
(PV) and somatostatin (SST) neurons. Here we first experimentally characterized the frequency–current (F–I) curves of py-
ramidal (Pyr), PV, and SST neurons from mice of either sex, and confirmed a sharp difference between the threshold and
slopes of PV and SST neurons. The empirically defined F–I curves were incorporated into a three-population computational
model that simulated the empirically derived firing rates of pyramidal, PV, and SST neurons. Simulations revealed that the
intrinsic properties were sufficient to predict that PV neurons are primarily responsible for generating the nontrivial fixed
points representing Up states. Simulations and analytical methods demonstrated that while the paradoxical effect is not oblig-
atory in a model with two classes of inhibitory neurons, it is present in most regimes. Finally, experimental tests validated
predictions of the model that the Pyr $ PV inhibitory loop is stronger than the Pyr $ SST loop.

Key words: inhibition; neural dynamics; neural network model; PV; SST; Up states

Significance Statement

Many cortical computations, such as working memory, rely on the local recurrent excitatory connections that define cortical
circuit motifs. Up states are among the best studied examples of neural dynamic regimes that rely on recurrent excitatory ex-
citation. However, this positive feedback must be held in check by inhibition. To address the relative contribution of PV and
SST neurons, we characterized the intrinsic input–output differences between these classes of inhibitory neurons and, using
experimental and theoretical methods, show that the higher threshold and gain of PV leads to a dominant role in network
stabilization.

Introduction
Many neural computations emerge from the intrinsic dynamics
generated by the recurrent connectivity of neocortical microcircuits

(Douglas and Martin, 2007; Rabinovich et al., 2008; Buonomano
and Maass, 2009; Chaisangmongkon et al., 2017). Such intrinsically
generated dynamic regimes are hypothesized to underlie a wide
range of neural computations, including those in which the brain
must temporarily store information (e.g., working memory) or pro-
duce appropriately timed responses in the absence of ongoing exter-
nal inputs (Hebb, 1949; Hopfield, 1982; Wang, 2001; Mauk and
Buonomano, 2004; Huertas et al., 2015). Indeed, in vivo studies
have implicated internally generated dynamics in a range of mem-
ory and temporal computations (Quintana and Fuster, 1992;
Funahashi et al., 1993; Shuler and Bear, 2006; Carnevale et al., 2015;
Namboodiri et al., 2015; Guo et al., 2017; Inagaki et al., 2019). Some
of these dynamic regimes, including self-sustained tonic and
dynamically changing patterns of activity, have also been observed
in in vitro and ex vivo circuits (Sanchez-Vives and McCormick,
2000; Wang, 2001; Johnson and Buonomano, 2007; Mann et al.,
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2009; Sadovsky and MacLean, 2014; Carnevale et al., 2015; Carrillo-
Reid et al., 2015; Dechery and MacLean, 2017), suggesting that the
learning rules underlying internally generated neural dynamics are
local and operational ex vivo.

The best studied form of emergent dynamics in neocortical
circuits are Up states, a term that generally refers to network-
wide regimes in which excitatory neurons can transition
between quiescent Down states to more or less stable depolar-
ized states with low to moderate firing rates (Sanchez-Vives
and McCormick, 2000; Neske et al., 2015; Bartram et al.,
2017). Up states can occur spontaneously or be evoked and
are observed in vivo during anesthesia, slow-wave sleep, quiet
wakefulness (Steriade et al., 1993; Timofeev et al., 2000;
Beltramo et al., 2013; Hromádka et al., 2013), and acute slices
(Sanchez-Vives and McCormick, 2000; Shu et al., 2003;
Fanselow and Connors, 2010; Sippy and Yuste, 2013; Xu et al.,
2013; Sadovsky and MacLean, 2014; Neske et al., 2015;
Bartram et al., 2017), as well as in ex vivo cortical cultures
(Plenz and Kitai, 1998; Seamans et al., 2003; Johnson and
Buonomano, 2007; Kroener et al., 2009; Motanis and
Buonomano, 2015, 2020). Up states have been proposed to
have multiple functional roles, including memory consolida-
tion and synaptic homeostasis (Tononi and Cirelli, 2003;
Marshall et al., 2006; Sirota and Buzsáki, 2005; Vyazovskiy et
al., 2008; Diekelmann and Born, 2010). It has also been
hypothesized that Up states are equivalent to the desynchron-
ized regimes of awake cortex (Destexhe et al., 2007). For
example, the voltage distribution of Up states in awake cortex
are indistinguishable from those observed during anesthesia
(Constantinople and Bruno, 2011), and active sensory proc-
essing can shift cortical circuits to depolarized Up state-like
patterns (Crochet and Petersen, 2006; Haider et al., 2007; Tan
et al., 2014). The notion that Up states are related to active
cortical processing regimes is further reinforced by theoretical
studies in which Up states mirror so-called asynchronous
regimes, wherein recurrently connected neurons are in a
tonic, depolarized regime and spikes are triggered by ongoing
fluctuations (Brunel, 2000; Renart et al., 2010; Tartaglia and
Brunel, 2017). Together, these studies suggest that Up states
reflect an important neural dynamic regime, and that neocort-
ical circuits are programmed to seek out this regime under a
wide range of conditions—including in vivo and ex vivo
conditions.

Computational models have proposed that Up states reflect
intrinsically generated dynamic regimes in which self-sustaining
activity is maintained through positive feedback and is mediated
through recurrent excitatory connections. This positive feedback
is, in turn, held in check through rapid and strong inhibition,
resulting in an inhibition-stabilized network (Tsodyks et al.,
1997; Ozeki et al., 2009; Rubin et al., 2015; Jercog et al., 2017). To
date, these models have effectively captured many aspects of Up-
state/Down-state transitions and asynchronous network dynam-
ics (Brunel, 2000; Holcman and Tsodyks, 2006; Renart et al.,
2010; Dao Duc et al., 2015; Jercog et al., 2017; Tartaglia and
Brunel, 2017). However, these models have focused primarily on
a single unspecified class of inhibitory (I) neurons. Yet, it is well
established that multiple classes of inhibitory neurons are active
during Up states recorded in vivo and in acute slices (Neske et
al., 2015; Urban-Ciecko et al., 2015; Neske and Connors, 2016;
Zucca et al., 2017). Thus, the respective functional roles of these
interneurons remain mostly unaddressed.

Here we use experimental and computational methods to
study the role of the two most common populations of inhibitory

neurons—parvalbumin (PV)-positive and somatostatin (SST)-
positive neurons (Rudy et al., 2011)—in emergent dynamics.
Experiments were performed in ex vivo organotypic cortical cul-
tures to ensure that the experimental observations parallel our
“stand-alone” computational model. Organotypic slices are a
standard preparation to study synaptic plasticity and cortical
microcircuit functions (Debanne et al., 1994; Hayashi et al.,
2000; Esteban et al., 2003; Seamans et al., 2003; Kerr and Plenz,
2004; Goold and Nicoll, 2010; Yamada et al., 2010). Ex vivo orga-
notypic slices provide a manner to unambiguously ascertain
that the observed dynamics emerge locally within the circuit
being studied. Additionally, consistent with the notion that
Up states reflect a core dynamic regime that cortical circuits
are programmed to seek out, spontaneous and evoked Up
states emerge in cortical organotypic cultures over the course
of ex vivo development (Johnson and Buonomano, 2007;
Motanis and Buonomano, 2015, 2020). Overall, our approach
allowed us to directly compare experimental and model pa-
rameters of PV and SST neurons. Surprisingly, they reveal
that the intrinsic properties of PV and SST neurons are suffi-
cient to predict robust differential contributions of these in-
hibitory neuron classes emergent dynamics.

Materials and Methods
Electrophysiology and ex vivo slices. All animal experiments followed

guidelines established by the National Institutes of Health and were
approved by the Chancellor’s Animal Research Committee at the
University of California, Los Angeles. Organotypic slices were prepared
using the interface method (Stoppini et al., 1991; Buonomano, 2003).
Five to 7-d-old PV-Cre and SST-Cre mice pups of either sex (catalog
#017320 and #013044, respectively, The Jackson Laboratory) were anes-
thetized with isoflurane and decapitated. The brain was removed and
placed in chilled cutting media. Coronal slices (400mm thickness) con-
taining primary somatosensory and auditory cortex were sliced using a
vibratome (model VT1200, Leica) and placed on filters (MillicellCM,
Millipore) with 1 ml of culture media. Culture media was changed at 1
and 24 h after cutting and every 2–3 d thereafter. Cutting media con-
sisted of Eagle’s minimal essential medium (EMEM; catalog #15–010,
MediaTech) plus the following (final concentration in mM): 3 MgCl2; 10
glucose; 25 HEPES; and 10 Tris-base. Culture media consisted of EMEM
plus the following (final concentration in mM): 1 glutamine; 2.6 CaCl2;
2.6 MgSO4; 30 glucose; 30 HEPES; 0.5 ascorbic acid; 20% horse serum;
10 U/L penicillin; and 10mg/L streptomycin. Slices were incubated in 5%
CO2 at 35°C.

Recordings were performed at 23–35d in vitro (DIV) in artificial
CSF (ACSF) composed of the following (in mM): 125 NaCl, 5.1 KCl, 2.6
MgSO4, 26.1 NaHCO3, 1 NaH2PO4, 25 glucose, and 2.6 CaCl2 (ACSF
was formulated to match the standard culture media). The temperature
was maintained at 32–33°C, and the perfusion rate was set at 4.5–5 ml/
min.

Recordings from pyramidal (Pyr) neurons relied on visualized
whole-cell patching and were identified based on their intrinsic electro-
physiological properties. Florescent PV and SST neurons were targeted
using a 565 nm LED to visualize tdTomato. The internal solution for
whole-cell recordings contained the following (in mM): 100 K-gluconate,
20 KCl, 4 ATP-Mg, 10 phospho-creatine, 0.03 GTP-Na, and 10 HEPES,
adjusted to pH 7.3 and 300 mOsm. To be considered for analysis, cells
had to have a resting potential of less than�55mV and to not change by
.15% over the course of the recording. The criteria for input and series
resistance were 100–300 and,25 MV, respectively.

To estimate the average Up-state membrane potential during light
stimulation and after light stimulation, the entire trace was filtered with
a 10ms median filter. Two 100-ms-long windows were isolated from the
trace, one during light stimulation and the other 100ms after the end of
light stimulation. These windows were averaged to get one membrane
potential value per neuron.
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Transfection and optogenetics. PV-Cre and SST-Cre slices were
transfected in the following three different configurations: (1) 2.2ml of
ChETA (pAAV9-Ef1a-DIO-ChETA-EYFP; catalog #26968, Addgene)
and 1ml of LSL-tdTomato (catalog #100048, Addgene); (2) 2.2ml of DIO
eNpHR 3.0 and 1ml of LSL-tdTomato; or (3) 1ml of LSL-tdTomato. The
approximate titer of all viral solutions was 1� 1013 viral genomes/ml.
Note that some of the paired recording data was obtained in slices trans-
fected with halorhodopsin as part of other experiments. Transfection
was performed at 5–7 DIV by gently delivering the virus mixture in a
patch electrode at three to five positions in the cortex of the slice to
transfect as many Cre-positive cells as possible. Experiments were per-
formed at least 16–18d after transfection.

Light stimulation was performed in a closed-loop fashion. A custom-
written Signal script (Cambridge Electronic Design) detected threshold
crossings (;5mV) that marked the potential onset of an Up state, which
triggered light stimulation after a delay of 250ms. Light stimulation con-
sisted of either 15 pulses at 66Hz (5ms on) or 25 pulses at 50Hz (10ms
on). Light stimulation was delivered via a royal blue (457nm) LED
(SuperBright LEDs) at an intensity of 78 mW/cm2.

Statistics. Nonrepeated one-way ANOVAs were performed in
MATLAB. The Up-state duration and voltage (see Fig. 8) were not nor-
mally distributed (kstest in MATLAB); thus, we used paired nonpara-
metric statistics to contrast these measures (signrank in MATLAB).

Computational model. Our three-population model was based on
the two-population model of Jercog et al. (2017). The model was com-
posed of three classes of neurons representing the excitatory pyramidal
neurons (E), PV neurons (P), and SST (S). Each of these populations was
modeled as a single “unit” according to the following:

t E
dE
dt

¼ �EðtÞ1 fE WEEE tð Þ �WEPP tð Þ �WESS tð Þ1 h E tð Þ� �
(1)

t P
dP
dt

¼ �PðtÞ1 fP WPEE tð Þ �WPPP tð Þ �WPSS tð Þ1 h P tð Þ� �
(2)

t S
dS
dt

¼ �SðtÞ1 fS WSEE tð Þ �WSPP tð Þ �WSSS tð Þ1 h S tð Þ� �
; (3)

where WXY represents the weight between the postsynaptic unit X (E, P,
or S) and presynaptic unit Y (E, P, or S). tX and hX represent a time
constant and an independent noise term, respectively. Similar to Jercog
et al. (2017), the noise term was an Ornstein–Uhlenbeck process with a
time constant of 1ms and an SD of sX. We did not include an adapta-
tion term that contributes to Up ! Down transitions because we
focused primarily on steady-state values. Thus, all the Up ! Down and
Down ! Up transitions shown in the figures were fluctuation induced.
Because all analyses focused on fixed-point Up-state values, the results
presented are independent of Up $ Down transitions. The function
fY xð Þ represents the intrinsic excitability of the three neuron classes (i.e.,
the frequency–current (F–I) curve or activation function), which were
simulated as a threshold-linear function characterized by a threshold
(u X) and a gain that corresponds to the slope of the F–I curve (gX), as
follows:

fY xð Þ ¼ 0 if x,u Y

fY xð ÞgY if x � u Y
;Y ¼ E;P; Sg:f�

�
(4)

Paradoxical effect. To examine the paradoxical effect, we stimulated
the P or S neurons by emulating an optogenetic experiment.
Mathematically, an external current is equivalent to decreasing the
threshold of the F–I function (Eq. 4). Specifically, the threshold in the
presence of simulated light activation can be written as u L

X = u X � LX ,
where the subscript X represents the P or S population, and LX captures
the optogenetic activation of either population (LX = 5 and 20 for the
weak and strong activation, respectively).

Empirical fits of the F–I functions. During whole-cell recordings,
intrinsic excitability was measured with 250ms current steps in the

range of 0.05–0.6 nA, depending on cell class. For each neuronal class,
we fit the mean spike F–I curve to a threshold-linear activation function
(Eq. 4), which led to threshold values of 0.06, 0.36, and 0.18nA, and
gains of 124, 334, and 198Hz/nA, for the Pyr, PV, and SST neuron
classes, respectively. To simplify the units and to maintain the weight
magnitudes used in the study by Jercog et al. (2017), we normalized the
observed u and g to those of the excitatory unit used by Jercog et al.
(2017), (u E = 5, gE = 1). For example, u E was set to 5, leading to u P =
5*0.36/0.06 = 30. Thus, the intrinsic excitability values for the threshold,
u X, were 5, 30, and 15, and the gain values, gX, were 1, 2.7, and 1.6 for
the E, P, and S, populations, respectively.

We also set the values of tX to the fits of the mean membrane time
constants of the Pyr, PV, and SST neurons (10, 4, and 6ms for E, P, and
S, respectively). We note, however, that the time constant in Equations
1–3 is often interpreted as corresponding to the synaptic time constant
(Shriki et al., 2003; Ozeki et al., 2009) rather than the membrane time
constants. However, this interpretation is less parsimonious with the
current formulation in which the IPSCs from PV and SST cells can have
different time constants.

Fitting model weights to the empirically defined firing rates. To find
the weights sets or vectors that captured the empirically observed
mean firing rates of the Pyr, PV, and SST neurons, we performed a
parameter search over the nine weight variables with empirically
derived values of (i.e., u E, u P, u S, gE, gP, gS, tE, tP, and t S). The
search values were approximately centered on the values used by
Jercog et al. (2017), as follows:

WEE ¼ 2 : 0:5 : 9½ �

WEP ¼ WES ¼ 0 : 0:5 : 4½ �

WPE ¼ WSE ¼ 2 : 2 : 18½ �

WPP ¼ WSS ¼ WPS ¼ WSP ¼ 0 : 1 : 5½ �:

The bracketed values represent the minimum, step size, and maximal
values of the corresponding weight search. We searched a parameter
space of 15 � 9 � 9 � 9 � 9 � 6 � 6 � 6 � 6 for a total of 127,545,840
parameter sets. The lower search bound forWEE was based on Equation
1 when all inhibitory weights were 0 and E at its set point (i.e., the lowest
WEE value that could generate the target firing rate is the value
unchecked by any inhibition). Similarly, the lower bounds for WPE and
WSE can be calculated in the same way. Interestingly, this calculation al-
ready reveals that the lower bound ofWPE is larger than that ofWSE as a
result of u P . u S. This observation is consistent with the overall conclu-
sion that inhibition stabilization is more reliant on PV neurons than SST
neurons. However, to provide an unbiased search in which all P- and
S-related weights were searched over the same values, we used the WSE

as the lower bound for bothWPE andWSE.
For each weight vector, we ran the simulation for 1.5 s (dt = 0.1ms)

and defined the steady-state values of each population as the mean firing
rate over the last 100ms. Since the goal of the search was to find weight
sets that produced Up-state firing rates that matched the experimental
data, these simulations were run in the absence of noise to prevent spon-
taneous Up! Down transitions. To induce evoked Down! Up transi-
tions, an input pulse of 25ms and an amplitude of 7 were applied to the
E units at 500ms.

We defined the accepted group of weight sets as those that led
to fits in which all three Up-state firing rates (i.e., steady-state E, P,
and S values) were within 625% of the empirically observed rates
(5, 14, and 17 Hz, for the Pyr, PV, and SST populations, respec-
tively)—note that to satisfy this criterion the firing rates had to be
stable fixed points (i.e., nonoscillatory). The criterion of 625% was
used because it allowed larger step sizes in the weight parameter
search (helping constrain the number of searched weight vectors).
Furthermore, the range captures the experimentally observed vari-
ability in Up-state firing rates.
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Analysis of fixed points and the paradoxical effect. To derive the Up-
state fixed points for all three populations (E*, P*, and S*) of Equations
1–3 in the linear regime (i.e., E, P, and S. 0), we can first impose that all
three derivatives be equal to 0 and obtain the following:

gEu E ¼ �E1WEEgEE�WEPgEP�WESgES (5)

gPu P ¼ �P1WPEgPE�WPPgPP�WPSgPS (6)

gSu S ¼ �P1WSEgSE�WSPgSP�WSSgSS: (7)

By solving this set of equations, and through multiple substitution
steps, it can be shown that the Up state fixed point of P is as follows:

P� ¼ u P W9
SS�W9

EE �WES�WSE

� �
1 u E WPS�WSE �WPE�W9

SS

� �
1 u S WES�WPE �WPS�W9

EE

� �
WEP�WPE�W9

SS �W9
EE�W9

PP�W9
SS 1WES�WSE�W9

PP 1WPS�WSP�W9
EE �WEP�WPS�WSE �WES�WPE�WSP

(8)

where W9
SS ¼ WSS1

1
gS
, W9

PP ¼ WPP1
1
gP
, and W9

EE ¼ WEE �
1
gE
.

Importantly, it is only the first term of the numerator that is critical to
determining whether the paradoxical effect (in the P population) is pres-
ent in response to P activation. Specifically, external tonic depolarization
of the P population is equivalent to decreasing u P. Thus, we can see that
such a decrease will lead to a decrease in P* (i.e., the paradoxical
effect) if W9

SS �W9
EE.WES �WSE, and to an increase in P* if

W9
SS �W9

EE,WES �WSE. An equivalent equation can be derived for
S*. Note that this rationale assumes that the denominator is always

positive for stable fixed points. While we did not formally establish
that this was the case, we did verify that the denominator was indeed
positive for all solutions obtained in our parameter search.

Data availability. The code used for the simulations is available at https://
github.com/BuonoLab/RomeroSosaMotanisBuonomano_UpStates_2021.

Results
The two-population model of Up states
Up states are characterized by transitions from a quiescent net-
work-wide Down state to a regime in which excitatory neurons

Figure 1. Experimental Up states and numerical simulations in a two-population model. A, Example of Up states recorded in an ex vivo cortical circuit. Traces represent two simultaneously
recorded pyramidal neurons separated by;300mm. Insets to the right show the bimodal distribution of membrane voltage (the peak of the distribution, which is centered at rest, is clipped
for visualization purposes). B, Schematic of the two-population model with an excitatory (green) and inhibitory (red) population. Each population is simulated by a linear threshold activation
function defined by threshold (q), and gain (g). Lines with arrows represent excitatory connections, and lines with dots represent inhibitory connections. Dice represents noise. C, Example of
simulated Up states in the E (top trace) and I populations (bottom trace) from the model with the indicated weight values.
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are depolarized and fire at moderate rates. Figure 1A illustrates
Up-Down transitions in two simultaneously recorded Pyr neu-
rons in an ex vivo slice of the auditory cortex. Both neurons tran-
sition between Up and Down states simultaneously, and during
Up states they maintain an approximately constant level of mem-
brane depolarization, resulting in the characteristic bimodal dis-
tribution of membrane voltages (Mann et al., 2009; Lo†rincz et al.,
2015). Importantly, during Up states, the firing rate of pyramidal
neurons is far below saturation, indicating that they do not
reflect pathologic regimes characterized by saturated firing rates
or paroxysmal discharges (Connors, 1984; Prince and Tseng,
1993; Timofeev et al., 2004).

The Up and Down states illustrated in Figure 1A have typi-
cally been interpreted to reflect bistable network regimes in
which Down states correspond to a trivial fixed point where
excitatory firing rates are approximately zero, and Up states
correspond to a nontrivial fixed point with moderate firing
rates. Computational studies have carefully characterized
such regimes in firing rate and spiking neural network mod-
els (Brunel, 2000; Holcman and Tsodyks, 2006; Renart et al.,
2010; Dao Duc et al., 2015; Jercog et al., 2017; Tartaglia and
Brunel, 2017). Figure 1B shows an example of a firing rate
model of Up states based on the study by Jercog et al. (2017;
see Materials and Methods). The model is composed of vari-
ables representing the firing rates of a population of E and
inhibitory I neurons connected through the synaptic weights:
WEE (E ! E), WEI (I ! E), WIE (E ! I), and WII (I ! I).
Intuitively, the Up-state and Down-state transitions in the model
can be understood as a noisy excitatory input to the E population,
which sometimes reaches threshold, and triggers positive feedback
through the E ! E connection. In parallel, the I population
receives an increasing excitatory drive from E, triggering rapid
and strong inhibition of the E unit—settling in an inhibition stabi-
lized fixed-point attractor (Fig. 1C; Tsodyks et al., 1997; Ozeki et
al., 2009; Jercog et al., 2017).

As with most Up-state models to date, this model incorpo-
rates only a single unspecified class of inhibitory neurons.
However, it is well established that there are distinct populations
of inhibitory neurons within the neocortex and that these

neurons have distinct properties and functional roles in cortical
computations (Adesnik et al., 2012; Kuhlman et al., 2013; Pi et
al., 2013; Natan et al., 2017). Here we focused explicitly on PV
and SST neurons as they are the most common types of inhibi-
tory neurons (Rudy et al., 2011), and because VIP (vasoactive in-
testinal polypeptide) neurons have been associated with changes
in brain states and cross-cortical interactions (Pi et al., 2013;
Krabbe et al., 2019), which are not present in the ex vivo experi-
mental preparation we are simulating.

Characterization of Pyr, PV, and SST neurons during Up
states
To characterize the firing rates and intrinsic properties of PV
and SST neurons, we recorded from ex vivo cortical slices of PV-
Cre and SST-Cre animals that expressed the tdTomato marker in
PV or SST neurons, respectively. Targeted paired whole-cell
recordings of Pyr and PV or Pyr and SST were performed. Both
PV and SST neurons transitioned between Up and Down states
in near synchrony with Pyr neurons (Fig. 2A,B). PV and SST
neurons exhibited firing rates significantly above those of the Pyr
neurons (Fig. 2C; one-way ANOVA: F(2,75) = 20.3, p, 0.001).
The median firing rate of the three neuron classes was as follows:
Pyr: 4.5, interquartile range (IQR)=6.09Hz (n=39); PV: 14,
IQR=8.55Hz (n=26); and SST: 17, IQR=14.58Hz (n=13;
Wilcoxon signed-rank test: Pyr� PV, z =�5.02, p, 0.001; Pyr�
SST, z = �4.19, p, 0.001). Interestingly, PV Up-state onset
occurred earlier than Pyr Up-state onset, but this was not the case
for SST Up states (Fig. 3).

To build a three-population model composed of an excitatory
population and two inhibitory neuron populations, a critical
issue is what are the defining differential characteristics between
the two inhibitory neuron populations—typically, it has been
assumed that what differentiates PV and SST neurons is their
connectivity patterns (see Discussion). Here, as a first step to-
ward building an empirically grounded three-population model
of Up states, we measured the F–I function of Pyr, PV, and SST
neurons and characterized their firing properties (Fig. 4A). A
mixed two-way ANOVA (cell type � intensities range, 0.05–
0.4 nA) revealed a significant cell-type factor (F(2,77) = 17.7,

Figure 2. Experimentally observed Up-state signatures in Pyr, PV, and SST neurons. A, Example of Up states in simultaneously recorded Pyr and PV neurons. B, Example of Up states in
simultaneously recorded Pyr and SST neurons. C, Mean firing rate of Pyr, PV, and SST neurons during Up states.
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p, 10�6). Pairwise comparisons revealed that PV F–I curves
were significantly different from those in Pyr (p, 10�6, Tukey–
Kramer test) and SST (p=0.012), and that there was no differ-
ence between Pyr and SST (p=0.1).

We next fit the F–I curves to a rectified linear unit (ReLU)
function, which was defined by two variables: a threshold (u )
and a slope (the gain g). The fitted threshold (u E) and gain
(gE) values of the Pyr neurons (u E = 0.06 nA, gE = 124Hz/
nA) were below the threshold and gain values of the PV (u P

= 0.36 nA, gP = 334Hz/nA) and SST (u S = 0.18 nA, gS =
198Hz/nA) neurons (Fig. 4B).

Empirically based Up-state model with Pyr, PV, and SST
populations
To the best of our knowledge, the above results provide the
first opportunity to directly simulate a three-population
model based on empirically defined F–I curves and fit the
weights of the model to match the observed firing rates in
the three neuronal populations. We thus extended the model
presented in Figure 1B to include the following three popula-
tions: Pyr (E), PV (P), and SST (S; Fig. 5A). While in vitro
experiments from acute slices have revealed a significant
amount of information about the interconnectivity among
these three populations (Silberberg and Markram, 2007;
Pfeffer et al., 2013; Xu et al., 2013), we chose to perform an
unbiased assumption-free implementation of the model to
directly determine the predictions generated by a model
based on empirically derived F–I curves. Thus, we imple-
mented a fully interconnected model with all nine connec-
tion classes (Fig. 5A; see Materials and Methods).

We performed an unbiased search to determine which
sets of weights would generate the experimentally observed
firing rates (see Materials and Methods). By an unbiased
search, we mean that the parameter space was the same for

all P- and S-related weights (e.g., the range of WEP values
explored was equal to the range of WES values). We explored
;127 million sets of weights. As there are nine weights and
three firing rates to be fit, the parameter search is undercon-
strained, resulting in a distribution of weight sets that
accounted for the experimentally observed firing rates. Of
127 million weight sets, 10,578 generated Up-state firing
rates of all three cell types (i.e., steady-state E, P, and S val-
ues) that were within 625% of the empirically observed
rates. We refer to this as the set of fit weights (see Materials
and Methods). Figure 5B shows spontaneous Up and Down
states of the E, P, and S populations in a simulation run with
the prototypical weight set—which we define as the weight
vector closest to the centroid of all of the fit weight vectors.

To test the hypothesis that the empirically derived intrinsic
properties of the PV and SST cells play a deterministic role in
their functional contribution to Up states, we explored the rela-
tive distribution of weights of the P and S populations in the
fit weight sets. Stability analyses have established that in the
two-population model two conditions must be met for stabil-
ity (Ozeki et al., 2009). One of these conditions can be
thought of as requiring that the “net inhibition” be stronger
than the “net excitation.” Mathematically, this can be
expressed WEI �WIE.W9

EE �W9
II (where W9

EE ¼ WEE � 1=gE
andW9

II ¼ WII11=gI). Note that WEIWIE reflects the strength
of the net inhibitory loop in the two-population model, while
W9

EE �W9
II captures the net excitation as the weight of the inhibi-

tory population onto itself (WII) is functionally excitatory. Since the
gains were constant throughout our search, the notion of net excita-
tion and net inhibition suggests an intuitive way to distill the analy-
ses of weight vectors that satisfied the search criteria. We thus first
compared the distribution of the net inhibition minus the net exci-
tation for the E$ P and E$ S loops. As shown in Figure 5, C and
D, for the E$ P loop,WEPWPE.WEEWPP in 80% of the fit weight
sets. In contrast, in the E$ S loop only 8% of the fit weights were
WESWSE . WEEWSS. To directly contrast the contribution of P and
S populations, we also examined the net P inhibition minus the net
S inhibition: WEPWPE – WESWSE. This contrast revealed that in
85% of the cases the net P inhibition was more robust than the net
S inhibition (Fig. 5E). These results suggest that solely because of
the intrinsic properties of the two inhibitory neuron classes, the P
population generally emerges as the one primarily responsible for
an inhibition stabilization. Nevertheless, in a minority of the param-
eter regimes, WESWSE was larger than WEPWPE; however, in most
of these cases, WEP or WPE was close to or equal to zero. Thus, in
the absence of a P $ E loop, the intrinsic properties of the S neu-
rons form a “backup” system that can support Up states and fulfill
the role of inhibition stabilization.

The paradoxical effect
The above results predict that the net inhibition in the E $ P
loop is stronger than in the E $ S loop. But, interestingly, this
observation does not translate into meaning that PV neurons are
more effective at modulating Up states (e.g., turning Up states
off). In part precisely because of the strength of the E $ P loop,
changes in the external input to P engage a dynamic rebalancing
of excitation and inhibition resulting in counterintuitive proper-
ties, including the so-called “paradoxical effect” that has been
described in the two-population model (Tsodyks et al., 1997;
Rubin et al., 2015). Specifically, in the two-population model
(Fig. 1B), if the I unit is artificially activated during an Up state,
an overall decrease in I activity is observed. This is because

Figure 3. Onset times of Up state in PV and SST neurons relative to Pyr neurons. Relative
to Up-state onset in Pyr neurons, Up-state onset in PV and SST neurons was defined as the
threshold-crossing time (5mV above rest) within a window of 650 around Pyr Up-state
onset. Relative to Pyr neurons, median onset times in PV and SST neurons were 2.8 ms
(p, 0.002, t test) and�1 ms, respectively.
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increasing I decreases E, which in turn decreases excitatory drive
to I. The net result is that for E to settle at a lower fixed point, I
must also settle at a lower fixed point (to maintain an E/I bal-
ance). In the two-population model, this paradoxical effect is
obligatory (Tsodyks et al., 1997; Jercog et al., 2017). Thus, we
next examined the properties of the paradoxical effect in the
three-population model and whether P or S activation is
more effective at turning off Up states (Fig. 6A). In a model
with the prototypical weights, weak P activation during an
Up state (see Materials and Methods) produced a paradoxical
effect. In contrast, weak S stimulation did not result in a par-
adoxical effect (i.e., there was an increase in steady-state S ac-
tivity after external S activation; Fig. 6A, middle). Across the
;10,000 weight sets that fit the data, the paradoxical effect
was observed in 96% and 18% of cases in the P and S units,
respectively (Fig. 6A, bottom).

Counterintuitively, although the E $ P inhibitory loop was
stronger than the E $ S loop, weak activation of S units was
more likely to induce an Up ! Down transition (3.7%) than
weak activation of P units (0.6%; Fig. 6A, bottom). But, as
expected, strong depolarization of P or S (Fig. 6B) units was
likely to induce Up ! Down transitions, and now P activation
was more effective at turning off Up states (84%) than S activa-
tion (23%; Fig. 6B, bottom).

In the vast majority of the fit weight vectors, the paradox-
ical effect was observed in either the P or S units in response
to P or S stimulation, respectively. Interestingly, however,
there was a very small number of weight sets (0.4%) in
which the paradoxical effect was not observed in either the

P or S population (Fig. 6C). This observation has important
experimental implications as it establishes that although the
paradoxical effect is expected in most parameter regimes, it
is not obligatory in a model with two types of inhibitory
neurons—a potentially relevant observation because a num-
ber of experimental studies have failed to observe the para-
doxical effect (Xu et al., 2013; Gutnisky et al., 2017; see
Discussion).

Analysis of the steady-state equations confirmed the numeri-
cal simulations (see Materials and Methods) and showed that
whether or not the paradoxical effect is present in the P popula-
tion, for example, depends on the coupling between the E and S
populations. Specifically, ifW9

SS �W9
EE � WES �WSE (i.e., if exci-

tation is stronger than inhibition in the E$ S loop; see Materials
and Methods) the paradoxical effect will be observed in the P
population. Indeed, we can see that if WES or WSE is equal to
zero, the network is effectively equivalent to the two-population
model, in which case the paradoxical effect must be present in
the P population. In contrast, if WES * WSE is relatively high
(strong S inhibition), then the S population will be responsible
for network stabilization and the paradoxical effect will not be
observed in the P population.

Overall, these simulations lead to a number of experimental
predictions, including the following: (1) that the Pyr $ PV loop
should be stronger than the Pyr$ SST loop; and (2) that strong
PV activation should be more effective than SST activation at
turning off Up states. Below, we address these two predictions
using ex vivo cortical circuits.

Figure 4. F–I curve fits of the intrinsic excitability of Pyr, PV, and SST neurons. A, Top, Sample intrinsic excitability of Pyr (left), PV(middle), and SST(right) neurons in response to depolariz-
ing current steps of�0.1, 0.1, 0.2, and 0.4 nA. B, Threshold-linear fits of the F–I curves of Pyr populations. Light gray lines are the F–I curves of individual neurons. Black lines are the mean
plus SEs of the F–I curves, and colored lines are the fits. The gain (gP = 334) and the threshold (qP = 0.36) of PV (middle) neurons is higher than in Pyr neurons (gE = 124, qE = 0.06; left)
and SST neurons (gS = 198, qS = 0.18; right).
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Testing predictions of the model: paired Pyr-PV and Pyr-
SST recordings
To directly examine the predictions of the model, we first per-
formed paired recordings from Pyr–PV and Pyr–SST neuron pairs
using ex vivo cultures from PV-Cre and PV-SST mice, respec-
tively. As shown in Figure 7, the observed connection probability
was consistent with the predictions of the model—note that
because the model is population based, the weights reflect both
connection probabilities and mean synaptic strengths. Of 53
Pyr–PV and 27 Pyr–SST pairs, we found connections in ;50%
and 25% of them, respectively. The Pyr! PV connection prob-
ability was 0.31, while the PV ! Pyr was 0.23 (Fig. 7B).
Interestingly, reciprocal connections were more likely than
expected from the independent probabilities, indicating that
reciprocity is a favored motif (Song et al., 2005). Most of the
detected connections involving SST neurons were in the Pyr !
SST direction (connection probability = 0.23; Fig. 7C).
However, we stress that the low probability (0.04) of SST! Pyr

connections is likely an underestimation because SST synapses
are generally on dendrites and we performed the experiments
in current-clamp—making it difficult to detect weak inhibitory
connections. The average unitary Pyr ! PV amplitude (2.876
0.82mV) was significantly larger than the unitary Pyr ! SST
strength (0.706 0.21mV). The mean PV ! Pyr amplitude was
(1.936 0.47mV) larger than the single connected SST ! Pyr
unitary IPSP amplitude we recorded (0.3mV). Although these
results are limited in their ability to provide quantitative esti-
mates for the model parameters, they confirm the model pre-
diction that the Pyr $ PV inhibitory loop is stronger than the
Pyr$ SST loop in the ex vivo system we simulated.

Testing predictions of the model: activation of PV but not
SST units turns off Up states
As shown in Figure 6B, the model predicts that strong activation
of PV neurons during Up states should be more effective at

Figure 5. Empirically derived three-population model of Up states. A, Schematic of the fully connected three-population model. Figure conventions are similar to Figure 1B. B, Example of
Down$ Up state transitions in a model with Pyr (top), PV (middle) and SST (bottom) units. The weights were chosen as the set closest to the centroid of the distribution of the fit weight
sets. C, Distribution of the fit weight set (i.e., those weight vectors that captured the experimentally observed firing rates) of the inhibitory (red) minus the excitatory (green) loop of the Pyr
and PV interaction. D, Distribution of the weights of the inhibitory (cyan) minus the excitatory (green) loop of the Pyr and SST interaction. E, Distribution of the weights of the inhibitory (red)
loop of the Pyr–PV minus the inhibitory (cyan) loop of the Pyr–SST interaction.
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turning off Up states than the activation of SST neurons. To test
this prediction, we expressed ChETA in PV or SST cells in sepa-
rate ex vivo slices and examined whether optogenetic activation
of these inhibitory neuron populations produced Up ! Down
transitions. Toward this end, we recorded from Pyr neurons and
triggered a train of light pulses during detected Up-state onsets
in slices expressing ChETA in either PV or SST neurons (see
Materials and Methods). We used “full-field” light activation to
emulate the strong activation of the model (Fig. 6B) and to be
able to further increase the already high firing rate of inhibitory
neurons during Up states (Fig. 2). Optogenetic stimulation of
PV and SST neurons effectively increased the inhibitory neuron
firing rate even during Up states (Fig. 8). The comparison of
light-off and light-on trials during Pyr recordings (Fig. 9)
revealed that the activation of PV neurons during Up states was
highly effective at inducing Up ! Down transitions (mean Up
state duration: light off, 1.806 0.36 s; light on, 0.786 0.34 s;
n= 10, Wilcoxon signed-rank test: z= 2.80, p= 0.005; Fig. 9B).
In contrast, SST activation did not produce a significant
decrease in Up-state duration (1.766 0.19 s, n= 21; 2.126 0.22
s, n= 21; z = �1.09, p= 0.28; Fig. 9D). Activation of PV, but not
SST, neurons also resulted in a decrease in the membrane
potential of Pyr neurons during optical stimulation (Fig. 9E,F).
These results further confirm the prediction of the model,
which because Pyr–PV connectivity is stronger than Pyr–SST
connectivity, strong activation of PV neurons is more effective
at inducing Up ! Down transitions. Indeed, these experimen-
tal results are in agreement with the prototypical weight set
simulations shown in Figure 6B, in which strong P activation
produced an Up! Down transition, and S activation had min-
imal effect on E activity.

Discussion
We experimentally characterized the intrinsic input–output
function (the F–I curve) of three classes of neurons in ex vivo
organotypic cortical cultures. We incorporated these empirically
derived activation functions into a computational model that
captures the experimentally observed firing rates, and finally,
tested experimental predictions of the model. This integrated ex
vivo computational approach parallels studies in invertebrate sys-
tems (Gingrich and Byrne, 1985; Buonomano et al., 1990;
Marder and Calabrese, 1996; Phares et al., 2003; Prinz et al.,
2004). Such approaches, however, have been difficult to carry out
in neocortical circuits for a number of reasons, including that the
network regimes being simulated are often recorded in vivo,
while the cellular properties are generally obtained from in vitro
acute slice preparations (and thus under significantly different
physiological conditions and network regimes). And in contrast
to acute slice studies in which the state of neurons and synapses
reflects the homeostatic learning rules shaped by the in vivo envi-
ronment, here we studied ex vivo circuits that converged to their
homeostatic set points over weeks. Furthermore, all in vivo data-
sets are subject to reciprocal influences from a multitude of brain
areas that cannot be incorporated into models. Thus, by studying
and modeling an ex vivo cortical circuit, it was possible to
directly couple the experimental data to the computational
model and ensure that the experimental and computational
results reflect the properties of local intrinsic circuits.

Differential role of PV and SST neurons in network
stabilization
Our findings establish that the empirically derived differences in
F–I characteristics of PV and SST neurons are sufficient to lead

Figure 6. The paradoxical effect in the three-population model. A, Top, Example of weak excitation of the P units during an evoked Up state (top, red overlay) showing the paradoxical effect
(i.e., despite depolarizing the P unit, a decrease in P firing rate is observed). In contrast, weak depolarization of the S unit (bottom, cyan overlay) did not produce a paradoxical effect in the S
unit. Bottom, In response to weak activation of P units, the paradoxical effect was observed in the P units across the vast majority of fit weight sets (left bar of left panel). In
contrast, the paradoxical effects were generally not observed in the S units in response to weak S activation (right bar of left panel). However, S activation was more likely
to produce Up ! Down transitions (right). B, Top, Same as C with strong activation of P (top) and S (bottom). Bottom, Strong activation of P cells was much more effective
at inducing Up ! Down transitions across of the validated weights sets. C, Top, Example of a parameter regime in which the paradoxical effect is not observed in either P
(top) or S (bottom) units. Note that in this regime small increases in P (S) result in relatively larger decreases in S (P). Bottom, Regimes in which the paradoxical effect is not
observed in both P and S units comprise a very small subset of the total fit weight set.
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to a pronounced differential contribution of these neuron classes
to network dynamics. The threshold and gain of PV neurons
were higher than those of SST neurons. This signature is critical
to the stabilization of Up states for the following two reasons: (1)
the increased threshold means that the excitatory neurons can
engage in positive feedback at very low firing rates before

triggering inhibition; and (2) once the inhibitory neurons reach
threshold, they can quickly overtake the activity in the excitatory
neurons because of their larger gain (Jercog et al., 2017), thus sta-
bilizing the network. Interestingly, while the differential gain
between PV and SST neurons has not been carefully contrasted
in the past, the threshold difference in PV and SST neurons is a

Figure 8. Examples of optical activation of inhibitory neurons. A, Example of an optical induced increase in the firing rate of a PV ChETA-positive neuron during a Down state (left) and an
Up state (right). B, Same as A but for an SST neuron.

Figure 7. Paired recordings from Pyr–PV and Pyr–SST neuron pairs. A, Simultaneous recording of Pyr and PV neurons. Spikes in the Pyr neuron (top left trace) induce EPSPs in the PV inter-
neuron (bottom left trace), while spikes in PV interneuron (bottom right trace) induced IPSPs in the Pyr neuron (top right trace). B, Pie chart of connectivity of Pyr–PV pairs. C, Same as B but
for Pyr–SST neuron pairs.

Romero-Sosa et al. · PV and SST Neurons in Up-State Stabilization J. Neurosci., August 25, 2021 • 41(34):7182–7196 • 7191



defining distinction between them (e.g., so-called low-threshold
inhibitory neurons correspond to SST neurons; Gupta et al.,
2000; Rudy et al., 2011; Cardin, 2018). Thus, our results empha-
size that a critical functional difference between PV and SST neu-
rons is that both the threshold and gain of the F–I function of
PV neurons are larger than those of SST neurons.

It is generally accepted that the observed diversity of inhibi-
tory neurons is a reflection of the fact that cortical computations
require inhibition to fulfill multiple functional roles (Wang et al.,
2004; Pfeffer et al., 2013; Natan et al., 2015). However, while the
differential contribution of these neurons has focused primarily
on their synaptic and connectivity properties, our results suggest
a critical role of the differential input–output function of

inhibitory neuron subclasses in cortical dynamics. Furthermore,
the importance of the difference in the intrinsic excitability prop-
erties of PV and SST neurons is consistent with the importance
of intrinsic excitability in neural computations (Marder and
Calabrese, 1996; Josselyn and Tonegawa, 2020). However, an
open question pertains to the degree to which the input–output
functions of PV and SST neurons are plastic. While it seems
likely that the threshold and gain parameters of these neural pop-
ulations undergo some forms of intrinsic plasticity (Daoudal and
Debanne, 2003; Zhang and Linden, 2003; Debanne et al., 2019),
we would hypothesize that fundamental properties reported here
(i.e., u P . u S and gP . gS) reflect fundamental and hard-wired
differences within these populations.

Figure 9. Differential effects of PV and SST interneurons on turning off Up states. A, PV light activation resulted in shorter Up states as depicted by individual traces (bottom, gray) and the
mean Up-state trace (bottom, black) compared with Up states in which light was not presented (top traces). B, Median Pyr Up-state duration was significantly shorter when the light was deliv-
ered during Up states compared with Up states that did not receive light stimulation. C, Same as A but for SST neurons. Up states that were presented with light are not different from unsti-
mulated Up states. D, SST activation during Up states resulted in similar Up-state durations compared with unstimulated Up states. E, The median membrane voltage of Pyr neurons was
significantly reduced during optical stimulation of PV neurons. F, The median voltage of Pyr neurons was not significant during optical stimulation of SST neurons.
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Because the experimental data were collected in ex vivo cortical
circuits, our results provide insights into the unsupervised learning
rules governing the emergence of Up states. Specifically, Up states
seem to reflect states that cortical circuits actively seek out through
homeostatic mechanisms. For example, while cortical cultures are
initially silent, spontaneous and evoked Up states emerge over the
course of ex vivo development (van Pelt et al., 2005; Johnson and
Buonomano, 2007; Motanis and Buonomano, 2015, 2020). This
suggests that a set of learning rules in place ex vivo drive networks
toward Up–Down state transitions similar to those observed in vivo
and in acute slices (Sanchez-Vives and McCormick, 2000). Given
the critical stabilizing effect of PV neurons, our results suggest that
these learning rules may operate primarily on PV neurons.

The computational model predicted that the strength of the
Pyr $ PV inhibitory loop is significantly stronger than the Pyr
$ SST loop. Paired recordings and optogenetic experiments
validated these predictions. Previous studies have generally
reported robust connectivity (.50%) between PV ! Pyr and
SST ! Pyr neurons (Silberberg and Markram, 2007; Fino and
Yuste, 2011; Packer and Yuste, 2011; Pfeffer et al., 2013; Pala and
Petersen, 2015), but, consistent with our experimental and com-
putational results, the Pyr $ PV loop seems to be stronger than
the Pyr$ SST loop (e.g., the connection probability from Pyr!
PV has been reported to be higher than the Pyr ! SST loop;
Pala and Petersen, 2015) and the PV ! Pyr connections to be
stronger than the SST! Pyr connections (Pfeffer et al., 2013).

The above results, however, do not imply that in vivo SST neu-
rons do not play a significant role in Up-state dynamics. While it
remains an open question whether SST neurons are necessary for
Up states, it is well established that they are highly active during
Up states, and that manipulation of SST activity can alter Up-state
dynamics. For example, an in vivo study reported that both PV
and SST activation could terminate Up states (Zucca et al., 2017),
and SST neuron activation during Up states has also been shown
to increase Pyr firing in acute slices (Neske and Connors, 2016).
Additionally, it has been shown that SST activity during Up states
modulates the strength of Pyr ! Pyr connections (Urban-Ciecko
et al., 2015). Interestingly, however, SST neurons have been
reported to be decorrelated with Pyr neuron activity in response
to sensory stimuli, active during locomotion, and to exhibit high
levels of spontaneous firing in vivo and in vitro (Gentet et al.,
2012; Polack et al., 2013; Urban-Ciecko et al., 2015; Urban-Ciecko
and Barth, 2016; Yaeger et al., 2019). Overall, these studies suggest
that there is an as yet not fully understood state-dependent modu-
lation of the coupling between SST and Pyr activity. Here we
observed a correlation between SST and Pyr activity, but did not
observe any clear effect of SST activity manipulation on Up states.
But, given the ability of cortical circuits to adapt to a wide range of
natural and pathologic regimes, it is likely that different inhibitory
neurons play different roles in different contexts. Our results sug-
gest that under highly controlled conditions and in the absence of
external input from other brain areas, cortical microcircuits con-
verge to regimes where PV neurons are primarily responsible for
inhibition stabilization and emergent dynamic regimes. Thus, we
predict that while PV neurons are necessary for Up states, SST
neurons may modulate Up-state properties. Furthermore, our
results suggest that future research on the learning rules governing
network Up-state dynamics should focus primarily on plasticity of
the Pyr$ PV loop.

It is also relevant to point out that the model used here is a
highly simplified approximation of biological networks. In par-
ticular the gain, time constants, and weights of neurons in actual
circuits are not necessarily the same during low- and high-firing

rate regimes (Dobrunz and Stevens, 1999; Rauch et al., 2003; La
Camera et al., 2006), and we have not taken into account the dif-
ferential adaptation of different inhibitory neuron subtypes
(Tateno et al., 2004). Thus, it is possible that some of the differ-
ences between experimental studies, and between the experi-
ments and models, could be related to state-dependent changes
in variables held constant in our models, including the F–I gain
and short-term synaptic plasticity of synaptic weights.

The paradoxical effect and predictions
The standard two-population model of Up states predicts the
presence of a paradoxical effect, in which external depolarization
of the inhibitory neuron population during an Up state will
counterintuitively decrease the firing rate of inhibitory neurons.
Testing this prediction has been experimentally challenging for a
number of reasons, including the need to record and carefully
control the levels of external input to a specific inhibitory neuron
population during Up states (Sanzeni et al., 2020). Some experi-
ments have reported signatures consistent with the paradoxical
effect (Kato et al., 2017; Moore et al., 2018; Sanzeni et al., 2020),
while others have not (Xu et al., 2013; Gutnisky et al., 2017).
Recent computational studies have established that the paradoxi-
cal effect is not obligatory in models that include multiple types
of inhibitory neurons (Litwin-Kumar et al., 2016; Mahrach et al.,
2020; Sanzeni et al., 2020). Consistent with these findings our
analysis shows that whether the paradoxical effect is present or
not in PV neurons depends on the relationship of the excitatory
(WEE * WSS) and inhibitory loop (WES * WSE) between the Pyr
and SST populations. It is relevant to note that, in contrast to
previous studies, here the difference between PV and SST popu-
lations was based on their intrinsic properties rather than differ-
ences in the connectivity matrices.

Our numerical results revealed that in the vast majority of
cases the paradoxical effect was observed in either the PV or SST
population (Fig. 6); however, there is a very narrow regime in
which neither population of inhibitory neurons revealed a para-
doxical effect. Based on our numerical simulations, we predict
that the paradoxical effect should be observed in PV neurons,
although it is possible that some failures to observe the paradoxi-
cal effect in PV neurons could reflect situations in which the SST
neurons are driving network stabilization, in which case they
should exhibit the paradoxical effect. One must also consider the
possibility that experimental failures to observe the paradoxical
effect may be because the standard computational models of Up
states, including ours, lack critical biological ingredients. For
example, most models do not explicitly distinguish between the
contribution of GABAA and GABAB receptor-mediated inhibi-
tion, yet GABAB-mediated inhibition powerfully regulates Up
states (Mann et al., 2009; Urban-Ciecko et al., 2015). Future
work will attempt to explicitly address the paradoxical effect in
both PV and SST neurons in our preparation and the potential
contribution of other mechanisms to Up-state dynamics.

Conclusions
Using an ex vivo preparation, it was possible to use empirically
derived fits of the F–I functions of PV and SST neurons to create a
model of Up-state dynamics and fit the weights of the model to
the empirically derived Up-state firing rates. This approach
allowed for a direct link between the experimental and computa-
tional components of the study. The results establish that the dif-
ferential intrinsic properties of the PV and SST neurons,
specifically the higher threshold and gain of the PV neurons, are
in and of themselves sufficient to drive a distinct role of these
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inhibitory neurons classes in Up-state dynamics. While previous
work has focused on the differential synaptic and connectivity pat-
terns of PV and SST to cortical function, the current results
emphasize that the differential threshold and gain of the F–I func-
tion of these inhibitory subclasses may underlie their distinct func-
tional roles.
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