Lawrence Berkeley National Laboratory

Recent Work

Title

Selective Separation of Lactic Acid. I. Sorption by Basic Polymer Sorbents

Permalink https://escholarship.org/uc/item/2qf8c93z

Author Dai, Y.

Publication Date 1995-09-01

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

ENERGY & ENVIRONMENT DIVISION

Submitted to Industrial and Engineering Chemistry Research

Selective Separation of Lactic Acid and Glucose I. Sorption by Basic Polymer Sorbents

Y. Dai and C.J. King

September 1995

LBL-3783 Copy

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Ċ

LBL-37837 UC - 1400

Selective Separation of Lactic Acid and Glucose

I. Sorption by Basic Polymer Sorbents

Youyuan Dai C. Judson King

Department of Chemical Engineering University of California

and

Energy and Environment Division Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

September 1995

This work was supported by the Assistant Secretary for the Office of Energy Efficiency and Renewable Energy, Office of Industrial Technologies, Advanced Industrial Concepts Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

Selective Separation of Lactic Acid and Glucose I. Sorption by Basic Polymer Sorbents Youyuan Dai^{*} and C. Judson King^{**} Lawrence Berkeley Laboratory

and Department of Chemical Engineering University of California, Berkeley, CA 94720

ABSTRACT

An important aspect of recovery of product carboxylic acids from fermentation broths is the selectivity for the desired acid, as opposed to substrate sugars. In this work uptakes of glucose and competitive uptakes of lactic acid and glucose by three commercially available basic solid polymeric sorbents have been investigated. The results show a low capacity for glucose and a high selectivity for lactic acid over glucose. The main factor governing selectivity is the swelling tendency of the polymeric sorbent. Marked swelling of the sorbent in the solution reduces selectivity for acid over water and glucose. Because of high uptake capacity and relatively low swelling, Dowex MWA-1 gives better selectivity in the pH 5-6 range than do Amberlite IRA-35 and Reillex 425.

⁻⁻ Present address: Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

^{*} -- To whom correspondence should be addressed.

Introduction

Carboxylic acids are readily made by fermentation and are among the most attractive substances that can be manufactured from biomass (Ng, et al, 1983; Jain, et al., 1989). Recovery of carboxylic acids from fermentation broths presents a challenging separation problem. The dilute, complex nature of the fermentation broth makes recovery methods, such as adsorption, that are potentially selective for carboxylic acids highly attractive (King, 1987; Tung and King, 1994). The key to successful application of adsorption to the recovery of carboxylic acids lies in the selection and availability of a sorbent¹ with suitable characteristics. Important characteristics are high sorbent capacity for the acid, high selectivity of sorption, regenerability and, depending upon the process configuration, biocompatibility with microorganisms.

Many fermentations to produce carboxylic acids operate most effectively at pH above pK_{a1} of the acid product. For example, lactic acid ($pK_a = 3.86$), is typically produced at pH 5 to 6 (Vickroy, 1985; Jain, et al, 1989). One approach for recovering carboxylic acids from such solutions is to use solid sorbents or extractants that are sufficiently basic to retain substantial capacity several pH units above the pK_{a1} of the carboxylic acid. Tung and King (1994) investigated the sorption of lactic acid and succinic acid using several commercially available basic polymeric sorbents. The results for recovery of lactic acid show that the uptake in the pH 5 - 6 range varies substantially among sorbents and is strongly dependent upon the basicity, as well as the capacity, of the resin. Reillex 425 (see Table 1)

¹¹ -- The terms "sorbent" and "sorption" are used to connote situations where a polymeric solid can take up solute by either or both surface (adsorption) attachment or bulk infusion (absorption).

has virtually no selective uptake of lactic acid in this pH range. Dowex MWA-1 and Amberlite IRA-35 (see also Table 1) are candidates for use for product recovery in a fermentation process at pH 5 -6. Furthermore, many fermentations, such as that for lactic acid production, are subject to endproduct inhibition (Yabannavar and Wang, 1991; Davison and Thompson, 1992). If a solid sorbent can be used *in-situ* or in an external recycle loop, higher overall yields can be achieved.

In order to separate the desired acid efficiently from water and other species, a selective process is needed. Sorbents to be used in fermentation processes should provide high selectivity between the product carboxylic acid and substrate sugars. In addition to conservation of substrate, one reason why very high selectivities are sought is the tendency for small amounts of sugars in a product such as lactic acid to cause discoloration. Relatively few measurements have been reported for uptake capacities for sugars and/or for selectivity between carboxylic acids and sugars with synthetic sorbents. Kaufman et al (1994) screened a series of solid sorbents preliminarily for possible utilization in biparticle fluidized-bed fermentation to produce lactic acid from immobilized *Lactobacillus delbreuckii*, measuring selectivity between acid and sugar as well as other properties.

In this work, adsorption isotherms for uptake of glucose by a number of basic polymeric sorbents were examined so as to ascertain and compare the characteristics of the different sorbents. To identify selectivities between a carboxylic acid and the sugar, other batch sorption experiments were performed over a wide pH range with aqueous solutions containing lactic acid and glucose. It was necessary to devise a method of analysis which would measure small differences in sugar concentration in aqueous solutions with sufficient precision.

Materials and Methods

Materials. The solid sorbents used and their manufacturers are listed in Table 1. Dowex MWA-1, Reillex 425 and Amberlite IRA-35 were used as solid sorbents. All three sorbents were washed successively with water, methanol, aqueous NaOH and aqueous HCl, and then were dried to constant weight in a vacuum oven at 60°C and 60 KPa. Reillex 425 was pre-wet by stirring in methanol and then displacing the methanol with water, because it is difficult to wet that sorbent directly with water. The other two sorbents were initially in the dry form.

D(+)-glucose monohydrate, USP (Fluka Chemie AG, Buchs), was used as received. Lactic acid (Aldrich, 85% in water, A.C.S. reagent grade) was diluted with water to approximately 15% (w/w) and boiled under total reflux for 12 hours to hydrolyze dimers or multimers present in the concentrated solution. All aqueous solutions were prepared from distilled water that had been further purified by passage through a Milli-Q water filtration system (Millipore Corp.).

Composite Sorption Isotherms. Sorption isotherms for glucose onto various sorbents were generated by contacting known weights of sorbents (typically 1.0 g, dry basis) and glucose solutions of known concentration (typically 10 g) in 20 ml scintillation vials sealed with foil-lined caps. The vials were placed in a temperature-controlled shaker bath at an oscillation rate of 120 min⁻¹ for 24 hours, which preliminary tests demonstrated to be more than sufficient for equilibration. Equilibration temperatures were 25, 40 and 60°C for Dowex MWA-1 and Reillex 425, and 25 and 40°C for

Amberlite IRA-35, for which the highest allowable operating temperature was found to be less than 60°C. The pH of the solution was not adjusted, and buffering agents were not used.

Initial and final concentrations of glucose were determined by high-performance liquid chromatography, HPLC, (Perkin Elmer Series 10), using a Bio-Rad Fast Acid Analysis Column with a differential refractometer (Waters Model 401) detector. A mobile phase of $0.01 \text{ N H}_2\text{SO}_4$ was used.

The decrease of glucose concentration in aqueous solution was used to compute the composite uptake of glucose by the sorbents, i.e., the degree of surface or site enrichment (Kipling, 1965). Points for the composite adsorption isotherm were calculated as:

$$Q_{cg} = \frac{W_o (C_{g,i} - C_{g,f})}{m}$$
(1)

Any water and glucose initially adhering to or absorbed into the sorbent must be included in W_0 and $C_{g,i}$.

Since depletions of glucose in the bulk solution are small, it was important to gain very high precision in the analysis by HPLC. Typical reproducibilities of analysis were within 1%.

Uptake vs. pH Curves. In these experiments, 10 g of aqueous solution containing 4.0% (w/w) lactic acid and 1.0% glucose were contacted with 1 g of sorbent (dry basis) in a sealed vial, as in the

sorption isotherm experiments. For measurements of the effect of pH upon sorbent capacity, the aqueous solutions were adjusted to various pH values using aqueous NaOH. After equilibration, the pH of the solution was measured with an Orion Model 601A pH meter equipped with an Orion Ross pH electrode. The acid and glucose concentrations of the aqueous phase were determined by HPLC.

The composite uptake of glucose, Q_{cg} , is calculated from Equation (1), and that of lactic acid, Q_{ca} , by an analogous expression:

$$Q_{ca} - \frac{W_o(C_{a,i} - C_{a,f})}{m}$$
(2)

Individual Uptake. The total uptakes of solutes and water cannot be determined by simply measuring the changes of solute concentration in the supernatant solution during equilibration. The individual uptakes of lactic acid (Q_{ia}) , glucose (Q_{ie}) , and water (Q_{iw}) are defined as:

$$Q_{ia} - \frac{W_o C_{a,i} - W_f C_{a,f}}{m}$$
(3)

$$Q_{ig} - \frac{W_o C_{g,i} - W_f C_{g,f}}{m}$$
(4)

$$Q_{iw} = \frac{W_o (1 - C_{a,i} - C_{g,i}) - W_f (1 - C_{a,f} - C_{g,f})}{m}$$
(5)

The individual uptakes give the total amounts of solute or water taken up by the sorbent, including selective uptake at the surface and/or on reactive sites and non-selective uptake due to swelling and pore filling (Kipling, 1965). Calculation of the individual isotherms requires an assumption about the boundary between sorbed and bulk solution. In this work, the sorbed solution is defined as that solution which is retained by the sorbent after centrifugation for 10 minutes at 2000 rpm in a IEC HN-S2 (Damon/IEC Division) Centrifuge.

Equations (6) and (7) describe the relationships between the composite and individual uptakes:

$$\frac{W_o(C_{a,i}-C_{a,f})}{m} - Q_{ia} - (Q_{ia} + Q_{ig} + Q_{iw}) C_{a,f}$$
(6)

$$\frac{W_{o} (C_{g,i} - C_{g,f})}{m} - Q_{ig} - (Q_{ia} + Q_{ig} + Q_{iw}) C_{g,f}$$
(7)

It is obvious that the individual uptakes of solutes must always be greater than the composite uptakes, and the composite uptake approaches the individual uptake at very low solute concentration and/or when there is very little water uptake.

In this work, composite uptakes were computed directly. After centrifugation, the total solution uptake $(Q_{ig} + Q_{iw})$ or $(Q_{ia} + Q_{ig} + Q_{iw})$ was measured, and individual uptakes were then computed from Equations (6) and (7).

Results and Discussion

Composite Isotherms. Figures 1, 2 and 3 show composite isotherms for adsorption of glucose, measured for various polymeric sorbents at 25, 40 and 60°C. All three sorbents provide rather low capacities for the sugar. Also, the binding is weak, as is evidenced by the continual rises of the curves. Glucose exhibits *negative* deviations from ideality in aqueous solution, i.e., activity coefficients less than 1 (Miyajima et al, 1983). Correspondingly, addition of glucose serves to *increase* the surface tension of water. Hence there should be little or negative surface enrichment of glucose if there is no preferential chemical interaction of the sugar with the polymeric sorbent surface.

Glucose capacities provided by the three different adsorbents are similar to each other. That for Reillex 425 is higher, which may relate to its higher surface area and/or weak Van der Waals interaction of the sugar with the polyvinylpyridine matrix.

Glucose capacities decrease with increasing temperature. The relatively small change with temperature implies a low enthalpy of adsorption for glucose.

Effect of pH on Competitive Adsorption. Figures 4, 5 and 6 show the measured surface excesses of lactic acid and glucose on the three different polymeric sorbents as a function of the pH of the aqueous solution, for a constant feed concentration of the solutes and the constant initial phase ratio (10g solution/g sorbent).

The effect of pH on adsorption of the weakly ionizable acid is well known and corresponds to previous results (Getzen et al, 1969; Ward and Getzen, 1970; Müller et al, 1980; Kuo et al, 1987; Tung and King, 1994).

For overall bioprocess optimization, the effect of pH on the separation should be considered together with the effect of pH on the fermentation itself. For lactic acid fermentation, the sorbent should demonstrate substantial uptake in the pH 5-6 range (Tung and King 1994; Dai and King, 1995). The results in Figures 4 - 6 show that the uptake in this range is strongly dependent upon the basicity of the sorbent. As is shown in Table 1, the order of the apparent pK_a values for these weak-base resins is Amberlite IRA-35 > Dowex MWA-1 > Reillex 425. Reillex 425 gives virtually no selective uptake of lactic acid in the pH 5-6 range over the range of temperatures. In the same pH range, uptakes are 0.17-0.28 g lactic acid/g sorbent for Dowex MWA-1 and 0.29-0.35 g lactic acid/g sorbent for Amberlite IRA-35.

The uptake data for lactic acid with all three sorbents are well described by a 1:1 complexation equilibrium, which gives a functional form equivalent to the Langmuir Equation:

$$\frac{Q_{ca}}{Q_m} = \frac{K C_{a,f}}{1 + K C_{a,f}}$$
(8)

The solid curves shown in Figure 4, 5 and 6 are calculated by means of Equation 8. These results are similar to those of Tung and King (1994), although there are two competing solutes (lactic acid and glucose) in this work. Weakly basic sorbents, such as Dowex MWA-1 and Amberlite IRA-35, provide a complexing mechanism for uptake of the carboxylic acid and limit additional mechanisms which might result in the indiscriminate binding of competing compounds.

It is of interest to note that all the three sorbents give small negative surface enrichments of glucose at all values of pH, as shown in Table 2 and Figures 4, 5 and 6. Thus the presence of lactic acid on the sorbents appears to displace glucose that is sorbed in the absence of lactic acid. (Compare Figures 1 - 3 with Figures 4 - 6.) As a result of the non-enrichment of glucose by adsorptive mechanisms, the uptake of glucose is determined by the amount of uptake of bulk solution, e.g., by swelling and/or interstitial entrainment.

Water Uptake and Swelling. Figures 7, 8 and 9 show measured individual uptakes of water from glucose solutions by the polymeric sorbents. There are three points that are worth discussing. First, the polymeric sorbents used all have substantial water capacities because of their polarity, combined with chain relaxation and consequent swelling. Second, it should be noted that the water capacities of the three sorbents decrease slightly as the concentration of glucose in the equilibrium solution

increases. This is probably the result of competitive uptake between glucose and water and the decrease in the activity of water as the glucose concentration increases. Third, the water uptake increases with increasing operating temperature, reflecting greater relaxation of the polymer chains. The water uptake by Amberlite IRA-35 is substantially higher, and the water uptake of Reillex 425 is somewhat higher than that of Dowex MWA-1.

Figures 10 and 11 present water uptakes measured during competitive adsorption between lactic acid and glucose at 25 and 40°C. The water uptakes increase with increasing uptakes of lactic acid. This behavior must result from increased swelling of these weak basic sorbents, attributable to solvation of the amine-carboxylic acid complex.

As shown in Figure 12, there is a direct correlation between uptakes of glucose and water. For all three polymeric sorbents, higher water uptake is accompanied by higher uptake of glucose. It thereby appears that water brings glucose into the sorbent.

Selectivity of Competitive Adsorption. Figures 13 and 14 show selectivities obtained between lactic acid and glucose at 25 and 40°C. Figures 15 and 16 show selectivities between lactic acid and water at 25 and 40°C, reported as "inverse selectivities" -- the weight ratio of water to lactic acid taken up. In Figures 13 through 16, the abscissa is the pH value of the equilibrium aqueous phase.

It is clear that, among the basic sorbents studied, Dowex MWA-1 gives the best selectivities for uptake of lactic acid, as opposed to water and glucose, in the pH 5-6 range. Although Amberlite IRA- 35 gives higher uptakes of lactic acid in the middle pH range, the marked swelling of that sorbent leads to substantial uptakes of water and glucose, and decreases the selectivities for lactic acid over water and glucose. The uptake and selectivity for lactic acid with Reillex 425 are much lower than for Dowex MWA-1 or Amberlite IRA-35 in the pH 5-6 range.

Acknowledgment

This research was supported by the Biological and Chemical Technology Research Program, Advanced Industrial Concepts Division, Office of Industrial Technologies, U.S. Department of Energy. One of the authors, Y. Dai, received a financially supported study leave from Tsinghua University, Beijing, China.

Nomenclature

- C_{af} weight fraction lactic acid in final solution (%)
- C_{ai} weight fraction lactic acid in initial solution (%)
- $C_{g,f}$ weight fraction glucose acid in final solution (%)
- $C_{g,i}$ weight fraction glucose in initial solution (%)
- K complexation constant for sorption (g resin/g lactic acid)

m mass of dry sorbent (g)

 Q_{ca} composite uptake of lactic acid (g lactic acid/g sorbent)

Qcg composite uptake of glucose (g glucose/g sorbent)

individual uptake of lactic acid (g lactic acid/g sorbent) Q_{ia}

individual uptake of glucose (g glucose acid/g sorbent) Qig

individual uptake of water (g water/g sorbent) Qiw

Q_m maximum value of sorbed lactic acid at high concentration (g lactic acid/g sorbent)

initial mass of bulk solution (g)

final mass of bulk solution (g) Wf

Literature Cited

Wo

Dai, Y.; King, C.J. Modeling of Fermentation with Continuous Lactic Acid Removal by Extraction Utilizing Reversible Chemical Complexation. Report No. LBL-37485, Lawrence Berkeley Laboratory: Berkeley, CA, July 1995.

Davison, B.H.; Thompson, J.E. Simultaneous Fermentation and Separation of Lactic Acid in a Biparticle Fluidized-Bed Bioreactor. Appl. Biochem. Biotechnol., 1992, 34/35, 431-439.

Dow Chemical Company, DOWEX Ion Exchange Resins Engineers' Handbook; Midland, Michigan, 1983.

Getzen, F.W.; Ward, T.M. A Model for the Adsorption of Weak Electrolytes on Solids as a Function of pH. 1. Carboxylic Acid-Charcoal Systems. J. Coll. and Interfac. Sci., 1969, 31, 441-453.

Gustafson, R.L.; Filius, H.F., Kunin, R. Basicities of Weak Base Ion Exchange Resins. Ind. Eng. Chem. Fundam., 1970, 9, 221-229.

Jain, M.K.; Datta, R.; Zeikus, J.G. High-Value Organic Acids Fermentation-Emerging Processes and Products. In *Bioprocess Engineering: The First Generation*, Ghose, T.K. Ed.; Ellis Horwood Limited, Chichester, 1989; pp 366-389.

Kaufman, E.N.; Cooper, S.P.; Davison, B.H. Screening of Resins for Use in a Biparticle Fluidized-Bed Bioreactor for the Continuous Fermentation and Separation of Lactic Acid. *Appl. Biochem. Biotechnol.*, 1994, 45/46, 545-554.

King, C.J. "Separation Processes Based on Reversible Chemical Complexation", in Rousseau, R.W., ed., Handbook of Separation Process Technology. Wiley, New York, 1987; pp 760-764.

Kipling, J.J. Adsorption from Solutions on Non-electrolytes. Academic Press, New York, 1965; pp 28-42.

Kuo Y.; Munson, C.L.; Rixey, W.G.; Garcia, A.A.; Frierman, M.; King, C.J. Use of Adsorbents for Recovery of Acetic Acid from Aqueous Solution. Part 1. Factors Governing Capacity. Sep. & Purification Method, 1987, 16(1), 31-64.

Miyajima, K.; Sawada, M.; Nakagaki, M. Studies on Aqueous Solutions of Saccharides I. Activity Coefficients of Monosaccharides in Aqueous Solutions at 25°C. *Bull. Chem. Soc. Japan*, **1983**, 56, 1620-1623.

Müller, G.; Radke, C.J.; Prausnitz, T.M. Adsorption of Weak Organic Electrolytes from Aqueous Solution on Activated Carbon. Effect of pH. J. Phys. Chem., 1980, 84, 369-376.

Ng, T.K.; Busche, R.M.; McDonald, K.C.; Hardy, R.W.F. Production of Feedstock Chemicals. Science, 1983, 219, 733-740.

Reilly Industries, Inc., Reillex: A New Family of Crosslinked Polyvinylpyridines from Reilly, Indianapolis, 1989.

Rohm & Haas Company, Amberlite/Duolite Ion Exchange Resins: Technical Notes; Philadelphia, 1981.

Tung, L.A.; King, C.J. Sorption and Extraction of Lactic and Succinic Acids at $pH > pK_{a1}$ I. Factors Governing Equilibria. *Ind. Eng. Chem. Res.*, **1994**, 33, 3217-3223.

. 1

Vickroy, T.B. Lactic Acid. In *Comprehensive Biotechnology*, Vol. 3. Blanch, H.W.; Drew, S.; Wang, D.I.C., Eds.; Pergamon Press, New York, 1985; pp 761-776.

Ward, T.M.; Getzen, F.W. Influence of Aromatic Acids on Activated Carbon. Environ. Sci. & Technol., 1970, 4, 64-67.

Yabannavar, V.M.; Wang, D.I.C. Extractive Fermentation for Lactic Acid Production. *Biotechnol. Bioeng.*, **1991**, 37,1095-1100.

Sorbent	Dowex MWA-1	Reillex 425	Amberlite IRA-35
Manufacturer	Dow Chemical Co.	Reilly Tar & Chemical Co.	Rohm & Haas Corp.
Matrix	Polystyrene- divinylbenzene	Poly(4-vinyl pyridine)	Acrylic
Functional Group	3° Amine	Pyridine	3° Amine
Maximum Temperature(°C)	100.0	100.0	60.0
Apparent pK _a	3.92 ^b	6.70 ^b	8.32 ^b
N ₂ BET Surface Area (m ² /g)	23.0	90.0	20 - 30

Table 1. Properties of Basic Sorbents Used^a

^a Sources: Dow Chemical Company, 1983; Reilly Industries, 1989; Rohm & Haas Company, 1981. ^b Gustafson et al, 1970.

	-	-	
Temperature (°C)	Dowex MWA-1	Reillex 425	Amberlite IRA-35
	pH Q _{cg}	pH Q _{cg}	pH Q _{cg}
	(mg/g)	(mg/g)	(mg/g)
25	2.78 -8.1	2.15 -3.6	4.38 -13.1
	4.88 -8.1	2.62 -3.2	4.98 -12.9
	6.07 -7.4	3.16 -2.8	6.08 -13.1
	7.00 -5.3	3.76 -2.2	6.48 -12.5
	7.47 -4.5	4.25 -2.1	7.22 -12.4
	8.05 -4.0	5.09 -1.4	7.65 -11.8
	8.69 -3.6	6.04 -1.4	8.09 -11.4
	8.79 -3.4	6.48 -1.4	8.29 -10.3
40	2.75 -7.4	2.09 -3.7	3.49 -15.4
	3.71 -7.2	2.79 -3.3	4.78 -14.8
	4.64 -8.1	3.31 -3.3	5.44 -14.3
	5.36 -6.7	3.99 -3.1	5.80 -14.7
	6.19 -5.5	4.68 -2.4	6.33 -11.9
	6.73 -4.9	5.29 -2.8	6.68 -11.0
	7.26 -4.4	5.86 -3.4	7.29 -9.3
	8.01 -4.3	6.14 -2.7	8.20 -9.3

Table 2. Surface Depletion of Glucose during

19

.

Simultaneous Sorption of Lactic Acid and Glucose (25 and 40 °C)

List of Figure Captions

Figure 1. Composite Sorption Isotherms for Glucose onto Dowex MWA-1 at Different Temperatures.

Figure 2. Composite Sorption Isotherms for Glucose onto Reillex 425 at Different Temperatures.

Figure 3. Composite Sorption Isotherms for Glucose onto Amberlite IRA-35 at Different Temperatures.

Figure 4. Effect of pH on Composite Uptakes of Glucose and Lactic Acid By Dowex MWA-1. $C_{a,i}$ = 4.0%, $C_{g,i}$ = 1.0%, W_0/m = 10.

Figure 5. Effect of pH on Composite Uptakes of Glucose and Lactic Acid By Reillex 425. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

Figure 6. Effect of pH on Composite Uptakes of Glucose and Lactic Acid By Amberlite IRA-35. $C_{a,i}$ = 4.0%, $C_{g,i}$ = 1.0%, W_0/m = 10.

Figure 7. Individual Uptake of Water from Glucose Solution by Dowex MWA-1.

Figure 8. Individual Uptake of Water from Glucose Solution by Reillex 425.

Figure 9. Individual Uptake of Water from Glucose Solution by Amberlite IRA-35.

Figure 10. Individual Sorption of Water by Polymeric Sorbents at 25°C. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

Figure 11. Individual Sorption of Water by Polymeric Sorbents at 40°C. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

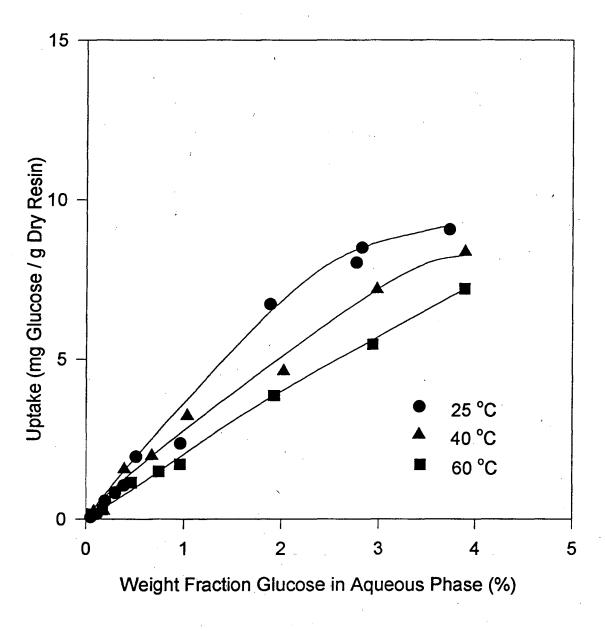

Figure 12. Relationship of Glucose and Water Uptakes by the Three Polymeric Sorbents at 25 and 40°C. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

Figure 13. Selectivity (Proportion of Lactic Acid to Glucose in Sorbate) at 25°C. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

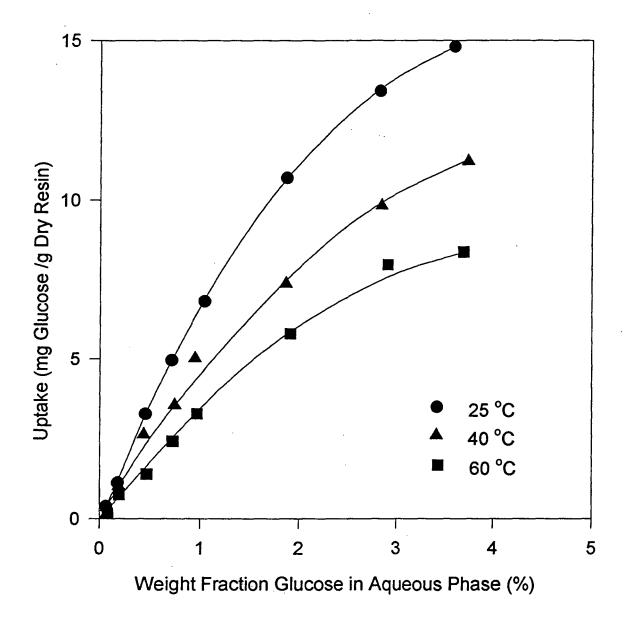

Figure 14. Selectivity (Proportion of Lactic Acid to Glucose in Sorbate) at 40°C. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

Figure 15. Inverse Selectivity (Proportion of Water to Lactic Acid in Sorbate) at 25°C. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

Figure 16. Inverse Selectivity (Proportion of Water to Lactic Acid in Sorbate) at 40°C. $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 10$.

ú,

Figure 2 Composite Sorption Isotherms for Glucose onto Reillex 425 at Different Temperatures

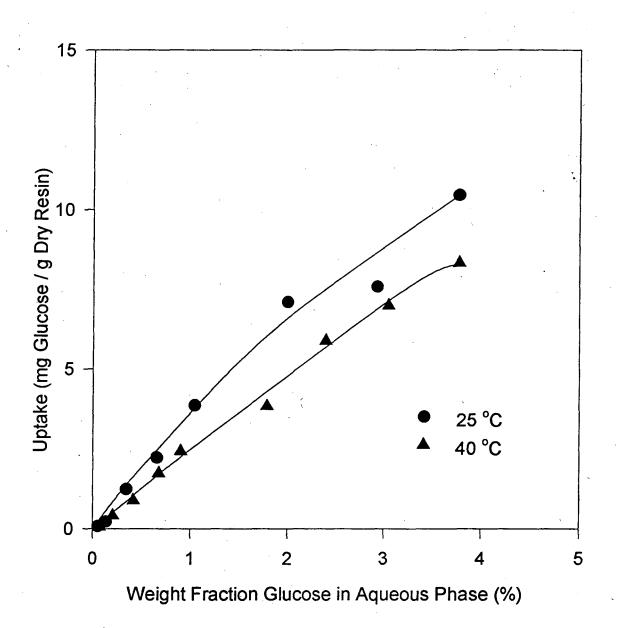


Figure 3 Composite Sorption Isotherms for Glucose onto Amberlite IRA-35 at Different Temperatures

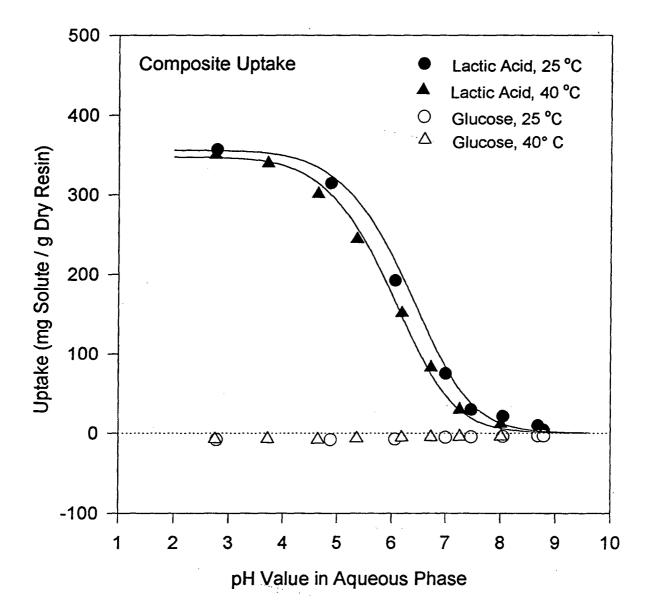
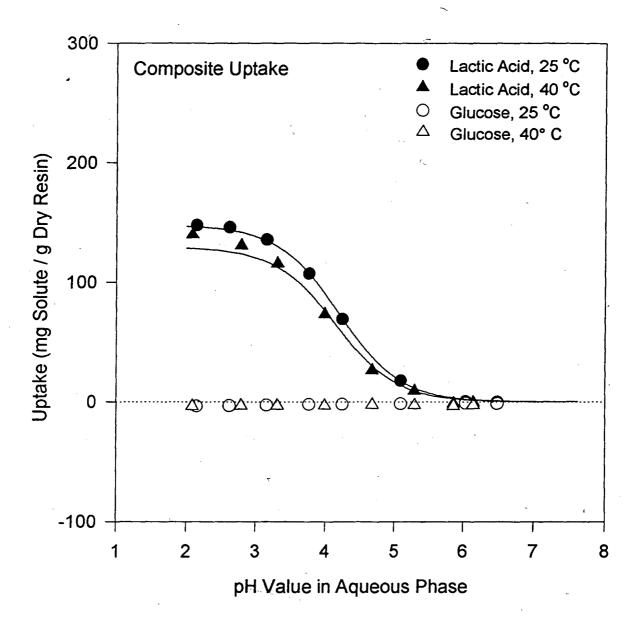
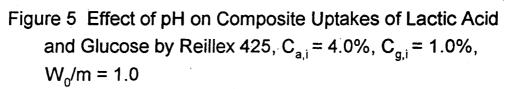




Figure 4 Effect of pH on Composite Uptakes of Lactic Acid and Glucose by Dowex MWA-1, $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 1.0$

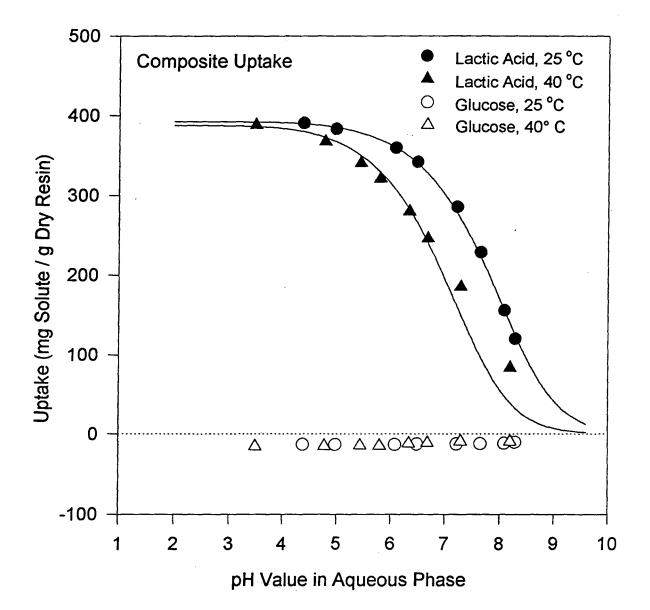


Figure 6 Effect of pH on Composite Uptakes of Lactic Acid and Glucose by Amberlite IRA-35, $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 1.0$

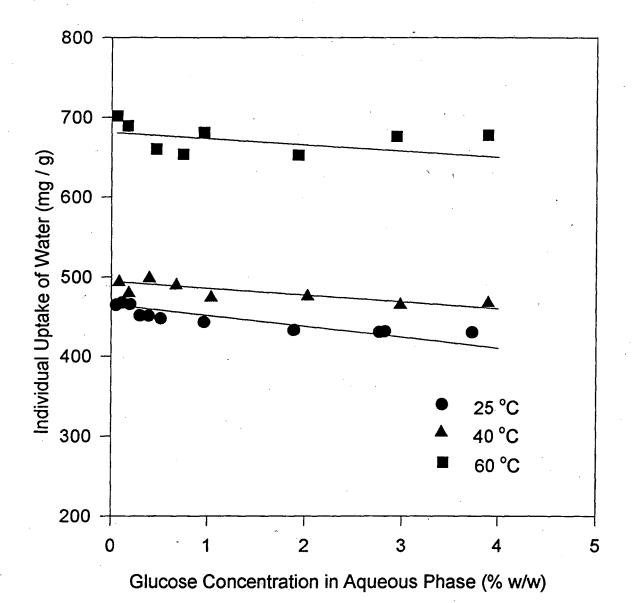


Figure 7 Individual Uptake of Water from Glucose Solution by Dowex MWA-1 at Different Temperatures

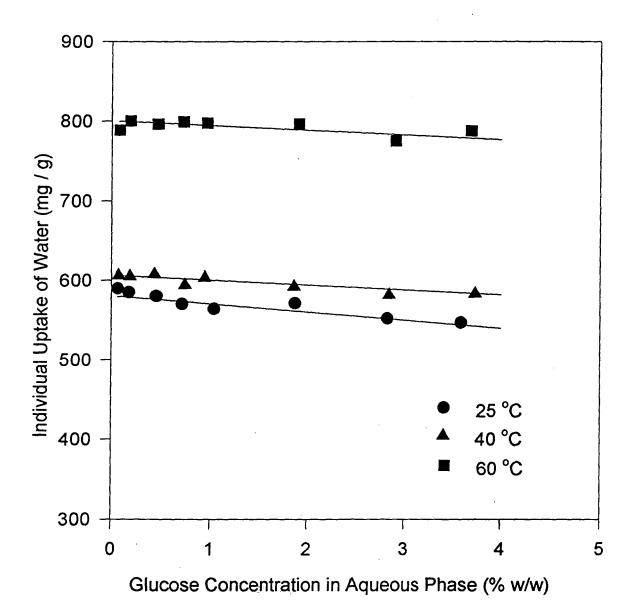


Figure 8 Individual Uptake of Water from Glucose Solution by Reillex 425 at Different Temperatures

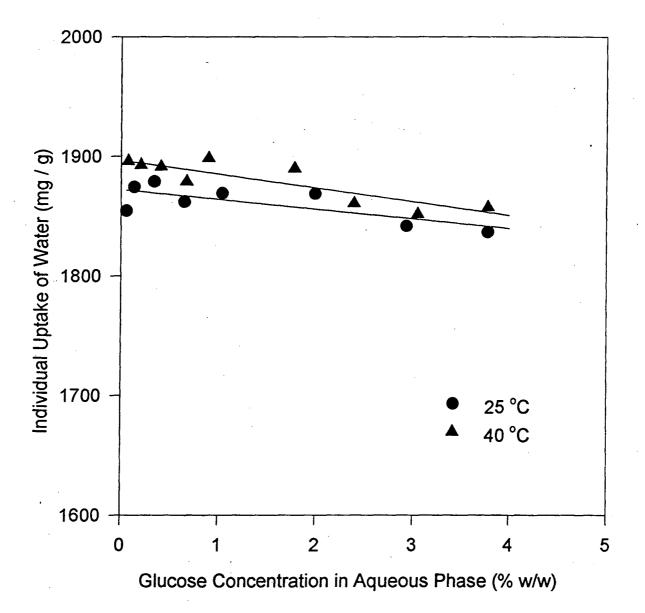
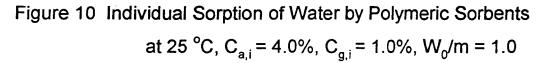



Figure 9 Individual Uptake of Water from Glucose Solution by Amberlite IRA-35 at Different Temperatures

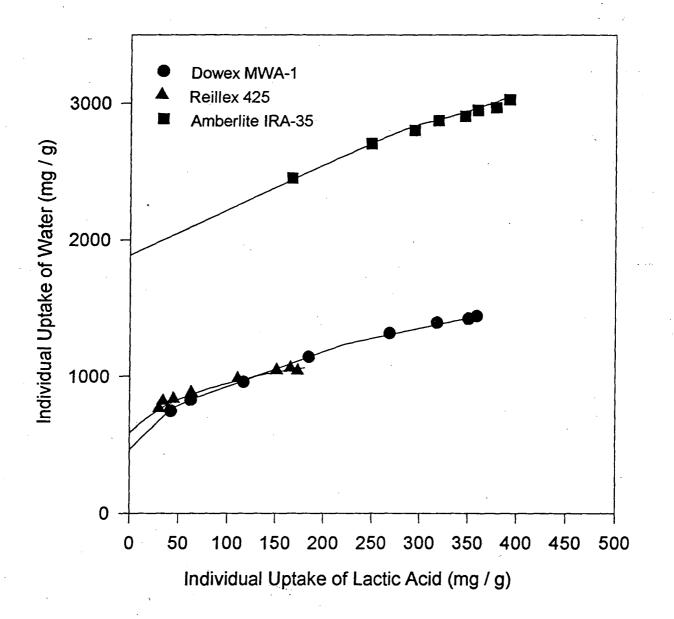
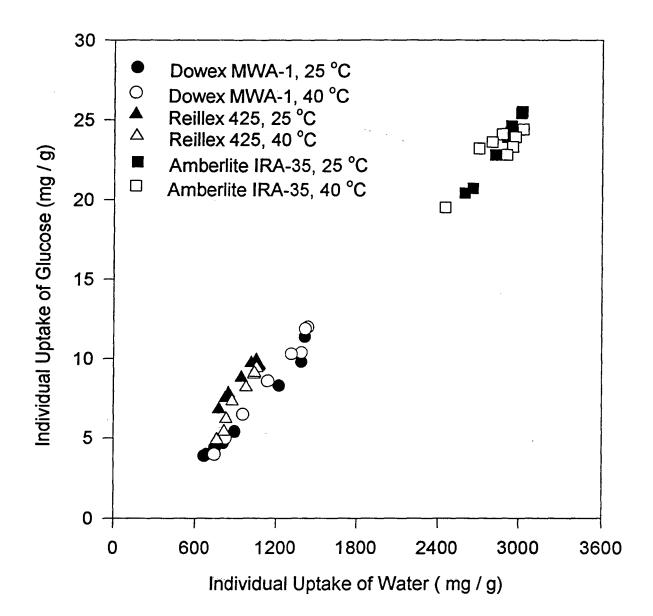
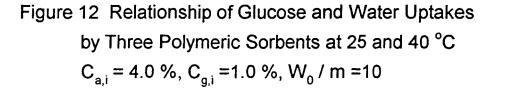




Figure 11 Individual Sorption of Water by Polymeric Sorbents at 40 °C, $C_{a,i}$ = 4.0%, $C_{g,i}$ = 1.0%, W_0/m = 1.0

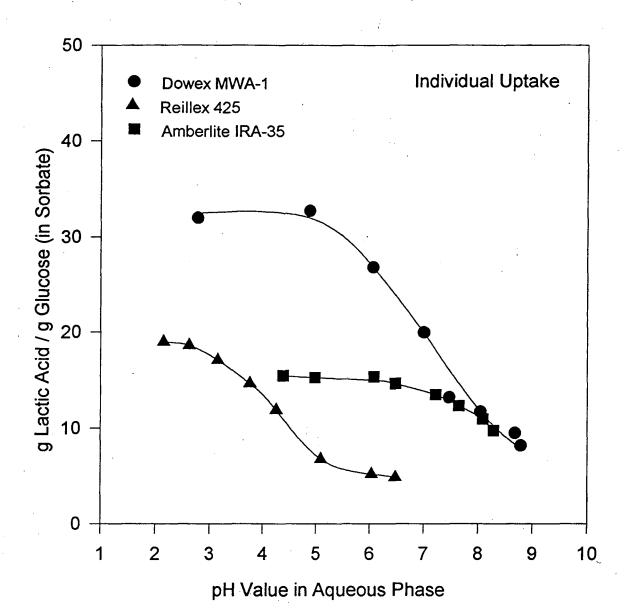


Figure 13 Selectivity (Proportion of Lactic Acid to Glucose in Sorbate) at 25 °C, $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 1.0$

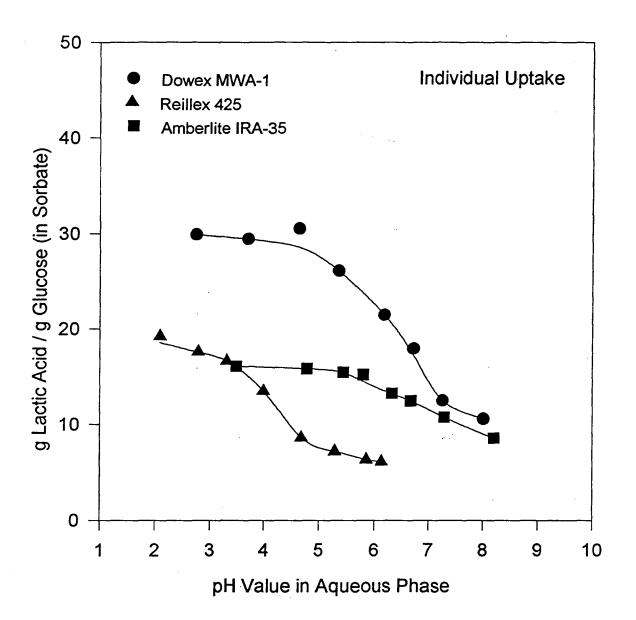


Figure 14 Selectivity (Proportion of Lactic Acid to Glucose in Sorbate) at 40 °C, $C_{a,i}$ = 4.0%, $C_{g,i}$ = 1.0%, W_0/m = 1.0

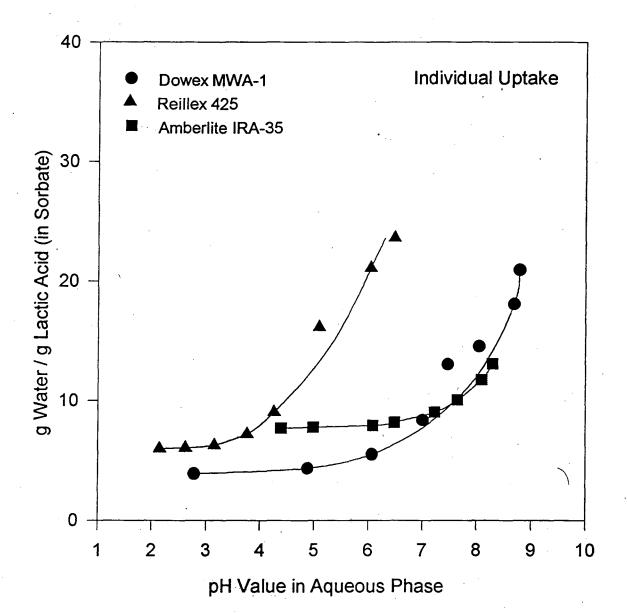
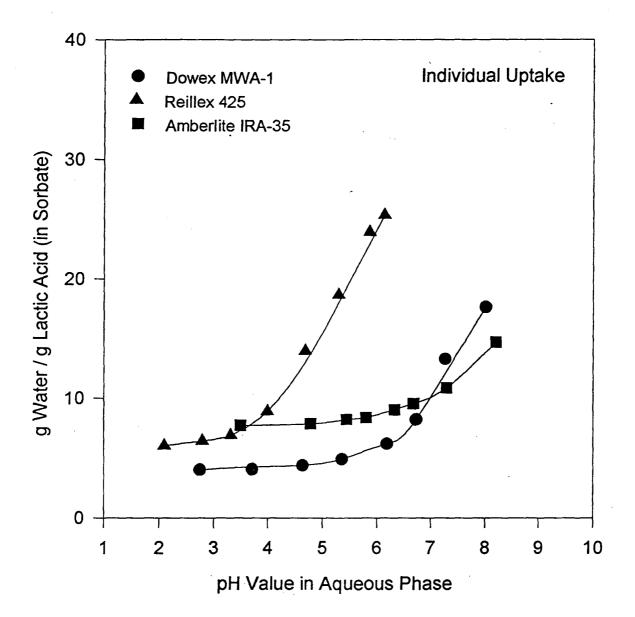
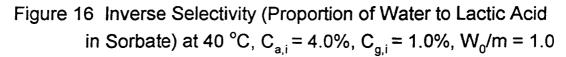




Figure 15 Inverse Selectivity (Proportion of Water to Lactic Acid in Sorbate) at 25 °C, $C_{a,i} = 4.0\%$, $C_{g,i} = 1.0\%$, $W_0/m = 1.0$

APPENDIX A: EXPERIMENTAL DATA

The experimentally measured quantities are listed below.

m W	mass of sorbent (g) mass of solution (g)
W _T	total mass of sorbent and sorbate (g)
pH_i	pH value in initial aqueous solution
pH _f	pH value in final aqueous solution
C _{g,i}	weight fraction glucose in initial solution (%)
C _{g,f}	weight fraction glucose in final solution (%)
C _{a,i}	weight fraction lactic acid in initial solution (%)
.C _{a,f}	weight fraction lactic acid in final solution (%)
Q _{cg}	composite uptake of glucose (mg/g)
Q _{ca}	composite uptake of lactic acid (mg/g)
Q _{iq}	Individual uptake of glucose (mg/g)
Q _{ia}	Individual uptake of lactic acid (mg/g)
	Individual uptake of water (mg/g)
Q_{iw}	individual upcake of water (mg/g)

A.1 Sorption Isotherms

The results of the sorption isotherm experiments are shown in Table A-1.

Table A-1. Data for Uptake of Glucose and Wat	Table A-1.	Data	for	Uptake	of	Glucose	and	Water
---	------------	------	-----	--------	----	---------	-----	-------

m	W	C _{g,i}	C _{g,f}	Q _{cg}	W _T	Q _{ig}	Q _{iw}
		Sorbe	ent: Dowe	ex MWA-1	(25°C)		41 •
1.0129 1.0036 1.0049 1.0072 1.0055 1.0017 1.0109 1.0043 1.0051 1.0038 1.0074	10.1252 10.0823 10.3096 10.0561 10.0179 9.9977 9.9999 9.9862 9.9909 9.9825 9.9840	3.8214 2.9116 2.8466 1.9569 0.9848 0.5277 0.3969 0.3056 0.2037 0.1131 0.0502	3.7308 2.8271 2.7693 1.8895 0.9612 0.5083 0.3863 0.2973 0.1980 0.1115 0.0495	9.059 8.491 8.023 6.725 2.347 1.941 1.050 0.825 0.567 0.162 0.071	1.4749 1.4575 1.4582 1.4586 1.4578 1.4545 1.4703 1.4602 1.4750 1.4750 1.4761	26.076 21.277 20.515 15.193 6.671 4.239 2.806 2.175 1.493 0.685 0.301	430.0 431.0 430.6 433.0 443.2 447.8 451.6 451.8 466.0 467.9 465.0

m	W	C _{g,i}	C _{g,f}	Q _{cg}	W _T	Q_{ig}	Q _{iw}
		Sorbe	ent: Dowe	ex MWA-1	l (40°C)		
1.0026 1.0004 1.0038 1.0050 1.0009 1.0008 1.0012 1.0024	10.4401 10.3298 10.2083 10.0994 10.0592 10.0327 10.0075 9.9961	3.9760 3.0512 2.0714 1.0658 0.6890 0.4074 0.1843 0.0818	3.8958 2.9816 2.0260 1.0338 0.6695 0.3919 0.1818 0.0795	8.358 7.182 4.622 3.213 1.962 1.550 0.265 0.234	1.4987 1.4873 1.4959 1.4899 1.4964 1.5032 1.4828 1.4979	27.635 21.694 14.554 8.201 5.276 3.517 1.139 0.627	467.2 465.0 475.7 474.3 489.8 498.5 479.9 493.7
m		C _{g,i}	C _{g,f}	Q _{cg}	W _T	Qig	Q _{iw}
		Sorbe	ent: Dowe	ex MWA-1	(60°C)		
1.0007 1.0025 1.0023 1.0009 1.0008 1.0004 1.0013 1.0001	$10.4315 \\ 10.3157 \\ 10.1993 \\ 10.0897 \\ 10.0651 \\ 10.0373 \\ 9.9930 \\ 9.9904$	3.9566 2.9902 1.9646 0.9768 0.7571 0.4715 0.1709 0.0600	3.8876 2.9372 1.9267 0.9599 0.7424 0.4602 0.1679 0.0584	7.201 5.466 3.855 1.704 1.479 1.140 0.299 0.160	1.7140 1.7065 1.6748 1.6908 1.6615 1.6653 1.6946 1.7026	34.912 26.092 16.782 8.320 6.380 4.199 1.459 0.570	677.9 676.2 652.6 681.0 653.8 660.4 689.3 701.9
	W	C _{g,i}	Cg,f	Q _{cg}	W _T	Q _{ig}	Q _{iw}
		Amb	erlite I	RA-35 (25°C)		
1.0002 1.0007 1.0139 1.0089 1.0037 1.0055 1.0011 1.0035	10.4314 10.3262 10.2206 10.1126 10.0597 10.0290 10.0066 9.9943	3.8783 3.0074 2.0716 1.0895 0.6781 0.3568 0.1398 0.0573	3.7780 2.9339 2.0006 1.0460 0.6560 0.3445 0.1376 0.0565	10.460 7.582 7.102 3.856 2.222 1.228 0.214 0.081	2.9206 2.9075 2.9550 2.9188 2.8876 2.9028 2.8806 2.8806 2.8660	82.998 63.486 45.403 23.657 14.535 7.728 2.797 1.130	1837.0 1842.0 1869.1 1869.4 1862.4 1879.2 1874.6 1854.9

m	W	C _{g,i}	C _{g,f}	Q _{cg}	W _T	Q _{ig}	Q _{iw}
		Amb	perlite	IRA-35	(40°C)		
1.0017 1.0024 1.0146	10.4255 10.3358 10.2629	3.8587 3.1154 2.4587	3.7787 3.0477 2.4006		2.9443 2.9243 2.9554	81.606 65.415 51.804	1857.7 1851.9 1861.1
1.0060 1.0029 1.0081 1.0046	10.1891 10.0910 10.0619 10.0309	1.8257 0.9253 0.6933 0.4238	1.7879 0.9014 0.6760 0.4150	3.828 2.410 1.722 0.879	2.9459 2.9266 2.9169 2.9136	38.305 19.700 14.521 8.765	1890.0 1898.4 1878.9 1891.5
1.0089	10.0094 9.9978	0.2089 0.0768	0.2045	0.411 0.065	2.9230	4.291 1.450	1892.9 1896.1
m	Ŵ	C _{g,i}	C _{g,f}	Q _{cg}	W _T	Q _{ig}	Q _{iw}
		Ambe	erlite I	RA-35 (60°C)*		
1.0034 1.0014	10.3606 10.2635	3.2543 2.4231	3.1350 2.3141	12.318 11.171			· .
1.0017 1.0074 1.0044	10.1754 10.0886 10.0884	1.7389 0.8958 0.6770	1.6564 0.8265 0.6114	8.380 6.940 6.589			
1.0006 1.0015 1.0005	10.0342 10.0073 9.9921	0.4381 0.1942 0.0927	0.3910 0.1706 0.0825	4.723 2.358 1.019			
* In t	his case	glucose	gives ar	n equili	brium mi	xture.	<u></u>
m	W	C _{g,i}	C _{g,f}	Q _{cg}	W _T	Q _{ig}	Q _{iw}
		Sorbe	ent: Rei	llex 425	5 (25°C)		
L.0052	10.4201 10.3248	3.7396 2.9559	2.8255	14.813		35.777 29.884	547.1
L.0021 L.0348 L.0083	10.2183 10.1135 10.0733	1.9814 1.1137 0.7619	1.0438 0.7123	6.832 4.955	1.5968 1.6320 1.5925	21.832 12.856 9.082	571.6 564.3 570.3
L.0009 L.0063	10.0409 10.0079 9.9946	0.4876 0.1924 0.0718	0.4549 0.1810 0.0678	1.139	1.5878 1.5975 1.5942	5.947 2.202 0.802	580.4 585.3 589.9

m	Ŵ	C _{g,i}	C _{g,f}	Q_{cg}	W _T	Q_{ig}	Q _{iw}
		Sorbe	ent: Rei	llex 425	5 (40°C)		
1.0076 1.0077 1.0067 1.0021 1.0107 1.0028 1.0031 1.0049	10.4250 10.3221 10.2024 10.0954 10.0669 10.0344 10.0071 9.9861	3.8476 2.9390 1.9391 0.9951 0.7769 0.4626 0.1988 0.0773	3.7392 2.8431 1.8663 0.9453 0.7413 0.4363 0.1885 0.0737	11.220 9.831 7.383 5.022 3.551 2.632 1.028 0.358	1.6297 1.6212 1.6217 1.6175 1.6195 1.6174 1.6122 1.6153	34.306 27.140 18.784 10.827 8.016 5.306 2.173 0.806	583.1 581.7 592.1 603.3 594.3 607.6 605.1 606.2
m	Ŵ	C _{g,i}	C _{g,f}	Q _{cg}	W _T	Q _{ig}	Q _{iw}
		Sorbe	ent: Reil	llex 425	(60°C)		
1.0000 1.0017 1.0037 1.0042 1.0025 1.0035 1.0059 1.0043	10.4157 10.3174 10.2014 10.0961 10.0666 10.0357 10.0036 9.9896	3.7743 2.9871 1.9686 1.0013 0.7462 0.4806 0.1980 0.0819	3.6939 2.9097 1.9115 0.9685 0.7221 0.4666 0.1905 0.0802	8.371 7.972 5.804 3.282 2.420 1.401 0.751 0.169	1.8267 1.8098 1.8247 1.8164 1.8121 1.8075 1.8132 1.7971	38.908 31.445 21.440 11.115 8.252 5.139 2.280 0.802	787.8 775.3 796.5 797.7 799.3 796.1 800.3 788.6

.

A.2 Sorbent pH Experiments

.

The results of the sorbent uptake-pH experiments are given in Tables A-2-1, A-2-2 and A-2-3.

. ·

Table A-2-1.	Data from	Sorbent	Uptake-pH	Experiments
	(only gl	ucose to l	be sorbed)	

	·				
m	W	рH	C _{g,i}	C _{g,f}	$W(C_{g,i}-C_{g,f})/m$
	Sor	rbent: Do	wex MWA-1	(25°C)	
1.0055	11.9565	4.84	1.0548	1.0170	4.458
1.0019	11.7076	5.17	1.0878	1.0580	3.346
1.0021	12.8681	6.03	1.0470	1.0166	3.898
1.0008	14.3546	6.40	1.0426	1.0091	4.821
1.0036	10.5214	7.06	1.0429	0.9982	4.780
1.0047	10.0055	8.17	1.0795	1.0412	3.836
1.0022	10.0692	9.26	1.0439	1.0090	3:510

N									
m	W	pH_i	pHf	C _{g,i}	C _{a,i}	C _{g,f}	$C_{a,f}$	Q _{cg}	Q _{ca}
			Corbo	nt: Dow	ov MMD-	1 (25°C)			
			SOLDE	IIC. DOW	EX MWA-	I (25 C)	· -		
1.0007	10.0045	1.99	2.78	0.9998	4.0056	1.0809	0.4362	-8.06	356.
1.0008	10.4028								
1.0010	10.0013	3.50	6.07	1.0005	4.0084	1.0744	2.0834	-7.38	192.3
1.0045	10.0019	4.09	7.00	0.9997	4.0054	1.0527	3.2539	-5.28	74.8
1.0019	10.0142	4.44	7.47	0.9990	4.0025	1.0439	3.7067	-4.49	29.6
1.0042	10.0039	4.92	8.05	0.9994	4.0039	1.0397	3.7933	-4.02	21.0
1.0028									9.5
1.0029	10.0019	5.90	8.79	1.0000	4.0065	1.0342	3.9669	-3.41	4.0
m	W	рН _і	рН _f	C _{g,i}	C _{a,i}	C _{g,f}	C _{a,f}	Q _{cg}	Q _{ca}
				· · · · · · · · · · · · · · · · · · ·					
		:	Sorbe	nt: Dow	ex MWA-	1 (40°C)			
1 0050	10.0143	1 99	2 75	0 9988	3 9975	1 0730	0 4821	-7 39	350 3
	10.0023								
	10.0160								
	10.0075								
	10.0014								
	10 0044								

Table A-2-2. Data from Sorbent Uptake-pH Experiments (lactic acid and glucose to be sorbed)

1.0005 10.0023 2.50 3.71 1.0000 4.0023 1.0720 0.6037 -7.20 339.8 1.0017 10.0160 3.02 4.64 0.9987 3.9971 1.0800 0.9888 -8.11 300.8 1.0034 10.0075 3.36 5.36 0.9996 4.0004 1.0671 1.5526 -6.73 244.1 1.0018 10.0014 3.78 6.19 1.0005 4.0041 1.0551 2.4865 -5.45 151.5 1.0062 10.0044 4.18 6.73 0.9999 4.0016 1.0489 3.1724 -4.87 82.5 1.0025 10.0090 4.65 7.26 0.9995 4.0002 1.0437 3.7074 -4.41 29.2 1.0004 10.0140 5.34 8.01 0.9990 3.9981 1.0415 3.8824 -4.25 11.6

 $m \qquad W \qquad pH_i \qquad pH_f \qquad C_{g,i} \qquad C_{a,i} \qquad C_{g,f} \qquad C_{a,f} \qquad Q_{cg} \qquad Q_{ca}$

Sorbent: Amberlite IRA-35 (25°C)

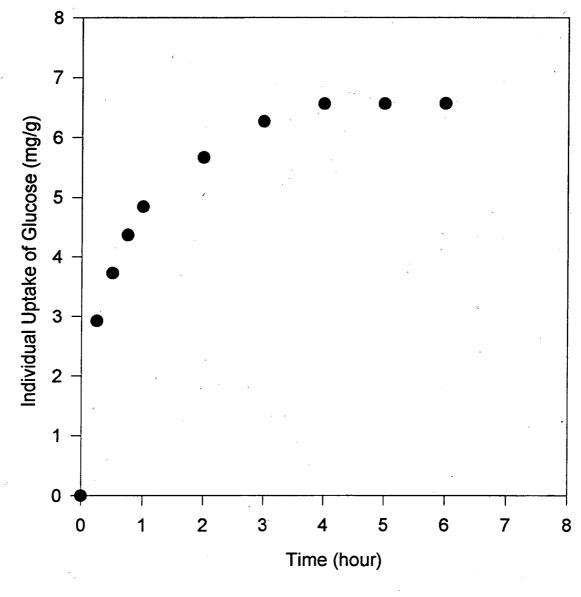
1.0116 10.0006 1.99 4.38 0.9901 4.0032 1.1226 0.0529 -13.1 390.5 1.0012 10.0021 2.21 4.98 0.9901 4.0032 1.1195 0.1641 -12.9 383.5 1.0169 10.0440 2.49 6.08 0.9858 3.9859 1.1182 0.3448 -13.1 359.6 1.0128 10.0064 2.70 6.48 0.9895 4.0010 1.1159 0.5354 -12.5 342.4 1.0039 10.0056 3.09 7.22 0.9900 4.0028 1.1141 1.1356 -12.4 285.8 1.0148 10.0265 3.32 7.65 0.9879 3.9944 1.1079 1.6815 -11.8 228.5 1.0034 10.0021 3.59 8.09 0.9902 4.0035 1.1046 2.4422 -11.4 155.6 1.0035 10.0117 3.73 8.29 0.9891 3.9993 1.0927 2.7945 -10.3 120.2

m	Ŵ	pHi	рH _f	C _{g,i}	C _{a,i}	C _{g,f}	C _{a,f}	Q _{cg}	Q _{ca}
		Soi	rbent:	Amberl	lite IRA	A-35 (40	D°C)		
L.0051 L.0032 L.0090 L.0073	10.0145 10.1721	2.37 2.61	4.78 5.44	1.0010 0.9994 0.9843 1.0005	4.0007 3.9402	1.1471 1.1261		-14.8 -14.3	367.3 340.8
L.0022	10.0045 10.0043 10.0062 10.0135	3.18 3.44	6.68 7.29	1.0006	4.0067 4.0053	1.0937	1.5384 2.1523	-11.0 -9.3	245.9
<u> </u>									·
m	W	pH _i	pH _f	C _{g,i}	C _{a,i}	C _{g,f}	C _{a,f}	Q _{cg}	Q _{ca}
			Sorbe	nt: Rei	llex 42	5 (25°C)			
.0015 .0025 .0013 .0008 .0009	10.0001 10.0054 10.0009 10.0622	2.39 2.90 3.46 3.91 4.62	2.62 3.16 3.76 4.25 5.09	0.9827 1.0001 0.9994 0.9998 0.9938	4.0062 4.0465 4.0439 4.0453 4.0210	1.0145 1.0282 1.0216 1.0204 1.0078	2.5554 2.6831 2.9715 3.3515 3.8445	-3.21 -2.80 -2.22 -2.06 -1.41	146.3 136.0 107.2 69.3 17.7
	10.0243					1.0111 1.0148			4.3 -0.1
m	W	pH_i	рН _f	C _{g,i}	C _{a,i}	C _{g,f}	C _{a,f}	Q _{cg}	Q_{ca}
		:	Sorbei	nt: Rei	llex 42	5 (40°C)			
.0029 .0050 .0055 .0000 .0039 .0021	10.0060 10.0000 10.0029 10.0116 10.0285 10.0008 10.8543	2.64 3.14 3.76 4.39 4.96 5.45	2.79 3.31 3.99 4.68 5.29 5.86	0.9994 0.9988 0.9988 0.9980 0.9964 1.0014	4.1135 4.1112 4.1112 4.1078 4.1014 4.1222	1.0327 1.0324 1.0304 1.0224 1.0251 1.0360	2.8020 2.9470 3.3734 3.8439 4.0089 4.1357	-3.32 -3.34 -3.14 -2.44 -2.87 -3.45	130.9 115.8 73.4 26.4 9.2 -1.3

m		pH _i	рН _f	Q _{cq}	Q _{ca}	Q _{ig}	Q _{ia}	Q _{iw}
<u></u>								
		5011	Jent: 1	Dowex M	WA-1 (23	5.0)		
1.0007	2.7967	1.99	2.78	-8.06	356.9	11.4	364.7	1418.6
1.0008	2.7250	3.00	4.88	-8.12	304.8	9.8	320.6	1392.4
1.0010 1.0045	2.4551 2.0213	3.50 4.09	6.07 7.00	-7.38 -5.28	192.3 74.8	8.3 5.4	222.6 107.7	1221.7 899.1
1.0019	1.8803	4.44	7.47	-4.49	29.6	4.7	62.1	809.9
1.0042	1.8132	4.92	8.05	-4.02	21.0	4.4	51.6	749.6
1.0028	1.7330	5.63 5.90	8.69 8.79	-3.60 -3.41	9.5 4.0	4.0 3.9	38.0 31.9	686.3 667.3
1.0029	1.7080	5.90	0.19	-3.41	4.0		51.9	007.5
m	W _T	pHi	рН _f	Q _{cg}	Q _{ca}	Q _{ig}	Q_{ia}	Q _{iw}
				<u></u>			······································	
		Sort	ent: I	Dowex MV	VA-1 (40)°C)		
1.0050	2.8252	1.99	2.75	-7.39	350.3	12.0	359.0	1440.1
1.0005	2.7853	2.50	3.71	-7.20	339.8	11.9	350.6	1421.4
1.0017 1.0034	2.7240 2.6039	3.02 3.36	4.64 5.36	-8.11 -6.73	300.8 244.1	10.4 10.3	317.8 268.9	1391.2 1315.9
1.0018	2.3384	3.78	6.19	-5.45	151.5	8.6	184.7	1140.9
1.0062	2.0948	4.18	6.73	-4.87	82.5	6.5	116.8	958.6
1.0025	1.8997	4.65	7.26	-4.41	29.2	5.0	62.4	827.6
1.0004	1.7933	5.34	8.01	-4.25	11.6	4.0	42.3	746.3
m	W _T	рН _і	pH _f	Q _{cg}	Q _{ca}	Q _{ig}	Q _{ia}	Q _{iw}
		Sorben	t: Amb	erlite	IRA-35	(25°C)		
1.0116	4.4815	1.99	4.38	-13.1	390.5	25.4	392.4	3012.3
1.0012	4.4378	2.21	4.98	-12.9	383.5	25.5	389.1	3017.9
1.0169	4.4028	2.49	6.08	-13.1	359.6	24.2	371.1	2934.3
1.0128 1.0039	4.3828 4.2750	2.70 3.09	6.48 7.22	-12.5 -12.4	342.4 285.8	24.6 23.9	360.2 322.8	2942.6 2911.7
1.0148	4.1892	3.32	7.65	-11.8	228.5	22.8	281.1	2824.2
1.0034	3.9200	3.59	8.09	-11.4	155.6	20.7	226.6	2659.4
1.0035	3.8306	3.73	8.29	-10.3	120.2	20.4	198.9	2597.9

Table A-2-3. Data of Individual Uptakes (lactic acid and glucose to be sorbed)

.


m	W _T	pHi	pH _f	Q _{cg}	Q _{ca}	Q _{ig}	Q_{ia}	Q _{iw}
		Sorben	t: Amb	erlite	IRA-35	(40°C)		
1.0051 1.0032 1.0090 1.0073 1.0024 1.0041 1.0022	4.4658 4.3842 4.3704 4.3060 4.2258 4.1345 3.9848	1.99 2.37 2.61 2.76 3.03 3.18 3.44	3.49 4.78 5.44 5.80 6.33 6.68 7.29	-15.4 -14.8 -14.3 -14.7 -11.9 -11.0 -9.3	245.9 185.0	24.4 23.9 23.3 22.8 24.1 23.6 23.2	391.9 378.1 359.4 346.4 318.6 293.9 249.1	2968.2 2948.7 2905.6 2873.0 2800.1 2703.7
1.0013	3.6408	3.81	8.20	-9.3	83.4	19.5	166.9	2449.6
					······································			,
m	W _T	рН _і	рН _f	Q _{cg}	Q _{ca}	Q _{ig}	Q _{ia}	Q _{iw}
	- 5	Sorb	ent: H	Reillex	425 (25	5°C)		
1.0006 1.0015 1.0025 1.0013 1.0008 1.0009 1.0013 1.0063	2.2645 2.2686 2.2408 2.1754 2.0620 1.9140 1.8741 1.8298	1.99 2.39 2.90 3.46 3.91 4.62 5.30 5.72	2.15 2.62 3.16 3.76 4.25 5.09 6.04 6.48	-3.60 -3.21 -2.80 -2.22 -2.06 -1.41 -1.35 -1.47	147.8 146.3 136.0 107.2 69.3 17.7 4.3 -0.1	9.5 9.6 9.9 9.7 8.8 7.8 7.5 6.8	180.2 178.6 169.1 142.0 104.8 52.8 39.1 33.0	1073.4 1077.0 1056.2 1020.9 946.8 851.7 825.1 778.5
						<u> </u>		
m	W _T	pH_i	pH _f	Q _{cg}	Q _{ca}	Q_{ig}	Q_{ia}	Q _{iw}
		Sorb	ent: F	Reillex	425 (40)°C)		
1.0043 1.0029 1.0050 1.0055 1.0000 1.0039 1.0021 1.0030	2.2313 2.2415 2.2144 2.1133 1.9491 1.8920 1.8614 1.8043	1.992.643.143.764.394.965.456.01	2.09 2.79 3.31 3.99 4.68 5.29 5.86 6.14	-3.70 -3.32 -3.34 -3.14 -2.44 -2.87 -3.45 -2.67	140.1 130.9 115.8 73.4 26.4 9.2 -1.3 -0.6	9.0 9.4 9.1 8.2 7.3 6.2 5.4 4.9	173.1 165.5 151.3 110.6 62.9 44.7 34.2 30.1	1039.6 1060.1 1043.0 982.9 878.9 833.7 817.9 763.9

A.3 Sorption Kinetics

The results of the sorption kinetics experiment are shown in Table A-3.

Table A-3. Data of Sorption Kinetics of Glucose

t(hr)	m	W	C _{g,i}	C _{g,f}	W _T	Q_{ig}	Q _{iw}
		Sort	ent: Dov	vex MWA-1	. (25°C)		
0.25 0.50 0.75 1.00 2.00 3.00 4.00 5.00 6.00	1.0022 1.0000 1.0006 1.0005 1.0034 1.0001 1.0007 1.0036 1.0012	9.9992 10.0310 10.0108 10.0048 10.0109 10.0099 10.0080 10.0014 10.0000	0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980	0.9685 0.9622 0.9640 0.9792 0.9724 0.9779 0.9750 0.9750 0.9750	1.0102 1.0175 1.1051 1.3078 1.3290 1.4416 1.4447 1.4481 1.4455	2.992 3.724 4.366 4.842 5.665 6.268 6.565 6.562 6.565	5.0 13.8 100.1 302.5 319.9 435.2 437.4 437.9 437.7

Kinetics for Sorption of Glucose by Dowex MWA-1 at 25 °C, $C_{g,i}$ = 1.0%, W_0 / m =10

-

LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA TECHNICAL AND ELECTRONIC INFORMATION DEPARTMENT BERKELEY, CALIFORNIA 94720

3

,. ð