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Sialoadhesin Expressed on IFN-Induced Monocytes Binds
HIV-1 and Enhances Infectivity
Hans Rempel1, Cyrus Calosing1, Bing Sun1, Lynn Pulliam1,2*

1 Department of Laboratory Medicine at the Veterans Affairs Medical Center, San Francisco, California, United States of America, 2 University of California San Francisco,

San Francisco, California, United States of America

Abstract

Background: HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes.
Differential gene expression analysis of CD14+ monocytes from subjects infected with HIV-1 revealed increased expression
of sialoadhesin (Sn, CD169, Siglec 1), a cell adhesion molecule first described in a subset of macrophages activated in
chronic inflammatory diseases.

Methodology/Principal Findings: We analyzed sialoadhesin expression on CD14+ monocytes by flow cytometry and found
significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In
cultured CD14+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-a and
interferon-c but not tumor necrosis factor-a. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed
HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes
expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-
infection.

Conclusions/Significance: Increased sialoadhesin expression on CD14+ monocytes occurred in response to HIV-1 infection
with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14+

monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-
expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the
distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or
migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.
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Introduction

Blood monocytes constitute an important immune cell popula-

tion that is adversely impacted by HIV-1 infection. Monocytes

originate in the bone marrow from myeloid precursors [1] and are

released to circulation where their half-life in humans is about

three days [2]. During their short life span, monocytes can

differentiate to become either macrophages [3] with prolific

degradative capacity [4] or dendritic cells (DCs), which effectively

prime T cells by presenting antigens [5]. While macrophages and

DCs are readily infected by R5 HIV-1 strains, monocytes are

considered refractory to HIV-1 infection [6] with ,1% of blood

monocytes infected [7]. Even at this low rate of infection, HIV-1

appears to enter the central nervous system (CNS) via infiltrating

monocytes [8,9], which through the release of neurotoxins initiates

the neurodegenerative processes that may end in HIV-associated

dementia (HAD).

While the frequency of HAD has decreased with prevalent use

of highly active antiretroviral therapy (HAART), neurocognitive

impairment remains a reality in a substantial number of

individuals infected with HIV-1. A link between viral load and

impaired neural function is suggested by a recent study in non-

human primates indicating that monocytes may be the link

between HIV-1 in the periphery and HAD. Using an SIV-infected

macaque model, Williams et al., reported that neuronal injury was

coincident with viremia and an activated monocyte subset [10]. By

lowering the systemic viral load with antiretroviral therapy, there

was a commensurate reduction in the number of infected and

activated monocytes and a dramatic improvement in neuronal

function [10]. These observations establish a compelling link

between high viral load, activated monocytes, an increased

frequency of monocyte trafficking and a direct, negative impact

on neuronal function.

To identify cellular factors that might contribute to HIV-1

invasion of the CNS, we examined gene expression profiles of

CD14+ monocytes from individuals infected with HIV-1. Using

high-density cDNA microarrays, we compared gene expression

profiles from subjects with high viral load (.10,000 RNA copies/

ml), subjects with low viral load (,10,000 RNA copies/ml) and

HIV-1 seronegative controls [11]. We observed a monocyte gene

expression profile related to HIV-1 infection that indicated a

‘‘hybrid’’ monocyte with increased expression of macrophage-
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associated markers: monocyte chemotactic protein-1 (MCP-1,

CCL2), CC-chemokine receptor 5 (CCR5), and sialoadhesin (Sn,

CD169, Siglec 1) [11]. This was the first report of Sn expression in

circulating CD14+ monocytes.

Sialoadhesin was first described as a lymphocyte cell adhesion

molecule expressed on macrophages localized in secondary

lymphoid organs [12] and later as a protein restricted to a subset

of activated macrophages related to inflammatory responses

associated with rheumatoid arthritis and atherosclerosis [13].

More recently, Sn has been implicated in diverse pathogenic

processes including rhinovirus infection [14] and porcine repro-

ductive and respiratory syndrome virus infection [15]. In HIV

infection, Sn is induced to high levels on CD14+ monocytes shortly

after infection, possibly contributing to dysregulation of the

immune system [16]. Sialoadhesin preferably binds Neu5Ac in

a2,3 glycosidic linkage [17,18] and as the largest of the Siglecs, Sn

engages sialic acid conjugates on adjacent cells mediating cell-cell

interactions [19]. In contrast, shorter Siglecs bind sialic acid

conjugates in a cis orientation.

In this study, we report that HIV-1 infection drives monocyte

expression of Sn, which correlates with viral load in the periphery.

We identify interferons (IFN), which have been detected in the

periphery of individuals infected with HIV-1, as inducers of Sn

expression in cultured monocytes. Furthermore, using a constitu-

tive Sn-expressing cell line and IFN-stimulated primary mono-

cytes, we describe how Sn avidly binds HIV-1 and effectively

facilitates trans infection of permissive cells.

Results

Sialoadhesin expression correlates with viral load
We previously reported elevated Sn gene expression on CD14+

monocytes from subjects infected with HIV-1 [11]. To determine

if Sn was differentially expressed on peripheral monocytes,

immunomagnetically sorted CD14+ monocytes from HIV-1

seropositive subjects (n = 24) and HIV-1 seronegative controls

(n = 10) were analyzed by flow cytometry. Sialoadhesin expression,

quantified as the geometric mean, along with the subject’s viral

load (RNA copies/ml), CD4 count (cells/ml) and therapeutic

status (on or off HAART) are shown in Table 1. The range of Sn

expression on CD14+ monocytes from subjects infected with HIV-

1 and seronegative controls is depicted in representative frequency

histogram plots (Figure 1A). To determine the relationship

between Sn expression and viral load, and CD4 count, HIV-1

seropositive subjects (n = 24) were evaluated using Pearson’s

correlation analysis. Correlation of Sn expression was statistically

significant for viral load (p,0.0017) (Fig. 1B) but not with CD4

count (p,0.08) (Fig. 1C). In a follow-up study, three seropositive

subjects, initially with detectable viral loads and high Sn

expression, were subsequently retested for Sn expression after

successful HAART treatment suppressed viral replication to ,50

copies/ml. In all three cases, Sn dropped to ,200 (geometric

mean) reinforcing the link between Sn expression and viral load

(data not shown).

Interferons induce Sn expression in vitro
We wanted to know what soluble factors might drive monocyte

Sn expression in the periphery. In mice, Sn expression is

associated with inflammation in a subset of macrophages [13];

an analogous Sn response was elicited from human monocyte-

derived macrophages when treated with a combination of tumor

necrosis factor (TNF)-a and IFN-c [13]. However, in individuals

infected with HIV-1, viremia coincided with induction of type I

IFN-stimulated gene transcripts and not proinflammatory cyto-

kines [20]. We investigated if TNF-a, IFN-c or IFN-a, would

effectively induce Sn expression on CD14+ monocytes from HIV-1

seronegative subjects. To prevent attachment activation, freshly

isolated CD14+ monocytes were cultured in low-adherent well

plates and assayed for Sn expression by flow cytometry within

48 h. We found that Sn expression was induced by both IFN-a
and IFN-c but not TNF-a (Fig. 2). When analyzed for their effect

on THP-1 cells, a monocytic cell line, IFN-a, IFN-c and TNF-a
all induced Sn expression indicating that Sn is differentially

Table 1. Clinical data and Sn expression levels from controls
and HIV-1 seropositive subjects.

Subject Sna Expression Viral Loadb6103 CD4c Therapyd

C1 129

C2 229

C3 218

C4 72

C5 120

C6 318

C7 138

C8 194

C9 193

C10 295

V58 357 ,0.05 417 +

V60 264 ,0.05 115 +

V67 364 ,0.05 386 +

V68 251 ,0.05 201 +

V77 289 ,0.05 343 +

V91 161 ,0.05 619 +

V92 172 ,0.05 673 +

V94 129 ,0.05 211 +

V87 237 0.14 865 +

V72 197 0.50 1011 +

V69 327 1.47 354 +

V73 213 5.26 423 +

V61 375 6.35 39 -

V90 275 11.60 414 -/STI

V78 489 16.40 227 -/STI

V70 466 47.50 35 +

V59 282 73.00 294 +

V95 267 100.00 337 +

V71 401 108.00 316 -/STI

V53 467 116.00 679 -/STI

V76 565 214.00 424 -

V54 267 219.00 347 +

V75 564 750.00 12 +

V74 401 833.00 566 -

Data for controls (C, n = 10), HIV-1 seropositive subjects (V, n = 24)
Data sorted on increasing viral load
aSialoadhesin (Sn) expression on CD14+ monocytes by flow cytometry
quantified as the geometric mean

bHIV RNA copies/ml
cCD4 positive cells/ml
dOn (+) or off (2) highly active antiretroviral therapy; Structured treatment
interruption (STI)

doi:10.1371/journal.pone.0001967.t001
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controlled in monocytes and THP-1 cells (Fig. 2). We also tested

the hypothesis that HIV-1 might directly induce Sn expression on

monocytes. When either PBMC or monocytes were treated with

5 ng/ml HIV-1NL4-3, flow cytometry analysis 48 h later did not

detect an increase in Sn expression (data not shown). While not

definitive, our data suggests that Sn expression in subjects infected

with HIV-1 is orchestrated by IFN, which is an innate immune

response to viremia.

Sn expression in a transduced THP-1 cell line
Sialoadhesin was cloned by PCR from monocyte RNA obtained

from an HIV-1 seropositive individual with a high viral load. The

cloned structural gene (5130 base pairs) was sequenced and

compared with the SIGLEC 1 in the National Center for

Biotechnology Information (NCBI) database (accession number

NM_023068). Sequence data from the cloned SIGLEC 1 consistent

with the NCBI sequence with the exception of two single

nucleotide polymorphisms (dbSNP: 6037651 and dbSNP:

709012) in the cloned gene, which generated two sense mutations

outside the sialic acid-binding domain. Neither polymorphism is

known to influence the expression or alter the function of Sn.

Subsequently, SIGLEC 1 was subcloned into an expression cassette

with a CMV promoter for constitutive expression and then

packaged into a lentiviral vector to transduce monocytic THP-1

cells. An Sn-expressing cell line, TSn, was generated by clonal

expansion of a single transductant. Analyses of the TSn cell line

showed the 190 kDa Sn protein by Western blot (Figure 3A) and

flow cytometry (Figure 3B).

Sn-dependent binding of HIV-1
Since Sn is capable of binding sialic acid conjugates on

adjoining cells, we considered the possibility that Sn would

effectively bind HIV-1 via the sialic acid residues on gp120. In

binding assays, TSn cells (16106 cells/ml) were incubated with

8 ng/ml HIV-1NL4-3 for 1 h at 37uC. After extensive washing to

remove nonspecifically bound virus, TSn cells were lysed and

assayed for p24 by ELISA. When compared to THP-1 controls,

TSn cells bound approximately four-fold more HIV-1NL4-3

(Fig. 4A). To characterize the TSn-HIV-1 interaction, TSn cells

were preincubated with an anti-Sn monoclonal antibody (mAb)

7D2 [13], which recognizes the V-set, N-terminal sialic acid

binding region of Sn. Preincubation with mAb 7D2 abrogated

HIV-1NL4-3 binding to TSn demonstrating that Sn is required for

HIV binding. As a control, pretreatment with a IgG1 isotype

antibody did not interfere with virus binding (Figure 4A). To

determine whether the HIV receptor CD4 was contributing to

HIV binding in this assay, THP-1 and TSn cells were

preincubated with an anti-human CD4 mAb prior to challenge

with HIV-1NL4-3. There was no change in HIV-1NL4-3 binding for

either THP-1 or TSn respectively, compared to the untreated

control (Figure 4A). With solid evidence that Sn was responsible

for HIV-1NL4-3 binding to TSn, HIV-1NL4-3 was pretreated with

sialidase to remove terminal sialic acids. Sialidase-treated HIV-

1NL4-3 resulted in significantly reduced binding to TSn cells but

had no appreciable effect on THP-1 cells (Fig. 3A). These findings

demonstrated that HIV-1NL4-3 binding to TSn is dependent on a

viral sialic acid ligand and cellular expressed Sn.

During infection, the hyper-mutation rate of HIV generates

significant genetic variation in circulating virus. To analyze

whether genetic diversity might impact virus binding, HIV-1

primary isolates from clade B and clade C were evaluated for their

ability to bind Sn. Results showed that primary isolates bound to

TSn cells in a manner similar to HIV-1NL4-3 and that binding was

Figure 1. Sn expression on CD14+ monocytes from HIV
seropositive individuals. (A) Representative frequency histograms
of relative Sn expression on CD14+ monocytes isolated from subjects
with high viral load (HVL, 214,000 RNA copies/ml, thick black line), low
viral load (LVL, 6,350 RNA copies/ml, thin black line) and a seronegative
control (dotted line). The isotype-matched control mAb is shown in the
shaded profile. (B) Correlation analysis of Sn expression and viral load.
Sn expression on CD14+ monocytes from HIV seropositive subjects
(Table 1, n = 24) was determined by flow cytometry and quantified as a
geometric mean for each subject. Pearson’s correlation analysis showed
statistical significance between Sn expression and the log of the
subject’s viral load (p,0.0017). (C) Correlation analysis of Sn expression
and CD4 (counts/ml) revealed no significant relationship (p,0.08).
doi:10.1371/journal.pone.0001967.g001

CD169 Enhances HIV Infectivity

PLoS ONE | www.plosone.org 3 April 2008 | Volume 3 | Issue 4 | e1967



abrogated by pretreatment with the anti-Sn mAb 7D2 or virus

pretreated with sialidase (Fig. 4A).

Next, we examined the capacity of Sn expressed on human

monocytes to bind HIV-1. Sn expression was induced by treating

CD14+ monocytes from HIV seronegative controls with 500 U/

ml IFN-a for 48 h. IFN-a-induced monocytes incubated with

HIV-1NL4-3 bound approximately three-fold more virus compared

to non-induced monocyte controls (Fig. 4B). Preincubation with

mAb 7D2 significantly reduced HIV-1NL4-3 binding to IFN-a-

treated monocytes comparable to that observed for non-induced

monocytes, indicating that IFN-a-induced HIV-1NL4-3 binding

was due to Sn alone. When HIV-1NL4-3 was pretreated with

sialidase, subsequent binding to Sn-expressing monocytes was

impaired (Fig. 4B). Additional binding assays using primary

isolates with IFN-a-treated monocytes demonstrated that Sn

bound primary isolates with equal effectiveness. As before, virus

adsorption could be prevented to a significant extent by

pretreatments with anti-Sn mAb 7D2 or sialidase.

Sn facilitates trans infectivity
Having shown that Sn avidly binds HIV-1, we explored the

possibility that this might impact virus infectivity. To test this

theory, we employed an infectious lab-adapted HIV-1NL4-3 strain

and a reporter cell line TZM-bl, which expresses luciferase when

Figure 2. Interferon-a and -c induce Sn expression on CD14+ monocytes and THP-1 cells. Cells were cultured in 500 U/ml IFN-a, 100 U/ml
IFN-c or 10 ng/ml TNF-a at 37uC for 48 h and analyzed for Sn expression by flow cytometry. Sn expression on IFN-a-, IFN -c- or TNF-a-treated cells
(thick black lines) and untreated cells (thin black line) were relative to an isotype-matched mAb control (shaded region). Results shown are
representative histograms from three independent experiments using monocytes from three seronegative donors.
doi:10.1371/journal.pone.0001967.g002
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infected [21]. TZM-bl cells, which are permissive to HIV-1NL4-3

infection, express the viral receptor CD4 and coreceptors CCR5

and CXCR4. When THP-1 cells were pulsed with concentrated

HIV-1NL4-3 stock for 1 h, washed extensively to remove

nonspecifically bound virus and cocultured for 48 h with adherent

TZM-bl cells, luciferase activity was slightly above background at

55 relative light units (RLU) (Fig. 5A). In contrast, TZM-bl cells

cocultivated with HIV-1NL4-3-pulsed TSn cells, expressed high

levels of luciferase (897 RLU) indicating robust trans infection by

HIV-1NL4-3. To verify that trans infection was dependent on Sn

binding of viral sialic acid conjugates, TSn was preincubated with

mAb 7D2 prior to HIV-1NL4-3 exposure. Consistent with the Sn-

HIV-1NL4-3 binding assay, pre-treatment of TSn with mAb 7D2

reduced infection in the reporter cells as illustrated by the dramatic

reduction in luciferase activity (Fig. 5A).

We then tested the potential of human CD14+ monocytes to

facilitate trans infection of TZM-bl cells by isolating monocytes

from HIV-1 seronegative subjects and inducing Sn expression with

a 48 h pre-treatment of IFN-a. When Sn-expressing human

monocytes were pulsed with HIV-1NL4-3 and subsequently

cocultured with TZM-bl cells, luciferase activity exceeded 625

RLU indicating Sn-expressing human monocytes were capable of

facilitating trans infection (Fig. 5A). By comparison, non-induced

monocytes, which have minimal Sn expression (Fig. 2), exhibited

low luciferase activity. As a control, IFN-a treatment of TZM-bl

cells resulted in luciferase activity equal to that of background

(data not shown). These results suggest that peripheral monocytes

expressing Sn are capable of binding HIV-1 and presenting

infectious virus to susceptible cells.

It was imperative that Sn-bound HIV-1NL4-3 be the only source

of virus in these trans infection assays. We considered the possibility

that HIV-1NL4-3-infected TSn cells would provide a secondary

source of virus. To block any potential release of infectious virus

from TSn cells during the 48 h culture period, assays were

performed using indinavir (100 mM), a protease inhibitor. When

indinavir was added to the cultures, there was no decrease in

luciferase activity effectively demonstrating that TZM-bl cells were

infected by trans infection of Sn-bound HIV-1NL4-3 and not from

infected TSn cells (Fig. 5B).

The fact the Sn binds HIV-1NL4-3 and facilitates trans infection

raised the possibility that normal receptor CD4 and chemokine

coreceptor requirements might be altered by Sn-bound HIV-1NL4-

3. We tested this possibility by treating TZM-bl cells with blocking

antibodies and small molecules that prevent HIV infection by

binding to CD4 and coreceptors CXCR4 and CCR5. Pretreat-

ment of the TZM-bl cells with anti-CD4 mAb B4 [22] reduced

subsequent trans infection to background levels indicating that

CD4 remains essential for infection in this model (Fig. 5B).

Blocking coreceptor CXCR4 with either a small molecule,

AMD3100 [23] or an anti-CXCR4 mAb 12G5 [24] also

abrogated trans infection of the TZM-bl cells (Fig. 5B). Also, two

inhibitors of the CCR5 coreceptor, an anti-CCR5 mAb 2D7 [25]]

and TAK779 [26]], which should not interfere with trans infection

since HIV-1NL4-3 uses the CXCR4 coreceptor, had no effect.

From these data we conclude that Sn does not bypass receptor and

coreceptor requirements for the T-tropic (X4) HIV-1NL4-3 strain.

HIV-1 infectivity enhanced by Sn
Since individuals with detectable viral loads have circulating

cell-free HIV-1, we examined the capacity of Sn-expressing cells to

adsorb cell-free virus in conditioned medium and then trans infect

reporter cells. In a capture assay, TZM-bl cell cultures were

inoculated with HIV-1NL4-3 followed by subsequent addition of

either TSn or THP-1 cells. The baseline value for infectivity was

established with cell-free virus in the absence of any monocytic

cells. After a 48 h incubation, increasing concentrations of cell-free

virus correlated with luciferase expression and therefore infection

of TZM-bl cells (Fig. 6). Addition of THP-1 cells had minimal

impact on TZM-bl infection and was comparable to cell-free virus.

However, when TSn cells were added, infectivity of the reporter

cells increased dramatically as demonstrated by elevated luciferase

activity (Fig. 6). In fact, over the range of HIV-1NL4-3

concentrations from 800 pg/ml to 8000 pg/ml, virus infectivity

was enhanced over 5-fold in the presence of Sn compared to cell-

free virus. These data indicate that Sn captures cell-free virus and

increases the rate of infection suggesting that Sn may function as

an enhancer of HIV infection in the periphery.

Discussion

Myeloid lineage cells including monocytes, macrophages and

dendritic cells, tightly regulate Sn expression in response to specific

disease conditions. Presently, the specific factor(s) elevating Sn

during HIV-1 infection are not known. We show that Sn

expression correlates with viral loads that range from undetectable

Figure 3. Constitutive Sn expression in THP-1 by gene
transduction (TSn). (A) Immunoblot analysis of Sn protein expression.
THP-1 cell line was transduced with a plasmid encoding Sn cloned
downstream of the high-level constitutive promoter CMV. Cell lysates
were standardized, reduced with DTT and 10 mg of protein were loaded
into each well: monocytes (lane 1), IFN-a-induced monocytes (lane2),
THP-1 (lane 3) and TSn (lane 4) (M, molecular size marker). (B) Histogram
of relative distribution of Sn on the cell surface of TSn clone. TSn (thick
black line) and THP-1 cells (thin black line) were evaluated for Sn
expression by flow cytometry using anti-Sn mAb 7D2 relative to the
background isotype-matched control mAb (shaded region).
doi:10.1371/journal.pone.0001967.g003
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(,50 copies/ml) to unsuppressed (.800,000 RNA copies/ml).

This finding was consistent with our previous microarray study

[11] which suggested that viral load was a determining factor in Sn

expression. This interpretation was further supported by data from

subjects whose viral loads, initially high, were suppressed to

undetectable levels following HAART treatment and exhibited a

concurrent decrease in Sn expression. In combination with our in

vitro data showing that IFN-a and IFN-c induce Sn expression in

cultured human monocytes and THP-1 cells, it is possible that

either of these cytokines drives Sn expression during HIV-1

infection. IFN-c, which is associated with immune activation, is

produced by T cells and NK cells during the acute period of

infection [27]. By comparison, IFN-a, which is present in the

serum of individuals infected with HIV-1 [28,29], is released by

plasmacytoid dendritic cells in an innate antiviral response

[30,31]. In a study by Tilton et al., monocyte production of

proinflammatory cytokines, IL-1b, IL-6 and TNF-a was dimin-

ished in HIV viremia suggesting that monocyte function was

impaired during unsuppressed viral replication [20]. Coincident

with the loss of monocyte function was an increase in Sn

expression. Importantly, this particular phenotype could be

recapitulated by stimulating monocytes with IFN-a [20]. Further

substantiating the link between Sn expression and viral load was

an observation in a treatment naı̈ve population that Sn mRNA

expression in CD14+ monocytes dramatically increased shortly

after HIV-1 infection and continued to rise in patients who

progressed to AIDS [16]. Since high viral load is a common

feature of AIDS, elevated Sn expression would be predicted in

these patients. In aggregate, our data suggest that elevated Sn

expression on monocytes is consistent with an antiviral response,

as opposed to a restricted marker of inflammation observed in

tissue macrophages associated with rheumatoid arthritis [13].

While our findings indicate that either IFN-a or IFN-c could

induce Sn expression in peripheral monocytes, determining the

specific conditions and cytokines responsible for Sn induction will

require additional research.

Our findings present the first characterization of a monocyte

protein that adsorbs HIV-1 and facilitates trans infection. A similar

capability to bind HIV-1 and effect trans infection has been

described for other proteins including syndecan and DC-SIGN.

Syndecan, a cell surface heparan sulfate proteoglycan expressed on

macrophages, endothelial cells and fibroblasts, facilitates trans

infection of T cells and can preserve virus infectivity for an

extended period [32,33]. When expressed on macrophages,

syndecan functions as a cis-oriented HIV-1 receptor with the

virus exploiting similar attachment motifs on both syndecan and

CCR5 [34]. Trans infection has also been demonstrated in DCs,

which scavenge and internalize pathogens in tissues and then

migrate to lymph nodes where they present antigens to resting T

cells [35]. A subset of DCs express DC-SIGN (dendritic cell –

specific intercellular adhesion molecule-grabbing nonintegrin), a

type II transmembrane protein with a C-type lectin ectodomain

that can adsorb HIV-1 but does not serve as receptor for viral

fusion. Initially, DC-SIGN-dependent trans infection of permissive

cells was shown to occur in the absence of infection or even

internalization of the virus [36]. However, recent reports present

alternative pathways by which DC-SIGN may support infection of

permissive cells. DC-SIGN has been shown to rapidly internalize

intact HIV-1 into non-degradative compartments where the virus

remains competent to infect permissive cells [37]. Moreover, it has

been shown that DC-SIGN-mediated internalization is not

required for trans-enhancement but instead DC-SIGN facilitates

productive cis-infection of immature DCs and subsequent infection

of T cells [38]. Also it has been reported that DC-SIGN is not

required for DC-mediated trans infection based on observations

that neither down-regulating DC-SIGN expression nor binding of

an anti-DC-SIGN antibody adversely impacted DC-mediated trans

infection [39]. By comparison, our experiments conclusively show

that Sn-dependent trans infection is not due to productive infection

of TSn cells since trans infection assays were done in the presence

of indinavir, a potent HIV protease inhibitor. Furthermore, our

results are consistent with Sn being solely responsible for trans

infection since the anti-Sn mAb 7D2, which recognizes the Sn

sialic acid binding region, effectively abrogates trans infection of the

reporter cells.

A possible mechanism that would explain Sn-enhanced

infectivity would be that by binding both virus and target cells,

Sn effectively increases the localized virus concentration bringing

HIV-1 in close proximity to CD4 and chemokine coreceptors on

the target cell. Early characterization of Sn expressed on

Figure 4. Sn binds HIV-1 in vitro. (A) TSn binds HIV-1 in an Sn-dependant manner. TSn and THP-1 were incubated with lab-adapted HIV-1NL4-3, an
HIV-1 clade B primary isolate or clade C primary isolate for 1 h at 37uC, washed and then assayed for HIV-1 p24 by ELISA. HIV-1 binding to Sn was
abrogated by pretreatment of cells with Sn mAb 7D2 or by pretreatment of HIV-1 with broad-spectrum sialidase. Pretreatment with IgG1 isotype
control or CD4 mAbs did not reduce binding. Data presented are the average of 3 separate experiments. (B) IFN-a-treated CD14+ monocytes bind
HIV-1 in an Sn-dependant manner. HIV-1 binding assays were also performed on CD14+ monocytes from seronegative controls treated with 500 U/ml
IFN-a to induce Sn expression. Pretreatment with Sn mAb 7D2 and sialidase dramatically reduced HIV-1 binding while pretreatment with IgG1 isotype
control or CD4 mAbs had little effect. Data represents monocytes from four separate donors. Error bars represent SD.
doi:10.1371/journal.pone.0001967.g004
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macrophages identified it as a lymphocyte adhesion molecule that

binds sialic acid conjugates on T cells [12], specifically CD43 [40].

Having clearly demonstrated that Sn binds HIV-1, Sn could

possibly perform dual functions, with some Sn protein capturing

free HIV-1 while other Sn molecules would engage sialic acid

conjugates on the target cell. This interaction would overcome the

electrostatic repulsive forces created by net negative charges on the

virus and the target cell surface. Repulsive forces modulate virus-

cell interactions as demonstrated by treating primary mononuclear

cells with purified sialidase, which increased susceptibility to HIV-

1 infection by reducing electrostatic repulsion [41]. The hypothesis

is that desialylation enhances the interaction of viral gp120 and

cell associated CD4/chemokine coreceptors thereby promoting

HIV-1-mediated syncytium formation. These observations suggest

that HIV-1 can exploit either condition: When sialic acid

conjugates are intact, Sn binds the virus and subsequently delivers

the virus to permissive cells. Or, if sialic acids are cleaved from

gp120 by endogenous sialidase activity, the electrostatic repulsion

is reduced permitting viral interaction with the cellular CD4/

chemokine coreceptors.

In this study, we used human monocytes and a stably

transduced cell line to demonstrate the capacity of Sn to bind

HIV-1 and facilitate the trans infection of permissive cells. While

the biological relevance of Sn expression on circulating monocytes

remains to be determined, the potential impact of enhancing viral

infectivity and possibility disseminating HIV-1 via monocyte

trafficking to the CNS are clearly important considerations.

Materials and Methods

Cells and viruses
Monocytes for in vitro experiments were isolated from HIV-1

seronegative healthy donors (Blood Centers of the Pacific, San

Francisco, CA). In brief, cells were flushed out of leuko-reduction

filters with 40 ml PBS without Ca2+ and Mg2+ using a syringe.

Monocytes were enriched by negative selection using RosetteSep

according to the manufacturer (StemCell Technologies, Vancou-

Figure 5. Sn-dependent trans infection of reporter cells TZM-bl.
(A) Sn-expressing cells, TSn and IFN-a-induced monocytes, bind HIV-1
and infect TZM-bl cells in trans. Cells were incubated with HIV-1NL4-3 for
1 h, washed and then cocultured with TZM-bl cells for 48 h. HIV-1
infection of TZM-bl was defined by luciferase expression and quantified
as relative light units (RLU). Cells pretreated with Sn mAb 7D2 showed
significantly reduced capacity to facilitate trans infection of TZM-bl cells
while mAb IgG1 isotype control had no effect. (B) HIV-1 receptor
inhibitors block trans infection. Receptor and coreceptor requirements
for trans infection of TZM-bl cells were tested by incubating TZM-bl
cells with receptor inhibitors including mAbs to CD4, CXCR4 or CCR5,
and small molecules AMD3100 or TAK779 prior to adding TSn with
bound HIV-1NL4-3. The CD4, CXCR4, CCR5, AMD3100 and TAK779
receptor inhibitors were tested individually with TZM-bl and did not
induce luciferase expression (data not shown). As a control, productive
infection of TSn cells was prevented by addition of indinavir (100 mM).
Data presented are the average of three separate experiments. Error
bars represent SD.
doi:10.1371/journal.pone.0001967.g005

Figure 6. Sn-expressing cells capture HIV-1NL4-3 and enhance
infectivity. TZM-bl cell cultures were seeded with various concentra-
tions of HIV-1NL4-3 (800–8000 pg/ml). Monocytic cells, TSn or THP-1
cells, were added and cocultured for 48 h. The capacity of Sn to capture
HIV-1NL4-3 in the cell culture medium and trans infect TZM-bl cells was
analyzed for TSn, THP-1 and cell-free virus. Luciferase expression in HIV-
1NL4-3-infected TZM-bl cells was quantified as relative light units (RLU).
Results were compiled from 3 separate experiments. Error bars
represent SD.
doi:10.1371/journal.pone.0001967.g006
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ver, BC), with .80% purity by flow cytometry. THP-1 cells were

obtained from the Cell Culture Facility (UCSF, San Francisco, CA)

and cultured in RPMI-1640 supplemented with 10% FBS, 1.0 mg/

ml gentamicin and 2 mM L-glutamine at 37uC in 5% CO2. Lab-

adapted HIV-1NL4-3 was a generous gift from Dr. Joe Wong.

Primary isolates 92US660 (HIV-1 B1) and MW/93/959 (HIV-1 C2)

and reporter cell line TZM-bl were obtained from NIH AIDS

Research and Reference Reagent Program (Germantown, MD).

Lab-adapted HIV-1NL4-3 and primary isolates HIV-1 B1 and C2

were replicated in PBMC from 3 seronegative donors (Blood Centers

of the Pacific) using a standard in vitro HIV-1 replication protocol

(SRA Life Sciences; available on the NIH AIDS Research and

Reference Reagent Program website). TZM-bl cells were also

obtained from the NIH AIDS Research and Reference Reagent

Program and cultured in DMEM H-21 supplemented with 10%

FBS and 1.0 mg/ml gentamicin at 37uC in 5% CO2.

Quantification of in vivo Sn expression by flow cytometry
This study received IRB approval from the University of

California, San Francisco and the Veterans Affairs Medical

Center, San Francisco and written consent was obtained from

participating subjects. For flow cytometric analysis, CD14+

monocytes were isolated within 2 h from fresh blood obtained

from donors recruited at the San Francisco VA Medical Center. In

brief, 30 ml of blood was collected in BD Vacutainer CPT tubes

(BD, Franklin Lakes, NJ) and centrifuged to enrich for PBMC.

Monocytes were isolated from PBMC by positive immunomag-

netic cell sorting using CD14 Microbeads (Miltenyi Biotec,

Auburn, CA) which yielded .90% purity when assayed by flow

cytometry (FACSCalibur; BD Biosciences, San Jose, CA) using

anti-CD14-FITC (BD Pharmingen, San Diego, CA). Sn expres-

sion was quantified by flow cytometry using anti-human Sn

monoclonal antibody (mAb) 7D2 (Novus Biologicals, Littleton,

CO) and secondary PE anti-mouse IgG1 (BD Pharmingen).

Mouse IgG1 (BD Pharmingen) was used as a non-specific control

antibody. The geometric mean of the channel value for 104 cells

was determined using CellQuest software (BD Biosciences).

In vitro induction of Sn
THP-1 cells or CD14+ monocytes from HIV-1 seronegative

controls (16106 cells) were stimulated with 500 U/ml IFN-a2a

(PBL Biomedical Laboratories, Piscataway, NJ), 100 U/ml IFN-c
or 10 ng/ml TNF-a (R&D Systems, Minneapolis, MN) in RPMI-

1640 supplemented with 10% FBS, 1.0 mg/ml gentamicin and

2 mM L-glutamine at 37uC in 5% CO2 for 48 h in Costar Ultra

Low Attachment plates (Corning, Lowell, MA) with rotation to

prevent adherence.

SN cloning and constitutive expression in clone TSn
Total RNA was extracted from CD14+ monocytes isolated from

an HIV-1 seropositive individual using RNeasy Mini kit (Qiagen,

Valencia, CA). cDNA was generated using Superscript III First-

strand cDNA Synthesis kit (Invitrogen, Carlsbad, CA). SN was

cloned by RT-PCR (94uC for 2 min followed by 35 cycles of 94uC
for 30 sec, 58uC for 1 min, 72uC for 6 min with extension at 72uC
for 10 min) using FailSafe PCR PreMix Selection Kit (Epicentre

Biotechnologies, Madison, WI). Primers were as follows: forward

59- TGA TAT CTT AAG GCA CAA GAA CCT GCT ATG G -

39 and reverse 59- AGA TAT CTA GAC AAC ACC ACT GGT

CAG CC -39. The PCR product was inserted into pCR2.1 and

sequenced (Cleveland Genomics, Cleveland, OH). SN was cloned

into pENTR1A then subcloned into pLenti6/V5-Dest using

GatewayH technology and then packaged into the lentiviral vector

using ViraPower Lentiviral Expression System in a 293FT cell line

(all from Invitrogen). Lentiviral suspensions (3 ml) were combined

with THP-1 cells (16107) and mixed with polybrene (8 mg/ml).

Lentivirus was loaded onto THP-1 cells by spinoculation (6006g

for 1.5 h). After, cells were resuspended in RPMI-1640 supple-

mented with 10% FBS, 1.0 mg/ml gentamicin and 2 mM L-

glutamine and cultured at 37uC in 5% CO2. Clonal selection was

done in the presence of 5 mg/ml blasticidin.

Immunoblot
THP-1, TSn, monocytes and monocytes stimulated with 500 U/

ml IFN-a2a (26106) were washed with PBS and lysed with ice-cold

lysis buffer containing 10 mM HEPES pH 7.9, 10 mM KCl,

0.1 mM EDTA, 0.1 mM EGTA, 0.5 mM PMSF, 1 mM DTT and

0.5% NP-40. Cell lysates were normalized by protein concentration,

reduced with DTT and 10 mg of sample protein were loaded into a

4–12% Bis-Tris gel (Invitrogen). Proteins were fractionated in

reducing conditions by electrophoresis for 1 h at 200 V, electro-

blotted for 1 h at 100 V onto a polyvinylidene difluoride (PVDF)

membrane (GE Healthcare, Picastaway, NJ). The PVDF membrane

was probed with Sn mAb 7D2 (1:1000; Novus Biologicals) and

secondary peroxidase-labeled horse anti-mouse IgG (1:5000; Vector

Laboratories, Burlingame, CA) then visualized with ECL plus on a

Typhoon Scanner (GE Healthcare, Picastaway, NJ).

In vitro HIV binding assays
Cellular binding of lab-adapted HIV-1NL4-3 and primary

isolates clade B (HIV-1 92US660) and clade C (MW/93/959)

was assessed using THP-1, TSn, monocytes and IFN-a2a-

stimulated monocytes. In brief, 2.56105 cells/250 ml PBS were

pulsed with 2 ng p24-normalized virus stocks for 1 h at 37uC.

Cells were vigorously washed 5 times with PBS by vortexing and

centrifugation at 3006g. To demonstrate that increased binding of

HIV-1 to TSn and monocytes stimulated with IFN-a2a involved

Sn, cells were pretreated with 0.5 mg Sn mAb 7D2, mAb IgG1

isotype control (Novus) or CD4 mAb RPA-T4 (BD Bioscience) for

1 h at 37uC. Sialic acid residues on HIV-1 were removed with

461024 U/ml sialidase from Clostridium perfringens (Roche, In-

dianapolis, IN) for 1 h at 37uC. HIV-1 bound to cells was

quantified by HIV p24 ELISA (Zeptometrix, Buffalo, NY).

Trans infection assay
TZM-bl cells were distributed into 96-well plates (56103 cells/

well) and cultured in RPMI-1640 supplemented with 10% FBS,

1.0 mg/ml gentamicin for 48 h at 37uC in 5% CO2. On the same

day, CD14+ monocytes from controls were isolated and half were

stimulated with 500 U/ml IFN-a2a for 48 h at 37uC in 5% CO2

with rotation to prevent adherence to plastic. After, THP-1, TSn,

monocytes and monocytes stimulated with IFN-a2a (16106 cells/

250 ml PBS) were pulsed with 2 ng HIV-1NL4-3 for 1 h at 37uC,

washed vigorously 5 times with PBS by vortexing and centrifu-

gation at 3006g, then resuspended in 1 ml RPMI-1640+10%

FBS. To demonstrate involvement of Sn, cells were pretreated

with 0.5 mg Sn mAb 7D2 or mAb IgG1 isotype control for 1 h at

37uC and washed 3 times with PBS. To confirm which coreceptors

were required for trans infection via TSn, TZM-bl cells were

pretreated with 0.5 mg/ml anti-CD4 RPA-T4 (BD Bioscience),

0.5 mg/ml anti-CXCR4 12G5 or anti-CCR5 2D7, or 10 mM

AMD3100 or TAK779 (all from NIH AIDS Research and

Reference Reagent Program). After, the TZM-bl media was

replaced with 100 ml of the cell suspension (16105 cells) and

cultured for 48 h at 37uC in 5% CO2. Productive infection of TSn

and TZM-bl cells was prevented by the presence of 100 mM

indinavir protease inhibitor (NIH AIDS Research and Reference

Reagent Program). Infection of the TZM-bl cells was quantified as
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relative light units (RLU) produced by luciferase expression using

the Bright-GloTM detection system (Promega, Madison, WI) and a

SpectraMax M5 microplate reader (Molecular Devices, Sunny-

vale, CA).

Enhancement of HIV-1NL4-3 infectivity
The ability of Sn-expressing cells to capture HIV-1NL4-3 in

solution and then infect TZM-bl cell in trans was compared to cell-

free virus. TZM-bl cells (56103 cells/well) were distributed into

96-well plates and incubated for 48 h at 37uC in 5% CO2. After,

the media was replaced with 50 ml of dilutions of HIV-1NL4-3 and

50 ml of 26105 THP-1 or TSn cells. The plate was rotated at

1000 rpm for 1 min and incubated for 48 h at 37uC. Luciferase

activity was measured using the Bright-GloTM(Promega) and a

SpectraMax M5 microplate reader (Molecular Devices).
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