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ABSTRACT OF THE DISSERTATION

Asymptotics of Learning in Neural Networks

by

Melikasadat Emami

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Alyson K. Fletcher, Chair

Modern machine learning models, particularly those used in deep networks, are character-

ized by massive numbers of parameters trained on large datasets. While these large-scale

learning methods have had tremendous practical successes, developing theoretical means that

can rigorously explain when and why these models work has been an outstanding issue in the

field. This dissertation provides a theoretical basis for the understanding of learning dynamics

and generalization in high-dimensional regimes. It brings together two important tools that

offer the potential for a rigorous analytic understanding of modern problems: statistics of

high-dimensional random systems and neural tangent kernels. These frameworks enable the

precise characterization of complex phenomena in various machine learning problems. In

particular, these tools can overcome the non-convex nature of the loss function and non-

linearities in the estimation process. The results shed light on the asymptotics of learning for

two popular neural network models in high dimensions: Generalized Linear Models (GLMs)

and Recurrent Neural Networks (RNNs).

We characterize the generalization error for Generalized Linear Models (GLMs) using

a framework called Multi-Layer Vector Approximate Message Passing (ML-VAMP). This

framework is a recently developed and powerful methodology for the analytical understanding

of estimation problems. It allows us to analyze the effect of essential design choices, such as

the degree of over-parameterization, loss function, and regularization, as well as initialization,
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feature correlation, and a train/test distributional mismatch.

Next, we investigate the restrictiveness of a class of Recurrent Neural Networks (RNNs)

with unitary weight matrices. Training RNNs suffers from the so-called vanishing/exploding

gradient problem. The unitary RNN is a simple approach to mitigate this problem by

imposing a unitary constraint on these networks. We theoretically show that for RNNs with

ReLU activations, there is no loss in the expressiveness of the model from imposing the

unitary constraint.

Finally, we explore the learning dynamics of RNNs trained under gradient descent using

the recently-developed kernel regime analysis. Our results show that linear RNNs learned

from random initialization are functionally equivalent to a certain weighted 1D-convolutional

network. Importantly, the weightings in the equivalent model cause an implicit bias to

elements with smaller time lags in the convolution and hence shorter memory. Interestingly,

the degree of this bias depends on the variance of the transition matrix at initialization.
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Chapter 1

Introduction

Over the past decade, models based on neural networks have become commonplace in virtually

all machine learning applications. As collecting data has become cheaper, the rapid evolution

of large-scale data analysis techniques using machine learning methodology has revolutionized

the field in several application domains, including speech recognition, machine vision, and

natural language processing. The growth of practical concepts and the success of deep

learning have created a substantial gap between our theoretical understanding of modern

machine learning models and empirical advances. This gap results in limited principles to

lead the design of robust models, such as selecting the model architecture and parameter

tuning. Providing theoretical frameworks for analyzing neural networks is critical to establish

such principles.

A key feature of contemporary machine learning problems is their massive scale, both

in terms of the number of parameters as well as the size of datasets for training them.

Over-parameterized neural networks, in particular, have attracted growing attention, mainly

because they generalize well in practice. However, due to the enormous complexity of these

models, their theoretical analyses are primarily intractable. This task is even made harder by

the non-convexity of the underlying learning problems.

From a theoretical standpoint, there are many questions related to success of neural
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networks and high-dimensional models. This dissertation focuses on understanding the

asymptotics of learning for two popular neural network models, namely, Generalized Linear

Models (GLMs) and Recurrent Neural Networks (RNNs) and gives partial answers to the

following aspects of these models:

• Generalization: The generalization of machine learning models is their ability to

perform on previously unseen data. Recent studies have shown that contrary to the

traditional statistical bias/variance trade-off, i.e., the U-shaped curve, high-dimensional

neural networks are able to generalize well with consistently decreasing test error [17].

We provide an analysis framework to precisely characterize the asymptotic generalization

error for the Generalized Linear model (GLM) class. Our framework enables studying

the effect of over-parameterization and non-linearity as well as choices of loss functions

and regularization and other design choices.

• Expressive power: Given a function class, expressive power is about understanding

what functions can be realized or approximated by the functions in that class. We

focus on a restricted type of Recurrent Neural Networks with unitary transition weight

matrices that are appealing for optimization purposes to mitigate the vanishing and

exploding gradients problem and evaluate their expressive power compared to vanilla

RNNs. We rigorously show that for RNNs with ReLU activations, there is no loss in

the expressiveness of the model when imposing the unitary constraint.

• Implicit bias: In principle, general-purpose machine learning models such as neural

networks do not require an explicit design of features but instead, rely on implicit

meaningful representations of the data. A lack of understanding of the potential implicit

biases that these representations bring to the prediction of the model is of significant

importance. We explore the learning dynamics of RNNs trained under gradient descent

and provide precise reasoning for their implicit bias behavior toward short-term memory.

We further show how the degree of this bias connects to the RNN initialization.
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1.1 The Statistical Learning Framework

In a general supervised learning setting, given a training set S = {(xi,yi)}Ni=1 that is

independently and identically distributed (i.i.d.) with some unknown distribution D over

X and Y, we look for a function h : X → Y (also called a hypothesis) such that, given a

real-valued and non-negative loss function L, it minimizes the expected risk

argmin
h∈H

R(h) := E(x,y)∼D [L(h(x),y)] (1.1)

for some hypothesis class H. Common loss functions used in this setting include the squared

loss: L(ŷ,y) = ∥ŷ − y∥2 for regression problems and the 0-1 loss: I(ŷ ̸= y), for classification

problems where I is the indicator function.

Since the data distribution D is unknown to the learning algorithm, one is interested in

computing an approximation for the expected risk by averaging the loss function over the

training set, formally known as the empirical risk,

Remp(h) :=
1

N

N∑
i=1

L(h(xi),yi). (1.2)

The empirical risk minimization problem, therefore, chooses a hypothesis ĥ that minimizes

the following risk:

ĥ = argmin
h∈H

Remp(h). (1.3)

In a parametric setting, the hypothesis class is assumed to be parameterized by a vector

θ ∈ Rp and the minimization (1.3) is taken over θ. Considering some prior knowledge on the

parameters, a regularization term Reg(.) can be added to the optimization problem (1.3) as

well, i.e.

θ̂ = argmin
θ

1

N

N∑
i=1

L(h(xi;θ),yi) + λReg(θ), (1.4)

with the regularization coefficient λ. The regularization function encourages certain structures
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for the solution. Common functions include ridge regularization: ∥θ∥22 =
∑p

i=1 |θi|2, LASSO:

∥θ∥1 =
∑p

i=1 |θi|, and hard sparsity: ∥θ∥0 =
∑p

i=1 1(θi ̸= 0) among others.

Maximum Likelihood Estimator In the parametric setting, minimizing the empirical

risk (1.2) can also traditionally be viewed as finding the maximum likelihood estimator (MLE)

for targets y, given inputs x. In this case, the loss function L is the negative log-likelihood

function. This is equivalent to maximizing the likelihood of observations {(xi,yi)}Ni=1 given a

parametric family of conditional probability distributions Pθ(y|x) indexed by θ:

θ̂MLE = argmin
θ

1

N

N∑
i=1

L(xi,yi;θ). (1.5)

The main attraction of MLE is that classically, it has shown to be asymptotically the

best estimator in terms of the rate of convergence if p = O(log(N)). MLE is a statistically

consistent and asymptotically normal estimator, i.e.
√
N(θ̂MLE) − θ∗)

d→ N (0, I(θ∗)−1),

where I(θ∗)−1 is the Fisher Information matrix.

Similar to (1.4), a regularization function can be added to (1.5) to encourage certain

solutions. The Bayesian interpretation of the regularization function is that it is equivalent to

the negative log of the prior distribution for the parameter θ. In this case, the corresponding

optimization problem is a maximum a posteriori (MAP) estimator, which chooses the mode

of the posterior distribution. This estimator has the leverage of adding information given

by the prior that does not exist in the training data. This will result in a decrease in the

variance error and an increase in the bias error of the MAP estimator compared to the MLE.

Note that minimizing the empirical risk over the training set does not guarantee a low

expected error over the data distribution. To avoid predictors that memorize the training set,

we are interested in the performance of our predictor over previously unseen data, commonly

known as the generalization error. The exact definition of the generalization error may vary

in different works [17,59,90,113]. We will precisely define the quantity of our interest later.
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1.2 High-Dimensional Regimes

Classically, the estimators such as (1.4) are studied in a setting where the number of samples

N goes to infinity, but the number of parameters, p, remains fixed. This setting is commonly

known as the large sample limit. In this limit, the asymptotic properties of estimators can be

analyzed using tools such as the law of large numbers or the Central Limit Theorem (CLT).

Although these results are only theoretically valid for the case where N →∞, they might still

be approximately correct for finite sample sizes. In modern problems, however, the number

of samples is usually comparable to the number of parameters or even less. Analyzing the

properties of estimators in such finite settings is much more complicated and requires more

advanced tools, such as concentration of measures.

The interest in over-parameterized settings has attracted a lot of attention to a regime

where the number of parameters p→∞. Neural nets in this regime enjoy certain theoretical

properties such as easier optimization to global minimum [41], Gaussian process behavior

at initialization [70], and equivalence in training to kernel methods using gradient descent

[63,72,129]. The tools to analyze neural nets in this regime include mean-field theory and

kernel regime-based analysis among others.

Recently, a newly developed regime considers the case where both the number of parameters

and the number of samples go to infinity, but their respective ratio is bounded, i.e., N, p→

∞, p/N → β ∈ (0,∞). This regime is called the proportional asymptotics regime and is

considered more realistic for modern machine learning tasks. The convergent behavior that

emerges by taking the limit in this setting – such as convergence of the spectrum of large

random matrices to known distributions– makes the analysis of modern problems much more

manageable. Fortunately, many results in this regime are approximately correct, even in

finite sample cases. The tools to analyze our models in this setting include many results from

random matrix theory and the Approximate Message Passing framework.
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Figure 1.1: The classic U-shaped curve representing the bias-variance trade-off

1.3 Bias-Variance Trade-off and the Double Descent Curve

As mentioned earlier, machine learning aims to find a predictor h ∈ H that performs well on

previously unseen data. Conventional wisdom suggests that the balance between under-fitting

and over-fitting training data can be achieved either explicitly by controlling the function

class’s capacity or implicitly by using some form of regularization, such as early stopping. A

small capacity function class results in having a large empirical risk, while a very large H

results in memorizing the patterns in the training set and hence poor performance on new

data, i.e., over-fitting. Finding this balance, therefore, translates into finding a sweet spot in

the classical U-shaped bias-variance curve, Figure 1.1.

Recent empirical evidence on modern machine learning problems such as large neural

networks has shown that despite the high capacity of their function class and perfect fit of the

training data, these models perform very well on new data [2,17,55,91]. Such observations

summarized into a new curve called the "double descent" curve, Figure 1.2, introduced in [17].

If the function class capacity is below a certain threshold, the classic U-shaped curve is

observed. However, as this capacity passes beyond the interpolation threshold (zero loss

training), the test error decreases even below the sweet spot in the classical regime. This new

regime is called the modern regime. Note that in Figure 1.2, the number of parameters is

considered as the measure of capacity of the model. Of course, there exist more elaborate

measures for capacity as well.
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Figure 1.2: The double descent curve introduced in [17].

Explaining such behavior in high-capacity functions, such as neural nets with a very large

number of parameters, has become an open problem for researchers in recent years. The idea

lies behind the implicit biases that exist for the specific problems at hand. Such biases could,

for instance, come from the smoothness of the target function measured by certain function

space norms [17]. Nevertheless, theoretical explaining of the second descent is challenging,

and recent works have studied this for various linear models for certain classification and

regression problem instances [36, 59, 82, 88]. In Chapter 3, we rigorously and analytically

explain the double descent curve for the class of Generalized Linear Models (GLMs).

1.4 Learning Dynamics of Wide Neural Networks under

Gradient Descent

From an optimization standpoint, the loss landscape of neural networks is highly non-convex.

This non-convexity implies the existence of a large number of saddle points as dominant

critical points, as well as many local minima at low loss values [31,35]. Characterizing the

gradient-based learning dynamics in such settings, therefore, becomes difficult. Similar to

the techniques we mentioned earlier, considering these models in their extreme limits makes

analyzing their learning dynamics much easier and such limit for neural networks could be

the number of hidden units.
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At initialization, due to the randomness of the parameters, the network function is a

random function. Under the infinite width limit, the output of the network at initialization

becomes a Gaussian process (GP) [70]. Other than zero training error and good generalization,

the interest in exploring the dynamics of neural networks at this limit relies on some previous

results that connect infinite width neural networks to high-dimensional asymptotics of kernel

ridge regression. The leading result in this area is presented in [63] stating that at infinite

width limit, a fully connected neural network is governed by by a linear model obtained from

the first-order Taylor expansion of the network at its initialization. In this network, the full

batch gradient descent in parameter space corresponds to kernel gradient descent in function

space with the so-called Neural Tangent Kernel (NTK).

This "kernel regime" analysis also allows convergence proofs to zero error solutions in

over-parameterized settings. These solutions correspond to the minimum norm solution for

the appropriate RKHS and hence can have the inductive biases present in the corresponding

RKHS [4,5,7, 29,74,83,132]. Observe that this kernel depends on the architecture and the

initialization of the network. Of course, it is well-known that nonlinear networks, in general,

can offer significant advantages over simple linear models. Our result does not contradict

these observations. Instead, it highlights the importance of distributional assumptions in

the high-dimensional regimes and that more complex models are needed to understand real

problems.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows: In Chapter 2, we provide some preliminary

results and background on the framework analysis used throughout the subsequent chapters,

including the Approximate Message Passing framework and kernel regime-based analysis.

Next, Chapter 3 provides a framework to characterize the asymptotic generalization error for

the class of generalized linear models (GLMs) in a certain random high dimensional regime.
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Our key tool in this chapter is the Approximate Message Passing (AMP) framework. The exact

predictions given by the AMP algorithms estimators enable us to calculate the generalization

error and find its relation to the problem’s key parameters, including the sampling ratio, the

regularizer, the output function, and the distributions of the true weights. We are also able

to capture the distributional mismatch between the training and test data. The results in

this chapter appeared in [47]. Chapter 4 studies a constrained version of a recurrent neural

network (RNN) with a unitary weight transition matrix. We show that unitary RNNs are at

least as powerful as contractive RNNs in modeling input-output mappings if enough hidden

units are used. The results in this chapter appeared in [46]. Finally, Chapter 5 provides a

rigorous explanation for the empirical observation of the short-term bias of recurrent neural

networks. Using kernel regime analysis, we show why this bias exists and how the degree of

it is related to the initialization of the RNNs weight transition matrix. The results in this

chapter appeared in [48].

9



Chapter 2

Background and Preliminaries

In this Chapter, we first give a brief overview of the general notation used throughout this

dissertation. Next, we review some technical definitions required for the subsequent chapters.

We then introduce the main frameworks for analyzing our problems of interest. These

frameworks include the Approximate Message Passing and the kernel regime, including the

Neural Tangent Kernel for neural networks. Finally, we provide some useful lemmas.

2.1 Notation

We have specified the dimensions of any vectors or matrices specifically in each chapter;

however, we mention the general rule here for convenience. Vectors are denoted by boldface

lowercase letters x and xi is the ith coordinate of x. A subvector of x is denoted as xj for

j ⊆ {1, . . . , dim(x)}. Matrices are denoted by boldface uppercase letters X and Xij is the

element in the ith row and the jth column of X. Non-bold face characters are mostly used to

indicate random variables and scalars. These rules hold in general unless stated otherwise.

10



2.2 Technical Definitions and Useful Results

Pseudo-Lipschitz Continuity For a given p ≥ 1, a function f : Rd → Rm is called

pseudo-Lipschitz of order p, denoted by PL(p), if

∥f(x1)− f(x2)∥ ≤ C∥x1 − x2∥
(
1 + ∥x1∥p−1 + ∥x2∥p−1

)
(2.1)

for some constant C > 0. This is a generalization of the standard definition of Lipshitiz

continuity. A PL(1) function is Lipschitz with constant 3C.

Uniform Lipschitz Continuity Let f(x,θ) be a function on x ∈ Rd and θ ∈ Rs. We

say that f(x,θ) is uniformly Lipschitz continuous in x at θ = θ if there exists constants

L1, L2 ≥ 0 and an open neighborhood U of θ such that

∥f(x1,θ)− f(x2,θ)∥ ≤ L1∥x1 − x2∥ (2.2)

for all x1,x2 ∈ Rd and θ ∈ U ; and

∥f(x,θ1)− f(x,θ2)∥ ≤ L2 (1 + ∥x∥) ∥θ1 − θ2∥, (2.3)

for all x ∈ Rd and θ1,θ2 ∈ U .

Empirical Convergence of a Sequence Consider a sequence of vectors x(N) = {xn(N)}Nn=1

with xn(N) ∈ Rd. So, each x(N) is a block vector with a total of Nd components. For a

finite p ≥ 1, we say that the vector sequence x(N) converges empirically with p-th order

moments if there exists a random variable X ∈ Rd such that

(i) E∥X∥pp <∞; and
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(ii) for any f : Rd → R that is pseudo-Lipschitz continuous of order p,

lim
N→∞

1

N

N∑
n=1

f(xn(N)) = E [f(X)] . (2.4)

In this case, with some abuse of notation, we will write

lim
n→∞

xn
PL(p)
= X, (2.5)

where we have omitted the dependence on N in xn(N). We note that the sequence {x(N)}

can be random or deterministic. If it is random, we will require that for every pseudo-Lipschitz

function f(·), the limit (2.4) holds almost surely. In particular, if xn ∼ X are i.i.d. and

E∥X∥pp <∞, then x empirically converges to X with pth order moments.

Weak convergence (or convergence in distribution) of random variables is equivalent to

lim
n→∞

Ef(Xn) = Ef(X), for all bounded functions f. (2.6)

It is shown in [16] that PL(p) convergence is equivalent to weak convergence plus convergence

in p moment.

Wasserstein-2 Distance Let ν and µ be two distributions on some Euclidean space X .

The Wasserstein-2 distance between ν and µ is defined as

W2(ν,µ) =

(
inf
γ∈Γ

E ∥X −X ′∥22
) 1

2

, (2.7)

where Γ is the set of all distributions with marginals consistent with ν and µ.

A sequence xn converges PL(2) to X if and only if the empirical measure P̂N =

1
N

∑N
n=1 δ(x− xn) (where δ(·) is the Dirac measure,) converges in Wasserstein-2 distance to
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distribution of X [125], i.e.

xn
PL(2)
= X ⇐⇒ lim

n→∞
W2(P̂N ,PX) = 0. (2.8)

For two zero mean Gaussian measure ν = N (0,Σ1), µ = N (0,Σ2) the Wasserstein-2

distance is given by [57]

W 2
2 (ν,µ) = tr(Σ1 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2 +Σ2). (2.9)

Therefore, for zero mean Gaussian measures, convergence in covariance, implies convergence

in Wasserstein-2 distance, and hence if the empirical covariance of a zero mean Gaussian

sequence xn converges to some covaraince matrix Σ, then using (2.8) xn
PL(2)
= X where

X ∼ N (0,Σ).

2.2.1 Marchenko-Pastur Distribution

Consider the matrix H ∈ RN×p such that Hij ∼ N (0, 1
N
). As N, p → ∞ with p

N
→ β, the

positive eigenvalues of HTH have an empirical distribution which converges to the following

density [122]:

µβ(x) =

√
(bβ − x)+(x− aβ)+

2πβx
(2.10)

where aβ = (1−
√
β)2, bβ := (1 +

√
β)2. Similarly, the positive eigenvalues of HHT have an

empirical distribution converging to the density βµβ. We note the following integral which is

useful in our analysis:

G0 : = lim
z→0−

E
1

S2
mp − z

1{Smp>0}

= lim
z→0−

∫ bβ

aβ

1

x/β − z
µβ(x)dx =

β

|β − 1|
. (2.11)
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More generally, the Stieltjes transform of the density is given by:

Gmp(z) = E
1

S2
mp − z

1{Smp>0} =

∫ bβ

aβ

1

x/β − z
µβ(x)dx (2.12)

2.3 Analysis Framework: Approximate Message Passing

The Approximate Message Passing framework is a powerful methodology that provides com-

putationally efficient algorithms for high-dimensional estimation problems. It was originally

introduced for solving linear inverse problems [37–39] and has later been extended for inference

and learning in a wide variety of tasks, including inference in multi-layer networks, bilinear

problems, and models with structured priors [16,50,51,53,60,79,97]. The key property of these

algorithms is that they give optimality guarantees in cases where other known approaches do

not. Especially, their iterations weakly converge to a set of deterministic recursive equations

called the State Evolution that provide exact predictions on the performance of the estimates

of the algorithm in the large system limit.

The general AMP framework focuses on estimating an unknown signal given a set of

measurements. Consider estimating a vector w ∈ Rp from measurements y ∈ RN generated

through a function f with known parameters X and unknown noise ξ, i.e.,

y = f(w,X, ξ). (2.13)

In signal processing applications, w is the unknown signal, such as an image, and X is the

parameters of the measurement process f(.) (e.g., blurring). In supervised learning problems,

X contains the training features, and y is the training label. f()̇ then becomes the model

that connects the features to the labels with unknown parameters w.

We are usually interested in evaluating the performance of the estimator ŵ for w. For

regression problems, this performance metric may be the Mean Squared Error (MSE),

Ep(X) := 1
p
E[∥w − ŵ∥2], whereas for classification problems this may be the test error rate.

14



This metric is a function of the dimension as well as the parameters X and noise.

2.3.1 Large System Limit

We follow the Large System Limit (LSL) analysis in the Approximate Message Passing

framework. Consider a sequence of problems indexed by the number of measurements N .

For each N , we suppose that the number of features p = p(N) grows linearly with N , i.e.,

lim
N→∞

p(N)

N
→ β (2.14)

for some constant β ∈ (0,∞). To evaluate the MSE in LSL, we assume the true w is drawn

from some distribution p(w). We further assume the known parameters X are the realization

of some random matrix with certain statistics. We then compute the limit limp→∞ Ep(X). By

concentration phenomena in high dimensions, this limit is only a function of the statistics of

X, the true w, and noise as well as the ratio β and the estimator used for ŵ.

This analysis can show the performance of a wide variety of estimators (both Bayes-optimal

and certain classes of sub-optimal estimators) as a function of the statistics mentioned above

in the high-dimensional limit.

2.3.2 AMP for Linear Inverse Problems

Consider the linear inverse problem for estimation w ∈ Rp, given the measurements y =

Xw + ξ with a known linear transformation X and white noise ξ. Analyzing this problem

without any prior information on x is straightforward. The least squares estimator (LS)

ŵ = (XTX)−1XTy is typically used in this case. This problem becomes interesting when

there exists some prior information on w. In this case a regularized version of the problem is

used to encourage the structure in w, i.e.,

ŵ = argmin
w

1

2
∥y −Xw∥2 +R(w). (2.15)
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For example, when R(w) = λ ∥w∥1 the problem is known as LASSO [121]. The first

appearance of AMP was to solve for LASSO [39].

Given some probabilistic model for w, several questions arise regarding the performance of

the LS estimator in (2.15), and besides Gaussian settings, rigorous analysis is quite challenging.

In the case of compressed sensing, for example, scaling laws were introduced to connect the

Mean Squared Error (MSE) on the estimates to the number of measurements, properties of

X such as restricted isometry constant, and the sparsity of the true w [26,27]. These bounds

were inexact, and the proof techniques were specific to the true w structure and to the form

of the regularizer R(.).

AMP methods, on the other hand, enable precise and rigorous analysis of the properties

of the estimates ŵ in the large system limit (LSL). The AMP recursion for the problem

(2.15) can be derived using an approximation of loopy belief propagation in graphical models

[85,87,103,112]. Another important feature of AMP algorithms is that they are often an order

of magnitude faster than other algorithms used for solving such problems, e.g. FISTA [87].

The recursion for the LS problem (2.15) is given by:

vk = y −Xŵk + N
p

〈
f ′(rk−1)

〉
vk−1, (2.16)

rk = ŵk +XTvk, (2.17)

ŵk+1 = f(rk),

where k is the iteration number, f(.) is a Lipschitz denoising function, f ′(.) is the derivative,

and ⟨.⟩ denotes the component-wise average.

This algorithm was first introduced by [37] and later analyzed in [16]. Different choices of

denoiser functions f(.) corresponds to different type of estimators. It is easy to show that by

considering

f(r) = argmin
w
R(w) +

γ

2
∥w − r∥22 , (2.18)

this algorithm finds the solution to (2.15). Note that with this denoiser and by removing the
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second term in (2.16) – commonly known as the Onsager correction term – the algorithm

is equivalent to the proximal gradient descent for problem (2.15). We can also consider

the maximum a-posteriori estimator for w by taking R(w) = − log(p(w)) or minimum

mean squared error (MMSE) estimator by taking the mean of the posterior distribution

p(w|r) = 1
Z

[
R(w) + γ

2
∥w − r∥22

]
and an appropriate choice of γ.

Suppose that X is i.i.d. sub-Gaussian with E[Xij] = 0 and E[X2
ij] =

1
p
. Further, suppose

that wtrue is i.i.d. with some generic prior p(w0), the noise ξ ∼ N (0, σ2I), and the denoiser

f(.) is a generic Lipschitz, separable function [f(w)]i = f̄(wi) ∀i. It is shown in [14,16] that

as N →∞, the rk in (2.16) behave as

rk = wtrue +N (0, τ kI), (2.19)

for some variance τ k. It is perceivable now why f(.) is called as a denoiser; essentially, it

recovers wtrue from the noise corrupted signal r. The variance τ k is given by a scalar state

evolution (SE) recursion:

τ k+1 = σ2 + δ−1E(τ k), E(τ k) := E
[[
f̄
(
w0 +N (0, τ k)

)
− w0

]2 ∣∣∣ w0 ∼ p(w0)
]
. (2.20)

The exact value of the large-system MSE, limN→∞
1
N

E[∥ŵk−wtrue∥2] = E(τ k), for each

iteration can be calculated using the SE. Note that although SE predictions are exact for an

infinite-dimensional system, it has been shown that they still hold approximately true for

large enough finite systems.

In general, the fixed points of SE provide a way of computing the asymptotic performance

of the algorithm. In certain cases, we can show that the algorithm will achieve the Bayes

optimal solution [11, 53, 69, 104, 107]. This implies that AMP can give a computationally

simple method even for non-convex R(.). Results obtained from AMP algorithms are exact

but only hold in the asymptotic regime and can describe the behavior of our system of interest

using distributions on low dimensional random variables.
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Algorithm 1 Vector Approximate Message Passing (VAMP)- MMSE form
Require: Estimators g+ and g− and number of iterations Nit

1: Set r−0 = 0 ∈ Rp and initialize γ−0 > 0.
2: for k = 0, 1, . . . , Nit − 1 do
3: ŵ+

k = g+(r−k , γ
−
k )

4: λ+k = γ−k /
〈

∂g+

∂r−k
(r−k , γ

−
k )
〉
,

5: γ+k = λ+k − γ
−
k

6: r+k = (λ+k ŵ
+
k − γ

−
k r

−
k )/γ

+
k

7: ŵ−
k = g−(r+k , γ

+
k )

8: λ−k = γ+k /
〈

∂g−

∂r+k
(r+k , γ

+
k )
〉
,

9: γ−k = λ−k − γ
+
k

10: r−k = (λ−k ŵ
−
k − γ

+
k r

+
k )/γ

−
k

11: end for

2.3.3 Vector Approximate Message Passing (VAMP)

One of the main limitations of the original AMP algorithm is that it requires the matrix X to

have i.i.d sub-Gaussian entries. For a generic X, the algorithm is fragile and the iterations can

diverge. Vector Approximate Message Passing (VAMP), introduced in [105], is an algorithm

similar to AMP that applies to a much larger class of design matrices and is closely related

to expectation propagation (EP) [86,120] and expectation consistent approximate inference

(EC) [49,96]. If the design matrix X has the singular value decomposition of X = UΣVT,

the VAMP algorithm converges as long as the singular values are bounded and the matrix

V has a rotationally invariant distribution, i.e., it is uniformly distributed over the space of

orthogonal matrices.

The VAMP algorithm operates in a set of iterations given in Algorithm 1. For the

observation model y = Xw+ ξ, ξ ∼ N (0, σ2I), it requires two denoisers: g+ which is similar

to the denoiser f in the original AMP algorithm, and g− which is a linear MMSE denoiser

under a Gaussian prior given by

g−(r+k , γ
+
k ) := (σ2XTX+ γ+k I)

−1(σ2XTy + γ+k r
+
k ). (2.21)

Similar to AMP, the performance of VAMP estimates at each iteration can also be character-
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ized by random variables obtained from the state evolution equations. Specifically, in the

proportional asymptotics regime, the following convergence holds:

(w0, ŵ+
k , r

−
k )

PL(2)
= (W 0, Ŵ+

k , R
−
k ), (2.22)

where R−
k = W 0 +N (0, τ−k ) and Ŵ+

k = g+(R−
k , γ̄

−
k ) for a separable g+. The terms γ̄−k , τ

−
k are

given by the SE equations. Details of VAMP state evolution equations are given in [106].

2.3.4 Multi-Layer Vector Approximate Message Passing (ML-VAMP)

The Multi-Layer Vector Approximate Message Passing (ML-VAMP) algorithm is a generalized

version of the VAMP used for inference over multi layer networks. This algorithm is the main

tool used in Chapter 3 to analyze the GLM learning problem and it was first introduced in

the works [51, 99]. We give a brief summary of it in this section.

Consider the following L layer stochastic neural network:

pℓ = Wℓ zℓ−1 + bℓ + νℓ ℓ = 1, . . . , L

zℓ = ϕℓ(pℓ−1, ξℓ) ℓ = 1, . . . , L (2.23)

where νℓ, ξℓ are noise vectors and ϕℓ is a separable non-linear function. The inference problem

over this network is an attempt to find the input z0 and the signals zℓ and pℓ for all internal

layers given the output of the network zL. Note that for inference, we assume that the

network parameters i.e., the weights Wℓ and biases bℓ are known. Furthermore, we assume

that the z0 input distribution is also known. This is different from the learning problem

where the attempt is to find the network parameters. As mentioned earlier, the inference

problem arises in many inverse problems such as compressed sensing. Other state-of-the-art

problems include modeling deep generative priors for complex structured data such as images,

videos and text.
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The ML-VAMP algorithm works in a series of forward and backward iterations that

flow information through the network. It generates the estimates of the hidden signals

using the denoiser functions that similar to VAMP could be configured as MAP or MMSE

estimators. It is important to note that for the network (2.23), finding the denoisers are

computationally inexpensive. The key properties of ML-VAMP is as follows: (1) The fixed

points of this algorithm correspond to the stationary points of the variational formulation

of these estimators and (2) In the proportional asymptotics regime, similar to VAMP, the

performance of the estimators can exactly be characterized by the state evolution equations.

We will look further into details of using ML-VAMP for analysing the GLM learning

problem in Chapter 3. For more details about the algorithm and the SE please refer to [99].

2.4 Analysis Framework: Kernel Regime and Neural Tan-

gent Kernel

In this section we provide a short overview of reproducing kernel Hilbert spaces, Gaussian

regression, and neural tangent kernels.

2.4.1 Kernel Regression

In kernel regression, the estimator ŷ(x) is a function that belongs to a reproducing kernel

Hilbert space (RKHS). A kernel K : Rp × Rp 7→ R that is an inner product in a possibly

infinite dimensional space H called the feature space, i.e. K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩H where

ϕ : Rp → H is called the feature map. With this feature map, the functions in the RKHS are

of the form f(x) = ⟨ϕ(x),θ⟩L2 which is a nonlinear function in x but linear in the parameters

θ. Commonly used kernels in practice are usually of the form

K(xi,xj) = g

(
∥xi∥22
p

,
⟨xi,xj⟩

p
,
∥xj∥22
p

)
(2.24)
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which include inner product kernels as well as shift-invariant kernels. Kernels such as RBF

kernels, polynomial kernels, as well as the neural tangent kernel are of this form.

In kernel methods, the estimator is often learned via a regularized ERM

f̂ker = argmin
f∈H

N∑
i=1

L (yi, f(xi)) + λ∥f∥2H, (2.25)

where L is a loss function and ∥f∥H :=
√
⟨f, f⟩H is the RKHS norm. By writing f(x) =

⟨ϕ(x),θ⟩ as a parametric function with parameters θ ∈ H, this optimization over the function

space can be written as an optimization over the parameter space as

f̂ker(x) =
〈
ϕ(x), θ̂

〉
θ̂ = argmin

θ∈H

N∑
i=1

L (yi, ⟨ϕ(xi),θ⟩) + λ∥θ∥2L2 . (2.26)

Note that this optimization is often very high-dimensional as the dimension of feature

space could be very high or even infinite. By the representer theorem [111], the solution to

the optimization problem in (2.25) has the form

f̂ker(x) =
N∑
i=1

K(x,xi)αi. (2.27)

By the reproducing property of the kernel, it is easy to show that ∥f̂ker∥2H = αTKα

where α = [α1, . . . , αn]
T and K is the data kernel matrix Kij = K(xi,xj). The optimization

problem in (2.25) can then be written in terms of αis as

α̂ = argmin
α

N∑
i=1

L(yi,Kiα) + λαTKα, (2.28)

where Ki is the ith row of K. Observe that this optimization problem only depends on the

kernel evaluated over the data points, and hence the optimization problem in (2.25) can be

solved without ever working in the feature space H. If we let Xtr to represent the data matrix

with xi as its ith row, and ytr the vector of observations, then for the special case of square
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loss the optimization problem in (2.28) has the closed form solution α̂ = (K+λI)−1ytr which

corresponds to the estimator

f̂krr(x) = K(x,Xtr)(K+ λI)−1ytr, (2.29)

where K(x,Xtr) = [K(x,x1), . . . , K(x,xn)].

2.4.2 Gaussian Process Regression

A Gaussian process f is a stochastic process in which for every fixed set of points {xi}Ni=1,

the joint distribution of (f(x1), . . . , f(xN)) has multivariate Gaussian distribution. As in

multivariate Gaussian distribution, the distribution of a Gaussian process is completely

determined by its first and second order statistics, known as the mean function and covariance

kernel respectively. If we denote the mean function by µ(·) and the covariance kernel by

K(·, ·), then for any finite set of points

(
f(x1), f(x2), . . . , f(xn)

)
∼ N (µ,K), (2.30)

where µ the vector of mean values µi = µ(xi) and K is the covariance matrix with Kij =

K(xi,xj). Next, assume that a priori we set the mean function to be zero everywhere. Then,

the problem of Gaussian process regression can be stated as follows: we are given training

samples {(xi, yi)}Ni=1

yi = f(xi) + ξi, ξi
i.i.d.∼ N (0, σ2), (2.31)

where f is a zero mean Gaussian process with covariance kernel K. Given a test point xts,

we are interested in the posterior distribution of yts := f(xts) + ξts given the training samples.
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Defining Xtr and ytr as in previous section we have

ytr

yts

 | Xtr,xts ∼ N


0
0

 ,
K(Xtr, Xtr) + σ2I K(Xtr,xts)

K(xts,Xtr) K(xts,xts) + σ2


 , (2.32)

where K(Xtr,Xtr) is the kernel matrix evaluated at training points. Therefore, if we define

K := K(Xtr,Xtr) we have yts|ytr,Xtr,xts ∼ N (ŷts, σ
2
ts) where

ŷts =K(xts,Xtr)(K+ σ2I)−1ytr, (2.33)

σ2
ts =σ

2 +K(xts,xts)−K(xts,Xtr)(K+ σ2I)−1K(Xtr,xts).

For a given xts, the MMSE estimator is given by f̂MMSE(xts) = ŷts where ŷts minimizes the

posterior risk

E(xts) := E[(ŷts − yts)2 |xts,Xtr,ytr] (2.34)

and the expectation is with respect to the randomness in f as well as {ξi}. The estimator

that minimizes this risk is the mean of the posterior, i.e. ŷts in (2.33) is the Bayes optimal

estimator with respect to mean squared error and its MSE is E(xts) = σ2
ts. Note that while

this estimator is linear in the training outputs, it is nonlinear in the input data.

The problem of Gaussian process regression arises for systems that are in the Gaussian

kernel regime. More specifically, assume that we have training and test data {(xi, yi)}Ni=1 and

(xts, yts) that are generated by a parametric model y = f(x,θ)+ξ where ξ ∼ N (0, σ2). Further-

more, assume that conditioned on Xtr and xts, the vector [f(xts,θ), f(x1,θ), . . . , f(xN ,θ)]
T ,

which is N + 1-dimensional vector of the function values on the training and test inputs is

jointly Gaussian and zero mean. Also, for x and x′, in the training and test inputs define the

kernel function by

K(x,x′) := Eθ [f(x,θ)f(x
′,θ)] . (2.35)

Then the problem of estimating ŷts can be considered as a Gaussian regression problem.
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An important instance of this kernel model is when f(x,θ) a wide neural network with

parameters θ drawn from random Gaussian distributions and a linear last layer. In this

case, one can show that conditioned on the input, all the pre-activation signals in the neural

network, i.e. all the signals right before going through the non-linearities, as well as the

gradients with respect to the parameters are Gaussian processes.

2.4.3 Neural Tangent Kernel

Consider a neural network function f(x,θ) = z̃(L)(x,θ) defined recursively as

z(0)(x,θ) = x,

z̃(ℓ+1)(x,θ) =
1
√
nℓ

W(ℓ)z(ℓ)(x,θ) + νb(ℓ),

z(ℓ)(x,θ) = σ(z̃(ℓ)(x,θ)), (2.36)

where σ is a elementwise nonlinearity, W(ℓ) ∈ Rnℓ+1×nℓ , and θ is the collection of all weights

W(ℓ) and biases b(ℓ) which are all initialized with i.i.d. draws from the standard normal

distribution. As noted in many works [34, 70, 81, 93], conditioned on the input signals, with a

Lipschitz non-linearity σ(·), the entries of the pre-activations z̃(ℓ) converge in distribution to

an i.i.d. Gaussian processes in the limit of n1, . . . , nL−1 → ∞ with covariance Σ(ℓ) defined

recursively as

Σ(ℓ)(x,x′) = Σ̃(ℓ)(x,x′)⊗ Inℓ
,

Σ̃(ℓ+1)(x,x′) = E(u,v)∼N (0,M)σ(u)σ(v) + ν2, (2.37)

with

Σ(1)(x,x′) =
1

n0

xTx′ + ν2, M =

 Σ̃(ℓ)(x,x) Σ̃(ℓ)(x,x′)

Σ̃(ℓ)(x′,x) Σ̃(ℓ)(x′,x′)

 .
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Therefore, if the true model is a random deep network plus noise, the optimal estimator

would be as in (2.33) with the covariance in (2.37) used as the kernel.

The main result of [63] considers the problem of fitting a neural network to a training

data using gradient descent. It is shown that in the limit of wide networks (i.e. nℓ → ∞

for all ℓ), training a neural network with gradient descent is equivalent to fitting a kernel

regression with respect to a specific kernel called the neural tangent kernel (NTK). When

f(x,θ) is a neural network with scalar output, the neural tangent kernel (NTK) is defined as

K(x,x′;θ) = ⟨∇θf(x;θ),∇θf(x
′;θ)⟩ . (2.38)

In the limit of wide fully connected neural networks, [63] show that this kernel converges in

probability to a kernel that is fixed throughout the training K(x,x′;θ)
p
= K(x,x′;θ0).

Similar to (2.37), the neural tangent kernel for the same architecture and initialization

can be evaluated via a the following recursive equations:

K(ℓ)(x,x′) = K̃(ℓ)(x,x′)⊗ Inℓ
,

K̃(ℓ+1)(x,x′) = Σ̃(ℓ+1)(x,x′) + K̃(ℓ)(x,x′) E(u,v)∼N (0,M)σ
′(u)σ′(v),

K̃(1) = Σ̃(1), (2.39)

with M, and Σ̃ defined in (2.37). The details of calculations can be found in [63]. Similar

results for architectures other than fully connected networks have since been proven [3,7,129,

130].

For a fully connected network with ReLU non-linearities, the NTK has a closed recursive

form given by [23]. Let f(x;θ) =
√

2
nL−1

〈
wL, z

(L−1)
〉

with z(1) = σ(W1x) and

z(ℓ) = σ

(√
2

nℓ−1

Wℓz
(ℓ−1)

)
, ℓ = 2, . . . , L− 1, (2.40)
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where σ(·) is the ReLU function, Wℓ ∈ Rnℓ×nℓ−1 , wL ∈ RL−1 and all the parameters wL

and Wℓ, ℓ = 1, 2, . . . , L− 1, are initialized with i.i.d. entries drawn from N (0, 1). Then the

corresponding NTK, K(u,v) := KL(u,v) can be obtained recursively by

Σℓ(u,v) = ∥u∥∥v∥κ1
(
Σℓ−1(u,v)

∥u∥∥v∥

)
, (2.41)

Kℓ(u,v)=Σℓ(u,v)+Kℓ−1(u,v)κ0

(
Σℓ−1(u,v)

∥u∥∥v∥

)
(2.42)

for ℓ = 1, . . . , L and K0(u,v) = Σ0(u,v) = uTv, and

κ0(t) = 1/π(π − arccos(t)),

κ1(t) = 1/π
(
t (π − arccos(t)) +

√
1− t2

)
.

It is important to note that in the NTK regime, the dynamics of learning by gradient

descent are simple and completely captured by the kernel and the target output. Investigating

the properties of the kernel can therefore help us understand the trainability and generalization

of the model of interest. Moreover, these properties can elucidate understanding the implicit

biases in different models. As we will see in Chapter 5, we use the NTK regime analysis to

provide the rigorous explanation of the short-term bias in RNNs.
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2.5 Recursions with Random Gaussians

In this section, we prove a special lemma that is useful in Chapter 5. To avoid confusion,

please pay special attention to the vectors and matrices dimensions.

Consider a recursion of the form,

qt+1 =
L∑

ℓ=1

1√
n
AℓGℓ(qt,ut), (2.43)

where qt ∈ Rn×dq , ut ∈ Rn×du , and Gℓ(qt,ut) acts row-wise, meaning

Gℓ(qt,ut)i,: = Gℓ(qt,i,:,ut,i,:), (2.44)

for some Lipschitz functions Gℓ : Rdq × Rdu → Rdq . That is, the outptut of row i of Gℓ(·)

depends only the i-th rows of its inputs. We will analyze this system for a fixed horizon,

t = 0, . . . , T − 1. Assume that

(q0,u0, . . . ,uT−1)
PL(2)→ (Q0, U0, . . . , UT−1), (2.45)

to random variables (Q0, U0, . . . , UT−1) where Q0 ∈ Rdq is independent of (U0, . . . , UT−1), and

Q0 ∼ N (0, P0) for some covariance matrix P0 ∈ Rdq×dq . Assume the matrices Aℓ ∈ Rn×n are

independent with i.i.d. components, (Aℓ)i,j ∼ N (0, νℓ).

Lemma 1. Under the above assumptions,

(q0,q1, . . . ,qT−1,u0,u1, . . . ,uT−1)
PL(2)→ (Q0, Q1, . . . , QT−1, U0, . . . UT−1) (2.46)

where each Qi ∈ Rdq and (Q0, Q1, . . . , QT−1) are zero mean Gaussian processes independent
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of (U0, . . . UT−1), generated recursively through evolution equations given by

Dℓ = N (0, νℓ), (2.47a)

Ztℓ = Gℓ(Qt, Ut), (2.47b)

µtℓ = E(Ztℓ), Z̃tℓ = Ztℓ − µtℓ, (2.47c)

Ft,:,ℓ = min
F1,...,Ft−1

E

∥∥∥∥∥Z̃tℓ −
t∑

j=1

Z̃t−j,ℓFj

∥∥∥∥∥
2

, (2.47d)

Ptℓ = E(Z̃tℓ −
t∑

j=1

Z̃t−j,ℓFtjℓ)
T(Z̃tℓ −

t∑
j=1

Z̃t−j,ℓFtjℓ), (2.47e)

R̃tℓ =
t∑

j=1

R̃t−j,ℓFtjℓ +N (0, νWPtℓ), (2.47f)

Rtℓ = R̃tℓ +Dℓµtℓ, (2.47g)

Qt+1 =
L∑

ℓ=1

Rtℓ. (2.47h)

Proof. See Appendix A.1 for the proof. □

This lemma shows that (q0, . . . , qt) converges PL(2) to a Gaussian vector (Q0, . . . , Qt)

with zero mean. We use a special case of this lemma in Chapter 5.
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Chapter 3

Learning Generalized Linear Models in

High Dimensions

1 At the heart of machine learning lies the question of generalizability of learned rules over

previously unseen data. While over-parameterized models based on neural networks are

now ubiquitous in machine learning applications, our understanding of their generalization

capabilities is incomplete and this task is made harder by the non-convexity of the underlying

learning problems. We provide a general framework to characterize the asymptotic general-

ization error for single-layer neural networks (i.e., generalized linear models) with arbitrary

non-linearities, making it applicable to regression as well as classification problems. This

framework enables analyzing the effect of (i) over-parameterization and non-linearity during

modeling; (ii) choices of loss function, initialization, and regularizer during learning; and (iii)

mismatch between training and test distributions. As examples, we analyze a few special

cases, namely linear regression and logistic regression. We are also able to rigorously and

analytically explain the double descent phenomenon in generalized linear models.

1This chapter is based on the work [47] and is coauthered with Mojtaba Sahraee-Ardakan, Parthe Pandit,
Sundeep Rangan, and Alyson K. Fletcher.
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3.1 Introduction

Quantifying the generalization of neural networks is one of the fundamental goals of machine

learning and methods for this end are critical in assessing the performance of any machine

learning approach. We are interested in characterizing the generalization error for a class of

generalized linear models (GLMs) of the form

y = ϕout(
〈
x,w0

〉
, d), (3.1)

where x ∈ Rp is a vector of input features, y is a scalar output, w0 ∈ Rp are weights to

be learned, ϕout(·) is a known link function, and d is random noise. The notation ⟨x,w0⟩

denotes an inner product. We use the superscript “0" to denote the “true" values in contrast

to estimated or postulated quantities. The output may be continuous or discrete to model

either regression or classification problems.

We measure the generalization error in a standard manner: we are given training data

(xi, yi), i = 1, . . . , N from which we learn some parameter estimate ŵ via a regularized

empirical risk minimization of the form

ŵ = argmin
w

Fout(y,Xw) + Fin(w), (3.2)

where X = [x1 x2 . . . xN ]
T, is the data matrix, Fout is some output loss function, and Fin is

some regularizer on the weights. We are then given a new test sample, xts, for which the true

and predicted values are given by

yts = ϕout(
〈
xts,w

0
〉
, dts), ŷts = ϕ(⟨xts, ŵ⟩), (3.3)

where dts is the noise in the test sample, and ϕ(·) is a postulated inverse link function that

may be different from the true function ϕout(·). The generalization error is then defined as
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the expectation of some expected loss between yts and ŷts of the form

E fts(yts, ŷts), (3.4)

for some test loss function fts(·) such as squared error or prediction error.

Even for this relatively simple GLM model, the behavior of the generalization error is not

fully understood. Recent works [36,82,88,110] have characterized the generalization error

of various linear models for classification and regression in certain large random problem

instances. Specifically, the number of samples N and number of features p both grow without

bound with their ratio satisfying p/N → β ∈ (0,∞), and the samples in the training data xi

are drawn randomly. In this limit, the generalization error can be exactly computed. The

analysis can explain the so-called double descent phenomena [17]: in highly under-regularized

settings, the test error may initially increase with the number of data samples N before

decreasing. Perhaps the first empirical evidence of the double descent curve can be traced

back to [24].

3.1.1 Key Contributions

Our main result (Theorem 1) provides a procedure for exactly computing the asymptotic value

of the generalization error (3.4) for GLM models in a certain random high-dimensional regime

called the Large System Limit (LSL). The procedure enables the generalization error to be

related to key problem parameters including the sampling ratio β = p/N , the regularizer, the

output function, and the distributions of the true weights and noise. Importantly, our result

holds under very general settings including: arbitrary test metrics fts; arbitrary training

loss functions Fout as well as decomposable regularizers Fin; arbitrary link functions ϕout;

correlated covariates x; and distributional mismatch in training and test data.
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3.1.2 Prior Work

Many recent works characterize generalization error of various machine learning models,

including special cases of the GLM model considered here. For example, the precise charac-

terization for asymptotics of prediction error for least squares regression has been provided

in [18,59,89]. The former confirmed the double descent curve of [17] under a Fourier series

model and a noisy Gaussian model for data in the over-parameterized regime. The latter

obtained this scenario under both linear and non-linear feature models for ridge regression

and min-norm least squares using random matrix theory. Also, [2] studied the same setting

for deep linear and shallow non-linear networks.

The analysis of the the generalization for max-margin linear classifiers in the high

dimensional regime has been done in [88]. The exact expression for asymptotic prediction

error is derived and in a specific case for two-layer neural network with random first-layer

weights, the double descent curve was obtained. A similar double descent curve for logistic

regression as well as linear discriminant analysis has been reported by [36]. Random feature

learning in the same setting has also been studied for ridge regression in [82]. The authors

have, in particular, shown that highly over-parametrized estimators with zero training error

are statistically optimal at high signal-to-noise ratio (SNR). The asymptotic performance

of regularized logistic regression in high dimensions is studied in [110] using the Convex

Gaussian Min-max Theorem in the under-parametrized regime. In what we present here,

we can consider all these models as special cases. Bounds on the generalization error of

over-parametrized linear models are also given in [13,94].

Although what we present here and several other recent works consider only simple linear

models and GLMs, much of the motivation is to understand generalization in deep neural

networks where classical intuition may not hold [19,94,131]. In particular, a number of recent

papers have shown the connection between neural networks in the over-parametrized regime

and kernel methods [4, 8, 33, 34,42,63].
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3.1.3 Approximate Message Passing

Our key tool to study the generalization error is approximate message passing (AMP), a

class of inference algorithms originally developed in [15,37,39] for compressed sensing. We

show that the learning problem for the GLM can be formulated as an inference problem on a

certain multi-layer network. Multi-layer AMP methods [51,60,80,98] can then be applied

to perform the inference. The specific algorithm we use here is the multi-layer vector AMP

(ML-VAMP) algorithm of [51, 98] which itself builds on several works [25, 49, 78, 96, 105].

The ML-VAMP algorithm is not necessarily the most computationally efficient procedure

for the minimization (3.2). For our purposes, the key property is that ML-VAMP enables

exact predictions of its performance in the large system limit. Specifically, the error of the

algorithm estimates in each iteration can be predicted by a set of deterministic recursive

equations called the state evolution or SE. The fixed points of these equations provide a way

of computing the asymptotic performance of the algorithm. In certain cases, the algorithm

can be proven to be Bayes optimal [1, 11,53,107].

This approach of using AMP methods to characterize the generalization error of GLMs

was also explored in [11] for i.i.d. distributions on the data. The explicit formulae for the

asymptotic mean squared error for the regularized linear regression with rotationally invariant

data matrices is proved in [56]. The ML-VAMP method enables extensions to correlated

features and to capture mismatch between training and test distributions.

3.2 System Model for Generalization Error

We consider the problem of estimating the weights w in the GLM model (3.1). As stated in the

Introduction, we suppose we have training data {(xi, yi)}Ni=1 arranged as X := [x1 x2 . . .xN ]
T ∈

RN×p, y := [y1 y2 . . . yN ]
T ∈ RN . Then we can write

y = ϕout(Xw0,d), (3.5)
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where ϕout(z,d) is the vector-valued function such that [ϕout(z,d)]n = ϕout(zn, dn) and

{dn}Nn=1 are general noise.

Given the training data (X,y), we consider estimates of w0 given by a regularized

empirical risk minimization of the form (3.2). We assume that the loss function Fout and

regularizer Fin are separable functions, i.e., one can write

Fout(y, z) =
N∑

n=1

fout(yn, zn), Fin(w) =

p∑
j=1

fin(wj), (3.6)

for some functions fout : R2 → R and fin : R→ R. Many standard optimization problems in

machine learning can be written in this form: logistic regression, support vector machines,

linear regression, Poisson regression.

Large System Limit: We follow the LSL analysis of [15] commonly used for analyzing

AMP-based methods. Specifically, we consider a sequence of problems indexed by the number

of training samples N . For each N , we suppose that the number of features p = p(N) grows

linearly with N , i.e.,

lim
N→∞

p(N)

N
→ β (3.7)

for some constant β ∈ (0,∞). Note that β > 1 corresponds to the over-parameterized regime

and β < 1 corresponds to the under-parameterized regime.

True parameter: We assume the true weight vector w0 has components whose empirical

distribution converges as

lim
N→∞

{w0
n}

PL(2)
= W 0, (3.8)

for some limiting random variable W 0. This means that the empirical distribution 1
p

∑p
i=1 δwi

converges, in the Wasserstein-2 metric (see Chap. 6 [125]), to the distribution of the finite-

variance random variable W 0. Importantly, the limit (3.8) will hold if the components {w0
i }

p
i=1

are drawn i.i.d. from the distribution of W 0 with E(W 0)2 <∞. However, the convergence

34



can also be satisfied by correlated sequences and deterministic sequences.

Training data input: For each N , we assume that the training input data samples,

xi ∈ Rp, i = 1, . . . , N , are i.i.d. and drawn from a p-dimensional Gaussian distribution with

zero mean and covariance Σtr ∈ Rp×p. The covariance can capture the effect of features being

correlated. We assume the covariance matrix has an eigenvalue decomposition,

Σtr =
1
p
VT

0 diag(s
2
tr)V0, (3.9)

where s2tr are the eigenvalues of Σtr and V0 ∈ Rp×p is the orthogonal matrix of eigenvectors.

The scaling 1
p

ensures that the total variance of the samples, E∥xi∥2, does not grow with N .

We will place a certain random model on str and V0 momentarily.

Using the covariance (3.9), we can write the data matrix as

X = U diag(str)V0, (3.10)

where U ∈ RN×p has entries drawn i.i.d. from N (0, 1
p
). For the purpose of analysis, it is

useful to express the matrix U in terms of its SVD:

U = V2SmpV1, Smp :=

 diag(smp) 0

0 ∗

 (3.11)

where V1 ∈ RN×N and V2 ∈ Rp×p are orthogonal and Smp ∈ RN×p with non-zero entries

smp ∈ Rmin{N,p} only along the principal diagonal. smp are the singular values of U. A

standard result of random matrix theory is that, since U is i.i.d. Gaussian with entries

N (0, 1
p
), the matrices V1 and V2 are Haar-distributed on the group of orthogonal matrices

and smp is such that

lim
N→∞

{smp,i}
PL(2)
= Smp, (3.12)

where Smp ≥ 0 is a non-negative random variable such that S2
mp satisfies the Marcencko-Pastur
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distribution. Note that we describe the random variable Smp defined in (3.12) where S2
mp has

a rescaled Marchenko-Pastur distribution. Notice that the positive entries of smp are the

positive eigenvalues of UTU (or UUT).

Observe that Uij ∼ N(0, 1
p
), whereas, the standard scaling while studying the Marchenko-

Pastur distribution in Section 2.2.1 is for matrices H such that Hij ∼ N (0, 1
N
) (for e.g. see

equation (1.10) from [122] and the discussion preceding it). Also notice that
√
βU has the

same distribution as H. Thus the results from [122] apply directly to the distributions of

eigenvalues of βUTU and βUUT. 2

Training data output: Given the input data X, we assume that the training outputs

y are generated from (3.5), where the noise d is independent of X and has an empirical

distribution which converges as

lim
N→∞

{di}
PL(2)
= D. (3.13)

Again, the limit (3.13) will be satisfied if {di}Ni=1 are i.i.d. draws of random variable D with

bounded second moments.

Test data: To measure the generalization error, we assume now that we are given a test

point xts, and we obtain the true output yts and predicted output ŷts given by (3.3). We

assume that the test data inputs are also Gaussian, i.e.,

xT
ts = uTdiag(sts)V0, (3.14)

where u ∈ Rp has i.i.d. Gaussian components, N (0, 1
p
), and sts and V0 are the eigenvalues

and eigenvectors of the test data covariance matrix. That is, the test data sample has a

2Related to Smp and smp from equation (3.11), we need to define two quantities s+mp ∈ RN and s−mp ∈ Rp

that are zero-padded versions of the singular values smp, so that for n > min{N, p}, we set s±mp,n = 0. Observe
that (s+mp)

2 are eigenvalues of UUT whereas (s−mp)
2 are eigenvalues of UTU. Since smp empirically converges

to Smp as given in (3.12), the vector s+mp empirically converges to random variable S+
mp whereas the vector

s−mp empirically converges to random variable S−
mp, where a mass is placed at 0 appropriately. Specifically,

S+
mp has a point mass of (1 − β)+δ{0} when β < 1, whereas S−

mp has a point mass of (1 − 1
β )+δ{0}, when

β > 1. In Section 2.2.1 (eqn. (2.10)), we provide the densities over positive parts of S+
mp and S−

mp.
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covariance matrix

Σts =
1
p
VT

0 diag(s
2
ts)V0. (3.15)

In comparison to (3.9), we see that we are assuming that the eigenvectors of the training and

test data are the same, but the eigenvalues may be different. In this way, we can capture

distributional mismatch between the training and test data. For example, we will be able to

measure the generalization error when the test sample is outside a subspace explored by the

training data.

To capture the relation between the training and test distributions, we assume that

components of str and sts converge as

lim
N→∞

{(str,i, sts,i)}
PL(2)
= (Str, Sts), (3.16)

to some non-negative, bounded random vector (Str, Sts). The joint distribution on (Str, Sts)

captures the relation between the training and test data.

When Str = Sts, our model corresponds to the case when the training and test distribution

are matched. Isotropic Gaussian features in both training and test data correspond to

covariance matrices Σtr =
1
p
σ2
trI, Σts =

1
p
σ2
tsI, which can be modeled as Str = σtr, Sts = σts.

We also require that the matrix V0 is uniformly distributed on the set of p× p orthogonal

matrices.

Generalization error: From the training data, we obtain an estimate ŵ via a regularized

empirical risk minimization (3.2). Given a test sample xts and parameter estimate ŵ, the true

output yts and predicted output ŷtr are given by equation (3.3). We assume the test noise is

distributed as dts ∼ D, following the same distribution as the training data. The postulated

inverse-link function ϕ(·) in (3.3) may be different from the true inverse-link function ϕout(·).

The generalization error is defined as the asymptotic expected loss,

Ets := lim
N→∞

Efts(ŷts, yts), (3.17)
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where fts(·) is some loss function relevant for the test error (which may be different from the

training loss). The expectation in (3.17) is with respect to the randomness in the training as

well as test data, and the noise. Our main result provides a formula for the generalization

error (3.17).

3.3 Learning GLMs via ML-VAMP

There are many methods for solving the minimization problem (3.2). We apply the ML-

VAMP algorithm of [51, 97]. This algorithm is not necessarily the most computationally

efficient method. For our purposes, however, the algorithm serves as a constructive proof

technique, i.e., it enables exact predictions for generalization error in the LSL as described

above. Moreover, in the case when loss function (3.2) is strictly convex, the problem has a

unique global minimum, whereby the generalization error of this minimum is agnostic to the

choice of algorithm used to find this minimum. To that end, we start by reformulating (3.2)

in a form that is amicable to the application of ML-VAMP, Algorithm 2.

Multi-Layer Representation. The first step in applying ML-VAMP to the GLM learning

problem is to represent the mapping from the true parameters w0 to the output y as a certain

multi-layer network. We combine (3.5), (3.10) and (3.11), so that the mapping w0 7→ y can

be written as the following sequence of operations (as illustrated in Fig. 3.1):

z00 := w0, p0
0 := V0z

0
0,

z01 := ϕ1(p
0
0, ξ1), p0

1 := V1z
0
1,

z02 := ϕ2(p
0
1, ξ2), p0

2 := V2z
0
2,

z03 := ϕ3(p
0
2, ξ3) = y,

(3.18)
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V0 ϕ1(.) V1 ϕ2(.) V2 ϕout(·)

z03 = yz00 = w0

p0
0 z01 p0

1 z02 p0
2 = Xw0

ξ1 ξ2 ξ3

Figure 3.1: Sequence flow representing the mapping from the unknown parameter values w0

to the vector of responses y on the training features X. Vℓ blocks represent multiplication
by orthogonal operators and ϕℓ(·) blocks are non-linear functions acting coordinatewise. For
the GLM learning problem we have ξ1 = str and, ξ2 = smp, ξ3 = d. Also, ϕ1(p0, str) =
diag(str)p0,ϕ2(p1, smp) = diag(smp)p1, and ϕ3(p2,d) = ϕout(p2,d).

where ξℓ are the following vectors:

ξ1 := str, ξ2 := smp, ξ3 := d, (3.19)

and the functions ϕℓ(·) are given by

ϕ1(p0, str) := diag(str)p0, (3.20)

ϕ2(p1, smp) := Smpp1, (3.21)

ϕ3(p2,d) := ϕout(p2,d). (3.22)

We see from Fig. 3.1 that the mapping of true parameters w0 = z00 to the observed

response vector y = z03 is described by a multi-layer network of alternating orthogonal

operators Vℓ and non-linear functions ϕℓ(·). Let L = 3 denote the number of layers in this

multi-layer network.

The minimization (3.2) can also be represented using a similar signal flow graph. Given a

parameter candidate w, the mapping w 7→ Xw can be written using the sequence of vectors

z0 := w, p0 := V0z0,

z1 := Strp0, p1 := V1z1,

z2 := Smpp1, p2 := V2z2 = Xw.

(3.23)
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There are L = 3 steps in this sequence, and we let

z = {z0, z1, z2}, p = {p0,p1,p2}

denote the sets of vectors across the steps. The minimization in (3.2) can then be written in

the following equivalent form:

min
z,p

F0(z0) + F1(p0, z1) + F2(p1, z1) + F3(p2)

subject to pℓ = Vℓzℓ, ℓ = 0, 1, 2,

(3.24)

where the penalty functions Fℓ are defined as

F0(·) = Fin(·), F1(·, ·) =δ{z1=Strp0}(·, ·),

F2(·, ·) = δ{z2=Smpp1}(·, ·), F3(·) =Fout(y, ·),
(3.25)

where δA(·) is 0 on the set A, and +∞ on Ac.

ML-VAMP for GLM Learning. Using this multi-layer representation, we can now apply

the ML-VAMP algorithm from [51,97] to solve the optimization (3.24). The steps are shown

in Algorithm 2. These steps are a special case of the “MAP version" of ML-VAMP in [97], but

with a slightly different set-up for the GLM problem. We will call these steps the ML-VAMP

GLM Learning Algorithm.

The algorithm operates in a set of iterations indexed by k. In each iteration, a “forward

pass" through the layers generates estimates ẑkℓ for the hidden variables z0ℓ , while a “backward

pass" generates estimates p̂kℓ for the variables p0
ℓ . In each step, the estimates ẑkℓ and p̂kℓ

are produced by functions g+
ℓ (·) and g−

ℓ (·) called estimators or denoisers.

For the MAP version of ML-VAMP algorithm in [97], the denoisers are essentially
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Algorithm 2 ML-VAMP GLM Learning Algorithm
Require: Denoisers g+

0 , g−
L , and g+

ℓ ,g
−
ℓ for ℓ = 1, . . . , L−1

1: Initialize γ−0ℓ > 0, r−0ℓ = 0 for ℓ = 0, . . . , L−1
2: for k = 0, 1, . . . do
3: // Forward Pass
4: for ℓ = 0, . . . , L− 1 do
5: if ℓ = 0 then
6: ẑk0 = g+

0 (r
−
k0, γ

−
k0)

7: else
8: ẑkℓ = g+

ℓ (r
+
k,ℓ−1, r

−
kℓ, γ

+
k,ℓ−1, γ

−
kℓ)

9: end if
10: α+

kℓ =
〈
∂ẑkℓ/∂r

−
kℓ

〉
11: r+kℓ =

Vℓ(ẑkℓ − α+
kℓr

−
kℓ)

1− α+
kℓ

12: γ+kℓ = (1/α+
kℓ − 1)γ−kℓ

13: end for
14: // Backward Pass
15: for ℓ = L, . . . , 1 do
16: if ℓ = L then
17: p̂k,L−1 = g−

L (r
+
k,L−1, γ

+
k,L−1)

18: else
19: p̂k,ℓ−1 = g−

ℓ (r
+
k,ℓ−1, r

−
k+1,ℓ, γ

+
k,ℓ−1, γ

−
k+1,ℓ)

20: end if
21: α−

k,ℓ−1 =
〈
∂p̂k,ℓ−1/∂r

+
k,ℓ−1

〉
22: r−k+1,ℓ−1 =

VT
ℓ−1(p̂k,ℓ−1 − α−

k,ℓ−1r
+
k,ℓ−1)

1− α−
k,ℓ−1

23: γ−k+1,ℓ−1 = (1/α−
k,ℓ−1 − 1)γ+k,ℓ−1

24: end for
25: end for

proximal-type operators defined as

proxF/γ(u) := argmin
x

F (x) + γ
2
∥x− u∥2 . (3.26)

An important property of the proximal operator is that for separable functions F of the form

(3.6), we have [proxF/γ(u)]i = proxf/γ(ui).

In the case of the GLM model, for ℓ = 0 and L, on lines 6 and 17, the denoisers are
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proximal operators given by

g+
0 (r

−
0 , γ

−
0 ) = proxFin/γ

−
0
(r−0 ), (3.27a)

g−
3 (r

+
2 ,y, γ

+
2 ) = proxFout/γ

+
2
(r+2 ). (3.27b)

Note that in (3.27b), there is a dependence on y through the term Fout(y, ·). For the middle

terms, ℓ = 1, 2, i.e., lines 8 and 19, the denoisers are given by

g+
ℓ (r

+
ℓ−1, r

−
ℓ , γ

+
ℓ−1, γ

−
ℓ ) := ẑℓ, (3.28a)

g−
ℓ (r

+
ℓ−1, r

−
ℓ , γ

+
ℓ−1, γ

−
ℓ ) := p̂ℓ−1, (3.28b)

where (p̂ℓ−1, ẑℓ) are the solutions to the minimization

(p̂ℓ−1, ẑℓ) := argmin
(pℓ−1,zℓ)

Fℓ(pℓ−1, zℓ) +
γ−ℓ
2
∥zℓ − r−ℓ ∥

2 +
γ+ℓ−1
2
∥pℓ−1 − r+ℓ−1∥

2. (3.29)

The quantity ⟨∂v/∂u⟩ on lines 10 and 21 denotes the empirical mean 1
N

∑N
n=1 ∂vn/∂un.

Thus, the ML-VAMP algorithm in Algorithm 2 reduces the joint constrained minimization

(3.24) over variables (z0, z1, z2) and (p0,p1,p2) to a set of proximal operations on pairs of

variables (pℓ−1, zℓ). As discussed in [97], this type of minimization is similar to ADMM with

adaptive step-sizes. Details of the denoisers g±
ℓ and other aspects of the algorithm are given

in Section 3.5.

3.4 Main Result

We make two assumptions. The first assumption imposes certain regularity conditions on

the functions fts, ϕ, ϕout, and maps g±
ℓ appearing in Algorithm 2. The precise definitions of

pseudo-Lipschitz continuity and uniform Lipschitz continuity are given in Section 2.2.

Assumption 1. The denoisers and link functions satisfy the following continuity conditions:
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(a) The proximal operators in (3.27),

g+
0 (r

−
0 , γ

−
0 ), g−

3 (r
+
2 ,y, γ

+
2 ),

are uniformly Lipschitz continuous in r−0 and (r+2 ,y) over parameters γ−0 and γ+2 .

(b) The link function ϕout(p, d) is Lipschitz continuous in (p, d). The test error function

fts(ϕ(ẑ), ϕout(z, d)) is pseduo-Lipschitz continuous in (ẑ, z, d) of order 2.

Our second assumption is that the ML-VAMP algorithm converges. Specifically, let

xk = xk(N) be any set of outputs of Algorithm 2, at some iteration k and dimension N . For

example, xk(N) could be ẑkℓ(N) or p̂kℓ(N) for some ℓ, or a concatenation of signals such as[
z0ℓ(N) ẑkℓ(N)

]
.

Assumption 2. Let xk(N) be any finite set of outputs of the ML-VAMP algorithm as above.

Then there exist limits

x(N) = lim
k→∞

xk(N), (3.30)

satisfying

lim
k→∞

lim
N→∞

1

N
∥xk(N)− x(N)∥2 = 0. (3.31)

We are now ready to state our main result.

Theorem 1. Consider the GLM learning problem (3.2) solved by applying Algorithm 2 to

the equivalent problem (3.24) under the assumptions of Section 3.2 along with Assumptions 1

and 2. Then, there exist constants τ−0 , γ
+
0 > 0 and M ∈ R2×2

≻0 such that the following hold:

(a) The fixed points {ẑℓ, p̂ℓ}, ℓ = 0, 1, 2 of Algorithm 2 satisfy the KKT conditions for the

constrained optimization problem (3.24). Equivalently ŵ := ẑ0 is a stationary point of

(3.2).
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(b) The true parameter w0 and its estimate ŵ empirically converge as

lim
N→∞

{(w0
i , ŵi)}

PL(2)
= (W 0, Ŵ ), (3.32)

where W 0 is the random variable from (3.8) and

Ŵ = proxfin/γ+
0
(W 0 +Q−

0 ), (3.33)

with Q−
0 = N (0, τ−0 ) independent of W 0.

(c) The asymptotic generalization error (3.17) with (yts, ŷts) defined as (3.3) is given by

Ets = E fts
(
ϕout(Zts, D), ϕ(Ẑts)

)
, (3.34)

where (Zts, Ẑts) ∼ N (02,M) and independent of D.

Part (a) shows that, similar to gradient descent, Algorithm 2 finds the stationary points

of problem (3.2). These stationary points will be unique in strictly convex problems such

as linear and logistic regression. Thus, in such cases, the same results will be true for any

algorithm that finds such stationary points. Hence, the fact that we are using ML-VAMP is

immaterial – our results apply to any solver for (3.2). Note that the convergence to the fixed

points {ẑℓ, p̂ℓ} is assumed from Assumption 2.

Part (b) provides an exact description of the asymptotic statistical relation between the

true parameter w0 and its estimate ŵ. The parameters τ−0 , γ
+
0 > 0 and M can be explicitly

computed using a set of recursive equations called the state evolution or SE described in

Section 3.6.

We can use the expressions to compute a variety of relevant metrics. For example, the
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PL(2) convergence shows that the MSE on the parameter estimate is

lim
N→∞

1

N

N∑
n=1

(w0
n − ŵn)

2 = E(W 0 − Ŵ )2. (3.35)

The expectation on the right hand side of (3.35) can then be computed via integration over

the joint density of (W 0, Ŵ ) from part (b). In this way, we have a simple and exact method

to compute the parameter error. Other metrics such as parameter bias or variance, cosine

angle or sparsity detection can also be computed.

Part (c) of Theorem 1 similarly exactly characterizes the asymptotic generalization error.

In this case, we would compute the expectation over the three variables (Z, Ẑ,D). In this way,

we have provided a methodology for exactly predicting the generalization error from the key

parameters of the problems such as the sampling ratio β = p/N , the regularizer, the output

function, and the distributions of the true weights and noise. We provide several examples

such as linear regression, logistic regression and SVM in Section 3.7. We also recover the

result by [59]. The detailed proof of Theorem 1 is given in Appendix B.2.

Remarks on Assumptions. Note that Assumption 1 is satisfied in many practical cases.

For example, it can be verified that it is satisfied in the case when fin(·) and fout(·) are convex.

Assumption 2 is somewhat more restrictive in that it requires that the ML-VAMP algorithm

converges. The convergence properties of ML-VAMP are discussed in [49]. The ML-VAMP

algorithm may not always converge, and characterizing conditions under which convergence

is possible is an open question. However, experiments in [105] show that the algorithm does

indeed often converge, and in these cases, our analysis applies. In any case, we will see below

that the predictions from Theorem 1 agree closely with numerical experiments in several

relevant cases. In some special cases equation (3.34) simplifies to yield quantitative insights

for interesting modeling artifacts. We discuss these in Section 3.7.
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3.5 ML-VAMP Denoisers

A key property of our analysis will be that the non-linear functions (3.20) and the denoisers

g±
ℓ (·) have simple forms.

Non-linear functions ϕℓ(·): The non-linear functions all act componentwise. For example, for

ϕ1(·) in (3.20), we have

z1 = ϕ1(p0, str) = diag(str)p0 ⇐⇒ z1,n = ϕ1(p0,n, str,n),

where ϕ1(·) is the scalar-valued function, ϕ1(p0, s) = sp0. Similarly, for ϕ2(·),

z2 = ϕ2(p1, s
+
mp)⇐⇒ z2,n = ϕ2(wp1,n, s

+
mp,n), n < N

where wp1 ∈ RN is the zero-padded version of p1, and ϕ2(p1, s) = s p1. Finally, the function

ϕ3(·) in (3.20) acts component-wise with ϕ3(p2, d) = ϕout(p2, d).

Input denoiser g+
0 (·): Since F0(z0) = Fin(z0), and Fin(·) given in (3.6), the denoiser (3.27a)

acts componentwise in that,

ẑ0 = g+
0 (r

−
0 , γ

−
0 )⇐⇒ ẑ0,n = g+0 (r

−
0,n, γ

−
0 ),

where g+0 (·) is the scalar-valued function,

g+0 (r
−
0 , γ

−
0 ) := argmin

z0

fin(z0) +
γ−0
2
(z0 − r−0 )2. (3.36)

Thus, the vector optimization in (3.27a) reduces to a set of scalar optimizations (3.36) on

each component.

Output denoiser g−
3 (·): The output penalty F3(p2,y) = Fout(p2,y) where Fout(p2,y) has the

separable form (3.6). Thus, similar to the case of g0(·), the denoiser g3(·) in (3.27b) also acts
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componentwise with the function,

g−3 (r
+
2 , γ

+
2 , y) := argmin

p2

fout(p2, y) +
γ+
2

2
(p2 − r+2 )2. (3.37)

Linear denoiser g±
1 (·): The expressions for both denoisers g±1 and g±2 are very similar and can

be explained together. The penalty F1(·) restricts z1 = Strp0, where Str is a square matrix.

Hence, for ℓ = 1, the minimization in (3.29) is given by,

p̂0 := argmin
p0

γ+
0

2
∥p0 − r+0 ∥2 +

γ−
1

2
∥Strp0 − r−1 ∥2, (3.38)

and ẑ1 = Strp̂0. This is a simple quadratic minimization and the components of p̂0 and ẑ1

are given by

p̂0,n = g−1 (r
+
0,n, r

−
1,n, γ

+
0 , γ

−
1 , str,n),

ẑ1,n = g+1 (r
+
0,n, r

−
1,n, γ

+
0 , γ

−
1 , str,n),

where

g−1 (r
+
0 , r

−
1 , γ

+
0 , γ

−
1 , s) :=

γ+0 r
+
0 + sγ−1 r

−
1

γ+0 + s2γ−1
, (3.39a)

g+1 (r
+
0 , r

−
1 , γ

+
0 , γ

−
1 , s) :=

s(γ+0 r
+
0 + sγ−1 r

−
1 )

γ+0 + s2γ−1
. (3.39b)

Linear denoiser g±
2 (·): This denoiser is identical to the case g±

1 (·) in that we need to impose

the linear constraint z2 = Smpp1. However Smp is in general a rectangular matrix and

the two resulting cases of β ≶ 1 needs to be treated separately. Recall the definitions of

vectors s+mp and s−mp at the beginning of this section. Then, for ℓ = 2, with the penalty
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F2(p1, z2) = δ{z2=Smpp1}, the solution to (3.29) has components,

p̂1,n = g−2 (r
+
1,n, r

−
2,n, γ

+
1 , γ

+
2 , s

−
mp,n), (3.40a)

ẑ2,n = g+2 (r
+
1,n, r

−
2,n, γ

+
1 , γ

+
2 , s

+
mp,n), (3.40b)

with the identical functions g−2 = g−1 and g+2 = g+1 as given by (3.39a) and (3.39b). Note that

in (3.40a), n = 1, . . . , p and in (3.40b), n = 1, . . . , N .

3.6 State Evolution Analysis of ML-VAMP

A key property of the ML-VAMP algorithm is that its performance in the LSL can be exactly

described by a scalar equivalent system. In the scalar equivalent system, the vector-valued

outputs of the algorithm are replaced by scalar random variables representing the typical

behavior of the components of the vectors in the large-scale-limit (LSL). Each of the random

variables are described by a set of parameters, where the parameters are given by a set of

deterministic equations called the state evolution or SE.

The SE for the general ML-VAMP algorithm are derived in [97] and the special case

of the updates for ML-VAMP for GLM learning are shown in Algorithm 3 with details of

functions g±
ℓ in Section 3.5. We see that the SE updates in Algorithm 3 parallel those in the

ML-VAMP algorithm Algo. 2, except that vector quantities such as ẑkℓ, p̂kℓ, r+kℓ and r−kℓ are

replaced by scalar random variables such as Ẑkℓ, P̂kℓ, R+
kℓ and R−

kℓ. Each of these random

variables are described by the deterministic parameters such as Kkℓ ∈ R2×2
≻0 , and τ 0ℓ , τ−kℓ ∈ R+.

The updates in the section labeled as “Initial”, provide the scalar equivalent model for the

true system (3.18). In these updates, Ξℓ represent the limits of the vectors ξℓ in (3.19). That

is,

Ξ1 := Str, Ξ2 := S+
mp, Ξ3 := D. (3.41)

Due to assumptions in Section 3.2, we have that the components of ξℓ converge empirically
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Algorithm 3 SE for ML-VAMP for GLM Learning
Require: Functions g+0 , g−L , and g+ℓ , g

−
ℓ for ℓ = 1, . . . , L−1

1: Initialize γ−0ℓ = γ−0ℓ from Algorithm 2.
2: Q−

0ℓ ∼ N (0, τ−0ℓ) for some τ−0ℓ > 0 for ℓ = 0, 1, 2
3: Z0

0 = W 0

4: for ℓ = 0, . . . , L−1 do
5: P 0

ℓ = N (0, τ 0ℓ ), τ 0ℓ = var(Z0
ℓ )

6: Z0
ℓ+1 = ϕℓ+1(P

0
ℓ ,Ξℓ+1)

7: end for
8: for k = 0, 1, . . . do
9: // Forward Pass

10: for ℓ = 0, . . . , L− 1 do
11: if ℓ = 0 then
12: R−

k0 = Z0
ℓ +Q−

k0

13: Ẑk0 = g+0 (R
−
k0, γ

−
k0)

14: else
15: R+

k,ℓ−1 = P 0
ℓ−1 + P+

k,ℓ−1, R
−
kℓ = Z0

ℓ +Q−
kℓ

16: Ẑkℓ = g+ℓ (R
+
k,ℓ−1, R

−
kℓ, γ

+
k,ℓ−1, γ

−
kℓ,Ξℓ)

17: end if
18: α+

kℓ = E∂Ẑkℓ/∂Q
−
kℓ

19: Q+
kℓ =

Ẑkℓ − Z0
ℓ − α+

kℓQ
−
kℓ

1− α+
kℓ

20: γ+kℓ = ( 1
α+
kℓ

− 1)γ−kℓ

21: (P 0
ℓ , P

+
kℓ) ∼ N (0,K+

kℓ), K
+
kℓ = cov(Z0

ℓ , Q
+
kℓ)

22: end for
23: // Backward Pass
24: for ℓ = L, . . . , 1 do
25: if ℓ = L then
26: R+

k,L−1 = P 0
L−1 + P+

k,L−1

27: P̂k,L−1 = g−L (R
+
k,L−1, γ

+
k,L−1, Z

0
L)

28: else
29: R+

k,ℓ−1 = P 0
ℓ−1 + P+

k,ℓ−1, R
−
k+1,ℓ = Z0

ℓ +Q−
k+1,ℓ

30: P̂k,ℓ−1 = g−ℓ (R
+
k,ℓ−1, R

−
k+1,ℓ, γ

+
k,ℓ−1, γ

−
k+1,ℓ,Ξℓ)

31: end if
32: α−

k,ℓ−1 = E∂P̂k,ℓ−1/∂P
+
k,ℓ−1

33: P−
k+1,ℓ−1 =

P̂k,ℓ−1 − P 0
ℓ−1 − α−

k,ℓ−1P
+
k,ℓ−1

1− α−
k,ℓ−1

34: γ−k+1,ℓ−1 = ( 1
α−
k,ℓ−1
− 1)γ+k,ℓ−1

35: Q−
k+1,ℓ−1 ∼ N (0, τ−k+1,ℓ−1), τ

−
k,ℓ−1 = E(P−

k+1,ℓ−1)
2

36: end for
37: end for
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as,

lim
N→∞

{ξℓ,i}
PL(2)
= Ξℓ, (3.42)

So, the Ξℓ represent the asymptotic distribution of the components of the vectors ξℓ.

The updates in sections labeled “Forward pass" and “Backward pass" in the SE equations

in Algorithm 3 parallel those in Algorithm 2. The key quantities in these SE equations are

the error variables,

p+
kℓ := r+kℓ − p0

ℓ , q−
kℓ := r−kℓ − z0ℓ ,

which represent the errors of the estimates to the inputs of the denoisers. We will also be

interested in their transforms,

q+
kℓ = VT

ℓ p
+
k,ℓ+1, p−

kℓ = Vℓq
−
kℓ.

The following Theorem is an adapted version of the main result from [97] to the iterates of

Algorithms 2 and 3.

Theorem 2. Consider the outputs of the ML-VAMP for GLM Learning Algorithm under

the assumptions of Section 3.2. Assume the denoisers satisfy the continuity conditions in

Assumption 1. Also, assume that the outputs of the SE satisfy

α±
kℓ ∈ (0, 1),

for all k and ℓ. Suppose Algo. 2 is initialized so that the following convergence holds:

lim
N→∞

{r−0ℓ − z0ℓ}
PL(2)
= Q−

0ℓ,

where (Q−
00, Q

−
01, Q

−
02) are independent zero-mean Gaussians, independent of {Ξℓ}. Then,

(a) For any fixed iteration k ≥ 0 in the forward direction and layer ℓ = 1, . . . , L−1, we
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have that, almost surely,

lim
N→∞

(γ+k,ℓ−1, γ
−
kℓ) = (γ+k,ℓ−1, γ

−
kℓ), and, (3.43)

lim
N→∞

{(ẑ+kℓ, z
0
ℓ ,p

0
ℓ−1, r

+
k,ℓ−1, r

−
ℓ )}

PL(2)
= (Ẑ+

kℓ, Z
0
ℓ , P

0
ℓ−1, R

+
k,ℓ−1, R

−
ℓ ), (3.44)

where the variables on the right-hand side are from the SE equations (3.43) and (3.44)

are the outputs of the SE equations in Algorithm 3. Similar equations hold for ℓ = 0

with the appropriate variables removed.

(b) Similarly, in the reverse direction, For any fixed iteration k ≥ 0 and layer ℓ = 1, . . . , L−

2, we have that, almost surely,

lim
N→∞

(γ+k,ℓ−1, γ
−
k+1,ℓ) = (γ+k,ℓ−1, γ

−
k+1,ℓ), and (3.45)

lim
N→∞

{(p̂+
k+1,ℓ−1, z

0
ℓ ,p

0
ℓ−1, r

+
k,ℓ−1, r

−
k+1,ℓ)}

PL(2)
= (P̂+

k+1,ℓ−1, Z
0
ℓ , P

0
ℓ−1, R

+
k,ℓ−1, R

−
k+1,ℓ). (3.46)

Furthermore, (P 0
ℓ−1, P

+
kℓ−1) and Q−

kℓ are independent.

Proof. This is a direct application of Theorem 3 from [98] to the iterations of Algorithm 2.

The convergence result in [98] requires the uniform Lipschitz continuity of functions g±
ℓ (·).

Assumption 1 provides the required uniform Lipschitz continuity assumption on g+
0 (·) and

g−
3 (·). For the ”middle" layers, ℓ = 1, 2, the denoisers g±

ℓ (·) are linear and the uniform

continuity assumption is valid since we have made the additional assumption that the terms

str and smp are bounded almost surely. □

A key use of the Theorem is to compute asymptotic empirical limits. Specifically, for

a componentwise function ψ(·), let ⟨ψ(x)⟩ denotes the average 1
N

∑N
n=1 ψ(xn) The above

theorem then states that for any componentwise pseudo-Lipschitz function ψ(·) of order 2, as
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N →∞, we have the following two properties

lim
N→∞

〈
ψ(ẑ+kℓ, z

0
ℓ ,p

0
ℓ−1, r

+
k,ℓ−1, r

−
ℓ )
〉

= Eψ(Ẑ+
kℓ, Z

0
ℓ , P

0
ℓ−1, R

+
k,ℓ−1, R

−
ℓ ),

lim
N→∞

〈
ψ(p̂+

k+1,ℓ−1, z
0
ℓ ,p

0
ℓ−1, r

+
k,ℓ−1, r

−
k+1,ℓ)

〉
= Eψ(P̂+

k+1,ℓ−1, Z
0
ℓ , P

0
ℓ−1, R

+
k,ℓ−1, R

−
k+1,ℓ).

That is, we can compute the empirical average over components with the expected value of

the random variable limit. This convergence is key to proving Theorem 1.

3.7 Special Cases

In this section, we provide a few special cases for calculating the generalization error of the

GLM problem (3.2).

3.7.1 Linear Output with Square Error

We first consider a linear output with additive Gaussian noise and a squared error training

and test loss. Specifically, consider the model,

y = Xw0 + d. (3.47)

We consider estimates of w0 such that:

ŵ = argmin
w

1
2
∥y −Xw∥2 + λ

2β
∥w∥2 . (3.48)

The factor β is added above since the two terms scale with a ratio of β. It does not change

analysis. Consider the ML-VAMP GLM learning algorithm applied to this problem. The

following corollary follows from the main result in Theorem 1.
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Corollary 1 (Squared error). For linear regression, i.e., ϕ(t) = t, ϕout(t, d) = t + d,

fts(y, ŷ) = (yts − ŷts)2, Fout(p2) =
1
N
∥y − p2∥2, we have

ELRts =E
(

wγ+
0 Sts

wγ+
0 +S2

trwγ−
1

)2
k22 + E

(
wγ−

1 StrSts

wγ+
0 +S2

trwγ−
1

)2
τ−1 + σ2

d.

The quantities k22, τ−1 , γ
+
0 , γ

−
1 depend on the choice of regularizer λ and the covariance between

features.

Proof. See Appendix B.3. □

3.7.2 Ridge Regression with i.i.d. Covariates

We next look at the special case when the input features are independent, i.e., (3.48) where

rows of X corresponding to the training data has i.i.d Gaussian features with covariance

Ptrain =
σ2
tr

p
I and Str = σtr.

Although the solution to (3.48) exists in closed form (XTX+ λI)−1XTy, we can study

the effect of the regularization parameter λ on the generalization error Ets as detailed in the

result below.

Corollary 2. Consider the ridge regression problem (3.48) with regularization parameter

λ > 0. For the squared loss i.e., fts(y, ŷ) = (y − ŷ)2, i.i.d Gaussian features without train-test

mismatch, i.e., Str = Sts = σtr, the generalization error ERRts is given by Corollary 1, with

constants

k22 = Var(W 0), γ+0 = λ/β,

γ−1 =


1
G
− λ

σ2
tr

β < 1
λ

σ2
trβ

(
1
G
− λ
σ2
trβ

)

β−1
G

+
λ

σ2
trβ

β > 1
,

where G = Gmp(− λ
σ2
trβ

), with Gmp given in Section 2.2.1, and τ−1 = E(P−
1 )2 where P−

1 is

given in equation (B.39) in the proof in the Appendix B.3.
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Proof. See Appendix B.3. □

3.7.3 Ridgeless Linear Regression

Here we consider the case of Ridge regression (3.48) when λ→ 0+. Note that the solution to

the problem (3.48) is (XTX+λI)−1XTy remains unique since λ > 0. The following result was

stated in [59], and can be recovered using our methodology. Note however, that we calculate

the generalization error whereas they have calculated the squared error, whereby we obtain

an additional additive factor of σ2
d. The result explains the double-descent phenomenon for

Ridgeless linear regression.

Corollary 3. For ridgeless linear regression, we have

lim
λ→0+

ERRts =


1

1−β
σ2
d β < 1

β
β−1

σ2
d + (1− 1

β
)σ2

trVar(W
0) β ≥ 1

Proof. See Appendix B.3 □

3.7.4 Train-Test Mismatch

Observe that our formulation allows for analyzing the effect of mismatch in the training and

test distribution. One can consider arbitrary joint distributions over (Str, Sts) that model the

mismatch between training and test features. Here we give a simple example which highlights

the effect of this mismatch.

Definition 1 (Bernoulli ε-mismatch). (Sts, Str) has a bivariate Bernoulli distribution with

• Pr{Str=Sts=0} = P{Str=Sts=1} = (1− ε)/2

• Pr{Str=0, Sts=1} = P{Str=1, Sts=0} = ε/2

Notice that the marginal distribution of the Str in the Bernoulli ε−mismatch model is

such that P(Str ≠ 0) = 1
2
. Hence half of the features extracted by the matrix V0 are relevant
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during training. Similarly, P(Sts ̸= 0) = 1
2
. However the features spanned by the test data

do not exactly overlap with the features captured in the training data, and the fraction of

features common to both the training and test data is 1− ε. Hence for ε = 0, there is no

training-test mismatch, whereas for ε = 1 there is a complete mismatch.

The following result shows that the generalization error increases linearly with the

mismatch parameter ε.

Corollary 4 (Mismatch). Consider the problem of Linear Regression (3.48) under the

conditions of Corollary 1. Additionally suppose we have Bernoulli ε-mismatch between the

training and test distributions. Then

Ets = k22
2
((1− ε)γ∗2 + ε) +

τ−1
2
(1− γ∗)(1− ε) + σ2

d,

where γ∗ := wγ+
0

wγ+
0 +wγ−

1

. The terms k22, τ−1 , γ∗ are independent of ε.

Proof. This follows directly by calculating the expectations of the terms in Corollary 1, with

the joint distribution of (Str, Sts) given in Definition 1. □

The quantities k22 and τ−1 in the result above can be calculated similar to the derivation

in the proof of Corollary 2 and can in general depend on the regularization parameter λ and

overparameterization parameter β.

3.7.5 Logistic Regression

The precise analysis for the special case of regularized logistic regression estimator with i.i.d

Gaussian features is provided in [110]. Consider the logistic regression model,

P(yi = 1|xi) := ρ(xT
i w) for i = 1, · · · , N

where ρ(x) = 1
1+e−x is the standard logistic function.
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In this problem we consider estimates of w0 such that

ŵ := argmin
w

1T log(1 + eXw)− yTXw + Fin(w).

where Fin is the reguralization function. This is a special case of optimization problem (3.2)

where

Fout(y,Xw) = 1T log(1 + eXw)− yTXw. (3.49)

Similar to the linear regression model, using the ML-VAMP GLM learning algorithm, we

can characterize the generalization error for this model with quantities K+
0 , τ

−
1 , γ

+
0 , γ

−
1 given

by algorithm 3. We note that in this case, the output non-linearity is

ϕout(p2, d) = 1{ρ(p2)>d} (3.50)

where d ∼ Unif(0, 1). Also, the denoisers g+0 , and g−3 can be derived as the proximal operators

of Fin, and Fout defined in (3.27).

3.7.6 Support Vector Machines

The asymptotic generalization error for support vector machine (SVM) is provided in [36].

Our model can also handle SVMs. Similar to logistic regression, SVM finds a linear classifier

using the hinge loss instead of logistic loss. Assuming the class labels are y = ±1 the hinge

loss is

ℓhinge(y, ŷ) = max(0, 1− yŷ). (3.51)

Therefore, if we take

Fout(y,Xw) =
∑
i

max(0, 1− yiXiw), (3.52)

where Xi is the ith row of the data matrix, the ML-VAMP algorithm for GLMs finds the SVM

classifier. The algorithm would have proximal map of hinge loss and our theory provides
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exact predictions for the estimation and prediction error of SVM.

As with all other models considered in this work, the true underlying data generating

model could be anything that can be represented by the graphical model in Figure 3.1, e.g.

logistic or probit model, and our theory is able to exactly predict the error when SVM is

applied to learn such linear classifiers in the large system limit.

3.8 Numerical Experiments

Training and Test Distributions. Our theoretical results are validated on a number of

synthetic data experiments. For all the experiments, the training and test data is generated

following the model in Section 3.2. We generate the training and test eigenvalues as i.i.d.

with lognormal distributions,

S2
tr = A(10)0.1utr , S2

ts = A(10)0.1uts ,

where (utr, uts) are bivariate zero-mean Gaussian with

cov(utr, uts) = σ2
u

1 ρ

ρ 1

 .
In the case when σ2

u = 0, we obtain eigenvalues that are equal, corresponding to the i.i.d.

case. With σ2
u > 0 we can model correlated features. Also, when the correlation coefficient

ρ = 1, Str = Sts, so there is no training and test mismatch. However, we can also select ρ < 1

to experiment with cases when the training and test distributions differ. In the examples

below, we consider the following three cases:

(1) i.i.d. features (σu = 0);

(2) correlated features with matching training and test distributions (σu = 3 dB, ρ = 1);

and
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(3) correlated features with train-test mismatch (σu = 3 dB, ρ = 0.5).

For all experiments below, the true model coefficients are generated as i.i.d. Gaussian

w0
j ∼ N (0, 1) and we use standard L2-regularization, fin(w) = λw2/2 for some λ > 0. Our

framework can incorporate arbitrary i.i.d. distributions on wj and regularizers, but we will

illustrate just the Gaussian case with L2-regularization here.

Under-regularized linear regression. We first consider the case of under-regularized

linear regression where the output channel is ϕout(p, d) = p+ d with d ∼ N (0, σ2
d). The noise

variance σ2
d is set for an SNR level of 10 dB. We use a standard mean-square error (MSE) output

loss, fout(y, p) = (y − p)2/(2σ2
d). Since we are using the L2-regularizer, fin(w) = λw2/2, the

minimization (3.2) is standard ridge regression. Moreover, if we were to select λ = 1/E(w0
j )

2,

then the ridge regression estimate would correspond to the minimum mean-squared error

(MMSE) estimate of the coefficients w0. However, to study the under-regularized regime, we

take λ = 10−4/E(w0
j )

2.

Fig. 3.2 plots the test MSE for the three cases described above for the linear model.

In the figure, we take p = 1000 features and vary the number of samples n from 0.2p

(over-parameterized) to 3p (under-parameterized). For each value of n, we take 100 random

instances of the model and compute the ridge regression estimate using the sklearn package

and measure the test MSE on the 1000 independent test samples. The simulated values in

Fig. 3.2 are the median test error over the 100 random trials. The test MSE is plotted in a

normalized dB scale,

Test MSE (dB) = 10 log10

(
E(ŷts − yts)2

Ey2ts

)
.

Also plotted is the state evolution (SE) theoretical test MSE from Theorem 1.

In all three cases in Fig. 3.2, the SE theory exactly matches the simulated values for the

test MSE. Note that the case of match training and test distributions for this problem was

studied in [59, 82, 88] and we see the double descent phenomenon described in their work.
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Figure 3.2: Test error for under-regularized linear regression under various train and test
distributions. Noise variance σ2

d is set to SNR = 10 dB. The number of features p = 1000, and
the number of samples n vary from 0.2×p (over-parameterized) to 3×p (under-parameterized).
The experiment is averaged over 100 random instances of the model for each n and test MSE
is calculated with 1000 independent test samples.

Specifically, with highly under-regularized linear regression, the test MSE actually increases

with more samples n in the over-parametrized regime (n/p < 1) and then decreases again in

the under-parametrized regime (n/p > 1).

Our SE theory can also provide predictions for the correlated feature case. In this

particular setting, we see that in the correlated case the test error is slightly lower in the

over-parametrized regime since the energy of data is concentrated in a smaller sub-space.

Interestingly, there is minimal difference between the correlated and i.i.d. cases for the

under-parametrized regime when the training and test data match. When the training and

test data are not matched, the test error increases. In all cases, the SE theory can accurately

predict these effects.

Logistic Regression. Fig. 3.3 shows a similar plot as Fig. 3.2 for a logistic model. Specifi-

cally, we use a logistic output P (y = 1) = 1/(1 + e−p), a binary cross entropy output loss

fout(y, p), and ℓ2-regularization level λ, so that the output corresponds to the MAP estimate
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Figure 3.3: Classification error rate for logistic regression under various train and test
distributions. Fout is the Binary cross-entropy loss, and Fin is the ridge penalty. The median
error rate (1- accuracy) is estimated from 1000 new test samples.

(we do not perform ridgeless regression in this case). Other values of λ would correspond to

M-estimators with a mismatched prior.

The mean of the training and test eigenvalues ES2
tr = ES2

ts are selected such that, if the

true coefficients w0 were known, we could obtain a 5% prediction error. As in the linear case,

we generate random instances of the model, use the sklearn package to perform the logistic

regression, and evaluate the estimates on 1000 new test samples. We compute the median

error rate (1− accuracy) and compare the simulated values with the SE theoretical estimates.

The i.i.d. case was considered in [110]. Fig. 3.3 shows that our SE theory is able to predict

the test error rate exactly in i.i.d. cases along with a correlated case and a case with training

and test mismatch.

Nonlinear Regression. The SE framework can also consider non-convex problems. As an

example, we consider a non-linear regression problem where the output function is

ϕout(p, d) = tanh(p) + d, d ∼ N (0, σ2
d). (3.53)
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Figure 3.4: Test MSE under a non-linear least square estimation. The tanh(·) output function
is used with ℓ2-regularization. Noise variance σ2

d = 0.01. The ADAM optimizer is used for
simulations.

The tanh(p) models saturation in the output. Corresponding to this output, we use a

non-linear MSE output loss

fout(y − p) =
1

2σ2
d

(y − tanh(p))2. (3.54)

This output loss is non-convex. The data is generated as in the previous experiments and we

scale the data matrix so that the input E(p2) = 9 so that the tanh(p) is driven well into the

non-linear regime. We also take σ2
d = 0.01.

For the simulation, the non-convex loss is minimized using TensorFlow, where the non-

linear model is described as a two-layer model. We use the ADAM optimizer [68] with 200

epochs to approach a local minimum of the objective (3.2). Fig. 3.4 plots the median test

MSE for the estimate along with the SE theoretical test MSE. We again see that the SE

theory is able to predict the test MSE in all cases even for this non-convex problem. Note

that Figures 3.3 and 3.4 do not show a double descent because we apply regularization in

those experiments.
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3.9 Summary

In this chapter we provided a procedure for exactly computing the asymptotic generalization

error of a solution in a generalized linear model (GLM). This procedure is based on scalar

quantities which are fixed points of a recursive iteration. The formula holds for a large class

of generalization metrics, loss functions, and regularization schemes. Our formula allows

analysis of important modeling effects such as over-parameterization, dependence between

covariates, and mismatch between train and test distributions, which play a significant role

in the analysis and design of machine learning systems. We experimentally validated our

theoretical results for linear as well as non-linear regression and logistic regression, where a

strong agreement is seen between our formula and simulated results.
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Chapter 4

Input-Output Equivalence of Unitary and

Contractive Recurrent Neural Networks

1 Unitary recurrent neural networks (URNNs) have been proposed as a method to overcome

the vanishing and exploding gradient problem in modeling data with long-term dependencies.

A basic question is how restrictive the unitary constraint is on the possible input-output

mappings of such a network. This chapter shows that for any contractive RNN with ReLU

activations, there is a URNN with at most twice the number of hidden states and the identical

input-output mapping. Hence, with ReLU activations, URNNs are as expressive as general

RNNs. In contrast, for certain smooth activations, we show that the input-output mapping

of an RNN cannot be matched with a URNN, even with an arbitrary number of states. The

theoretical results are supported by experiments on modeling of slowly-varying dynamical

systems.

1This chapter is based on the work [46] coauthored with Mojtaba Sahraee-Ardakan, Sundeep Rangan and
Alyson K. Fletcher.
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4.1 Introduction

Recurrent neural networks (RNNs) – originally proposed in the late 1980s [45,109] – refer

to a widely-used and powerful class of models for time series and sequential data. In recent

years, RNNs have become particularly important in speech recognition [58,61] and natural

language processing [9, 32,119] tasks.

A well-known challenge in training recurrent neural networks is the vanishing and exploding

gradient problem [20,100]. RNNs have a transition matrix that maps the hidden state at one

time to the next time. When the transition matrix has an induced norm greater than one,

the RNN may become unstable. In this case, small perturbations of the input at some time

can result in a change in the output that grows exponentially over the subsequent time. This

instability leads to a so-called exploding gradient. Conversely, when the norm is less than

one, perturbations can decay exponentially so inputs at one time have negligible effect in the

distant future. As a result, the loss surface associated with RNNs can have steep walls that

may be difficult to minimize. Such problems are particularly acute in systems with long-term

dependencies, where the output sequence can depend strongly on the input sequence many

time steps in the past.

Unitary RNNs (URNNs) [6] is a simple and commonly-used approach to mitigate the

vanishing and exploding gradient problem. The basic idea is to restrict the transition matrix

to be unitary (an orthogonal matrix for the real-valued case). The unitary transitional matrix

is then combined with a non-expansive activation such as a ReLU or sigmoid. As a result,

the overall transition mapping cannot amplify the hidden states, thereby eliminating the

exploding gradient problem. In addition, since all the singular values of a unitary matrix

equal 1, the transition matrix does not attenuate the hidden state, potentially mitigating

the vanishing gradient problem as well. (Due to activation, the hidden state may still be

attenuated). Some early work in URNNs suggested that they could be more effective than

other methods, such as long short-term memory (LSTM) architectures and standard RNNs,

for certain learning tasks involving long-term dependencies [6, 65] – see a short summary

64



below.

Although URNNs may improve the stability of the network for the purpose of optimization,

a basic issue with URNNs is that the unitary constraint may potentially reduce the set of

input-output mappings that the network can model. Here, we seeks to rigorously characterize

how restrictive the unitary constraint is on an RNN. We evaluate this restriction by comparing

the set of input-output mappings achievable with URNNs with the set of mappings from all

RNNs. As described below, we restrict our attention to RNNs that are contractive in order

to avoid unstable systems.

4.1.1 Key Contributions

We show that, given any contractive RNN with n hidden states and ReLU activations, there

exists a URNN with at most 2n hidden states and the identical input-ouput mapping. This

result is tight in the sense that, given any n > 0, there exists at least one contractive RNN

such that any URNN with the same input-output mapping must have at least 2n states. We

also demonstrate that the equivalence of URNNs and RNNs depends on the activation. For

example, we prove that there exists a contractive RNN with sigmoid activations such that

there is no URNN with any finite number of states that exactly matches the input-output

mapping. The implication of this result is that, for RNNs with ReLU activations, there is

no loss in the expressiveness of model when imposing the unitary constraint. As we discuss

later, the penalty is a two-fold increase in the number of parameters.

Of course, the expressiveness of a class of models is only one factor in their real performance.

Based on these results alone, one cannot determine if URNNs will outperform RNNs in

any particular task. Earlier works have found examples where URNNs offer some benefits

over LSTMs and RNNs [6,128]. But in our simulations concerning modeling slowly-varying

nonlinear dynamical systems, we see that URNNs with 2n states perform approximately

equally to RNNs with n states.
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4.1.2 Prior Work

The vanishing and exploding gradient problem in RNNs has been known almost as early

as RNNs themselves [20, 100]. It is part of a larger problem of training models that can

capture long-term dependencies, and several proposed methods address this issue. Most

approaches use some form of gate vectors to control the information flow inside the hidden

states, the most widely-used being LSTM networks [62]. Other gated models include Highway

networks [116] and gated recurrent units (GRUs) [30]. L1/L2 penalization on gradient

norms and gradient clipping were proposed to solve the exploding gradient problem in [100].

With L1/L2 penalization, capturing long-term dependencies is still challenging since the

regularization term quickly kills the information in the model. A more recent work [101] has

successfully trained very deep networks by carefully adjusting the initial conditions to impose

an approximate unitary structure of many layers.

Unitary evolution RNNs (URNNs) are a more recent approach first proposed in [6]. One of

the technical difficulties is to efficiently parametrize the set of unitary matrices. The numerical

simulations presented here focus on relatively small networks, where the parameterization

is not a significant computational issue. Nevertheless, for larger numbers of hidden states,

several approaches have been proposed. The model in [6] parametrizes the transition matrix

as a product of reflection, diagonal, permutation, and Fourier transform matrices. This model

spans a subspace of the whole unitary space, thereby limiting the expressive power of RNNs.

The work [128] overcomes this issue by optimizing over full-capacity unitary matrices. A key

limitation this result, however, is that the projection of weights on to the unitary space is not

computationally efficient. A tunable, efficient parametrization of unitary matrices is proposed

in [65]. This model provides the computational complexity of O(1) per parameter. The

unitary matrix is represented as a product of rotation matrices and a diagonal matrix. By

grouping specific rotation matrices, the model provides tunability of the span of the unitary

space and enables using different capacities for different tasks. Combining the parametrization

in [65] for unitary matrices and the “forget” ability of the GRU structure, [30, 64] presented
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an architecture that outperforms conventional models in several long-term dependency tasks.

Other methods such as orthogonal RNNs proposed by [84] showed that the unitary constraint

is a special case of the orthogonal constraint. By representing an orthogonal matrix as a

product of Householder reflectors, we are able span the entire space of orthogonal matrices.

Imposing hard orthogonality constraints on the transition matrix limits the expressiveness of

the model and speed of convergence and performance may degrade [126].

4.2 RNNs and Input-Output Equivalence

4.2.1 RNNs

We consider recurrent neural networks (RNNs) representing sequence-to-sequence mappings

of the form

ht = ϕ(Wht−1 + Fxt + b), h(−1) = h−1, (4.1a)

yt = Cht, (4.1b)

parameterized by θ = (W,F,b,C,h−1). The system is shown in Fig. 4.1. The system maps

a sequence of inputs xt ∈ Rm, t = 0, 1, . . . , T − 1 to a sequence of outputs yt ∈ Rp. In

equation (4.1), ϕ is the activation function (e.g. sigmoid or ReLU); ht ∈ Rn is an internal

or hidden state; W ∈ Rn×n,F ∈ Rn×m, and C ∈ Rp×n are the hidden-to-hidden, input-to-

hidden, and hidden-to-output weight matrices respectively; and b is the bias vector. We have

considered the initial condition, h−1, as part of the parameters, although we will often take

h−1 = 0. Given a set of parameters θ, we will let

y = G(x,θ) (4.2)
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Figure 4.1: Recurrent Neural Networks representation

denote the resulting sequence-to-sequence mapping. Note that the number of time samples,

T , is fixed throughout our discussion.

Recall [118] that a matrix W is unitary if WHW = WWH = I. When a unitary matrix

is real-valued, it is also called orthogonal. In this work, we will restrict our attention to

real-valued matrices, but still use the term unitary for consistency with the URNN literature.

A Unitary RNN or URNN is simply an RNN (4.1) with a unitary state-to-state transition

matrix W. A key property of unitary matrices is that they are norm-preserving, meaning that

∥Wht∥2 = ∥ht∥2. In the context of (4.1a), the unitary constraint implies that the transition

matrix does not amplify the state.

4.2.2 Equivalence of RNNs

Our goal is to understand the extent to which the unitary constraint in a URNN restricts the

set of input-output mappings. To this end, we say that the RNNs for two parameters θ1 and

θ2 are input-output equivalent if the sequence-to-sequence mappings are identical,

G(x,θ1) = G(x,θ2) for all x = (x(0), . . . ,x(T−1)). (4.3)

That is, for all input sequences x, the two systems have the same output sequence. Note that

the hidden internal states ht in the two systems may be different. We will also say that two

RNNs are equivalent on a set of X of inputs if (4.3) holds for all x ∈ X .
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It is important to recognize that input-output equivalence does not imply that the

parameters θ1 and θ2 are identical. For example, consider the case of linear RNNs where the

activation in (4.1) is the identity, ϕ(z) = z. Then, for any invertible S, the transformation

W→ SWS−1, C→ CS−1, F→ SF, h−1 → Sh−1, (4.4)

results in the same input-output mapping. However, the internal states ht will be mapped to

Sht. The fact that many parameters can lead to identical input-output mappings will be key

to finding equivalent RNNs and URNNs.

4.2.3 Contractive RNNs

The spectral norm [118] of a matrix W is the maximum gain of the matrix ∥W∥ :=

maxh̸=0
∥Wh∥2
∥h∥2 . In an RNN (4.1), the spectral norm ∥W∥ measures how much the transition

matrix can amplify the hidden state. For URNNs, ∥W∥ = 1. We will say an RNN is

contractive if ∥W∥ < 1, expansive if ∥W∥ > 1, and non-expansive if ∥W∥ ≤ 1. In the sequel,

we will restrict our attention to contractive and non-expansive RNNs. In general, given an

expansive RNN, we cannot expect to find an equivalent URNN. For example, suppose ht = ht

is scalar. Then, the transition matrix W is also scalar W = w and w is expansive if and only

if |w| > 1. Now suppose the activation is a ReLU ϕ(h) = max{0, h}. Then, it is possible

that a constant input xt = x0 can result in an output that grows exponentially with time:

yt = const × wt. Such an exponential increase is not possible with a URNN. We consider

only non-expansive RNNs in the remainder of the chapter. Some of our results will also need

the assumption that the activation function ϕ(·) in (4.1) is non-expansive:

∥ϕ(x)− ϕ(y)∥2 ≤ ∥x− y∥2 , for all x and y.

This property is satisfied by the two most common activations, sigmoids and ReLUs.
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4.2.4 Equivalence of Linear RNNs.

To get an intuition of equivalence, it is useful to briefly review the concept in the case of

linear systems [66]. Linear systems are RNNs (4.1) in the special case where the activation

function is identity, ϕ(z) = z; the initial condition is zero, h−1 = 0; and the bias is zero,

b = 0. In this case, it is well-known that two systems are input-output equivalent if and only

if they have the same transfer function,

H(s) := C(sI−W)−1F. (4.5)

In the case of scalar inputs and outputs, H(s) is a rational function of the complex variable

s with numerator and denominator degree of at most n, the dimension of the hidden state ht.

Any state-space system (4.1) that achieves a particular transfer function is called a realization

of the transfer function. Hence two linear systems are equivalent if and only if they are the

realizations of the same transfer function.

A realization is called minimal if it is not equivalent some linear system with fewer hidden

states. A basic property of realizations of linear systems is that they are minimal if and

only if they are controllable and observable. The formal definition is in any linear systems

text, e.g. [66]. Loosely, controllable implies that all internal states can be reached with an

appropriate input and observable implies that all hidden states can be observed from the

ouptut. In absence of controllability and observability, some hidden states can be removed

while maintaining input-output equivalence.

4.3 Equivalence Results for RNNs with ReLU Activations

Our first results consider contractive RNNs with ReLU activations. For the remainder of the

section, we will restrict our attention to the case of zero initial conditions, h−1 = 0 in (4.1).

Theorem 3. Let y = G(x,θc) be a contractive RNN with ReLU activation and states of
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dimension n. Fix M > 0 and let X be the set of all sequences such that ∥xt∥2 ≤M <∞ for all

t. Then there exists a URNN with state dimension 2n and parameters θu = (Wu,Fu,bu,Cu)

such that for all x ∈ X , G(x,θc) = G(x,θu). Hence the input-output mapping is matched for

bounded inputs.

Proof. The basic idea is to construct a URNN with 2n states such that first n states match

the states of RNN and the last n states are always zero. To this end, consider any contractive

RNN,

hc,t = ϕ(Wc hc,t−1 + Fc xt + bc), yt = Cc hc,t,

where ht ∈ Rn. Note that the subscript c indicates the parameters/signals for the contractive

network and u for unitary network. The second subscript, t, for the hidden states indicates

the time index. Since W is contractive, we have ∥W∥ ≤ ρ for some ρ < 1. Also, for a ReLU

activation, ∥ϕ(z)∥ ≤ ∥z∥ for all pre-activation inputs z. Hence,

∥hc,t∥2 = ∥ϕ(Wchc,t−1 + Fcxt + bc)∥2 ≤ ∥Wchc,t−1 + Fcxt + bc∥2

≤ ρ∥hc,t−1∥2 + ∥Fc∥∥xt∥2 + ∥bc∥2.

Therefore, with bounded inputs, ∥xt∥ ≤M , we have the state is bounded,

∥ht∥2 ≤
1

1− ρ
[∥Fc∥M + ∥bc∥2] =:Mh. (4.6)

We construct a URNN as,

hu,t = ϕ(Wu hu,t−1 + Fu xt + bu), yt = Cu hu,t

where the parameters are of the form,

hu =

h1

h2

 ∈ R2n, Wu =

W1,W2

W3,W4

 , Fu =

Fc

0

 , bu =

bc

b2

 . (4.7)
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Let W1 = Wc. Since ∥Wc∥ < 1, we have I −WT
c Wc ⪰ 0. Therefore, there exists W3

such that WT
3W3 = I −WT

c Wc. With this choice of W3, the first n columns of Wu are

orthonormal. Let

W2

W4

 extend these to an orthonormal basis for R2n. Then, the matrix

Wu will be orthonormal.

Next, let b2 = −Mh1n×1, where Mh is defined in (4.6). We show by induction that for all

k,

h1,t = hc,t, h2,t = 0. (4.8)

If both systems are initialized at zero, (4.8) is satisfied at t = −1. Now, suppose this holds

up to time t− 1. Then,

h1,t = ϕ(W1h1,t−1 +W2h2,t−1 + Fcxt + bc)

= ϕ(W1h1,t−1 + Fcxt + bc) = hc,t,

where we have used the induction hypothesis that h2,t−1 = 0. For h2,t, note that

∥W3h1,t−1∥∞ ≤ ∥W3h1,t−1∥2 ≤ ∥h1,t−1∥ ≤Mh, (4.9)

where the last step follows from (4.6). Therefore,

W3h1,t−1 +W4h2,t−1 + b2 = W3h1,t−1 −M1n×1 ≤ 0. (4.10)

Hence with ReLU activation h2,t = ϕ(W3h1,t−1 +W4h2,t−1 + b2) = 0. By induction, (4.8)

holds for all t. Then, if we define Cu = [Cc 0], we have the output of the URNN and RNN

systems are identical

yu,t = Cuhu,t = Cch1,t = yc,t.

This shows that the systems are equivalent. □
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Theorem 3 shows that for any contractive RNN with ReLU activations, there exists

a URNN with at most twice the number of hidden states and the identical input-output

mapping. Thus, there is no loss in the set of input-output mappings with URNNs relative to

general contractive RNNs on bounded inputs.

The penalty for using RNNs is the two-fold increase in state dimension, which in turn

increases the number of parameters to be learned. We can estimate this increase in parameters

as follows: The raw number of parameters for an RNN (4.1) with n hidden states, p outputs

and m inputs is n2 + (p+m+ 1)n. However, for ReLU activations, the RNNs are equivalent

under the transformations (4.4) using diagonal positive S. Hence, the number of degrees of

freedom of a general RNN is at most drnn = n2 + (p+m)n. We can compare this value to

a URNN with 2n hidden states. The set of 2n × 2n unitary W has 2n(2n − 1)/2 degrees

of freedom [117]. Hence, the total degrees of freedom in a URNN with 2n states is at most

durnn = n(2n− 1) + 2n(p+m). We conclude that a URNN with 2n hidden states has slightly

fewer than twice the number of parameters as an RNN with n hidden states. We next show

a converse result.

Theorem 4. For any state dimension n, there exists at least one contractive RNN with ReLU

non-linearity such that if a URNN is equivalent to the RNN, it has at least 2n states.

Proof. See Appendix C.1. □

The result shows that the 2n achievability bound in Theorem 3 is tight, at least in the

worst case. In addition, the RNN constructed in the proof of Theorem 4 is not particularly

pathological. We will show in our simulations in Section 4.5 that URNNs typically need twice

the number of hidden states to achieve comparable modeling error as an RNN.
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4.4 Equivalence Results for RNNs with Sigmoid Activa-

tions

Equivalence between RNNs and URNNs depends on the particular activation. Our next

result shows that with sigmoid activations, URNNs are, in general, never exactly equivalent

to RNNs, even with an arbitrary number of states.

We need the following technical definition: Consider an RNN (4.1) with a sigmoid

activation ϕ(z) = 1/(1 + e−z). If W is non-expansive, then a simple application of the

contraction mapping principle shows that for any constant input xt = x∗, there is a fixed

point in the hidden state h∗ = ϕ(Wh∗ + Fx∗ + b). We will say that the RNN is controllable

and observable at x∗ if the linearization of the RNN around (x∗,h∗) is controllable and

observable.

Theorem 5. There exists a contractive RNN with sigmoid activation function ϕ with the

following property: If a URNN is controllable and observable at any point x∗, then the URNN

cannot be equivalent to the RNN for inputs x in the neighborhood of x∗.

Proof. See Appendix C.2. □

The result provides a converse on equivalence: Contractive RNNs with sigmoid activations

are not in general equivalent to URNNs, even if we allow the URNN to have an arbitrary

number of hidden states. Of course, the approximation error between the URNN and RNN may

go to zero as the URNN hidden dimension goes to infinity (e.g., similar to the approximation

results in [52]). However, exact equivalence is not possible with sigmoid activations, unlike

with ReLU activations. Thus, there is fundamental difference in equivalence for smooth and

non-smooth activations.
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4.5 Numerical Experiments

In this section, we numerically compare the modeling ability of RNNs and URNNs where

the true system is a contractive RNN with long-term dependencies. Specifically, we generate

data from multiple instances of a synthetic RNN where the parameters in (4.1) are randomly

generated. For the true system, we use m = 2 input units, p = 2 output units, and n = 4

hidden units at each time step. The matrices F, C and b are generated as i.i.d. Gaussians.

We use a random transition matrix,

W = I− ϵATA/∥A∥2, (4.11)

where A is Gaussian i.i.d. matrix and ϵ is a small value, taken here to be ϵ = 0.01. The

matrix (4.11) will be contractive with singular values in (1− ϵ, 1). By making ϵ small, the

states of the system will vary slowly, hence creating long-term dependencies. In analogy with

linear systems, the time constant will be approximately 1/ϵ = 100 time steps. We use ReLU

activations. To avoid degenerate cases where the outputs are always zero, the biases b are

adjusted to ensure that the each hidden state is on some target 60% of the time using a

similar procedure as in [51].

The trials have T = 1000 time steps, which corresponds to 10 times the time constant

1/ϵ = 100 of the system. We added noise to the output of this system such that the signal-to-

noise ratio (SNR) is 15 dB or 20 dB. In each trial, we generate 700 training samples and 300

test sequences from this system.

Given the input and the output data of this contractive RNN, we attempt to learn the

system with: (i) standard RNNs, (ii) URNNs, and (iii) LSTMs. The hidden states in the

model are varied in the range n = [2, 4, 6, 8, 10, 12, 14], which include values both above and

below the true number of hidden states ntrue = 4. We used mean-squared error as the loss

function. Optimization is performed using Adam [68] optimization with a batch size = 10

and learning rate = 0.01. All models are implemented in the Keras package in Tensorflow.
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The experiments are done over 30 realizations of the original contractive system.

For the URNN learning, of all the proposed algorithms for enforcing the unitary constraints

on transition matrices during training [6,65,84,128], we chose to project the transition matrix

on the full space of unitary matrices after each iteration using singular value decomposition

(SVD). Although SVD requires O(n3) computation for each projection, for our choices of

hidden states it performed faster than the aforementioned methods.

Since we have training noise and since optimization algorithms can get stuck in local

minima, we cannot expect “exact" equivalence between the learned model and true system as

in the theorems. So, instead, we look at the test error as a measure of the closeness of the

learned model to the true system. Figure 4.2 on the left shows the test R2 for a Gaussian

i.i.d. input and output with SNR = 20 dB for RNNs, URNNs, and LSTMs. The red dashed

line corresponds to the optimal R2 achievable at the given noise level.

Note that even though the true RNN has ntrue = 4 hidden states, the RNN model does

not obtain the optimal test R2 at n = 4. This is not due to training noise, since the RNN

is able to capture the full dynamics when we over-parametrize the system to n ≈ 8 hidden

states. The test error in the RNN at lower numbers of hidden states is likely due to the

optimization being caught in a local minima.

What is important for this result though is to compare the URNN test error with that

of the RNN. We observe that URNN requires approximately twice the number of hidden

states to obtain the same test error as achieved by an RNN. To make this clear, the right

plot shows the same performance data with number of states adjusted for URNN. Since our

theory indicates that a URNN with 2n hidden states is as powerful as an RNN with n hidden

states, we compare a URNN with 2n hidden units directly with an RNN with n hidden units.

We call this the adjusted hidden units. We see that the URNN and RNN have similar test

error when we appropriately scale the number of hidden units as predicted by the theory.

For completeness, the left plot in Figure 4.2 also shows the test error with an LSTM. It

is important to note that the URNN has almost the same performance as an LSTM with

76



Figure 4.2: Test R2 on synthetic data for a Gaussian i.i.d. input and output SNR=20 dB.

considerably smaller number of parameters.

Figure 4.3 shows similar results for the same task with SNR = 15 dB. For this task,

the input is sparse Gaussian i.i.d., i.e. Gaussian with some probability p = 0.02 and 0 with

probability 1− p. The left plot shows the R2 vs. the number of hidden units for RNNs and

URNNs and the right plot shows the same results once the number of hidden units for URNN

is adjusted.

We also compared the modeling ability of URNNs and RNNs using the Pixel-Permuted

MNIST task. Each MNIST image is a 28× 28 grayscale image with a label between 0 and 9.

A fixed random permutation is applied to the pixels and each pixel is fed to the network in

each time step as the input and the output is the predicted label for each image [6, 65, 126].

We evaluated various models on the Pixel-Permuted MNIST task using validation based

early stopping. Without imposing a contractivity constraint during learning, the RNN is

either unstable or requires a slow learning rate. Imposing a contractivity constraint improves

the performance. Incidentally, using a URNN improves the performance further. Thus,

contractivity can improve learning for RNNs with sufficiently large numbers of time steps.
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Figure 4.3: Test R2 on sparse synthetic data for a Gaussian i.i.d. input and output SNR=15 dB.

Figure 4.4: Accuracy on Permuted MNIST task for various models trained with RMSProp,
validation-based early termination, and initial learning rate lr. (1) URNN model: RNN
model with unitary constraint; (2) ContRNN: RNN with a contractivity constraint; (3 &
4) RNN model with no contractivity or unitary constraint (two learning rates). We see
contractivity improves performance, and unitary constraints improve performance further.
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4.6 Summary

Several works empirically show that using unitary recurrent neural networks improves the

stability and performance of the RNNs. In this chapter, we studied how restrictive it is to

use URNNs instead of RNNs. We showed that URNNs are at least as powerful as contractive

RNNs in modeling input-output mappings if enough hidden units are used. More specifically,

for any contractive RNN we explicitly constructed a URNN with twice the number of states

of the RNN and identical input-output mapping. We also provided converse results for the

number of states and the activation function needed for exact matching. We emphasize

that although it has been shown that URNNs outperform standard RNNs and LSTM in

many tasks that involve long-term dependencies, our main goal was to show that from an

approximation viewpoint, URNNs are as expressive as general contractive RNNs. By a

two-fold increase in the number of parameters, we can use the stability benefits they bring

for optimization of neural networks.
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Chapter 5

Implicit Bias of Recurrent Neural

Networks

1 In this chapter, we aim to understand the implicit bias behaviour of Recurrent Neural

Networks (RNN). Several machine learning tasks require dealing with sequential data with

possibly varying lengths of input sequences. Example tasks include automatic speech recogni-

tion, language translation, and image captioning, among others. A well-known shortcoming

of standard RNNs trained using gradient descent is their poor performance at tasks requiring

long-term dependence [21]. As a simple starting point, we seek to precisely understand the

training and memory of linear RNNs. Even such linear models have been difficult to analyze

completely due to their non-linear parameterization. Our main result shows rigorously that

these models have an implicit bias toward short-term memory, confirming the qualitative

empirically observed behavior of these networks.

Our results are based on the key observation that linear RNNs are functionally equivalent

to a 1D-convolutional model which is feed-forward in nature. Further, due to the Neural

Tangent Kernel (NTK) regime based analysis [63], we are able to show that RNNs trained

using gradient descent are implicitly biased towards learning tasks with short-term contexts.

1Most parts of this chapter is based on the work [48] and is coauthered with Mojtaba Sahraee-Ardakan,
Parthe Pandit, Sundeep Rangan, and Alyson K. Fletcher.
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Our result holds in a certain wide limit regime where the number of hidden units in RNN

goes to infinity.

5.1 Introduction

5.1.1 Key Contributions

We explicitly compute the NTK for a linear RNN. This is challenging due to the weight

sharing in RNNs which leads to statistical dependencies across time. We calculate this NTK

using a conditioning technique as in [16] to deal with the dependencies. This NTK is also

calculated in [3] using the Tensor program results of [129]. Then, We show that the linear

RNN NTK is equivalent to the NTK of a scaled convolutional model with certain scaling

coefficients. This means that in the wide limit regime (number of hidden units in RNN→∞),

gradient descent training of a linear RNN with non-linear parameterization is identical to

the training of an appropriately scaled convolutional model. The above results rigorously

show that there is an implicit bias in using the non-linear parameterization associated with

a linear RNN. In particular, training linear RNNs with non-linear parameterization using

gradient descent is implicitly biased towards short memory. Finally, We demonstrate the

bias-variance trade-off of linear RNNs in experiments on synthetic and real data.

5.1.2 Prior Work

The connection between kernel methods and infinite width neural networks was first introduced

in [92]. Neural networks in the infinite width limit are equivalent to Gaussian processes at

initialization and several papers have investigated the correspondence to kernel methods for

a variety of architectures [34, 54, 71, 81, 95, 129]. In particular, [34] introduced a framework to

link a reproducing kernel to the neural network and stochastic gradient descent was shown to

learn any function in the corresponding RKHS if the network is sufficiently wide [33].

A recent line of work has shown that gradient descent on over-parameterized networks
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can achieve zero training error with parameters very close to their initialization [5, 42, 43, 74,

132]. The analysis of the generalization error in this high dimensional regime led to exact

characterizations of the test error for different architectures [12, 17, 56, 59, 88]. In addition to

convergence to a global minimum for an over-parameterized two-layer neural network, [44]

also showed that the resulting functions are uniformly close to the ones found with the kernel

regime. It was shown by [63] that the behavior of an infinitely wide fully-connected neural

network trained by gradient descent is characterized by the so-called Neural Tangent Kernel

(NTK) which is essentially the linearization of the network around its initialization. The

NTK was later extended for different architectures [3, 7, 129,130].

A different line of papers investigated the over-parameterized neural networks from the

mean field viewpoint [40,77,83,108,114,127]. For recurrent neural networks in particular, [28]

has provided a theory for signal propagation in these networks which could predict their

trainability. The authors also give a closed-form initialization to improve the conditioning of

input-output Jacobian.

Note that in an RNN the states are correlated due to weight sharing. Previous work such

as [28], has simplified the setting by assuming an independence over RNN weights (ignoring

the correlation) to show that the pre-activations are Gaussian distributed. In this Chapter,

taking into account these dependencies, we use techniques used in [16,106] to characterize

the behaviour of RNNs at initialization. Similar techniques have also been explored in [129].

We should mention that learning the weight matrices of a linear RNN using data is

essentially a system identification task. There is a large body of literature in control theory

that consider the system identification problem and propose many different methods to find

a system that matches the input-output behavior of a given system. These methods include

the prediction error method (PEM), subspace methods, empirical transfer function estimate

(ETFE), correlation method, spectral analysis method, and sequential Monte Carlo method

to name a few. For a more comprehensive list of system identification methods and details

see [67, 73, 75, 76, 102, 115, 123] Even though it would be interesting to see how different
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system identification methods can be incorporated into neural network training pipeline, the

vast majority of works currently learn the weights directly by optimizing a loss function via

gradient descent or its variants. As such, here we solely focus on training of linear RNNs

using gradient descent.

5.2 Linear RNN and Convolutional Models

5.2.1 Linear RNNs

We fix a time period T and consider a linear RNN mapping an input sequence x =

(x0, . . . ,xT−1) to an ouptut sequence y = (y0, . . . ,yT−1) via the updates

ht =
1√
n
Wht−1 + Fxt,

yt =
1√
n
Cht, t = 0, . . . , T − 1, (5.1)

with the initial condition h−1 = 0. We let nx, ny, and n be the dimension at each time of the

input, xt, output, yt, and hidden state ht respectively. Note that a bias term can be added

for ht by extending xt and F. We will let

y = fRNN(x,θRNN) (5.2)

denote the mapping (5.1) where θRNN are the parameters

θRNN = (W,F,C). (5.3)

The goal is to learn parameters θRNN for the system from N training data samples (xi,yi),

i = 1, . . . , N . In this case, each sample (xi,yi) is a T -length input-output pair.
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5.2.2 Wide System Limit

We wish to understand learning of this system in the wide-system limit where the number

of hidden units n → ∞ while the dimensions nx, ny and number of time steps T are fixed.

Since the parameterization of the RNN is non-linear, the initialization is critical. For each n,

we will assume that the parameters W,F,C are initialized with i.i.d. components,

Wij ∼ N (0, νW ), Fij ∼ N(0, νF ), Cki ∼ N(0, νC), (5.4)

for constants νW , νF , νC .

5.2.3 Stability

In the initialization (5.4), νW is the variance of the components of the kernel matrix W.

One critical aspect in selecting νW is the stability of the system. A standard result in linear

systems theory (see, e.g. [66]) is that the system (5.1) is stable if and only if 1√
n
λmax(W) < 1

where λmax(W) is the maximum absolute eigenvalue of W (i.e. the spectral radius). Stable W

are generally necessary for linear RNNs: Otherwise bounded inputs xt can result in outputs

yt that grow unbounded with time t. Hence, training will be numerically unstable. Now, a

classic result in random matrix theory [10] is that, since the entries of W are i.i.d. Gaussian

N (0, νW ),

lim
n→∞

1√
n
λmax(W) = νW

almost surely. Hence, for stability we need to select νW < 1. As we will see below, it is this

constraint that will limit the ability of the linear RNN to learn long-term memory.

5.2.4 Scaled 1D Convolutional Equivalent Systems:

Our main result will draw an equivalence between the learning of linear RNNs and certain

types of linear convolutional models. Specifically, consider a linear convolutional model of
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the form,

yt =
t∑

j=0

Ljxt−j, (5.5)

where Lj ∈ Rny×nx are the filter coefficient matrices. In neural network terminology, the

model (5.5) is a simply a linear 1D convolutional network with nx input channels, ny output

channels and T -wide kernels.

Both the linear RNN model (5.1) and the 1D convolutional model (5.5) define linear

mappings of T -length input sequences x to T -length output sequences y. To state our

equivalence result between these models, we need to introduce a certain scaled parametrization:

Fix a set of scaling factors ρ = (ρ0, . . . , ρT−1) where ρj > 0 for all j. Define the parameters

θconv = (θ0, . . . ,θT−1), (5.6)

where θj ∈ Rny×nx . Given any θ, let the impulse response coefficients be

Lj =
√
ρjθj. (5.7)

As we will see below, the effect of the weighting is to favor certain coefficients Lj over others

during training: For coefficients j where ρj is large, the fitting will tend to select Lj large if

needed. This scaling will be fundamental in understanding implicit bias.

Now, given a set of weights ρ = (ρ0, . . . , ρT−1), let

y = fconv(x,θconv) :=

{
t∑

j=0

√
ρjθjxt−j

}T−1

t=0

, (5.8)

denote the mapping of the input x = (x0, . . . ,xT−1) through the convolutional filter θconv

with filter coefficients ρ to produce the output sequence y = (y0, . . . ,yT−1).

It is well-know that the RNN and convolutional models define the same total set of

input-output mappings as given by the following standard result:
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Proposition 1. Consider the linear RNN model (5.2) and the 1D convolutional model (5.8).

(a) Given a linear RNN parameters θRNN = (W,F,C), a 1D convolutional filter with

coefficient matrices

Lj =
1

n
j+1
2

CWjF, j = 0, . . . , T − 1, (5.9)

will have an identical input-output mapping. That is, there exists parameters θconv such

that

fRNN(x,θRNN) = fconv(x,θconv), (5.10)

for all inputs x.

(b) Conversely, given any T filter coefficients {Lj}T−1
j=0 , there exists RNN model with

n ≤ Tnxny hidden states such that the RNN and 1D convolutional model have identical

input-output mappings over T -length sequences.

Proof. These are standard results from linear systems theory [66]. In the linear systems

theory, the coefficients Li are together called the matrix impulse response. Part (b) follows by

finding C, W and F to match the equations (5.9). Details are given in the Appendix D.1. □

5.2.5 Linear and Non-Linear Parametrizations:

Proposition 1 shows that linear RNNs with sufficient width can represent the same input-

output mappings as any linear convolution system. The difference between the models is in

the parameterizations. The output of the convolutional model is linear in the parameters

θconv whereas it is non-linear in θRNN. As we will see below, the non-linear parameterization

of the RNN results in certain implicit biases.
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5.3 NTKs of Linear RNNs and Scaled Convolutional Mod-

els

5.3.1 Neural Tangent Kernel Background

To state our first set of results, we briefly review the neural tangent kernel (NTK) theory

from [7,63]. An overview of the kernel methods and the NTK is given in Chapter 2 Section

2.4.3. We also briefly review the main definitions and results that we need below: Consider

the problem of learning a (possibly non-linear) model of the form

ŷ = f(x,θ), (5.11)

where x ∈ Rmx is an input, f(·) is a model function differentiable with respect to parameters

θ, and ŷ is some prediction of an output y ∈ Rmy . The problem is to learn the parameters

θ from training data {xi,yi}Ni=1. For sequence problems, we use the convention that each

xi and yi represent one entire input-output sequence pair. Hence, the dimensions will be

mx = nxT and my = nyT .

Now, given the training data {xi,yi}Ni=1 and an initial parameter estimate θ0, the neural

tangent kernel (NTK) model is the linear model

ŷ = f lin(x,α) := f(x, θ0) +
N∑
j=1

K(xj,x)αj, (5.12)

where K(x,x′) is the so-called NTK,

[K(x,x′)]ij :=

〈
∂fi(x,θ

0)

∂θ
,
∂fj(x

′,θ0)

∂θ

〉
. (5.13)

and α is a vector of dual coefficients,

α = (α1, . . . ,αN), αj ∈ Rmx . (5.14)
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Note that K(x,x′) depends implicitly on θ0. Also, for a fixed initial condition, θ0, the model

(D.35) is linear in the parameters α, and hence potentially easier to analyze than the original

non-linear model (5.11). The key result in NTKs is that, for certain wide neural networks

with random initializations, (full-batch) gradient descent training of the non-linear and linear

models are asymptotically identical. For example, the results in [72] and [3] provide the

following proposition:

Proposition 2. Suppose that fn(x,θ) is a sequence of recurrent neural networks with n

hidden states and non-linear activation function σ(·). Let {(xi,yi)}Ni=1 be some fixed training

data contained in a compact set. Let θ̂0
n denote a random initial condition generated as (5.4)

and let θ̂ℓ
n denote the parameter estimate after ℓ steps of (full-batch) gradient descent with

some learning rate η. Let Kn(x,x
′) denote the NTK of the RNN and f lin

n (x,α) denote the

corresponding linear NTK model (D.35). Let α̂ℓ
n denote the parameter estimate obtained with

GD with the same learning rate. We further assume that the non-linear activation σ satisfies

|σ(0)|, ∥σ′∥∞ , sup
x ̸=x′
|σ′(x)− σ′(x′)|/|x− x′| <∞.

Then, for all x and x′,

lim
n
Kn(x,x

′) = K(x,x′) a.s. (5.15)

for some deterministic positive semi-definite matrix K(x,x′). Moreover, if λmin(K) > 0, then

for sufficiently small learning rate η and any new sample x,

lim
n→∞

sup
ℓ≥0
∥fn(x, θ̂ℓ

n)− f lin
n (x, α̂ℓ

n)∥ = 0, (5.16)

where the convergence is in probability.

The consequence of this result is that the behavior of certain infinitely-wide neural

networks on new samples x is identical to the behavior of the linearized network around its

initialization. This essentially means that as n→∞, the learning dynamics for the original
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and the linearized networks match during training.

5.3.2 NTK for the Convolutional Model

Having defined the NTK, we first compute the NTK of the scaled convolutional model (5.8).

Theorem 6. Fix a time period T and consider the convolutional model (5.8) for a given

set of scale factors ρ = (ρ0, . . . , ρT−1). Then, for any initial condition, and any two input

sequences x and x′, the NTK for this model is,

K(x,x′) = T (x)TD(ρ)T (x′)⊗ Iny , (5.17)

where T (x) is the Toeplitz matrix,

T (x) :=



x0 x1 · · · xT−1

0 x0 · · · xT−2

...
... . . . ...

0 0 · · · x0


∈ RTnx×T . (5.18)

and D(ρ) is the diagonal matrix,

D(ρ) := diag(ρ0Inx , · · · , ρT−1Inx). (5.19)

Proof. See Appendix D.2 for proof. □

5.3.3 NTK for the RNN Parametrization

We now compare the NTK of the scaled convolutional model to the NTK for the RNN

parameterization.

Theorem 7. Fix a time period T and consider the RNN model (5.1) mapping an input

sequence x = (x0, . . . ,xT−1) to an ouptut sequence y = (y0, . . . ,yT−1) with the parameters
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(W,F,C). Assume the parameters are initialized as (5.4) for some constants νW , νF , νC > 0.

In the limit as the number of hidden states n→∞:

( a) The impulse response coefficients Lj in (5.9) converge in distribution to independent

Gaussians, where the components of Lj are i.i.d. N (0, νCνFν
j
W ).

(b) Given any input sequences x and x′, the NTK converges almost surely to the determin-

istic limit:

K(x,x′) = T (x)TD(ρ)T (x′)⊗ Iny , (5.20)

where T (x) and D(ρ) are given in (5.18) and (5.19) and

ρj = νC(jνFν
j−1
W + νjW ) + νFν

j
W . (5.21)

Proof. See Appendix D.3 for the proof. □

Comparing Theorems 6 and 7, we see that the NTK for linear RNN is identical to that of

an scaled convolution model when the scalings are chosen as (5.21). From Proposition 2, we

see that, in the wide limit regime where n→∞, gradient descent training of the linear RNN

with the nonlinear parametrization θRNN = (W,F,C) in (5.3) is identical to the training of

the convolutional model (5.5) where the linear parameters Lj are initialized as i.i.d. Gaussians

and then trained with certain scaling factors (5.21).

Moreover, the scaling factors have a geometric decay. Recall from Section 5.2 that, for

stability of the linear RNN we require that νW < 1. When νW < 1 and j > 1, the scaling

factors (5.21) can be bounded as

ρj ≤ ρmaxν
j−1
W , ρmax := νC(TνF + 1) + νF . (5.22)

Consequently, the scale factors decay geometrically with νj−1
W . This implies that, in the

training of the scaled convolutional model, the coefficients with higher delay j will be given
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lower weight.

5.4 Implicit Bias of Linear RNNs

An importance consequence of the geometric decay of the scaling factors ρj in (5.22) is the

implicit bias of GD training of linear RNNs towards networks with short-term memory. To

state this precisely, fix input and output training data (xi,yi), i = 1, . . . , N . For each n,

consider the RNN model (5.2) with n hidden states and parameters θRNN in (5.3). Assume

the parameters are initialized as θ0
RNN = (W0,F0,C0) in (5.4) for some νW , νF , νC > 0. Let

θℓ
RNN = (Wℓ,Fℓ,Cℓ),

denote the parameter after ℓ steps of (full batch) gradient descent with some learning rate η.

Let Lℓ
RNN be the resulting impulse response coefficients (5.9),

Lℓ
RNN,j = n−(j+1)/2Cℓ(Wℓ)jFℓ, j = 0, . . . , T − 1. (5.23)

We then have the following bound.

Theorem 8. Under the above assumptions, the norm of the impulse response coefficients of

the RNN at the initial iteration ℓ = 0 are given by

lim
n→∞

E∥L0
RNN,j∥2F = nxnyνCνFν

j
W . (5.24)

Also, there exists constants B1 and B2 such that if the learning rate satisfies η < B1, then for

all iterations ℓ,

lim sup
n→∞

∥Lℓ
RNN,j − L0

RNN,j∥F ≤ B2ρjηℓ, (5.25)

where the convergence is in probability. Moreover, the constants B1 and B2 can be selected

independent of νW .
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Proof. See Appendix D.4 for proof. □

To understand the significance of the theorem, observe that in the convolutional model

(5.5), Lj relates the input time samples xt−j to the output yt. The coefficient Lj thus describes

the influence of the inputs samples on the output samples j time steps later. Combining

(5.24), (5.25), and (5.22), we see that these coefficients decay as

Lℓ
RNN,j = O(ν

j/2
W + ℓνjW ).

Also, as discussed in Section 5.2, we need νW < 1 for stability. Hence, the magnitude of

these coefficients decay geometrically with νj−1
W . Therefore, for a fixed number of training

steps, the effect of the input on the output at a lag of j would be exponentially small in j. In

this sense, training linear RNNs with the non-linear parameterization θRNN = (W,F,C) is

implicitly biased to short memory.

It is useful to compare the performance of an unscaled convolutional model with the linear

RNN. The convolutional model can fit any linear time-invariant system with an arbitrary

delay. We have seen in Proposition 1 that, in principle, the linear RNN can also fit any

such system with a sufficient number of hidden states. However, the above theorem shows

that unless the number of gradient steps grows exponentially with the desired delay, the

parameterization of the linear RNN will strongly bias the solutions to systems with short

memory. This restriction will create bias error on systems that have long-term memory. On

the other hand, due to the implicit constraint of the linear RNN, the parameterization will

reduce the variance error.

5.5 Numerical Experiments

We validate our theoretical results on a number of synthetic and real data experiments.
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Synthetic data In section 5.3, we showed that the NTK for a linear RNN given in (5.1)

with parameters θRNN in (5.3) is equivalent to the NTK for its convolutional parameterization

with parameters θconv. In order to validate this, we compared the training dynamics of a

linear RNN, eq (5.1), with a large number of hidden states, n, and a scaled convolutional

model (5.8) with scale coefficients ρj defined in (5.21).

We generated data from a synthetic (teacher) RNN with random parameters. For the

data generation system we used a linear RNN with 4 hidden units and nx = ny = 1. Matrices

W, F, and C are generated as i.i.d random Gaussian with νW = 0.3 and νF = νC = 1. We

added noise to the output of this system such that the signal-to-noise ratio (SNR) is 20 dB.

We generated 50 training sequences and 50 test sequences in total and each sequence has

T = 10 time steps.

Given the training and test data, we train (i) a (student) linear RNN with n = 1000

hidden units, νW = 0.3, and νF = νC = 1; and (ii) a 1D-convolutional model with scale

coefficients ρj calculated in (5.21) using νW = 0.3, νF = νC = 1. We used mean-squared error

as the loss function for both models and applied full-batch gradient descent with learning

rate lr = 10−4. Fig. 5.1 shows the identical dynamics of training for both models. Fig. 5.2

shows a zoomed-in version of the dynamics for training error. We see, as the theory predicts,

the RNN and scaled Convolution 1D model have an identical performance.

To evaluate the performance of these models for a task with long-term dependencies,

we created a dataset where we manually added different delay steps τ to the output of a

true linear RNN system i.e. yt = xt−τ . We have chosen longer (T = 20) true sequences for

this task. We then learned this data using the aforementioned linear RNN and scaled 1D

convolutional models. We also trained an unscaled 1D convolutional model with this data to

compare performances. With unscaled convolutional model, we exactly learn the impulse

response coefficients Lj defined in (5.5) during training.

Fig. 5.3 shows the test error with respect to delay steps for all three models. Observe

that the performance of the scaled convolutional and the linear RNN models match during
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Figure 5.1: Dynamics of an RNN and its equivalent scaled Conv-1D in learning a synthetic
task. The data is generated from a synthetic RNN with nx = ny = 1 and nh = 4. Noise is
added to the output with SNR= 20 dB The sequence length T=10. Training and test samples
are Ntr = Nts = 50. Full batch gradient descent is used with lr = 10−4. The dynamics of
these models perfectly match.

training. Due to the bias of these models against the delay, the test error increases as we

increase the delay steps in our system. On the other hand, the performance of the unscaled

convolutional model stays almost the same with increasing delay, slightly changing at larger

delays as there is less data to track. We thus see the effect of implicit bias: When the true

system does not have high delay, the implicit bias of the RNN and scaled convolutional model

against delay helps. As the true delay increases, the implicit bias causes bias error not present

in the unscaled convolutional model.
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Figure 5.2: The first 10 epochs in Fig. 5.1. Note that to be theoretically accurate, we need
lr → 0 to be in the kernel regime.
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Figure 5.3: Test performance with respect to delay. For this task we have nh = 1000,
Ntr = Nts = 10, nx = 15, ny = 1, and T = 20. The delay is added manually by shifting i.e.
yt = xt−delay and the output SNR = 20 dB.

Our theoretical results hold in the asymptotic regime where the number of hidden units

of the RNN goes to infinity. To test the applicability of our results to real-world RNNs that

have a finite number of hidden units, we run an experiment where we change the number

of hidden units and test how closely the RNN training follows the kernel training, i.e. the

equivalent scaled convolutional model. In this experiment, the true RNN that generates the

synthetic data has 20 hidden units and we train different RNNs with 10, 40, and 200 hidden
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Figure 5.4: Training error over the course of training for RNNs with different number of
hidden units. Solid curves show the error of RNN whereas the dashed curves show the error
of equivalent scaled convolutional model for each epoch. Our theoretical results show that
in the asymptotic regime of nh →∞ with inifinitesimal learning rate, the solid curves and
dashed curves should exactly match. Here, we see that as we increase nh the two curves get
closer and even for nh = 200 our theoretical prediction almost perfectly matches what we
observe in practice.

units to learn the synthetic data. The results are shown in Figure 5.4. For each nh, the

RNN (solid lines) along with the equivalent scaled convolutional model (dashed line) are

trained. Our theory claims that when the learning rate of gradient descent goes to zero and

the number of hidden units goes to infinity, the training error of these two models should be

exactly the same over the course of the optimization, i.e. the solid curves and dashed curves

should match. We see that it is indeed the case. As we increase nh the two curves become

closer and for nh = 200 they almost perfectly match. This suggests that our results should

be applicable in practice to RNNs of moderates size with more that 200 hidden units.

Real data We also validated our theory using spikes rate data from the macaque primary

somatosensory cortex (S1) [22]. Somatosensory cortex is a part of the brain responsible for

receiving sensations of touch, pain, etc from the entire body. The data is recorded during a
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two-dimensional reaching task. In this task, a macaque was rewarded for positioning a cursor

on a series of randomly generated targets on the screen using a handle. The data is from a

single recording of 51 minutes and includes 52 neurons. The mean and median firing rates

are 9.3 and 6.3 spikes/sec.Similar to the previous experiments, we also trained an unscaled

1D convolutional model with this data and compared the performances with the linear RNN

and the scaled convolutional models.

We compared the performances on two sets of experiments. We first used only the

4.5 minutes of the total recorded data. The purpose of this experiment is to compare the

performances in limited data circumstances. With this limited data, we expect the scaled

convolutional model (and thus the RNN) to perform better than the unscaled model due to

the implicit bias of the towards short-term memory and the fact that the effective number of

parameters is smaller in the scaled model which leads to a smaller variance. In the second

experiment, we trained our models using all the available data (≈ 51 mins). In this case,

the scaled model (and the RNN) performs worse because of the increased bias error. In our

experiments setup, the linear RNN has n = 1000 hidden states and the sequence length

T = 15. Also, νW = 0.3 and νF = νC = 1.

Fig. 5.5 shows the R2 scores for x and y directions of all three models for this task.

Observe that, the dynamics of the linear RNN and scaled convolutional model are identical

during training using either the entire recording or a part of it. For the case of limited data,

as discussed earlier, we observe the implicit bias of the RNN and scaled convolutional model

in the figures (a). This bias leads to better performance of these two models compared to the

unscaled model. Using the total available data, the unscaled convolutional model performs

better because of the increased bias error in the other two models (figures in (b)). Table 5.1

shows the test R2-score of the final trained models for all three cases.
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Table 5.1: R2-score on test data for x and y directions in the two dimensional reaching task
described in section 5.5

RNN Scaled Conv-1D Conv-1D
R2

x 0.6462 0.6442 0.6565
R2

y 0.5911 0.5860 0.6027
R2

x (limited data) 0.6043 0.6046 0.5856
R2

y (limited data) 0.4257 0.4234 0.3918

(a) Limited data (b) Entire data
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Figure 5.5: R2 score for the two dimensional reaching task described in section 5.5 . The
data is recorded from the primary somatosensory cortex of macaques. (a) Limited data: The
models are trained on 4.5 minutes of recorded data. (b) Entire data: the whole recording
(≈ 51 mins) is used to compare the performances. For both cases we used mini-batch (batch
size = 128) gradient descent with lr = 10−4.

98



5.6 Implicit Bias of Non-Linear RNNs

In this section we investigate how the same kernel analysis works for a non-linear system.

Consider a general non-linear system:

ht = f(ht−1,xt,θ), yt = g(ht), (5.26)

with the Lipschitz continuity condition that at θ = θ0, i.e., there exists constants with

ρ ∈ (0, 1), B > 0 and C > 0 such that for all x0, x1,

∥f(h1,x1,θ
0)− f(h0,x0,θ

0)∥ ≤ ρ∥h1 − h0∥+B∥x1 − x0∥,

∥g(h1,θ
0)− g(h0,θ

0)∥ ≤ C∥h1 − h0∥. (5.27)

Let y = F (x,θ) denote the sequence-to-sequence mapping defined by the recursive

equations (5.26). Let G : δθ 7→ δy denote the gradient mapping:

Gx(δθ) = G(x,θ0)(δθ) :=
∂

∂θ
F (x,θ)

∣∣∣∣
θ=θ0

· δθ. (5.28)

This mapping is given by the linear time-varying system,

δht = Wt δht−1 +Bt δθ, δyt = Ct δht, (5.29)

where

Wt = ∇hf(ht−1,xt,θ
0), Bt = ∇θf(ht−1,xt,θ

0), Ct = ∇hg(ht,θ
0).

By the assumption (5.27),

∥∇hf(ht−1,xt,θ
0)∥ ≤ ρ, ∥∇hg(ht,θ

0)∥ ≤ C, ∥∇xf(ht−1,xt,θ
0)∥ ≤ B. (5.30)

99



For a given x,x′, the NTK in this case is defined as

K(x,x′) =
∑
δθ∈T

Gx(δθ) Gx′(δθ)∗

where T is the standard basis for parameter space. The following theorem shows the implicit

bias of non-linear RNNs in gradient descent training:

Theorem 9. Let x be any input sequence and y = F (x,θℓ) the estimate after step ℓ of the

gradient descent. Assuming the Lipschitz continuity of (5.27), we have

∥∥∥∥ ∂yt

∂xs

∥∥∥∥ ≤ Cℓρt−s (5.31)

for t ≥ s.

Proof. See Appendix D.5. □

Note that the exact equivalence with the convolutional model does not hold in this case

and the proof involves considering a perturbed system similar to (5.29) and evaluating the

changes in the output at time t from the disturbance of the input at time s < t.

5.7 Summary

In this chapter, we focused on the special class of linear RNNs and observed a functional

equivalence between linear RNNs and 1D convolutional models. Using the kernel regime

framework, we showed that the training of a linear RNN is identical to the training of a

certain scaled convolutional model. We further provided an analysis for an inductive bias in

linear RNNs towards short-term memory. We showed that this bias is driven by the variances

of RNN parameters at random initialization. We briefly touched on the analysis of the NTK

regime for non-linear RNNs as well. Our theory is validated by both synthetic and real data

experiments.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 1

We prove this by induction. LetMt be the hypothesis that this result is true up to iteration

t. We show thatM0 is true and thatMt impliesMt+1.

Base case (M0): Define z0ℓ = Gℓ(q0,u0). We have that rows of z0ℓ converge PL(2) to

Z0ℓ = Gℓ(Q0, U0). Now, let µ0ℓ = E(Z0ℓ) and define the following:

dℓ =
1√
n
Aℓ1, z̃0ℓ = z0ℓ − 1µ0ℓ (A.1)

r̃1ℓ =
1√
n
Aℓz̃0ℓ, r1ℓ = r̃1ℓ + dℓµ0ℓ, q1 =

L∑
ℓ=1

r1ℓ. (A.2)

We know that

dℓ
PL(2)
= Dℓ ∼ N (0, νℓ), z̃0ℓ

PL(2)
= Z̃0ℓ = Z0ℓ − µ0ℓ. (A.3)

where Dℓ ∈ R and Z0ℓ, Z̃0ℓ ∈ R1×dq .

Note that Z̃0ℓ are zero mean. Now since Aℓ are i.i.d Gaussian matrices, rows of r̃1ℓ
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converge PL(2) to the random variable

R̃1ℓ ∼ N (0, P1ℓ) where, P1ℓ = lim
n→∞

1

n
z̃T
0ℓz̃0ℓ

a.s.
= E(Z̃T

0ℓZ̃0ℓ) (A.4)

Furthermore, one can show that E(R̃1ℓ1R̃1ℓ2) = E(Z̃T
0ℓ1
Z̃0ℓ2) = 0, and R̃1ℓ1 and R̃1ℓ2 are

independent Therefore,

q1
PL(2)
= Q1 =

L∑
ℓ=1

[
R̃1ℓ +Dℓµ0ℓ

]
(A.5)

This provesM0 holds true.

Induction recursion: We next assume that the state evolution system is true up to

iteration t. We write the recursions as

dℓ =
1√
n
Aℓ1 ∈ Rn (A.6a)

ztℓ = Gℓ(qt,ut), z̃tℓ = ztℓ − 1µtℓ (A.6b)

r̃t+1,ℓ =
1√
n
Aℓz̃tℓ, rt+1,ℓ = r̃t+1,ℓ + dℓµtℓ, qt+1 =

L∑
ℓ=1

rt+1,ℓ. (A.6c)

The main issue in dealing with a recursion of the form Equation (A.6) is that for t ≥ 1,

matrices {Aℓ}Lℓ=1 and {r̃tℓ}Lℓ=1 are no longer independent. The key idea is to use a conditioning

technique (Bolthausen conditioning) as in [16] to deal with this dependence. Instead of

conditioning r̃tℓ on Aℓ, we condition Aℓ on the event

Et,ℓ = {r̃t′+1,ℓ =
1√
n
Aℓz̃t′ℓ, t

′ = 0, . . . , t− 1}. (A.7)

Note that this event is a set of linear constraints, and i.i.d. Gaussian random variables

conditioned on linear constraints have Gaussian densities that we can track.

103



Let H̃tℓ be the linear operator

H̃tℓ : Aℓ 7→ (r̃1ℓ, . . . , r̃tℓ). (A.8)

With these definitions, we have

Aℓ|εt,ℓ
d
= H̃†

tℓ(r̃1ℓ, . . . , r̃tℓ) + H̃
⊥
tℓ(Ãℓ), (A.9)

where H̃†
t,ℓ is the Moore-Penrose pseudo-inverse operator of H̃t,ℓ, H̃⊥

t,ℓ is the orthogonal

projection operator onto the subspace orthogonal to the kernel of H̃t, and Ãℓ is an independent

copy of Aℓ. Therefore, we can write r̃t+1,ℓ as sum of two terms

r̃t+1,ℓ = r̃dett+1,ℓ + r̃rant+1,ℓ, (A.10)

where r̃dett+1,ℓ is what we call the deterministic part:

r̃dett+1,ℓ =
1√
n
H̃†

tℓ(r̃1, . . . , r̃t) z̃tℓ (A.11)

and r̃rant+1,ℓ is the random part:

r̃rant+1,ℓ =
1√
n
H̃⊥

tℓ(Ãℓ) z̃tℓ. (A.12)

It is helpful to write the linear operators defined in this section in matrix form for derivations

that follow

H̃tℓ(Aℓ) =
1√
n
[Aℓ]

[
z̃0ℓ . . . z̃t−1,ℓ

]
. (A.13)

Deterministic part: We first characterizes the limiting behavior of r̃dett+1,ℓ. It is easy to

show that if the functions Gℓ are non-constant, then the operator H̃tℓH̃T
tℓ where H̃T

tℓ is the
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adjoint of H̃tℓ, is full-rank almost surely for any finite t. Thus, we have

H̃†
tℓ = H̃

T
tℓ(H̃tℓH̃T

tℓ)
−1 (A.14)

Form equation (A.8) we have

H̃T
tℓ(r̃1ℓ, . . . , r̃tℓ) =

1√
n

t∑
t′=1

r̃t′ℓ(z̃t′−1,ℓ)
T. (A.15)

Combining (A.15) and (A.8) we get

(
H̃tℓ(H̃T

tℓ)(r̃1ℓ, . . . , r̃tℓ)
)
s
=

1

n

t∑
t′=1

r̃t′ℓ (z̃t′−1,ℓ)
Tz̃s−1,ℓ. (A.16)

Now, under the induction hypothesis, using the definition of PL(2) convergence we have

RZ̃ℓ(t
′, s) := lim

n→∞

1

n
(z̃t′−1,ℓ)

Tz̃s−1,ℓ
a.s.
= E

(
(Z̃t′−1,ℓ)

TZ̃s−1,ℓ

)
. (A.17)

Therefore, we have

H̃tℓH̃T
tℓ(r̃1ℓ, . . . , r̃tℓ) = [̃r1ℓ . . . r̃tℓ]



RZ̃ℓ(0, 0) RZ̃ℓ(0, 1) . . . RZ̃ℓ(0, t− 1)

RZ̃ℓ(1, 0) RZ̃ℓ(1, 1) . . . RZ̃ℓ(1, t− 1)

...
... . . . ...

RZ̃ℓ(t− 1, 0) RZ̃ℓ(t− 1, 1) . . . RZ̃ℓ(t− 1, t− 1)


︸ ︷︷ ︸

R
Z̃ℓ

.

(A.18)

Let R−1

Z̃ℓ
denote the inverse of RZ̃ℓ and index its blocks similarly to RZ̃ℓ. Then, the

pseudo-inverse is

H̃†
tℓ(r̃1ℓ, . . . , r̃tℓ) =

1√
n

t∑
t′=1

t∑
t′′=1

r̃t′′ℓR−1

Z̃ℓ
(t′′ − 1, t′ − 1)(z̃t′−1,ℓ)

T + o(
1

n
). (A.19)
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Define P̃tℓ := Z̃tℓ−
∑t

j=1 Z̃t−j,ℓFtjℓ, , where Ft,:,ℓ are defined in (2.47d). Using equation (A.11)

we get:

r̃dett+1,ℓ =
1

n

t∑
t′′=1

r̃t′′ℓ

t∑
t′=1

R−1

Z̃ℓ
(t′′ − 1, t′ − 1)(z̃t′−1,ℓ)

Tz̃t,ℓ + o(
1

n
) (A.20a)

a.s.
=

t∑
t′′=1

r̃t′′ℓ

t∑
t′=1

R−1

Z̃ℓ
(t′′ − 1, t′ − 1) E

(
(Z̃t′−1,ℓ)

TZ̃t,ℓ

)
+ o(

1

n
) (A.20b)

=
t∑

t′′=1

r̃t′′ℓ

t∑
t′=1

R−1

Z̃ℓ
(t′′ − 1, t′ − 1) E

(
(Z̃t′−1,ℓ)

T(P̃tℓ +
t∑

j=1

Z̃t−j,ℓFt,j,ℓ)

)
+ o(

1

n
)

(A.20c)

=
t∑

t′′=1

r̃t′′ℓ

t∑
j=1

t∑
t′=1

R−1

Z̃ℓ
(t′′ − 1, t′ − 1) RZ̃ℓ(t

′ − 1, t− j)︸ ︷︷ ︸
Iδ(t′′=t−j+1)

Ft,j,ℓ + o(
1

n
) (A.20d)

=
t∑

j=1

r̃t−j+1,ℓFt,j,ℓ + o(
1

n
), (A.20e)

where (a) follows from the fact that E(Z̃T
t′ℓP̃tℓ) = 0 for t′ = 0, . . . , t− 1. Now by induction

hypothesis we know that r̃t−j+1,ℓ
PL(2)
= R̃t−j+1,ℓ, therefore,

r̃dett+1,ℓ

PL(2)
= R̃det

t+1,ℓ =
t∑

j=1

R̃t−j+1,ℓFt,j,ℓ. (A.21)

Random part We next consider the random part:

r̃rant+1,ℓ =
1√
n
H̃⊥

tℓ(Ãℓ)z̃tℓ (A.22)

=
1√
n
(Ãℓz̃tℓ − H̃†

tℓH̃tℓ(Ãℓ)z̃tℓ). (A.23)

We know that,

H̃†
tH̃t(Ãℓ) =

1

n

t∑
t′=1

t∑
t′′=1

Ãℓz̃t′′−1,ℓR−1

Z̃ℓ
(t′′ − 1, t′ − 1)(z̃t′−1,ℓ)

T + o(
1

n
). (A.24)
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Then, we have

r̃rant+1,ℓ =
1√
n
Ãℓz̃tℓ −

1√
n

t∑
t′=1

t∑
t′′=1

Ãℓz̃t′′−1,ℓ R−1

Z̃ℓ
(t′′ − 1, t′ − 1)

(
1

n
(z̃t′−1,ℓ)

Tz̃tℓ

)
+ o(

1

n
)

(A.25)

=
1√
n
Ãℓz̃tℓ −

1√
n

t∑
t′′=1

Ãℓz̃t′′−1,ℓ

t∑
j=1

t∑
t′=1

R−1

Z̃ℓ
(t′′ − 1, t′ − 1) RZ̃ℓ(t

′ − 1, t− j)Ft,j,ℓ + o(
1

n
)

(A.26)

=
1√
n
Ãℓ(z̃tℓ −

t∑
j=1

z̃t−j,ℓFt,j,ℓ) + o(
1

n
) (A.27)

Therefore, since Ãℓ are i.i.d. Gaussian matrices, r̃rant+1,ℓ converges PL(2) to a Gaussian random

variable R̃ran
t+1,ℓ ∼ N (0, Pt+1,ℓ) such that,

Pt+1,ℓ = E(Z̃tℓ −
t∑

j=1

Z̃t−j,ℓFtjℓ)
T(Z̃tℓ −

t∑
j=1

Z̃t−j,ℓFtjℓ) (A.28)

We can now write R̃t+1,ℓ as,

R̃t+1,ℓ = R̃det
t+1,ℓ + R̃ran

t+1,ℓ =
t∑

j=1

R̃t−j+1,ℓFt,j,ℓ +N (0, Pt+1,ℓ), (A.29)

and by equation (A.6) we have

Qt+1 =
L∑

ℓ=1

Rt+1,ℓ, Rt+1,ℓ = R̃t+1,ℓ +Dℓµtℓ.

This provesMt impliesMt+1.
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Appendix B

Proofs for Chapter 3

B.1 Empirical Convergence of Fixed Points

A consequence of Assumption 2 is that we can take the limit k →∞ of the random variables

in the SE algorithm. Specifically, let xk = xk(N) be any set of d outputs from the ML-VAMP

for GLM Learning Algorithm under the assumptions of Theorem 2. Under Assumption 2, for

each N , there exists a vector

x(N) = lim
k→∞

xk(N), (B.1)

representing the limit over k. For each k, Theorem 2 shows there also exists a random vector

limit,

lim
N→∞

{xk,i(N)} PL(2)
= Xk, (B.2)

representing the limit over N . The following proposition shows that we can take the limits of

the random variables Xk.

Proposition 3. Consider the outputs of the ML-VAMP for GLM Learning Algorithm under

the assumptions of Theorem 2 and Assumption 2. Let xk = xk(N) be any set of d outputs

from the algorithm and let x(N) be its limit from (B.1) and let Xk be the random variable

limit (B.2). Then, there exists a random variable X ∈ Rd such that, for any pseudo-Lipschitz
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continuous f : Rd → R,

lim
k→∞

Ef(Xk) = Ef(X) = lim
N→∞

1

N

N∑
i=1

f(xi(N)). (B.3)

In addition, the SE parameter limits α±
kℓ and γ±kℓ converge to limits,

lim
k→∞

α±
kℓ = α±

ℓ , lim
k→∞

γ±kℓ = γ±ℓ . (B.4)

The proposition shows that, under the convergence assumption, Assumption 2, we can

take the limits as k →∞ of the random variables from the SE. To prove the proposition we

first need the following simple lemma.

Lemma 2. If αN and βk ∈ R are sequences such that

lim
k→∞

lim
N→∞

|αN − βk| = 0, (B.5)

then, there exists a constant C such that,

lim
N→∞

αN = lim
k→∞

βk = C. (B.6)

In particular, the two limits in (B.6) exist.

Proof. For any ϵ > 0, the limit (B.5) implies that there exists a kϵ(↑ ∞ as ϵ ↓ 0) such that

for all k > kϵ,

lim
N→∞

|αN − βk| < ϵ,

from which we can conclude,

lim inf
N→∞

αN > βk − ϵ

for all k > kϵ. Therefore,

lim inf
N→∞

αN ≥ sup
k≥kϵ

βk − ϵ.
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Since this is true for all ϵ > 0, it follows that

lim inf
N→∞

αN ≥ lim sup
k→∞

βk. (B.7)

Similarly, lim supN→∞ αN ≤ infk>kϵ βk + ϵ, whereby

lim sup
N→∞

αN ≤ lim inf
k→∞

βk. (B.8)

Equations (B.7) and (B.8) together show that the limits in (B.6) exists and are equal. □

Proof of Proposition 3 Let f : Rd → R be any pseudo-Lipschitz function of order 2, and

define,

αN =
1

N

N∑
i=1

f(xi(N)), βk = Ef(Xk). (B.9)

Their difference can be written as,

αN − βk = AN,k +BN,k, (B.10)

where

AN,k :=
1

N

N∑
i=1

f(xi(N))− f(xk,i(N)), (B.11)

BN,k :=
1

N

N∑
i=1

f(xk,i(N))− Ef(Xk). (B.12)

Since {xk,i(N)} converges PL(2) to Xk, we have,

lim
N→∞

BN,k = 0. (B.13)
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For the term AN,k,

|AN,k|
(a)

≤ lim
N→∞

1

N

N∑
i=1

|f(xi(N))− f(xk,i(N))|

(b)

≤ lim
N→∞

C

N

N∑
i=1

aki(N)(1 + aki(N))

(c)

≤ C lim
N→∞

√√√√ 1

N

N∑
i=1

a2ki(N) +
1

N

N∑
i=1

a2ki(N)

= C lim
N→∞

ϵk(N)(1 + ϵk(N)), (B.14)

where (a) follows from applying the triangle inequality to the definition of AN,k in (B.11);

(b) follows from the definition of pseudo-Lipschitz continuity in Definition 2.2, C > 0 is the

Lipschitz contant and

aki(N) := ∥xk,i(N)− xi(N)∥2,

and (c) follows from the RMS-AM inequality:

(
1

N

N∑
i=1

aki(N)

)2

≤ 1

N

N∑
i=1

a2ki(N) =: ϵ2k(N).

By (3.31), we have that,

lim
k→∞

lim
N→∞

ϵk(N) = 0.

Hence, from (B.14), it follows that,

lim
k→∞

lim
N→∞

AN,k = 0. (B.15)

Substituting (B.13) and (B.15) into (B.10) show that αN and βk satisfy (B.5). Therefore,

applying Lemma 2 we have that for any pseudo-Lipschitz function f(·), there exists a limit
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Φ(f) such that,

lim
N→∞

1

N

N∑
i=1

f(xi(N)) = lim
k→∞

Ef(Xk) = Φ(f). (B.16)

In particular, the two limits in (B.16) exists. When restricted to the continuous, bounded

functions with the ∥f∥∞ norm, it is easy verified that Φ(f) is a positive, linear, bounded

function of f , with Φ(1) = 1. Therefore, by the Riesz representation theorem, there exists a

random variable X such that Φ(f) = Ef(X). This fact in combination with (B.16) shows

(B.3).

It remains to prove the parameter limits in (B.4). We prove the result for the parameter

wα+
kℓ. The proof for the other parameters are similar. Using Stein’s lemma, it is shown in [97]

that

wα+
kℓ =

E(ẐkℓQ
−
kℓ)

E(Q−
ℓ )

2
. (B.17)

Since the numerator and denominator of (B.17) are PL(2) functions we have that the limit,

α+
ℓ := lim

k→∞
wα+

kℓ = lim
k→∞

E(ẐkℓQ
−
kℓ)

E(Q−
kℓ)

2

=
E(ẐℓQ

−
ℓ )

E(Q−
ℓ )

2
, (B.18)

where Ẑℓ and Q−
ℓ are the limits of Ẑkℓ and Q−

kℓ. This completes the proof.

B.2 Proof of Theorem 1

From Assumption 2, we know that for every N , every group of vectors xk converge to limits,

x := limk→∞ xk. The parameters, γ±kℓ, also converge to limits γ±ℓ := limk→∞ γ±kℓ for all ℓ. By

the continuity assumptions on the functions g±
ℓ (·), the limits x and γ±ℓ are fixed points of the

algorithms. For details of empirical convergence of fixed points, please see Appendix B.1

A proof similar to that in [98] shows that the fixed points ẑℓ and p̂ℓ satisfy the KKT

condition of the constrained optimization (3.24). This proves part (a).
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The estimate ŵ is the limit,

ŵ = ẑ0 = lim
k→∞

ẑk0.

Also, the true parameter is z00 = w0. By Proposition 3 (see Appendix B.1 for details on

convergence of fixed points), we have that the PL(2) limits of these variables are

lim
N→∞

{(ŵ,w0)}
PL(2)
= (Ŵ ,W0) := (Ẑ0, Z

0
0).

From line 13 of the SE Algorithm 3, we have

Ŵ = Ẑ0 = g+0 (R
−
0 , γ

−
0 ) = proxfin/γ−

0
(W 0 +Q−

0 ).

This proves part (b).

To prove part (c), we use the limit

lim
N→∞

{p00,n, p̂0,n}
PL(2)
= (P 0

0 , P̂0). (B.19)

Since the fixed points are critical points of the constrained optimization (3.24), p̂0 = V0ŵ.

We also have p0
0 = V0w

0. Therefore,

[
z
(N)
ts ẑ

(N)
ts

]
:= uT Diag(sts)V0[w

0 ŵ]

= uT Diag(sts)[p
0
0 p̂0]. (B.20)

Here, (N) in the subscript denotes the dependence on N. Since u ∼ N (0, 1
p
I), [z(N)

ts ẑ
(N)
ts ] is a

zero-mean bivariate Gaussian with covariance matrix

M(N) = 1
p

p∑
n=1

s2ts,np00,np00,n s2ts,np
0
0,np̂0,n

s2ts,np
0
0,np̂0,n s2ts,np̂0,np̂0,n


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The empirical convergence (B.19) yields the following limit,

lim
N→∞

M(N) = M := ES2
ts

P 0
0P

0
0 P 0

0 P̂0

P 0
0 P̂0 P̂0P̂0

 . (B.21)

It suffices to show that the distribution of [z(N)
ts ẑ

(N)
ts ] converges to the distribution of

[Zts Ẑts] in the Wasserstein-2 metric as N → ∞. See Section 2.2 on the equivalence of

convergence in Wasserstein-2 metric and PL(2) convergence.

Now, Wassestein-2 distance between between two probability measures ν1 and ν2 is defined

as

W2(ν1, ν2) =

(
inf
γ∈Γ

Eγ ∥X1 −X2∥2
)1/2

, (B.22)

where Γ is the set of probability distributions on the product space with marginals consistent

with ν1 and ν2. For Gaussian measures ν1 = N (0,Σ1) and ν2 = N (0,Σ2) we have [57]

W 2
2 (ν1, ν2) = tr(Σ1 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2 + Σ2).

Therefore, for Gaussian distributions ν(N)
1 = N (0,M(N)), and ν2 = N (0,M), the convergence

(B.21) implies W2(ν
(N)
1 , ν2)→ 0, i.e., convergence in Wasserstein-2 distance. Hence,

(z
(N)
ts , ẑ

(N)
ts )

W2−→ (Zts, Ẑts) ∼ N (0,M),

where M is the covariance matrix in (B.21). Hence the convergence holds in the PL(2) sense.

Hence the asymptotic generalization error (3.17) is

Ets := lim
N→∞

Efts(ŷts, yts)

(a)
= lim

N→∞
Efts(ϕout(z

(N)
ts , D), ϕ(ẑ

(N)
ts ))

(b)
= Efts(ϕout(Zts, D), ϕ(Ẑts)), (B.23)
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where (a) follows from (3.3); and step (b) follows from continuity assumption in Assump-

tion 1(b) along with the definition of PL(2) convergence in section 2.2. This proves part

(c).

B.2.1 Formula for M

It is useful to derive expressions for the entries the covariance matrix M in (B.21). We use

these to calculate the values in Section 3.7.

For the term m11,

m11 = ES2
ts(P

0
0 )

2 = ES2
tsE(P 0

0 )
2 = ES2

ts · k11, (B.24)

where we have used the fact that P 0
0 ⊥⊥ (Sts, Str). Next, m12 = ES2

ts P
0
0 P̂0, where,

P̂0 = g−1 (P
0
0 + P+

0 , Z
0
1 +Q−

1 , γ
+
0 , γ

−
1 , S

−
tr)

=
wγ+0 P

+
0 + Strwγ

−
1 Q

−
1

wγ+0 + S2
trwγ

−
1

+ P 0
0 , (B.25)

and (P 0
0 , P

+
0 , Q

−
0 ) are independent of (Str, Sts). Hence,

m12 = ES2
ts · E(P 0

0 )
2 + E

S2
tsγ

+
0

γ+0 + S2
trγ

−
1

E[P 0
0P

+
0 ]

= m11 + E
(

S2
tswγ

+
0

wγ+0 + S2
trwγ

−
1

)
· k12, (B.26)

. Note that E[P 0
0Q

−
1 ] = 0 and K+

0 is the covariance matrix of (P 0
0 , P

+
0 ) from line 21.
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Finally, for m22 we have,

m22 = ES2
tsP̂0P̂0

= E
(

Stsγ
+
0

γ+0 + S2
trγ

−
1

)2

E(P+
0 )2 + E

(
StsStrγ

−
1

γ+0 + S2
trγ

−
1

)2

E(Q−
1 )

2

+ ES2
tsE(P 0

0 )
2 + 2E

γ+0 S
2
ts

γ+0 + γ−1 S
2
tr

· EP 0
0P

+
0

= k22E
(

Stsγ
+
0

γ+0 + S2
trγ

−
1

)2

+ τ−1 E
(

StsStrγ
−
1

γ+0 + S2
trγ

−
1

)2

−m11 + 2m12. (B.27)

B.3 Proofs of Special Cases (Section 3.7)

B.3.1 Proof of Corollary 1

This follows directly from the following observation:

ESLRts = E(Zts +D − Ẑts)
2 = E(Zts − Ẑts)

2 + ED2

= m11 +m22 − 2m12 + σ2
d.

Substituting equation (B.27) proves the claim.

B.3.2 Proof of Corollary 2

We are interested in identifying the following constants appearing in Corollary 1:

K+
0 , τ

−
1 , γ

+
0 , γ

−
1 .

These quantities are obtained as fixed points of the State Evolution Equations in Algo. 3.

We explain below how to obtain expressions for these constants. Since these are fixed points

we ignore the subscript k corresponding to the iteration number in Algo. 3.

In the case of problem (3.48), the maps proxfin and proxfout , i.e., g+0 and g−3 respectively,
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can be expressed as closed-form formulae. This leads to simplification of the SE equations as

explained below.

We start by looking at the forward pass (finding quantities with superscript ’+’) of

Algorithm 3 for different layers and then the backward pass (finding quantities with superscript

’-’) to get the parameters {K+
ℓ , τ

−
ℓ ,wα

±
ℓ ,wγ

±
ℓ } for ℓ = 0, 1, 2.

To begin with, notice that fin(w) = λ
2
w2, and therefore the denoiser g+0 (·) in (3.36) is

simply,

g+0 (r
−
0 , γ

−
0 ) =

γ−
0

γ−
0 +λ/β

r−0 , and
∂g+0
∂r−0

=
γ−
0

γ−
0 +λ/β

Using the random variable R−
0 and substituting in the expression of the denoiser to get Ẑ0,

we can now calculate α+
0 using lines 18 and 20,

α+
0 =

γ−
0

γ−
0 +λ/β

, γ+0 = λ/β. (B.28)

Similarly, we have fout(p2) = 1
2
(p2 − y)2, whereby the output denoiser g−3 (·) in the last

layer for ridge regression is given by,

g−3 (r
+
2 , γ

+
2 , y) =

γ+2 r
+
2 + y

γ+2 + 1
. (B.29)

By substituting this denoiser in line 27 of the algorithm we get P̂−
2 and thus, following the

lines 32-35 of the algorithm we have

α−
2 =

γ+
2

γ+
2 +1

, whereby γ−2 = 1. (B.30)

Having identified these constants α+
0 , γ

+
0 , α

−
2 , γ

−
2 , we will now sequentially identify the
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quantities

(α+
0 , γ

+
0 )→ K+

0 → (α+
1 , γ

+
1 )→ K+

1 → (α+
2 , γ

+
2 )→ K+

2 ,

in the forward pass, and then the quantities

τ−0 ← (α−
0 , γ

−
0 )← τ−1 ← (α−

1 , γ
−
1 )← τ−2 ← (α−

2 , γ
−
2 ),

in the backward pass. Note that we also have

α+
ℓ + α−

ℓ = 1. (B.31)

Forward Pass: Observe that K+
0 = Cov(Z0, Q

+
0 ). Now, from line 19, on simplification we

get Q+
0 = −W 0

0 whereby,

K+
0 = var(W 0)

 1 −1

−1 1

 . (B.32)

Notice that from line 21, the pair (P 0
0 , P

+
0 ) is jointly Gaussian with covariance matrix K+

0 .

But the above equation means that P+
0 = −P 0

0 , whereby R+
0 = 0 from line 15.

Now, the linear denoiser g+1 (·) is defined as in (3.39a). Note that since we are considering

i.i.d Gaussian features for this problem, the random variable Str in this layer is a constant σtr.

Therefore, similar to layer ℓ = 0 by evaluating lines 15-21 of the algorithm we get Q+
1 = −Z0

1 ,

whereby

α+
1 =

σ2
trγ

−
1

wγ+
0 +σ2

trγ
−
1

, γ+1 =
wγ+

0

σ2
tr

= λ
σ2
trβ
, K+

1 = σ2
trK

+
0 . (B.33)

Observe that this means

P+
1 = −P 0

1 . (B.34)
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Backward Pass: Since Y = ϕout(P
0
2 , D) = P 0

2 +D, line 33 of algorithm on simplification

yields P−
2 = D, whereby we can get τ−2 ,

τ−2 = E(P−
2 )2 = E[D2] = σ2

d. (B.35)

To calculate the terms (α−
1 , γ

−
1 ), we use the decoiser g−2 defined in (3.39a) for line 30 of

Algorithm 3 to get P̂1,

P̂1 =
γ+
1 R+

1 +S−
mpγ

−
2 R−

2

γ+
1 +(S−

mp)2γ
−
2

=
S−
mp(S

+
mpP

0
1+Q−

2 )

γ+
1 +(S−

mp)2
, (B.36)

where we have used γ−2 = 1, R+
1 = P 0

1 + P+
1 = 0 due to (B.34), and R−

2 = Z0
2 + Q−

2 =

S+
mpP

0
1 +Q−

2 from lines 15, 29 and 3 respectively. We then calculate α−
1 and γ−1 as

α−
1 = E

∂g−2
∂P+

1

= E γ+
1

γ+
1 +(S−

mp)2
.

This gives,

α−
1 =


λ

σ2
trβ
G β < 1

(1− 1
β
) + 1

β
λ

σ2
trβ
G β ≥ 1

. (B.37)

Here, in the overparameterized case (β > 1), the denoiser g−2 outputs R+
1 with probability

1− 1
β

and λ
σ2
trβ
G with probability 1

β
.

Next, from line 34 we get,

γ−1 = ( 1
α−
1

− 1)γ+1 =


1
G
− λ

σ2
trβ

β < 1
λ

σ2
trβ

(
1
G
− λ
σ2
trβ

)

β−1
G

+
λ

σ2
trβ

β > 1
(B.38)
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Now from line 33 and equation (B.31) we get,

α+
1 P

−
1 = P̂1 − P 0

1 − α−
1 P

+
1

(a)
= P̂1 − α+

1 P
0
1

(b)
=

(
S−
mpS

+
mp

λ
σ2
trβ

+(S−
mp)2
− α+

1

)
︸ ︷︷ ︸

A

P 0
1 +

S−
mp

λ
σ2
trβ

+(S−
mp)2︸ ︷︷ ︸

B

Q−
2 (B.39)

where (a) follows from (B.34) and (B.31), and (b) follows from (B.36). From this one

can obtain τ−1 = E(P−
1 )2 which can be calculated using the knowledge that P 0

1 , Q
−
2 are

independent Gaussian with covariances E(P 0
1 )

2 = σ2
trVar(W

0), E(Q−
2 )

2 = σ2
d. Further, P 0

1 , Q
−
2

are independent of (S+
mp, S

−
mp).

Observe that by (B.39) we have

τ−1 =
1

(α+
1 )

2

(
E(A2)σ2

trVar(W
0) + E(B2)σ2

d

)
. (B.40)

with some simplification we get

E(A2) = (
λ

σ2
trβ

)2G′ − (
λ

σ2
trβ

G)2, (B.41a)

E(B2) = G− λ

σ2
trβ

G′, (B.41b)

where G = Gmp(− λ
σ2
trβ

), with Gmp given in Section 2.2.1, and G′ is the derivative of Gmp

calculated at − λ
σ2
trβ

.

Now consider the under-parametrized case (β < 1):

Let u = − λ
σ2
trβ

and z = Gmp(u). In this case we have

α+
1 = 1− λ

σ2
trβ

G = 1 + uz. (B.42)

120



Note that,

G−1
mp(z) = u

(a)⇒ Rmp(z) +
1

z
= u

(b)⇒ 1

1− βz
+

1

z
= u, (B.43a)

where Rmp(.) is the R-transform defined in [122] and (a) follows from the relationship between

the R- and Stieltjes-transform and (b) follows from the fact that for Marchenko-Pastur

distribution we have Rmp(z) =
1

1−zβ
. Therefore,

Gmp(
1

1− βz
+

1

z
) = z

⇒ G′
mp(

1

1− βz
+

1

z
) = G′ =

1
β

(1−βz)2
− 1

z2

. (B.44)

For the over-parametrized case (β > 1) we have:

α+
1 = 1

β
(1 + λ

σ2
trβ
G) =

1− uz
β

. (B.45)

In this case, as mentioned in Section 2.2.1 and following the results from [122], the measure

µβ scales with β and thus Rmp(z) =
β

1−z
. Therefore, similar to (B.43a), z satisfies

β

1− z
+

1

z
= u ⇒ G′ =

1
β

(1−z)2
− 1

z2

. (B.46)

Now τ−1 can be calculated as follows:

τ−1 = η2
(
u2z2σ2

trvar(W
0)(κ− 1) + σ2

dz(uzκ+ 1)

)
(B.47)
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where

η =


1

(1+uz)
β < 1

β
(1−uz)

β ≥ 1

, κ =


(1−βz)2

βz2−(1−βz)2
β < 1

(1−z)2

βz2−(1−z)2
β ≥ 1

, (B.48)

and z is the solution to the fixed points


1

1−βz
+ 1

z
= u β < 1

β
1−z

+ 1
z
= u β ≥ 1

. (B.49)

B.3.3 Proof of Corollary 3

We calculate the parameters γ+0 , γ
−
1 , k22 and τ−1 when λ→ 0+. Before starting off, we note

that

G0 := lim
z→0+

Gmp(−z) =


β

1−β
β < 1

β
β−1

β > 1

, (B.50)

as described in Section 2.2.1. Following the derivations in Corollary 2, we have

γ+0 = λ/β, k22 = Var(W 0) (B.51)

Now for λ→ 0+, we have

1− α−
1 =


1 β < 1

1
β

β ≥ 1

, γ−1 =


1
G0

= 1−β
β

β < 1

λ
(β−1)σ2

trβ
β > 1

, (B.52)
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Using this in simplifying (B.39) for λ→ 0+, we get

τ−1 = E(P−
1 )2 =


σ2
dG0 β < 1

βσ2
dG0 + σ2

trVar(W
0)(β − 1) β ≥ 1

where during the evaluation of E
(

S−
mp

γ+
1 +(S−

mp)2

)2
, for the case of β > 1, we need to account for

the point mass at 0 for S−
mp with weight 1− 1

β
.

Next, notice that

a :=
γ+0 σtr

γ+0 + γ−1 σ
2
tr

=


0 β < 1

(1− 1
β
)σtr β ≥ 1

,

and,

b :=
γ−1 σ

2
tr

γ+0 + γ−1 σ
2
tr

=


1 β < 1

1
β

β ≥ 1

,

Thus applying Corollary 1, we get

ERRts = a2k22 + b2τ−1 + σ2
d

=


1

1−β
σ2
d β < 1

β
β−1

σ2
d + (1− 1

β
)σ2

trVar(W
0) β ≥ 1

.

This proves the claim.

123



Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem 4

First consider the case when n = 1 with scalar inputs and outputs. Let θc = (wc, fc, bc, cc) be

the parameters of a contractive RNN with fc = cc = 1, bc = 0 and wc ∈ (0, 1). Hence, the

contractive RNN is given by

hc,t = ϕ(wchc,t−1 + xt), yt = hc,t, (C.1)

and ϕ(z) = max{0, z} is the ReLU activation. Suppose θu are the parameters of an equivalent

URNN. If θ has less than 2n = 2 states, it must have n = 1 state. Let the equivalent URNN

be

hu,t = ϕ(wuhu,t−1 + fuxt + bu), yt = cuhu,t, (C.2)

for some parameters θu = (wu, fu, bu, cu). Since wu is orthogonal, either wu = 1 or wu = −1.

Also, either fu > 0 or fu < 0. First, consider the case when wu = 1 and fu > 0. Then, there

exists a large enough input xt such that for all time steps k, both systems are operating in
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the active phase of ReLU. Therefore, we have two equivalent linear systems,

contractive RNN: hc,t = wchc,t−1 + xt, yt = hc,t (C.3)

URNN: hu,t = hu,t−1 + fuxt + bu, yt = cuhu,t. (C.4)

In order to have identical input-output mapping for these linear systems for all x, it is required

that wc = 1, which is a contradiction. The other cases wc = −1 and fu < 0 can be treated

similarly. Therefore, at least n = 2 states are needed for the URNN to match the contractive

RNN with n = 1 state.

For the case of general n, consider the contractive RNN,

ht = ϕ(Wht−1 + Fxt + b), yt = Cht, (C.5)

where W = Diag(wc, wc, ..., wc), F = Diag(fc, fc, ..., fc), b = bc1n×1, and C = Diag(cc, cc, ..., cc).

This system is separable in that if y = G(x) then yi = G(xi, θc) for each input i. A URNN

system will need 2 states for each scalar system requiring a total of 2n states.

C.2 Proof of Theorem 5

We use the same scalar contractive RNN (C.1), but with a sigmoid activation ϕ(z) =

1/(1 + e−z). Let θ = (Wu, fu, cu,bu) be the parameters of any URNN with scalar input and

outputs. Suppose the URNN is controllable and observable at an input value x∗. Let h∗c and

h∗
u be, respectively, the fixed points of the hidden states for the contractive RNN and URNN:

contractive RNN: h∗c = ϕ(wchc + x∗), (C.6)

URNN: h∗
u = ϕ(Wuhu + fux

∗ + bu). (C.7)
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We take the linearizations [124] of each system around its fixed point and apply a small

perturbation ∆x around x∗. Therefore, we have two linear systems with identical input-output

mapping given by,

contractive RNN: ∆hc,t = dc(wc∆ht−1 +∆xt), yt = ∆hc,t + h∗c , (C.8)

URNN: ∆hu,t = Du(Wu∆hu,t−1 + fT
u ∆xt), yt = cT

u∆hu + cT
uh

∗
u, (C.9)

where

dc = ϕ′(z∗c = wch
∗
c + x∗), Du = ϕ′(Wuh

∗
u + fux

∗ + bu),

are the derivatives of the activations at the fixed points. Since both systems are controllable

and observable, their dimensions must be the same and the eigenvalues of the transition

matrix must match. In particular, the URNN must be scalar, so Wu = wu for some scalar

wu. For orthogonality, either wu = 1 or wu = −1. We look at the wu = 1 case; the wu = −1

case is similar. Since the eigenvalues of the transition matrix must match we have,

dcwc = du ⇒ ϕ′(wch
∗
c + x∗)wc = ϕ′(h∗u + fux

∗ + bu). (C.10)

where h∗u and h∗c are the solutions to the fixed point equations:

h∗c = ϕ(wchc + x∗), h∗u = ϕ(h∗u + fbx
∗ + bu). (C.11)

Also, since two systems have the same output,

h∗c = cuh
∗
u. (C.12)

Now, (C.10) must hold at any input x∗ where the URNN is controllable and observable. If

the URNN is controllable and observable at some x∗, it is is controllable and observable in a

neighborhood of x∗. Hence, (C.10) and (C.12) holds in some neighborhood of x∗. To write
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this mathematically, define the functions,

gc(x
∗) :=

 wcϕ
′(wch

∗
c + x∗)

h∗c

 , gu(x
∗) :=

 ϕ′(h∗u + fux
∗ + bu)

cuh
∗
u

 , (C.13)

where, for a given x∗, h∗u and h∗c are the solutions to the fixed point equations (C.11). We

must have that gc(x∗) = g∗u(x
∗) for all x∗ in some neighborhood. Taking derivatives of (C.13)

and using the fact that ϕ(z) being a sigmoid, one can show that this matching can only occur

when,

wc = 1, bu = 0, cu = 1.

This is a contradiction since we have assumed that the RNN system is contractive which

requires |wc| = 1.
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Appendix D

Proofs for Chapter 5

D.1 Proof of Proposition 1

Suppose we are given a convolutional model (5.5) with impulse response coefficients Lt,

t = 0, . . . , T − 1. It is well-known from linear systems theory [66] that linear time-invariant

systems are input-output equivalent if and only if they have the same impulse response

coefficients. So, we simply need to find matrices (W,F,C) satisfying (5.9). First consider

the single input single output (SISO) case where nx = ny = 1. Take any set of real non-zero

scalars λi, i = 0, . . . , T − 1, that are distinct and set

W = diag(λ0, . . . , λT−1), F = 1T , (D.1)

so there are n = T hidden states. Then, for any t,

(CWtF) =
T−1∑
k=0

Ckλ
t
k. (D.2)

Equivalently, the impulse response coefficients in (5.9) are given by,

[L0, · · · ,LT−1] = CV, (D.3)
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where V is the Vandermode matrix Vjt = λtj. Since the values λj are distinct, V is invertible

and we can find a vector C matching arbitrary impulse response coefficients. Thus, when

nx = ny = 1, we can find a linear RNN with at most n = T hidden states that match the

first T impulse response coefficients. To extend to the case of arbitrary nx and ny, we simply

create nxny systems, one for each input-output component pair. Since each system will have

T hidden states, the total number of states would be n = Tnxny.

D.2 Proof of Theorem 6

Given yt =
∑t

j=0

√
ρjθjxt−j and θ = (θ0, . . . ,θT−1), we consider a perturbation in θ, namely

∆θ. Therefore,

ỹt =
t∑

j=0

√
ρj∆θjxt−j (D.4)

and the NTK for this model is given by

Kt,s(x,x
′) =

∑
∆θ∈Tθ

ỹt(∆θ)ỹ
′
s(∆θ)

T. (D.5)

where Tθ is the standard basis for the parameter space. The following lemma shows this sum

can be calculated as an expectation over a Gaussian random variable.

Lemma 3. Let V be a finite dimensional Hilbert space and W = Rm with the standard

inner product and let T, T ′ : V → W be linear transformations. Let {vi}ni=1 be an ordered

orthonormal basis for V. Then we have

n∑
i=1

T (vi)(T
′(vi))

T = Eα∼N (0,In)

[
T
( n∑

i=1

αivi

)(
T ′( n∑

i=1

αivi

))T
]
. (D.6)
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Proof.

Eα∼N (0,In)

[
T
( n∑

i=1

αivi

)(
T ′( n∑

j=1

αjvj

))T
]
= Eα∼N (0,In)

[
n∑

i,j=1

αiαjT
(
vi

)
T ′(vj

)T]

=
n∑

i=1

T (vi)(T
′(vi))

T. (D.7)

□

Since ỹt(∆θ) is a linear operator, by applying Lemma 3 we have,

Kt,s(x,x
′) = E∆θ∼N (0,1),i.i.d. [ỹt(∆θ)ỹ

′
s(∆θ)

T]

= E∆θ∼N (0,1),i.i.d.

[
(

t∑
j=0

√
ρj∆θjxt−j)(

t∑
k=0

√
ρk∆θkx

′
s−k)

T

]

= E∆θ∼N (0,1),i.i.d.

[
(

t∑
j=0

ρj ∆θjxt−jx
′
s−j

T
∆θ

T
j )

]

Therefore,

(
Kt,s(x,x

′)

)
m,m′

= E∆θ∼N (0,1),i.i.d.

[
t∑

j=0

ρj
∑
k,k′

(∆θj)m,k
xt−j,kx

′
s−j,k′(∆θj)k′,m′

]

= (
t∑

j=0

ρj x
T
t−jx

′
s−j)δm,m′

Thus, Kt,s(x,x
′) = (

∑t
j=0 ρj x

T
t−jx

′
s−j)Iny and we can write the full kernel as

K(x,x′) = T (x)TD(ρ)T (x′)⊗ Iny , (D.8)

where T (x) and D(ρ) are defined in (5.18) and (5.19) respectively.

130



D.3 Proof of Theorem 7

Part (a) is a special case of a more general lemma, Lemma 1 which we present in Chapter 2

section 2.5. Let

qt+1 =
1√
n
Wqt, q0 = F, (D.9)

so that qt represents the impulse response from xt to ht. That is,

ht =
t∑

j=0

qt−jxj, (D.10)

which is the convolution of qt and ht. The system (D.9) is a special case of (2.43) with L = 1,

no input ut and

A = W, G(q) = q.

Since there is only L = 1 transform, we have dropped the dependence on the index ℓ. Lemma

1 hows that (q0, . . . ,qt) converges PL(2) to a Gaussian vector (Q0, . . . , Qt) with zero mean.

Note that each qt is an n×nx matrix so each Qt is a 1×nx vector. We claim that the Qi’s are

independent. We prove this with induction. Suppose (Q0, . . . , Qt) are independent. We need

to show (Q0, . . . , Qt+1) are independent by using the evolution equations (2.47). Specifically,

from (2.47b), Zi = Qi for all i. Also, since each Qi is zero mean, µi = 0 and Z̃i = Zi = Qi.

Since the Z̃i are independent, the linear predictor coefficients in (2.47d) are zero: Fti = 0.

Therefore, R̃t = Rt ∼ N (0, νWPt) is independent of (R0, . . . , Rt−1). From (2.47h), Qt+1 = Rt.

So, we have that (Q0, . . . , Qt−1) is an independent Gaussian vector. Finally, to compute the

variance of the Qt+1, observe

cov(Qt+1)
(a)
= cov(Rt)

(b)
= νWPt

(c)
= νW cov(Zt)

(d)
= νW cov(Qt), (D.11)
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where (a) follows from (2.47h); (b) follows from (2.47f) and the fact that Fti = 0 for all i;

(c) follows from (2.47e); and (d) follows from the fact that Zt = Qt. Also, since q0 = F, it

follows that Q0 ∼ N (0, νF I). We conclude that cov(Qt) = νFν
t
W Inx . This proves part (a).

For part (b), we consider perturbations ∆W , ∆F , and ∆C of the parameters W, F, and

C. We have that,

h̃t =
1√
n
Wh̃t−1 +

1√
n
∆Wht +∆Fxt, ỹt =

1√
n
Ch̃t +∆Cht (D.12)

Combining this equation with (5.1), we see that the mapping from xt to [ht h̃t] is a linear

time-invariant system. Let qt ∈ Rn×2nx be its impulse response. The impulse response

coefficients satisfy the recursive equations,

qt+1 =

[
1√
n
Wqt,1,

1√
n
(Wqt,2 +∆Wqt,1)

]
, q0 = [F,∆F ] .

We can analyze these coefficients in the LSL using Lemma 1. Specifically, let L = 2 and set

A1 = W, A2 = ∆W .

Also, let

zt1 = G1(qt) := qt, (D.13a)

zt2 = G2(qt) := [0 qt1]. (D.13b)

Then, we have the updates,

qt+1 =
1√
n
Wzt1 +

1√
n
∆Wzt2, q0 = [F,∆F ] .

It follows from Lemma 1 that (q0, . . . ,qT−1) converges PL(2) to zero mean Gaussian random

variables (Q0, . . . , QT−1). Note that Qt = [Qt1, Qt2] where each Qt1 and Qt2 are random
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vectors ∈ R1×nx . Similar to the proof of the previous theorem, we use induction to show

that (Q0, . . . , Qt) are independent. Suppose that the claim is true for t. Then, Zi1 and

Zi2 are functions of Qi. So, for ℓ = 1, 2, Ztℓ is independent of Ziℓ for i < t. Thus, the

prediction coefficients Ftiℓ = 0 and, as before, Rtℓ ∼ N (0, Ptℓ) independent of Riℓ, i < t.

Thus, Qt+1 = Rt1 +Rt2 is independent of (Q0, . . . , Qt).

We conclude by computing the cov(Qt). We claim that, for all t, the variance of Qt is of

the form,

cov(Qt) =

 τt1Inx 0

0 τt2Inx

 (D.14)

for scalar τt1, τt2. Since q0 = [F,∆F ], we have

τt1 = νF , τt2 = 1.

Now suppose that (D.14) is true for some t. From (2.47b),

Zt1 = Qt, Zt1 = (0, Qt1),

from which we obtain that

cov(Zt1) =

 τt1Inx 0

0 τt2Inx

 , cov(Zt2) =

 0 0

0 τt1Inx

 . (D.15)

Therefore, we have

cov(Qt+1)
(a)
= cov(Rt,1) + cov(Rt,2)

(b)
= νWPt1 + Pt2

(c)
= νW cov(Zt1) + cov(Zt2)

(d)
=

 νW τt1Inx 0

0 (τt1 + νW τt2)Inx

 , (D.16)
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where (a) follows from (2.47h); (b) follows from (2.47f) and the fact that Ftiℓ = 0 for all i; (c)

follows from (2.47e); and (d) follows from (D.15). It follows that

τt+1,1 = νW τt1, τt+1,2 = νW τt2 + τt1.

These recursions have the solution,

τt1 = νtWνF , τt2 = tνFν
t−1
W + νtW . (D.17)

Since [ht, h̃t] =
∑t

j=0 qj

xt−j

xt−j

 and we know each qt converges PL(2) to random Qt with

covariances calculated in (D.14) and (D.17), we have

[ht, h̃t]
PL(2)
= [Ht, H̃t] =

t∑
j=0

Qj

xt−j

xt−j

 , (D.18)

where Ht, H̃t are scalar random variables. For each t, s, we can now calculate the auto-

correlation function for H as follows

E[HtHs] = E[
t∑

j=0

t∑
k=0

xT
t−jQ

T
j,1Qk,1xs−k]

=
t∑

j=0

xT
t−jE[QT

j,1Qj,1]xs−j

=
t∑

j=0

νjWνF xT
t−jxs−j. (D.19)

Similarly for H̃ we have

E[H̃tH̃s] =
t∑

j=0

(jνFν
j−1
W + νjW ) xT

t−jxs−j. (D.20)
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Thus, the impulse response of the system Lj = Cqj,1 converge empirically to N (0,Λ) where,

Λ = νC lim
n→∞

1

n
qT
j,1qj,1 = νCE[QT

j,1Qj,1] = νCνFν
j
W Inx . (D.21)

This proves part (a). Note that E[H̃tH̃
′
s] and E[HtH

′
s] can be calculated similarly by substi-

tuting xs−j with x′
s−j in (D.19) and (D.20).

Next, we calculate the NTK in this case

Kt,s(x,x
′) =

∑
∆θ∈Tθ

ỹt(∆θ)ỹ
′
s(∆θ)

T

(a)
= E∆θ∼N (0,1),i.i.d. [ỹt(∆θ)ỹ

′
s(∆θ)

T], (D.22)

where (a) follows from Lemma 3. Combining with (D.12) we have

Kt,s(x,x
′) = EC,∆C∼N (0,1),i.i.d.

[
(Ch̃t +∆Cht)(Ch̃′

s +∆Ch
′
s)

T
]

=
(
νCE[H̃tH̃

′
s] + E[HtH

′
s]
)
Iny . (D.23)

Therefore,

K(x,x′) = T (x)TD(ρ)T (x′)⊗ Iny , (D.24)

where T (x) and D(ρ) are given in (5.18) and (5.19) and

ρi = νC(iνFν
i−1
W + νiW ) + νiWνF . (D.25)

This proves part (b).

D.4 Proof of Theorem 8

Bounding the Initial Impulse Response From Theorem 7, each coefficient of L0
RNN,j

has mean zero and variance νCνFνjW . There are nxny such components. This proves (5.24).
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Convolutional Equivalent Linear Model The key for the remainder of the proof is to

use Theorems 6 and 7 to construct a scaled convolutional model that has the same NTK

and intial conditions as the RNN. Then, we analyze the convolutional model to obtain the

desired bound. To this end, let ρ = [ρ0, . . . , ρT−1] be the scaling factors given in Theorem 7.

For each initial condition θ0
RNN = (W0,F0,C0) of the RNN, suppose that we initialize the

scaled convolutional model with

θ0
conv,j =

1
√
ρjn(j+1)/2

C0(W0)jF0.

The initial impulse response of the scaled convolutional model will then be

L0
conv,j =

√
ρjθconv,j =

1

n(j+1)/2
C0(W0)jF0 = L0

RNN,j. (D.26)

Hence, the scaled convolutional model and the RNN have the same initial impulse response

coefficients. We then train the scaled convolutional model on the training data using gradient

descent with the same learning rate η used in the training of the RNN. Let Lℓ
conv,j denote the

impulse response of the scaled convolutional model after ℓ steps of gradient descent.

Gradient Descent Analysis of the Convolutional Model Next, we look at how

the impulse response of the scaled convolutional model evolves over the gradient descent

steps. It is convenient to do this analysis using some matrix notation. For each parameter,

θ = [θ0, . . . ,θT−1], the convolutional filter parameters are Lj =
√
ρjθj. Thus, we can write

L = D1/2θ,

where D is a block diagonal operator with values ρj. Also, let ŷ = [ŷ1, . . . , ŷN ] be the set of

predictions on the N training samples. Since the convolutional model is linear, we can write

ŷ = AL for some linear operator A. The operator A would be a block Toeplitz with the
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input data x = [x1, . . . ,xN ]. Also, if we let y = [y1, . . . ,yN ] be the N training samples, the

least squares cost is

∥y −AD1/2θ∥2F .

Minimizing this loss function will result in GD steps,

θℓ+1 = θℓ + ηD1/2AT(y −AD1/2θℓ).

Now let uℓ = D−1/2(θℓ − θ0) and b := y −AD1/2θ0. Then,

uℓ+1 = uℓ + ηAT(b−AD)uℓ = (I− ηATAD)uℓ + ηATb (D.27)

For 0 < νW < 1, we have that ρj satisfies the bound (5.22). Since D is a block diagonal

matrix with entries ρj, ∥D∥ ≤ ρmax. Now select

B1 :=
1

ρmax∥A∥2
, B2 := ∥ATb∥. (D.28)

If we take η < B1 then

ηD1/2ATAD1/2 ≤ ηρmax∥A∥2 ≤ I⇒ ∥I− ηATAD∥ ≤ 1.

Hence, (D.27) shows that

∥uℓ+1∥F ≤ ∥uℓ∥F + ηB2 ⇒ ∥uℓ∥F ≤ ηℓB2, (D.29)

where we have used the fact that u0 = 0. Now, since uℓ = D−1/2(θℓ−θ0), the j-th component

of θℓ is

θℓ
j = θ0

j +
√
ρju

ℓ
j.

Hence, Lℓ
conv,j =

√
ρjθ

ℓ
j = L0

conv,j + ρju
ℓ
j.

137



Applying (D.29) we obtain the bound on the convolutional model

∥Lℓ
conv,j − L0

conv,j∥F ≤ ρjηℓB2. (D.30)

Bounding the RNN Impulse Response From Theorems 6 and 7, the scaled convolutional

model and linear RNN have the same NTK. Due to (D.26), they have the same input-output

mapping at the initial conditions. Since the scaled convolutional model is linear in its

parameters it follows that it is linear NTK model for the RNN. Therefore, using the NTK

results such as Proposition 2, we have that for all input sequences x and GD time steps ℓ,

lim
n→∞

∥∥fRNN(x,θ
ℓ
RNN)− fconv(x,θℓ

conv)
∥∥ = 0, (D.31)

where the convergence is in probability. Thus, if we fix an input x and iteration ℓ and define

yRNN = fRNN(x,θ
ℓ
RNN), yconv = fconv(x,θ

ℓ
conv),

the limit (D.31) can be re-written as

lim
n→∞

∥yRNN,j − yconv,j∥ = 0, (D.32)

for all j. Again, the convergence is in probability. Now consider the case where the input

sequence x = (x0, . . . ,xT−1) is a sequence with xj = 0 for all j > 0 That is, it is only non-zero

at the initial time step. Then for all time steps yRNN,j = Lℓ
RNN,jx0 and yconv,j = Lℓ

conv,jx0.

Since this is true for all x0, (D.32) shows that for all time steps j = 0, . . . , T − 1,

lim
n→∞

∥∥LRNN,j(x,θ
ℓ
RNN)− Lconv,j(x,θ

ℓ
conv)

∥∥
F
= 0 (D.33)

where the convergence is in probability. Combining (D.33) with (D.30) proves (5.25).
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D.5 Proof of Theorem 9

From the Proposition 2 and results from [3] we know that for step ℓ of the GD

lim
n→∞

sup
ℓ≥0

∥∥Fn(x,θ
ℓ)− F lin

n (x,αℓ)
∥∥ = 0 (D.34)

where the subscript denotes the state dimension n and α denotes the parameters of the linear

NTK model.

ŷ = F lin(x,α) := F (x,θ0) +
N∑
i=1

K(xi,x)αi, (D.35)

where K(x,x′) ∈ RTny×Tny is the so-called NTK.

Consider the following perturbed system for F (x,θ):

δht = Wt δht−1 +Bt δθ + Ft δxt, δyt = Ct δht. (D.36)

Also, for any training data (xi,yi), we have the following system

δhi
t = Wi

t δh
i
t−1 +Bi

t δθ + Fi
t δx

i
t, δyi

t = Ci
t δh

i
t. (D.37)

Considering that the assumptions in (5.30) hold true, we have

yt(δx) =
N∑
i=1

T−1∑
t′=0

[K(xi,x)]t,t′(α
ℓ
i)t′ (D.38a)

=
N∑
i=1

T−1∑
t′=0

Eδθ∼N (0,I)

[
δyt(δθ) δyt′(δθ, δxt′)

T]
t,t′

(αℓ
i)t′ (D.38b)

=
N∑
i=1

T−1∑
t′=0

Eδθ∼N (0,I)

[
Ci

t(W
i
tδh

i
t−1 +Bi

tδθ) (Wt′δht′−1 +Bt′δθ + Ft′δxt′)
TCT

t′

]
(αℓ

i)t′ .

(D.38c)
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Therefore,

∂yt

∂xs

=
N∑
i=1

Eδθ∼N (0,I)

[
Ci

t(W
i
tδh

i
t−1 +Bi

tδθ)

(
T−1∑
t′=s

∂ht′

∂xs

T

CT
t′(α

ℓ
i)t′

)]

=
N∑
i=1

Ci
tW

i
t Eδθ∼N (0,I)[δh

i
t−1]

(
FT

sC
T
s (α

ℓ
i)s +

T−1∑
t′=s+1

FT
s (

t′∏
j=s+1

WT
j )C

T
t′(α

ℓ
i)t′

)
. (D.39)

We know that there exist constants C0 > 0 such that for all i ∈ [N ],

∥∥Eδθ∼N (0,I)(δh
i
t)
∥∥
2
≤ C0ρ

t. (D.40)

If we show that for all i ∈ [N ], there exist constants C1 > 0 such that

∥∥(αℓ
i)t
∥∥
2
≤ C1ηℓ, (D.41)

we get,

∥∥∥∥ ∂yt

∂xs

∥∥∥∥ ≤ (C2ρ
t + C3ρ

|t−s|) ηℓ
≤ C4ρ

|t−s|ηℓ, (D.42)

which proves (5.31). To show (D.41), assume we are given training data {xi,yi}Ni=1, let

X = [x1, . . . ,xN ]T and Y = [y1, . . . ,yN ]T ∈ RNTny . Also let Ŷ = [ŷ1, . . . , ŷN ]T ∈ RNTny be

the predictions as defined in (D.35). We want to minimize the square loss

1
2

∥∥∥Y − Ŷ
∥∥∥2
F
, (D.43)

and we have

Ŷ := F lin(X,α) = F (X,θ0) +Kα. (D.44)

140



Here, K is the empirical NTK such that

K = K̃(X,X)⊗ Iny ∈ RNTny×NTny (D.45)

[K̃(X,X)]t,s = Kt,s(X,X) ∈ RN×N t, s = 0, . . . , T − 1. (D.46)

At step ℓ of gradient descent we have:

αℓ+1 = αℓ + ηKT(Y −Kαℓ − f(X,θ0)). (D.47)

Let uℓ = αℓ −α0 and b = Y −Kα0 − f(X,θ0). Therefore,

uℓ+1 = uℓ + ηKT(b−Kuℓ)

= (I− ηKTK)uℓ + ηKTb. (D.48)

Let C5 =
∥∥KTb

∥∥
2
. Then,

∥uℓ+1∥2 ≤ ∥uℓ∥2 + ηC5

≤ C ′
5ηℓ. (D.49)

Therefore, there exists a C1 such that
∥∥(αℓ

i)t
∥∥
2
≤ C1ηℓ.
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