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There is a bijection between these and Q = {q1, q2, . . . , qdq}.
Y c
q The complement of Yq in Y . The dependent variables.

R ′ A subset of R where one reaction has been removed.

G The graph {X ,R } formed by treating each species in X as a node and

each reaction in R as an edge.

Si The set of King-Altman patterns for species i.

N0 The set of natural numbers, including zero.

R0 The set of positive real numbers, including zero.

Dimensions

dx The number of molecular species in a system. Also, the size of X .

dk The number of reactions in a system. Also, the sizes of R and K .

dy The number of selected linear quantities for a particular mapping func-

tion ψp. Also, the size of Y .

dp The number of remaining parameters for a particular mapping function

ψp; that is, dp = dk + dx − dy. Also, the size of P .

dq The number of free variables in Y in the solution of ψp(ẋ) = 0. See
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ABSTRACT OF THE DISSERTATION

Steady State Control of the Cellular Response to Stress

by

Paul Michael Loriaux

Doctor of Philosophy in Bioinformatics & Systems Biology

University of California, San Diego, 2013

Professor Alexander Hoffmann, Chair
Professor Pavel Pevzner, Co-Chair

In response to stress, intracellular signaling proteins activate gene expres-

sion programs that protect the cell, address the instigating stress, or result in

programmed cell death. In many cases, information about the stimulus is encoded

in the dynamics of the signal. Stress-induced signaling dynamics can therefore

dictate the cellular response to stress. Recently, it was shown that these dynamics

are affected by the resting state of the cell prior to stimulation. If this relation-

ship between steady state and stimulus-induced dynamics was known, then we

might predict the cellular response to a particular stimulus using steady state

measurements, or engineer a stimulus to elicit a desired response. These are the

foundations of diagnostic biomarkers and personalized medicine. To characterize

xvii



the relationship between steady state and the cellular response, I developed a suite

of computational methods and applied them to the p53, NF-κB, and cell death

pathways. First, I developed a method to derive analytical expressions for the

steady states of mass action models. By applying this method to a model of cell

death, I show how the steady state concentrations of different signaling proteins

can affect the tolerance to the death-inducing ligand, TRAIL. Next I extended this

method to examine perturbations in the steady state that don’t affect the steady

state protein concentrations. Applying this method to the p53 and NF-κB stress-

response pathways, I show that a protein turnover signaling motif controls the

stimulus-sensitivity of these two different pathways. Finally, using a Monte Carlo

method, I show how sampling of the steady state prior to simulation can identify

steady state predictors of the response to TRAIL. Interestingly, kinetic features,

rather than steady state concentrations, figured prominently among the best pre-

dictors. If true, this has severe consequences for clinical biomarker discovery, which

is based on measurements of protein abundance and not kinetic features.
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Chapter 1

Introduction

1.1 The cellular response to stress

Cells must constantly respond to stress in their environment. Depending

on the nature of the insult, cells can experience metabolic, ribotoxic, or oxida-

tive stress, as well as DNA damage, heat shock, or ligand-induced aggregation

of cell death receptors [1, 2]. In response to stress, transient activation of sig-

naling molecules activate gene expression programs that function to protect the

cell, arrest the cell cycle, or initiate programmed cell death. DNA damage caused

by ionizing radiation or ultraviolet light, for example, activates the transcription

factor p53, causing cell-cycle arrest, apoptosis, and DNA repair [3]. The inflam-

matory cytokine tumor necrosis factor alpha (TNF), and the pathogen-derived

lipopolysaccharide (LPS), activate the transcription factor NF-κB resulting in ex-

pression of target genes that control cell survival and division [4]. In cells with

compromised NF-κB activity, TNF stimulation results in activation of executioner

caspases and cell death [5].

Because transient activation of signaling molecules is a hallmark of the

response to stress, it is no surprise that the dynamics of activation are an important

determinant of the cellular response [6, 7, 8]. In response to ionizing radiation

(IR), for example, cells that experience pulses in p53 recover from the insult, while

sustained p53 activation results in senescence [9]. Negative feedback attenuation of

NF-κB in response to TNF, versus sustained activation in response to LPS, results

1



2

in TNF- and LPS-specific gene expression programs [10, 11, 12]. And temporal

segregation of TNF-induced activation of IKK – the canonical kinase responsible

for activating NF-κB – from activation of the pro-apoptotic MAP kinase (MAPK),

is thought to be a major contributor to the cytoprotective effects of NF-κB [13].

Modulating the dynamics of signaling molecules in response to stimulation

may therefore be a ubiquitous mechanism for encoding information about the

instigating stimulus. However, it remains unclear how the resting state of the

cell prior to stimulation affects these dynamics. Characterizing this relationship

is important because aberration of the resting state is known to adversely affect

cellular responsiveness and human health. Cells with increased abundance of p53

or its negative regulator Mdm2, for example, have compromised sensitivity to IR

[14, 15, 16, 17]. Stable overexpression of the negative regulator A20 results in

dampened NF-κB activation in response to TNF and inflammatory tolerance [18].

And cells that overexpress the antiapoptotic proteins Bcl-xL or Bcl-2 are insensitive

to stimulation by the death-inducing TNF superfamily member, TRAIL [19, 20, 21]

If the abundance of intracellular signaling molecules affect the stimulus-

induced dynamics and cellular response to stress, other studies have shown that

the kinetics of protein turnover, and not their outright abundance, can affect the

cell’s response as well. For example, high turnover of a cell surface receptor is

required to maintain a linear, non-refractory response to a broad range of stim-

ulus concentrations [22]. And cells conditioned in an inflammatory environment

experience elevated activity of IKK and turnover of IκBα– the primary inhibitor

of NF-κB – resulting in hypersensitivity to ribotoxic stress [23].

The ability to systematically characterize this complex relationship between

steady state and response would greatly enhance our understanding of stimulus-

induced dynamics and the cellular response to stress. In what follows, I describe the

development and application of computational methods to investigate the steady

state control of p53, NF-κB, and cell death in response to different stress-inducing

stimuli. First, in chapter 2 I describe a method, py-substitution, for deriving

analytical expressions for the steady states of a common family of models, those

that obey mass action kinetics. I then use this method to identify determinants
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of sensitivity in TRAIL-induced cell death. In chapter 3 I extend py-substitution

to characterize the effects of steady state protein turnover on the specificity of the

p53 and NF-κB pathways. Finally, in chapter 4, I use Monte Carlo sampling of

the steady state to identify predictors of the population response to TRAIL. The

remainder of this chapter proceeds with an introduction and motivation of the

methodology.

1.2 Methodology

Systematic changes in the resting states of living cells are difficult to engi-

neer. Gene knockdowns using short interfering (si) RNA, for example, can be used

to reduce the concentration of a target protein by blocking its translation [24, 25].

Changes in stimulus-responsiveness that result from siRNA knockdown, however,

may be caused by a reduction in the protein’s turnover kinetics, its intended re-

duction in concentration, or both. RNA dilution in rapidly dividing cells [26] and

secondary induction of the interferon response [27] can further cloud interpretation

of the data. To control a protein’s turnover, tet-response elements can be intro-

duced into its promoter [28, 29], or the protein can be tagged with an ssrA sequence

for recognition by an inducible clpXP protease [30]. However, each target protein

must be studied in isolation to avoid confounding effects from shared synthesis and

degradation machinery [31]. Due to these inherent difficulties in effecting changes

in the resting state of living cells, the relationship between resting state and stress

responsiveness cannot be addressed by laboratory science alone.

As a complement to laboratory science, mathematical models have long

been used in cell biology to rapidly investigate alternative hypotheses [32, 33, 34].

A model of p53 activation, for example, led to the discovery of the negative feedback

regulator required for oscillations after stimulation by IR [35]. This same model

was used by another group to show that heterogeneity observed in the population

response to IR is due to stochasticity in protein synthesis, not in the processing

of the signal itself [36]. A novel negative feedback regulator of NF-κB was also

discovered with the aid of a mathematical model [37]. Indeed, canonical NF-κB
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signaling may be one of the most frequently modeled systems in all of cell biology

[38, 39]. Models of NF-κB activation have identified rapid degradation of unbound

IκBα as being critical to TNF-induced NF-κB activity [23, 40], and the late-phase

of IKK activity as required for distinguishing LPS from TNF stimulation [12].

Finally, models of cell death have revealed this pathway’s capability for bistability

or ultrasensitivity, as well as the principle regulators of this important switching

behavior [41, 42].

The mathematical formalisms used to model biological processes are as var-

ied as the processes themselves [43]. On one end of the spectrum are those that

require only knowledge of the network of interacting molecules. Assigning a binary

value to each molecule and a boolean operator to each interaction yields a boolean

logic model. This type of model was proposed 45 years ago by Stuart Kauffman

[44, 45], and has been used extensively to identify dependencies in network behav-

ior [46, 47]. Recently, this approach was extended to allow variables to exist on

the continuous interval [0, 1] [48, 49]. These “fuzzy” logic models are a more natu-

ral representation of the probabilistic transitions between network states, and are

more appropriate for reconciling large amounts of data with incomplete knowledge

of an underlying network [50]. Still another formalism treats the reaction veloci-

ties as real-valued state variables, then uses the structure of the network to map

these velocities onto the zero vector [51]. The solution space for this mapping is a

high-dimensional polytope that defines the space of allowable steady states. Ver-

tices on this polytope represent network optima, and their identification by linear

programming is fundamental to metabolic engineering and genome-scale studies of

metabolism [52, 53].

While these models are a powerful means to explore network behavior,

because the concentrations of molecules are not explicit functions of time, they

are inappropriate for studying signaling dynamics. To model dynamical systems,

physicochemical models based on the Law of Mass Action are used instead [54].

Here, changes in molecule concentrations with respect to time are modeled as

a system of coupled ordinary differential equations (ODEs) [55, 56]. Numerical

integration of the ODEs from an initial condition gives the dynamic behavior of
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the system in response to perturbation. Indeed, this methodology is so widespread

that it now enjoys a common interoperable language [57], software library [58, 59],

and database of curated models [60, 61]. In the chapters that follow I used mass

action models of stress-response pathways to elucidate behaviors that are governed

by the steady state. Prior to this, the basic tenets of mass action models are

introduced below, then applied to a simple negative feedback system by way of an

illustrative example.

1.3 Preliminaries

In this section I provide a brief mathematical foundation for models obeying

mass action kinetics. First, let N0 be the set of non-negative natural numbers and

R0 be the set of non-negative real numbers. Let A = {a1, a2, . . . , adx} be a set of

dx species and R = {r1, r2, . . . , rdk} be a set of dk reactions. Each reaction rj ∈ R

follows the normal definition,

rj : sin1,ja1 + sin2,ja2 + · · ·+ sindx,jadx
vj−→ sout1,j a1 + sout2,j a2 + · · · soutdx,jadx

where sini,j ∈ N0 is the stoichiometric coefficient of the ith reactant and souti,j ∈ N0

is the stoichiometric coefficient of the ith product [56]. We define xi ∈ R0 to be

the concentration of species ai and vj ∈ R0 to be the velocity at which rj converts

reactants into products. By the Law of Mass Action,

vj = kj

dx∏
i=1

x
hi,j
i . (1.1)

The quantity hi,j ∈ R0 is often, but not necessarily, equal to sini,j. The coefficient

kj ∈ R0 is called the rate constant. Assuming conservation of mass, the concentra-

tion xi changes according to

ẋi =

dk∑
j=1

(souti,j − sini,j)vj, (1.2)



6

where ẋi is the first derivative of xi with respect to time. Any collection {A,R }
where the concentration xi of ai ∈ A obeys Equation 1.2 and the velocity vj of

rj ∈ R obeys Equation 1.1 is called a mass action model. In what follows, we

assume i, i1, and i2 are indices over the interval 1, . . . , dx and j is an index over

1, . . . , dk. When v1, . . . , vdk are such that all

ẋi = 0, (1.3)

the model is said to be at steady state. If all vj = 0 we call the steady state trivial.

In this manuscript we are typically concerned with symbolic, non-trivial solutions

to Equation 1.3. A solution is symbolic if all kj and xi are left as uninterpreted

variables, rather than being assigned numerical values. Finally, we make the dis-

tinction between xi(t), which is a function of time, and x̄i, which represents the

steady state concentration of ai and is independent of time.

Let x ∈ Rdx
0 and v ∈ Rdk

0 be the vectors with elements (x)i = xi, and

(v)j = vj. Throughout this manuscript, we use (b)i to denote the ith element of

vector b and (A)ij to denote the element at row i, column j of matrix A. Let S

be the stoichiometric matrix, i.e., the matrix whose elements are (S)ij = souti,j −sini,j.
Using this notation, Equation 1.2 becomes

ẋ = Sv, (1.4)

and the steady state equation becomes

Sv = 0. (1.5)

Again, by convention, we use the overline to denote vectors that satisfy steady

state.
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1.4 An example

To motivate the methodology used over the next three chapters, we’ll con-

sider a prototypical negative feedback model reminiscent of the p53 or NF-κB

stress-response pathways (Figure 1.4A). In it, an activator X is constitutively ex-

pressed but catalytically degraded by an inhibitor, Y. The inhibitor is consti-

tutively degraded but its synthesis requires X. Let x1 and x2 ∈ R0 denote the

concentrations of X and Y, respectively. The set R of reactions for this model can

then be given by

r1 : Ø
v1−→ x1

r2 : x1
v2−→ x1 + x2

r3 : x1 + x2
v3−→ x2

r4 : x2
v4−→ Ø

The symbol Ø represents a source or sink for mass and is not modeled by a time-

varying species. From the set R we derive the stoichiometric matrix and reaction

velocity vector,

S =

[
1 0 −1 0

0 1 0 −1

]
, v =


k1

k2x2

k3x1x2

k4x2

 .

By Equation 1.4 this results in the following system of equations,

dx1/dt = k1 − k3x1x2 (1.6)

dx2/dt = k2x1 − k4x2 (1.7)

Activation of X is achieved by instantaneous depletion of Y, the result of

which is accumulation of X until negative feedback forces a return to steady state.

The dynamics of this response can be described by two values: A, the amplitude
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or maximum value of X after stimulation, and T , the time at which A is observed

(Figure 1.4B). Parameters for this model were chosen such that the abundances

of both X and Y are one arbitrary unit and X achieves its maximum value of

A = 10 a.u. at time T = 24, where the units of time are also arbitrary.

To characterize the effects of steady state on the dynamic response, it is

tempting to look for analytical expressions for A and T . If we could solve Equa-

tions 1.6 and 1.7 for x1 and x2 in terms of t, we could find a time T = arg max
t

x1(t)

and amplitude A = x1(T ), resulting in expressions for T and A, respectively, in

terms of k1, . . . , k4, and the boundary conditions x1(t ≤ 0) = x̄1 and x2(t ≤ 0) =

x̄2. Unfortunately, Equation 1.6 is nonlinear in the time-dependent variables x1

and x2, making an analytical solution impossible. Note that Equation 1.6 is ren-

dered nonlinear by the monomial k3x1x2. This monomial describes the mass action

velocity of Y-catalyzed degradation of X. In general, any biochemical reaction in-

volving two or more molecules results in a nonlinear monomial with respect to

time. As a result, mass action models in general can not be solved by analytical

methods.

An alternative approach, however, is to derive an analytical solution for the

steady state, then use numerical integration of the ODEs to investigate the impact

of steady state on the dynamic response. A steady state solution for this system

is any analytical relationship between x̄1, x̄2, and k1, . . . , k4 that satisfies

0 = k1 − k3x̄1x̄2

0 = k2x̄1 − k4x̄2.

One obvious relationship is obtained by expressing the rates of synthesis,

k1 and k2, in terms of the rates of degradation k3 and k4, and the steady state

concentrations x̄1 and x̄2. This approach is prudent because measurements can

often be found for protein concentrations and their rates of degradation [62]. Doing

so gives
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Figure 1.1: A prototypical negative feedback model. A. The activa-
tor X is constitutively expressed but catalytically degraded by an inhibitor, Y.
The inhibitor is constitutively degraded but its synthesis requires X. B. A mass
action model of the system in (A) was built and stimulated by instantaneously
depleting Y. In response, X experiences a transient increase in concentration. This
response can be characterized by two quantities: A and T . C. Mathematical
representation of the perturbed steady state, indicated by the prime symbol. D.
The effects of changes to the steady state concentrations of X and Y on stimulus-
responsiveness. E. The effects of changes to the rates of turnover in X and Y on
stimulus-responsiveness. F. Monte Carlo sampling of a heterogeneous steady state
population and its response to stimulus.
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k1 = k3x̄1x̄2 (1.8)

k2 = k4
x̄1
x̄2
. (1.9)

With an analytical expression for the steady state (Figure 1.4C), the first

analysis we might perform is to characterize the dependence of A and T on the

steady state concentrations of X and Y. To do so we let x̄′1 = φ1x̄1 and x̄′2 = φ2x̄2

represent the perturbed steady state. Next we let φ1 take values over some interval

while holding φ2 = 1, then inter grate the ODEs and calculate A and T numerically

(Figure 1.4D). Conversely, to investigate the dependence of A and T on the steady

state concentration of Y we let φ2 take values of some interval while holding φ1 = 1.

The results show that A scales with the steady state concentration of X while T

is unaffected. In contrast, an increased concentration of Y results in increased

responsiveness, characterized by an increase in A and a reduction in T . This may

seem counterintuitive, as Y is the “negative regulator” of X. However, an increase

in Y with no concomitant decrease in X forces an increase in the synthesis and

degradation of X, resulting in the observed increase in responsiveness.

This first type of analysis characterizes the relationship between the dy-

namic response and the steady state concentrations of X and Y. Given measure-

ments for X and Y, we might conclude that we know a thing or two about how

this system will respond to stimulation. However, the dynamic response can also

depend on the kinetic rate constants, independently of X and Y. To characterize

these dependencies, we need to find perturbations in the rate constants that do

not affect x̄1 and x̄2. Since both x̄1 and x̄2 are independent parameters, this is

relatively simple in our prototypical negative feedback model. Let k′3 = θ1k3 and

k′4 = θ2k4 be the perturbed steady state. Notice from Equations 1.8 and 1.9 that a

perturbation θ1 6= 1 results in a change to the rates of synthesis and degradation of

X such that its steady state concentration is preserved. The same holds true for θ2

and Y. If we let θ1 or θ2 take values over an interval, we can numerically integrate

the ODEs and calculate A and T as before (Figure 1.4). The results show that

an increase in the turnover of X results in increased responsiveness, identical to
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the result obtained by increasing the concentration of Y. This result suggests that

steady state turnover of X is the major determinant of responsiveness. In contrast,

as the turnover of Y is increased, X experiences a faster but weaker activation in

response to stimulation. I will have more to say about these results in Chapter 3.

Finally, we may wish to entertain uncertainty in the parameters and see

how that uncertainty propagates into the response. This effectively models a het-

erogeneous population of cells and can be used to identify steady state features

that correlate well with the response. To do so, we let the independent parameters

be described by probability density functions and use Monte Carlo sampling and

numerical integration to calculate A and T . In Figure 1.4 we let

φ1 ∼ φ2 ∼ θ1 ∼ θ2 ∼ 2U(−2,2)

then simulate the response of 100 randomly chosen samples. The results show

that there is significant variation in A and T despite relatively little variation in

the steady state itself. Interestingly, while some anticorrelation can be observed

between x̄′2 and T , little to no correlation is observed between x̄′2 and A. This

suggests that steady state features that are determinants of the dynamic response

may nevertheless may not be good predictors of the response. All of these topics

will be explore in much greater detail in the following chapters.

Chapter 1, in part, is a reprint of material as it appears in Methods in Cell

Biology. Loriaux, Paul M; Hoffmann, Alexander, Elsevier 2012. Chapter 1 is also,

in part, a reprint of material as it appears in Public Library of Science (PLoS)

Computational Biology. Loriaux, Paul M; Tesler, Glenn; Hoffmann, Alexander,

Public Library of Science 2013. The dissertation author was the primary investi-

gator and author of these papers.



Chapter 2

Deriving analytical expressions

for the steady states of mass

action models

The steady states of cells affect their response to perturbation. However,

no method exists to systematically characterize the relationship between steady

state and response. While mathematical models are established tools for studying

cellular responses, characterizing their relationship to the steady state requires that

it have a parametric, or analytical, expression. For some models, this expression

can be derived by the King-Altman method. However, King-Altman requires that

no substrate act as an enzyme, and is therefore not applicable to most models

of signal transduction. For this reason I developed py-substitution, a simple but

general method for deriving analytical expressions for the steady states of mass

action models. Where the King-Altman method is applicable, I show that py-

substitution yields an equivalent expression, and at comparable efficiency. We use

py-substitution to study the relationship between steady state and sensitivity to

the anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First,

I use py-substitution to derive an analytical expression for the steady state of

a published model of TRAIL-induced apoptosis. Next, I show that the amount

of TRAIL required for cell death is sensitive to the steady state concentrations

of procaspase 8 and its negative regulator, Bar, but not the other procaspase

13
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molecules. This suggests that activation of caspase 8 is a critical point in the death

decision process. Finally, I show that changes in the threshold at which TRAIL

results in cell death is not always equivalent to changes in the time of death, as

is commonly assumed. This work demonstrates that an analytical expression is a

powerful tool for identifying steady state determinants of the cellular response to

perturbation.

2.1 Introduction

Transient activation of signaling molecules is a hallmark of the cellular

response to perturbation. As mentioned in Chapter 1, the dynamics of signaling

molecules can encode information about the instigating stimulus [12, 63, 64], and

these dynamics are affected by the steady state prior to perturbation [65, 23]. Non-

genetic variation in the proteome, for example, is sufficient to explain variability

in the sensitivity of HeLa cells to the pro-apoptotic ligand TRAIL [66]. Like other

TNF superfamily members, TRAIL is a promising anti-cancer therapeutic [67].

Recombinant human TRAIL, or dulanermin, as well as antibodies raised against

the TRAIL receptors DR4 and DR5, are currently in clinical trials [68]. To improve

the efficacy of these and other drugs, understanding how sensitivity is affected by

the cellular resting state is of great importance [69].

Mathematical models are powerful tools for characterizing the behavior of

signaling systems in response to perturbation [70, 33, 38, 39]. Assuming conser-

vation of mass, these models equate the change in concentration of a molecular

species with the sum of reaction velocities that produce the species, minus the sum

of those that consume it. The reactions themselves are often modeled by the Law

of Mass Action. This law assumes that the velocity of a reaction is proportional

to the product of the concentrations of its reactants. Since many signaling reac-

tions are bimolecular, the resulting mass balance equations are non-linear in the

concentrations. A system is at steady state if no species is consumed faster than

it is produced, nor produced faster than it is consumed. By this formalism, the

steady state of a signaling system is equivalent to the root of a non-linear system
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of equations. Because of this, no universal method has been developed to identify

the steady states of mass action models, despite their importance to basic and

clinical research. As a result, even with the help of mathematical models, investi-

gating the relationship between steady state and stimulus-responsiveness remains

cumbersome.

With any model, simulating the response to perturbation often requires the

system to be at steady state prior to perturbation. To achieve this, one of several

techniques is currently used. The most common technique is to assume a “trivial”

steady state where every reaction velocity is zero [71, 63]. While straightforward,

this approach may not reflect biological reality, where tonic signaling is common

[72, 73] and can strongly influence the response to perturbation [74, 75, 76]. A

second technique is to approach the steady state asymptotically via numerical in-

tegration of the mass balance equations [10, 12, 39]. While this approach can yield

non-trivial steady states, the number of integration steps required to reach the

steady state may dominate the number of steps required to simulate the perturba-

tion. Also, identifying the parameter values that result in a desired steady state is

an inverse problem that requires non-linear optimization. For these reasons, nu-

merical derivation of the steady state is impractical when characterizing its effect

on the response to perturbation, and an analytical expression is required instead.

The best-known method for deriving analytical expressions for the steady

states of mass action models was developed by King and Altman in 1956 [77].

This method assumes that all molecular species can be divided into enzymes and

substrates, that no enzyme is itself a substrate, and that all substrates remain

constant over the time-scale of steady state formation [78]. A number of improve-

ments have been made to the King-Altman method over the years [79, 80, 81].

Many of these are now implemented in the Matlab application, KAPattern [82].

The King-Altman methodology was also recently formalized using concepts from

algebraic geometry [78, 83], and extended to layered signaling cascades [84] and

post-translational modification networks [85]. Despite these improvements, how-

ever, these methods do not extend to mass action models with arbitrary reaction

structure, as is common in contemporary models of signaling systems. Further-
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more, only the King-Altman method has been reduced to practice.

For these reasons we developed py-substitution, a simple, algebraic method

for deriving steady state expressions for mass action models with arbitrary struc-

ture. Our method can be explained using concepts from linear algebra, and full

code has been provided for all examples in this manuscript, implemented in ei-

ther Matlab or Maple. A particular benefit of py-substitution is that it affords

considerable flexibility when selecting independent quantities for the steady state

expression. Often, this permits explicit derivation of kinetic rate constants from

steady state concentration measurements. More generally, it allows independent

quantities to be chosen that maximize incorporation of known or measured param-

eter values. This not only simplifies model fitting, but typically reduces the total

number of parameters required as well. We compare py-substitution to the King-

Altman method and show that, where King-Altman is applicable, the two methods

yield equivalent results. Computationally, however, we find that our method is

more efficient, and, because py-substitution does not require a particular reaction

structure, more general than King-Altman.

Finally, we use py-substitution to derive a steady state expression for a

recent model of apoptosis induced by the death-receptor ligand TRAIL [71]. We

find that incorporation of a non-trivial steady state changes the qualitative behav-

ior of the model. Specifically, tonic signaling desensitizes the system to low doses

of TRAIL, while high doses of TRAIL still result in the “snap-action” signaling

dynamics indicative of cell death. We then systematically alter the steady state

and show that changes in steady state affect the threshold at which TRAIL re-

sults in death. We find that the threshold is highly sensitive to the steady state

abundances of procaspase 8 and its negative regulator, Bar, but not the other pro-

caspase molecules. This suggests that the activation of caspase 8 is a critical point

in the cell death decision. Finally, without recourse to a model that is tolerant

to low doses of TRAIL, a common practice is to approximate the sensitivity to

TRAIL by the time at which death occurs. Using our tonic signaling model, we

show that these two metrics are not universally equivalent. Caution should there-

fore be taken when equating the dynamics of cell death with the probability that
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death occurs.

2.2 Methods

In this section we describe the process for deriving analytical expressions

for the steady states of mass action models using py-substitution. First we re-

view existing methods for deriving analytical expressions for the steady states

of mass action models. Afterwards, we describe py-substitution using some for-

mal concepts from algebra. In the results section we provide several examples,

beginning with a version of the classical Michaelis-Menten model of enzyme ac-

tion. All code for these examples, as well as detailed instructions for use and

full transcripts of the output, are provided in Protocol S1 and on our website,

http://signalingsystems.ucsd.edu/pg/pysub.

2.2.1 Prior Work

Recall from Section 1.3 that we are interested in solutions to the steady

state equation,

Sv = 0, (2.1)

where S is the stoichiometric matrix and v is a vector of reaction velocities. By con-

vention we use the overline to denote vectors that satisfy steady state. Equation 2.1

is often seen in flux balance analysis [51, 86, 87, 88]. Here v is a real-valued vector

and is calculated numerically. However, prior work has shown that Equation 2.1

can also be used to calculate a vector of rate constants from a vector of steady

state concentrations [89]. Let k ∈ Rdk
0 be the vector with elements (k)j = kj. Let

Pk be the diagonal matrix with elements (Pk)j,j = (∂vj/∂kj). The vector v can

then be expressed as

v = Pkk. (2.2)
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Substituting Equation 2.2 into Equation 2.1 and solving for k yields the k-cone [89]

— equivalently, the left null space of the matrix product SPk. Given a basis for this

null space and a vector of steady state concentrations, a vector of rate constants

can be calculated that satisfies Equation 2.1. While this approach is useful for

deriving kinetic parameters from metabolomic measurements, it is less well suited

to signaling systems where transient and low-abundance species confound accurate

measurement of the concentrations.

If the velocity of every rj ∈ R is homogeneous of degree 1 in x1, . . . , xdx ,

then an analogous approach allows v to be expressed in terms of x. We call models

that satisfy this condition linear models. An alternative, stoichiometric definition

for a linear model is given by the following,

∀rj ∈ R ,
dk∑
i1=1

sini1,j =

dk∑
i2=1

souti2,j
= 1. (2.3)

Equation 2.3 requires that every reaction defines a transition from exactly one time-

varying species to another. Let Px be the matrix with elements (P)i,j = (∂vi/∂xj).

If v is a vector of linear reaction velocities, it can likewise be expressed as

v = Pxx. (2.4)

Substituting Equation 2.4 into Equation 2.1 results in the matrix product SPx, also

called the Jacobian matrix [90]. Given a basis for the null space of the Jacobian, a

vector of steady state concentrations can be calculated from a vector rate constants.

For linear models, an alternative, graphical method for deriving expressions

for the steady state species concentrations was introduced by King and Altman

in 1956 [77]. Notice that Equation 2.3 permits a two-dimensional indexing of the

rate constants,

k′i1,i2 =

 kj if ∃ rj ∈ R : sini1,j = souti2,j
= 1

0 otherwise.
(2.5)

We call k′i1,i2 a transition rate constant since the product k′i1,i2xi1 defines the rate
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of transition from species xi1 to xi2 . Substituting Equation 2.5 into Equations 1.1

and 1.2 gives

dxi1
dt

=
dx∑
i2=1

k′i2,i1xi2 − xi1
dx∑
i2=1

k′i1,i2 . (2.6)

By defining the matrix K with elements

(K)i1,i2 =

k′i2,i1 if i1 6= i2,∑
m 6=i1 −k

′
i1,m

if i1 = i2,
(2.7)

the steady state equation becomes

Kx = 0. (2.8)

Note that K is simply the Jacobian matrix for a linear model, K = SPx. The

general solution to Equation 2.8 was found in [77] to be the vector x with elements

(x)i =
Mi∑dx

i2=1 Mi2

, (2.9)

where Mi is the ith minor of K, formed by removing its ith row and column and

computing its determinant. For sufficiently small systems, Equation 2.9 can be

solved directly using modern mathematical computing software [91]. Prior to the

advent of modern computers, King and Altman realized that the minors can also

be derived by graph theoretic means. Note that for a linear model, A and R imply

a directed graph,

G = (A,R ) , (2.10)

where each ai ∈ A defines a vertex and each rj ∈ R defines an edge between

vertices ai1 and ai2 (provided i1 and i2 are such that sini1,j = souti2,j
= 1). The King-

Altman method enumerates for each species ai ∈ A the set Si of simple connected

subgraphs
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Si = {G ′ = (X ,R ′) : R ′ ⊂ R , |R ′| = dx − 1}

where vertex ai has out-degree 0 and all other vertices have out-degree 1 [79, 80].

These are the directed spanning trees of G, with all edges directed towards root

ai. A subgraph G ′ is called a King-Altman pattern. The minor Mi can then be

expressed as

Mi =
∑

G ′∈Si

∏
rj∈R ′

kj, (2.11)

where kj = k′i1,i2 is the transition rate constant between species ai1 and ai2 . For a

more thorough derivation of the King-Altman method, see [92].

Of course, many biochemical reactions are bimolecular. By Equation 1.1,

the velocity of a bimolecular reaction is degree 2 in x1, . . . , xdx . To preserve linear-

ity, one can assume the concentration of one reactant is so high as to be effectively

constant. This concentration is incorporated into the kinetic rate constant, and the

techniques described above can still be used to solve Equation 1.3. If this assump-

tion fails, then Equation 1.2 describes a polynomial in x1, . . . , xdx with coefficients

in Q[k1, . . . , kdk ]. In this case the solutions to Equation 1.3 form an algebraic

variety. Deriving an expression for the steady state of a non-linear model thus

requires finding a parameterization of the variety [93]. One way to achieve this is

to calculate a Gröbner basis for the ideal generated by ẋ1, . . . , ẋdk and eliminate

variables [94, 95]. Alternatively, if the model displays certain structural proper-

ties, variables can be eliminated by identifying conservation relationships. The

best-known example of this is when {A,R } defines a cascade of post-translational

modifications. In this case, enzyme-substrate intermediates can be eliminated and

the variety can be parameterized by rational functions of the free enzyme concen-

trations with coefficients in Q(k1, . . . , kdk) [78, 84]. Although these methods do not

require linearity, calculating a Gröbner basis can be computationally intractable,

while identifying conservation relationships can be difficult for models of arbitrary

reaction structure.
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2.2.2 Py-substitution

Py-substitution allows mass action models to be solved using simple linear

algebra. We make use of the following observations: (a) ẋi is always homogeneous

of degree 1 in k1, . . . , kdk , and (b) ẋi is often no greater than degree 2 in x1, . . . , xdx .

If a subset of elements in K ∪ X can be found on which every ẋi has only linear

dependence, then Equation 2.1 can be solved using linear methods.

To begin, we define sets of symbolic variables P = {p1, . . . , pdp} and Y =

{y1, . . . , ydy} such that dp + dy = dk + dx and dy ≥ rank S. We then relabel, or

map, every element in K ∪X to a unique element in P ∪Y so that every ẋi is linear

in Y . By Equations 1.1 and 1.2 this requires that all vj are linear in Y . Variables

that we want to remain independent, as well as variables on which ẋi has non-

linear dependence, should be mapped to P . As we shall see, there is considerable

flexibility in choosing this map.

Let K and X be partitioned into disjoint (but possibly empty) subsets K =

Kp ∪ K lin and X = Xp ∪ X lin . We define ψp to be a bijective map

ψp :

Kp ∪ Xp → P

K lin ∪ X lin → Y ,

and extend it homomorphically over Q[K ][X ]. Our linearity restriction is to con-

sider maps of this form such that

ψp(vj) = yn

dp∏
m=1

p
h′j,m
m (2.12)

for some yn ∈ Y . For pm = ψp(xi), the exponent is h′j,m = hi,j. For pm =

ψp(kj), the exponent h′j,m = 1. In words, ψp defines a change of variables such

that ψp(vj) is homogeneous of degree 1 in y1, . . . , ydy . By Equation 1.2, ψp(ẋi)

becomes a homogeneous polynomial of degree 1 in y1, . . . , ydy with coefficients in

Q[p1, . . . , pdp ]. We can now write

ψp(v) = Py, (2.13)
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where P is the dk×dy Jacobian matrix with elements (P)ij = (∂vi/∂yj). Here and

elsewhere we use the notation ψ(v) = w to mean that w is the vector formed by

applying the function ψ element-wise to v. Note that the trivial partition K lin = K

and Xp = X recovers the k-cone procedure described above. For the remainder of

this section, we treat j as an index over 1, . . . , dy. Substituting Equation 2.13 into

Equation 2.1 gives

Cy = 0 (2.14)

where C = SP is called the coefficient matrix. The solution to Equation 2.14 is

precisely the null space of C. Let N be a matrix whose columns form a basis

for this null space. Let dq be the number of columns in N. By the rank-nullity

theorem, we have

dq = ncols C− rank C, (2.15)

where ncols C = dy is the number of columns in C. Furthermore, because ψp(v)

is linear in y and ψ−1p exists, the matrix P must be full rank. By the properties of

the rank, we can write

rank C = rank SP = rank S. (2.16)

Together, Equations 2.15 and 2.16 give

dq = dy − rank S, (2.17)

thus calling for the constraint dy ≥ rank S. This, in conjunction with Equa-

tion 2.12, are the only constraints on ψp. If we now let y be some linear combina-

tion of the basis vectors,

y = Nq, (2.18)
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then y satisfies Equation 2.14 and steady state is achieved. In general, Equa-

tion 2.18 is underdetermined. Equation 2.18 therefore implies a partition of Y into

independent variables (denoted Yq) and dependent variables (denoted Y c
q ). We will

now describe this partition by a second mapping function, ψy.

Recall that a basis for the null space of C can be constructed from Crref,

the reduced row echelon form of C. Let cj be the jth column of Crref. If cj contains

a pivot position, then yj is a dependent variable. If cj does not contain a pivot,

then yj is free, or independent. Let

Yq = {yj ∈ Y : column cj does not contain a pivot} (2.19)

Y c
q = {yj ∈ Y : column cj contains a pivot}.

Let dq be the cardinality of Yq. Enumerate these variables as Yq = {yj1 , yj2 , . . . , yjdq},
with j1 < · · · < jdq . For every cj not containing a pivot, there is a basis vector

nk (related by j = jk) whose jth element equals 1 and whose elements in positions

> j are 0. By Equation 2.18, this gives an independent parameter, yj = (q)k = qk.

Equation 2.18 thus defines a function ψy : yj 7→ qk. Let Q = {q1, q2, . . . , qdq} be the

set of independent parameters. If column cj does contain a pivot, then yj depends

on variables in P ∪ Q , giving ψy : yj 7→ fj(P ,Q ) ∈ spanQ(P) (Q ) where fj(P ,Q ) is

the specific function resulting from the row operations used to reduce C to Crref.

Equation 2.18 can now be described in its entirety by the mapping function ψy,

ψy :


P → P (identity)

Yq → Q

Y c
q → spanQ(P) (Q ).

(2.20)

The notation ψ : P → P (identity) indicates that ψ(p) = p for every p ∈ P . Note

that we define spanF (Q ) as the set of all linear combinations a1q1 + a2q2 + · · · ,
where a1, a2, · · · ∈ F and q1, q2, . . . are distinct elements of Q . Q[P ] is the set of

all polynomials in variables P with rational numbers as coefficients. Q(P ) is the
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field of fractions of Q[P ]: any f ∈ Q[P ] can be expressed as f = g1/g2, where g1,

g2 ∈ Q[P ].

As with ψp, there is some flexibility in choosing how Y is partitioned into

free variables, Yq, and dependent variables, Y c
q . A different indexing of the vari-

ables in Y simultaneously permutes the vector y and the columns of C. This

leads to different reduced row echelon forms, with different partitions into free

and dependent variables. The null space basis obtained by reducing C to Crref

greedily classifies low-numbered columns as dependent columns when possible, or

free columns when not possible. Quantities in Y for which good numerical esti-

mates exist should therefore be assigned to higher indices. These quantities are

favored, but not guaranteed, to be mapped to independent parameters. Quantities

for which good numerical estimates do not exist should be assigned to low indices

in Y .

Finer control over the partition of Y into dependent and independent pa-

rameters is possible by working directly with Crref or N. Let Y ′q = {yj1 , . . . , yjdq}
be the set of dq elements in Y that we want mapped to Q . Let N′ be the square

matrix formed by rows j1, . . . , jdq of N. To map Y ′q to Q requires that we find a

vector q′ such that

N′q′ = q,

where q is the vector with elements (q)k = qk. Solving for q′ gives

q′ = (N′)−1q. (2.21)

Thus, for a given map ψp, not all partitions of Y into Yq and Y c
q are possible,

but only those for which det(N′) 6= 0. An example of this can be seen in the file

“fum2.m” in Supporting Protocol S1, discussed below.

Next let Kq = {k ∈ K : ψpy(k) ∈ Q }, and Ky = K lin\Kq. Let Xq and Xy be

defined analogously. The composition ψpy = (ψy ◦ ψp) captures the entire process

of linearizing v with the function ψp, solving the linear system Sψp(v) = 0, and

taking an arbitrary combination of solution space basis vectors:
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ψpy :


Kp ∪ Xp → P

Kq ∪ Xq → Q

Ky ∪ Xy → spanQ(P) (Q ).

Applying ψpy to the sets K and X results in a parametric description of the steady

state that is typically the most useful: every element in K or X is mapped to an

element in P or Q , or a function in spanQ(P) (Q ). Assigning numerical values to

elements in P and Q results in elements in spanQ(P) (Q ) taking values that satisfy

the steady state equation. In some cases we may wish to reverse the substitution

so that functions of variables P ∪ Q are mapped back to functions of K ∪ X . To

do so, let Kpq = Kp ∪Kq and Xpq = Xp ∪ Xq. Let ψ−1q be the inverse of ψy restricted

to the independent parameters, P ∪ Q .

ψ−1q :

P → P (identity)

Q → Yq.

The composition of ψ−1p and ψ−1q now defines a map from the set of independent

parameters to their counterparts in K and X ,

ψ−1pq = (ψ−1p ◦ ψ−1q ) :

P → Kp ∪ Xp

Q → Kq ∪ Xq.

If we extend ψ−1pq to f ∈ spanQ(Kp,Xp) (Kq,Xq) homomorphically, we can compose

ψ−1pq with ψpy,

ψss = (ψ−1pq ◦ ψpy) :


Kpq → Kpq (identity)

Xpq → Xpq (identity)

Ky ∪ Xy → spanQ(Kp,Xp) (Kq,Xq)

The function ψss then defines a map for which
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Sψss(v) = Sv = 0,

where steady state velocities in v are in terms of elements in K and X . A visual

overview of the py-substitution method is given in Figure 2.1.

2.3 Results

2.3.1 Py-substitution permits flexible derivation of a steady

state solution

An important goal in developing py-substitution was that it be generally

applicable to any model whose reaction rates obey mass action kinetics. This

requires that the independent quantities be chosen freely among the species con-

centrations and reaction rate constants, and that non-linear rate equations do not

confound the derivation of a steady state expression. To demonstrate these capa-

bilities we consider an open-system analog of the classical Michaelis-Menten model

of enzyme kinetics (OMM, see also Figure 2.2). Substrate synthesis and product

degradation allow this system to achieve a non-trivial steady state v 6= 0, which

we derive here using four different substitution strategies. The set R of reactions

for this model is given by

r1 : x1 + x2
v1−→ x3

r2 : x3
v2−→ x2 + x1

r3 : x3
v3−→ x2 + x4

r4 : Ø
v4−→ x1

r5 : x4
v5−→ Ø

The symbol Ø represents a source or sink for mass and is not modeled by a time-

varying species. From the set R we derive the stoichiometric matrix and reaction

velocity vector,
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Figure 2.1: Overview of the py-substitution method. Quantities in a mass
action model can be separated into kinetic rate constants (set K , red) and species
abundances or concentrations (set X , blue). From K ∪ X a subset Klin ∪ Xlin is
selected on which all reaction velocities have only linear dependence. A function ψp
maps these to elements in Y and the remaining Kp∪Xp to elements in P . A second
function ψy imposes the relations ψp(ẋ) = 0 by expressing dependent variables in
Y in terms of independent parameters P ∪Q . A third function, ψ−1q , is the inverse
of ψy restricted to the independent parameters. The composition of ψ−1p with ψ−1q
results in variables in Ky∪Xy being expressed in terms of variables in Kpq∪Xpq, such
that steady state is achieved. In the diagram, solid arrows are isomorphisms while
dashed arrows are homomorphisms that replace dependent variables by equivalent
expressions in independent parameters.
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S =


−1 1 0 1 0

−1 1 1 0 0

1 −1 −1 0 0

0 0 1 0 −1

 , v =



k1x1x2

k2x3

k3x3

k4

k5x4


.

By Equation 1.4 this results in the following system of equations,

dx1/dt = −k1x1x2 + k2x3 + k4

dx2/dt = −k1x1x2 + k2x3 + k3x3

dx3/dt = k1x1x2 − k2x3 − k3x3

dx4/dt = k3x3 − k5x4

for which we now derive functions ψss such that Sψss(v) = Sv = 0.

Homogeneous substitution: steady state concentrations do not uniquely

determine reaction rate constants

The most straightforward substitution strategy is to let Klin = K and Xp =

X . The corresponding function ψp maps

k1 7→ y1 x1 7→ p1

k2 7→ y2 x2 7→ p2

k3 7→ y3 x3 7→ p3

k4 7→ y4 x4 7→ p4

k5 7→ y5

See “omm1.m.trace.pdf” in Protocol S1 for details of this partition and all subse-

quent steps. Applying ψp to v results in a reaction velocity vector that is linear in

y, as required by Equation 2.13,
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Figure 2.2: An open system analog of the classical Michaelis-Menten
model for enzyme catalysis. Enzyme and substrate bind to form an intermedi-
ate complex, followed by catalysis and dissociation of the product. The substrate
is synthesized by a zero-order reaction, r4, and the product is degraded by a first-
order reaction, r5. See “omm1.m” in Protocol S1 for a complete description of the
model.
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ψp(v) = Py =



p1p2 0 0 0 0

0 p3 0 0 0

0 0 p3 0 0

0 0 0 1 0

0 0 0 0 p4





y1

y2

y3

y4

y5


.

The resulting coefficient matrix is given by

C = SP =


−p1p2 p3 p3 0 0

−p1p2 p3 0 1 0

p1p2 −p3 −p3 0 0

0 0 p3 0 −p4

 ,

which row reduces to

C ∼ Crref =


1 −p3/(p1p2) 0 0 −p4/(p1p2)
0 0 1 0 −p4/p3
0 0 0 1 −p4
0 0 0 0 0

 . (2.22)

From Equation 2.22, we observe that rank C = 3. Thus, of the 9 degrees of

freedom in this system (5 rate constants plus 4 species concentrations), 3 will have

values that are constrained by Equation 2.1. Since our substitution strategy only

identifies 4 independent parameters, 2 additional elements mapped to Y must in

fact be independent as well. These elements can be identified by the columns in

Crref that do not contain pivots, namely columns 2 and 5. To see this, note that

Equation 2.22 yields the following basis for the null space of C,
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N =



p3/(p1p2) p4/(p1p2)

1 0

0 p4/p3

0 p4

0 1


.

Letting q = [q1, q2]
T, Equation 2.18 gives

y =



(q1p3 + q2p4)/(p1p2)

q1

(q2p4)/p3

q2p4

q2


. (2.23)

Thus by Equation 2.19, we have that Yq = {y2, y5} and Y c
q = {y1, y3, y4}. By

Equation 2.20, Equation 2.23 can be described by the mapping function ψy :

p1 7→ p1 y1 7→ (q1p3 + q2p4)/(p1p2)

p2 7→ p2 y2 7→ q1

p3 7→ p3 y3 7→ (q2p4)/p3

p4 7→ p4 y4 7→ q2p4

y5 7→ q2

From ψy and ψp we construct the composite forward map, ψpy = (ψy ◦ ψp) :
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k1 7→ (q1p3 + q2p4)/(p1p2) x1 7→ p1

k2 7→ q1 x2 7→ p2

k3 7→ (q2p4)/p3 x3 7→ p3

k4 7→ q2p4 x4 7→ p4

k5 7→ q2

To reverse the substitution, notice from Equation 2.23 that y2 = q1 and y5 = q2,

giving the following map, ψ−1q :

P → P (identity) q1 7→ y2

q2 7→ y5

This yields a composite backward map, ψ−1qp = (ψ−1p ◦ ψ−1q ) :

p1 → x1 q1 7→ k2

p2 → x2 q2 7→ k5

p3 → x3

p4 → x4

The complete steady state mapping ψss = (ψ−1qp ◦ ψpy) is therefore

k1 7→ (k2x3 + k5x4)/(x1x2) x1 7→ x1

k2 7→ k2 x2 7→ x2

k3 7→ k5x4/x3 x3 7→ x3 (2.24)

k4 7→ k5x4 x4 7→ x4

k5 7→ k5

Applying this transformation to the original vector of reaction velocities yields
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v = ψss(v) =



k2x3 + k5x4

k2x3

k5x4

k5x4

k5x4


,

which one can verify satisfies Equation 2.1. An interesting implication of this

trivial application of py-substitution is that, because ψpy maps every species con-

centration to an independent parameter, we can interpret Equation 2.24 to mean

that any vector of steady state concentrations will be consistent with an infinite

number of reaction rate constants. In this particular case, knowing all four con-

centrations tells us nothing about the rates of enzyme-substrate dissociation or

product degradation. As we shall see, by using different substitution strategies,

we have some flexibility in choosing which rate constants are constrained by the

steady state concentrations, but the structure of the OMM model makes finding

a unique set of rate constants impossible. In general, a unique set of reaction rate

constants requires that the coefficient matrix be full rank, or

rank C = dy. (2.25)

Since complete knowledge of the species concentrations implies dp = dx and dy =

dk, by Equation 2.16, Equation 2.25 becomes

rank S = dk.

In other words, a unique set of rate constants requires that the stoichiometric

matrix be full rank, which is equivalent to requiring that the corresponding reaction

network have no cycles. Since even a single reversible reaction represents a cycle,

we conclude that in the general case, a set of steady state species concentrations

does not imply a unique set of reaction rate constants.
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Heterogeneous substitution: the number of independent model param-

eters is constant

Often, models contain species whose concentrations are difficult to measure

or reactions whose rates have been well characterized. For such models it is prefer-

able to partition sets K and X so that species whose concentrations are difficult to

measure are mapped to Y while well-characterized reaction rates are mapped to

P . For example, if the kinetics of the enzyme are well characterized, an attractive

partitioning of the OMM model might be Kp = {k1, k2, k3, k5} and Xp = {x2}. This

yields a map ψp :

k1 7→ p2 x1 7→ y1

k2 7→ p3 x2 7→ p1

k3 7→ p4 x3 7→ y2

k4 7→ y4 x4 7→ y3

k5 7→ p5

Again, see “omm2.m.trace.pdf” in Protocol S1 for complete details. Notice here

that we have forced the enzyme kinetic parameters k1, k2, and k3 to be independent

by mapping them to elements in P . The resulting coefficient matrix and null space

basis are

C =


−p1p2 p3 + p4 0 0

−p1p2 p3 0 1

p1p2 −(p3 + p4) 0 0

0 p4 −p5 0

 , N =


(p3 + p4)/(p1p2p4)

1/p4

1/p5

1

 ,

which yield the steady state map ψss :
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k1 7→ k1 x1 7→ k4(k2 + k3)/(k1k3x2)

k2 7→ k2 x2 7→ x2

k3 7→ k3 x3 7→ k4/k3

k4 7→ k4 x4 7→ k4/k5

k5 7→ k5

As desired, x2 is the only independent species concentration. Applying this trans-

formation to the original vector of reaction velocities gives

v = ψss(v) =



k4(k2 + k3)/k3

k2k4/k3

k4

k4

k4


.

Notice that even though the cardinality of P differs in this example as compared

to the one above (5 versus 4), the cardinality of Y c
q does not (3). Let dc denote

this cardinality. Obviously, dc = dy − dq, or equivalently,

dc = ncols C− ncols N.

This is simply the rank-nullity theorem again. By Equation 2.16, we can therefore

conclude that

dc = rank S.

In other words, the final number of dependent elements in the steady state expres-

sion for a system is independent of the substitution strategy, and only depends on

the structure of the reaction network.
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Substitution with sublinear velocities: using py-substitution to resolve

non-linearities (I)

Some reaction velocities are zero-order but well-characterized. For exam-

ple, if the rate v4 of substrate synthesis in the OMM model has been accurately

measured, we may wish to partition K such that k4 ∈ Kp. The resulting mapping

function ψp, however, fails to linearize v. To compensate, we introduce a pseu-

dospecies x̂5 = 1 and let v4 = k4x̂5. If we now partition X such that x̂5 ∈ Xlin, the

linearity of ψp(v) in y is preserved and we may continue as before.

To illustrate this approach, we again let Xp = {x1, x2, x3, x4} and Kp = {k4}. The

remaining rate constants and one pseudospecies are partitioned into sets Klin and

Xlin, respectively, such that ψp(x̂5) = y5. See “omm3.m.trace.pdf” in Protocol S1

for details. The resulting velocity vector is linear and yields a coefficient matrix

whose null space is two-dimensional,

N =



p3/(p1p2) p5/(p1p2)

1 0

0 p5/p3

0 p5/p4

0 1


. (2.26)

However, one of these two dimensions is constrained by the pseudospecies. We are

thus not at liberty to take a general linear combination as per Equation 2.18 but

must find q such that

ψpy(x̂5) = 1. (2.27)

By our choice of ψp, and by Equations 2.18 and 2.26, we have ψpy(x̂5) = (q)2.

Equation 2.27 is therefore satisfied when (q)2 = 1. This gives q = [q1, 1]T and
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y =



(p3q1 + p5)/(p1p2)

q1

p5/p3

p5/p4

1


.

The complete steady state mapping ψss = (ψ−1qp ◦ ψpy) is

k1 7→ (k4 + k2x3)/(x1x2) x1 7→ x1

k2 7→ k2 x2 7→ x2

k3 7→ k4/x3 x3 7→ x3

k4 7→ k4 x4 7→ x4

k5 7→ k4/x4 x̂5 7→ 1

As desired, k4 remains an independent parameter. Applying this transformation

to the original vector of reaction velocities yields

v = ψss(v) =



k4 + k2x3

k2x3

k4

k4

k4


.

Substitution with superlinear velocities: using py-substitution to re-

solve non-linearities (II)

Some reaction velocities are superlinear in their reactant concentrations. If

good estimates for these concentrations do not exist, we would like to partition

these species into Xlin. Analogous to the sublinear case above, doing so results in a

velocity vector ψp(v) that is non-linear in y. Fortunately, the strategy above is use-

ful here as well: introduce a pseudospecies for each superlinearity, calculate a basis



38

for the null space of the coefficient matrix, and identify basis vector coefficients

that satisfy the constraints imposed by the pseudospecies.

Let us consider a version of the OMM model where the rate of product

formation is proportional to the square of the enzyme-substrate complex, v3 =

k3x
2
3. Let us further assume that no estimate exists for the value of x3. We would

therefore like ψp(x3) ∈ Y . Since this fails to linearize the velocity, we introduce a

pseudospecies x̂5 = x23 and let v3 = k3x̂5. We now define ψp such that

k1 7→ p2 x1 7→ y4

k2 7→ p3 x2 7→ p1

k3 7→ p4 x3 7→ y1

k4 7→ y5 x4 7→ y3

k5 7→ p5 x̂5 7→ y2

This satisfies the linearity requirement and maps x3 and x̂5 to the lowest indices

in Y , thereby favoring these quantities to become dependent parameters. See

“omm4.m.trace.pdf” in Protocol S1 for details. The resulting coefficient matrix

has a null space that is spanned by the columns of

N =



p1p2/p3 −1/p3

0 1/p4

0 1/p5

1 0

0 1


.

Letting q = [q1, q2]
T maps k4 and x1 to Q and satisfies our requirement that ψpy(x3)

and ψpy(x̂5) ∈ Y c
q . As in the previous section, however, one dimension of N is

constrained by the pseudospecies. Specifically, we require that ψpy(x̂5) = ψpy(x
2
3).

by Equation 2.18, this requires that

(q2 − p1p2q1)2/p23 = q2/p4.
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Solving for q1 (we may just as easily have solved for q2; in this example, whether

k4 or x1 map to Q is immaterial), we are left with the following:

y =



√
q2/p4

q2/p4

q2/p5

q2(p3
√
q2)/(p1p2

√
p4)

q2


.

The complete steady state mapping ψss = (ψ−1qp ◦ ψpy) is

k1 7→ k1 x1 7→ (k4 + k2
√
k4/k3)/(k1x2)

k2 7→ k2 x2 7→ x2

k3 7→ k3 x3 7→
√
k4/k3

k4 7→ k4 x4 7→ k4/k5

k5 7→ k5 x̂5 7→ k4/k3

Applying this transformation to the original vector of reaction velocities yields

v = ψss(v) =



k4 + k2
√
k4/k3

k2
√
k4/k3

k4

k4

k4


.

This example illustrates that, using pseudospecies, a mapping function ψp can

always be found such that ψy can be derived using linear methods. Non-linearities

introduced by pseudospecies can then be resolved on a case-by-case basis, resulting

in the final steady state solution.
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2.3.2 Py-substitution is more general, but not less effi-

cient, than King-Altman

Some chemical reaction systems are linear in the species concentration vec-

tor, or can be rendered linear by assuming that the concentrations of certain species

don’t change over time. The classical model for malate synthesis is an example

of the latter [96]. Here, the enzyme fumarase binds reversibly to fumarate and

hydrogen in either order, followed by reversible binding of hydroxyl and reversible

formation of malate (Figure 2.3). The reactions for this model are

r1 : x1 + x6
v1−→ x3 r7 : x3

v7−→ x1 + x6

r2 : x3 + x7
v2−→ x4 r8 : x4

v8−→ x3 + x7

r3 : x1 + x7
v3−→ x5 r9 : x5

v9−→ x1 + x7

r4 : x5 + x6
v4−→ x4 r10 : x4

v10−→ x5 + x6

r5 : x4 + x8
v5−→ x2 r11 : x2

v11−→ x4 + x8

r6 : x2
v6−→ x1 + x9 r12 : x1 + x9

v12−→ x2

By Equation 1.1, the corresponding reaction velocities are

v1 = k1x1x6 v7 = k7x3

v2 = k2x3x7 v8 = k8x4

v3 = k3x1x7 v9 = k9x5 (2.28)

v4 = k4x5x6 v10 = k10x4

v5 = k5x4x8 v11 = k11x2

v6 = k6x2 v12 = k12x1x9

The stoichiometric matrix is
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S =



−1 0 −1 0 0 1 1 0 1 0 0 −1

0 0 0 0 1 −1 0 0 0 0 −1 1

1 −1 0 0 0 0 −1 1 0 0 0 0

0 1 0 1 −1 0 0 −1 0 −1 1 0

0 0 1 −1 0 0 0 0 −1 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−1 0 0 −1 0 0 1 0 0 1 0 0

0 −1 −1 0 0 0 0 1 1 0 0 0

0 0 0 0 −1 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0 0 0 0 1



.

Notice that the submatrix formed by the first five rows of S satisfies the defi-

nition for a linear model given in Equation 2.3. Call this submatrix S5 and let

x′ = [x1, . . . , x5]
T be the vector of enzyme concentrations. If we assume that the

substrate concentrations x6, . . . , x9 are time-invariant, the steady state equation

for this model becomes

S5v = 0. (2.29)

Because S5 satisfies Equation 2.3, we may define the following transition rate

constants

k′1,3 = k1x6 k′3,1 = k7

k′3,4 = k2x7 k′4,3 = k8

k′1,5 = k3x7 k′5,1 = k9 (2.30)

k′5,4 = k4x6 k′3,4 = k10

k′4,2 = k5x8 k′2,4 = k11

k′2,1 = k6 k′1,2 = k12x9
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Substituting Equations 2.30 into 2.28 results in a velocity vector v′ that is linear

in x′. Let Px′ = (∂v′i/∂x
′
j) as before, where i = 1, . . . , dk and j = 1, . . . , dx′ . This

gives

v′ = Px′x
′. (2.31)

If we now define a matrix

K = S5Px′ , (2.32)

Equation 2.29 becomes

Kx′ = 0, (2.33)

where the elements of K are given in Equation 2.7. The solution to Equation 2.33

is given by Equation 2.9, which we saw may be evaluated using the King-Altman

method. Alternatively, we may solve Equation 2.29 directly using py-substitution.

Given that py-substitution applies to a more general class of mass action models

then King-Altman, we wondered whether this flexibility came at the cost of com-

putational efficiency. Here we show that, for models that can be treated using the

King-Altman method, py-substitution yields an equivalent result, and at no loss

of efficiency.

Py-substitution and King-Altman yield equivalent steady state expres-

sions

Equation 2.33 has been solved previously using KAPattern [82]. The solu-

tion is reproduced here in “fum1.m.trace.pdf” in Protocol S1. For each enzyme i,

1 ≤ i ≤ 5, the steady state concentration has the form

x̄kai =
Nka
i

Dka
. (2.34)



43

Figure 2.3: The model of malate synthesis used to compare py-
substitution with the King-Altman method. This mechanism for the conver-
sion of fumarate to malate by the enzyme fumarase was proposed in [96]. Fumarase
binds to fumarate and hydrogen in either order, then hydroxyl, followed by forma-
tion of the product, malate. All reactions are reversible. See “fum1.m” in Protocol
S1 for a complete description of the model.
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In this subsection only, we use x̄kai to mean the ith element of the vector x, made

to satisfy Equation 2.33 by the King-Altman method. The element x̄pyi is defined

analogously for py-substitution. To solve Equation 2.29 by py-substitution, we

partition X into subsets

E = {x1, . . . , x5}

Ec = {x6, . . . , x9}, (2.35)

and define ψp such that

ψp :

K ∪ Ec → P

E → Y .

The resulting coefficient matrix is precisely the matrix of rate constants, K. The

null space of K is one-dimensional and spanned by a single basis vector n. In our

solution, the basis vector is normalized to element (n)5, which by Equations 2.18

and 2.19 yield a partition of Y into subsets Yq = {y5} and Y c
q = {y1, . . . , y4}.

After reversing the substitution we find that the steady state concentration of

each enzyme likewise has the form

x̄pyi =
Npy
i

Dpy
. (2.36)

By inspection, Equations 2.34 and 2.36 are related by the following:

Npy
i = x̄py5 N

ka
i , i = 1, 2, 3, 4 (2.37)

Dpy = Nka
5 . (2.38)

In other words, the solutions given by KAPattern and py-substitution are not

identical. The disparity arises from Equation 2.9, which imposes the constraint∑
i x̄

ka
i = 1. When derived by King-Altman, the steady state expression for each

enzyme is therefore a ratio of the total enzyme concentration. In contrast, py-

substitution results in x̄py1 , . . . , x̄
py
4 being expressed in terms of x̄py5 , the only element
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x ∈ E for which ψpy(x) ∈ Q . Despite this disparity, Equations 2.36 to 2.38 can be

combined to give

x̄pyi = x̄py5 N
ka
i /N

ka
5 .

Therefore,

5∑
i=1

x̄pyi =
x̄py5
Nka

5

5∑
i=1

Nka
i

= x̄py5 (Dka)/Nka
5

= x̄py5 /x̄
ka
5 .

If we likewise impose the constraint
∑

i x̄
py
i = 1, then x̄ka5 = x̄py5 , and for i 6= 5,

x̄pyi = x̄py5 N
py
i /N

ka
5

= (Nka
5 /Dka)Nka

i /N
ka
5

= Nka
i /D

ka

= x̄kai .

The two solutions are thus equivalent.

Py-substitution is not less efficient than King-Altman

We next wondered whether the King-Altman method is computationally

more efficient than direct algebraic solution of the linear steady state equation

(Equation 2.14). The King-Altman method requires exhaustive enumeration of

valid King-Altman patterns. The number of patterns depends critically on the

structure of the model. A model of strongly connected species generates ddx−2x

patterns while a simple cycle generates only dx [92]. By comparison, solving Equa-

tion 2.14 requires Gaussian elimination on the matrix K. For a fixed-precision

numeric matrix, this would take at most O(d3x); however, since K has symbolic
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entries rather than numerical ones, the sizes of the entries grow with the number

of row operations. In fact, as Equation 2.11 shows, the number of valid King-

Altman patterns is precisely the number of terms in the polynomial expansion of

the minors. Thus even a few species, if highly connected, can generate thousands

of terms and easily overwhelm conventional memory architectures.

To evaluate the performance of py-substitution versus KAPattern, we gen-

erated random models with six species and anywhere from 10 to 20 first-order re-

actions between them. Three distinct realizations were generated for each model.

Models for which KAPattern failed – typically because the stoichiometric matrix

described a disjoint network – were discarded. The command-line version of Mat-

lab 2010b was used to derive the steady state concentration vector for each model

using py-substitution and KAPattern, and for py-substitution the command-line

version of Maple 14 was used as well. Internal memory was cleared prior to each

derivation to prevent caching. The architecture used was a commodity netbook

PC running Windows XP SP3 with an Intel 1.7 GHz Atom processor and 1 GB

RAM. The derivation was repeated in triplicate for each realization to reduce vari-

ance introduced by the CPU scheduler. Execution times include initialization of

the symbolic variables and coefficient matrix, kernel calculation, and derivation of

y in the case of py-substitution, and all steps prior to file writing in the case of

KAPattern.

Results from the simulation are given in Figure 2.4. The data show that

using Matlab, KAPattern provides consistently better performance and better scal-

ing with respect to the number of reactions. This is likely because KAPattern uses

Wang algebra to avoid explicit representation of the fully expanded minors in mem-

ory [81]. In contrast, Gaussian elimination of the coefficient matrix uses MuPAD,

the Matlab symbolic engine, which is memory intensive and sensitive to expression

swell. Models of even modest degree exhaust physical memory and cause “thrash-

ing”, resulting in poor runtime performance for models larger than 15 reactions.

However, using Maple, direct solution of the steady state equation is typically an

order of magnitude faster than KAPattern and exhibits identical scaling. This is

likely because Maple’s symbolic solver considers equations in increasing order of
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their memory footprint. This data therefore argues that the King-Altman method

is not more efficient than direct solution of the steady state equation.

Py-substitution is more general than King-Altman

To solve the steady state equation, the King-Altman method requires that

the stoichiometric matrix S satisfies Equation 2.3. As we saw above, for S to

satisfy Equation 2.3 we must be able to partition X into two disjoint sets, a set

E of “enzymes” and a complementary set Ec of “substrates”. The partition must

be such that every reaction r ∈ R consumes a single species in E and produces

a single, different species in E . All other species produced or consumed by r

must be in Ec. The concentrations of these substrates are assumed to be time-

invariant. As such, rows in S that correspond to substrates can be removed, and

the substrate concentrations can be incorporated into the kinetics of the reactions.

By inspection, the only such partition for the fumarase model is Equation 2.35,

analyzed above.

By comparison, py-substitution does not require that the stoichiometric

matrix satisfies Equation 2.3. The substrates x6, . . . , x9 can therefore remain vari-

able with respect to time and incorporated into the steady state solution, of which

there are many. Without recourse to pseudospecies, the six bimolecular reaction

velocities require that x6, x7, x9 and x1, x3, x5 be partitioned separately into sets

Xp and X lin , or vice-versa. One such partition is

Kp = {k1, . . . , k5, k12}

K lin = {k6, . . . , k11}

Xp = {x1, . . . , x5}

X lin = {x6, . . . , x9}.

The resulting coefficient matrix has a five-dimensional null space, consistent with

Equation 2.17 since dy = 10 and rank S = 5. A basis for this null space is given

by the columns in N, where
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Figure 2.4: Computational performance of KAPattern versus py-
substitution, implemented in either Matlab or Maple. Given a first-order
model with six species and the number of reactions indicated by the x-axis, the
time required to derive an expression for the steady state of the model is indicated
by the y-axis. Three random realizations were used for every model size. Ev-
ery calculation was performed in triplicate, but the error in calculation time was
negligible.



49

N =



0 0 0 0 (p6p7)/p8

−p10/p9 (p4p11 + p1p7)/p9 0 0 0

−1 (p4p11)/p10 (p2p9)/p10 0 0

p10/p11 −p4 (p3p7)/p11 0 0

1 0 0 0 0

0 0 0 (p5p10)/p8 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



.

The set Yq must therefore contain five elements. We may select these elements

with some flexibility by our choice of basis vector coefficients. The simplest choice,

q = [q1, . . . , q5]
T, yields the steady state mapping ψss :

k1 7→ k1 k6 7→ k12x1x9/x2 x1 7→ x1 x6 7→ x6

k2 7→ k2 k7 7→ (x6(k1x1 + k4x5)− (k10x4))/x3 x2 7→ x2 x7 7→ x7

k3 7→ k3 k8 7→ (k2x3x7 + k4x5x6)/x4 − k10 x3 7→ x3 x8 7→ x8

k4 7→ k4 k9 7→ (k10x4 + k3x1x7)/x5 − k4x6 x4 7→ x4 x9 7→ x9

k5 7→ k5 k10 7→ k10 x5 7→ x5

k12 7→ k12 k11 7→ k5x4x8/x2

Other maps are available, however. By Equation 2.21, the submatrix formed by

taking any 5 linearly independent rows of N produces a different vector of coeffi-

cients, and thus a different partition of Y . For our particular choice of ψp above,

72 partitions are possible, calculated by testing which combinations of 5 rows in

N are linearly independent. As an illustration, consider the case where the rate

constants k8 and k11 are easier to measure than substrates x7 and x8. Because

of this, we would prefer x7 and x8 to be dependent variables. Equivalently, we
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want ψpy(x7), ψpy(x8) ∈ Y c
q , and ψpy(k8), ψpy(k11) ∈ Yq. Since ψp(k8) = y3 and

ψp(k11) = y6, any 5×5 submatrix of N containing rows 3 and 6 whose determinant

is not zero will accomplish this. Below is the vector q′ calculated from the matrix

formed by rows 3, 5, 6, 7, and 10.

q′ =



q2

q4

(q1p10 + q2p10 − q4p4p11)/(p2p9)
(q3p8)/(p5p10)

q5


,

This results in the desired steady state mapping, ψ′ss :

k1 7→ k1 x1 7→ x1

k2 7→ k2 x2 7→ x2

k3 7→ k3 x3 7→ x3

k4 7→ k4 x4 7→ x4

k5 7→ k5 x5 7→ x5

k6 7→ (k12x1x9)/x2 x6 7→ x6

k7 7→ (x6(k1x1 + k4x5))/x3 − (k10x4)/x3 x7 7→ (k10x4 + k8x4−

k8 7→ k8 k4x5x6)/(k2x3)

k9 7→ (k10x4)/x5 − k4x6+ x8 7→ (k11x2)/(k5x4)

(k3x1(k10x4 + k8x4 − k4x5x6))/(k2x3x5) x9 7→ x9

k10 7→ k10

k11 7→ k11

k12 7→ k12

This offers another illustration of how the choice of substitution strategy and null

space basis vectors allow one to choose independent parameters flexibly among

sets K and X when solving for steady state. See “fum2.m.trace.pdf” in Protocol

S1 for details of this derivation.
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2.3.3 Steady state establishes a threshold for drug-induced

cell death

Finally, we sought to use py-substitution to characterize the relationship

between steady state and the response to the cancer drug, dulanermin. Dulanermin

is a recombinant human form of the endogenous ligand TRAIL, whose mechanism

for triggering cell death is modeled in version 1.0 of the extrinsic apoptosis reaction

model, or EARM [71]. This model considers the biochemical events following

engagement of the death receptors 4 and 5 (DR4/5), including receptor-induced

cleavage of initiator caspases, positive-feedback by effector caspases, and feed-

forward amplification by the mitochondrial pathway following outer membrane

permeabilization, or MOMP (Figure 2.5). The EARM model was trained on data

derived from HeLa cells co-treated with cyclohexamide, an inhibitor of protein

synthesis that results in hypersensitivity to TRAIL [97]. Accordingly, any amount

of ligand in the EARM model results in cell death. The abundance of ligand still

affects the time of death, defined for example by the time tPARP at which half of

the caspase 3 target protein PARP has been cleaved (Figure 2.6A, left) [98]. Note

in this section we refer to the abundance of a species rather than its concentration,

as these are the units chosen by the original authors.

In the absence of cyclohexamide, however, HeLa cells do not all die fol-

lowing exposure to TRAIL. Rather, a fraction of cells persist, and this resistance

is a function of the proteomic state prior to stimulation [66]. To capture this

phenomenon, we extended the EARM model so that proteins continued to be syn-

thesized and degraded following exposure to TRAIL. Specifically, we introduced 43

new synthesis and degradation fluxes as well as 2 protein inactivation reactions (see

“xearm.mpl” in Protocol S1). These reactions were chosen so that every species is

subject to at least one efflux. We refer to our extended model as xEARM. Because

xEARM satisfies our definition of a mass action model, we use py-substitution to

identify an analytical expression for its steady state. To derive this expression, a

mapping function ψp was chosen so that every non-zero parameter in EARM was

mapped to an independent parameter in P . As a result, we were able to preserve

the snap-action dynamics of MOMP that is central to the original model (Fig-
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Figure 2.5: Reaction diagram for the xEARM model. Reactions new to
this version include all fluxes to or from a source node, indicated by dashed lines
to or from a Ø. In addition, the activation of Apaf was made reversible, as were
the formation of mitochondrial pores. The complete model contains 58 species
and 115 reactions. See [71] for a description of the original EARM model, and
“xearm.mpl” in Protocol S1 for a complete description of xEARM.
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ure 2.6A, right). Honoring the published parameters required that we introduce

two pseudospecies, one for each the di- and tetrameric forms of Bax (variables x32

and x35, respectively),

x̂59 = x232 (2.39)

x̂60 = x235. (2.40)

The coefficient matrix C and null space basis matrix N were calculated as before,

with the latter calculation requiring less than a minute on our benchmark PC.

The null space of C has 17-dimensions, resulting in a matrix of basis vectors of

the form

N =
[

n1 n2 n3 n4 . . . n17

]
.

Basis vectors n4 to n17 preserve the steady state ratios of paired synthesis and

degradation reactions. Vector n17, for example, ensures that a change δ in k114

results in a change δx42 in k113, where x42 is the abundance of Cytochrome C in

the mitochondria and k113 and k114 are its rates of synthesis and degradation, re-

spectively. The vector n3 scales the steady state abundances of mitochondrial Bax

and Bcl2 complexes with respect to changes in the rate of Bcl2 synthesis. Vectors

n1 and n2 are algebraically intractable and thus defy simple biochemical interpre-

tation. Two of these vectors, n1 and n3, are constrained by the pseudospecies x̂59

and x̂60. To resolve these constraints, note that Equations 2.39 and 2.40 require

that

ψp(x̂59) = ψp(x
2
32) (2.41)

ψp(x̂60) = ψp(x
2
35). (2.42)

By our mapping function ψpy (see “xearm.mpl.trace.pdf” in Protocol S1, pp. 120–

121), Equations 2.41 and 2.42 become
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y42 = y221 (2.43)

y43 = y223, (2.44)

where ψy(y21), ψy(y23), ψy(y42), and ψy(y43) ∈ spanQ(P) ({q1, q2, q3}). Solving Equa-

tion 2.44 for q3 gives

q3 =
b1
b2
q22, (2.45)

where b1, b2 ∈ Q[P ]. Substituting Equation 2.45 into Equation 2.43 and solving for

q1 gives

q1 =
−a2 ±

√
a22 − 4a1a3

2a3
, (2.46)

where a1, a2, and a3 ∈ Q(P )[q2] (see “xearm.mpl.trace.pdf” in Protocol S1, pp. 121–

126).

Obviously, Equation 2.46 identifies an explicit bistability in the xEARM

model. Basis vector coefficient q1 — and by Equation 2.45, q3 — can take either of

two values for any numerical realization of the model. By examination of ψpy, we

find that these two coefficients affect all modified and compound species, as well

as synthesis rates for proteins within and upstream of the mitochondria. Using

the parameter values supplied in [71], however, we find that one of the solutions to

Equation 2.46 is negative. The corresponding steady state is therefore infeasible

and the solution was discarded.

In addition to parameters in [71], a full numerical realization of the xEARM

model requires values for parameters p71, . . . , p86 and q2, q4, . . . , q17. All but three

of these elements represent first-order degradation rate constants, to which we

assigned values equivalent to a half-life of one hour. This value was based on

global quantifications of protein turnover in mammalian cells, which revealed that

signaling proteins tend to be short-lived [62]. Two of the elements, p77 and p78,

represent first-order inactivation fluxes, which we assumed to be ten times faster

than protein degradation. The final element q2 is the steady state abundance of
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the mitochondrial Bax2:Bcl2 complex, which we set to 20 molecules. Six of the

elements were then modified from their initial values to better match the dynamics

of caspase activation and PARP cleavage, as reported in [71]. The complete table

of parameter values required to initialize and numerically integrate the xEARM

model is given in Table S2.

For comparison, Table S3 lists the steady state abundances of species in

the original and extended EARM models, sorted in order of decreasing difference.

As expected, every species in EARM with a non-zero abundance has precisely the

same abundance in xEARM, since these are independent parameters in the steady

state solution. Among species with zero abundance in EARM, the mitochondrial

Bax:Bcl2 complex exhibits the greatest disparity, with the steady state abundance

in xEARM being in the low thousands of molecules. Ubiquitinated, cleaved caspase

3 and cleaved PARP are also in the low hundreds of molecules, but this represents

only a small fraction of their total cellular abundance. A full 25 species with

zero abundance in the EARM model have an abundance of less than 1 molecule

in xEARM. This indicates that, even though the steady state reaction velocities

are markedly different between EARM and xEARM, by using py-substitution we

were able to engineer a steady state where the species abundances are appreciably

similar between the two models.

Next we asked whether the xEARM model remained viable in the presence

of low doses of TRAIL, but still exhibited MOMP when stimulated with high

doses of TRAIL. To do so we created a numerical realization of the model using

the parameters from Table S2, then perturbed the model from its steady state

using a step increase in the abundance of TRAIL (variable x1). The magnitude of

the step ranged from 1 to 100-fold and was followed by numerical integration of the

mass balance equations out to 48 hours. As shown in Figure 2.6A, MOMP is only

observed in xEARM when TRAIL is increased by 101.25-fold or more. We label this

minimum dose of TRAIL required for MOMP Lthresh. Increments less than Lthresh

result in a small and transient change in cleaved PARP abundance, followed by a

return to the pre-stimulated steady state. By comparison, any magnitude dose of

TRAIL causes MOMP in the original EARM model.
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This ability of xEARM to distinguish between low and high doses of TRAIL,

in conjunction with an analytical expression for its steady state, allowed us to sys-

tematically perturb the steady state and ask how these perturbations affect the

sensitivity to TRAIL. To illustrate this capability we varied the steady state abun-

dance of each major xEARM species over a 100-fold range, centered about each

species’ wildtype value as reported in Table S2. For each variation, we performed

a binary search to identify Lthresh. The results from this procedure are plotted in

Figure 2.6B. As expected, increases in XIAP, Bcl2, FLIP, and Bar result in reduced

sensitivity to TRAIL stimulation, while increases in Procaspase 8, TRAIL recep-

tor DR4/5, Bax, and Bid result in increased sensitivity [21]. What is interesting,

however, is the following. First, TRAIL sensitivity is most affected by changes in

the abundance of Procaspase 8 and Bar, an inhibitor of active caspase 8 [99]. The

ability to activate caspase 8, then, appears to be a critical determinant of TRAIL

sensitivity, as previously suggested [100, 101]. Second, the abundances of Procas-

pase 3, 6, and 9 have little effect on the sensitivity to TRAIL. This observation is

in good agreement with the model-based prediction that induction of MOMP does

not require positive-feedback via this caspase loop [71].

A common metric for describing how model parameters affect the sensitiv-

ity to TRAIL is to calculate the change in time at which death occurs in response

to a small change in each parameter [66, 102, 98]. It is conceivable, however, that

changes in the time of death do not accurately reflect changes in the threshold

of TRAIL at which death occurs. Therefore, to test this assumption we calcu-

lated parameter sensitivity coefficients for the ligand threshold, ∂Lthresh/∂p, and

the time at which death occurs, ∂tPARP/∂p, using the xEARM and EARM models,

respectively. The numerators ∂Lthresh and ∂tPARP were calculated by backward fi-

nite difference approximation and all sensitivities were normalized to the maximum

observed sensitivity for each metric (Figure 2.6C). The data show good agreement

for positive regulators of TRAIL sensitivity, but some disparity in the negative

regulators. Specifically, while tPARP is particularly sensitive to changes in XIAP

and Bcl2, Lthresh is most sensitive to changes in Bar. This result argues that some

caution should be taken when equating changes in the time of death with changes
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in TRAIL sensitivity.

2.4 Discussion

We have described a simple but flexible method for deriving analytical

expressions for the steady states of mass action models. Central to our method

is the observation that mass action models are systems of polynomial equations

that are generally no greater than degree 2. This permits a partitioning of rate

constants and species concentrations into disjoint sets of quantities, P and Y ,

where the reaction velocity vector is linear with respect to the variables in Y . If

the cardinality of Y is greater than the rank of the stoichiometric matrix, then the

steady state equation can be solved analytically using simple linear methods.

There is considerable benefit to deriving an analytical expression for the

steady state of a model. An analytical expression can be used to identify network

ultrasensitivity [103], robustness [104], multistationarity [105], and invariants [106].

For enzyme catalytic models that have no true steady state but nevertheless satisfy

the assumptions for quasi-steady state, an analytical expression can relate the rate

of product formation to the initial concentrations of the substrates and enzyme

[107]. Critically, these properties do not depend on the numerical values of the pa-

rameters, which may be difficult to measure [108]. In our companion manuscript,

we show that analytical steady state expressions can be used to identify changes

in the kinetic rate constants that do not alter the species concentrations. These

isostatic perturbations can be used to characterize the dynamic plasticity of a sys-

tem, and also how changes in the rates of protein turnover can affect the response

to perturbation, independently of changes to steady state concentrations.

Even if numerical interrogation is ultimately intended and all parameters

must be assigned values, deriving an analytical expression for the steady state still

confers a number of benefits. First, including steady state constraints can facilitate

the construction of a model [109]. As illustrated by our treatment of the Open

Michaelis-Menten model, py-substitution affords considerable flexibility in select-

ing which quantities are independent — thus requiring numerical values prior to
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simulation — and which quantities can be derived from the independent quantities.

This partly transforms the problem of parameterizing a model from one of numer-

ically fitting the rate constants to available data [110], to one of identifying the

steady state expression that maximizes incorporation of known quantities into the

independent set of parameters. Second, incorporating steady state concentration

measurements can reduce the total number of parameters required. In the tradi-

tional approach to parameterization, every rate constant is assigned a value prior

to simulation, as well as the abundance of any species not subject to synthesis and

degradation. Using py-substitution, only independent quantities must be assigned

a value. This number is equal to the total number of species and reactions, minus

the rank of the stoichiometric matrix. As the stoichiometric matrix approaches

full rank, this number converges to the number of species. Since most systems

have more reactions than species, py-substitution often requires fewer parameters

than the traditional approach. This can be observed in the xEARM model, where

119 parameters are required for simulation after deriving a steady state expression

using py-substitution (100 rate constants, 18 species, and the mitochondrial vol-

ume), versus 133 parameters required for traditional parameterization (115 rate

constants, 17 species, and the mitochondrial volume).

Further, in the case of the xEARM model, we have demonstrated that an

analytical expression of the steady state allows systematic characterization of its

effect on the response to perturbation. This was made possible in two ways. First,

it allowed the model to operate at a non-trivial steady state. In the original EARM

model, infinite sensitivity to TRAIL is caused by unbalanced reactions. Once the

receptor is engaged, caspase cleavage and pore formation proceed deterministically

to completion. As a result, for cells to be “alive” prior to stimulation, the model

must assume a trivial steady state in which the abundance of TRAIL and all

reaction velocities are zero. Using py-substitution, we were able to engineer a

non-trivial steady state that is viable at low doses of TRAIL. Second, we were

able to apply systematic changes to the steady state concentrations. By virtue of

the mapping function ψss, these resulted in compensating changes to the kinetic

rate constants such that steady state was preserved. For each modification, we



59

were then able to calculate the number of TRAIL molecules required to induce cell

death, as well as the sensitivity of this threshold to changes in the steady state

concentrations of different species.

Previous studies with models operating at trivial steady states employed

sensitivity metrics that were with respect to the time at which death occurs,

and not whether it occurs [66, 98]. These studies suggested that the dynamics

of TRAIL-induced cell death depend critically on Bcl-2 [98]. Also, whether cell

death proceeds to completion depends on XIAP [98], and whether the mitochon-

drial feed-forward loop is required depends on the ratio of XIAP to Procaspase 3

[111]. In contrast, our analysis indicates that whether cell death occurs is primar-

ily determined by the ratio of Procaspase 8 to its negative regulator, Bar. Our

sensitivity analysis with respect to the threshold at which death occurs is therefore

related to but distinct from analyses that consider only the timing of death, and

may relate better to clinical applications since we don’t assume co-treatment with

cyclohexamide.

For all these reasons, an analytical expression for the steady state of a model

can be of general benefit to cell systems modeling. Indeed, other methods have

previously addressed the challenge of deriving analytical steady state expressions,

most notably the King-Altman method. Prior to the advent of modern computers,

the authors realized that for a particular class of mass action models, the laborious

calculation of steady state enzyme ratios could be achieved by a conceptually

simpler graphical method. As we have shown, however, this simpler approach is

no longer more efficient. More significantly, the King-Altman method requires that

all reactions be first- or pseudo-first order in the time-varying species. Without this

stipulation, Equation 2.3 no longer holds and the reaction network can no longer

be described by a graph. This requirement is often stated as a pair of assumptions:

1) that no enzyme is itself a substrate and 2) that all substrates remain constant

over the time scale of steady state formation [78]. The second of these can be

considered common to any method that treats time-varying species as constants

when solving the steady state equation. The first of these, however, is violated by

any cascade of post-translational modifications, for example the well-known MAP
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Figure 2.6: Steady state determinants of sensitivity of TRAIL-induced
cell death. A. The dynamics of PARP cleavage are shown for EARM (left)
and xEARM (right), in response to increasing doses of the TRAIL ligand (gray
to blue). The abundance of cleaved PARP for each model has been normalized
to the maximum observed abundance. For each model, for a particular dose of
TRAIL, the time tPARP at which PARP is 50% cleaved is indicated by the dashed
red lines. For xEARM, the minimum abundance of TRAIL required to observe
MOMP, Lthresh, is indicated on the color scale at right. B. Changes in Lthresh in
response to changes in the steady state abundance of 12 primary xEARM species.
Species have been sorted from left to right in order of those for which an increase
in abundance results in the greatest increase in TRAIL sensitivity, to those for
which an increase in abundance result in the greatest decrease in sensitivity. C.
Normalized sensitivity coefficients for Lthresh, calculated using the xEARM model
(blue), and tPARP , calculated using both EARM (white) and xEARM (gray), for
each of the 12 primary species in panel (B).
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kinase cascade [112].

Although recent methods relax these assumptions [84, 85], in the contem-

porary systems biology literature, analytical derivation of the steady state rarely,

if ever, precedes numerical interrogation of a model. Since this derivation is of

considerable value, we sought to develop a method that was simple, scalable, and

general to mass action models. First, we described our method using only concepts

from linear algebra, and we have provided complete code for all seven examples

described in this manuscript, with implementations in either Matlab or Maple. Sec-

ond, we show that py-substitution scales well. The xEARM model has 58 species

and 115 reactions, and we were able to derive a steady state expression in less than

a minute on a conventional desktop computer. Finally, we demonstrated that py-

substitution can be generally applied to chemical reaction networks whose reaction

velocities are modeled by mass action kinetics. This is a considerably broader class

of models than can be addressed using the King-Altman and other methods, which

require that the reaction network exhibit specific structural properties.

This does, however, open up an interesting avenue for further research:

precisely what properties must a mass action model exhibit for its steady state to

be derived using py-substitution? How many different steady state expressions are

possible, and which of these is the “best”? As we have shown with the fumarase

model, even after the rate constants and species concentrations were partitioned

into sets P and Y , 72 different steady state expressions were possible. These

different expressions arose from flexibility in selecting the pivot columns in the

coefficient matrix, since the pivot vs. free columns partition the linear variables into

dependent vs. independent variables. Equivalently, these different expressions arise

from flexibility in ordering the linear variables, since different orderings permute

the columns of the coefficient matrix and result in a different reduced row echelon

form. Since the number of possible steady state expressions is large but finite, a

combinatorial optimization strategy ought to be able to identify the best steady

state expression, where the difference between any two expressions could take

into account measurement uncertainty in the independent quantities, as well as

computational complexity in deriving the final steady state expression.
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Finally, we consider that the steady state may not be the only state of

interest, but perhaps specified dynamic states as well. Essentially, this replaces

the zero vector in Equation 2.1 with a vector of non-zero values. From linear

algebra, we know that the solution to this dynamic equation can be expressed as

the sum of a particular solution to the dynamic equation and an arbitrary point in

the null space of the coefficient matrix. The solution is thus straightforward, raising

the possibility of incorporating specific dynamic states into the parameterization

of a model as well.

Chapter 2, in part, is a reprint of material as it appears in PLoS Compu-

tational Biology. Loriaux, Paul M; Tesler, Glenn; Hoffmann, Alexander, Public

Library of Science 2013. The dissertation author was the primary investigator and

author of this paper.



Chapter 3

A Protein Turnover Signaling

Motif Controls the

Stimulus-Sensitivity of Stress

Response Pathways

Stimulus-induced perturbations from the steady state are a hallmark of sig-

nal transduction. In some signaling modules, the steady state is characterized by

rapid synthesis and degradation of signaling proteins. Conspicuous among these

are the p53 tumor suppressor, its negative regulator Mdm2, and the negative feed-

back regulator of NF-κB, IκBα. We investigated the physiological importance of

this turnover, or flux, using a computational method that allows flux to be system-

atically altered independently of the steady state protein abundances. Applying

our method to a prototypical signaling module, we show that flux can precisely

control the dynamic response to perturbation. Next, we applied our method to ex-

perimentally validated models of p53 and NF-κB signaling. We find that high p53

flux is required for oscillations in response to a saturating dose of ionizing radiation

(IR). In contrast, high flux of Mdm2 is not required for oscillations but preserves

p53 sensitivity to sub-saturating doses of IR. In the NF-κB system, degradation of

NF-κB-bound IκB by the IκB kinase (IKK) is required for activation in response

63
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to TNF, while high IKK-independent degradation prevents spurious activation in

response to metabolic stress or low doses of TNF. Our work identifies flux pairs

with opposing functional effects as a signaling motif that controls the stimulus-

sensitivity of the p53 and NF-κB stress-response pathways, and may constitute a

general design principle in signaling pathways.

3.1 Introduction

Eukaryotic cells must constantly recycle their proteomes. Of the approxi-

mately 109 proteins in a typical mouse L929 fibrosarcoma cell, 106 are degraded

every minute [113]. Assuming first-order degradation kinetics, this rate of con-

stitutive protein turnover, or flux, imposes an average half-life of 24 hours. Not

all proteins are equally stable, however. Genome-wide quantifications of protein

turnover in HeLa cells [114, 115] and 3T3 murine fibroblasts [62] show that protein

half-lives can span several orders of magnitude. Thus while some proteins exist for

months and even years [116], others are degraded within minutes. Gene ontology

terms describing signaling functions are highly enriched among short-lived proteins

[115, 117, 118], suggesting that rapid turnover is required for proper signal trans-

duction. Indeed, defects in protein turnover are implicated in the pathogenesis of

cancer and other types of human disease [119, 120].

Conspicuous among short-lived signaling proteins are those that regulate

the p53 and NF-κB stress response pathways. The p53 protein itself, for example,

has a half-life of less than 30 minutes [121, 122]. Mdm2, the E3 ubiquitin ligase

responsible for regulating p53, has a half-life of 45 minutes [62]. And the half-life of

unbound IκBα, the negative feedback regulator of NF-κB, is less than 15 minutes

[123, 23] (see Figure 3.1), requiring that 6,500 new copies of IκBα be synthesized

every minute [23]. Given the energetic costs of protein synthesis, we hypothesized

that rapid turnover of these proteins is critical to the stimulus-response behavior

of their associated pathways.

To test our hypothesis we developed a method to systematically alter the

rates of protein turnover in mass action models without affecting their steady state
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Figure 3.1: A genome-wide distribution of protein flux. A histogram
of protein flux was generated from data in [62] (N=5030). Assuming first-order
degradation kinetics, the published half-life for each protein was used in conjunc-
tion with its steady state abundance to calculate its rate of synthesis. This rate
was then divided by the steady state abundance to derive each protein’s normalized
flux, that is, the fraction of its steady state population that is synthesized every
hour. Normalized flux values for Mdm2, p53, and unbound IκBα are indicated
by the dashed lines. Daggers denote proteins whose half-lives are extrinsic to the
dataset.
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abundances. Our method requires an analytical expression for the steady state of a

model, which we derive using the py-substitution method described in the previous

chapter. From this expression, changes in parameter values that do not affect the

steady state are found in the null space of the matrix whose elements are the partial

derivatives of the species abundances with respect to the parameters. We call this

vector space the isostatic subspace. After deriving a basis for this subspace, linear

combinations of basis vectors identify isostatic perturbations that modify specific

reactions independently of all the others, for example those that control protein

turnover. By systematic application of these isostatic perturbations to a model

operating at steady state, the effects of flux on stimulus-responsiveness can be

studied in isolation of changes to steady state abundances (see Section 3.4).

We first apply our method to a prototypical negative feedback module in

which an activator controls the expression of its own negative regulator. We show

that reducing the flux of either the activator or its inhibitor slows the response to

stimulation. However, reducing the flux of the activator lowers the magnitude of

the response, whereas reducing the flux of the inhibitor increases it. This comple-

mentarity allows the activator and inhibitor fluxes to exert precise control over the

module’s response to stimulation.

Given this level of control, we hypothesized that rapid turnover of p53 and

Mdm2 must be required for p53 signaling. A hallmark of p53 is that it responds

to DNA damage in a series of digital pulses [124, 125, 36, 35, 126]. These pulses

are important for determining cell fate [127, 128, 9]. To test whether high p53

and Mdm2 flux are required for p53 pulses, we applied our method to a model in

which exposure to ionizing radiation (IR) results in oscillations of active p53 [35].

By varying each flux over three orders of magnitude, we show that high p53 flux is

indeed required for oscillations. In contrast, high Mdm2 flux is not required, but

rather controls the refractory time in response to transient stimulation. If the flux

of Mdm2 is low, a second stimulus after 22 hours does not result in appreciable

activation of p53.

In contrast to p53, the flux of NF-κB turnover is very low, while the flux of

its inhibitor, IκB, is very high. Prior to stimulation, most NF-κB is sequestered
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in the cytoplasm by IκB. Upon stimulation by an inflammatory signal like tu-

mor necrosis factor alpha (TNF), IκB is phosphorylated and degraded, resulting

in rapid but transient translocation of NF-κB to the nucleus and activation of

its target genes [129, 130, 131]. Two separate pathways are responsible for the

turnover of IκB [123]. In one, IκB bound to NF-κB is phosphorylated by the IκB

kinase (IKK) and targeted for degradation by the ubiquitin-proteasome system.

In the other pathway, unbound IκB is targeted for degradation and requires nei-

ther IKK nor ubiquitination [40, 132]. We call these the “productive” and “futile”

fluxes, respectively. Applying our method to a model of NF-κB activation, we

show that the futile flux acts as a negative regulator of NF-κB activation while

the productive flux acts as a positive regulator. We find that turnover of bound

IκB is required for NF-κB activation in response to TNF, while high turnover of

unbound IκB prevents spurious activation of NF-κB in response to low doses of

TNF or ribotoxic stress caused by ultraviolet light (UV). As with p53 then, juxta-

position of a positive and negative regulatory flux govern the sensitivity of NF-κB

to different stimuli, and may constitute a common signaling motif for controlling

stimulus-specificity in diverse signaling pathways.

3.2 Results

3.2.1 Activator and inhibitor fluxes can precisely control

the dynamics of signaling

To examine the effects of flux on stimulus-responsiveness, we return to the

prototypical negative feedback model introduced in Chapter 1 (Figure 3.2.1A).

Recall that this model has four kinetic parameters, the rates of synthesis and

degradation of the activator X and its inhibitor, Y (k1, k2, k3, and k4). The dy-

namics of the activator in response to stimulation can be described by its maximum

amplitude, A and the time T at which A is observed (Figure 3.2.1B).

To understand how these kinetic parameters shape the response of the acti-

vator, we applied systematic changes to the fluxes of X and Y prior to stimulation
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Figure 3.2: A prototypical negative feedback module. A. In this simple
model of negative feedback control, an activator X is constitutively produced but
catalytically degraded by an inhibitor, Y. Y is constitutively degraded but its
synthesis requires X. Each of these four reactions is modeled using mass action
kinetics. To stimulate the model and activate X, the steady state abundance of
Y is instantaneously depleted. B. In response to stimulation, the abundance of
X increases until activator-induced synthesis of Y forces a return to steady state.
This response can be characterized by A, the maximum abundance of X following
stimulation, and T , the time at which A is observed. Parameters were chosen for
this model such that the steady state abundances of X and Y equal one arbitrary
unit and the stimulus-induced amplitude of X is 10 a.u. at time T = 24.
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and plotted the resulting values of A and T . Multiplying the flux of X over the

interval [10−1, 10+1] showed, as expected, that the value of A increases while the

value of T decreases (Figure 3.2.1A). In other words, a high activator flux results

in a strong, fast response to stimulation. If we repeat the process with the in-

hibitor, we find that both A and T decrease as the flux increases; a high inhibitor

flux results in a fast but weak response (Figure 3.2.1B). This result illustrates

that fluxes of different regulators can have different but complementary effects on

stimulus-induced signaling dynamics.

Complementarity suggests that changes in flux can be identified such that

A is altered independently of T , or T independently of A. Indeed, if both acti-

vator and inhibitor fluxes are increased in equal measure, A is held fixed while

the value of T decreases (Figure 3.2.1C). Increasing both fluxes thus simultane-

ously reduces the timescale of the response without affecting its magnitude. An

equivalent relationship can be found such that T remains fixed while A is affected

(Figure 3.2.1D). Because an increase in either flux will reduce T , to alter A without

affecting T requires an increase in one flux but a decrease in the other. Also, T

is more sensitive to changes in the inhibitor flux versus the activator flux; small

changes in the former must be paired with larger changes in the latter. This ca-

pability to achieve any value of A or T indicates that flux can precisely control

the response to stimulation, without requiring any changes to steady state protein

abundance.

3.2.2 High p53 and Mdm2 flux is required for p53 respon-

siveness to ionizing radiation

Given that flux precisely controls the dynamic response to stimulation in

a prototypical signaling module, we hypothesized that for p53, oscillations in re-

sponse to DNA damage require the high rates of turnover reported for p53 and

Mdm2. To test this, we applied our method to a published model of p53 activation

in response to ionizing gamma radiation (IR), a common DNA damaging agent

(Figure 3.2.2A) [35]. Because the model uses arbitrary units, we rescaled it so that

the steady state abundances of p53 and Mdm2, as well as their rates of synthesis
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Figure 3.3: Effects of flux on the dynamic response to stimulation.
A. The magnitude of the activator flux is varied between 10−1 (light gray) and
10+1 (dark gray) times its nominal steady state value prior to stimulation. The
peak amplitude A of X in response to stimulation is observed to increase with
the flux of X while the time T at which the peak occurs is observed to decrease.
Representative profiles of the activator at low, wildtype, and high values of the flux
are shown at right. The dashed red line indicates the nominal wildtype response.
B. The magnitude of the inhibitor flux is varied between 10−1 and 10+1 times its
nominal steady state value prior to stimulation. Both A and T are observed to
decrease. C. The fluxes of both X and Y are varied simultaneously between 10−1

and 10+1 times their nominal wildtype values. As a result, A is held constant while
T is reduced. D. The magnitude of the inhibitor flux is varied between 10−1 and
10+1 times its nominal steady state value prior to stimulation. For each value of
this flux, the value of activator flux is calculated such that T is held constant. As
in panel (B), above, A is observed to decrease as the magnitude of the flux of Y
increases.

.
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and degradation, matched published values (see Table 3.2.2). We note that these

values are also in good agreement with the consensus parameters reported in [36].

Next we implemented a multiplier of Mdm2-independent p53 flux and let it

take values on the interval [10−2, 10+1]. For each value we simulated the response

to IR using a step function in the production of the upstream Signal molecule,

k11, as previously described [35]. To characterize the p53 response we let A∞ be

the amplitude of stable oscillations in phosphorylated p53 (Figure 3.2.2B), and use

this as a metric for p53 sensitivity. Where A∞ > 0 , we say the module is sensitive

to IR stimulation. We find that A∞ is greater than zero only when the flux of p53

is near its observed value or higher (Figure 3.2.2A). If the flux of p53 is reduced

by 2-fold or more, p53 no longer stably oscillates in response to stimulation, but

exhibits damped oscillations instead.

Interestingly, repeating this analysis with a multiplier for the Mdm2 flux

over the same interval reveals that Mdm2 flux has little bearing on p53 oscilla-

tions (Figure 3.2.2B). For any value of the multiplier chosen, A∞ > 0. As with

p53, this multiplier alters the Signal-independent flux of Mdm2 but does not af-

fect Signal-induced Mdm2 degradation. If oscillations are already compromised

by a reduced p53 flux, no concomitant reduction in Mdm2 flux can rescue the

oscillations (Figure 3.2.2C). We therefore conclude that the flux of p53, but not

Mdm2, is required for IR-sensitivity in the p53 signaling module. What then is the

physiological relevance of high Mdm2 flux? In the model, signal-mediated Mdm2

auto-ubiquitination [134] is a major contributor to Mdm2 degradation after stim-

ulation. If Signal production is transient, Mdm2 protein levels must be restored

solely via Signal-independent degradation. We therefore hypothesized that if the

flux of Mdm2 is low, Mdm2 protein levels would remain elevated after stimulation

and compromise sensitivity to subsequent stimuli.

To test this hypothesis we again let the Mdm2 flux multiplier take values

over the interval [10−2, 10+1]. For each value we stimulated the model with a

2-hour pulse of Signal production, followed by 22 hours of rest, followed by a

second 2-hour pulse (Figure 3.2.2B). We defined A1 to be the amplitude of the

first peak of phosphorylated p53 and A2 to be the amplitude of the second peak.
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Figure 3.4: A model of p53 oscillations in response to ionizing radiation.
A. The model shown here is structurally identical to [35], but parameter values
have been scaled to match published rates of synthesis and degradation for p53
and Mdm2 as well as their steady state abundances (see Section 3.4, Methods).
B. Ionizing radiation is modeled as an increase in synthesis of the Signal molecule
(left; model parameter k11) [35]. In response to a step increase in Signal production,
phosphorylated p53 is observed to oscillate. We define A∞ to be the amplitude of
the stable oscillations. In response to a 2-hour pulse in Signal production (right),
p53 exhibits a transient peak in phosphorylation, as does Mdm2. We define A1 to
be the amplitude of phosphorylated p53, and A2 to be its amplitude in response
to a second, identical pulse, 22 hours after the first pulse.
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Figure 3.5: Effects of flux on the p53 response to ionizing radiation.
A. The Mdm2-independent flux of p53 is varied between 10−2 and 10+1 times its
wildtype value prior to a step increase in Signal production (model parameter k11;
light gray to dark gray) [35]. The magnitude of A∞ is plotted as a function of
this p53 flux multiplier. Values that give rise to stable oscillations are shaded in
blue. At right, representative profiles of phosphorylated p53 are shown for high,
wildtype, moderate, and low values of the multiplier. Note that the wildtype flux
is indicated by the dashed line in red. B. As panel (A)), above, but now the
p53-independent flux of Mdm2 is varied between 10−2 and 10+1 times its wildtype
value (light gray to dark gray). Stable oscillations are observed for all values of
the Mdm2 flux multiplier. C. As panel (B), above, but for all simulations the flux
of p53 is at one-tenth its nominal wildtype value. Instead of sustained oscillations,
damped oscillations are observed for all values of the Mdm2 flux multiplier. D.
The flux of p53 is varied between 10−2 and 10+1 times its wildtype value prior to
a 2-hour pulse in Signal production, followed by 22 hours of rest, followed by a
second 2-hour pulse. No difference is observed in the amplitude of phosphorylated
p53 in response to the first and second pulse. E. As panel (D), above, but now the
flux of Mdm2 is varied instead of p53. At lower values of the Mdm2 flux multiplier,
a significant difference is observed between the amplitude of phosphorylated p53
in response to the first and second pulse. F. As panel (D), above, but while the
p53 flux is allowed to vary, the flux of Mdm2 is held constant at 10−1.5 times its
wildtype value. This concomitant reduction of the p53 flux is not able to rescue
the Mdm2-compromised response to the second pulse.



75



76

Figure 3.6: Choice of interval time does not affect the role of Mdm2 flux
in p53 refractory time. This plot is identical to Figure 3.2.2D-E, except that
the interval between pulses is taken to be 6 (magenta), 12 (yellow), 24 (green), or
48 hours (cyan). Representative traces at right are grouped according to interval
time.
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Sensitivity to the second pulse is defined as the difference between A1 and A2,

with A1 − A2 = 0 indicating full sensitivity. As seen in Figures 3.2.2D and E,

the flux of p53 has no bearing on the sensitivity to the second pulse while the

flux of Mdm2 strongly affects it. At one one-hundredth the observed Mdm2 flux

— corresponding to protein half-life of 3-days — over 20,000 fewer molecules of

p53 are phosphorylated, representing more than a two-fold reduction in sensitivity

(Figure 3.2.2E). This result is robust with respect to the interval of time chosen

between pulses (Figure 3.2.2). If the sensitivity to the second pulse is already

compromised by a reduced Mdm2 flux, a concomitant reduction in p53 flux fails

to rescue it, while an increase in p53 flux still further reduces it (Figure 3.2.2F).

We therefore conclude that the flux of Mdm2, and not p53, controls the system’s

refractory time, and a high Mdm2 flux is required to re-establish sensitivity after

transient stimulation.

3.2.3 High IκB flux buffers NF-κB from activation in re-

sponse to UV and low doses of TNF

A second major stress-response pathway is that of NF-κB. NF-κB is po-

tently induced by the inflammatory cytokine TNF, but shows a remarkable resis-

tance to internal metabolic perturbations or ribotoxic stresses induced by ultravi-

olet light (UV) [23], or to triggers of the unfolded protein response (UPR) [135].

Like p53, the dynamics of NF-κB activation play a major role in determining tar-

get gene expression programs [10, 12]. Although NF-κB is considered stable, the

flux of IκBα — the major feedback regulator of NF-κB — is conspicuously high.

We hypothesized that turnover of IκB controls the stimulus-responsiveness of the

NF-κB signaling module.

Beginning with a published model of NF-κB activation [23], we removed

the beta and epsilon isoforms of IκB, leaving only the predominant isoform, IκBα

(hereafter, simply “IκB”; Figure 3.2.3A). Steady state analysis of this model sup-

ported the observation that almost all IκB is degraded by either of two pathways:

a “futile” flux, in which IκB is synthesized and degraded as an unbound monomer;

and a “productive” flux, in which free IκB enters the nucleus and binds to NF-κB,
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shuttles to the cytoplasm, then binds to and is targeted for degradation by IKK

(Figure 3.2.3B). These two pathways account for 92.5% and 7.3% of the total IκB

flux, respectively. The inflammatory stimulus TNF was modeled as before, using

a numerically-defined IKK activity profile derived from in vitro kinase assays [12]

(Figure 3.2.3A, variable T ). Stimulating with TNF results in strong but transient

activation of NF-κB. A second stimulus, ribotoxic stress induced by UV irradiation,

was modeled as 50% reduction in translation and results in only modest activity

[23]. As above, we let AT be the amplitude of activated NF-κB in response to TNF

and TT the time at which AT is observed. Analogously, we let AU be the amplitude

of NF-κB in response to UV, and TU the time at which NF-κB activation equals

one-half AU (see Figure 3.2.3C). We then implemented multipliers for the futile

and productive flux and let each multiplier take values on the interval [10−2, 10+1].

For each value we simulated the NF-κB response to TNF and UV and plotted the

effects on A and T .

The results show that reducing the productive flux yields a slower, weaker

response to TNF (Figure 3.2.3A). By analogy to Figure 3.2.1, this indicates that

the productive flux of IκB is a positive regulator of NF-κB activation. In contrast,

the futile flux acts as a negative regulator of NF-κB activity, though its effects on

AT and TT are more modest (Figure 3.2.3B). Thus, similar to p53, the activation

of NF-κB is controlled by a positive and negative regulatory flux. In response to

UV, a reduction in either flux delays NF-κB activation, but reducing the futile flux

results in a significant increase in AU while reducing the productive flux has almost

no effect (Figure 3.2.3C and D). Conversely, while an increase in the futile flux has

no effect on AU , an increase in the productive flux results in a significant increase.

If we now define NF-κB to be sensitive to TNF or UV when AT or AU are ten-

fold higher than its active but pre-stimulated steady state abundance, then TNF

sensitivity requires a productive flux multiplier > 10−1.6, while UV insensitivity

requires a productive flux multiplier < 100.7 and a futile flux multiplier > 10−0.8.

This suggests that the flux pathways of IκB may be optimized to preserve NF-κB

sensitivity to external inflammatory stimuli while minimizing sensitivity to internal

metabolic stresses.
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Figure 3.7: A model of IκB-regulated NF-κB activation. A. An IκB-
centric diagram of NF-κB regulation. IκB is transcribed in an NF-κB-dependent
and -independent manner. Translated IκB may bind to IKK (cyan), NF-κB (yel-
low), or both (green), or it may shuttle to the nucleus and bind to NF-κB there.
Degradation of IκB is possible from any state, though only when bound to IKK
can degradation be enhanced by IKK activity. Activation of NF-κB is achieved
by the time-dependent numerical inputs T (magenta) and U (violet). T represents
the activity of IKK kinase while U is the efficiency of mRNA translation. Both
are defined over the interval [0, 1], with T (t < 0) = 0.01 and U(t < 0) = 1.0 being
their wildtype, unstimulated values. B. The futile (red) and productive (blue) IκB
degradation fluxes. The fraction of total IκB flux through each reaction is listed
next to the corresponding reaction arrow. C. Two stimuli used in our analysis
of NF-κB activation and the effects of IκB flux. Stimulation by TNF is modeled
using the time-dependent IKK activation profile described in [12] and results in
strong but transient activation of NF-κB. Stimulation by UV is modeled as a 50%
reduction of translational efficiency, as described in [23], and results in modest
but sustained activation. As with p53, we define AT and AU to be he maximum
activity of NF-κB in response to TNF and UV, respectfully, and TT to be the time
at which AT is observed. Because AT is observed infinitely often, we define TU to
be the time at which NF-κB activation reaches one-half AU .
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In contrast to p53, the negative regulatory flux of IκB dominates the posi-

tive flux. We hypothesized that this imbalance must affect the sensitivity of NF-κB

to weak stimuli. To test this hypothesis we generated dose-response curves for TNF

and UV using the following multipliers for the futile flux: 10−2, 10−1, 100, and 10+1.

The results confirm that reducing the futile flux of IκB results in hypersensitivity

at low doses of TNF (Figure 3.3A). At one one-hundredth the wildtype flux, a ten-

fold weaker TNF stimulus yields an equivalent NF-κB response to the full TNF

stimulus at the wildtype flux. Similarly, a high futile flux prevents strong activa-

tion of NF-κB in response to UV (Figure 3.2.3B). At 10−1 and 10−2 times the futile

flux, UV stimulation results in a 20-fold increase in NF-κB activity, compared to

just a 2-fold increase at the wildtype flux. We therefore conclude that turnover of

unbound IκB controls the EC50 of the NF-κB signaling module, and that rapid

turnover renders NF-κB resistant to metabolic and spurious inflammatory stimuli.

3.3 Discussion

Previous studies have shown that the fluxes of p53 [121, 122], its inhibitor

Mdm2 [136, 137], and the unbound negative regulator of NF-κB, IκB [123], are

remarkably high. To investigate whether rapid turnover of these proteins is re-

quired for the stimulus-response behavior of the p53 and NF-κB stress response

pathways, we developed a computational method to alter protein turnover, or flux,

independently of steady state protein abundance.

For p53, we show that high flux is required for sensitivity to sustained stimu-

lation after ionizing radiation (Figure 3.2.2A). Interestingly, inactivating mutations

in p53 have long been known to enhance its stability [138], either by interfering

with Mdm2-catalyzed p53 ubiquitination [139, 140], or by affecting p53’s ability

to bind DNA and induce the expression of new Mdm2 [141, 142, 143, 144]. Inacti-

vation of p53 also compromises the cell’s sensitivity to IR [15, 14, 145, 146]. Our

results offer an intriguing explanation for this phenomenon, that p53 instability

is required for oscillations in response to IR. Indeed, IR sensitivity was shown to

correlate with p53 mRNA abundance [147, 148, 149], a likely determinant of p53
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Figure 3.8: Effects of IκB flux on the NF-κB response to stimulation.
A. The productive flux of IκB was varied between 10−2 and 10+1 times its wildtype
value prior to stimulation by TNF (light gray to dark gray), and the resulting NF-
κB response values AT and TT plotted in columns 2 and 3. Representative nuclear
NF-κB profiles for low, moderate, wildtype, and high values of the flux multiplier
are shown at right. Again, the wildtype productive flux is indicated by the dashed
line in red. B. The futile flux of IκB was varied between 10−2 and 10+1 times
its wildtype value prior to stimulation by TNF and the resulting NF-κB response
values AT and TT plotted in columns 2 and 3. C and D. As (A) and (B), above,
but the response to UV stimulation is plotted instead of TNF.
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protein flux. In further support of this hypothesis, mouse embryonic fibroblasts

lacking the insulin-like growth factor 1 receptor (IGF-1R) exhibit reduced p53

synthesis and degradation, but normal protein abundance. These cells were also

shown to be insensitive to DNA damage, caused by the chemotherapeutic agent

etoposide [137].

Like p53, increased stability of Mdm2 has been observed in human leukemic

cell lines [150], and Mdm2 is a strong determinant of IR sensitivity [16, 17]. Again

our results suggest these observations may be related. Activation of p53 in re-

sponse to IR is mediated by the ATM kinase (“Signal” in Figure 3.2.2) [151, 152].

Batchelor et al. show that saturating doses of IR result in feedback-driven pulses

of ATM, and therefore p53 [35]. In Figure 3.2.2B we show that these are inde-

pendent of Mdm2 flux. However, sub-saturating doses of IR (10 Gy versus 0.5

Gy) [153, 133] cause only transient activation of ATM [154], after which consti-

tutive Mdm2 synthesis is required to restore p53 sensitivity (Figure 3.2.2E). This

suggests that high Mdm2 flux is required for sensitivity to prolonged exposure

to sub-saturating doses of IR. Indeed, this inverse relationship between flux and

refractory time has been observed before. In Ba/F3 pro-B cells, high turnover of

the Epo receptor maintains a linear, non-refractory response over a broad range of

ligand concentrations [22].

For NF-κB, our method revealed that an isostatic reduction in the half-

life of IκB sensitizes NF-κB to TNF (Figure 3.3A), as well as to ribotoxic stress

agents like UV (Figure 3.3B). This observation agrees with previous theoretical

studies using a dual kinase motif, where differential stability in the effector iso-

forms can modulate the dynamic range of the response [155]. For NF-κB, the

flux of free IκB acts as a kinetic buffer against weak or spurious stimuli, similar

to serial post-translational modifications on the T cell receptor [156], or comple-

mentary kinase-phosphatase activities in bacterial two-component systems [157].

In contrast, increasing the half-life of IκBα alone — without a coordinated in-

crease in its rate of synthesis — increases the abundance of free IκBα and actually

dampens the activity of NF-κB in response to TNF [40]. This difference high-

lights the distinction between isostatic perturbations and traditional, unbalanced
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Figure 3.9: IκB flux controls the sensitivity of NF-κB to stimulation by
TNF and UV. A. The futile flux of IκB was varied between 10−2 and 10+1 times
its wildtype value prior to stimulation with variable doses of TNF (see Methods).
For low, medium, high, and wildtype values of the futile flux, the area under the
NF-κB activation curve is plotted as a function of TNF dose. The region of the
plot corresponding to low doses of TNF, where the activation of IKK does not
exceed 10%, is shaded in pink. (B) As above, but variable doses of UV are used
instead of TNF. Because the response to UV is sustained and not transient, we
have plotted the value of AU as a function of UV dose instead of the area under
the NF-κB activation curve.

.
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perturbations that also affect the steady state abundances. It also calls atten-

tion to a potential hazard when trying to correlate stimulus-responsiveness with

protein abundance measurements: observed associations between responses and

protein abundances do not rule out implied changes in kinetic parameters as the

causal link. Indeed static, and not kinetic measurements, are the current basis

for molecular diagnosis of clinical specimens. Thus while nuclear expression of

p53 [158, 159, 160, 161, 162, 163, 164, 165] and NF-κB [166, 167, 168] have been

shown to correlate with resistance to treatment in human cancer, the correlation

is not infallible [15, 169, 170, 171, 172, 173]. If stimulus-responsiveness can be con-

trolled by protein turnover independently of changes to steady state abundance,

then correlations between abundance and a therapeutic response may be masked

by isostatic heterogeneity between cells.

For p53 and NF-κB, we show that stimulus sensitivity can be controlled by

a paired positive and negative regulatory flux. We propose that this pairing may

constitute a common regulatory motif in cell signaling. In contrast to other reg-

ulatory motifs [174, 175], the “flux motif” described here does not have a unique

structure. The positive p53 flux, for example, is formed by the synthesis and

degradation of p53 itself, while the positive flux in the NF-κB system includes the

nuclear import of free NF-κB and export of NF-κB bound to IκB. For p53, the

negative flux is formed by synthesis and degradation of Mdm2, while for NF-κB it

is formed by the synthesis, shuttling, and degradation of cytoplasmic and nuclear

IκB. Thus the reaction structure for each flux is quite different, but they neverthe-

less form a regulatory motif that is common to both pathways (Figure 3.3). And

since the mathematical models used here are only abstractions of the underlying

network, the true structure of the p53 and NF-κB flux motifs are in reality even

more complex.

Finally, in this study we have examined the effects of flux on stimulus-

responsiveness, but in a typical signaling module, many other isostatic pertur-

bations exist. For example, the isostatic subspace of our NF-κB model has 18

dimensions, of which only a few were required by the analysis presented here.

By simultaneously considering all isostatic perturbations, some measure of the



86

dynamic plasticity of a system can be estimated, perhaps as a function of its

steady state. Such an investigation can inform diagnosis of biological samples,

and whether information from a single, static observation is sufficient to predict

the response to a particular chemical treatment, or whether live-cell measurements

are required as well. As we have shown that protein turnover can be a powerful

determinant of stimulus-sensitivity, we anticipate that kinetic measurements will

be useful predictors of sensitivity to chemical therapeutics.

3.4 Methods

3.4.1 Modeling isostatic perturbations in protein turnover

To begin, we assume that the system of interest has been modeled using

mass action kinetics and that the steady state abundance of every biochemical

species is a known function of input parameters. In other words,

x = f(p)

such that

dx

dt
= 0. (3.1)

Equation 3.1 is the well-known steady state equation; p is a vector of in-

dependent parameters, and x is the vector of species abundances. As stated in

Chapter 1, we use an overbar to denote a vector x that satisfies Equation 3.1. For

excellent reviews on mass action models and their limitations, see [81-83]. For a

method on finding analytical solutions to the steady state equation, see our accom-

panying manuscript. Next, we wish to find a change ∆p in the input parameters

such that the resulting change ∆x in the species abundances is zero, where ∆x is

defined as

∆x = x(p + ∆p)− x(p).
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Figure 3.10: A paired positive and negative flux motif controls stimulus-
sensitivity in the p53 and NF-κB stress response pathways. A. For p53,
the positive (+) flux is formed by the synthesis and degradation of p53 itself. The
negative (-) flux is formed by synthesis and degradation of Mdm2. Together these
fluxes control the sensitivity of p53 to IR-stimulation, which acts by inducing the
synthesis of p53 and the degradation of Mdm2. B. For NF-κB the (+) flux is
formed by association and dissociation of NF-κB from its negative regulator, IκB.
The (-) flux is formed by synthesis and degradation of IκB. These fluxes control
the sensitivity of NF-κB to TNF-stimulation, which induces the dissociation of
NF-κB from IκB, and UV-stimulation, which inhibits the synthesis of IκB.

.
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Thus for ∆x = 0, we require that

x(p) = x(p + ∆p).

The right-hand side of this equation can be approximated by a truncated Taylor

series, as follows:

x(p + ∆p) ≈ x(p) + Jx∆p,

where Jx is the Jacobian matrix whose elements are the partial derivatives of each

species with respect to each parameter. Thus, for ∆x = 0 we require that

Jx∆p = 0.

In other words, ∆p must lie in the null space of Jx. We call this the isostatic sub-

space of the model — parameter perturbations in this subspace will not affect any

of the steady state species abundances. If ∆p lies within the isostatic subspace, it

is an isostatic perturbation vector. Let Nx be a matrix whose columns form a basis

for the isostatic subspace. Then a general expression for an isostatic perturbation

vector is simply

p = Nxq, (3.2)

where q is a vector of unknown basis vector coefficients. Finally, Equation 3.2 can

be solved for a specific linear combination of basis vectors that achieves the desired

perturbation. In our case we identified those combinations that result in changes

to protein turnover.

3.4.2 A prototypical negative feedback model

Our prototypical negative feedback model consists of two species, an acti-

vator X and an inhibitor Y, and four reactions, illustrated in Figure 3.2.1A. Let x̄1

denote the steady state abundance of the activator and x̄2 denote the abundance
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of the inhibitor. An analytical expression for the steady state of this model was

identified by solving Equation 3.1 for the rates of synthesis, giving

k1 = k3x̄1x̄2 (3.3)

k2 = k4
x̄2
x̄1
. (3.4)

To parameterize the model we first let x̄1 = x̄2 = 1 a.u.. Degradation rate

constants were then calculated such that A = 10 a.u. at time T = 24, where again

A is the maximum amplitude of the response. Activation was achieved by letting

x2(t = 0)→ 0. To modify the flux, we defined flux multipliers θ1 and θ2 such that

k′3 = θ1k3 and k′4 = θ2k4. Note that by virtue of Equations 3.3 and 3.4, values for

θ1 and θ2 other than unity result in commensurate changes in k1 and k2 such that

steady state is preserved. Figures 3.2.1A and B were achieved by letting θ1 and

θ2 vary over the interval [10−1, 10+1], then calculating the altered vector of rate

constants k′ and simulating the model’s response to stimulation. Figure 3.2.1C

required letting θ1 vary over this same interval while having θ2 = θ1. Finally,

Figure 3.2.1D was achieved by letting θ2 vary over the same interval, and for each

value of θ2, numerically calculating the value of θ1 that gave T = 24.

3.4.3 A model of p53 oscillations

All species, reactions, and rate equations required by our model of p53

oscillations are as previously described [35]. Our only modification was to scale the

parameter values so that the rates of p53 and Mdm2 synthesis and degradation,

as well as their steady state abundances, matched published observations (see

Table 3.2.2). Specifically we let 1 Cs = 5 × 104 molecules and 1 hour (Batchelor

et al.) be 1.33 hours. To derive a steady state solution for this model, we solved

Equation 3.1 for the steady state abundance of Mdm2 and the rate of Mdm2-

independent p53 degradation, giving
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k1 =
k9
P
− k5k10

k2
, and

M =
k10
k2
.

To simulate the response to ionizing radiation we used the (scaled) stimulus

given in [35]. Namely, at time t = 0 we let the rate of Signal production, k11, go

to 5 × 105 molecules hour−1. This stimulus was either maintained indefinitely

(Figures 3.2.2A-C) or for just 2 hours, followed by 22 hours of rest, followed by a

second 2 hour stimulation (Figures 3.2.2D-F). Changes in p53 or Mdm2 flux were

achieved as above, by defining modifiers θP and θM such that

k′9 = k5PM(θP − 1), (3.5)

k′2 = θMk2, and (3.6)

k′10 = θMk10. (3.7)

Prior to stimulation, we let one modifier take values on the interval [10−2,

10−1] while holding the other modifier constant. Equations 3.6 and 3.7 ensure that

the p53-independent flux of Mdm2 is modified without affecting its steady state

abundance. Equation 3.5, which is slightly more complicated, results in changes to

the rate of Mdm2-indpendent p53 degradation, k1, by modifying the independent

parameter k9, which controls the rate of p53 synthesis. This yields the desired

k′1 = θPk1.

Numerical integration was carried out to time t = 384 hours. After each

integration, we defined A∞ to be the minimum vertical distance between any adja-

cent peak and trough in phosphorylated p53, and A1 and A2 to be the amplitudes

of the first and second peak, respectively. For more information on the time delay

parameters τi and τm, and their role in generating oscillations, see [176, 177].
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3.4.4 A model of NF-κBactivation

Our model of NF-κB activation is similar to the one described in [23],

except the beta and epsilon isoforms of IκB have been removed. Our model has

10 species and 26 reactions, the majority of which are illustrated in Figure 3.2.3A.

Rate equations and parameter values are identical to those in [23]. An analytical

expression for the steady state of this model was found by solving Equation 3.1 for

the following dependent variables: I, IK, INK, In, and IN, and the rate constants

k11, k16, and k19.

Activation of NF-κB is achieved by either of two, time-dependent numer-

ical input variables, T and U . T modifies the activity of IKK while U modifies

the efficiency of IκB translation. Both have a finite range of [0, 1] and have un-

stimulated, wildtype values of T (t < 0) = 0.01 and U(t < 0) = 1.0, respectively.

The inflammatory stimulus TNF is modeled using a unique function T (t) derived

from in vitro kinase assays [12]. Since these assays only measured IKK activity

out to 4 hours, we extended each stimulus by assuming the value T (t = 4 hours) is

maintained out to t = 24 hours. Justification for this can be found in the 24-hour

kinase assays in [86], which shows no IKK activity between 8 and 24 hours after

TNF stimulation. UV stimulation is modeled using a step decrease in the value

of U from 1.0 to 0.5 for the entire 24 hours. This mimics the 50% reduction in

translational efficiency observed in [23].

Steady state analysis of this model revealed that over 99% of all IκB was

degraded via either of two pathways, futile (92%) and productive (7%). See Fig-

ure3.2.3B for the composition of these pathways. To modify the flux through either

pathway without altering any of the steady state abundances, the algebraic method

described above proved absolutely necessary. Specifically, we solved Equation 3.2

for the unique set of basis vector coefficients such that the following conditions

held: (1) only reaction rate constants involved in the targeted pathway were mod-

ified; (2) if a reaction on the pathway was reversible, its ratio of forward to reverse

rate constants was preserved; and (3) the magnitude of an alteration was relative

to the bottleneck reaction. For the futile flux this was k26, the degradation of

unbound IκB. For the productive flux it was k6, the export of NF-κB-bound IκB.
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As in the p53 models above, we then defined multipliers θF and θP such that

k′26 = θFk26

k′6 = θPk6.

Finally, to generate Figure 3.2.3 we let the appropriate multiplier take values on

the interval [10−2, 10+1] prior to stimulation with TNF or UV.

Dose response curves in Figure 3.3 were generated by letting θF take values

in {10−2, 10−1, 100, 10+1} and simulating the response to varying doses of TNF

and UV. To vary the TNF dose, we scaled the displacement of the numerical IKK

activation curve above its basal value of 1% using log-spaced multipliers on the

interval [10−2, 100]. We call this multiplier the “stimulus strength”. A stimulus

strength of 10−1.0, for example, yields the same basal IKK activity as the full TNF

dose used in Figure 3.2.3, but a peak activity whose magnitude is just one-tenth

that of the full dose. To measure the TNF response, we calculated an area under

the curve (AUC) by subtracting NF-κB basal activity from the TNF-induced NF-

κB activation curve, then integrated this curve from the point of stimulus to the

time at which it becomes less than one-tenth the basal activity. All AUCs were

normalized to the full TNF dose. To vary the UV dose we varied the magnitude of

the displacement of U from unity. A stimulus strength of 0.1, for example, results

in a step decrease in U from 1.0 to 0.9. Because the response to UV is sustained

instead of transient, we plotted AU as a function of stimulus strength instead of

the area under the curve.

Chapter 3, in full, is a reprint of material as it appears in PLoS Computa-

tional Biology. Loriaux, Paul M; Hoffmann, Alexander, Public Library of Science

2013. The dissertation author was the primary investigator and author of this

paper.



Chapter 4

Kinetic network features are

better predictors of

TRAIL-induced cell death than

static features

TNF-related apoptosis inducing ligand, or TRAIL, is a promising anti-

cancer agent for its ability to selectively kill transformed cells. Intercellular het-

erogeneity, however, even in a clonal population of cells, causes variability in the

response to TRAIL and poses a significant challenge to the discovery of prognos-

tic biomarkers. To identify functionally relevant predictors of TRAIL sensitivity

in a heterogeneous population of cells, we extensively sampled a validated mass

action model of TRAIL-induced cell death using empirically-derived distributions

of biochemical parameters. By quadratic programming feature selection, we find

that just four features can emulate the full ODE model to within 78% accuracy.

Remarkably, these four features are kinetic, not static. That is, they describe the

rates of synthesis and degradation of Bar and XIAP, but not the abundances of

the proteins themselves. This result is robust to large changes in parameter values,

and argues that significant predictive information is lost when clinical specimens

are fixed after biopsy instead of being used for live cell assays.
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4.1 Introduction

The development of prognostic biomarkers to predict the cellular response

to perturbation will revolutionize the diagnosis and treatment of human cancer

[178, 179]. Overexpression of the estrogen or progesterone receptor, for exam-

ple, or expression of human epidermal growth factor receptor 2, identifies breast

cancers that are effectively treated by the adjuvants Trastuzumiab or Tamoxifen

[180, 181]. In spite of these and other examples, however [182], identifying clinically

useful biomarkers remains a considerable challenge [183, 184]. First, many can-

didate biomarkers are identified using high-throughput modalities that are prone

to overfitting [185]. These modalities cannot easily distinguish between causative

abnormalities and consequences of disease progression or the host response [186].

Second, at the time of detection, most cancers exhibit significant genetic and bio-

chemical heterogeneity. Chemical treatment of a heterogeneous cell population

results in a fractional response [187], and may select for aggressive subpopulations

that are resistant to further treatment [188, 189]. For these reasons, identification

of cellular features that are both functionally relevant to the intended therapy

and predictive across a heterogeneous population of cells will significantly improve

biomarker validation.

To address this challenge we developed a computational framework that

combines bottom-up network analysis with top-down machine learning to identify

a parsimonious set of biochemical features that accurately predict the response

to chemical perturbation in a heterogeneous population of cells. We illustrate

our framework using the anti-cancer therapeutic, rhTRAIL/APO2L (hereafter,

“TRAIL”). TRAIL is a TNF family member that preferentially induces apoptosis

in transformed cells [190]. Several TRAIL analogues are currently in clinical trials

[67], but the response to TRAIL is heterogeneous and cell-type specific [191, 68]. A

recent study has further shown that sister cells exhibit a strong correlation in their

sensitivity to TRAIL, and that this correlation decays over time [66]. Biochemical

variability caused by stochastic gene expression is therefore sufficient to explain

the variability in response to TRAIL, and argues that accurate prediction of the

response is feasible if the right biochemical features could be measured a priori.
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To identify these features, we used a validated model of TRAIL-induced cell

death based on ordinary differential equations (ODEs) [71], extended to include

protein synthesis and degradation and assigned an analytical, non-trivial steady

state [192]. By letting protein abundance and turnover parameters be described

by random variables conforming to empirically-derived distributions, we were able

to rapidly evaluate the response to TRAIL in a heterogeneous population of cells.

Using quadratic programming feature selection, we first confirm that steady state

can indeed serve as an accurate predictor of the response to TRAIL, independent of

stimulus-induced dynamics. Second, we found that just four steady state features

can achieve 78% of the accuracy of the full ODE model. This represents a 30-fold

reduction in parametric complexity, and only a modest reduction in accuracy. It

also supports our conjecture that predicting the outcome of a complex biochemical

network in response to perturbation can be achieved with only a few high-quality

measurements. Third, these features are overwhelmingly kinetic rather than static.

That is, we show that the rates of synthesis and degradation of a few key regula-

tory molecules are considerably more informative than the absolute abundances of

those or all other molecules combined. If correct, this result has strong implica-

tions for clinical diagnosis of drug sensitivity; it argues that significant predictive

information is lost when clinical specimens are fixed after biopsy instead of being

used for live cell assays.

4.2 Results

4.2.1 A heterogeneous model of TRAIL-induced cell death

To begin, we use ordinary differential equations to model the time-dependent

behavior of 58 molecular species in response to stimulation by TRAIL. Our model

is based on [71] and is described further in [192]. For a review of TRAIL-induced

signaling, see [193, 194]. Briefly, we model TRAIL-mediated assembly of the death-

inducing signaling complex (DISC) and subsequent activation of caspase 8. Active

caspase 8 cleaves and activates caspase 3, but also Bid, which in turn activates

cytoplasmic Bax. Activated Bax then enters the mitochondria to form tetrameric
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Figure 4.1: A bistable model of TRAIL-induced cell death. A. A model
of TRAIL-induced cell death that includes the original 58 species and 70 reac-
tions introduced in [71], as well as 15 zero-order synthesis reactions, 28 first-order
degradation reactions, and 2 first-order back-reactions resulting in deactivation of
Mito and Apaf. The 43 synthesis and degradation reactions are represented by
dashed lines emanating from or terminating in a gray “null” compartment. This
compartment is intended to symbolize the boundaries of the system, not the extra-
cellular environment. Other symbols are as described in [71]. The cytoplasm and
mitochondria are shaded in yellow and rose, respectively. Species selected for dose-
response analysis are shaded in blue. Dose-response curves for the eight species in
(A) shaded in blue are B. DISC, C. active caspase 8, D. truncated Bid, E. active
Bax monomers in the cytoplasm F. tetrameric Bax in the mitochondria, G. active
caspase 3, H. Cytochrome C in the cytoplasm, and I. cleaved PARP. Each panel
depicts the absolute abundance of the species at 48 hours after stimulation with
TRAIL. The dose of TRAIL ranges from 1 to 100-fold its ambient abundance.
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pores through which Cytochrome C is released into the cytoplasm. This event

is commonly called mitochondrial outer membrane permeabilization, or MOMP.

Once in the cytoplasm, Cytochrome C catalyzes the formation of the Apopto-

some, which results in degradation of XIAP and feed-forward activation of caspase

3. Activation of caspase 3 is required for chromatin condensation and DNA frag-

mentation (not modeled), and ultimately results in cell death [195, 196]. Because

MOMP is irreversible [197], we used the abundances of tetrameric Bax (Bax4) and

caspase 3-cleaved poly (ADP-ribose) polymerase (cPARP) as indicators of cell fate

[198, 42] (Figure 4.2.1A). In order to treat the steady state as an independent vari-

able, we used py-substitution to derive an analytical expression for the steady state

[199, 192]. The resulting expression has 119 independent parameters, 18 of which

are species abundances, 100 of which are kinetic rate constants, and 1 of which

describes the mitochondrial volume. The remaining 40 abundances and 15 rate

constants are rational polynomials in the independent parameters.

To verify that our model was capable of distinguishing between high and

low doses of TRAIL, we generated dose-response curves over a 100-fold increase in

ligand abundance. At each dose we simulated the model to 48 hours and recorded

the abundance of eight informative species (Figure 4.2.1B-I). The results clearly

show two distinct dose-response regimes. At low doses there is a linear response

in the DISC, but no caspase activation, Cytochrome C release, nor cleavage of

PARP. At high doses there is complete Cytochrome C release, activation of cas-

pases 3 and 8, and accumulation of cPARP. The model can therefore distinguish

between perturbations that do and do not result in cell death. Next, we wanted

to model a heterogeneous population of cells. Recent single-cell experiments sug-

gest that protein abundances are gamma distributed [200]. This distribution arises

naturally from Poisson production of messenger RNA, followed by exponentially-

distributed bursts of protein translation [202]. A remarkable conclusion from this

work is that for highly expressed proteins, the variance is proportional to the

square of the mean. Using the abundances given in [71], we therefore calculated

the variance, shape, and scale parameters of 14 independent species in our model

(Figure 4.2.1A-B). By virtue of being constrained to the steady state, 40 depen-
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Figure 4.2: Introducing heterogeneity into the bistable model of
TRAIL-induced cell death. A. The a priori probability density function used
for the abundance of the TRAIL receptor. Like other independent species abun-
dances, we let this function be defined by a gamma distribution. The mean µ of
the distribution is taken to be the value given in [71]; its variance σ2 is taken to
be one-tenth the square of the mean, i.e. the extrinsic noise limit described in
[200]. From these, a shape a and scale parameter b was calculated according to the
definition of the gamma distribution. B. A priori probability density functions for
all 14 independent species abundances. Species are plotted front to back according
to their index. C. A posteriori probability density functions for all 40 dependent
species abundances. Each dependent species abundance is a rational polynomial
in the independent parameters. D. A priori probability density function for the
half-life of the TRAIL receptor. This and other protein half-lives were assigned a
standard log-normal distribution with a nominal half-life of one hour, consistent
with the observation that signaling proteins experience rapid turnover [201]. E.
A priori probability density functions for all 11 primary protein half-lives, plotted
according to their feature index. F. A posteriori probability density functions for
the kinetic rate constants describing the efflux of 15 modified proteins and protein
complexes.
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dent species also assumed a probability distribution, albeit with higher variance

(Figure 4.2.1C). In addition, protein half-lives in murine 3T3 cells are known to

be log-normally distributed [62]. We therefore let 11 degradation rate constants

follow a log-normal distribution with a coefficient of variation (CV) equal to 0.368,

equivalent to a variance of 1 hour in the log-normal distribution of protein half-

lives (Figure 4.2.1D-E). This short half-life was motivated by the observation that

signaling proteins tend to be short-lived [201]. Again by virtue of steady state, 15

synthesis rate constants assumed a probability distribution as well (Figure 4.2.1F).

Next we sampled the model 20,000 times and simulated its response to an

ambiguous dose of TRAIL (1,000 ligands per cell). Examining the abundance of

four species – active caspase 3, cPARP, tetrameric Bax (Bax4), and cytoplasmic

Cytochrome C – at 48 hours after stimulation revealed two distinct subpopulations

(Figure 4.2.1A-D). Cells that experienced MOMP achieved the hyperactive steady

state indicative of cell death. Cells that did not experience MOMP returned to

their prestimulated steady states. Due to the symmetry and distance of the two

subpopulations of Bax4 at 48 hours, we chose this as our primary response variable.

We note that the abundance of Bax4 in the responding population is between 1 and

10 tetramers, in good agreement with the observation that only a few mitochondrial

pores are required for MOMP [203]. After fitting with a two-component Gaussian

mixture model, those that returned to their prestimulated steady states were scored

as “alive” and assigned a response value of zero. Those that did not were scored

“dead” and assigned a response value of one.

4.2.2 Steady state is an accurate predictor of the response

to TRAIL

After binarizing the response, we returned to the prior empirical param-

eter distributions and calculated their correlation with the response. Note that

random-valued parameters in the forward numerical integration problem are now

“features” in the backward model selection problem, and hereafter we refer to them

as such. We also distinguish between static and kinetic features. Static features

are the steady state abundances of the molecular species. Kinetic features are the
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Figure 4.3: Response of the heterogeneous model to an ambiguous dose
of TRAIL. Shown here are the simulated abundances of four species at 48 hours
following the addition of 1,000 molecules of TRAIL, for each of the 20,000 samples.
The four species are A. active caspase 3, B. cleaved Parp, C. tetrameric Bax, and
D. cytoplasmic Cytochrome C. For each panel, the left plot show the absolute
abundance of each species as a function of sequential sample number. Points
are shaded by density and assigned a color post-analytically based on whether
that abundance corresponds to a positive response (gray; cell dies), or a negative
response (cyan; cell lives). The right plot in each panel shows a 1-D histogram
of the response as well as the pair of Gaussians fitted to its density estimate (see
Methods). The saddle point between the two Gaussians is indicated by the dashed
line and distinguishes responsive from unresponsive samples.
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Figure 4.4: Correlation between features and the binary response. Pear-
son correlation coefficients were calculated between each feature and the binary
response variable derived from the abundance of tetrameric Bax at 48 hours (see
Methods). The absolute values of the coefficients are shown here, sorted in de-
creasing order and color-coded to indicate whether the feature is an independent
species (dark blue) or degradation rate constant (dark red), or a dependent species
(light blue) or rate of synthesis (light red). Light and dark gray rectangular regions
in the plot illustrate regions of weak and strong correlation, respectively.

rate constants that relate species abundances to the reaction velocities in which

they participate. As shown in Figure 4.2.2, no single feature correlates well with

the response to TRAIL. This is in agreement with the conclusion drawn by [66],

where no single protein exhibits strong correlation with the time elapsed between

administration of TRAIL and MOMP, unless artificially overexpressed.

We therefore asked whether we could accurately predict the response to

TRAIL using a small subset of features. A confounding issue here is that the

feature set is highly cross-correlated. In other words, any two features may be

redundant; knowing both would be no more informative than knowing either fea-

ture in isolation. To account for redundancy we calculated the cross-correlation

matrix (Figure 4.2.2). As expected, every feature perfectly cross-correlates with

itself, as illustrated along the diagonal. Because the rates of protein synthesis were

constrained to steady state, paired synthesis and degradation rates are highly cor-

related as well (clusters K1 and K2). Cluster K2 contains synthesis rates that
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are well-correlated with the 40 dependent species abundances. Among the static

features, we observe four clusters. Cluster S4 contains the independent species

abundances, all of which exhibit low correlation with every other feature. Clusters

S1, S2, and S3 are the receptor-proximal, post-mitochondrial, and mitochondrial

clusters, respectively. The high degree of cross-correlation observed in cluster S3

argues that if the state of the mitochondria is a good predictor of TRAIL sen-

sitivity, then only one mitochondrial feature will need to be measured. Similar

arguments can be made for clusters S1 and S2. Figure 4.2.2 also illustrates that

dependent features can cross-correlate if their steady state expressions are dom-

inated by the same independent features. Thus, species that are well separated

in the biochemical network, e.g. activated caspase 6 and cytoplasmic Bcl-2, are

nevertheless strongly correlated due to the constraints imposed by steady state.

Using the correlation between each feature with the response, and the

cross-correlation between every pair of features, we sought to identify a subset

of maximally predictive, minimally redundant features for predicting the response

to TRAIL. To do this we used quadratic programming feature selection [204], or

QPFS. QPFS expresses this objective as a quadratic program and finds a vector

of weights on the features that minimizes redundancy while maximizing relevance

(see Methods). If we examine the QPFS-weighted correlations between each fea-

ture and the response, we see a dramatic reduction in complexity (Figure 4.2.2).

In particular, above the weighted correlation thresholds of 0.3 and 0.12, we ob-

serve only four and twelve features, respectively. These are the rates of synthesis

and degradation of BAR and XIAP, and above 0.12 the rates of synthesis and

degradation of cytoplasmic Bcl-2, mitochondrial Bcl-2, Bid, and the steady state

abundances of procaspase 8 and the TRAIL receptor.

To confirm the ability of these features to predict the response of the full

ODE model, we used logistic regression to model the log-odds ratio of the prob-

ability of responding to TRAIL as a linear combination of the four or twelve

features. To do this we divided the 20,000 simulated responses into equal sized

training and test datasets. Regression coefficients were derived by maximum like-

lihood estimation on the training data using the statistical software package, R.
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Figure 4.5: Cross-correlation between features. Pearson correlation co-
efficients were calculated between all pairs of features and plotted as a matrix.
Hierarchical clustering was used to order the rows and columns, with clustering
being performed separately for static versus kinetic features. Six clusters were
identified after sorting, S1-S4, K1, and K2. We use hue to distinguish between
cross-correlations within static features (blue), within kinetic features (red), and
between static and kinetic features (violet). Color saturation is used to indicate the
strength of the correlation, from weak (low saturation) to strong (high saturation).
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Figure 4.6: QPFS weighted correlation between features and the binary
response to TRAIL. Features are plotted in the same order as in Figure 4.2.2,
but bar height now represents the QPFS-weighted correlation between each feature
and the response to TRAIL rather than the raw, unweighted correlation. For com-
parison, the unweighted correlations are indicated here by the yellow silhouetted
region. As before, features are color-coded to indicate whether they are indepen-
dent species (dark blue), dependent species (light blue), degradation rate constants
(dark red), or synthesis rates (light red).
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We then compared predictions from the logistic regression models with the test

data and found that they achieved 78% and 84% percent accuracy, respectively

(Figure 4.2.3). This indicates that, when predicting the response to TRAIL, a

substantial reduction in model complexity can be achieved with only a modest loss

in accuracy.

4.2.3 Kinetic features outperform static features as predic-

tors of the response to TRAIL

Our results strongly suggest that kinetic features are more powerful predic-

tors of TRAIL-responsiveness than static features. Indeed, all seven of the best

features are kinetic. Since only 33

An implicit parameter in the calculation of model accuracy is the threshold

at which an unknown system is classified as responsive. By convention this thresh-

old is zero, that being when the predicted probability of responding equals the

probability of not responding. By altering this threshold, the fraction of true to

false positives can be adjusted, yielding the well-known receiver operating charac-

teristic (ROC) curve. To test whether kinetic regression models simply outperform

static models at a particular classification threshold, we generated ROC curves for

all 80 logistic regression models. Again, the results confirm that kinetic regression

models are far more discriminatory than static regression models. As with the

previous result, a kinetic regression model containing only the rates of synthesis

and degradation of XIAP outperforms the static regression model incorporating

all 54 steady state species abundances (Figure 4.3B).

Finally, it was recently shown that determinants of TRAIL-sensitivity are

context dependent (Gaudet et al, 2012). For example, in the context of Bcl-2 over-

expression, the steady state abundance of Bax is the primary regulator of TRAIL-

responsiveness. With respect to our own observations, we wondered whether the

dominance of kinetic features was an artifact of the short protein half-lives used

in our model. To test this, we repeated our analysis using the slower half-lives re-

ported in (Gaudet et al, 2012). We found that in this context, kinetic features still

outperform static features when predicting the response to TRAIL. However, the
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Figure 4.7: Prediction accuracy of a 4- and 12-feature logistic regression
model. A. The four top-ranked features as identified by QPFS were used to build
a logistic regression model. In decreasing order, those features are the rates of
synthesis of BAR and XIAP, and the rates of degradation of XIAP and BAR. The
model was trained on one half of the dataset of 20,000 simulations and tested on
the other. The abscissa gives the predicted log-odds ratio of the probability of
responding to TRAIL versus not responding. A value of zero corresponds to equal
probability. Values greater than zero are predicted to respond to TRAIL (cells die;
gray), while values less than zero are predicted not to respond (cells live; cyan).
Samples in the first and second quadrant are those that actually responded to
TRAIL according to the ODE model (positives). Samples in the third and fourth
quadrant are those did not respond to TRAIL (negatives). B. As above, but the
twelve top-ranked features as identified by QPFS were used instead. These include:
the rates of synthesis and degradation of cytoplasmic Bcl-2, mitochondrial Bcl-2,
Bid, and the steady state abundances of procaspase 8 and the TRAIL receptor.
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features identified by QPFS now describe the turnover of Bax and Bcl-2 instead

of Bar and XIAP. Thus while kinetic features are generally stronger predictors of

TRAIL-responsiveness, feature identify is partly determined by the rate of global

protein turnover.

4.3 Discussion

We have described a framework for identifying a parsimonious set of bio-

chemical features that accurately predicts the response to chemical perturbation

in a heterogeneous population of cells. This framework is made possible by the

following, recent advances: 1) an experimentally validated, reaction network model

of the biological process in question [71], 2) computational methods for deriving an

analytical expression for the steady state of the network [192] and incorporating

kinetic variability [201], 3) single cell experiments that describe the distributions of

proteins in a heterogeneous population [200], and 4) a method to identify subsets

of features that are simultaneously predictive and non-redundant [204].

The potential application of model reduction techniques to biomarker dis-

covery cannot be overstated. To date, over 300 curated, quantitative models of

cell decision and signaling processes have been developed [205]. Reducing these

models to “representative kernels” can help quantify the functional importance

of candidate markers and filter out false-positives [206]. Typical model reduction

techniques either prune out inconsequential reactions [207, 208] or coarse-grain

the dynamic variables using low-dimensional surrogates [209]. While both these

techniques eliminate insensitive variables, the resulting model is still a system of

differential equations that requires numerical integration. An alternative approach

is to “emulate” the network model using a statistical meta-model [210, 211]. Since

numerical integration is not required for these emulators, changes in input param-

eters can be rapidly mapped to changes in the response. Our method extends this

approach by considering only the biologically relevant response (cell death) and

incorporating physiological distributions on the input parameters. As a result, we

can build an informative classifier for a heterogeneous population of cells using
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Figure 4.8: Kinetic features outperform static features. A. Static-only
(blue) or kinetic-only (red) features were iteratively added to a logistic regression
model in order of their QPFS ranking and the models trained and tested as before.
The accuracy of each model as a function of its size is shown here, where “All”
indicates either all 56 static features or all 26 kinetic features. An accuracy of 0.5
is equivalent to random guessing. B. For each of the 56 static and 26 kinetic re-
gression models, a receiver operating characteristic curve was generated by varying
the classification threshold for responders and non-responders over the entirety of
its range.

only ≈ 103 simulations.

After applying our framework to a model of TRAIL-induced cell death, our

first conclusion is that the resting state of a signaling system can indeed serve

as a good predictor of its response to perturbation. That is, a logistic regression

model that considers only four steady state features will, four times out of five,

accurately predict the response to TRAIL compared to the full ODE model. A

priori, there is no reason to think that this should be possible. The dynamics

of TRAIL-induced signaling effectors are highly non-linear. That the response to

TRAIL can be modeled as a linear combination of just four steady state features is

therefore surprising. Of course, it will be interesting to see whether this conclusion

generalizes to other biological systems. One hallmark of TRAIL-induced cell death

is that it does not appear to be sensitive to stochastic fluctuations [66]. In sys-

tems that are sensitive to stochastic fluctuation, we would expect this correlation
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between steady state and stimulus-responsiveness to be compromised, but to what

degree requires further study.

For TRAIL, we find that the rates of protein synthesis and degradation,

or flux, of XIAP and Bar are the strongest predictors of the response. These are

followed by the fluxes of Bid and Bcl-2 and the steady state abundances of the

receptor and procaspase 8. The locality of these features in the reaction network

lends credibility to this finding. Bar and XIAP are at the points of bifurcation and

convergence of the mitochondrial feed forward loop, respectively. The original ODE

model was trained on data derived from HeLa cells, for which MOMP is normally

required for cell death [212]. The turnover of proteins that control this bifurcation

are therefore good predictors of the response. It is interesting that predictive power

migrates to Bax and Bcl-2 when global protein stability is increased by 60-fold.

This suggests a greater role for the mitochondria in the context of slow protein

turnover, and may constitute an additional determinant of Type I versus Type II

behavior in these cells, in addition to the steady state ratio of caspase 3 abundance

to XIAP [111].

In contrast, some features are conspicuously low in the QPFS rankings.

For example, it has been observed that cells can be sensitized to TRAIL by up-

regulation of the receptor [213] or down-regulating the anti-apoptotic FLIP [214].

However, neither of these features figure prominently in the QPFS rankings. Two

explanations are possible. The first is that these molecules are indeed critical, but

this effect is mediated through other features that themselves are better predictors

of the response. For example, FLIP inhibits procaspase 8 processing. Downregu-

lation of FLIP may therefore lead to decreased abundance of procaspase 8, which

QPFS identifies as being a strong predictor of TRAIL sensitivity. The second pos-

sibility is that these features may acquire predictive power depending on the cell

type and condition, as observed above and in [111, 98].

Finally, we conclude that kinetic features are stronger predictors of TRAIL-

induced cell death than static features. This conclusion does not appear to be sensi-

tive to the mean of the kinetic feature distribution. Whether the global protein-half

life is modeled at 1 or 66 hours, QPFS identifies the fluxes of Bar and XIAP, or
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Bax and Bcl-2 respectively, as the most powerful predictors of TRAIL responsive-

ness. In contrast, when the CV of the kinetic feature distribution is reduced from

0.386 to 0.25 (as reported in [98], we see a slight reduction in the dominance of

kinetic features (Supplementary Figure 4.2.1). This observation is not surprising,

however. In the limit where the variance of a feature is so small as to be effec-

tively constant, knowing that feature will have no impact on classification. Since

genome-wide measurements of protein half-life suggest a CV between 0.48 and

2.28 [114, 115, 62], we conclude that, in general, kinetic features dominate static

features when predicting the response to TRAIL. Indeed, static features that were

treated as independent random variables in the present study have been shown to

be cross-correlated [98]. Incorporating these empirical cross-correlations into the

QPFS rankings would further dilute their predictive power and contribute to the

overall dominance of kinetic features.

In support of this conclusion, work from our laboratory shows that steady

state flux can exert significant control over the dynamic response to perturbation

[201]. In other words, isostatic signaling networks have a high degree of dynamic

plasticity, and only when certain protein flux parameters are constrained can a

particular stimulus-response behavior be observed. What is surprising, however, is

that both synthesis and degradation rates of the same species are relevant and non-

redundant predictors. In the case of TRAIL, the six best kinetic predictors are the

synthesis and degradation of XIAP, Bar, and cytoplasmic Bcl-2. Why this might

be warrants further study, but also suggests an improvement to the framework

presented here. If both synthesis and degradation are good predictors, than the

ratio of these two features may be a better predictor still. This suggests that

simple functions of primary features should themselves be considered for ranking

by QPFS, and indeed may reduce the size of the resulting regression model even

further.

We envision that this work can help steer the development of next gener-

ation diagnostics. If the results with TRAIL hold for other systems, and indeed

kinetic features are generally more powerful predictors than static features, then

this necessitates development of sensitive assays for measuring kinetic parameters



112

in primary cells, perhaps via pulse-labeling with non-radioactive isotopes followed

by quantitative mass spectrometry or RNA sequencing [215, 216, 62]. It also ar-

gues that valuable information is lost as soon as cells are fixed, and that diagnoses

on primary human tissue samples should be performed using live cells, prior to fix-

ation. Alternatively, it may be possible to infer the values of kinetic features from

other, more easily addressable static features. For example, the rate of degradation

of a particular protein may be inferable from the abundance of the E3 ubiquitin

ligase that targets it for degradation. The rate of protein synthesis is largely de-

termined by mRNA abundance [217], which itself is inferable from the state of the

corresponding promoter [218]. Thus while our framework uses information about

the biochemical mechanism of drug action and physiological distributions of bio-

chemical parameters to identify a parsimonious set of predictive features, further

work may be required to translate these findings into clinically feasible diagnostics.

4.4 Methods

4.4.1 Model Construction

To construct a bi-responsive model of TRAIL-induced apoptosis, the Albeck

model was extended to include 15 synthesis reactions, 28 degradation reactions, and

deactivation reactions for the species Mito and Apaf. An analytical expression for

the steady state was derived using Maple version 14 and a py-substitution strategy

that preserved all internal reaction kinetics and steady state species abundances as

reported in the Albeck model [192]. The 45 new reactions required 31 additional

parameters, 28 of them being degradation rate constants. For these we imposed a

nominal half-life of one hour, justified by the observation that signaling proteins

tend to be short lived [201]. Several species half-lives were then manually adjusted

to better fit published dynamic profiles for active caspase 8, caspase 3, and cleaved

Parp. They are: the Bar-caspase 8 complex, caspase 6, cleaved Parp, the TRAIL

ligand, cytoplasmic Cytochrome C, and Bar. Inactivation of Mito and Apaf were

assumed to be 10 times faster than protein degradation.

Heterogeneity in the steady state was achieved by letting 14 independent
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steady state abundances be gamma distributed and 11 independent degradation

rate constants be log normally distributed. Variance in the species abundances

was set equal to one-tenth the square of the mean, i.e. the “extrinsic noise limit”

observed in [200]. Mean abundances were taken from [71]. For each gamma distri-

bution, the scale parameter was calculated from the square of the mean over the

variance, and the shape parameter from the variance over the mean. Degradation

rate constants were assumed to have a CV of 0.368, equivalent to a variance of 1 in

the log-normal distribution of protein half-lives. 40 species and 15 kinetic param-

eters likewise assumed a probability distribution by virtue of being constrained

to steady state (Figure 4.2.1A). Only the internal reaction kinetics, as well as

degradation rates of complexes and modified species, remained constant.

4.4.2 Feature Selection and Regression

To sample the heterogeneous population described by our TRAIL model,

values were chosen for each of the 25 independent, random parameters according

to their prescribed probability density functions. These values were then used to

calculate the 57 dependent parameters whose values were constrained by steady

state. To simulate each sample’s response to stimulation, we instantaneously added

1000 molecules of TRAIL and numerically integrated the system to 48 hours post-

stimulation using SciLab version 5.3, using the “stiff” backward differentiation

formula method.

To score the outcome of the simulation, the amount of tetrameric Bax or

cleaved PARP at 48 hours was recorded and fit to a mixture of two univariate

Gaussians using expectation maximization. The abundance of tetrameric Bax at

48 hours for each steady state sample was given a Z-score for each Gaussian and

assigned to the population for which the Z-score was smaller. Samples that were

assigned to the Gaussian with the higher mean were assigned a response variable

of 1, indicating a positive response to TRAIL. Those that were assigned to the

Gaussian with the lower mean were assigned a response variable of 0, indicating a

negative response to TRAIL.

Once binarized, the Pearson correlation statistic was calculated between
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each of the 82 features and the response. Again note that for classification, we

refer to the 82 random valued parameters as features. Also, the same Pearson

correlation statistic was calculated between every pair of features. The absolute

values of these correlation statistics yielded a feature relevance vector F and a

redundancy, or cross-correlation matrix Q, respectively. From these, a weight

vector x was calculated that minimizes the quadratic program

x = min{1

2
(1− α)xTQx− αF Tx}

where the weighting factor α was calculated empirically by dividing the mean of F

by the mean of Q. Further, because the matrix Q was singular, we approximated

it using its eigenvalue decomposition as suggested in [204] using a cumulative

eigenvalue threshold of 0.999.

Once the optimal vector of weights was identified, we used this as an order-

ing by which to incorporate features into a logistic regression model. Specifically,

we modeled the log-odds ratio of the probability of responding to TRAIL versus

not responding as a linear combination of the steady state features. Maximum

likelihood estimates of the regression coefficients was achieved using the glm func-

tion in R, with the link function “logit”. Model accuracy was calculated as the

fraction of true positive and true negatives over all predictions. ROC curves were

obtained by iterating the log-odds ratio threshold over its full range of possible

values, and at each value calculating the true and false positive rates, i.e. the ratio

of true to total positives, and the ratio of false to total negatives, respectively.

Chapter 4, in part, is currently being prepared for submission for publica-

tion. Loriaux, Paul M; Elkan, Charles; Hoffmann, Alexander. The dissertation

author was the primary investigator and author of this material.



Chapter 5

Conclusion

In this chapter I reflect on the origins and evolution of the projects discussed

in Chapters 2, 3, and 4, and discuss how the results described therein could be

expanded upon.

5.1 Chapter 2

The py-substitution method was borne out of attempts to parameterize a

comprehensive model of TNF-induced cell death via activation of NF-κB, MAPK,

and caspase 8. Rather than resort to nonlinear optimization heuristics [32, 56, 219],

I hoped to relate the parameters in this model to “observables” that could be

measured in the laboratory. This approach is illustrated in Figure 5.1, where

the parameterization of a simple two-reaction system are shown to require four

observable quantities.

Figure 5.1 first appears in a presentation given during lab meeting on

September 18, 2007, but itself is a refined version of a figure presented on June 5th

of that same year. Even then the trade-offs of py-substitution were well-recognized.

A slide from June 5th lists “takes a while to parameterize” and “adds inertia to

model structure” as detriments of the method, but “rate constants removed from

model formulation” and “steady state becomes a model input” as potential ben-

efits. These trade-offs still hold true six years later. As shown in Chapter 2,

py-substitution can indeed eliminate inscrutable rate constants from the set of in-
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Figure 5.1: This figure illustrates the rational parameterization of a simple, re-
versible chemical conversion.
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dependent parameters. And in Section 2.3.3, we show that using py-substitution,

the steady state can be systematically altered to characterize its effect on the cel-

lular response to stress. These, in addition to a reduction in the total number

of parameters required, are cited in [192] as being three benefits of having an

analytical steady state expression.

Even with modern symbolic solvers, however, deriving such an expression

can be cumbersome. For this reason, even small changes in model structure must

be made judiciously. So while py-substitution has now been applied to over 20

different models, there are still avenues for improvement. First, in Section 2.2

we show that a particular steady state solution is the linear combination of basis

vectors spanning the null space of the coefficient matrix. Identifying these basis

vectors requires a row reduction of the coefficient matrix. Because symbolic ex-

pressions do not simplify like numeric ones do (the symbolic sum of two variables

“a” and “b” is a new variable “a+b” requiring twice the memory; numerically, the

sum of two floating point numbers, 2.2 and 7.1, is just another floating point num-

ber, 9.3), each row operation during the reduction effectively doubles the number

of terms in the reduced row. The result is “term explosion”, which causes some

steady state expressions to exceed physical memory (see Section 2.3.2). Because

row reduction is deterministic, however, the complexity of the steady state solution

could be calculated a priori, using information about the structure of the reaction

network and the substitution strategy.

At a minimum, this calculation could be used identify impractical network

architectures and substitution strategies. Or it could help identify a memory archi-

tecture that supports a full symbolic solution. An alternative, however, may be to

use a hybrid approach to reduce the overall complexity of the solution. Recall from

above that systems of numerical equations are far less burdensome than symbolic

ones. This suggests that, after the initial mapping ψpy, a subset of independent

parameters in P could be mapped to real numbers. These numerical quantities can

be combined arithmetically during row reduction, yielding a significant reduction

in overall solution complexity. These real-valued parameters must be constant for

all subsequent analyses, however, so this mapping must be made judiciously, on
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parameters whose values are known with some confidence.

Finally, as discussed in Section 2.3.2, there are multiple but finite solutions

to the steady state equation for a given model. This has ramifications where

perturbations to the steady state are concerned. Consider a simple model with a

single protein that is synthesized and degraded. The steady state abundance of this

protein can be perturbed by adjusting its rate of synthesis, the degradation rate

constant, or both. As Chapter 3 convincingly shows, the choice of perturbation will

affect the model’s response to stimulation. So which is correct? The answer is that,

without full knowledge of what causes the change in abundance, all solutions are

possible. In the work just described, dynamic effects caused by changes in steady

state were conditioned by our particular choice of perturbation. Thus Figure 1.4D

illustrates the effect on dynamics caused by changes in the steady state abundance

of the inhibitor, Y, due to changes in its rate of synthesis. The same changes in

the steady state abundance of Y due to changes to its rate of degradation may

yield a different result. This suggests that a comprehensive exploration of the

effects of steady state on stimulus-responsiveness should consider all steady state

perturbations, not just specific ones. This calls for exhaustive identification of all

steady state solutions, rather than the manual partition of model elements into

sets P and Y , as described in Chapter 2.

5.2 Chapter 3

Our manuscript, “A Protein Turnover Signaling Motif Controls the Stimulus-

Sensitivy of Stress Response Pathways”, followed directly from the work of a pre-

vious student in the lab, Dr. Ellen O’Dea Mercado [123, 23]. This work identified

the instability of unbound IκBα as a critical mediator of canonical NF-κB sensi-

tivity in response to stress. This prompted the question: what is the functional

distinction between rapid protein turnover in a negative regulator like IκBα, ver-

sus a positive regulator like p53? Our manuscript explores this question in some

detail, (see, e.g., Section 3.2.1), but falls short of any universal claims because

“responsiveness” in the p53 and NF-κB pathways could not be rigorously defined.
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Nevertheless, our extension of py-substitution to identify isostatic perturbations

allowed us to demonstrate that the flux of IκBα, p53, and Mdm2 exert signif-

icant control over the sensitivities of these pathways, and may explain why the

physiological rates of turnover of these molecules are so high.

For this reason, early versions of the py-substitution manuscript — dat-

ing back to January 2010 — include flux analyses of p53 and IκB, as these were

intended to be the “methodology” and “results” sections of a single manuscript.

Two observations prompted its dissolution into separate projects. First, contem-

porary publications from the laboratories of Drs. Scott Diamond [109], Jeremy

Gunawardena [78], and Dan Beard[82], indicated that there was sufficient interest

in the community for methods that identify or manipulate the steady states of mass

action models. Second, our own description of py-substitution required so much

space that it seemed to warrant a manuscript in its own right. By February 2012,

a mature draft of the protein turnover manuscript was written, but it was not sub-

mitted until August 17th, the delay being caused primarily by the py-substitution

manuscript which we intended to co-submit as its “companion”. Retrospectively,

attempting to coordinate the co-submission of these two manuscripts may have

been one of the greatest misjudgments of my graduate career. The motivation at

the time, however, was that this protein turnover manuscript would help carry

py-substitution into PLoS Computation Biology, which at the time, frowned on

submissions whose focus was methodological (this policy has since been reversed).

There are several ways to extend the results presented in Chapter 3. The

first is obviously to pursue some of the computational predictions. For example, we

mentioned that mouse embryonic fibroblasts lacking IGF-1R exhibit reduced p53

synthesis and degradation, but normal protein abundance, and are insensitive to

DNA damage. Our theoretical analysis suggests that pulses of p53 in response to IR

require rapid turnover of p53. A simple experiment might therefore be to express

GFP-tagged p53 in igf1r−/− cells, then see whether p53 oscillates in response to

IR. If not, as we would predict, this may explain why these cells are insensitive to

DNA damage. For IκBα, rapid turnover of the unbound monomer was shown to

be mediated by a single tyrosine residue in its C-terminal PEST domain (Y289)
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Figure 5.2: Isostatic control of p53 activation by two p53 degrada-
tion pathways. A. Two pathways for p53 degradation, Mdm2-independent and
-dependent. The rates of p53 degradation through these two pathways are con-
trolled by the multipliers θ1 and θ2, respectively. B. Decreasing θ1 while increas-
ing θ2 results in higher amplitudes of p53 activity but with the same timing. C.
Increasing both θ1 and θ2 results in earlier activation of p53, but no change in
amplitude.



121

[40, 132]. Stable expression of a Y289F mutant IκBα in an nfkbia−/− background

under a weak promoter would result in reduced IκBα flux but normal steady

state abundance. Our computational analysis predicts that these cells would be

hypersensitive to stimulation by UV or low doses of TNF. For molecules for which

natural “flux-mutations” do not exist, we suggest in Chapter 3 that one could be

engineered using a combination of tet-responsive promoters and clpXP protease

recognition sequences.

A second extension to our work is theoretical. First, although Chapter 3

focuses on the control of p53 and NF-κB activation through a paired positive and

negative regulatory flux motif, these are not the only two isostatic perturbations

that exist in these models. Indeed, as illustrated in Figure 5.2, the dynamic re-

sponse of p53 to stimulation can also be controlled by the Mdm2-dependent and

-independent degradation pathways — independently, that is, of the flux of Mdm2

itself. This suggests that any number of dynamic response characteristics can be

controlled by an equal number of isostatic perturbations. As mentioned in Sec-

tion 3.3, the isostatic subspace for a model contains as many perturbations as there

are reaction loops. Synthesis and degradation cycles are just another example of

this. Reversible reactions are another. If boundaries can be assigned to the flux

through these loops, then we can simulate the “dynamic plasticity” of a model

around its physiological steady state. This would constitute an extension of pre-

vious work on extreme pathways [220] and steady state sampling [221] into the

non-equilibrium behavior of models with nonlinear dynamics.

Finally, an admitted shortcoming of our conclusion in Chapter 3 is that

we were not able to rigorously define “sensitivity” and “specificity”. In response

to reviewers’ comments on the corresponding manuscript, an attempt to do so

was made, using the prototypical negative feedback model where x̄1 = x̄2 = 1,

and k1 = k2 = k3 = k4 = 1. We then examined the effects of all isostatic and

anisostatic perturbations on the response to all four possible stimuli (Figure 5.2).

Initial results are shown in Figure 5.3 using the area under the activation curve

relative to wildtype as a dynamic response variable. Prior to each stimulus, the

steady state was perturbed by reducing (red traces) or increasing (green traces) the
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Figure 5.3: A prototypical negative feedback model with four stimuli.
The prototypical negative feedback model shown in Figure 3.1 was expanded to in-
clude all four possible stimuli. These are: increased synthesis of the Activator (S1),
decreased synthesis of the Inhibitor (S2), decreased degradation of the Activator
(S3), and increased degradation of the Inhibitor (S4).
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Activator flux (row 1), Inhibitor flux (row 2), Activator synthesis (row 3), Inhibitor

synthesis (row 4), Activator degradation (row 5), or Inhibitor degradation (row 6).

The stimulus parameter γ gives the log2 ratio of stimulus duration to stimulus

intensity. The final column, “Entropy”, provides a measure of how well the four

stimuli can be distinguished for a particular perturbation and value of γ.

Though preliminary, some conclusions can be drawn from these early anal-

yses. First, as γ increases (stimuli go from short and intense to long and weak),

the ability to distinguish between stimuli vanishes. This suggests that stimulus

specificity is a function of the non-equilibrium behavior of the network, a topic

that is currently being explored in greater detail by Marcelo Behar in our labora-

tory (unpublished results). The second observation is that stimuli S2-S4, as well as

perturbations 3-5 (Activator and Inhibitor synthesis, and Activator degradation),

yield remarkably similar results. Thus, some stimuli and steady state perturba-

tions are degenerate with respect to the stimulus-induced dynamics and have no

bearing on stimulus-specificity. Finally, however, it isn’t immediately obvious why

evolution would select for high flux and not high flux plus increased protein abun-

dance. Even though we show that high flux is important for stimulus sensitivity,

we have yet to identify the functional constraint on protein abundance.

5.3 Chapter 4

The origins of our work with TRAIL are slightly obscure. In May, 2010, I

contacted Dr. Glenn Tesler to request his help in solving the steady state equation

for the original EARM model by John Albeck [71]. This led to the use of Maple

over Matlab for our symbolic operations, and much of the material now discussed

in Section 2.3.2. Three months later, in a presentation during lab meeting, I

postulated that simulated data could be used in place of real data for the purposes

of predicting the response to TRAIL. The advantage of simulated data is that

it is abundant and can expose mechanistic insight. The disadvantage is that it

this data is blind to mechanisms that aren’t included in the model. Steady state

sampling of our extended TRAIL model [192] began in February 2011, which, under
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Figure 5.4: Exhaustive analysis of steady state control of stimulus-
responsiveness in a prototypical negative feedback model. The proto-
typical negative feedback model shown in Figure 5.2 was stimulated by each of
four possible stimuli, S1-S4. Prior to stimulation, the steady state was perturbed
by reducing (red traces) or increasing (green traces) the Activator flux (row 1),
Inhibitor flux (row 2), Activator synthesis (row 3), Inhibitor synthesis (row 4), Ac-
tivator degradation (row 5), or Inhibitor degradation (row 6). For each stimulus,
the area under the activation curve is shown (

∫∞
t=0

Act(t) − Act(t = 0) dt), as a
function of the stimulus shape parameter γ, where the value 2γ gives the ratio of
stimulus duration to stimulus intensity. The Entropy column provides a measure
of how well the four stimuli can be distinguished for a particular perturbation and
value of γ.
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the guidance of Dr. Charles Elkan, developed over the course of the following

month into a masters research project in the Department of Computer Science

and Engineering. In August of that year, the core of the current manuscript was

presented during lab meeting, and a mature draft was completed by October,

2011. Submission of the manuscript was delayed first for possible coordination

with a similar manuscript from the laboratory of Dr. Peter Sorger [98], and then in

reaction to that manuscript after it was accepted to PLoS Computation Biology. A

revised manuscript was submitted to Nature Molecular Systems Biology in October

2012, but was not sent out for review. Subsequent work has focused on defining

the context in which our conclusions from Chapter 4 are valid.

To that end, our first thought was to vary the global mean and variance

of the protein abundance and flux parameters. To do so we introduced “gross

physiological parameters” to control the global protein abundance (GPA), extrinsic

noise limit (XNL), global protein half-life (GPH), and half-life standard deviation

(HSD). These acted as modifiers on the wildtype parameterization of our extended

TRAIL model, where for a given steady state abundance x̄ and degradation rate

constant k, their modified values are given by

x̄′ ∼ Γ(GPA · x̄, 0.1 · XNL) (5.1)

k′ ∼ −1

2
lnN(GPH, 0.1 · HSD). (5.2)

The parameters GPA, XNL, and HSD all took values on the interval [2−3, 23],

while GPH took values on the interval [20, 26], because our wildtype half-life of

1 hour was already quite short. For each value of these parameters, we sampled

our model 2,000 times and generated the QPFS-weighted rankings as described in

Chapter 4. Figure 5.3 shows the sum of kinetic (red) versus static (blue) weights for

a given value of each of the four gross physiological parameters. The results show

that kinetic features do indeed generally outperform static features, as suggested

by our wildtype parameterization. This dominance is particularly pronounced for

high values of global protein abundance and low values of the extrinsic noise limit,

as well as high values of the half-life standard deviation. These last two results
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make sense, in that, as the width of a feature distribution vanishes to zero, so does

it’s ability to predict the response. One particularly interesting result, however, is

that the global protein half-life has no bearing on kinetic versus static dominance.

The reason for this observation has not been investigated.
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Figure 5.5: Sensitivity of kinetic superiority in the QPFS weighted
rankings to gross changes in model parameters. The global protein abun-
dance (GPA), extrinsic noise limit (XNL), global protein half-life (GPH), and
half-life standard deviation (HSD) were varied over a 26-fold range and the QPFS
weighted rankings of all kinetic versus all static features generated as described in
Chapter 4. Equations 5.1 and 5.2 describe how these parameters affect the other
model parameters.
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A Hakem, M McCurrach, W Khoo, S a Kaufman, G Senaldi, T Howard, S W
Lowe, and T W Mak. Essential contribution of caspase 3/CPP32 to apopto-
sis and its associated nuclear changes. Genes & Development, 12(6):806–19,
March 1998.

[196] a G Porter and R U Jänicke. Emerging roles of caspase-3 in apoptosis. Cell
Death and Differentiation, 6(2):99–104, February 1999.

[197] Clare Sheridan and Seamus J Martin. Commitment in apoptosis: slightly
dead but mostly alive. Trends in Cell Biology, 18(8):353–7, August 2008.



147

[198] Scott H Kaufmann, Serge Desnoyers, Yvonne Ottaviano, Nancy E David-
son, and Guy G Poirier. Specific proteolytic cleavage of poly(ADP-ribose)
polymerase: an early marker of chemotherapy-induced apoptosis. Cancer
Research, 53(17):3976–85, September 1993.

[199] Paul M Loriaux and Alexander Hoffmann. A framework for modeling the re-
lationship between cellular steady-state and stimulus-responsiveness., volume
110. Elsevier Inc., January 2012.

[200] Yuichi Taniguchi, Paul J Choi, Gene-Wei Li, Huiyi Chen, Mohan Babu,
Jeremy Hearn, Andrew Emili, and X. Sunney Xie. Quantifying E. coli pro-
teome and transcriptome with single-molecule sensitivity in single cells. Sci-
ence, 329(5991):533–8, July 2010.

[201] Paul Michael Loriaux and Alexander Hoffmann. A protein turnover signaling
motif controls the stimulus-sensitivity of stress response pathways. PLoS
Computational Biology, 9(2):e1002932, February 2013.

[202] Nir Friedman, Long Cai, and X Sunney Xie. Linking stochastic dynamics to
population distribution: an analytical framework of gene expression. Physical
review letters, 97(16):168302, October 2006.

[203] H Düssmann, M Rehm, C G Concannon, S Anguissola, M Würstle, S Kac-
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simple work flow for biologically inspired model reduction–application to
early JAK-STAT signaling. BMC Systems Biology, 5(1):30, January 2011.

[209] A Dokoumetzidis and L Aarons. Proper lumping in systems biology models.
IET systems biology, 3(1):40–51, January 2009.

[210] Stefano Conti and Anthony OHagan. Bayesian emulation of complex multi-
output and dynamic computer models. Journal of Statistical Planning and
Inference, 140(3):640–651, March 2010.

[211] Kristin Tø ndel, Ulf G Indahl, Arne B Gjuvsland, Jon Olav Vik, Peter
Hunter, Stig W Omholt, and Harald Martens. Hierarchical cluster-based
partial least squares regression (HC-PLSR) is an efficient tool for metamod-
elling of nonlinear dynamic models. BMC Systems Biology, 5(1):90, January
2011.

[212] M Mandal, S B Maggirwar, N Sharma, S H Kaufmann, S C Sun, and R Ku-
mar. Bcl-2 prevents CD95 (Fas/APO-1)-induced degradation of lamin B and
poly(ADP-ribose) polymerase and restores the NF-kappaB signaling path-
way. The Journal of Biological Chemistry, 271(48):30354–9, November 1996.

[213] Nathan G Dolloff, Patrick A Mayes, Lori S Hart, David T Dicker, Robin
Humphreys, and Wafik S El-Deiry. Off-target lapatinib activity sensitizes
colon cancer cells through TRAIL death receptor up-regulation. Science
translational medicine, 3(86):86ra50, June 2011.

[214] Sarah Shirley and Olivier Micheau. Targeting c-FLIP in cancer. Cancer
Letters, pages 1–10, November 2010.

[215] Mary K Doherty, Dean E Hammond, Michael J Clague, Simon J Gaskell,
and Robert J Beynon. Turnover of the human proteome: determination
of protein intracellular stability by dynamic SILAC. Journal of proteome
research, 8(1):104–12, January 2009.

[216] Caroline C Friedel, Lars Dölken, Zsolt Ruzsics, Ulrich H Koszinowski, and
Ralf Zimmer. Conserved principles of mammalian transcriptional regulation
revealed by RNA half-life. Nucleic Acids Research, 37(17):e115, September
2009.

[217] Nicholas T Ingolia, Sina Ghaemmaghami, John R S Newman, and
Jonathan S Weissman. Genome-wide analysis in vivo of translation with
nucleotide resolution using ribosome profiling. Science, 324(5924):218–23,
April 2009.



149

[218] Sylvia C Tippmann, Robert Ivanek, Dimos Gaidatzis, Anne Schöler, Leslie
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Schübeler. Chromatin measurements reveal contributions of synthesis and
decay to steady-state mRNA levels. Molecular Systems Biology, 8(593):593,
January 2012.

[219] Kyoung Ae Kim, Sabrina L Spencer, John G Albeck, John M Burke, Peter K
Sorger, Suzanne Gaudet, and Do Hyun Kim. Systematic calibration of a cell
signaling network model. BMC bioinformatics, 11:202, January 2010.

[220] C H Schilling, D Letscher, and B O Palsson. Theory for the systemic def-
inition of metabolic pathways and their use in interpreting metabolic func-
tion from a pathway-oriented perspective. Journal of Theoretical Biology,
203(3):229–48, April 2000.

[221] Jan Schellenberger and Bernhard ØPalsson. Use of randomized sampling
for analysis of metabolic networks. The Journal of biological chemistry,
284(9):5457–61, February 2009.


	Signature Page
	Epigraph
	Table of Contents
	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The cellular response to stress
	Methodology
	Preliminaries
	An example

	Deriving analytical expressions for the steady states of mass action models
	Introduction
	Methods
	Prior Work
	Py-substitution

	Results
	Py-substitution permits flexible derivation of a steady state solution
	Py-substitution is more general, but not less efficient, than King-Altman
	Steady state establishes a threshold for drug-induced cell death

	Discussion

	A Protein Turnover Signaling Motif Controls the Stimulus-Sensitivity of Stress Response Pathways
	Introduction
	Results
	Activator and inhibitor fluxes can precisely control the dynamics of signaling
	High p53 and Mdm2 flux is required for p53 responsiveness to ionizing radiation
	High  flux buffers  from activation in response to UV and low doses of TNF

	Discussion
	Methods
	Modeling isostatic perturbations in protein turnover
	A prototypical negative feedback model
	A model of p53 oscillations
	A model of  activation


	Kinetic network features are better predictors of TRAIL-induced cell death than static features
	Introduction
	Results
	A heterogeneous model of TRAIL-induced cell death
	Steady state is an accurate predictor of the response to TRAIL
	Kinetic features outperform static features as predictors of the response to TRAIL

	Discussion
	Methods
	Model Construction
	Feature Selection and Regression


	Conclusion
	Chapter 2
	Chapter 3
	Chapter 4

	Bibliography



