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Group Decorrelation Enhanced Subspace Method
for Identifying FIR MIMO Channels Driven by

Unknown Uncorrelated Colored Sources
Senjian An, Yingbo Hua, Fellow, IEEE, Jonathan H. Manton, Senior Member, IEEE, and Zheng Fang

Abstract—Identification of finite-impulse-response (FIR) and
multiple-input multiple-output (MIMO) channels driven by un-
known uncorrelated colored sources is a challenging problem.
In this paper, a group decorrelation enhanced subspace (GDES)
method is presented. The GDES method uses the idea of subspace
decomposition and signal decorrelation more effectively than the
joint diagonalization enhanced subspace (JDES) method previ-
ously reported in the literature. The GDES method has a much
better performance than the JDES method. The correctness of the
GDES method is proved assuming that 1) the channel matrix is
irreducible and column reduced and 2) the source spectral matrix
has distinct diagonal functions. However, the GDES method has
an inherent ability to trade off between the required condition
on the channel matrix and that on the source spectral matrix.
Simulations show that the GDES method yields good results even
when the channel matrix is not irreducible, which is not possible
at all for the JDES method.

Index Terms—Adaptive signal processing, blind deconvolution,
blind identification, machine learning, MIMO channels, sensor
array processing, source separation, system identification.

I. INTRODUCTION

B LIND identification of multiple-input-multiple-output
(MIMO) and finite-impulse-response (FIR) channels

driven by unknown uncorrelated colored sources is a chal-
lenging and yet fundamental signal processing problem arising
from many applications. For blind identification of MIMO FIR
channels, a deterministic approach is not applicable unless there
is a significant amount of algebraic (known) constraints on the
channel matrix and/or the sources. A statistical approach is
often necessary. Due to relatively short windows of stationarity
in practical data, the second-order statistics (SOS) tend to be
more reliable than the higher-order statistics (HOS). Hence,
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whenever applicable, the SOS methods are generally preferred
to the HOS methods.

The existing methods for blind identification of MIMO FIR
channels include the subspace method [5], [10], the minimum
noise subspace method [1], the matrix pencil method [11], and
the blind identification by decorrelating subchannels (BIDS)
method [6]. If the (polynomial) channel matrix is irreducible,
column reduced, and of equal column degrees, the subspace
method can identify the channel matrix up to a unknown
constant matrix. To determine the unknown constant matrix,
a conventional approach is to use the joint diagonalization
method [15], [2]. The joint diagonalization method is a signal
decorrelation method that assumes and exploits that the source
signals have a zero mutual correlation and are temporally colored
and of diverse temporal colors. We will refer to this conventional
combinationof thesubspacemethodandthe jointdiagonalization
as joint diagonalization enhanced subspace method (JDES).
The minimum noise subspace method is a computationally
simplified version of the subspace method. The matrix pencil
method requires a stronger condition than the JDES method.
The BIDS method assumes a weaker condition on the channel
matrix but a stronger condition on the source spectral matrix
than the JDES method.

In this paper, we develop a new method called the group decor-
relation enhanced subspace (GDES) method. Like the JDES
method, the GDES method exploits the channel matrix structure
via subspace decomposition (or matching) and the source spec-
tral matrix structure via spectral decorrelation. However, the
GDES method differs from the JDES method in that the GDES
method exploits the subspace associated with each column of
the channel matrix. Furthermore, the GDES method iteratively
exploits subspace decomposition and spectral decorrelation,
which provides a more effective joint exploitation of the channel
matrix structure and the source spectral matrix structure. Our
approach differs from the frequency-domain approach as in [13],
where a special property of nonstationarity is required.

Our notational convention is as follows. We use the bold face
for polynomial matrices (and vectors), and the normal face for
numerical matrices (and vectors). and are used to denote
the set of real numbers and the set of rational functions of ,
respectively. A generalized Sylvester matrix associated with a

polynomial matrix is defined as

. . .
. . .
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where is an integer. A dual form of is defined as

...
. . .

. . .
...

Note that when , we have
and .

Here, reveals the coefficient matrices of
horizontally, and reveals the coefficient matrices
of vertically. Conversely, given a constant matrix

, we use to denote the
corresponding polynomial matrix with
. Similarly, given a constant matrix ,
we use to denote the corresponding polynomial matrix

with .
The generalized Sylvester matrix and its dual form can be

used to transform a polynomial operation into a numerical oper-
ation, and vice versa. Specifically, if where

and , then we have

These two equations will be applied frequently in this paper.
Especially, if and , then the rows of
belong to the left null space of , and the columns of

belong to the right null space of .
The remainder of the paper is organized as follows. Section II

presents the data model. In Section III, the conventional sub-
space method is revisited and the JDES method is formulated.
In Section IV, we develop the GDES method by first presenting
the basic idea, then establishing the theoretical foundation, and
finally providing a detailed algorithmic development. In Sec-
tion V, we provide simulation examples to illustrate the perfor-
mance of the GDES method with a comparison to the JDES
method. All proofs are deferred to the appendices.

II. THE DATA MODEL

We assume that there are unknown sources and sensors.
We also assume that there are more sensors than sources, i.e.,

. The unknown sources at time are represented by the
1 vector , and the output of the sensors at time is by

the 1 vector . The relationship between the sources and
the sensor output is modeled by

(1)

where is the channel’s finite impulse response, and
the noise. It is clear that each matrix has the dimension
. An equivalent form of (1) is ,

where the polynomial matrix is called

the channel matrix. The channel matrix here can be viewed as a
linear and time-invariant operator, where .

The SOS of is captured by the autocorrelation matrix

(2)

The power spectral matrix of is defined as
. The power spectral matrix of the input

(the sources) is similarly defined. Assuming that the noise
is uncorrelated with the sources, we have from (1) that

(3)

Methods based on SOS must exploit the above equation (ei-
ther explicitly or implicitly). Assuming that the noise is white
both spatially and temporally, then , where is
the noise variance. As discussed later, the noise variance can be
obtained asymptotically. For simple presentation of our theory,
we will drop the noise term without loss of generality in an
asymptotical sense. The effect of noise will be compensated in
the algorithm development. Now, the data model in our problem
is as follows:

(4)

(5)

Our aim is to estimate the channel matrix using the au-
tocorrelation matrices . Once the channel matrix is avail-
able, the sources can be estimated in a relatively straightforward
way.

III. THE JDES METHOD

We now review the spirit of the conventional subspace
method as studied in [5] and [10] and then formulate the JDES
method. Let be defined as

and is defined similarly. Then, from (4), we have

and therefore

(6)
where denotes the time average over .

Assume the following:

A1) is irreducible and column reduced, i.e.,
has a full column rank for every except

, and its highest order coefficient matrix
is of full column rank, where

is the th column degree and is the highest
order coefficient vector of the th column;
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A2) , where is the th column degree of the
channel matrix;

A3) the input signals are mutually uncorrelated and of
distinct power spectra, i.e., the power spectral matrix

is diagonal, and the ratio of every two diagonal
elements of is not a constant;

A4) is positive definite, i.e., the input signals are
persistently exciting and of the order ([8,
p. 413]).

Under A4), the left null space of is the same as
that of , and therefore an orthogonal basis ma-
trix, denoted by , of this space can be computed from the
eigenvalue decomposition of .

If is of an identical column degree , under A1) and
A2), determines up to a right nonsingular constant
matrix [10]. Let . Then, can be
estimated, up to a right nonsingular constant matrix , from the
following relationships:

(7)

If is not of an identical column degree, determines
up to an upper triangular polynomial matrix . This

ambiguity polynomial matrix can be further reduced to a
constant matrix by a technique developed in [5].

To determine the unknown constant matrix , we proceed
as follows. Denote by the estimate of the channel ma-
trix , then . Since is irreducible,
so is , and hence one can compute a filter

of finite degree such that

(8)

As shown in [3] and [5], under A1), such exists for any
. One way to obtain the coefficient matrix

is to observe that

and therefore

(9)

where ( ) stands for the pseudoinverse. Applying to (4)
yields

(10)

Following the joint diagonalization method [2], can be iden-
tified up to a columnwise scaling and permutation if A3) holds.

One major weakness of the JDES method is that it heavily
relies on the initial estimate of the channel matrix to de-
termine the ambiguity matrix . A poor initial estimate of the
channel matrix makes a poor channel equalization (i.e., from

to ), and hence the resulting estimate of the matrix
is not reliable. In fact, the subspace method fails miserably if
the channel matrix is only weakly irreducible.

IV. THE GDES METHOD

A. The Idea

The principal idea of our method is to estimate each column
of the channel matrix from the left null space

of . We wish to know of degree such that
. In numerical form, this equation means

that . Assuming that is irre-
ducible and of the column degree , has the full
column rank provided . If has

independent rows, then the column
span of is the orthogonal complement of the
column span of . Note that
is equivalent to . Therefore,
is uniquely determined up to a constant scalar by ,
or equivalently, is uniquely determined up to a scalar by

.
Removing the column from , we have as the

resulting submatrix. If is irreducible and column reduced
and , where is the th column degree of ,
then it is known that the rank of is .
Therefore, there is a of degree such that

and has
independent rows.

Given the required property of and , we know
that and are two separated groups of
sources. The two separated groups must also be uncorrelated
since the sources are assumed to be mutually uncorrelated. The
uncorrelation implies that . This
equation can be achieved or approximately achieved when the
data is available. However, a fundamental question now is,
Does this equation imply the required property of and

? This question is answered next.

B. Theoretical Foundation

Theorem 1: Assume A1)–A3). Let be an integer,
. Define two matrix filters

1, 2, where rank
and rank

. Then, there are such
and to make the following hold:

(11)

Furthermore, if (11) holds, then

(12)

(13)

where is a column of the channel matrix and with de-
gree , and is the remaining submatrix of without

.
Proof: See Appendix A.
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C. Algorithm Development

1) Main Structure of and : A key problem now
is to find and such that the group decorrelation
property (11) holds. Denote the degree of by , which
can be infinity in theory if any of the diagonal elements is a ra-
tional function. However, we will only need to choose a value of

corresponding to the dominant coefficients in . Define

(14)

where (easy to verify)

...
. . .

...

(15)

(16)

Here, and .
To solve (11), the following cost function is a natural choice:

(17)

To consider the effect of noise, let us observe that
. By A1)–A3), in the absence of

noise, rank rank .
With white noise, contains an additional component ,
and hence the noise variance equals the smallest
eigenvalues of . With a finite set of data, the distribution of
the smallest eigenvalues of tends to spread,
and can be simply chosen to be the average of these smallest
eigenvalues of . When available, can and should be re-
moved from , and hence from all used in (17).

Because of the effects of finite sample size, the cost function
(17) should be further revised. Let the eigenvalue decomposition
of be given by

where , , contains
the largest eigenvalues, and contains the remaining eigen-
values, which are zero in theory.

Since the columns of are “almost” in the null space of
, we choose the rows of as part of the rows in each of

and . To find the remaining rows of the
two matrices, we first define the following weighting matrix:

(18)

and then construct the following cost function with respect to
and :

(19)

where , , ,
and , 2. Note that the weighting matrix used here tends to
redistribute evenly the signal power in . The final pair of
the group decorrelators and is constructed as

(20)

2) Alternating Projection: It is clear that with a fixed ,
the cost (19) is a quadratic function of . The same is true if
we reverse the order of and . We can minimize the cost
with respect to with a fixed and then minimize the cost
with respect to with a fixed . This process can be repeated
until convergence. We refer to this procedure as alternating pro-
jection (AP). The minimization with respect to each of and

has an established solution ([14, pp. 262–263] ) as given
next. Define

(21)

(22)

and then . Let
the eigenvalue decompositions of be

where , and with
. With a fixed , the op-

timal is simply given by the last columns of , and
with a fixed , the optimal is simply given by the last

columns of . At each step, the minimum of the cost is
.

The cost function (19) is nonlinear and nonquadratic of the
joint unknowns and . The algorithm is likely to
be stuck at a local minimum of (19). A proper initialization of
the AP procedure is needed. Next, we provide an initialization
algorithm to overcome the local minima problem.

3) Initialization Algorithm: Let

(23)

where and . Assume the following:

A3’) the power spectral matrix is diagonal, and
every two diagonal elements and of

are such that one of the two elements has a
root of an odd repeated number, and this root is not a
root of the other element (note that with probability
one, there are no repeated roots in each element, and
in this case the repeated number is defined to be one).

Then, the following result holds.
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Theorem 2: Assume A1)–A3’). Let be a local maximizer
of subject to . Then

(24)

where is a column of the channel matrix , and
is the remaining submatrix of without . Furthermore,
using and ,
can be identified up to a right invertible polynomial matrix.

Proof: See Appendix B.
After a local maximizer of is found, using

and , we can
apply the subspace method (see Section III or [5]) to identify

up to a right invertible constant matrix (or a polynomial
matrix if is of nonidentical column degrees) and then
compute an orthogonal basis, say , of the left null space of

, where is the estimate of . Note

that and share the same left null
space. We can then use as an initial value of to minimize

by the AP algorithm.
Next, we provide an algorithm to find a local maximizer of

(23) under the constraint . This constraint is a special
form of a unitary matrix constraint. Hence, we can apply the
modified steepest descent (MSD) method on Grassmann mani-
fold as in [12] to find a local maximizer. This method requires
that the derivative of the cost function is available. This
derivative can be calculated directly from (23). That is

(25)
The MSD algorithm [12] is summarized as follows.

1) Choose such that . Set the
step size .

2) Compute , which is the derivative
of at .

3) Compute the descent direction
.

4) Evaluate . If it is suffi-
ciently small, then stop.

5) If ,
then set and repeat Step 5).

6) If ,
then set and repeat Step 6).

7) Set . Go to Step 2).
In general, Steps 5) and 6) of MSD may cause a slow rate of

convergence. Fortunately, however, for the cost function given
here, an optimal step size can be calculated to speed up the
convergence. This is discussed in detail next.

First, we normalize such that and define
. Note that ,

, , by direct calculation, we have

(26)

where ,
, and .

The derivative of is then

(27)

A necessary condition for to achieve the maximum is that
. Since is a polynomial of degree 4, its real

roots can be computed by available formula. Alternatively, one
can compute all its roots, including the complex ones, say ,

, , , and let be the real part of . Then by comparing
, one can find the optimal step size that maximizes .

Using this optimal step size to replace Steps 5) and 6), the above
algorithm will converge faster.

4) Group Decorrelation and Channel Estima-
tion: Following the previously discussed initialization
and AP, a group decorrelator is now found. By Theorem 1 and
the subspace method, one column of the channel matrix is now
identified.

Suppose that columns of the channel matrix have been
found, we now show how to estimate another column of
the channel matrix. We denote the estimated columns by

and denote .
Removing from results in a submatrix

. Correspondingly, let and denote the
source vectors associated with and , respec-
tively. Then, . De-
note and .
Then, and therefore

, where is a matrix with the
same structure as in (15), with being replaced by

.
We can compute an orthogonal basis, say , of the left null

space of , where and
Rank . Let and

(28)

where and .
Note that we can write

, where is a
matrix of proper dimensions, and hence .
Therefore

Clearly, is similar as , where and are
replaced by and , respectively. Thus, one can apply
MSD to find a local maximizer (say, ) of subject to

. Then, by Theorem 2 and that
for , we have

(29)

where is a column of but not of , and
is the remaining submatrix of without . Hence, fol-
lowing the similar initialization and AP procedures, a new group
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decorrelator is found, and a new column of the channel matrix
can be identified. Sequentially, all the columns of the channel
matrix will be found.

In summary, the proposed GDES method is as follows.

1) Initialize and .
2) Apply MSD to find a local maximizer

of .
3) Use the subspace method to esti-

mate via and
.

4) Compute a basis matrix of the left
null space of based on the
estimate of and set it as .

5) Perform AP to find a minimizer
( ) of and evaluate

using (20).
6) Estimate using by

the subspace method.
7) If , stop. Otherwise, set

.
8) Compute a basis of the left null

space of where
. Set and go

to Step 2).

Remarks: We have developed the above algorithm under the
assumption that the column degrees are known, and hence the
rank of is known. The subspace method in [5] can be used
to estimate the column degrees. There are also many existing
methods for estimating the “effective” rank of a matrix from its
eigenvalues ([7, Ch. 1]). Also note that a less complex and more
heuristic version of the GDES method is shown in Appendix C,
which has a comparable performance as the above algorithm.

V. SIMULATIONS

In this section, we present simulation examples to evaluate
the performance of the GDES method with comparison to the
JDES method.

Recall the data model
, where with the dimen-

sion and the degree . The entries of the coefficient ma-
trices are randomly selected from a normal distribution

with mean zero and variance one. The noise sequences
are randomly generated from . The sequences in

the input are generated as follows:

where each sample in the sequence is randomly selected
from , and each is a polynomial (of degree 6)
with coefficients randomly selected from . Note that the
choice of for determines the source spec-
tral matrix. The signal-to-noise ratio (SNR) of the observed data

is defined as

SNR

Fig. 1. Performance of the GDES method and the JDES method over 30
randomly selected channels. (The one outlier shown here of the GDES method
did not happen when the algorithm in Appendix C was applied.)

The performance measure of the estimated channel matrices
is chosen to be the normalized mean-squared errors (NMSEs):

NMSE

where is the number of the Monte Carlo runs, is a per-
mutation matrix (with entries equal to 0, 1 or ), is the
estimated value of , and each column of the coefficient ma-
trices and is normalized to have unit
norm.

A. Example 1: Performance Over Different Channels

We use this example to show that some channels for which
the irreducible-and-column-reduced condition is only weakly
satisfied can still be estimated effectively by GDES but not by
JDES. For a channel matrix , the inverse condition number
of , defined as the ratio of its least singular value over
and its largest singular value, can be used to indicate how weak
the irreducible-and-column-reduced condition is.

We consider 30 randomly selected channel matrices with in-
verse condition number less than 0.1. Each channel matrix is of
the dimension 4 3 and the degree 1. For each channel matrix,
a source spectral matrix is independently generated. With prob-
ability one, the assumptions A1) and A3) should be met by the
channel matrices and the source spectral matrices. We choose
SNR 20 dB, the sample size 5000. We will refer to “a
given channel matrix and a given spectral matrix of the sources”
as a channel.

Fig. 1 compares the performance of the GDES method and the
JDES method for 30 independent channels as described previ-
ously. The figure is sorted in the increasing order of the NMSE
of the JDES method. This figure shows that GDES can identify
most of the randomly selected channels. On the other hand, very
few of them can be identified effectively by JDES. It suggests
that, if the inverse condition number of the channel matrix is
less than 0.1, the channel is not identifiable by JDES but is still
mostly identifiable by GDES. For randomly selected channels
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with degree 1 and the dimension 4 3, about half of them have
the inverse condition number less than 0.1.

B. Example 2: Performance Versus SNR and Sample Size

Now we choose a channel matrix with degree 2, as follows:

We also choose the following polynomials that govern the
source spectral matrix:

For each pair of SNR and the sample size , 50 Monte
Carlo runs are conducted. The two plots in Fig. 2 show the
performances of the GDES method and the JDES method
versus SNR and , respectively. An important observation is
that the JDES method performs better than the GDES method
only when SNR is very high. At a very high SNR, most of
the irreducible column-reduced equal-column-degree channel
matrices (corresponding to full-rank generalized Sylvester
matrices) make even the smallest eigenvalue of the covariance
matrix much larger than the
noise variance, and hence the subspace method alone can yield
a reliable channel matrix (up to a constant matrix) without use
of decorrelation. However, at a moderate or lower SNR, the
smallest eigenvalue of becomes
insignificant to the noise variance, and hence a joint exploitation
of subspace and decorrelation inherent in the GDES method
becomes necessary to improve the performance. In fact, as
shown in the next example, even when the channel matrix is
not irreducible and hence the matrix does not have a
full-column rank, the GDES method still yields good results.

C. Example 3: Performance for Nonirreducible Channel
Matrix

A nonirreducible channel matrix can be constructed by
, where is randomly selected

with dimension 4 3, and degree 2, and is also randomly

Fig. 2. Performances of the GDES method and the JDES method versus SNR
and the sample size. For the upper plot,N = 5000. For the lower plot, SNR =
20 dB.

selected with the dimension 3 3 and the degree 1. A random
selection of and yields

Another random selection of the source spectral matrix is deter-
mined by
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Fig. 3. Performance of the GDES method for a nonirreducible channel matrix.
For the upper plot, N = 5000. For the lower plot, SNR = 20 dB.

Fig. 3 shows the performance of the GDES method for the
previously defined channel, which is based on 50 runs.
At a moderate SNR and a moderate , the performance of the
GDES method is reasonably good. The JDES method does not
apply here at all due to the nonirreducible nature of the channel
matrix.

Since we do not have a valid initialization algorithm for non-
irreducible channels, the initialization of the GDES method has
to be done differently. For this example, the th column of
the channel was initialized as ,
where was selected at random. The coefficient matrix of

has the same norm as that of . For a nonirreducible
channel matrix, the GDES method (or any other existing
method) is incomplete without a proper initialization. However,
this example provides an important evidence to support that the
GDES method is more robust than the JDES method in general.

VI. CONCLUSION

In this paper, we have studied the problem of blind iden-
tification of finite-impulse-response (FIR) multiple-input mul-
tiple-output (MIMO) channels driven by uncorrelated colored
sources. The group decorrelation enhanced subspace (GDES)
method that we have developed in this paper has the best perfor-
mance for this problem among all methods known to date. Al-
though having roots in the subspace method [10] and the BIDS
[6] method, the GDES method represents a new and major step
toward a complete understanding of this challenging problem.

APPENDIX A
PROOF OF THEOREM 1

First, we briefly introduce the rational vector space theory
[4], which is fundamental for our proofs. Let span
denote the -dimensional rational vector space spanned by
the column vectors of a polynomial matrix
with a normal full-column rank. A polynomial matrix

is said to be a polyno-
mial basis of span if span span . The
order of is defined as . The matrix
is said to be a minimal polynomial basis if its order is minimum
over the set of all polynomial bases of span . The ordered
column degrees of a minimal polynomial
basis are called the Kronecker indices of span . The dual
space of span , denoted by span , is defined as
the -dimensional subspace of all 1 rational vectors

satisfying for all span . We
denote by the Kronecker indices of
span . It is known that

(30)

It is also known [9] that if has a normal full-column rank
, then

Rank (31)

or equivalently

Rank (32)

Before proving Theorem 1, we present the following tech-
nical Lemma.

Lemma 1: Let and for , 2 be positive integers. Also
let and . Define
two matrix filters with
rank . If (11) holds, then the output power
spectra matrix has the decomposition

(33)

where is a nonzero rational function,
is a nonsingular rational matrix,

is an irreducible polynomial vector, is
an irreducible and column-reduced polynomial matrix, and

(34)

Proof: From (11), we have

or equivalently

(35)



AN et al.: GDES METHOD FOR IDENTIFYING FIR MIMO CHANNELS DRIVEN BY UNKNOWN UNCORRELATED COLORED SOURCES 4437

where is any minimal polynomial basis
matrix of span . Then, using

, we have

rank rank
(36)

By the rank formula (32), since .
is then a polynomial vector, and we use to denote

it thereafter.
Since span span ,

a rational vector exists such that

(37)

Since is a minimal polynomial basis
of span , there ex-
ists a rational vector such that

,
or equivalently

Let consist of the basis vectors of the
orthogonal complement of span . Then, we have

(38)

or equivalently

(39)

where is any minimal polynomial basis
matrix of span .

Similar to the previous discussion on , we have

(40)

where is a rational matrix in
and of the rank . There is a rational
matrix such that

, or equiva-
lently, . Let be the
basis vector of the orthogonal complement of span .
Then, we have

(41)

and therefore

(42)
i.e.,

(43)

where is a rational function and is a
rational matrix.

By (37) and (40), .
Then, by letting

we obtain (33) and then (34) from (35) and (39). This completes
the proof.

Proof of Theorem 1: Let be a column of with
degree . Then, has a left null space of dimension ,

and has a left null space of dimension . There are
and such that

and . This implies (12) and (13) and
hence (11).

Now, suppose that (11) is true. Under A2),
and . From Lemma 1, has a
decomposition with the form (33) and

(44)

which implies that

Rank

Rank (45)

Denote . Then, Rank
. By the rank formula (32) and A2), the

order of is , the same as that of . Note that
span span . is also a minimal polyno-
mial basis of span as well as . Without loss of
generality, we assume that the column degrees of are non-
decreasing and denote ,
where is of dimension and of identical column
degree , where are different column
degrees of the channel matrix. Since and are
minimal polynomial bases of the same rational vector space,
there is a permutation matrix to make have the same
structure as , i.e., .
Furthermore, it is known [5] that there exists an upper triangular
polynomial matrix such that

(46)

where

. . .
...

(47)

with being the nonsingular constant matrices of dimension
, and being the polynomial matrices of dimen-

sion and of a degree . From (46) and (33),
it follows that

(48)
To coincide with the structure of , we denote

. . .
(49)

where is of dimension and is obviously diagonal.
Suppose . Without losing generality, we can assume

that is the first column of . Let .
Then, the th entry of the first row of is 1, and other entries
of this row are zero.

Let denote the
th row of , where and

. By (48), we have , which
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implies that . Using and (48), we have
and therefore .

Sequentially, we find that for any . Thus,
also from (48), , where is the
th column of . Note that is the first row of . We have

(50)

i.e,

(51)

Since every two diagonals of are not equal up to a (con-
stant) scaling, the first row of , i.e., , must have only one
nonzero entry. Without losing generality, we assume that the
first entry is not zero. We have shown that the th row of
has only one nonzero element, which is the th one. Using this
property and apply (48) again, we conclude that the th column
of also has only one nonzero element, which is obviously
the th one. Hence, by proper row and column permutations
and , we get

(52)

Then, from (46)

(53)

which implies

(54)

Hence, is equal to a column of up to scaling,
and is a polynomial basis of span , where
is the remaining submatrix of without . Recall (44).
Equations (12) and (13) hold, and the proof is completed.

APPENDIX B
PROOF OF THEOREM 2

The proof of Theorem 2 is based on a color property of non-
white signals. Let
denote the autocovariances of . is a white noise if and
only if for all . We use

to describe the color of a signal and call it the color vector.

A. Color Maximization Under Instantaneous Mixtures

Lemma 1: Let , be independent
time signals. Define . Let

be a nonzero vector in . Then, the
color vector of is a convex combination of , i.e.,

(55)

Furthermore, if each of the two signals and have
different color vectors, i.e., , then each local
maximizer of must have only one nonzero entry.

Proof: By direct calculation, the th entry of is

where . Hence, we have

which leads to (55) by letting .
By (55), is in the convex hull of .

Hence, if for all , then each local
maximum of is achieved by some vertex point

. In other words, each local maximizer of
must have only one nonzero entry.

B. Color Maximization Under Convolutive Filters

Let be a polynomial operator. Then,
. An interesting property con-

cerning the color of is that the maximization (lo-
cally) of its color implies . This means

, where is the coefficient vector of , and is a
matrix that has ones along the antidiagonal

and zeros everywhere else. Note that reverses the rows of
, reverses the columns of , and reverses both the

rows and columns of .
Lemma 2: Let be a signal of time and be a

local maximizer of under the constraint that
. Then, .

Proof: We only need to show that if ,
then is not a local maximizer. Let

, , and
. Obviously, equals when

. We will show that is not a local maximizer
of .

By direct calculation, the th entry of is

(56)

where , are the coefficient vector of polynomials
and , respectively, and

...
. . .

...

(57)
Since , , and ,

we have , i.e.,
. Following (56)

(58)
and then
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where

Note that is a monotonous function when
. The norm of the color vector has no local

maxima in (0, 1) since it is a convex combination of two different
vectors and . In particular,

is not a local maximizer of , and the proof
is then completed.

C. Color Maximization Under Convolutive Mixtures of
Multiple Sources

Lemma 3: Let , be inde-
pendent time signals, and

be a local max-
imizer of under the constraint that

. Then, each nonzero is a local max-
imizer of , and all nonzero have the
same color vector.

Proof: Suppose that the first entries of are
nonzero. By Lemma 1, all must be equal, i.e.,

for any , where is a
nonzero constant vector. Now we show that is also a
local maximizer of under the constraint that

. Proceeding by contradiction, assume that
is not a local maximizer of ; then, there exists

and a small such that
for any . If is suffi-

ciently small, will be very close to
and then for any

, .
By Lemma 1, is a

convex combination of and . There-
fore, for
any . This implies that is not a local maximizer
and then contradicts the assumption. Hence, must be a
local maximizer of . Similarly, any nonzero

is a local maximizer of .

D. Proof of Theorem 2

Denote , where
is the th column of and of degree . Let

, where is the th entry of . Since
the sources are uncorrelated

where

...
. . .

...

(59)

and .

Then under the constraint

(60)

Note that is
a nonsingular square matrix. If is a local maximizer of

, then is a local maxi-
mizer of under the constraint
that . By Lemma 3, all nonzero

are equal, and therefore all nonzero
are equal up to scaling. Next, we prove

that only one is not zero. Proceeding by contra-
diction, assume that and are not zero. Then,

for some real
number . By A3’), has a root of odd repeated
number, and this root is not shared by . Then, this root
should be a root of . However, by Lemma 2,

, i.e., shares all its roots with
and therefore any root of is of even

repeated number. This introduces contradiction. Thus, only one
is nonzero, i.e., (24) is true for being a column of
and being the submatrix of without .

Finally, we prove that can be identified, up to a right
nonsingular polynomial matrix, from
and . Let be an irreducible and
column-reduced polynomial matrix meeting the above re-
quirement. Since determines up to an right non-
singular polynomial matrix, there exists a polynomial matrix

such that .
Since , the first row of must be a
zero row. That is, equals up to a right nonsingular
polynomial matrix.

E. A Brief Discussion

From the proof of Theorem 2, we know that the local max-
imization of the proposed cost function implies the local max-
imization of . We would hope that this local
maximization implies that only one is not zero. By Lemma
3, we see that this is true if the following condition holds: for
any , the local maximization of and

does not result in the same maximal color
vector, i.e., . This condition is
true for almost all and having different color vec-
tors. The assumption A3’), though not very restrictive, is only a
sufficient condition.

APPENDIX C
AN ALTERNATIVE FORM OF THE GDES METHOD

The local minimum problem of the cost function (19) can also
be handled quite effectively by the following algorithm.

A. Local Refinement of

Assume that we have an initial estimate of . Such
an estimate can be found by using the conventional subspace
method. To refine this estimate, we can do the following. For
each column, say , of , we perform the AP with
initialized by a basis of the left null space of . At
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convergence, we obtain the minimizer of the cost
and then a pair of the group decorrelators
from (20). The refined th column of the channel ma-
trix then follows from the equation (i.e.,

is the least right singular vector of ). We
repeat the above for each column of to obtain a refined es-
timate of .

B. Global Refinement of

The global refinement shown next is a heuristic approach to
yield more robust results than the local refinement. The basic
idea of the global refinement is as follows. Given an initializa-
tion of , the local refinement is carried out to estimate all
columns of . But then, only the best estimated column is
selected (based on the values of the cost (19)), and the rest is
discarded. To find a new column, a new process of the local re-
finement is carried out with a new initialization of without
the previously estimated columns.

Let be an initial estimate of the channel matrix ob-
tained by the subspace method without the joint diagonalization,
and hence , at its best, is no better than the exact channel
matrix with a right-multiplicative constant matrix.

We will denote by an estimate of with
columns removed. Clearly, has columns. For
each value of , only one column in is estimated. The
algorithm is as follows with the initial index :

1) For the th column, say , of
, perform the AP with ini-

tialized by a basis of the left null
space of . At the con-
vergence of the AP, we then obtain
the pair with the cost
and then a candidate pair of group
decorrelators from
(20). Among all for

, select the pair
with the minimal cost.

2) Estimate the th column of the
channel matrix via . If

, stop. Otherwise, set .
3) Stack as

, compute
using and then go to
Step 1).

Based on our experiment, the global refinement is much more
likely to yield the global minimization of the cost (19) than
the local refinement. In fact, among 1000 randomly selected
channel matrices with dimension 4 3 and with degree 1, we
only had one case where the global refinement did not yield
the global minimum of (19). Although less complex and more
heuristic, this algorithm has a comparable performance as the
one shown in Section IV. However, the global convergence is
not guaranteed especially when the channel matrix is of rela-
tively high degrees.

ACKNOWLEDGMENT

The authors would like to thank J. P. Reilly and the reviewers
for their comments, which were helpful to improve the presen-
tation of this paper.

REFERENCES

[1] K. Abed-Meraim and Y. Hua, “Blind identification of multi-input
multi-output system using minimum noise subspace,” IEEE Trans.
Signal Process., vol. 45, no. 1, pp. 254–258, Jan. 1997.

[2] A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE
Trans. Signal Process., vol. 45, no. 2, pp. 434–443, Feb. 1997.

[3] R. Bitmead, S. Kung, B. Anderson, and T. Kailath, “Greatest common
division via generalized Sylvester and Bezout matrices,” IEEE Trans.
Autom. Control, vol. 23, no. 6, pp. 1043–1047, Dec. 1978.

[4] G. D. Forney, “Minimal bases of rational vector spaces, with applications
to multivariable linear systems,” SIAM J. Control, vol. 13, no. 3, pp.
493–520, 1975.

[5] A. Gorokhov and P. Loubaton, “Subspace-based techniques for blind
separation of convolutive mixtures with temporally correlated sources,”
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 44, no. Sep.,
pp. 813–820, 1997.

[6] Y. Hua, S. An, and Y. Xiang, “Blind identification of FIR MIMO chan-
nels by decorrelating subchannels,” IEEE Trans. Signal Process., vol.
51, no. 5, pp. 1143–1155, May 2003.

[7] High-Resolution and Robust Signal Processing, Y. Hua, A. Gershman,
and Q. Cheng, Eds., Marcel Dekker, New York, 2003.

[8] L. Ljung, System Identification: Theory for the User. Englewood
Cliffs, NJ: Prentice-Hall PTR, 1999.

[9] P. Loubaton and E. Moulines, “On blind multiuser forward link channel
estimation by the subspace method: Identifiability results,” IEEE Trans.
Signal Process., vol. 48, no. 8, pp. 2366–2376, Aug. 2000.

[10] P. Loubaton, E. Moulines, and P. Regalia, “Subspace method for blind
identification and deconvolution,” in Signal Processing Advances in
Wireless and Mobile Communications, G. B. Giannakis, Y. Hua, P.
Stoica, and L. Tong, Eds. Englewood Cliffs, NJ: Prentice-Hall, 2001,
vol. 1, Trends in channel estimation and equalization, ch. 3, pp. 63–112.

[11] T. Ma, Z. Ding, and S. F. Yau, “A two-stage algorithm for MIMO blind
deconvolution of colored input signals,” IEEE Trans. Signal Process.,
vol. 48, no. 4, pp. 1187–1192, Apr. 2000.

[12] J. H. Manton, “Optimization algorithms exploiting unitary constraints,”
IEEE Trans. Signal Process., vol. 50, no. 3, pp. 635–650, Mar. 2002.

[13] K. Rahbar, J. P. Reilly, and J. H. Manton, “Blind identification of MIMO
FIR channels driven by quasistationary sources using second-order sta-
tistics: A frequency domain approach,” IEEE Trans. Signal Process., vol.
52, no. 2, pp. 406–417, Feb. 2004.

[14] P. Stoica and R. Moses, Introduction to Spectra Analysis. Englewood
Cliffs, NJ: Prentice-Hall, 1997.

[15] L. Tong, V. C. Soon, R. Liu, and Y. Huang, “AMUSE: A new blind
identification algorithm,” presented at the IEEE Int. Symp. on Circuits
Systems (ISCAS), New Orleans, LA, 1990.

Senjian An received the B.S. degree from Shandong
University, Jinan, China, in 1989, the M.S. degree
from the Chinese Academy of Sciences, Beijing, in
1992, and the Ph.D. degree from Peking University,
Beijing, in 1996.

He was with the Institute of Systems Science, Chi-
nese Academy of Sciences, Beijing, where he was a
Postdoctoral Research Fellow from 1996 to 1998. In
1998, he joined the Beijing Institute of Technology,
Beijing, where he was an Associate Professor from
1998 to 2001. From 2001 to 2004, he was a Research

Fellow with The University of Melbourne, Parkville, Australia. He joined Curtin
University of Technology, Perth, WA, Australia, in 2004, where he is currently a
Postdoctoral Research Fellow. His research interests include signal processing,
robust control, and machine learning.



AN et al.: GDES METHOD FOR IDENTIFYING FIR MIMO CHANNELS DRIVEN BY UNKNOWN UNCORRELATED COLORED SOURCES 4441

Yingbo Hua (S’86–M’88–SM’92–F’02) received
the B.S. degree from Nanjing Institute of Tech-
nology, Nanjing, China, in 1982, and the M.S. and
Ph.D. degrees from Syracuse University, Syracuse,
NY, in 1983 and 1988, respectively.

From 1988 to 1989, he was a Research Fellow at
Syracuse, consulting for Syracuse Research, New
York, and Aeritalia, Italy. He was with the University
of Melbourne, Australia, as a Lecturer from 1990 to
1992, a Senior Lecturer from 1993 to 1995, and a
Reader and Associate Professor from 1996 to 2001.

He served as a Visiting Professor with the Hong Kong University of Science
and Technology from 1999 to 2000 and consulted for Microsoft Research, WA,
in summer 2000. Since February 2001, he has been Professor of Electrical
Engineering with the University of California, Riverside. He is a Co-Editor
of Signal Processing Advances in Wireless and Mobile Communications
(Prentice-Hall, 2001) and High-Resolution and Robust Signal Processing
(Marcel Dekker, 2003). He is also an author/coauthor of more than 250 articles
in journals, conference proceedings, and books. His publications span the
fields of high-resolution signal processing, blind system identification, wireless
communications, and sensor networks.

Dr. Hua received a Chinese Government Scholarship for Overseas Graduate
Study from 1983 to 1984 and a Syracuse University Graduate Fellowship from
1985 to 1986. He served as Associate Editor for the IEEE TRANSACTIONS ON

SIGNAL PROCESSING and the IEEE SIGNAL PROCESSING LETTERS from 1994
to 2002. He has been a Member of the IEEE Signal Processing Society (SPS)
Technical Committees for Underwater Acoustic Signal Processing from 1997
to 1998; Sensor Array and Multichannel Signal Processing from 1999 to 2001,
2002 to 2004, and 2005 to present; and Signal Processing in Communications
from 2002 to 2004 and 2005 to present.

Jonathan H. Manton (S’95–A’98–M’02–SM’03)
was born in April 1973. He received the B.S. degree
in mathematics and the B.Eng. degree (electrical)
in 1995 and the Ph.D. degree in 1998, all from the
University of Melbourne, Australia.

From 1998 to 2004, he was with the Department of
Electrical and Electronic Engineering at the Univer-
sity of Melbourne. During that time, he held a Post-
doctoral Research Fellowship and then subsequently
a Queen Elizabeth II Fellowship, both from the Aus-
tralian Research Council. In 2005, he became a Full

Professor in the Department of Information Engineering, Research School of In-
formation Sciences and Engineering (RSISE), The Australian National Univer-
sity. His research interests range from pure mathematics (e.g., commutative al-
gebra, algebraic geometry, and differential geometry) to engineering (e.g., signal
processing and wireless communications).

Dr. Manton was an Associate Editor for the conference editorial board, IEEE
Control and Systems Society, and currently is an Associate Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING. He is also on the IEEE Signal Pro-
cessing for Communications Technical Committee.

Zheng Fang received the B.Sc. degree from the Uni-
versity of Science and Technology of China (USTC),
Hefei, China, in 2001 and the M.Sc. degree from Uni-
veristy of California, Riverside (UCR), in 2003, both
in electrical engineering. He is currently working to-
ward the Ph.D. degree with the Department of Elec-
trical Engineering, UCR.

His current research interests lie in the areas of
signal processing and communications, including
blind channel identification, blind source separation,
and MIMO systems.


	toc
	Group Decorrelation Enhanced Subspace Method for Identifying FIR
	Senjian An, Yingbo Hua, Fellow, IEEE, Jonathan H. Manton, Senior
	I. I NTRODUCTION
	II. T HE D ATA M ODEL
	III. T HE JDES M ETHOD
	IV. T HE GDES M ETHOD
	A. The Idea
	B. Theoretical Foundation
	Theorem 1: Assume A1) A3). Let $k$ be an integer, $1\leq k\leq m
	Proof: See Appendix€A .


	C. Algorithm Development
	1) Main Structure of ${\bf G}_{1}(z)$ and ${\bf G}_{2}(z)$: A ke
	2) Alternating Projection: It is clear that with a fixed $X_{1}$
	3) Initialization Algorithm: Let $${\cal J}_{0}(b)=\sum\limits _
	Theorem 2: Assume A1) A3'). Let $b_{\ast }$ be a local maximizer
	Proof: See Appendix€B .

	4) Group Decorrelation and Channel Estimation: Following the pre
	Remarks: We have developed the above algorithm under the assumpt


	V. S IMULATIONS

	Fig.€1. Performance of the GDES method and the JDES method over 
	A. Example 1: Performance Over Different Channels
	B. Example 2: Performance Versus SNR and Sample Size
	C. Example 3: Performance for Nonirreducible Channel Matrix

	Fig.€2. Performances of the GDES method and the JDES method vers
	Fig.€3. Performance of the GDES method for a nonirreducible chan
	VI. C ONCLUSION
	P ROOF OF T HEOREM 1
	Lemma 1: Let $l$ and $n_{i}$ for $i=1$, 2 be positive integers. 
	Proof: From (11), we have $${\bf G}_{1}(z) {\bf H}(z) {\bf S}_{x
	Proof of Theorem 1: Let $ {\bf h}(z)$ be a column of $ {\bf H}(z


	P ROOF OF T HEOREM 2
	A. Color Maximization Under Instantaneous Mixtures
	Lemma 1: Let $x_{i}(n),i=1,2,\ldots ,m$, be $m$ independent time
	Proof: By direct calculation, the $k$ th entry of $Cr(b^{T}x)$ i


	B. Color Maximization Under Convolutive Filters
	Lemma 2: Let $x(n)$ be a signal of time $n$ and $a^{\ast }(z)$ b
	Proof: We only need to show that if $a(z)\ne \pm z^{-q}a(z^{-1})


	C. Color Maximization Under Convolutive Mixtures of Multiple Sou
	Lemma 3: Let $x_{i}(n),i=1,2,\ldots ,m$, be $m$ independent time
	Proof: Suppose that the first $r$ entries of $ {\bf b}^{\ast }(z


	D. Proof of Theorem 2
	E. A Brief Discussion

	A N A LTERNATIVE F ORM OF THE GDES M ETHOD
	A. Local Refinement of ${\bf H}(z)$
	B. Global Refinement of ${\bf H}(z)$

	K. Abed-Meraim and Y. Hua, Blind identification of multi-input m
	A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, and E. Moulines, 
	R. Bitmead, S. Kung, B. Anderson, and T. Kailath, Greatest commo
	G. D. Forney, Minimal bases of rational vector spaces, with appl
	A. Gorokhov and P. Loubaton, Subspace-based techniques for blind
	Y. Hua, S. An, and Y. Xiang, Blind identification of FIR MIMO ch

	High-Resolution and Robust Signal Processing, Y. Hua, A. Gershma
	L. Ljung, System Identification: Theory for the User . Englewood
	P. Loubaton and E. Moulines, On blind multiuser forward link cha
	P. Loubaton, E. Moulines, and P. Regalia, Subspace method for bl
	T. Ma, Z. Ding, and S. F. Yau, A two-stage algorithm for MIMO bl
	J. H. Manton, Optimization algorithms exploiting unitary constra
	K. Rahbar, J. P. Reilly, and J. H. Manton, Blind identification 
	P. Stoica and R. Moses, Introduction to Spectra Analysis . Engle
	L. Tong, V. C. Soon, R. Liu, and Y. Huang, AMUSE: A new blind id





