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EXPERT REVIEW OPEN

Probing neural circuit mechanisms in Alzheimer’s disease using
novel technologies
Steven F. Grieco1,2, Todd C. Holmes 2,3 and Xiangmin Xu 1,2✉

© The Author(s) 2023

The study of Alzheimer’s Disease (AD) has traditionally focused on neuropathological mechanisms that has guided therapies that
attenuate neuropathological features. A new direction is emerging in AD research that focuses on the progressive loss of cognitive
function due to disrupted neural circuit mechanisms. Evidence from humans and animal models of AD show that dysregulated
circuits initiate a cascade of pathological events that culminate in functional loss of learning, memory, and other aspects of
cognition. Recent progress in single-cell, spatial, and circuit omics informs this circuit-focused approach by determining the
identities, locations, and circuitry of the specific cells affected by AD. Recently developed neuroscience tools allow for precise access
to cell type-specific circuitry so that their functional roles in AD-related cognitive deficits and disease progression can be tested. An
integrated systems-level understanding of AD-associated neural circuit mechanisms requires new multimodal and multi-scale
interrogations that longitudinally measure and/or manipulate the ensemble properties of specific molecularly-defined neuron
populations first susceptible to AD. These newly developed technological and conceptual advances present new opportunities for
studying and treating circuits vulnerable in AD and represent the beginning of a new era for circuit-based AD research.

Molecular Psychiatry (2023) 28:4407–4420; https://doi.org/10.1038/s41380-023-02018-x

INTRODUCTION
Alzheimer’s disease (AD) is the most common cause of memory
decline in the elderly and affects ~50 million people worldwide
[1]. The management of AD is of major socioeconomic concern as
the elderly population is projected to double by 2060 [2], and so
the World Health Organization (WHO) has made AD a major
priority [3]. Billions of dollars of R&D spending have led to over
100 drug development ventures with equivocal outcomes [4, 5]. In
2021 the FDA approved aducanumab (Aduhelm; Biogen, Inc.) as
the first new drug for AD in two decades. Although aducanumab
garnered much interest, its efficacy and cost/benefit ratio is not
well established and is thus controversial [6]. Drug development
failures show that we need new approaches and conceptual
frameworks [7, 8]. Recently, clinicians and basic researchers have
identified neural circuit dysregulation as an early feature of AD,
before other pathological features are measurable [9, 10]. This new
evidence provokes the question “Is AD a circuit disease?” [11], and
suggests a new conceptual framework for AD research.
In this forward-thinking review article, we provide a synthesis

of newly emerging technologies and concepts. This synthesis
encourages neuroscientists to address how AD may be a disease
of neural circuits [12]. We review single-cell, spatial, and circuit
omics approaches for characterizing the identities, locations,
and circuits of the cells affected by AD. Next, we describe the
use of neural circuit manipulation techniques to functionally test
cell type-specific circuit contributions to AD. We then show how
a more complete understanding of the circuits impacted by
AD is being developed using multimodal and multi-scale

approaches. Finally, we discuss progress in novel therapy for
circuit disorders. We end our discussion by summarizing
conclusions, outstanding questions and future directions related
to the circuit-basis of AD.

The Entorhinal-Hippocampal system
Though human AD has long been characterized by amyloid (Aβ)
plaques, and neurofibrillary tangles (NFTs) composed of mis-
folded, hyperphosphorylated tau proteins [13, 14], the causal link
between neuropathological features and neural circuit/cognitive
dysfunction in AD remains unclear (reviewed in Herrup, 2021).
Neural circuit dysfunction is increasingly being acknowledged as
contributing to the neuropathological features of AD [15]. Early
dysregulation of the entorhinal-hippocampal (EC-HPC) system
circuitry, which is well-known for memory function starting with
clinical studies of the patient HM [16, 17], is strongly correlated
with AD progression. This dysregulation follows an inverse
U-shaped trend in AD progression: there is a very early stage of
neural circuit hyperactivity followed by late stage hypoactivity
[18]. Physiologically, these damaging patterns of dysregulated
neural activity spread throughout the EC-HPC circuitry, contribut-
ing to neuropathology [19]. This cascade of physio-pathological
events culminates in the cumulative damage of those circuits at
later stages [9], and results in the loss of memory that is associated
with AD dementia [9, 20–23]. Significant progress has been made
toward characterizing the EC-HPC system circuitry, particularly in
animal models (Fig. 1). It will be important to learn about what
aspects of the EC-HPC circuit are susceptible to AD.
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CHARACTERIZING AD WITH SINGLE-CELL, SPATIAL, AND
CIRCUIT OMICS
Technologies applied to AD
Due to their invasive nature, there are clear limitations of applying
omics technologies for studying the brains of AD patients. Yet,
using postmortem brain tissue there has been considerable
progress in characterizing the identities of the cell types affected
by AD across different stages of the disease [24, 25]. Single-nuclei
RNA-seq has been used to generate transcriptomic data (42,528
nuclei) from the entorhinal cortices (EC) of 10 patients at different
Braak stages of AD [26]. Interestingly, in one study a subset of
excitatory neurons, the RORB (RAR-related orphan receptor B)-
expressing neurons, are most susceptible to AD early in disease
progression. Reactive astrocytes are also more prevalent in EC at
relatively early AD stages, and they express fewer markers of
neural homeostasis and synaptic maintenance. These results
demonstrate the co-involvement of neural and glial cell processes
early in AD, and highlight the use of omics to characterize the
identities of the cells affected by AD as well as their complex
interactions, as astrocyte dysregulation may mediate neural circuit
hyperactivity in AD [27, 28]. Several studies to date have used
single nucleus transcriptomic technologies to characterize cells in
the EC-HPC system in both human AD patients and animal models
of AD (see Table 1).
To study the anatomical locations of cells in parallel with their

transcriptomes, “spatial transcriptomics” has emerged as a
powerful tool. Spatial transcriptomics is performed on brain tissue
sections in situ coupled with imaging and sequencing/hybridiza-
tion to visualize single cell resolution RNA expression [29, 30].
A recent study applied spatial transcriptomics to the hippocampi
of an AD mouse model as well as human AD patients post-mortem
[31]. This comparative study finds that myelination-related
processes of oligodendrocytes are altered early in AD progression.
Consistent with other studies, signs of inflammation, stress, and
complement signaling are also observed, but later in AD
progression and are more general spatially and in terms of cell
type-specificity. These results show that early stages of AD are
associated with cell type-specific and spatially-resolved transcrip-
tomic processes. Several other studies have used spatial
transcriptomics to study the EC-HPC system in the context of
AD (Table 1). However, these single cell technologies alone do not
allow researchers to characterize the wiring logic of the cell type-
specific circuits affected by AD.
To characterize the wiring logic of the cell type-specific circuitry

affected by AD, methodologies must be used that retain
information about the circuit properties of those cells (Table 2).
For trans-neuronal monosynaptic tracing of cell type-specific
circuits, herpes simplex type-1 virus (HSV-1 H129) and rabies virus
are frequently used for the anterograde and retrograde directions,
respectively [32]. The yellow fever vaccine (YFV-17D) is also

effective for anterograde labeling [33]. For semi-quantitative
analysis of tracing experiments, a commonly used metric is
the connectivity strength index (CSI), defined as the ratio of the
number of presynaptic neurons in each brain region versus the
number of starter neurons in a brain region of interest [34, 35].
Recently, the monosynaptic rabies tracing method has been
applied by Ye et al. 2022 to the EC-HPC system of the single APP-
knockin AD model to determine how local and global circuit
connectivity to hippocampal CA1 excitatory neurons is altered
with AD progression [36]. Broadly, inputs to hippocampal region
CA1 decrease with age and with AD progression, including inputs
from CA1 itself and from CA2. Proportional inputs to CA1 from
CA3 increase with age and AD progression, and this notable result
suggests potential compensatory mechanisms associated with
functional circuit remodeling and reorganization in response to
disease progression [36]. Thus, genetically targeted neural circuit
tracing can be used to gain new insight into the cell type-specific
circuit connectivity and wiring logic of the EC-HPC system in AD
models (Fig. 2).
Characterization of the identities, locations and circuitry of the

EC-HPC system cells affected earliest by AD will provide the basis
for functional studies. In the early stages of AD, initial responses to
disease-mediated dysregulation in the EC-HPC system appears to
be specific to cell types with defined neuroanatomy and wiring,
although much more research in this direction is needed. Whereas
in later stages of AD the affected cells appear to be more generic.
These approaches will likely need to be complemented with other
neuroanatomical imaging modalities [37, 38], which will reveal cell
type-specific circuit structural changes early in AD progression.

Possible future technological developments
In recent years there has been rapid progress in the development
of single-cell omics to characterize the brain [39–42]. In 2021 the
BRAIN Initiative Cell Census Network (BICCN) published a
collection of 17 papers. The flagship paper in this collection
detailed with unprecedented comprehensiveness a cell census,
atlas, and wiring diagram in cortex for mice, marmosets and
humans [43]. State-of-the-art sn-RNA-seq technologies were
used to generate transcriptomic data [44], in situ hybridization
and sequencing was used to generate spatially resolved
transcriptomic data [45], and anterograde and retrograde labeling
was used to generate wiring logic data for specific projection
neurons [46, 47]. When applied in concert, these approaches
provided the identities, locations, and wiring diagrams for a large
number of specific neuronal cell types [48].
The combination of transcriptomic approaches, including

spatial transcriptomic, with circuit tracing approaches is a
promising synthesis that will be applied to the study of the EC-
HPC circuitry in the context of AD. Extensive work has already
been done using sparse labeling with barcoded viruses, such that

Fig. 1 Entorhinal-hippocampal cell type-specific circuits. A Schematic illustration of the specific cell types participating in entorhinal-
hippocampal circuitry mapped onto the anatomic organization (please see details in Valero and de la Prida 2018). Green axons represent
inputs to hippocampus and red axons are outputs. Recently, it has been discovered that CA1 cells that express teneurin-3 (Ten3+) or
latrophilin-2 (Lphn2+) project to subiculum (SUB)(please see Berns et al., 2018; and Pederick et al. 2021). From entorhinal cortex (EC), recent
findings show that EC LII neurons expressing wolfram syndrome 1 (Wfs1+) project to CA1, and stellate neurons in EC LII expressing reelin
(Reelin+) project to dentate gyrus and CA3 (please see Kitamura et al., 2014, 2015). B A circuit diagram of the specific cell types participating
in entorhinal- hippocampal circuitry (please see Xu et al. 2016).
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Table 1. Single cell/Nucleus transcriptomics applied to the EC-HPC system in both human AD patients and animal models of AD.

Species Method Region

Homo Sapiens sn-RNA-seq hippocampus

N= 13 "A Single-Cell Transcriptome Atlas of Glia Diversity in the Human Hippocampus across the Lifespan
and in Alzheimer’s Disease."

Su et al., 2022, (unpublished)

Homo Sapiens sn-RNA-seq hippocampus

N= 6 "Molecular landscapes of human hippocampal immature neurons across lifespan."

Zhou et al., 2022, Nature; PMID: 35794479

Homo Sapiens sn-RNA-seq hippocampus and prefrontal cortex

N= 25 "A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk."

Yang et al., 2022, Nature; PMID: 35165441

Homo Sapiens sn-RNA-seq entorhinal cortex

N= 24 "Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology."

Smith et al., 2022, Acta Neuropathol; PMID: 34767070

Homo Sapiens sn-RNA-seq entorhinal cortex and superior frontal gyrus

N= 20 "Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease."

Leng et al., 2021, Nat Neurosci; PMID: 33432193

Homo Sapiens sn-RNA-seq entorhinal cortex

N= 8 "A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-
specific gene expression regulation."

Grubman et al., 2019, Nat Neurosci; PMID: 31768052

Homo Sapiens spatial transcriptomics superior frontal gyrus

N= 3 "Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease."

Chen et al., 2020, Cell; PMID: 32702314

Mus Musculus sc-RNA-seq hippocampus

N= 6 "Desaturase inhibition reverses immune, synaptic and cognitive impairments in an Alzheimer’s
disease mouse model."

Hamilton et al., 2022, Nat Comm; PMID: 35443751

Mus Musculus sc-RNA-seq hippocampus

N= 1480 "AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT
hyperactivation."

Sayed et al., 2021, Sci Transl Med; PMID: 34851693

Mus Musculus sc-RNA-seq hippocampus

N= 12 "TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology
in mouse models of Alzheimer disease."

Lee et al., 2020, Cell Rep; PMID: 34965428

Mus Musculus sn-RNA-seq hippocampus

N= 6 "Computational Repurposing of Bumetanide for Preventing or Treating Alzheimer’s Disease."

Taubes et a., 2021, (unpublished)

Mus Musculus sc-RNA-seq hippocampus

N= 4 "Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer’s
disease."

Choi et al., 2020, J Neuroinflammation; PMID: 34465358

Mus Musculus sn-RNA-seq hippocampus

N= 8 "GSAP regulates lipid homeostasis and mitochondrial function associated with Alzheimer’s disease."

Xu and Wang, 2021, J Exp Med; PMID: 34156424

Mus Musculus sn-RNA-seq hippocampus

N= 34 "Neuronal ApoE Upregulates MHC-I Expression to Drive Selective Neurodegeneration in Alzheimer’s
Disease."

Zalocusky et al., 2021, Nat Neurosci; PMID: 33958804

Mus Musculus sc-RNA-seq hippocampus

N= 6 "Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration
and decreases synaptic phagocytosis by microglia."

Wang et al., 2021, Neuron; PMID: 33831349

S.F. Grieco et al.
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the projection sites of neurons in a particular brain region can be
determined in a high-throughput manner [49–51]. Building on this
approach, recently developed spatial transcriptomic methods with
cell type-specific resolution has been employed to mark the
neuroanatomical position of each individual projection neuron
along with its projection target regions [52, 53]. This general
approach can be extended by integrating barcoded trans-
neuronal viral tracing with spatial transcriptomics. This will reveal
cell type-specificity and the neuroanatomical position of individual
projection and target neurons. These technologies will provide
rich datasets detailing the identities and characteristics of
individual neuron connections first affected by AD in EC-HPC
circuits.

FUNCTIONALLY MANIPULATING CELL TYPE-SPECIFIC CIRCUITS
IN THE AD BRAIN
Technologies applied to AD
How EC-HPC system dysregulation contributes to AD can be
worked out by functionally manipulating cell type-specific

circuitry. In the EC-HPC system, hippocampal region CA1 hyper-
activity is present early in clinical AD progression. To determine
how CA1 circuit dysregulation might mechanistically contribute to
hippocampal AD pathology, one study used a chemogenetic
approach to manipulate CA1 circuit activity in mouse models of
AD [54]. For the “Designer Receptors Exclusively Activated by
Designer Drugs” (DREADDS) chemogenetic approach, modified
receptors are expressed by neurons that are not activated by
endogenous ligands but instead are exclusively activated by
exogenous synthetic ligands, aka “Designer Drugs”. A DREADDs
version of the modified M3 muscarinic receptor hM3Dq is
activated by the artificial ligand clozapine N-oxide (CNO, a
metabolite of clozapine [55]). CNO binding to hM3Dq results in
membrane depolarization and neuron activation following the
activation of phospholipase C (PLC) cascade signaling. A DREADDs
version of the M4 muscarinic acetylcholine receptor, hM4Di, when
used with CNO, results in membrane hyperpolarization (deacti-
vates neurons) through a decrease in cyclic adenosine monopho-
sphate (cAMP) signaling [56]. As both AD models that were used
in this study have CA1 hyperactivity early in disease progression,

Table 1. continued

Species Method Region

Mus Musculus sc-RNA-seq hippocampus

N= 12 "TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology
in mouse models of Alzheimer disease."

Lee at al., 2021, Cell Rep; PMID: 34965428

Mus Musculus sc-RNA-seq hippocampus

N= 6 "Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration via
apoE-dependent and independent mechanisms."

Shi et al., 2021, (unpublished)

Mus Musculus sn-RNA-seq hippocampus

N= 11 "Single-nucleus RNA sequencing reveals transcriptional changes of hippocampal neurons in APP23
mouse model of Alzheimer’s disease."

Zhong et al., 2020, Biosci Biotechnol Biochem; PMID: 31928331

Mus Musculus sn-RNA-seq hippocampus

N= 8 "Disease-associated astrocytes in Alzheimer’s disease and aging."

Habib et al., 2020, Nat Neurosci; PMID: 32341542

Mus Musculus sc-RNA-seq hippocampus

N= 2208 "Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution."

Mathys et al., 2017, Cell Rep; PMID: 29020624

Mus Musculus spatial transcriptomics hippocampus

N= 15 "Spatial transcriptomics shows moxibustion promotes hippocampus astrocyte and neuron
interaction."

Zhang et al., 2022, Life Sci; PMID: 36220370

Mus Musculus spatial transcriptomics hippocampus

N= 4 "Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like
signaling in neurodegeneration."

Welch et al., 2022, Sci Adv; PMID: 36170369

Mus Musculus spatial transcriptomics hippocampus

N= 4 "Cell type-specific inference of differential expression in spatial transcriptomics."

Cable et al., 2022, Nat Methods; PMID: 36050488

Mus Musculus spatial transcriptomics hippocampus and olfactory bulb

N= 6 "Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and
Stress Signaling in Alzheimer Disease."

Navarro et al., 2020, iScience; PMCID: PMC7522123

Mus Musculus spatial transcriptomics hippocampus

N= 8 "Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease."

Chen et al., 2020, Cell; PMID: 32702314

S.F. Grieco et al.
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Table 2. Genetically-targetted neural circuit tracing of the EC-HPC system in AD models.

Species Method Region

Mus Musculus Rabies Tracing hippocampus (CA1)

N= 7–10 "Hippocampal neural circuit connectivity alterations in an Alzheimer’s disease mouse model revealed
by monosynaptic rabies virus tracing."

Ye et. al., 2022, Neurobiol Dis; PMID: 35843448

Mus Musculus Rabies Tracing hippocampus (CA1)

N= 5 A novel mechanism of memory loss in Alzheimer’s disease mice via the degeneration of
entorhinal–CA1 synapses.

Yang et al., 2018, Mol Psychiatry; PMID: 27671476

Mus Musculus Rabies Tracing hippocampus (CA1)

N= 3 "Dysfunction of Somatostatin-Positive Interneurons Associated with Memory Deficits in an Alzheimer’s
Disease Model."

Schmid et al., 2016, Neuron; PMID: 27641495

Mus Musculus Rabies Tracing hippocampus (CA1)

N= 4 Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine
A2A receptors.

da Silva et al., 2016, Nat Communs; PMID: 27312972

Mus Musculus Rabies Tracing hippocampus (CA1)

Assessment of a novel tau propagation pathway from layer II medial entorhinal cortical neurons to CA1
pyramidal neurons as an early BRAAK stage mouse model.

Delpech et al., 2020, Alzheimer’s & Dementia

Mus Musculus Rabies Tracing hippocampus (CA3)

Hippocampal Mossy Fibers Synapses in CA3 Pyramidal Cells Are Altered at an Early Stage in a Mouse
Model of Alzheimer’s Disease.

da Silva et al., 2019, Neurobiol of Dis; PMID: 30886015

Mus Musculus Rabies Tracing hippocampus (dentate gyrus)

Activity-dependent reconnection of adult-born dentate granule cells in a mouse model of
frontotemporal dementia.

Moreno-Jimenez et al.,, 2020, Alzheimer’s & Dementia

Mus Musculus Rabies Tracing hippocampus (dentate gyrus)

N= 5 Impairments of spatial memory in an Alzheimer’s disease model via degeneration of hippocampal
cholinergic synapses.

Zhu et al., 2017, Nat Commun; PMID: 29162816

Mus Musculus Rabies Tracing entorhnal cortex (EC)

Wolframin-1–expressing neurons in the entorhinal cortex propagate tau to CA1 neurons and impair
hippocampal memory in mice.

Delpech et al., 2021, Scie Transll Med; PMID: 34524859

Mus Musculus Rabies Tracing entorhinal cortex (EC)

Mapping entorhinal cortex circuitry in mouse models of Alzheimer’s Disease.

Macchia and Beier, 2022, Alzheimer’s & Dementia

Mus Musculus Rabies Tracing prefrontal cortex (PFC)

N= 3 "Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a
mouse model of Alzheimer’s disease."

Sun et al., 2012, Nat Communs; PMID: 35194025

Mus Musculus Rabies Tracing (antero) hippocampus (dentate gyrus)

N= 4 "An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron
morphology."

Haberl et al., 2015, Brain Struct and Funct; PMID: 24723034

Mus Musculus HSV1-H129 hippocampus (CA1)

N= 3 "Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behavior to exert an
anxiolytic effect."

Pi et al., 2020, Nat Commun; PMID: 31924799

Mus Musculus HSV1-H129 prefrontal cortex (PFC)

N= 3 "A novel H129-based anterograde monosynaptic tracer exhibits features of strong labeling intensity,
high tracing efficiency, and reduced retrograde labeling."

Yang et al., 2022, Molr Neurodegener; PMID: 35012591
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inhibitory DREADDs (hM4Di) was used to counteract CA1
hyperactivity. This DREADDs-mediated inhibition of the CA1
neural circuitry reduces this hyperactivity as is expected. Very
importantly, this intervention of lowering neural activity using
DREADDs also attenuates AD-like pathology and Aβ deposition in
regions containing axons or dendrites of DREADD-expressing
neurons [54]. Reciprocally, DREADDs-mediated excitation of neural
circuitry in wild-type (WT) controls, using excitatory DREADDs
(hM3Dq) increases AD-like pathology. This study highlights how
neural activity contributes to AD neuropathology and is supported
by clinical and mouse model data showing that dysregulation of
hippocampal circuit activity is a very early feature of AD and may
initiate other pathology [9].
Entorhinal cortex (EC) hyperactivity is also present early in

clinical AD progression and likely temporally follows CA1 circuit
dysregulation (Braak Stages of AD) [57]. Aberrant neural activity
patterns may spread from CA1 to EC since CA1 projects to the
subiculum (SUB) [58, 59], which then projects to EC. CA1-EC
communication is very strong as CA1 “place cells”, which are
active when an animal enters a spatially localized region (“place”)
in its environment, and EC “grid cells”, which fire at regular
intervals (“grids”) to allow animals to understand their position in
space, both contribute to specific memory processes relevant to
AD [60]. Once dysregulated neural activity spreads from CA1 to EC,
grid cells exhibit altered tuning properties [61–64]. In functional
studies designed to measure the effect of EC dysregulation on AD
pathology, DREADDs were used to experimentally manipulate EC
neural activity. Localized inhibition of the EC neural circuitry
reduces AD pathology in EC in a fashion that is similar to the
effects described following manipulation of activity in CA1 above.
Surprisingly, DREADDs-mediated manipulation in EC also reduces
neuropathology in hippocampus [65]. Collectively, these results
suggest that neural dysregulation in hippocampus influences the
health of the EC, and vice versa. Functional dysregulation of the
EC-HPC system is an important mechanistic feature of AD
progression and reversing this attenuates the neuropathological
features of the disease.
EC hypoactivity has been observed later in AD progression,

coinciding with when memory loss is clinically observed. Mouse
models of AD exhibit this pattern as well, as EC hypoactivity and
dysregulated grid cell tuning appears late in AD progression when
animal memory function is significantly impaired [66, 67]. This
pattern of neural hypoactivity may then spread back to CA1
resulting in significant deficits in hippocampal function [68]. EC
“island cells” are a type of grid cell projecting to CA1 that express
wolframin-1 (Wfs1+ ). Dysregulated EC island cells may be
responsible for propagating hypoactivity throughout the EC-HPC
system [69–72]. To test this, optogenetic manipulation of Wfs1+ EC
cells was used. For optogenetic manipulation of neurons, modified
opsins [73], which are light-activated via a fiber optic cable [74], are
expressed by the neurons of interest. Light activated ion transfer
across the neural membrane of these neurons activates or inhibits
cell type-specific circuitry. Blue light-activated cationic charge carrier
Channelrhodopsin-2 (ChR2) is used to activate neurons by
membrane depolarization. Halorhodopsin and archaerhodopsin
are yellow and green light-sensitive anion carriers, respectively;
they inhibit neurons by light-activated hyperpolarization [75]. In
control animals optogenetic excitation (ChR2) of Wfs1+ cells in EC
results in robust increases in CA1 neuronal activity. In contrast in a
mouse AD model, excitation of Wfs1+ neuron axons results in
relatively lower levels of CA1 excitation as shown by multielectrode
array recordings. These results support the idea that the EC→CA1
circuitry is weakened in AD and may contribute to functional loss
[76]. DREADDs-mediated activation of CA1 in the AD mouse model
also results in relatively less CA1 activity compared to control
animals as measured by cFOS staining. Together, these results
support the idea that EC hypoactivity in the late stages of AD
contributes to CA1 hypoactivity [70].

The SUB is situated anatomically between CA1 and the EC.
However, the role of the SUB in AD disease progression in the
context of CA1 and EC circuitry is not yet known. Anatomically, the
CA1 to SUB forward projection (CA1→SUB) is well-established.
There are direct connections from CA1 to SUB, as cells that express
teneurin-3 (Ten3+ ) or latrophilin-2 (Lphn2+ ) project to the SUB
[58, 59]. There is also an important SUB to CA1 back-projection
pathway (CA1←SUB) that has only recently been discovered
[35, 77–79]. The function of this SUB to CA1 back-projection was
determined using long-term trans-synaptic expression of optoge-
netic and chemogenic constructs. Retro-adeno-associated virus
type 2 (rAAV2-retro) or Canine adenovirus type 2 (CAV-2) – which
both spread retrogradely – are useful for this purpose due to their
lower toxicity relative to other viruses [32, 80–82]. rAAV2-retro
virus expressing Cre recombinase was injected into the CA1 region
of transgenic mice to express a Cre-dependent optogenetic
construct to activate CA1-projecting excitatory SUB neurons [79].
Injection of CAV2 virus expressing Cre recombinase into the CA1
region was also performed in combination with injection of AAV
expressing a Cre-dependent chemogenetic construct in SUB to
specifically modulate the activity of CA1-projecting excitatory SUB
neurons [79]. It was determined that the SUB to CA1 back-
projection pathway (CA1←SUB) facilitates memory processing in
CA1 [79]. The SUB to CA1 back-projection pathway has not
previously been studied in the context of AD. Given the SUB’s
anatomical location between CA1 and EC, it is very well-positioned
to be a critical bidirectional mediator of AD disease progression
between these brain regions.
The extended EC-HPC system is a very interesting piece of brain

circuitry that is clearly implicated in AD. Increasing our under-
standing of how dysregulation of the EC-HPC circuitry leads to AD
has made considerable progress in recent years, though these
studies are still in a relatively nascent stage. One of the goals of
this Review article is to excite AD researchers to use available
technologies and concepts to probe the EC-HPC circuit basis of
AD, as it has become clear that AD physiology and pathology are
causally interconnected.

Possible future technological developments
The previous section describes novel discovery-focused technol-
ogies. It is important to verify putative characterizations with
functional studies of cell type-specific circuits [12, 83]. To do this,
cell type-specific circuits relevant to AD must be targetable in
some way [26]. This requires genetic information about cell types
and specific circuits that can be used to create a “genetic toolbox”
for cell type-specific targeting of the EC-HPC system [84].
Promoter/enhancer-based mouse driver lines and viral tools for
targeting cell type-specific circuits have expanded rapidly over the
past several years [85–92]. When coupled with intersectional
genetic approaches [91, 93], these mouse lines and viruses can be
used to target even more refined cell type-specific circuitry for
functional modulation.
Once a genetic approach is identified that narrows cell type-

specific circuit targeting, a functional assay that permits
modulation of activity in the circuit of interest is used to test
physiological and behavioral function [94, 95]. Optogenetics is
the most widely-used technique for modulating neural activity
with temporal precision. One shortcoming of optogenetic
approaches is that they can be invasive as short wavelength
light-activated optogenetic proteins impose limits of tissue
penetration. Therefore, optic fibers are inserted into the brain to
deliver light to the region of interest. The use of red light-
sensitive opsins such as Chrimson can overcome the issue of
invasively inserting hardware into the brain as red light may
activate associated opsins down to brain depths between 1 and
2 cm, potentially from outside the skull [96–99]. This approach
can be adopted to non-invasively modulate EC-HPC circuits
implicated in AD progression.
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UNDERSTANDING WHY SPECIFIC CIRCUITS ARE IMPLICATED
IN AD
Technologies applied to AD
The EC-HPC system is a potential point of convergence for many
diverse AD-associated issues [100]. Thus, the integration of the EC-
HPC system’s circuitry with the memory-related behavioral needs
of the animal may further contribute to a pathological feedback
cycle of dysregulated circuit activity. Memory is encoded in the
hippocampus by “engram cells”, and depending on the memory-
related needs of the animal, memories can be retrieved by these
engram cells at a later time [101]. Surprisingly, the encoding of
memories by engram cells is not disrupted in animal models of AD
during behavior. This can be shown by the direct optogenetic
activation of hippocampal engram cells, which results in memory
retrieval and behavior in otherwise amnesic mice. Rather, it is
impairments in memory retrieval that results in reduced memory
performance in AD mice even before plaque deposition [102–105].
A potential interpretation of this result is that the AD brain may
adaptively shunt neural activity away from the EC-HPC circuitry as
the memory-related behavioral needs of the animal are
overwhelmed.
A recent study provides more insight into why the EC-HPC

circuitry is implicated in AD progression in terms of the memory-
related behavioral needs of the animal. Lin et al. (2022) recently
investigated hippocampal region CA1 circuit hyperactivity in a freely
behaving AD mouse model using miniscope-based GCaMP calcium
imaging [106]. The study used the 3xTg-AD mouse line which
contains mutations that lead to both Aβ and tau pathology
[107–110]. Intriguingly, CA1 neurons are found to be hyperactive
but only during specific behaviors [106]. CA1 circuit hyperactivity is
observed in open field behaviors, but not in linear track behaviors.
This suggests that simple behaviors that do not require higher
cognitive load, and thus extensive computation in CA1, may not
evoke deficits in hippocampal circuit operations in AD models
(Fig. 3). This result reinforces the idea that the EC-HPC circuitry is
inundated with neural activity early in AD, and that the increasing
performance demands of memory-related behaviors exacerbate this

effect. Importantly, clinical research shows that more difficult
memory tasks recruit increased hippocampal activity, and that this
increase in hippocampal activity is even more pronounced in AD
patients than in healthy individuals [111–113].
Another very recent study provides more insight into why the

EC-HPC circuitry is implicated in AD progression in terms of the
memory-related behavioral needs of the animal. Zhang et al.
(2023) recently investigated hippocampal region CA1 circuit
activity and memory-related behavior longitudinally in an AD
mouse model using miniscope-based GCaMP calcium imaging
[114]. This study used the 5xFAD mouse line which carries 3
mutations in human amyloid precursor protein (APP) and 2
mutations in presenilin 1 (PSEN1), inducing early and rapid
amyloid aggregation before the emergence of memory deficits
[115–117]. Intriguingly, CA1 neuron activity profiles from 5xFAD
animals are significantly different from WT at a young age
(4–5MO) where AD mice do not yet display behavioral
disturbances determined using the object location memory
(OLM) test—but they do exhibit measurable circuit defects. Yet,
at an older age (8–10MO) when AD mice do have robust
reductions in OLM performance, aspects of CA1 neuron activity
profiles are not significantly different from WTs. At an even older
age (14MO), when OLM performance in the AD mice is even
worse than at 8–10MO, 5xFAD CA1 neuron activity profiles are
again significantly different from WTs, but in the opposite
direction seen at 4–5MO. This longitudinal relationship between
memory-related behavior changes and the activity profiles of
CA1 hippocampal neurons suggests that the EC-HPC system in
AD mice may adaptively compensate to AD-related dysregula-
tion, and further reflects the shift between circuit hyperexcita-
tion early in the disease process followed by circuit hypo-
excitation seen later in the disease process (Fig. 4). Importantly,
clinical research has shown that patients with AD-related
neuropathology and/or EC-HPC circuit activity changes adap-
tively compensate for these disturbances such that their
memory performance appears normal until relatively later stages
of disease progression [118] (Fig. 5).

Fig. 2 Viral tracing of the entorhinal-hippocampal system in an AD mouse model. A Schematic of cell type-specific retrograde
monosynaptic rabies tracing. To label inputs to excitatory CA1 neurons, AAV helper virus (AAV-DIO-TC66T-GFP-oG and AAV-CaMKII-EGFP-Cre),
labeled green, are injected into hippocampal CA1, followed by injection of rabies virus (EnvA-SADG-DsRed), labeled red. The neurons labeled
both green and red are starter neurons. The neurons labeled only red represent the presynaptic inputs to the starter neurons.
B Representative images from APP-KI old mice. Rabies virus-infected neurons are labeled by DsRed, and AAV-infected neurons are in green.
Rabies virus mapped presynaptic inputs in the hippocampal regions CA1, CA2, anbd CA3 are shown in the sub-panels along with inputs from
SUB and EC. C, D Quantitative analysis of CA1 CSI values across WT young and old mice and APP-KI young and old mice. The CSI is the ratio of
the CA1 input neuron number in a subregion to the total starter neuron number in a brain (please see Ye et al. 2022).
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Possible future technological developments
The EC-HPC circuitry must be studied within the broader context of
the brain and the animal’s behavior to understand why it is
susceptible to AD. To do this, measurement and/or manipulation of
EC-HPC circuit activity and/or memory-related behavior [51, 95, 119]
can be performed to test theories about why EC-HPC circuits are
functionally implicated in AD [120–122]. One new technology that
will be very powerful for this purpose is “Comprehensive Readout of
Activity and Cell Type Markers” (CRACK). CRACK combines popula-
tion calcium imaging of circuit-specific neurons with subsequent
multiplexed fluorescent in situ hybridization. Using CRACK, brain-
wide projections of identified cells along with their behaviorally-
defined tuning properties were recently integrated to build a model
of specific circuit functions [123]. Thus, application of this approach
to understanding AD models is feasible. Going forward, adaptations
of the CRACK approach will reveal near-idealized linkages of the
identities, locations, and wiring diagrams of cell type-specific circuits
with longitudinal neural activity patterns and animal behavioral
responses to well-controlled stimuli [124, 125]. Virtual reality (VR)
stimuli can be used during calcium imaging of neural activity to
study the function of hippocampal circuits during spatial navigation
and memory-related behavior [126–128]. Together these methods
can be applied to AD models to determine why the EC-HPC circuit is
susceptible to AD, why dysregulation proceeds at different rates in
different EC-HPC cell type-specific neurons circuits, and if any of
these early changes in the EC-HPC circuitry are adaptive responses
to AD-related processes throughout the brain.

POTENTIAL ENTORHINAL-HIPPOCAMPAL CIRCUIT-SPECIFIC
THERAPIES FOR AD
The goal of AD research is to decipher the inner workings of
the brain, and to leverage that knowledge to prevent and cure the
disease [11]. By understanding why specific neural circuits are

implicated in AD, it may be possible to develop therapies for AD
that do not just treat “symptoms” but the disease itself. One
therapeutic approach for doing this in the brain that is making
rapid headway is gene therapy [129, 130]. Gene therapy is a
medical approach for delivering genetic material to cells, typically
using either virus [131, 132] or nanoparticles [133] with the goal of
disease treatment. There are several approaches for gene therapy
[129], including: introducing a new gene (gene delivery),
modulating an existing gene’s activity (typically using oligonu-
cleotides [134]), or the editing of a gene (CRISPR/Cas9 [135]). Gene
therapy provides clinicians with a wide variety of potential
approaches for modulating brain circuitry to treat AD.
For these therapies to reach the brain they must first

successfully cross the blood-brain-barrier (BBB) [136]. Directed
evolution of the AAV capsid protein has overcome this hurdle by
generating new AAV serotypes (AAV.PHP.B [137]) that cross the
BBB [138, 139]. As a result of this recent innovation and other
factors, many AAV-mediated gene therapies for CNS disorders
are being used in clinical trials [140] and several are FDA-
approved [141], including an AAV-based gene therapy for RPE65
gene mutations responsible for retinal dystrophy. The Allen
Institute and BioMarin have teamed up to generate enhancer
AAVs that target cell type-specific circuitry for gene therapy in
the human brain [91, 92, 142]. Similarly, nanoparticle-mediated
gene therapy for CNS disorders is being developed [143],
although only one therapy is FDA-approved [144]. Intranasal
delivery may be a potential route of administration to allow
efficient bypassing of the BBB for gene therapy-mediated
treatment of AD using nanoparticles [145]. Recently, both
AAV- and nanoparticle-mediated gene therapies have been
used to express genes, alter gene expression, or effectively edit
genes in the brain [146, 147].
Gene therapies directed to the EC-HPC system may be

designed to treat AD patients with early symptoms. Such

Fig. 3 CA1 neuron ensembles in AD models have increased activity in complicated behavioral environments compared to control mice.
A Schematic of in vivo neural calcium imaging of hippocampal CA1 excitatory neurons in 3xTg-AD and Non-Tg (non-AD) mice (3–6m.o.) with
miniscopes in freely behaving animals. B Examples of neuron footprints from CNMF-E extraction for data processing for young non-AD and
young ADmice. C (left) Travel trajectory in a circular arena plotted by the black line, and red dots are where the calcium events are higher than the
threshold. (right) Spatial rate maps of calcium events during exploration of the circular arena. D Violin plots of calcium event rates of all neurons
from non-AD controls and 3x-Tg ADmice during exploration of the circular and square arenas. E, F Travel trajectories, spatial rate maps, and violin
plots of calcium rates for non-AD and 3x-Tg AD mice exploring a linear track. D, F CA1 calcium event rates are significantly increased in the AD
model during exploration of circular and square arenas, but not during exploration of the track (please see Lin et. al. 2022).
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patients are likely to progress to full-blown AD dementia
eventually without an effective intervention. As neuronal loss
is a feature of AD at the later stages of the disease associated
with significant cognitive and memory loss, using gene therapy
to provide trophic support to remaining neurons in the EC-HPC
circuitry is a reasonable approach. AAV-mediated gene therapy
delivery of brain-derived neurotrophic factor (BDNF) is currently
being tested for this purpose. BDNF promotes neuronal function
in the EC-HPC system. In rodent and non-human primate animal
models of AD, therapeutic delivery of the BDNF gene to the EC-
HPC system reverses neuronal loss in those circuits and
promotes the building of new synapses [130, 148–150]. Pre-
clinical work has led to a Phase I clinical trial starting in 2022 that
is testing the efficacy of AAV2-BDNF gene therapy (stereo-
taxically administered to the EC-HPC under MRI guidance, as
safe methods for targeting this circuitry have not yet been
developed) for treating patients with MCI or AD (see clinical-
trial.gov identifier NCT05040217). This study is estimated to be
completed in 2027.

CONCLUSIONS, UNANSWERED QUESTIONS AND FUTURE
DIRECTIONS
Experiments designed to develop a more complete under-
standing of why specific neural circuits are implicated in AD are
relatively new. Most AD research over the past several decades
has focused on AD’s neuropathological features and assume
causative linkage with downstream neural circuit and behavioral
dysfunction [7]. However, decades of AD research show that the
idea that this disease has some singular genetic or molecular
cause(s) that can be targeted for therapy in the clinic has been
significantly complicated by evidence showing that AD etiology
is highly heterogenous [151]. Except for a few well-known
genetic marks restricted in some cases to single families that
make up a very small percent of all AD cases [152], there are
many disease-related risk factors that are associated with AD
severity. Ageing, sleep, exercise, sex hormones, immune
reactivity, metabolism, stress, neurogenesis, viral infection, cell
senescence, diet, diabetes, obesity, smoking, alcohol, and many
others, have been shown to be important in AD. Diverse factors

Fig. 4 Longitudinal measurements of CA1 neuron calcium activity and memory behavior in an AD model reveals age-dependent
relationship. A Schematic of the object location memory (OLM) test whereby mice are exposed to two identical objects in the training session
and then are tested after 24 h with one object moved to a new location. Discrimination indexes (DIs) are calculated during the testing session.
B, C 5xFAD mice do not show a decreased DI until 8–10 MO, and have normal DI at 4–5 MO. D, E Population vector correlations for each object
at 4–5 or 8–10 months of age. WT and AD mice show significantly higher correlation for the unmoved object (obj1) than the moved object
(obj2) at 4–5MO, whereas, while 5xFAD mice show similarly low correlation for both objects at 8-10MO. F–H Calcium event amplitudes of CA1
neurons during the overall session of exploring a circular arena at different testing ages. CA1 neurons of 5xFAD mice show a gradual change
in overall amplitude compared to WT from 4-5 to 14 months of age (please see Zhang et. al. 2023).
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contribute to AD and determining the relative contribution of
these factors that are relevant for a patient will be difficult.
The prospect of having to decipher why each of these diverse

processes acts in specific brain circuit to affect AD pathophysiology
is even more daunting. Like the search for a genetic/molecular cause
of AD, the search for the brain loci of AD has been difficult. While
early vulnerable AD brain regions have been identified, many major
brain regions are implicated in AD, including the pons, locus
ceruleus, tegmental areas, thalamus, hypothalamus, nucleus basalis
of Meynert, habenula, putamen, caudate nucleus, ventricles, dura,
cerebellum, amygdala, visual cortex, parietal cortex, temporal cortex,
prefrontal cortex, cingulate cortex, and even optic nerve and spinal
cord, and many others. AD researchers should embrace the diversity
of factors (biological processes and brain regions) contributing to
the disease and this will require the synthesis of findings that were
previously thought to be unrelated.
Herein, we present the case that specific brain circuitry

including the entorhinal-hippocampal system is implicated in AD
and may be a point of convergence in the disease. It has been
known for decades that the entorhinal-hippocampal system
functions as a computational bottleneck in the brain, taking
diverse inputs and using a few processes to generate diverse
outputs [153, 154]. These architectural and functional features of
the entorhinal-hippocampal system may render this circuit
particularly susceptible to dysregulated neural activity arising
from a variety of genetic and environmental causes in AD patients.
Going forward the cell type-specific circuitry in the EC-HPC system
first susceptible to AD should be identified, as well as any
components which are adaptively compensating the disease, and

studied toward the development of novel and targeted circuit
therapies.
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