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Methicillin-resistant Staphylococcus aureus (MRSA) can colonize multiple
body sites, and carriage is a risk factor for infection. Successful decoloniza-
tion protocols reduce disease incidence; however, multiple protocols exist,
comprising diverse therapies targeting multiple body sites, and the optimal
protocol is unclear. Standard methods cannot infer the impact of site-specific
components on successful decolonization. Here, we formulate a Bayesian
coupled hidden Markov model, which estimates interactions between
body sites, quantifies the contribution of each therapy to successful decolo-
nization, and enables predictions of the efficacy of therapy combinations. We
applied the model to longitudinal data from a randomized controlled trial
(RCT) of an MRSA decolonization protocol consisting of chlorhexidine
body and mouthwash and nasal mupirocin. Our findings (i) confirmed
nares as a central hub for MRSA colonization and nasal mupirocin as the
most crucial therapy and (ii) demonstrated all components contributed
significantly to the efficacy of the protocol and the protocol reduced self-
inoculation. Finally, we assessed the impact of hypothetical therapy
improvements in silico and found that enhancing MRSA clearance at the
skin would yield the largest gains. This study demonstrates the use of
advanced modelling to go beyond what is typically achieved by RCTs,
enabling evidence-based decision-making to streamline clinical protocols.
1. Introduction
Methicillin-resistant Staphylococcus aureus (MRSA) is a common antimicrobial-
resistant pathogen in community and healthcare settings [1,2], causing an esti-
mated 320 000 infections in hospitalized patients and over 10 000 deaths in the
USA in 2017 [3]. Progress in reducing invasive MRSA infections has slowed,
underscoring the importance of continued innovation and effort to prevent dis-
ease [4]. As MRSA carriage is a major risk factor for invasive disease, efforts at
prevention centre on the promotion of decolonization protocols and body
hygiene as well as environmental cleaning [5]. The most common S. aureus car-
riage site is the anterior nares, but MRSA can also colonize the perineum and
groin, the axilla, the pharynx, as well as other body sites [6,7]. While the
anterior nares have been identified as a key reservoir for transmission, and
nasal colonization is a major risk factor for invasive disease [8], the extent of
interaction among colonization sites and the importance of additional
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Figure 1. Overview of the modelling strategy. (a) Visit records, (b) illustration of the coupled hidden Markov model (CHMM) and (c) estimated interactions between
body sites. (a) An example with visit records for two participants. Evaluated visits approximately took place in one (V1), three (V2) and six (V3) months after
enrolment (ENRL) in the trial. Filled markers correspond to the collected swabs, and faded markers represent samples missing due to trial exits or skipped
visits [9]. (b) Here, for clarity, the CHMM is illustrated with two (nares and skin) of the four body sites (nares, skin, throat and wound). In practice, the
model includes all four sites. πt represents the unobserved true states (whether the site was colonized or not), and xt represents observed states (whether
MRSA was detected from the swab or not) at time t. The faded observation nodes correspond to missing observations, which are straightforward to analyse
with the CHMM. The sequential model can be used to predict the dynamics of carriage. (c) The CHMM allows us to estimate and visualize interaction dynamics
graphically, where edges represent the strength and direction of the interaction.
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decolonization products targeting other body sites, and the
value of increasing their adherence in decolonization proto-
cols remain unclear. It would be ideal to understand the
interactions between body sites and the attributable effect
of each therapy on overall body clearance. For example, if car-
riage at a particular body site appears to be dependent on
carriage at other body sites, therapies targeting the influen-
cing site would be more efficient, while therapies targeting
the dependent site might be less effective for reducing the
total body carriage. Achieving this goal requires a detailed
understanding of the dynamic relationships of colonization
between and among sites.

The Changing Lives by Eradicating Antibiotic Resistance
(CLEAR) trial demonstrated that the use of a post-discharge
decolonization protocol in MRSA carriers reduces infection
and hospitalization rates [9]. In the trial, 2121 study partici-
pants were randomized into two groups to test the impact
of the decolonization protocol: the education group (n =
1063) received an educational binder on hygiene, cleanliness
and MRSA transmission; the decolonization group (n = 1058)
received the same information and as well underwent
decolonization protocol for 5 days twice monthly for six
months, with the protocol consisting of nasal mupirocin
and chlorhexidine body and mouth wash. During these six
months, swabs were collected from the participants at dis-
charge from the hospitalization and three follow-up visits,
which approximately took place at months 1, 3 and 6 after
the discharge. Samples were taken from the nares, skin
(axilla/groin), throat and, if present, any wound. Participants
had different numbers of observations because of trial exits or
skipped visits. Overall, 20 506 samples (10 464 and 10 042
from the education and decolonization groups, respectively)
were received in the first six months of follow-up. Addition-
ally, the dataset included reported adherence to the protocol,
enabling the assessment of both real-world uptake and
consideration of the ideal scenario of full compliance.

In this paper, our goal was to model the process of MRSA
carriage, with and without the decolonization protocol.
Successful modelling can enable characterization of the inter-
actions among MRSA colonization at different body sites and
the efficiency of each protocol component. Using this
information, we can predict how the decolonization protocol
could be more efficient. To achieve these goals, we used a
coupled hidden Markov model (CHMM [10–16], an exten-
sion of the standard hidden Markov model, HMM [17–19]),
where the probability of colonization at a particular body
site in the next step depends not only on the colonization
of the same site but also on the colonization of the other
body sites (figure 1). We developed a novel formulation
of the CHMM: Additive-CHMM, where the probability of
colonization at a particular site is an additive function of colo-
nization at the other sites. According to a predictive model
selection criterion (leave-one-out cross-validation [20]), the
Additive-CHMM had superior accuracy compared with a
set of site-specific standard HMMs and other formulations
that we developed (see electronic supplementary material,
table S1). Consequently, the outcomes of the Additive-
CHMM are presented and discussed in the main text.
Models are described in the §4 and their advantages and dis-
advantages are discussed in detail in the electronic
supplementary material. We provide a practical application
programming interface (API) as an R-package that
implements these models with an efficient Metropolis-
within-Gibbs Markov chain Monte Carlo (MCMC) algorithm,
which yields Bayesian credible intervals (CI) for all model
parameters (see §4).
2. Results
The CHMM accurately predicted the decrease in MRSA car-
riage over the study period. The key metric of success for our
model was the extent to which it recapitulates the clearance
in MRSA carriage over the study period. To examine this pos-
terior predictive checking, we (i) estimated the parameters of
the CHMM in both education and decolonization groups,
then (ii) simulated patient trajectories using parameters from
the estimated models, and finally (iii) compared the reduction
in colonization in our model-based simulations with the
observed changes in the CLEAR trial data. The predicted
reduction of the carriage for individuals was from 61% (90%
CI is 59–63%) to 47% (44–50%) in the education group and
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Figure 2. The observed decrease in MRSA carriage detection over time by body site and study arm compared with the decrease predicted by the model. In the trial,
study subjects were in the education group or the decolonization group, which consisted of applying mupirocin to the nares, chlorhexidine mouthwash (CHG Oral) to
the throat and chlorhexidine body washes (CHG Skin) to the skin and, if present, wound. The figure shows site-specific and total-body carriage probabilities and
clearance rates in the two groups, along with model predictions. We note that the number of samples from wounds was relatively small, which yielded larger
uncertainty in the wound-associated estimates. Visits approximately took place in one (V1), three (V2) and six (V3) months after enrolment (ENRL, i.e. hospital
discharge) in the trial. Dotted lines and shaded regions represent the mean and 90% credible intervals (CI) of the model predictions, and the dots connected by the
solid lines represent values observed in the data.
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Figure 3. Estimated (a) persistence and (b) relapse probabilities of MRSA colonization by body site. (a) Persistence probability is defined as the probability that a site
will be colonized in the next time step, given it was colonized in the previous time step while other sites were not colonized. (b) Relapse probability is defined as the
probability that a site will be colonized in the next time step, given it was not colonized in the previous time step while other sites also were not colonized. The
calculation of the posterior distributions is explained in the §4. Means and 90% credible intervals (CI) are represented in the figure by diamonds and lines,
respectively.
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down to 25% (22–28%) in the decolonization group, which
accurately matched the observations (85% of the observations
fell inside the 90% CIs, figure 2). Moreover, the predicted
reduction at any single sitewas accurate aswell. To further vali-
date the model’s ability to capture the dynamics of MRSA
carriage, we (i) applied cross-validation (CV) test to inspect
the predictive performance (see electronic supplementary
material, figure S1) and (ii) tested the model using synthetic
data to inspect the ability to recover the true parameters and
the impact of errors on the model predictions (see electronic
supplementary material, figure S2).

The decolonization protocol decreased the persistence of
MRSA colonization in the nares and throat independently
of other sites. First, we wanted to study the impact of the
full decolonization protocol on each particular site while
not accounting for any dependencies of carriage between
sites (i.e. sites were evaluated in isolation). To do this, we esti-
mated the persistence of colonization for each body site by
calculating the probability that the site would be colonized
in the next time step, given it was colonized in the previous
time step and other sites were not colonized. We found
that decolonization protocol significantly reduced the persist-
ence at the nares from 35% (26–45%) to 10% (7–14%),
and throat from 75% (64–84%) to 47% (35–58%), while
the persistence of colonization at skin and wound were
not significantly affected when these sites were evaluated
in isolation (figure 3a) [21]. We also estimated the relapse
probability, i.e. the probability of a site getting colonized
given it was not colonized in the previous time step and
other sites also were not colonized. These probabilities
were small and did not seem affected by the decolonization
protocol (figure 3b). We note that the number of samples
fromwoundswas relatively small, which yielded larger uncer-
tainty in the wound-associated parameters. Repeating the
analysis only on patients who reported adherence to
the protocol led to almost identical results since most (70%)
of the data were collected from adherent patients (see elec-
tronic supplementary material, figure S6). The model can



nares

skin

throat

wound

t
t + 1 t + 1

nares skin throat wound

nares
mean 0.23 0.05 0.07 0.16

90% CI (0.22, 0.24) (0.04, 0.06) (0.06, 0.08) (0.15, 0.17)

skin
mean 0.04 0.07 0.02 0.07

90% CI (0.04, 0.05) (0.06, 0.07) (0.02, 0.03) (0.06, 0.08)

throat
mean 0.07 0.03 0.09 0.08

90% CI (0.07, 0.08) (0.03, 0.04) (0.09, 0.10) (0.07, 0.08)

wound
mean 0.02 0.01 0.01 0.05

90% CI (0.02,0.02) (0.01, 0.01) (0.01, 0.01) (0.05, 0.05)

nares

skin

throat

wound

t nares skin throat wound

nares
mean 0.08 0.04 0.03 0.14

90% CI (0.07, 0.09) (0.03, 0.05) (0.03, 0.04) (0.13, 0.15)

skin
mean 0.05 0.08 0.02 0.08

90% CI (0.04, 0.05) (0.07, 0.08) (0.01, 0.02) (0.08, 0.09)

throat
mean 0.02 0.01 0.09 0.06

90% CI (0.02, 0.03) (0.01, 0.01) (0.08, 0.09) (0.06, 0.07)

wound
mean 0.01 0.01 0.00 0.04

90% CI (0.01, 0.01) (0.01, 0.01) (0.00, 0.01) (0.03, 0.04)

(a) (b)

Figure 4. The amount of MRSA transmission among body sites in (a) education and (b) decolonization groups. The edges in the graphs show the estimated
proportion of patients with the given transmission between body sites in a time step (corresponding to one month). They are estimated by scaling the transmission
probabilities (see electronic supplementary material, figure S5) with the observed proportion of patients colonized in the source site of the transmission. Edges were
excluded from the graph if the expected proportion was lower than 0.02. The edge thickness represents the expected value, and the tables show the means and the
respective 90% CIs for all relations.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210916

4

also estimate other valuable parameters, for example, the
sensitivity and specificity of the detection of MRSA in a
swab, as those are immediately available as the emission
parameters of the CHMM (see electronic supplementary
material, figure S4).

The decolonization protocol reduced the transmission of
MRSA between body sites. We quantified the interactions
between body sites in two ways: first, we estimated the prob-
ability of MRSA transmission within a time step
(corresponding to one month) from the source site to the target
(see electronic supplementary material, figure S5) conditional
on only the source being colonized, by simulating 1000 datasets
from the estimatedmodel. Second, we estimated the proportion
of patients with a givenMRSA transmission between body sites
(figure 4), which scales the former transmission probabilities
with the observed proportion of patients colonized in the
source site of the transmission.First,we foundthat themost criti-
cal determinant of colonization at any site was whether the site
itself was colonized in the previous time step. Second, the
nares acted both as a source and a sink for transmission, high-
lighting its role as a hub for MRSA colonization. Third, the
strength of most dependencies decreased significantly by the
decolonization protocol. These findings, therefore, indicate
twomechanisms responsible for the efficiencyof thedecoloniza-
tion protocol: (i) the protocol decreased persistence in the nares,
which is a central accumulation hub for colonization (figure 3)
and (ii) the protocol weakened links between body sites, redu-
cing self-inoculation (figure 4).
Nasal mupirocin on the nares was estimated as the single
most efficient therapy, but all therapies contributed to the effi-
ciency of the decolonization protocol. The importance of the
nares has been noted in a study in an intensive care unit
[22]. However, the added value of decolonization efforts
that focus on body sites other than the nares is not well
understood. To quantify the impact of decolonization efforts
at each individual site while accounting for interactions
between body sites, we predicted the efficiency of hypotheti-
cal simplified protocols, consisting of only a subset of the
therapies in the full decolonization protocol. Application of
nasal mupirocin on the nares alone decreased the estimated
total body carriage of MRSA from 61% to 38% (35–41%),
compared with 25% (22–28%) of the full decolonization pro-
tocol and 47% (44–50%) of education protocol (figure 5).
Other single therapies were inferred to be less effective than
mupirocin, such that only using chlorhexidine mouthwash
on the throat (CHG Oral) reduced total body carriage to
42% (39–44%) and only using chlorhexidine bodywash on
the skin and wounds (CHG Skin) reduced total body carriage
to 45% (42–48%), a minor improvement compared with the
47% (44–50%) of education protocol alone. When we inferred
the anticipated success of combinations of two therapies, the
best combinations always included mupirocin: CHG Skin +
mupirocin decreased carriage to 34% (31–37%) and CHG
Oral + mupirocin to 33% (30–36%). By contrast, the combi-
nation CHG Skin + CHG Oral, i.e. leaving out mupirocin,
decreased carriage only to 39% (36–42%). These results show
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that all combinations of two therapies had lower efficiency
than the full protocol indicating each therapy contributed to
the full effect, even if no effect was seen on targeted sites
when sites were evaluated in isolation (figure 3a). So, even
though CHG Skin does not appear to affect the target site
directly, it is still beneficial, and we hypothesize that the
impact comes instead through reduced transmission between
body sites (figure 4). Figure 6 shows (i) the incremental gain of
adding therapies to the protocol and (ii) marginal effects of
each therapy on the efficiency of the decolonization protocol.
Results also indicate that the full effect is greater than the
sum of marginal effects, demonstrating the synergy of apply-
ing therapies in combination.

Enhancing clearance at the skin was predicted to achieve
the most significant gain in overall decolonization success.
The key metric of success for decolonization is the extent to
which it reduces MRSA carriage. We used our model to pre-
dict the impact of enhanced effects on the components of the
decolonization protocol. We assumed optimal effects that
resulted in immediate clearance of a specific site. This could
be achieved either through a more effective replacement pro-
duct, an additional product applied to the site on top of
the existing protocol, or training to achieve the appropriate
application of the protocol with high adherence leading to
immediate clearance. The result reflected the relative ineffi-
ciency of the original CHG Skin therapy (figures 3a and 5),
such that the most significant improvements were seen by
improving this therapy. In particular, the estimated final car-
riage with the full protocol but optimized nasal mupirocin
was 17% (15–20%), while optimizing the throat (CHG Oral)
or skin/wound (CHG Skin) therapies decreased the carriage
to 20% (17–22%) or 6% (5–8%), respectively. Optimizing
therapies both on nares + the throat has the potential to
reduce carriage further down to 10% (8–12%) compared
with 4% (3–5%) of the nares + skin/wound, and 4% (3–6%)
of the throat + skin/wound.
3. Discussion
We presented a model for the dynamic process of MRSA car-
riage that quantified interactions among colonization at
different body sites, quantified the impact of each therapy,
and predicted the decrease in MRSA carriage over the study
period. We found that not all therapies contributed equally
to successful decolonization. Among the CLEAR trial
components, mupirocin was estimated as the most effective
therapy; still, our results also indicated that all therapies
were essential to the full effect of the complete protocol.
Furthermore, our results indicated that enhancing the chlor-
hexidine bodywash therapy has the greatest potential for
improving the effectiveness of the decolonization regimen.

As with all modelling, our analysis made several simplify-
ing assumptions. First, the analysis focused on MRSA
clearance on individuals, but the decolonization protocol may
have other benefits, e.g. reduction in transmission between
patients [23,24]. Second, we assumed that the missingness of
observations (including trial exits, skipped visits or non-present
wounds) did not depend on the colonization status of the body
site, which is probably not always correct; for example, if a pre-
viously colonizedwound is healed and not colonized anymore,
no additional samples would be taken from thewound. Finally,
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in our optimal therapy analysis, we assumed that (i) all patients
followed the same protocol regardless of their initial site of colo-
nization, and (ii) the sensitivityand specificity of the swabswere
not affected by the new optimal therapies. However, the impor-
tance of the therapies on these parameters has been noted in a
previous study [25]. Also, it should be noted that the details of
a decolonization protocol may have implications other than
the impact on clearance. For example, they might (i) affect the
cost of the protocol or adherence to it, or (ii) have other side-
effects, e.g. altering the body’s microbiota. Modelling these
effects is beyond the scope of the present work. The model
could be improved further by (i) incorporating the type, the
burden and initial probabilities of MRSA colonization because
heterogeneity in treatment responses among patients, strain
types of MRSA and the initial colonization distribution might
affect the decolonization dynamics [26], and (ii) using semi-
Markov approaches in the CHMM to explicitly model the vari-
ations in time intervals between the visits (currently the longer
intervals were assumed to include missing in-between obser-
vations). Our analysis was based on a Bayesian approach,
requiring a specification of priors on model parameters to
express what is believed about their values before seeing the
data. We used weakly informative priors in accordance with
the literature [25], and the comparison included in the electronic
supplementary material, table S1 shows that the model fit was
not sensitive to the exact values of the priors. Despite the simpli-
fications, themethodsuccessfullypassedacomprehensive set of
diagnostic tests for model fit and convergence of the algorithm.

Our analysis aims for infection control practitioners and
researchers (i) to show the potential relative gains from the
components of the decolonization protocol and (ii) to assist
in understanding colonization dynamics and their interaction
with the decolonization protocol. To this end, we provide
modelling tools that may inform further clinical trials and
practice, and we hope these tools help design even more
effective decolonization protocols.

This study indicated that the impact of individual interact-
ing components of complex clinical protocols and randomized
controlled trial (RCT) data can be rigorously deconvoluted
and assessed in silico by machine learning tools like those
used here, thereby enabling the design of interventions that
are more efficient, easier to adhere to, and more likely to be
successful. This analytical approach thus demonstrates how
data from RCTs can inform about biological processes as
well as guide improvements in clinical protocols and
decision-making.
4. Methods
4.1. Isolate collection
MRSA isolates were collected as part of the CLEAR trial.
The trial was designed to compare the impact of a repeated
decolonization protocol plus education on general hygiene and
environmental cleaning with education alone on MRSA infection
and hospitalization [9]. Study subjects in the trial were recruited
from hospitalized patients based on an MRSA positive culture or
surveillance swabs. After recruitment, swabs were obtained from
different body parts of subjects (nares, skin, throat and wound)
around the time of hospital discharge (ENRL) and at one,
three, six and nine months (V1–V4, respectively) following the
initial visit, after which the swabs were cultured on chromogenic
agar. The application of decolonization protocol lasted only for
six months, and consequently, we only modelled visits until V3
in this study. We note that some enrolled study subjects, despite
a positive culture (clinical or surveillance) during the hospital
stay, did not have discharge swabs positive for MRSA at the
first time point (ENRL). The data used in this study are collected
from people aged over 18 (average age = 56, s.d. = 17) for both the
education and decolonization groups, with eligibility require-
ments also including hospitalization within previous 30 days
and positive testing for MRSA during the enrolment hospitaliz-
ation or within the 30 days before or afterwards. Exclusion
criteria included hospice care and allergy to the decolonization
products. Over the course of the trial, 98 of 1063 participants
(9.2%) in the education group and in 67 of 1058 (6.3%) in the
decolonization group developed MRSA infections, and 84.8%
of the MRSA infections resulted in hospitalization. More details
about recruitment and eligibility, follow-up, sample collection
and data preprocessing can be found in [9].
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4.2. Model
In this section, to describe the properties of CHMM, we initially
described the properties of HMMs. Then, we presented the
details of CHMMs, which were built on the HMM.
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4.2.1. Hidden Markov Model
Markov models are a well-known tool for time-series analysis.
Hidden Markov models (HMM) are a special case where
Markov process is observed indirectly through noisy obser-
vations. Discrete-time discrete-state hidden Markov model with
a latent sequence π, pt [ f1, . . ., Kg and observations x,
xt [ f1, . . ., Lg for t [ f1, . . ., tg, is defined as

p(p1:t, x1:t) ¼ p(p1)|fflffl{zfflffl}
initialstate

Yt
t¼2

p(pt j pt�1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
transition

2
64

3
75 Yt

t¼1
p(xt j pt)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
emission

2
64

3
75, ð4:1Þ

where K is number of latent states, τ is the number of time steps
and L the number of possible observed states. Parameters of the
model are the initial state probability π0, transition probability T
and emission probability E, defined as

p0ðiÞ ¼ pðp1 ¼ iÞ, ð4:2Þ
Tði, jÞ ¼ pðpt ¼ j j pt�1 ¼ iÞ ð4:3Þ

and Eði, jÞ ¼ pðxt ¼ j j pt ¼ iÞ: ð4:4Þ
Note that the rows of T and E are probability distributions by
definition. We will jointly denote the model parameters as
θ = {π0, T, E}. If θ is known, then we can estimate the latent
states π conditional on parameters θ and observations x using
the forward-filtering backward-sampling algorithm.
4.2.2. Forward-filtering backward-sampling
Filtering is the estimation of the current hidden state by using all
observations so far, p(πt | x1:t) [19]. This is known as forward-
filtering and it can be represented as follows:

p(pt j x1:t)/
X
pt�1

p(pt, pt�1, xt j x1:t�1) ð4:5Þ

¼ p(xt j pt)
X
pt�1

p(pt j pt�1)p(pt�1 j x1:t�1): ð4:6Þ

We define α(πt) = p(πt|x1:t) and substitute that into equation (4.6),
which yields the following recursive equation known as α-recur-
sion or forward recursion;

a(pt)/ p(xt j pt)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
corrector

P
pt�1 p(pt j pt�1)a(pt�1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

predictor

ð4:7Þ

The recursion starts with α(π1) = p(π1|x1) = p(x1|π1)p(π1)/p(x1).
This shows that the filtered distribution α(.) is propagated
through to the next time step, where it acts like a ‘prior’. In
other words, at each time step, the calculated posterior becomes
the new prior for the next time step [27].

To estimate the posterior distribution of latent states, we
sample from the joint distribution of the latent sequence, p(π1:τ|
x1:τ)

pðp1:t j x1:tÞ ¼ pðpt j x1:tÞ
Yt�1
t¼1

pðpt j ptþ1, x1:tÞ ð4:8Þ

/ pðpt j x1:tÞ
Yt�1
t¼1

pðptþ1 j ptÞpðpt j x1:tÞ ð4:9Þ

¼ a(pt)
Yt�1
t¼1

pðptþ1 j ptÞa(pt): ð4:10Þ

According to equation (4.8), to be able to compute the posterior
distribution of latent states, we need ‘time-reversed’ transitions
p(πt|πt+1, x1:t), which are obtained using α-recursions from the
forward filtering. The simulation starts from the end of the
sequence and proceeds backwards recursively. Starting point is

p̂t � aðptÞ ¼ p(pt j x1:t): ð4:11Þ
For each time step t, the unnormalized sampling probability
can be calculated using the previously sampled latent state
ptþ1 ¼ p̂tþ1, and the p̂t can be sampled using the following:

p̂t � p(ptþ1 ¼ p̂tþ1 j pt)aðptÞ: ð4:12Þ
This procedure is known as forward-filtering backward-
sampling [27].
4.2.3. Learning model parameters
Conditionally on the latent states and observations the par-
ameters θ = {π0, T, E} of the model can be estimated. The
posterior distribution pðp0, T, E j x1:N1:t Þ is given by

pðp0, T, E j x1:N1:t , p1:N
1:t Þ/ pðp0, T, EÞpðx1:N1:t , p

1:N
1:t

j p0, T, EÞ ð4:13Þ

/ pðp0, T, EÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
prior

YN
n¼1

pðxn1:t, pn
1:t j p0, T, EÞ:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood

ð4:14Þ

Factorizing the likelihood term in equation (4.14) as in equation
(4.1), we can get the following result:

YN
n¼1

pðxn1:t, pn
1:t j p0, T, EÞ ¼

YN
n¼1

(
p(pn

1 j p0)
Yt
t¼2

p(pn
t

j pn
t�1, T)

Yt
t¼1

p(xnt j pn
t , E)

)
ð4:15Þ

¼
YK
k¼1

p0ðkÞp
counts
0k

" # YK
k¼1

YK
l¼1

Tðk, lÞTcounts
k,l

" #

�
YK
k¼1

YL
l¼1

Eðk, lÞEcounts
k,l

" #
: ð4:16Þ

Since, π0, rows of the T, and rows of the E are probability distri-
bution, [.]’s inside equation (4.16) corresponds to multinomial
distribution with parameters pcounts

0 , Tcounts
k,: and Ecounts

k,: , where
pcounts
0 corresponds to the initial state counts, Tcounts corresponds

to the state to state transition counts, and Ecounts corresponds to
the state to observation emission counts. Since the Dirichlet is
conjugate prior for the multinomial distribution, we set a Dirich-
let prior for θ = {π0, T, E} with hyperparameters p

prior
0 , Tprior

k,: and
Eprior
k,: , respectively. Because of the conjugacy, the resulting

posterior in equation (4.14) is also a Dirichlet distribution

p
�
p0 j pcounts

0 , pprior
0

�
¼ Dirichlet

�
pcounts
0 þ p

prior
0

�
, ð4:17Þ

p(Tk,: j Tcounts
k,: , Tprior

k,: ) ¼ Dirichlet (Tcounts
k,: þ Tprior

k,: ) ð4:18Þ
and p(Ek,: j Ecounts

k,: , Eprior
k,: ) ¼ Dirichlet (Ecounts

k,: þ Eprior
k,: ): ð4:19Þ

4.2.4. Inference of HMM with MCMC Sampling
There are several ways to estimate the parameters of HMM when
both hidden states and model parameters θ are unknown, for
example the expectation-maximization algorithm, variational
Bayes, or MCMC sampling. In this paper, we will use MCMC.
The goal of MCMC is to produce draws from the posterior p(π,
θ|x). The Gibbs sampler is an MCMC algorithm suitable for
high-dimensional problems, such as the HMM, and it samples
parameters one-by-one using their distributions conditional on
the other parameters. In the HMM, it will alternate between
sampling the model parameters θ conditional on the latent
sequence π from p(θ|π, x), and the latent sequence π conditional
on the model parameters θ from p(π|θ, x). The algorithm iterates
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Figure 7. Plate diagram of (a) hidden Markov model (HMM) and (b) coupled hidden Markov model (CHMM). Here, for clarity, we illustrate only one chain. πt
represents the unobserved true states, and xt represents the noisy observations at time t. The faded observation nodes correspond to missing values. Plain par-
ameters are hyperparameters of the model. Edges from πt to xt represent emission probabilities. In the CHMM, the next state in one site depends on the previous
states of the other sites. It is illustrated by π

0
. Therefore, transition probabilities change at each time step.
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the following steps N times, which gives N draws from the
posterior:

1. Sample the model parameters u� ¼ fp�0, T�, E�g from
equations (4.17), (4.18) and (4.19), respectively. (Note that
they are independent of each other given latent sequence.)

2. Sample the latent sequence of HMM using the updated
model parameters θ using the forward-filtering backward-
sampling algorithm.

Before calculating the posteriors, the first N0 samples are dis-
carded as a convergence (warm-up) period of the Markov
chain. The plate diagram of the HMM is given in figure 7a,
and the algorithm is described in algorithm 1.
Algorithm 1. Hidden Markov Model.
4.2.5. Coupled hidden Markov model
In the set of ordinary HMMs, transition parameters do not
change within the chain. However, in the CHMM, transitions
in one chain are affected by other chains. In principle, it would
be possible to define a single joint HMM where the latent state
represents the latent states of all individual chains jointly and
adapt the solution for the HMM described above. However,
this is inefficient when there are many chains because the
number of states would grow as O(KC), where K is the number
of hidden states in a chain and C is the number of chains. On
the high level, our key idea is that the transition matrix of each
chain is modelled conditionally on the states of the other
chains (and not as a single large joint transition matrix). A similar
but simpler formulation was considered by [12]. Note that a tran-
sition matrix T for a specific chain will not be time-independent
any more, instead, changes at each time step depend on the states
of the other chains. The graphical representation of the model
(showing just two chains) is given in figure 1, and the plate dia-
gram of the CHMM is given in figure 7b. There are O(KC)
parameters in this formulation, which is much more efficient
for the increased number of chains. In theory, CHMM is a low-
rank estimation of one joint HMM.

Defining the transition matrix is a critical part of the algor-
ithm, and it is essential to carry as much information about the
other chains as possible. We model the dependencies between
the chains with parameters β, where each β[.] is a matrix of the
same size with the transition matrix. Assume there are C
chains and let C denote the set of chains. Further, assume that
each chain can be in one of K possible states, and let K denote
the set of states. Finally, assume that there is a baseline state k̂
such that if a chain is in that state, it does not affect other
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chains (in our application, this state corresponds to the absence of
MRSA colonization in the respective body site). The transition
matrix for the chain ĉ, at time t, denoted as T ½̂c�t , is defined by

U ½̂c�t ¼ b
½̂c�
0 þ

X
c[fCnĉg

X
k[fKnk̂g

b
½̂c c�
k I[p½c�t�1 ¼ k] ð4:20Þ

and

T ½̂c�t ¼ srowðU ½̂c�t Þ: ð4:21Þ
The transition matrix T ½̂c�t is obtained in equation (4.21) by apply-
ing a row-wise softmax operator σrow to the unnormalized
transition matrix U ½̂c�t . Parameter b½̂c�0 corresponds to an intercept
matrix and it specifies the transition matrix of the target chain ĉ
when all other chains are in the baseline state k̂. Parameter b½̂c c�

k
represents the impact of chain c on the target chain ĉ and it is
added to b

½̂c�
0 whenever chain c was in state k = k̂ in the previous

time step. We will denote all the parameters for target chain ĉ
as b½̂c�.

In equation (4.20), the unnormalized transition probability U
is an additive function of the latent states of the other chains;
hence we call it the Additive-CHMM. We also implemented a sim-
pler formulation than the Additive-CHMM, which we call Or-
CHMM. In the Or-CHMM, the target chain is not affected by
the other chains individually; instead, there the target chain is
affected whenever any of the other chains is in some state differ-
ent from the baseline state, and the unnormalized transition
matrix is given by

U ½̂c�t ¼ b
½̂c�
0 þ

X
k[fKnk̂g

b
½̂c�
k I[9c [ fC n ĉg:p½c�t�1 ¼ k]: ð4:22Þ

In our application, we have K = 2, corresponding to the presence
and absence of colonization in a given body site. In this case,
equation (4.22) has a simple form: if all other chains are in
state k̂, the output is only b

½̂c�
0 , and if any of the other chains is

in a state other k = k̂, then the output is the sum of b½̂c�0 and b
½̂c�
k .

4.2.6. Design and interpretation of the β parameters
In the CHMM, the transition matrix T for each chain is mod-
elled as a function of β parameters, where each βk is a matrix
of the same size as the transition matrix. Therefore, the
β parameters are a list of matrices. Since the rows of a transition
matrix T are assumed independent, we also model β par-
ameters such that the rows of those matrices are independent.
However, to avoid redundant parameters, the entries on each
row of β are assumed to sum to zero. In practice, we sample
the first K− 1 parameter on a given row and set the Kth
element to equal the negative of the sum of all the other par-
ameters. This constraint ensures that the mapping from β to T
is one-to-one.

To give an interpretation to the parameters β in the Additive-
CHMM, we start with equation (4.21) and write the softmax for a
single element of a transition matrix T(i, j )

Ttði, jÞ ¼ exp (Utði, jÞ)
exp (Utði, jÞ)þ

P
l[fKnkg exp (Utði, lÞ) , ð4:23Þ

from which it follows after straightforward algebra

logitðTtði, jÞÞ ¼ Utði, jÞ � log
X

l[fKnkg
exp (Utði, jÞ)

0
@

1
A: ð4:24Þ

In our application K = 2 and sums of the rows of βk are assumed
equal to 0, so consequently also the rows in the Ut sum to zero,
which gives us

logitðTtði, jÞÞ ¼ Utði, jÞ �Utði, :jÞ ð4:25Þ
¼ 2Utði, jÞ, ð4:26Þ
where :j refers to the other element on the row that is not j.
Therefore, in this two-dimensional case, all β0 values corres-
pond to half of the log-odds of the respective transition
probability, and similarly, parameters βk representing the inter-
actions between the chains correspond to half of the change in
the log-odds because of the presence of colonization in the
other chain.
4.2.7. Adaptive Metropolis–Hastings within Gibbs sampling
So far, we have described the design specifications of the CHMM.
Since transitions are changing at each time step, it is not feasible
to calculate their sufficient statistics as in equation (4.16). To
resolve this, we sample the b½̂c�� using a Metropolis–Hastings
(MH) step within the Gibbs sampler because conditional on the
latent states of all the chains, the transition parameters are fully
determined by the b½̂c� parameters. To get a draw from
pðb½̂c� j p½̂c�1:t, p½�ĉ�1:t Þ, where p

½�ĉ�
1:t are states of the other chains, we

use the following steps:

1. Make a proposal b½̂c�� � qðb½̂c�Þ
2. Transform b½̂c�� samples to transition probabilities T ½̂c��1:t accord-

ing to latent states of the other chains, π
0

3. Accept the proposal b½̂c�� with probability

a(T ½̂c��1:t ) ¼ min 1,
p(b½̂c�� j p½̂c�1:t, p½�ĉ�1:t )q

�
b½̂c� j b½̂c��

�
p(b½̂c� j p½̂c�1:t, p½�ĉ�1:t )q

�
b½̂c�� j b½̂c�

�
8<
:

9=
;, ð4:27Þ

where

p(b½̂c� j p½̂c�1:t, p½�ĉ�1:t )/ p(p½̂c�1:t j b½̂c��, p½̂c�1:t)p
�
b½̂c��

�
: ð4:28Þ

The first quantity on the right-hand side of equation (4.28) can
be directly calculated with the transition parameters T ½̂c��1:t
for corresponding chain. We used the Gaussian proposal in
which the previously sampled b½̂c� is the mean such that
qðb½̂c�� j b½̂c�Þ ¼ Nðb½̂c�� j b½̂c�, c2SÞ. As a variance parameter, we
used a fixed diagonal covariance matrix during the warm-up
period and then used the covariance matrix estimated from the
previous samples. We initially set c � 2:38=

ffiffiffi
d
p

as Metropolis
jumping scaling factor since it is theoretically the most efficient
scaling factor [28], where d is the dimension of the sampling.
Then we adaptively scaled the scaling factor c as described in
[29]. Since this proposal distribution is symmetric (i.e. normal),
qðb½̂c� j b½̂c��Þ and qðb½̂c�� j b½̂c�Þ in equation (4.27), cancel out
each other.

To sample the latent sequences, we need to modify the for-
ward-filtering backward-sampling algorithm [15], since we
need to draw samples from pðp½̂c�1:t j p½�ĉ�1:t , x½̂c�1:tÞ instead of
pðp½̂c�1:t j x½̂c�1:tÞ. The modified forward-filtering is defined as follows:

p(p½̂c�t j p½�ĉ�1:tþ1, x
½̂c�
1:t) ¼

X
p
½̂c�
t�1

p(p½̂c�t , p½̂c�t�1

j x½̂c�1:t�1, x½̂c�t , p½�ĉ�1:t , p½�ĉ�tþ1 ) ð4:29Þ
/ p(x½̂c�t j p½̂c�t )

Y
c0=ĉ

p(p½c
0 �

tþ1 j p½c
0 �

t , p½�c
0 �

t )
X
p
½̂c�
t�1

p(p½̂c�t

j p½̂c�t�1, p½�ĉ�t�1 )p(p
½̂c�
t�1 j p½�ĉ�1:t , x½̂c�1:t�1): ð4:30Þ

If we define aðp½̂c�t Þ ¼ pðp½̂c�t j p½�ĉ�1:tþ1, x
½̂c�
1:tÞ and substitute that into

equation (4.30), we can acquire modified α-recursion;

a(p½̂c�t )/ p(x½̂c�t j p½̂c�t )|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
corrector

Q
c0=ĉ p(p

½c0 �
tþ1 j p½c

0 �
t , p½�c

0 �
t )|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

modifyingmass

P
p
½̂c�
t�1

p(p½̂c�t j p½̂c�t�1, p½�ĉ�t�1 )a(p
½̂c�
t�1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

predictor

ð4:31Þ
Respectively, the posterior distribution of the latent sequences for
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each chain can be acquired as follows:

p(p½̂c�1:t j p½�ĉ�1:t , x½̂c�1:t) ¼ p(p½̂c�t j p½�ĉ�1:t , x½̂c�1:t)
Yt�1
t¼1

p(p½̂c�t

j p½̂c�tþ1, p½�ĉ�1:tþ1, x
½̂c�
1:t) ð4:32Þ

/ p(p½̂c�t j p½�ĉ�1:t , x½̂c�1:t)
Yt�1
t¼1

p(p½̂c�tþ1 j p½̂c�t , p½�ĉ�t )p(p½̂c�t

j p½�ĉ�1:tþ1, x
½̂c�
1:t) ð4:33Þ

¼ a(p½̂c�t )
Yt�1
t¼1

p(p½̂c�tþ1 j p½̂c�t , p½�ĉ�t )a(p½̂c�t ): ð4:34Þ

Therefore, we can use the sampling procedure described in
equations (4.11) and (4.12). Algorithm 2 summarizes the whole
algorithm. To validate the implementation, we used the algor-
ithm to estimate parameters in simulated data. The results in
electronic supplementary material, figure S2 show that the
algorithm estimated the parameters correctly and yielded well-
calibrated posterior distributions.

4.2.8. Implementation details
We set the initial covariance matrix for the Metropolis proposal as
0.01 × I, where I is the identity matrix, which corresponds to a step
size giving the optimal acceptance rate of approximately 23% [30].
We set the prior of β0 asN(β0| 0, 1), which is almost uninformative
so that the estimates are not affected strongly by the prior. For the
rest of the β parameters, denoted by βk, we used sparsity encoura-
ging Horseshoe prior with mean and scale parameters of 0 and
0.25, respectively (see electronic supplementary material). We
used a uniform prior on the initial state probabilities π0, and
weak Dirichlet priors for the rows of emission probabilities E
such that we set the value to 30 for specificity and 15 for sensitivity.
We set the rest of emission priors to 1, which corresponds to
uniform prior. In such a formulation, except for the initialization,
the prior has a negligible effect because it is summed with obser-
vation counts during inference. We drew 50 000 MCMC samples,
and we set the warm-up length as 25 000. Posterior probabilities
are calculated using the remaining MCMC samples. HMM and
CHMM implicitly assume that time intervals between obser-
vations are the same, which is not the case in our data.
Therefore, during the model training, we assumed that there are
missing observations at two, four and five months after enrolment.

Data accessibility. The CLEAR (Changing Lives by Eradicating Antibiotic
Resistance) trial demonstrated that the use of a post-discharge deco-
lonization protocol in MRSA carriers reduces infection and
hospitalization rates; ClinicalTrials.gov no. NCT01209234, see [9]
for informed consent and institutional review board approvals.
Code accessibility: the R package is accessible at https://github.
com/onurpoyraz/chmmMCMC. The data are provided in electronic
supplementary material [31].
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