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ABSTRACT OF THE DISSERTATION 

 

Development of the Plug-in Electric Vehicle Charging Infrastructure 

via Smart-Charging Algorithms 

 

By 

 

Edgar De Jesus Ramos Muñoz 

 

Doctor of Philosophy in Mechanical and Aerospace Engineering 

 

University of California, Irvine, 2019 

 

Professor Faryar Jabbari, Chair 

 

 

Electricity generation and the transportation sector make up a large portion of greenhouse 

gas emissions in the United States. Meeting ambitious reductions in greenhouse gasses requires 

large scale adoption of plug-in electric vehicles (PEVs) and has led to several policies and laws 

aimed at incentivizing PEV sales. An inadequate charging infrastructure, however, could be a 

major obstacle for a large-scale adoption of PEVs. Large electrical demands from PEVs could 

negatively affect circuitry, increase electricity costs, and exacerbate stress to local electrical 

components during times of high electricity usage. These issues, however, can be addressed by 

deploying smart-charging strategies. 

This work is focused on the development of smart-charging protocols for workplace 

battery electric vehicle (BEV) charging. Three comprehensive smart-charging protocols with 

different applications are proposed. Each protocol is developed with varying degrees of focus on 



xix 

 

communication requirements and privacy concerns. The BEV-based Optimization Protocol is a 

decentralized, non-iterative strategy that allows BEVs to individually schedule their charging 

schedules. The Octopus Charger-based MILP Protocol allows octopus chargers (i.e., charging 

stations with multiple cables) to independently schedule charging for their assigned BEVs. The 

Real-Time Octopus Charger-based MILP Protocol allows octopus chargers to schedule BEV 

charging in real time, without prior information from BEVs. By using the appropriate cost signal 

and assignment algorithms, the proposed protocols can manage a parking structure demand load 

while reducing the number of installed charging stations.  

Driving patterns from the National Household Travel Survey were used to perform 

simulations, to verify and quantify the effectiveness of each protocol. The proposed protocols 

resulted in improved peak load reductions for all simulated smart-charging scenarios, when 

compared with uncontrolled charging. By using octopus chargers, all protocols were able to 

reduce the number of charging stations needed at parking structures, while meeting the charging 

requests of all BEVs. Time-Of-Use rate plans from Southern California Edison were used to 

estimate monthly electricity costs for the simulated parking structures. The smart-charging 

protocols resulted in reduced electricity costs for most cases studied, when compared to 

uncontrolled charging. 
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1 Introduction 

1.1 Overview and Goal 

The need to reduce greenhouse gas emissions and fossil fuel consumption has increased 

the popularity of plug-in electric vehicles (PEVs) [1]. In 2017, the transportation sector and 

electricity generation made up 29% and 28% of greenhouse gas emissions, respectively, in the 

United States [2]. In [3], it was shown that meeting ambitious reductions in greenhouse gasses, 

such as those planned for California, requires large numbers of PEVs. An inadequate charging 

infrastructure, however, could be a major obstacle for the large scale adoption of plug-in electric 

vehicles (PEVs) [4]. Increases in PEV charging infrastructure results in increases of electric 

vehicle (EV) sales [5]. In this work, however, it is shown that single-cable charging stations go 

unused for large portions of time (when PEVs are connected, but not charging). This often 

causes frustration for drivers that want to charge, but do not have access to an available charging 

station [6]. By charging multiple PEVs with a single charging station, utilization rates can be 

improved. Thus, resulting in more cost-effective infrastructure investments. 

While the overall market share of electric vehicles (EVs) is currently small, recent years 

have seen a significant increase in sales [7], partly due to the emergence of high range and 

affordable vehicles. Significant increases in EV production/sales are imminent, with beneficial 

impacts on fossil fuel consumption and greenhouse gas emissions. Non-uniform concentrations 

of EV sales and increasing power levels, however, can cause difficulties for electricity delivery 

systems at the regional and/or residential levels [8]. Large electrical demands from plug-in 

electric vehicles (PEVs) could negatively affect circuitry, increase electricity costs, and 
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exacerbate stress to local electrical components during critical times (e.g., high usage durations 

on hot days). These issues can be addressed by deploying smart-charging strategies. 

In [9], it is found that the second most opportune time for PEV charging is at work 

(behind home charging). Installation of charging stations at workplace parking structures can 

provide charging opportunities for long-range commuters and battery electric vehicle (BEV) 

owners without access to home chargers (i.e., apartment dwellers). Furthermore, the curtailment 

of renewable resources (at high penetration levels) can be alleviated by shifting PHEV charging 

that occurs during typical working hours [10]. Thus, smart-charging strategies can be developed 

to lower infrastructure and operational costs to parking structure owners/operators, while also 

increasing the utilization of renewable resources.  

The goal of this project is to study and quantify the benefits of smart charging for BEVs 

at workplace parking structures. This is accomplished by developing comprehensive smart-

charging protocols with varying applications. The protocols proposed in this work are all 

developed with the goal of reducing infrastructure and operational costs for both the BEV drivers 

and workplace parking structure operator. Simulations are then performed to verify the 

effectiveness of each of the proposed protocols.  

1.2 Literature Review 

1.2.1 Grid-Level Smart Charging 

Management of electricity demand loads (e.g., load leveling or load shifting) via smart-

charging techniques is increasingly seen as a critical component for the safety and reliability of 

the grid. Scheduling PEV charging properly, can reduce the daily cycling of power plants and the 

operational cost of the electric utility [11]. The issue of coordinating charging, for large 
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populations of PEVs, with power networks has been studied by several research groups. Most 

smart-charging strategies fall into two categories: centralized charging and decentralized 

charging [12]. In [13], a modelling method for centralized charging is presented. The method 

reduces the computational burden of the optimization algorithm, which does not increase with 

the number of PEVs. Due to concerns about privacy and communication requirements, however, 

decentralized strategies are generally preferred for real-world applications.  

In [14] and [15], a decentralized iterative strategy is proposed to solve the valley filling 

problem for homogeneous PEVs (all PEVs have the same charging horizon, charging needs, and 

charging rates). This strategy requires all PEVs to participate in the iterative process, which 

results in significant communications demands. In [16], another decentralized iterative approach 

is proposed, which removes the necessity for homogeneous PEVs. A stochastic decentralized 

strategy is proposed in [12] which charges PEVs at their maximum rate. In [17], a decentralized 

charging strategy that schedules a PEV’s charging profile for an entire day (at various locations) 

is proposed. The strategy uses electricity prices to minimize operating costs for the driver. In 

[18], a decentralized vehicle-to-grid (V2G) charging strategy is proposed. The strategy allows 

individual PEVs to calculate an optimal charging/discharging profile for the entire day by using a 

cost signal. Under a simplifying assumption, the charging strategies proposed in [17] and [18] 

assume that each PEV starts and ends with the same battery state of charge (i.e., charged and 

discharged energy are equal). 

In [19], a simple decentralized charging strategy with a non-iterative approach is 

presented. The strategy charges PEVs at their maximum charging rates and can achieve valley 

filling, when desired. The strategy can be modified to follow specific grid level demand profiles, 
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to accommodate the integration of renewable power generation. The modest communication and 

computational requirements of this strategy make it suitable for real-world applications. 

In [8], it was shown that uncoordinated charging (and some forms of coordinated 

charging) could cause distribution transformers to operate under undesirable conditions. The 

strategy in [19] was modified, in [8], to develop several strategies to mitigate the burden created 

by high concentrations of plug-in electric vehicles, at the grid and local levels. It was shown 

through the analysis of hot spot temperature and equivalent aging factor that the strategies 

proposed in [8] reduce the chances of transformer failure with the addition of plug-in electric 

vehicle loads, even for an under-designed transformer. A draft of the manuscript for [8] can be 

found in the appendix. 

The focus of this work is on the development of smart-charging protocols that reduce 

infrastructure and operational costs for workplace parking structures. We start with the charging 

strategy from [19], and modify it to incorporate the constraints that arise when scheduling 

workplace charging (as opposed to overnight charging at home). 

1.2.2 Workplace Smart Charging 

Generally, PEV charging can be categorized into two types: destination charging and 

urgent charging [20]. Destination charging involves charging at locations where a PEV driver 

will be parked (i.e. home, workplace, supermarket, etc.). Urgent charging involves charging on 

the road due to a low state of charge (SOC). In [21], it is found that 28-38% of typical travel 

results in a state of charge that is low enough to qualify for Level 3 charging. In most cases, 

however, charging needs for BEV drivers can be satisfied with Level 1 or Level 2 charging [22]. 

The focus of this work is on BEV drivers that find Level 2 charging more suitable.  
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After overnight charging, the second most opportune time for BEV charging is at work 

[9]. Workplace charging can provide charging opportunities for drivers with long commutes and 

drivers without access to home chargers (e.g., apartment dwellers). Furthermore, shifting PHEV 

charging to periods of high renewable generation can alleviate the curtailment of renewable 

resources (at high penetration levels) [10], [23]. For solar power generation, this typically occurs 

during daily working hours. Thus, smart-charging strategies can be developed to lower 

operational and infrastructure costs to parking structures, while also increasing the utilization of 

renewable resources. 

Smart-charging strategies for parking lots/structures have been developed by various 

research groups. In [24] a centralized scheduling system for EV charging at parking lots is 

proposed. The optimization-based approach uses a two-layered framework to handle the effects 

of random deviations from typical driving patterns. Iterative methods are proposed in [25] and 

[26] to manage PEV charging in parking structures, via computational intelligence. In [25] 

binary particle swarm optimization is used to schedule V2G charging/discharging to maximize 

PEV owners’ profits. Particle swarm optimization and estimation of distribution algorithms are 

used in [26] to manage PEV charging at a municipal parking lot. In [27] an algorithm that 

provides continuous (all-at-once) charging for PEVs is developed to reduce load variation. In 

[28] fuzzy optimization techniques are used to propose a model that maximizes a parking 

structure operator’s profits while satisfying PEVs drivers’ charging needs. The model proposed 

in [28] is designed to take uncertainties of PEV characteristics, PEV mobility, and the market 

into consideration. Note that the grid level smart-charging strategies discussed in the previous 

section can be applied to parking structures with relative ease. 
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1.2.3 Octopus Charger Model 

Range anxiety is described as the fear that a BEV will run out of battery charge before 

arriving at a destination where it can be recharged. Charger anxiety is described as the concern 

that chargers will not be available at destination charging locations. Access to electric vehicle 

chargers can mitigate the negative effects of range anxiety and charger anxiety. In [5] it is found 

that increases in charging station deployment result in increases of EV sales. In [29] a survey 

found that 71.7% of participants placed a high degree of importance on having recharging 

facilities at work or near businesses they frequent, when considering a future PHEV purchase.  

Significant investments in charging infrastructure would, however, be required if single-

cable charging stations remain the standard. Furthermore, charging needs for most drivers can be 

met with Level 1 charging [22]. Thus, utilization rates for Level 1 and Level 2 workplace 

chargers could be quite low for some drivers. Using driving pattern data from the National 

Household Travel Survey (NHTS), it is found that for 1.92, 3.6, 6.6, and 10 kW charging, PEVs 

only use chargers 11.14%, 6.28%, 3.48%, and 2.30% of the time during a 24-hour period, 

respectively. This translates to about 33.02%, 18.86%, 10.51%, and 6.97% of the time that they 

are parked (see Section 4.2 for details). This suggests that the charging times for a PEV can be 

shifted around (via smart-charging strategies) to reduce load variation. These low usage rates, 

however, also suggest that single-cable charging stations go unused during a PEV’s idle time 

(when it is connected, but not charging).  

In [30], “octopus chargers” are proposed as a cost-effective solution for charger anxiety. 

Octopus chargers are designed to contain several cables, such that a single octopus charger can 

charge multiple PEVs. The concept of connecting multiple BEVs to a single charging station has 

also been explored in [20]. In that work, Zhang et al. proposed a two-stage stochastic 
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programming model for planning parking structures equipped with multiple-cable charging 

stations. The model uses mixed integer linear programming (MILP) to take the influence of 

coordinated charging into consideration. The proposed model substantially reduced the required 

investment and the subsequent annual costs for a charging facility.  
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2 Goals, Objectives, and Approach 

2.1 Goal 

The goal of this project is to study and quantify the benefits of smart charging for BEVs 

at workplace parking structures. This is accomplished by developing comprehensive smart-

charging protocols for different applications. The protocols proposed in this work are developed 

with the goal of reducing infrastructure and operational costs for workplace parking structure 

owners/operators. 

2.2 Objectives 

In order to achieve this goal, various smart-charging protocols for workplace charging are 

developed. All smart-charging protocols proposed in this work fulfill the following global 

objectives: 

1. Protocols reduce operational/electricity costs by managing the parking structure demand 

load. 

2. Protocols reduce infrastructure investments by charging multiple BEVs with a single 

charging station. 

3. Protocols charge BEVs at their maximum charging rate. 

4. Protocols incorporate constraints of workplace charging (multiple dwelling periods). 

5. Protocols do not affect BEVs’ charging goals (compared to uncontrolled charging). 
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2.3 Approach / Summary 

In order to accomplish the goal above, several smart-charging protocols were developed, 

for various applications. Each protocol was developed with varying degrees of focus on 

communication requirements and/or privacy concerns. The following tasks were established for 

this work. 

Task 1: Develop realistic simulations to analyze and quantify the benefits of each smart-

charging strategy. 

This task is aimed at developing realistic simulations to compare the smart-charging 

strategies proposed in this work (see Section 4). Driving patterns from the 2017 National 

Household Travel Survey (NHTS) [31] were used to generate suitable travel data for simulated 

BEVs. Several parameters were used to filter the data from the NHTS, which resulted in travel 

data for 53,951 vehicles. The resulting travel data was used to simulate BEVs in workplace 

parking structures, under various charging scenarios. Specifications for the 2017 Nissan Leaf 

were used for all simulated BEVs. 

Measured data was used to obtain a building load for the simulated parking structures. 

Measured data from a photovoltaic (PV) system was used to study the effects of solar power 

when using smart-charging methods. Time-Of-Use rate plans from Southern California Edison 

were used to estimate monthly electricity cost for the simulated parking structures in this work. 

Task 2: Develop a decentralized smart-charging protocol that maintains privacy. 

In this task, a comprehensive BEV-based protocol for workplace charging is proposed. 

This protocol is referred to as the BEV-based Optimization Protocol and is presented in 

Section 5 of this work. The protocol first uses an ordering strategy, based on each vehicle’s load 
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shifting flexibility, to develop a queue. Next, a decentralized smart-charging strategy is used that 

allows BEVs to generate their own charging profile via linear programming. By using the 

appropriate cost signal, the proposed smart-charging strategy can generate a parking structure 

demand load with desirable characteristics. Finally, an assignment algorithm is used to assign 

BEVs to octopus chargers.  

By allowing BEVs to individually generate their charging profiles, drivers can avoid 

sharing their driving patterns with the parking structure operator. The only information conveyed 

to the parking structure operator is the charging profiles generated by the BEVs (to aggregate to 

the predicted load) and their charging flexibility. The BEVs’ charging profiles or charging 

flexibility do not necessarily give away the BEV’s dwell/driving patterns, thus, this decentralized 

approach maintains a measure of user privacy. 

For this protocol, the parking structure operator must gather the charging flexibility of all 

participating BEVs in the morning (before the first BEV arrives). The operator then generates a 

queue and executes the appropriate smart-charging strategy. This approach requires somewhat 

more complex communication between the BEVs and the parking structure operator but provides 

significant improvements. 

Task 3: Develop a smart-charging protocol that allows octopus chargers to generate charging 

profiles for their assigned BEVs. 

In this task, a comprehensive Octopus Charger-based protocol is proposed. This protocol 

is referred to as the Octopus Charger-based MILP Protocol and is presented in Section 6. The 

parking structure operator first assigns BEVs to octopus chargers based on their charging 

flexibility. Once assigned, BEVs share their expected driving patterns for the day (along with 
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basic BEV specifications) to their assigned octopus chargers. A queue is then generated to 

dictate the order in which octopus chargers generate charging profiles for their assigned BEVs. 

Once an octopus charger is ready, it uses mixed integer linear programming (MILP) techniques 

to generate charging profiles for its assigned BEVs. By using the appropriate cost signal, the 

proposed smart-charging strategy can generate a parking structure demand load with desirable 

characteristics. 

In this protocol, octopus chargers use their assigned BEVs’ driving data to generate 

charging profiles. Thus, privacy is not maintained for the participating BEVs. If privacy is not a 

high priority and drivers are willing to share their driving patterns, then this protocol can be used 

to reduce the number of octopus charger needed in a parking structure. Furthermore, driving 

patterns for entire fleets of buses or delivery trucks are generally known. Applying this protocol 

can reduce electricity costs and charging infrastructure investments for public transportation and 

delivery companies. 

 As in Task 2, it is necessary to execute the protocol in the morning (before the first BEV 

arrives). Again, this approach requires somewhat more complex interaction between the BEVs 

and the octopus chargers but provides significant improvements. 

Task 4: Develop a smart-charging protocol that allows octopus chargers to generate charging 

profiles in real time. 

In this task, a comprehensive Octopus Charger-based protocol, that generates charging 

profiles in real time, is proposed. This protocol is referred to as the Real-Time Octopus 

Charger-based MILP Protocol and is presented in Section 7. As each BEV arrives to the 

parking structure, it is assigned to an octopus charger, without any prior information about the 
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BEV. The BEV’s expected driving patterns for the day become available to the octopus charger 

as soon as it connects. The octopus charger then generates a charging profile for the BEV and 

updates the charging profiles of any BEVs that were already connected (if necessary). The 

process is repeated with the next BEV to arrive, until all BEV charging profiles have been 

generated. By using the appropriate cost signal, the proposed smart-charging strategy can 

generate a parking structure demand load with desirable characteristics. 

Since drivers must share their expected driving patterns with their assigned octopus 

chargers, user privacy is not maintained. This protocol, however, eliminates a significant portion 

of the communication requirements from the BEV-based Optimization Protocol and the Octopus 

Charger-based MILP Protocol. Once the driver parks, they can simply input their expected 

driving patterns via the octopus charger’s user interface. 
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3 Terminology 

The symbols used in this paper are as follows. 

Table 1 Description of symbols used in this work 

𝐵 Cost associated with binary decision variable 𝑙𝑛(𝑡𝑖) 

𝑏𝑛 Energy requested and obtained by BEV 𝑛 (in kWh) 

𝐵𝐶𝑛,0 
Battery charge of BEV 𝑛 at the beginning of the day (in 

kWh) 

𝐵𝐶𝑛,𝑑𝑒𝑠 
Desired battery charge for BEV 𝑛 at the end of the workday 

(in kWh) 

𝐵𝐶𝑛,𝑐𝑎𝑝 Battery capacity of BEV 𝑛 (in kWh) 

𝐵𝐶𝑛,𝑢𝑏,𝑗 Upper bound on charge BEV 𝑛 can have at the end of 

dwelling time 𝑇𝑛,𝑗 (in kWh) 

𝐶𝑙𝑜𝑎𝑑(𝑡𝑖) 
Broadcast cost signal from parking structure demand load 

for each timeslot 𝑡𝑖 

𝐶𝑛(𝑡𝑖) 
Cost signal used by octopus charger for BEV 𝑛 during 

timeslot 𝑡𝑖 

𝐷𝑛 Total number of dwelling times for each BEV 𝑛 

𝐹𝑛 Flexibility Ratio of BEV 𝑛 

𝐹𝑛
−1 Inverse Flexibility Ratio of BEV 𝑛 

𝐼 
Total number of timeslots for octopus charger-based 

optimization 

𝐽 Total charging cost 

𝑙𝑛(𝑡𝑖) Binary decision variable or BEV 𝑛 during timeslot 𝑡𝑖 

𝑛 BEV number 

𝑁 Total number of BEVs 

𝑝𝑛 Charging power for BEV 𝑛 (in kW) 

𝑃𝑜𝑐𝑡 Maximum output power of octopus charger (in kW) 

𝑟𝑛(𝑡𝑖) 
Maximum charging energy for each BEV n, at each timeslot 

𝑡𝑖 (in kWh) 

𝑅(𝑡𝑖) 
Maximum charging energy that can be provided by an 

octopus charger at each timeslot 𝑡𝑖 (in kWh) 

𝑡𝑖 Timeslot 𝑖 

𝑇𝑛,𝑗 Dwell time 𝑗 of BEV 𝑛 
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𝑡𝑖,𝑗 
𝑡𝑖,𝑗 = {𝑡𝑖  ∈  𝑇𝑛,𝑗}  

(i.e., timeslot occurring during dwell time 𝑇𝑛,𝑗) 

�̂�𝑖,𝑗 
�̂�𝑖,𝑗 = {𝑡𝑖  ∈  ⋃ 𝑇𝑛,𝑘𝑘     𝑓𝑜𝑟 𝑘 = 1,… , 𝑗}  

(i.e., timeslot occurring during dwell times 𝑇𝑛,1 through 

𝑇𝑛,𝑗) 

∆𝑡𝑛(𝑡𝑖) Length of timeslot 𝑡𝑖 for BEV n 

𝑥𝑛(𝑡𝑖) 
Charging energy for each BEV n, at each timeslot 𝑡𝑖 (in 

kWh) 

𝑦𝑛,𝑗 
Energy used by each BEV, 𝑛,  from driving done before 

each dwell time, 𝑇𝑛,𝑗 (in kWh) 

𝜂 BEV charging efficiency 

 

The abbreviations used in this paper are as follows 

Table 2 Description of abbreviations used in this paper 

BEV Battery Electric Vehicle 

EV Electric Vehicle 

MILP Mixed Integer Linear Programming 

NHTS National Household Travel Survey 

PEV Plug-in Electric Vehicle 

PHEV Plug-in Hybrid Electric Vehicle 

SCE Southern California Edison 

SOC State of Charge 

TOU Time-of-Use 

UCI University of California, Irvine 

V2G Vehicle-to-Grid 
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4 Parameters, data, and related assumptions 

4.1 Driving Schedules 

Large portions of this work assume that the daily driving patterns (or a conservative 

estimate) of all BEVs are known. This assumption is based on the emergence and advancement 

of location and calendar information on smart phones (e.g., location reminders). Furthermore, 

this assumption is generally true when considering delivery and bus companies (where the 

schedules for the entire fleet are generally known). 

4.2 BEV Data 

The 2017 National Household Travel Survey (NHTS) [31] was used to obtain vehicle 

travel data for the following simulations. Since workplace data was needed, different parameters 

were used to filter the entirety of the NHTS travel data. Travel data with the following 

characteristics was filtered out. 

a) Driving data for participants who did not go to work.  

b) Driving data that started or ended at work (because proper dwell times cannot be 

obtained).  

c) Driving data for participants who used their personal vehicle for less than half of their 

travels (because participants relied heavily on other methods of transportation).  

d) Driving data where the participant’s personal vehicle was not used to get to work, back 

home, or both.  

e) Driving data with total dwell time lengths of less than 4 hours.  
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f) Driving data with individual trips longer than 100 miles (battery range of a 2017 Nissan 

Leaf).  

g) Participants with driving data that would not be feasible with a BEV (i.e., the BEV would 

run out of battery at some point).  

h) Driving data where the participant left work on the first day and returned on the second 

day.  

Dwell times were maintained if a participant left work, but did not drive their personal 

vehicle (i.e., if the participant went for a walk). This processing resulted in travel data for 53,951 

vehicles in the United States and 9,274 vehicles in California. 

 

Figure 1 Workplace charging availability for drivers/vehicles in the filtered data sets 

for the United States and California 

 

The resulting driving data was used to calculate the availability of driver vehicles at the 

parking structure. Figure 1 shows the percentage of vehicles that are parked at work throughout 

the day. At least 25% of vehicles in the data set were parked at work between 7:00 am and 5:56 
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pm. A small dip is seen in the curve around noon, during lunch time. A small percentage of 

vehicles were also found to be at work past midnight.  

Various commute lengths for both data sets were calculated. The commute lengths were 

for driving done before work, driving after work, and driving done during the entire workday. 

Figure 2 shows the cumulative percentage of drivers with commute lengths greater than or equal 

to the given miles (on the x-axis). Both figures show that there are negligible differences 

between the data sets obtained for the United States and California. The data set for the United 

States will be used to generate the BEV data used in all simulations performed. 

 

Figure 2 Cumulative percentage of drivers with commute lengths greater than or equal 

to the given values (for driving done before work, after work, and the entire day) 

 

A charging efficiency (𝜂) of 0.9 was assumed for all BEVs. It was also assumed that all 

BEVs were fully charged when they left home. Specifications for the 2017 Nissan Leaf were 

used for all BEVs. These specifications are as follows: 
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i. 0.3 kWh/mi fuel economy 

ii. 30 kWh battery 

iii. 3.6 kW charging rate 

Using the NHTS travel data with filters (a)-(h), the utilization rates for traditional (single-

cable) charging stations were calculated for BEVs attempting to get a full charge at work. For 

constant 1.92, 3.6, 6.6, and 10 kW charging, BEVs would only use traditional charging stations 

11.14%, 6.28%, 3.48%, and 2.30% of the time during a 24-hour period, respectively. This 

corresponds to 33.02%, 18.86%, 10.51%, and 6.97% of the time they are parked, respectively. 

4.3 Baseload Data 

Measured data from the Canon B building in the UC Irvine Research Park was used to 

obtain a building load for the simulations performed. The building load was measured on July 

22nd, 2008. Measured data from the photovoltaic (PV) system at the Multipurpose Science and 

Technology Building at UC Irvine (UCI) was used to study the effects of solar power when using 

smart-charging methods. The power generated by the PV system was measured on a sunny day 

on November 18th, 2010. The building load and the PV load were interpolated using the spline 

method of the “interp1” function of MATLAB, to obtain loads with minute-by-minute 

resolution. The two baseloads used in this work are presented in Figure 3. Since a small 

percentage of drivers stay at work past midnight, 48-hour baseloads are needed. The two 24-hour 

baseloads (seen in Figure 3) are repeated to generate the 48-hour baseloads used in all 

simulations. 
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Figure 3 Interpolated baseload data for 24 hours 

 

4.4 Simulation Parameters 

Each charging strategy was tested on 50 different simulated parking structures. All 

parking structures were simulated with 100 and 500 participating BEVs. A different sample of 

randomly selected BEVs, from the filtered NHTS data, were used for each parking structure. The 

BEVs included in parking structure #X for 100 BEVs are a random subset of the 500 BEVs used 

in parking structure #X.  

Simulations were performed for situations when drivers attempted to get a full charge and 

for when they attempted to get less than that. The four cases simulated are as follows. Values 

higher than the battery capacity of the BEV were reduced to the battery capacity. 

1. BEVs attempt to charge enough for all driving required after work. 

2. BEVs attempt to charge enough for twice the driving required after work (i.e., a factor of 

safety (FoS) of 2 for all driving required after work). 
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3. BEVs attempt to charge enough for five times the driving required after work (i.e., a 

factor of safety (FoS) of 5 for all driving required after work). 

4. BEVs attempt to charge to a 100% SOC. 

4.5 Electricity Costs 

Time-Of-Use (TOU) is a pricing structure that charges different rates for electricity 

depending on the season, time of the day, and rate schedule [32]. The Southern California Edison 

(SCE) TOU pricing scheme includes two seasons: summer and winter. The summer season is 

June-September, while winter season is October-May. SCE refers to its three pricing periods for 

businesses as On-Peak, Mid-Peak, and Off-Peak. With On-Peak having the highest energy price 

and Off-Peak having the lowest. Traditionally, the On-Peak hours have been 12 pm to 6 pm. 

New On-Peak hours (4 pm to 9 pm), however, have been recently approved by the CPUC for 

2019. These new TOU rates allow customers to lower electricity costs by using renewable 

energy when it is naturally available [33]. Renewable energy, however, can be very uncertain, 

which adds to the need for flexible smart charging. 

Table 3 contains the SCE summer periods for the traditional TOU pricing structure (as of 

October 1st, 2018) and the new TOU pricing structure (as of April 12th, 2019). In general, 

electricity usage is more expensive during On-Peak hours.  

Table 3 Time-of-Use periods for weekdays during the summer season 

 Off-Peak Mid-Peak On-Peak 

2018 11 pm – 8 am 
8 am–12 pm               

& 6 pm-11 pm 
12 pm – 6 pm 

2019 
12 am – 4 pm           

& 9 pm – 12 am 
N/A 4 pm – 9 pm 
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Table 4 contains the cost of energy for four TOU rate plans. TOU-GS-2 and TOU-GS-3 

correspond to rate plans available to customers with peak demand loads between 20-200 kW and 

200-500 kW, respectively. The B plans correspond to the 2018 rate plans, while the D plans 

correspond to the 2019 rate plans. Note that TOU periods and prices can vary significantly across 

regions. 

Table 4 Energy charge (per kWh) for weekdays during the summer season 

 

Along with the TOU energy pricing, many businesses can also incur monthly per kW 

demand charges. A facilities related demand charge is calculated based off the highest load 

incurred at any time. In addition, time related demand charges are calculated based on the 

highest load incurred during particular TOU periods. Table 5 contains the demand charges for 

the rate plans above. Note that even modest increases (1-10 kW) can significantly increase the 

monthly demand charges for a customer. 

Table 5 Demand charge (per kW) for weekdays during the summer season only 

 All Hours Mid-Peak On-Peak 

TOU-GS-2-B $15.89/kW $3.83/kW $19.61/kW 

TOU-GS-3-B $18.29/kW $3.88/kW $19.73/kW 

TOU-GS-2-D $10.75/kW N/A $27.27/kW 

TOU-GS-3-D $11.72/kW N/A $27.24/kW 

 

 Off-Peak Mid-Peak On-Peak 

TOU-GS-2-B $0.05763/kWh $0.08031/kWh $0.12271/kWh 

TOU-GS-3-B $0.05834/kWh $0.07950/kWh $0.12168/kWh 

TOU-GS-2-D $0.07764/kWh N/A $0.11434/kWh 

TOU-GS-3-D $0.07488/kWh N/A $0.10904/kWh 
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For simplicity and consistency, electricity costs for all parking structures were calculated 

with the corresponding TOU-GS-3 summer rate schedule, except for 100 BEV parking structures 

without a baseload. It can be seen, in Figure 5-A, that the maximum load for this case is well 

below 200 kW. Thus, the corresponding TOU-GS-2 summer rate schedule is used to calculate 

the electricity costs for 100 BEV parking structures without a baseload. 

Note: It can be seen that some strategies result in demand loads above 500 kW (see 

Figure 5-B). These demand loads would lead to the use of TOU-8 rate schedules (which are 

designed for demand loads above 500 kW). For the sake of consistency between charging 

strategies, however, the TOU-GS-3 rate schedules will be used in these cases as well. Note that 

the use of the TOU-8 rate schedules would result in higher costs for the Uncontrolled Charging 

cases. 

Monthly electricity costs for the simulated parking structures were also calculated with 

the A and E versions of the rate schedules above (i.e., TOU-GS-3-A and TOU-GS-3-E). These 

rate schedules resulted in higher monthly costs in most cases when compared to the rate 

schedules used in this work. Thus, monthly costs for the A and E versions of the above rate 

schedules are omitted from this work. 
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5 BEV-based Optimization Protocol 

5.1 Introduction 

The second most opportune time for BEV charging (behind home charging) is at work 

[9]. Installation of charging stations at workplace parking structures can provide charging 

opportunities for long-range commuters and battery electric vehicle (BEV) owners without 

access to home chargers (i.e., apartment dwellers). BEV manufacturers have invested in 

workplace charging by donating charging stations to qualifying businesses and property owners 

[34]. Furthermore, the curtailment of renewable resources (at high penetration levels) can be 

alleviated by shifting PHEV charging that occurs during typical working hours [10]. 

Access to EV chargers, at work and public locations, can mitigate the negative effects of 

range anxiety and charger anxiety [30]. Significant investments in charging infrastructure would, 

however, be required if single-cable charging stations remain the standard. In Section 4.2, it is 

shown that single-cable charging stations go unused for large portions of time (when BEVs are 

connected, but not charging). By charging multiple BEVs with a single charging station, 

utilization rates can be improved. Thus, resulting in more cost-effective infrastructure 

investments. 

In [17], a decentralized charging strategy that schedules a PEV’s charging profile for an 

entire day (at various locations) is proposed. The strategy uses electricity prices to minimize 

operating costs for the driver. In [18], a decentralized vehicle-to-grid (V2G) charging strategy is 

proposed. The strategy allows individual PEVs to calculate an optimal charging/discharging 

profile for the entire day by using a cost signal. Under a simplifying assumption, the charging 
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strategies proposed in [17] and [18] assume that each PEV starts and ends with the same battery 

state of charge (i.e., charged and discharged energy are equal). 

In [19], a simple decentralized charging strategy with a non-iterative approach is 

presented. The strategy charges PEVs at their maximum charging rates and can achieve valley 

filling, when desired. The strategy can be modified to follow specific grid level demand profiles, 

to accommodate the integration of renewable power generation. The modest communication and 

computational requirements of this strategy make it suitable for real-world applications. 

The focus of this work is on the development of smart-charging protocols that reduce 

infrastructure and operational costs for workplace parking structures. We start with the charging 

strategy from [19], and modify it to incorporate the constraints that arise when scheduling 

workplace charging (as opposed to overnight charging at home). 

In this chapter, a comprehensive BEV-based optimization protocol for workplace 

charging is proposed. The protocol is developed with the goal of reducing infrastructure and 

operational costs for a workplace parking structure, while meeting BEV drivers’ charging needs. 

This work is focused on BEVs but applies to PEVs in general. The following are the main 

contributions of this work. 1) A smart-charging strategy, that incorporates the constraints of 

workplace charging, is proposed (see Section 5.3.2). The decentralized, non-iterative strategy 

manages the parking structure demand load by allowing BEVs to individually generate their own 

charging profile via linear programming methods. By using the appropriate cost signal, the 

proposed smart-charging strategy can generate a parking structure demand load with desirable 

characteristics. The assumption/constraint that each BEV starts and ends with the same battery 

SOC (needed in [17] and [18]) is removed, so that BEV drivers can explicitly select the SOC 

they are comfortable with at the end of the workday. 2) An ordering strategy is proposed, to 
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further improve the effectiveness of the proposed smart-charging strategy (see Section 5.4.2). 3) 

An assignment strategy that allows multiple BEVs to be charged by a single charging station is 

proposed (See Section 5.5.1) to reduce the total number of charging stations needed at a parking 

structure. 

5.2 Overview of BEV-based Optimization Protocol 

The parking structure protocol presented here is similar to the protocols used in [19] and 

[8]. For this protocol, a queue is initially generated to dictate the order in which BEVs obtain 

their charging profiles. The queue can be chronological (See Section 5.4.1), or set up through an 

ordering procedure (See Section 5.4.2). Once a BEV is ready to generate a charging profile, it 

receives a “cost signal” for the next 48 hours. This cost signal is not a true cost, but a suitably 

adjusted aggregation of the parking structure demand load and the previously scheduled BEV 

charging profiles (see Section 5.6.2 and Section 5.6.3). The BEV uses linear programming 

techniques to independently generate its charging profile based on the broadcast cost signal (See 

Section 5.3.2). The BEV then sends its charging profile to the parking structure operator, where 

it is aggregated for an updated cost signal. The process is repeated with next BEV in the queue, 

until all BEVs have independently generated their charging profiles. 

Once the parking structure operator has aggregated all charging profiles, BEVs are 

assigned to the charging station(s) they will be connected to during their dwelling period(s) (see 

Section 5.5.1). The application of “octopus chargers” is discussed in Section 5.5.1.2. 
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5.3 Charging Strategies 

5.3.1 Uncontrolled Charging 

Uncontrolled Charging is currently the most common method of charging BEVs. Each 

BEV attempts to charge during each dwelling period at the parking garage. It will continue to 

charge until it obtains a full battery, reaches a specified battery state of charge (SOC), or 

disconnects from the charging station (because it leaves the parking structure). 

5.3.2 Smart Charging 

The procedure and characteristics of this smart-charging strategy are similar to those in 

[19] and [8] (see Section 5.2). This non-iterative protocol ensures maximum charging power 

during a BEV’s scheduled charging times, while achieving an overall demand profile with 

desirable characteristics. The simplest objective is so-called Valley Filling (see Section 5.6.2), 

used to reduce peaks and variability in the demand load. Alternatively, as in [19], a modified 

version of Valley Filling can steer demand away from (or toward) specific times. Thus, allowing 

the parking structure operator to maximize the use of renewable energy and/or avoid high time-

related electricity charges (see Section 5.6.3). 

If a BEV is parked for the entire duration of the workday, then the problem formulation 

from [19] can be used (see Equations (2)-(5) in this work). The key difficulty is that, unlike 

overnight residential charging, some workers may leave the parking structure for various reasons 

(i.e., lunch, meetings, errands, etc.). To accommodate for these restrictions, a variety of 

inequality constraints must be added (see Equations (6)-(8)). 
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5.3.2.1 Problem Statement: Smart-Charging 

In this work, it is assumed that all participating BEVs are plugged into a charging station 

while they are parked at work, unless stated otherwise (as in Section 5.5.1.1). The continuous 

periods when a BEV is in the parking structure will be referred to as “dwell times”, as trips away 

from the parking structure can interrupt the stay. 𝑇𝑛,𝑗 represents the 𝑗𝑡ℎ dwell time of the 𝑛𝑡ℎ 

BEV. The total number of dwell times for the 𝑛𝑡ℎ BEV is given by 𝐷𝑛. The energy used by the 

𝑛𝑡ℎ BEV before the 𝑗𝑡ℎ dwell time (due to driving) is given by 𝑦𝑛,𝑗. Since a BEV can park in 

different parking spaces during different dwell times, it can connect to different charging stations 

throughout the day. 

The timeslots for the entire workday are given by 𝑡𝑖. Timeslots that occur during dwell 

time 𝑇𝑛,𝑗 are given by 𝑡𝑖,𝑗  (i.e., 𝑡𝑖  ∈  𝑇𝑛,𝑗). The length of each timeslot, ∆𝑡𝑛(𝑡𝑖), is given as a 

fraction of the timeslot resolution. The timeslot resolution used in the simulations in this work 

will be one hour. Consider a BEV with a dwelling time of 6.25 continuous hours: ∆𝑡𝑛(𝑡𝑖) would 

equal one for the first six timeslots and 0.25 for the final timeslot. Thus, the total length of each 

dwell time, 𝑇𝑛,𝑗, is given by ∑ ∆𝑡𝑛(𝑡𝑖,𝑗)𝑖 . 

The charging power during timeslot 𝑡𝑖 and the grid-to-vehicle charging efficiency are 𝑝𝑛 

and 𝜂, respectively. The initial charge of the 𝑛𝑡ℎ BEV when it departs from home (before any 

driving is done) is given by 𝐵𝐶𝑛,0. In order to ensure that feasible charging profiles are 

generated, an upper bound must be placed on the charge each BEV’s battery can have at the end 

of each dwell time: 𝐵𝐶𝑛,𝑢𝑏,𝑗. The value of 𝐵𝐶𝑛,𝑢𝑏,𝑗 is dictated by the charging power, the energy 

used before each dwelling time, the length of each dwelling time, and the battery capacity. For 

example, suppose a BEV has 2 kWh of charge when it arrives at work (i.e., 𝐵𝐶𝑛,0 − 𝑦𝑛,1 = 2). If 
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the first dwell time is only long enough to get 3.6 kWh of charge, then 𝐵𝐶𝑛,𝑢𝑏,1 is 5.6 kWh. On 

the other hand, if the length of the first dwelling time is long enough, then 𝐵𝐶𝑛,𝑢𝑏,1 will be 

limited by the capacity of the BEV’s battery, 𝐵𝐶𝑛,𝑐𝑎𝑝. Equation (1) gives the values for 𝐵𝐶𝑛,𝑢𝑏,𝑗 

at the end of all dwell times, 𝑇𝑛,𝑗. The values for 𝐵𝐶𝑛,𝑢𝑏,𝑗  are obtained in ascending order, with 

𝐵𝐶𝑛,𝑢𝑏,0 equal to 𝐵𝐶𝑛,0. The values of 𝐵𝐶𝑛,𝑢𝑏,𝑗 are used to set up the constraints in Equations (5) 

and (6) below. 

𝐵𝐶𝑛,𝑢𝑏,𝑗 = 𝑚𝑖𝑛 {𝐵𝐶𝑛,𝑢𝑏,𝑗−1 − 𝑦𝑛,𝑗 +∑∆𝑡𝑛(𝑡𝑖,𝑗)𝑝𝑛𝜂

𝑖

  ,   𝐵𝐶𝑛,𝑐𝑎𝑝  } (1) 

 

Single Continuous Dwell Time 

Equation (2) gives the objective function for the optimization problem. The decision 

variables, 𝑥𝑛(𝑡𝑖), are defined as the energy requested by the 𝑛𝑡ℎ BEV during timeslot, 𝑡𝑖. The 

cost signal during timeslot 𝑡𝑖 is given by 𝐶𝑙𝑜𝑎𝑑(𝑡𝑖). See Section 5.6.2 and Section 5.6.3 for 

details on the cost signals used for smart charging. The same conditions of uniqueness of the cost 

signal from [19] must be maintained as well, i.e. 𝐶𝑙𝑜𝑎𝑑(𝑡𝑖) ≠ 𝐶𝑙𝑜𝑎𝑑(𝑡𝑘) for 𝑡𝑖 ≠ 𝑡𝑘. 

𝐽 =  ∑𝐶𝑙𝑜𝑎𝑑(𝑡𝑖) × 𝑥𝑛(𝑡𝑖)

𝑖

 (2) 

 

The upper and lower bounds for each individual decision variable, 𝑥𝑛(𝑡𝑖), are given in 

Equation (3). The lower bound for 𝑥𝑛(𝑡𝑖) is zero and the upper bound is the product of the 

charging power 𝑝𝑛 and the length of each timeslot, ∆𝑡𝑛(𝑡𝑖). 

0 ≤  𝑥𝑛(𝑡𝑖)  ≤  𝑟𝑛(𝑡𝑖) (3) 
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𝑟𝑛(𝑡𝑖) =  𝑝𝑛  ×  ∆𝑡𝑛(𝑡𝑖) (4) 

 

The total amount of energy that the 𝑛𝑡ℎ BEV can request is given by 𝑏𝑛, in (5). Equation 

(5) is given in its general form (for cases with both single dwell times and multiple dwell times). 

Since 𝐷𝑛 = 1 for the single dwell time case, the summations in Equation (5) reduce to 

∑
𝑦𝑛,𝑘

𝜂

𝐷𝑛
𝑘=1 =

𝑦𝑛,1

𝜂
. The amount of charge desired by the driver of the 𝑛𝑡ℎ BEV, at the end of the 

workday, is given by 𝐵𝐶𝑛,𝑑𝑒𝑠 (which must be less than or equal to the BEV’s battery capacity, 

𝐵𝐶𝑛,𝑐𝑎𝑝). Note that the value of 𝑏𝑛 is not affected by the smart-charging strategy. It depends 

entirely on the BEV’s driving patterns and characteristics, but it can be limited by 𝐵𝐶𝑛,𝑢𝑏,𝐷𝑛. 

Thus, 𝐵𝐶𝑛,𝑑𝑒𝑠 may not always be feasible. If the desired charge is feasible then then the value of 

𝑏𝑛 is dictated by the first term of the minimization function in (5). If not, then 𝑏𝑛 is dictated by 

the second term. If the desired charge is already available without charging, the minimization 

function will be non-positive (resulting in a 𝑏𝑛 value of zero). As an example, consider a BEV 

with 𝐵𝐶𝑛,0 = 30 𝑘𝑊ℎ and 𝐵𝐶𝑛,𝑑𝑒𝑠 = 5 𝑘𝑊ℎ. If  ∑
𝑦𝑛,𝑘

𝜂

𝐷𝑛
𝑘=1 < 25 𝑘𝑊ℎ, then the first term of the 

minimization function is negative, and no charging is required. 

𝑏𝑛 =∑𝑥𝑛(𝑡𝑖)

𝑖

= 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {
−(𝐵𝐶𝑛,0 − 𝐵𝐶𝑛,𝑑𝑒𝑠)

𝜂
+ ∑

𝑦𝑛,𝑘
𝜂

𝐷𝑛

𝑘=1

,

−(𝐵𝐶𝑛,0 − 𝐵𝐶𝑛,𝑢𝑏,𝐷𝑛)

𝜂
+∑

𝑦𝑛,𝑘
𝜂

𝐷𝑛

𝑘=1

}} 

(5) 

  

 



30 

 

Multiple Dwell Times 

Additional inequality constraints must be added to (2)-(5) for BEVs with multiple dwell 

times. To prevent solutions that are not feasible (due to battery capacity), certain limits must be 

placed on the amount of charging that can occur during particular dwell times. We define  �̂�𝑖,𝑗 as 

a timeslot (𝑡𝑖) that occurs during dwell times 𝑇𝑛,1 through 𝑇𝑛,𝑗 (i.e., 𝑡𝑖  ∈  ⋃ 𝑇𝑛,𝑘𝑘  for 𝑘 =

1, … , 𝑗). Thus, ∑ Δ𝑡𝑛(�̂�𝑖,𝑗)𝑖  gives the total length of dwelling times 𝑇𝑛,1 through 𝑇𝑛,𝑗.  

Consider a BEV with 𝐵𝐶𝑛,𝑐𝑎𝑝 = 30 𝑘𝑊ℎ and 𝐵𝐶𝑛,0 = 28 𝑘𝑊ℎ. The BEV uses 𝑦𝑛,1 =

2 𝑘𝑊ℎ and 𝑦𝑛,2 = 6 𝑘𝑊ℎ before the first and second dwell times, respectively. If the dwell 

times are long enough (i.e., 𝐵𝐶𝑛,𝑢𝑏,1 = 𝐵𝐶𝑛,𝑢𝑏,2 = 30 𝑘𝑊ℎ), then charging during the first dwell 

time is limited to 𝑏𝑖𝑛𝑒,1 = 4 𝑘𝑊ℎ (see Equation (7)). Charging during the entirety of the first two 

dwell times is limited to 𝑏𝑖𝑛𝑒,2 = 10𝑘𝑊ℎ. If the values of 𝐵𝐶𝑛,𝑢𝑏,1 and/or 𝐵𝐶𝑛,𝑢𝑏,2 are less than 

30 kWh, then the length of the dwell times further limits the amount of charging possible (see 

Equation (1)). This results in lower values for 𝑏𝑖𝑛𝑒,1 and/or 𝑏𝑖𝑛𝑒,2. These constraints are obtained 

for 𝑗 = 1, 2, … , 𝐷𝑛 − 1 via (6), where the value for 𝑏𝑖𝑛𝑒,𝑗 is given by (7). The inequality 

constraints from (6) limit charging during, dwell times, such that neither the battery capacity nor 

the time constraints are violated. Note that the summation, on the left-hand side, sums the 

charging energy during all of timeslots �̂�𝑖,𝑗 (i.e., during all timeslots that occur during dwell times 

𝑇𝑛,1 through 𝑇𝑛,𝑗). 

∑𝑥𝑛(�̂�𝑖,𝑗)

𝑖

 ≤ 𝑏𝑖𝑛𝑒,𝑗     𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝐷𝑛 − 1 (6) 
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𝑏𝑖𝑛𝑒,𝑗 =
−(𝐵𝐶𝑛,0 − 𝐵𝐶𝑛,𝑢𝑏,𝑗)

𝜂
+∑

𝑦𝑛,𝑘
𝜂

𝑗

𝑘=1

  (7) 

 

 

A second inequality constraint must be added in order to prevent the BEV battery from 

running out of charge while driving between dwell times. Consider a BEV with the following 

parameters: 𝐵𝐶𝑛,0 = 13 𝑘𝑊ℎ, 𝑦𝑛,1 = 10 𝑘𝑊ℎ, 𝑦𝑛,2 = 5 𝑘𝑊ℎ, and 𝑦𝑛,𝑘 = 3 𝑘𝑊ℎ. At least 2 

kWh of charging must occur in the first dwell time to prevent the BEV from running out of 

charge during the second trip. Similarly, at least 5 kWh of charging must occur during the first 

two dwell times to prevent the BEV from running out of charge during the third trip. These 

values are given by the first term in the minimization function of Equation (8). This constraint 

must respect the constraints set by Equation (6) and Equation (5). Thus, 𝑏𝑖𝑛𝑒,𝑗 and 𝑏𝑛 are 

included in the minimization function. If the output of the minimization function is negative, 

then the constraint is not needed and charging during these dwell times must simply be 

nonnegative (given by the zero in the maximization function). This constraint must be obtained 

for 𝑗 = 1,2… , 𝐷𝑛 − 1 with Equation (8). Note that if the first entry in the minimization function 

is greater than the other two entries, then the amount of charge needed to prevent the BEV from 

running out of battery is not feasible. These constraints are entirely dependent on the BEV’s 

specifications and driving patterns and not affected by smart charging. 

∑𝑥𝑛(�̂�𝑖,𝑗)

𝑖

 ≥  𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {−
𝐵𝐶𝑛,0
𝜂

+∑
𝑦𝑛,𝑘
𝜂

𝑗+1

𝑘=1

  ,   𝑏𝑖𝑛𝑒,𝑗  ,   𝑏𝑛}}      𝑓𝑜𝑟 𝑗

= 1, 2, … , 𝐷𝑛 − 1 

(8) 
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If a BEV has one dwell time, then there are no additional inequality constraints, and the 

problem reduces from (2)-(8) to (2)-(5). Each BEV independently solves the optimization 

problem above in a decentralized protocol.  

This is a linear program, and a variety of fast and robust algorithms exist to obtain the 

unique solution. The information needed to solve the problem is comprised of the owners driving 

patterns (𝑡𝑖, ∆𝑡𝑛(𝑡𝑖), 𝐷𝑛, 𝐵𝐶𝑛,𝑑𝑒𝑠, 𝑦𝑛,𝑗, etc.), specifications/characteristics known to the BEV 

(𝐵𝐶𝑛,0, 𝐵𝐶𝑛,𝑐𝑎𝑝, 𝑝𝑛, etc.), and the updated cost signal (𝐶𝑙𝑜𝑎𝑑(𝑡𝑖)). The only information 

conveyed to the parking structure operator is the charging profiles generated by the BEVs (to 

aggregate to the predicted load). The BEVs’ charging profiles do not necessarily give away the 

BEV’s dwell/driving patterns, thus, this decentralized approach maintains a measure of user 

privacy. 

This problem formulation can be compared to the smart-charging strategy proposed in 

[17] and the vehicle-to-grid strategy proposed [18]. Under a simplifying assumption, [17] and 

[18] assume that each BEV starts and ends with the same battery state of charge. The 

formulation presented in this work removes this assumption/constraint. Thus, the BEV drivers 

can explicitly choose the amount of energy that they are comfortable with at the end of the 

workday. This formulation also reduces the number of additional inequality constraints from 𝐷𝑛
2 

and 48 (in [17] and [18] respectively) to 2(𝐷𝑛 − 1). 

While the value of 𝐷𝑛 may be small for typical office workers, this formulation would 

drastically reduce the number of additional inequality constraints needed for BEV drivers with 

large 𝐷𝑛 values (i.e., taxis, buses, delivery trucks, etc.). 
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5.4 Ordering Strategies 

In the smart-charging strategies above, the cost signal seen by each BEV is an 

aggregation of the parking structure demand load and all previously generated BEV charging 

profiles. Thus, the charging profile of each BEV depends on the charging profiles generated by 

all previous BEVs. Hence, the order in which BEVs obtain their charging profiles affects the 

final parking structure demand load. Various ordering strategies can be used to develop the 

sequence in which BEVs obtain their charging profiles (with the smart-charging strategy above). 

The two ordering strategies studied in this work are described in the following sections. 

5.4.1 Ordering via Arrival Time 

This queue is dictated by the order of each BEV’s initial arrival to the parking structure. 

If a driver will be using a single-cable charging station, they can input their expected driving 

patterns into their BEV’s computer/interface when they park. The BEV then communicates with 

the parking structure operator (potentially via the charging station) to generate its charging 

profile. This is a naturally occurring queue and requires the least amount of communication 

between the BEVs and the parking structure operator. 

5.4.2 Ordering via Flexibility Ratio 

BEVs with long dwell times and low charging needs are less constrained when it comes 

to shifting their charging profile. This characteristic can be quantified by a term referred to as the 

Flexibility Ratio (𝐹𝑛). The numerator in (9) gives the total length of the BEV’s dwell times. The 

denominator gives the time it would take the BEV to meet its desired charging demands 

(𝐵𝐶𝑛,𝑑𝑒𝑠) at its maximum charge rate. 
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𝐹𝑛 =
∑ 𝛥𝑡𝑛(𝑡𝑖)𝑖

(
−(𝐵𝐶𝑛,0 − 𝐵𝐶𝑛,𝑑𝑒𝑠)

𝜂 + ∑
𝑦𝑛,𝑘
𝜂

𝐷𝑛
𝑘=1 )/𝑝𝑛

 
(9) 

 

The queue is generated in order of ascending Flexibility Ratios. Since BEVs with low 

Flexibility Ratios are less likely to shift their loads, this sorting strategy allows them to generate 

their profiles first. This allows the BEVs with more load shifting capabilities to fill the 

valleys/gaps generated by the BEVs in the front of the queue. 

The parking structure operator must gather the Flexibility Ratios of all participating 

BEVs and generate the queue in the morning (before the first BEV arrives). Each driver inputs 

their expected driving patterns the night before or in the early morning via the BEV’s interface or 

a smartphone app. Once the queue is generated, the parking structure operator communicates 

with the BEVs to perform the smart-charging strategy. This approach requires somewhat more 

complex interactions between the BEVs and the parking structure operator but provides 

significant improvements.   

Naturally, a variety of alternatives exists.  For example, a subset of BEVs upload the 

information far enough in advance to allow creation of a queue based on their flexibility ratio, 

while others provide the information only at the arrival (to the structure).  For simplicity, we 

focus on the cases where BEVs are ordered entirely by arrival time or entirely by Flexibility 

Ratio. Note that charging station assignment must also be performed before the first BEV arrives 

(see Section 5.5.1). 

Note that neither approach affects the level of privacy set forth in [19] and [8]. The only 

additional information requested by the parking structure operator is the BEVs’ Flexibility 
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Ratios. The Flexibility Ratios are used to generate the queue, but the structure of the 

decentralized smart-charging strategy remains the same. 

5.5 Station Assignment 

BEVs participating in the smart-charging strategy from Section 5.3.2 can be charged by 

providing a traditional single-cable charging station for each BEV. This would, however, require 

a large investment. Based on driving patterns extracted from the National Household Travel 

Survey (NHTS), single-cable charging stations go unused for a large portion of the time that 

BEVs are parked (see Section 4.2). An algorithm to assign multiple BEVs to a single charging 

station is proposed in the following. 

5.5.1 Modified Interval Partitioning Assignment 

A well-known scheduling problem is the Interval Partitioning Problem [35]. The goal of 

the Interval Partitioning Problem (IPP) is to schedule a set of requests with as few identical 

resources as possible. A classic application of the IPP is finding the minimum number of 

classrooms needed to schedule a set of lectures. The depth of a set of lectures is defined as the 

maximum number of lectures that overlap at the same time. The number of classrooms needed 

will be greater than or equal to the depth. A simple, optimal, and well-known algorithm to solve 

this problem exists, see [35]. 

The algorithm can be modified to assign multiple BEVs to charging stations, such that 

the total number of stations is minimized. The identical resources in the algorithm, that play the 

role of classrooms mentioned above, are charging stations which are denoted as “bins”. Each bin 

can charge one BEV (at its maximum charging rate) at a time. A bin can have multiple BEVs 

assigned to it, if the assigned charging profiles do not overlap. 
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Since each dwell time represents a separate entry into the parking structure, BEVs can 

park in different spaces at different dwell times. Thus, charging requests during different dwell 

times for the same BEV can be treated as separate requests (and thus separate BEVs). The 

charging profile for each dwell time plays the role of the lectures in the Interval Partitioning 

algorithm, and each becomes a request to be scheduled.   

The lectures in the Interval Partitioning algorithm are continuous, thus, compatibility is 

checked by simply comparing the start and end times of the lectures. BEV profiles generated by 

the smart-charging strategy proposed here may not be continuous, however. BEV charging 

profiles could contain intermittent charging due to the valley filling aspects of the strategy in 

Section 5.3.2. Gaps caused by intermittent charging could fit charging profiles from other BEVs. 

To take these gaps into consideration, the main algorithm can be modified. 

The algorithm orders all the charging profiles by the time when charging starts. 

Following the sequence, each charging profile is checked for compatibility with the available 

bins (i.e., charging stations). The algorithm is modified by checking bins with the smallest 

number of assignments first. If a compatible bin (i.e., charging station) is found, then the 

charging profile is assigned to that bin. If no compatible bins are found, then a new bin is created 

for the charging profile.  

The first modification is the order in which bins are checked, which increases the chance 

of assigning charging profiles to bins (charging stations) with few assignments. The other 

modification is the compatibility check; i.e., ensuring that the charging profiles do not overlap 

(since only one BEV can be charged at a time). This check can be performed by a simple and fast 

dot product if the dwell time charging profiles and the profiles assigned to bins are saved as 

vectors (i.e., compatible if the dot product is zero).  
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The modified assignment algorithm is presented below. The time when charging begins 

for dwell time charging profile 𝑗 is defined as 𝑠𝑗. 𝐷 is defined as the total number of dwell times 

for all participating BEVs (i.e., 𝐷 = ∑ 𝐷𝑛
𝑁
𝑛=1 ). The total number of dwell times assigned to each 

bin, 𝑘, is given by  𝑉𝑘. 

 

Sort the charging profiles by starting time such that 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝐷 

𝑑 = 1 is the number of allocated bins 

for 𝑗 = 1 𝑡𝑜 𝐷 

Sort allocated bins by number of assigned charging profiles such that 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑑 

 for 𝑘 = 1 𝑡𝑜 𝑑 

  if (charging profile of dwell time 𝑗 is compatible with bin 𝑘) 

   assign dwell time 𝑗 to bin 𝑘 

   end 𝑘 for loop 

  end 

 end 

 if (charging profile of dwell time 𝑗 was not assigned) 

  allocate a new bin 𝑑 + 1 

  assign dwell time 𝑗 to bin 𝑑 + 1 

  𝑑 = 𝑑 + 1 

 end 

end 

 

 

The continuity of lectures allows the Interval Partitioning algorithm to generate optimal 

solutions. The intermittent nature of the charging profiles means that the modified algorithm 

does not maintain optimality. It is possible generate an optimal assignment with the Interval 

Partitioning algorithm if each continuous charging duration is treated as a separate request. This 
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would, however, require a large number of movements by BEVs in a Valet system (see Section 

5.5.1.1) and would preclude the octopus charger approach (see Section 5.5.1.2).  

5.5.1.1 Valet System 

Valet systems, where BEVs are connected/disconnected to/from charging stations when 

they are scheduled to charge, have been suggested as a possible solution for the lack of charging 

stations available [21]. Valet systems could be executed manually by employees (hired by the 

parking structure owner) or by the BEV owners themselves. The BEV charging profiles and the 

bin assignment developed above could be used to dictate the schedule of a valet system. 

Executing a manual valet system would, however, be either costly or highly inconvenient. 

Similarly, an autonomous valet system would alleviate the need for drivers to execute the valet 

schedule. Autonomous BEVs can be programmed to automatically connect to their assigned 

charging station when the valet schedule dictates. This, however, requires careful collision 

avoidance protocols and charging stations that automatically connect to BEVs. 

5.5.1.2 Octopus Charger Assignment 

The concept of “octopus chargers” is proposed in [30] as a possible solution for charger 

anxiety. Octopus chargers are charging stations built with more cables than will be 

simultaneously used. For example, an octopus charger could have four cables, but only one 

active cable (i.e., only one BEV can be charged at a time). Thus, a group of BEVs, assigned to a 

bin in the algorithm above, can be assigned to an octopus charger with a single active cable (see 

Figure 4), as long as they do not have overlapping charging profiles, which the simple check 

mentioned above ensures. 



39 

 

 

Figure 4 Example of two separate bins assigned to A) two separate octopus chargers 

with a single active cable or B) one octopus charger with two active cables 

 

Of course, an octopus charger with 𝑛 active cables could accommodate 𝑛 bins. If the 

maximum charging rate of the BEVs assigned to each bin is 𝑝, then 𝑛 bins can be assigned to an 

octopus charger with a maximum output rate of at least 𝑃𝑜𝑐𝑡 = 𝑛𝑝. See Figure 4-B for an 

example where 𝑝 = 3.6 𝑘𝑊 and 𝑛 = 2.  

The assignment of multiple bins to an octopus charger with multiple active cables could 

result in octopus chargers with many cables. An assignment algorithm, such as Sorted-Balance 

however, could be used to try to balance the number of cables needed by each octopus charger 

[35]. Sorted-Balance is a well-known approximation algorithm used to solve the Load Balancing 

Problem. The Sorted-Balance algorithm orders the bins from highest number of cables to lowest. 



40 

 

The bins are then sequentially assigned the octopus charger with the smallest number of cables. 

See Section 6.3.1 for more details on the Sorted-Balance algorithm. 

5.6 Simulation Results 

As mentioned above, 48-hour cost signals were used in all simulations to generate 48-

hour demand loads. In order to calculate electricity costs, the 48-hour demand loads were 

converted into 24-hour loads. Any BEV charging that occurred past the 24-hour mark was 

moved to the early hours of the first day (i.e., charging at 2 am of the second day was moved to 2 

am of the first day). All BEVs in the following results charge at the rate of 3.6 kW (see Section 

4.2). No BEVs in these simulations obtained a SOC below 0% at any point, because of filter g) 

in Section 4.2.  

5.6.1 Uncontrolled Charging 

Representative results from parking structure #2 (out of 50 simulated parking structures) 

are presented in the following sections. Results for Uncontrolled Charging are shown in Figure 

5-A and Figure 5-B, for parking structure simulations with 100 BEVs and 500 BEVs, 

respectively. The peak loads when BEVs attempt to get a full charge reach values of 126 and 

597.6 kW, for 100 BEVs and 500 BEVs respectively. The average values of the maximum load 

experienced by various 500 BEV simulations are given in Section 5.7. Very little charge is 

requested by the BEVs when they only get enough charge for the driving required after work 

(i.e., FoS = 1), due to the assumption that the BEV was fully charged overnight. The loads for 

100 BEVs and 500 BEVs have similar shapes/trends, with most of the charging occurring 

between the early morning and noon. Note that Uncontrolled Charging is not affected by the 
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baseload. Thus, the results for Uncontrolled Charging with a baseload would simply be the 

summation of the baseload (see Figure 3) and the corresponding load from Figure 5. 

 

Figure 5 Uncontrolled Charging demand profiles for A) 100 and B) 500 BEV parking 

structures with no baseload 
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5.6.2 Smart Charging: Valley Filling 

The smart-charging strategy in Section 5.3.2 can be used to perform Valley Filling when 

the cost signal is an aggregation of the scheduled BEV charging profiles. Results for the Valley 

Filling strategy for a 500 BEV parking structure with various baseloads are given in Figure 6. 

The peaks in the demand loads are much smaller than those seen with Uncontrolled Charging in 

Figure 5. The demand profiles are very flat during times with moderate numbers of parked BEVs 

(see Figure 1). Ordering via Flexibility Ratio results in lower peak loads, for all three cases. The 

maximum peaks when ordering via arrival time and Flexibility Ratio are 230 and 184 kW in 

Figure 6a, respectively. 
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Figure 6 Valley Filling demand profiles for simulated parking structures with 500 

BEVs attempting to get a full charge 

 

5.6.3 Smart Charging: Augmented Cost Signal 

The Valley Filling strategy above reduces peaks throughout the day via smart charging. 

In some cases, however, it may be beneficial to avoid charging during certain periods of the day. 

This could be due to high electricity prices, limitations in the local charging infrastructure, or the 
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need to reduce the load during scheduled maintenance. With minor modifications to the cost 

signal, the smart-charging strategy in Section 5.3.2 can steer demand away from (or towards) 

specific hours. The baseload used for Valley Filling is artificially increased during certain times 

to generate an augmented baseload (and, thus, augmented cost signal). The artificially high cost 

signal, thus, discourages BEVs from charging during those times.  

A simple application of this strategy is avoiding charging during the more expensive On-

Peak hours of Time-Of-Use (TOU) electricity rate plans [32]. See Section 4.5 for more details. 

Thus, the cost signal used by BEVs is artificially increased during On-Peak hours in order to 

reduce electricity costs for the parking structure. The cost signal was artificially increased by 

1,000 kW for all simulations using an augmented cost signal. 
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Figure 7 Augmented Cost Signal demand profiles with A) 2018 and B) 2019 On-Peak 

Hours for simulated parking structures with 500 BEVs attempting to get a full charge and 

no baseload 

 

Results for the Augmented Cost Signal strategy with 2018 (12pm - 6pm) and 2019 (4pm 

- 9pm) On-Peak hours are shown in Figure 7. The load during On-Peak times has been lowered 
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in both cases. Similar to Valley Filling, ordering via Flexibility Ratio produces the lowest 

maximum peaks during On-Peak times and non-On-Peak times.  

The Augmented Cost Signal strategy avoids charging during the 2019 On-Peak hours 

more effectively than with the 2018 On-Peak hours. The 2019 On-Peak hours also produce better 

peak reductions during non-On-Peak hours. Both occurrences are because 2019 On-Peak hours 

(4 pm – 9 pm) occur during the decline of BEV availability at work.  

5.7 Effects on Parking Structure Demand Load 

The maximum 24-hour loads experienced by 500 BEV parking structures are presented in 

Figure 8-A. The error bars in this figure represent the maximum and minimum values from all 50 

simulated parking structures. Smart-charging reduces the maximum 24-hour load in all cases 

when compared with Uncontrolled Charging, demonstrating the peak reduction capabilities of 

smart charging in all scenarios. Valley Filling resulted in the lowest peaks, due to its load 

reduction capabilities. Ordering via Flexibility Ratio resulted in further peak reductions (when 

compared to ordering via arrival time). Specifically, ordering the 2018 Augmented Cost Signal 

strategy by Flexibility Ratio (with no baseload) results in peaks that are 69.4% of those when 

ordered by arrival time. Note that the maximum 24-hour load and the maximum On-Peak load 

experienced by both baseloads (without any BEV charging) are all about 254 kW (see Figure 3). 
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Figure 8 A) Maximum 24-hour load and B) Maximum On-Peak load for 50 simulated 

parking structures with 500 BEVs attempting to get a full charge  

 

The maximum On-Peak loads experienced by 500 BEV parking structures are shown in 

Figure 8-B. The maximum On-Peak loads for Uncontrolled Charging are lower with 2019 On-

Peak hours, because of the decline of BEV availability during On-Peak hours. The Augmented 

Cost Signal strategy reduces the maximum On-Peak load by about half when there is no baseload 

(compared to Uncontrolled Charging). Again, ordering via Flexibility Ratio reduces the 

maximum On-Peak loads further, for most cases. The ordering strategy makes little difference 

for the 2019 Augmented Cost Signal strategy (i.e., the dark orange and light orange bars). This is 

because charging cannot be shifted away from On-Peak hours for a subset of BEVs with low 

Flexibility Ratios. The flattening nature of the (non-augmented) Valley Filling strategy shifts 
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charging to On-Peak hours and, thus, increases the maximum On-Peak loads (see Section 5.6.2). 

The maximum On-Peak loads for Valley Filling in Figure 8-B are almost identical to the 

maximum 24-hour loads in Figure 8-A. Note that the demand charges incurred by a parking 

structure depend on the maximum 24-hour load and the maximum On-Peak load (see Table 5). 

5.8 Effects on Electricity Costs 

The monthly cost of electricity was calculated for each parking structure demand load. 

For simplicity, the demand load for each simulation was assumed to be the same for each 

weekday of the month. It was also assumed that the month contained 20 weekdays and that there 

was no charging or electricity usage during the weekends. The fixed monthly charge associated 

with each rate schedule was also included in the calculated costs. 

For simplicity and consistency, electricity costs for all parking structures were calculated 

with the corresponding TOU-GS-3 summer rate schedule, except for 100 BEV parking structures 

without a baseload. It can be seen, in Figure 5-A, that the maximum load for this case is well 

below 200 kW. Thus, the corresponding TOU-GS-2 summer rate schedule is used to calculate 

the electricity costs for 100 BEV parking structures without a baseload. 

The monthly electricity costs for the simulated parking structures are shown in Figure 9. 

The error bars in this figure represent the maximum and minimum values from all 50 simulated 

parking structures. The 2019 rate schedules result in lower electricity costs for Uncontrolled 

Charging when compared with the 2018 rate schedules. This is attributed to the fact that 

significantly less charging occurs during 4 – 9 pm with Uncontrolled Charging, when compared 

to 12 – 6 pm. 
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Figure 9 Estimated monthly cost of electricity for 50 simulated parking structures with 

A) 100 and B) 500 BEVs attempting to get a full charge 

 

Average monthly savings between 20-31% are seen for all cases with no baseload and 

ordering via arrival time, except Valley Filling with 2019 rates (compared to Uncontrolled 

Charging). Ordering via arrival time requires the least amount of communication between the 

BEVs and the parking structure operator. Ordering via Flexibility Ratio, however, results in 

increased savings. All cases with no baseload and ordering via Flexibility Ratio resulted in 

monthly savings between 34-40%, except Valley Filling with 2019 rates.  

Valley Filling with chronological ordering increases the monthly cost of electricity with 

2019 rates and no baseload, compared to Uncontrolled Charging. This is because most charging 

occurs before 4 pm when it is uncontrolled. The Valley Filling strategy shifts charging to On-
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Peak hours (see Figure 8-B), during high per kWh prices and On-Peak demand charges. Thus, 

non-augmented Valley Filling is not as effective at lowering electricity costs for 2019 prices as it 

was for 2018 prices. Electricity costs, however, are routinely changed or they may not always be 

the main concern of the parking structure operator, who might prefer to avoid overloading local 

power distribution components, for example. These argue for a flexible approach that can be 

modified to the specific needs of the operator.  

5.9 Effects on Bin Assignment 

Next, we focus on the use of octopus chargers. The algorithm from Section 5.5.1 was 

used to find the number of bins needed for each parking structure simulation. It is assumed that 

the number of BEVs assigned to each bin dictates the number of cables needed for each bin. The 

number of bins needed for each charging strategy and ordering strategy is presented in Figure 10. 

On average, less than 40 and 182 bins are needed for 100 and 500 BEV parking 

structures, respectively. Valley Filling requires the lowest number of bins in all cases, as it has 

the lowest peaks. The average depth of all 50 simulations, described in Section 5.5.1, is included 

in Figure 10. The depth is given by the maximum number of BEVs charging at the same time, 

which is the smallest possible number of bins that can satisfy charging for the parking structure. 

On average, the difference between the number of bins needed and the depth is less than 8 and 

38 bins for parking structures with 100 and 500 BEVs, respectively. The largest number of bins 

occurs when the 2018 Augmented Cost Signal strategy is used on a parking structure with a 

building load and PV. This occurs because PV generation reduces the baseload between 10am-

12pm. This coincides with the time when the peaks for the Augmented Cost Signal strategy are 

highest (due to load shifting). 
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A key characteristic of Uncontrolled Charging is that charging is continuous during each 

dwell time. This means that the original Interval Partitioning algorithm can be used. Thus, the 

number of bins needed is equal to the depth for Uncontrolled Charging. The smart-charging 

strategies, however, require fewer bins and reduce monthly electricity costs in most cases and are 

thus preferred over Uncontrolled Charging. 

 

Figure 10 Number of bins required for 50 simulated parking structures with A) 100 

and B) 500 BEVs attempting to get a full charge. Limit of eight cables per bin 

 

The Sorted-Balance algorithm was used to assign bins to octopus chargers, to balance the 

number of cables needed by each octopus charger. The results for the Sorted-Balance assignment 

are shown in Table 6 and Table 7 for octopus chargers with two and three active cables, 

respectively. On average, less than 15 and 22 cables were needed for octopus chargers with two 
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and three active cables, respectively. The number of octopus chargers needed is obtained by 

dividing the number of bins needed (in Figure 10) by the number of active cables per octopus 

charger. 

Table 6 Number of cables needed for each octopus charger with two assigned bins, for 

50 simulated parking structures with 500 BEVs 

Charging 
Strategy 

Ordering 
Strategy 

No Baseload Building Load Building Load & PV 

Avg. Max. Avg. Max. Avg. Max. 

Uncontrolled Arrival 7.29 11 7.29 11 7.29 11 

Aug. Cost 
(2018) 

Arrival 7.17 11 7.37 10 6.8 10 

Flex. Ratio 9.68 12 9.35 11 9.08 13 

Aug. Cost 
(2019) 

Arrival 10.09 14 10.71 13 10.17 12 

Flex. Ratio 12.57 15 12.2 14 11.8 14 

Valley Filling 
Arrival 12.64 16 13.59 16 12.41 15 

Flex. Ratio 14.59 18 14.32 17 14.01 17 

 

Table 7 Number of cables needed for each octopus charger with three assigned bins, 

for 50 simulated parking structures with 500 BEVs 

Charging 
Strategy 

Ordering 
Strategy 

No Baseload Building Load Building Load & PV 

Avg. Max. Avg. Max. Avg. Max. 

Uncontrolled Arrival 10.89 15 10.89 15 10.89 15 

Aug. Cost 
(2018) 

Arrival 10.71 13 11.03 14 10.18 13 

Flex. Ratio 14.46 18 13.99 17 13.59 17 

Aug. Cost 
(2019) 

Arrival 15.08 19 16 19 15.19 18 

Flex. Ratio 18.76 22 18.19 21 17.61 20 

Valley Filling 
Arrival 18.85 23 20.23 24 18.5 22 

Flex. Ratio 21.78 26 21.34 25 20.91 25 

 

It may be preferable to assign each bin to a four-cable octopus charger with a single 

active cable (i.e., one bin per octopus charger), so that octopus chargers can be placed at the 

center of four neighboring parking spaces. Doing so would avoid the need for excessively long 

cables. The number of bins needed for four-cable octopus chargers is shown in Figure 11. 
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Parking structures with 100 and 500 BEVs require a maximum of 49 and 200 four-cable octopus 

chargers, respectively, for all cases (including fringe cases).  

Utilization is the amount of charge received by BEVs divided by the total capacity of the 

chargers. The average utilization rate for traditional single-cable charging stations is 6.28%, for 

constant 3.6 kW charging rates. On average, Valley Filling required less than 100 bins/chargers 

to accommodate 500 BEVs in Figure 10-B. This reduces the number of the chargers to one fifth, 

resulting in utilization rates five times that of traditional single-cable charging stations (i.e., 

about 31.4%). Since less than 16% of BEVs are at work before 6:44 am or after 6:43 pm, 

utilization rates above 50% are unlikely (see Figure 1). 

 

Figure 11 Number of bins required for 50 simulated parking structures with A) 100 

and B) 500 BEVs attempting to get a full charge. Limit of four cables per bin 
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5.10 Sensitivity to Inaccurate Driving Patterns 

In some cases, there may be discrepancies between predicted/scheduled driving patterns 

and actual driving patterns. Problems could arise if more driving is done than expected. In cases 

when driving after the workday is underestimated, drivers can request more energy than they 

need (see Section 4.4). If BEV drivers attempt to get a full charge at work (as is the case in all 

results presented, except for Figure 5), they can minimize the risk of not having enough charge at 

the end of the workday. This is particularly true for BEVs with large battery capacities that are 

generally maintained at a high state of charge. 

If there are discrepancies in driving done between dwell times, then the BEV can keep 

track of large errors. If the BEV returns to the parking structure with a state of charge that is 

much smaller than expected, the BEV can cancel the rest of its reserved timeslots (i.e., charging 

profile) and re-run the charging strategy, generate a new charging profile, and request a new 

assignment from the parking structure operator (if necessary). For such cases, it may be 

necessary to keep some octopus chargers or single-cable chargers on reserve to accommodate 

reassignments. These reassigned BEVs then become chronological entries on top of the original 

Flexibility Ratio queue – the mixed case briefly mentioned in Section 5.4.2. 

Furthermore, if a BEV needs the entire workday to charge and has little/no flexibility 

(due to long commutes), then it may not be compatible with any BEVs assigned to a bin/charger. 

Such BEVs might be best assigned to a single-cable charger. These details are omitted to focus 

on the main concepts of this work. 
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5.11 Conclusion 

The second most opportune time to charge a BEV is at work [9]. Workplace charging, 

however, poses new challenges that arise from the multiple dwell times of BEVs. A 

decentralized smart-charging strategy that addresses the constraints and limitations of multiple 

dwell times is proposed in this work. The strategy allows BEVs to independently schedule 

charging for an entire workday. With simple modifications to the cost signal, this smart-charging 

strategy can be used to reduce parking structure load variation (Valley Filling) or shift charging 

away from On-Peak hours (Augmented Cost Signal). The Augmented Cost Signal strategy 

significantly reduced monthly electricity costs in all cases, when compared with Uncontrolled 

charging. Savings are significantly influenced by the charging strategy and electricity rate plans 

used. 

A sorting strategy was developed to further improve the effectiveness of the proposed 

smart-charging strategies. Sorting via Flexibility Ratio resulted in improved peak reductions and 

increased savings for all cases when compared with sorting via arrival time but requires more 

communication. The increased communication requirements for the Flexibility Ratio strategy 

can be satisfied with internet communication, which is already included some BEVs. 

An algorithm that assigns BEVs to bins/chargers is proposed. In all cases, a maximum of 

49 and 200 chargers were needed to serve parking structures with 100 and 500 BEVs, 

respectively. When combined with smart charging, the assignment algorithm reduced the number 

of chargers needed in most cases, compared to Uncontrolled Charging. By reducing the number 

of bins (and thus octopus chargers) needed, the proposed assignment strategy can reduce 

investments needed for parking structures’ charging infrastructures. 
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The comprehensive smart-charging protocol presented in this work can be used to reduce 

electricity and charging infrastructure costs associated with workplace charging, while increasing 

the utilization of renewable resources. Renewable energy is uncertain and electricity prices can 

vary significantly across regions, adding to the need for smart-charging protocols that are robust 

enough to deal with these variations (i.e., optimization based vs. ad-hoc). While this work 

focuses on daytime workplace charging, it has other applications. The smart-charging protocol 

can be used to coordinate charging for fleets of electric buses or delivery trucks. 

The strategies proposed in this work can be developed further to estimate the energy 

storage capabilities of parking structures. On emergency days, the Augmented Cost Signal 

strategy can be used to provide as much charging as possible before On-Peak hours. Thus, giving 

the parking structure operator an estimate of the energy stored in the parked BEVs. Having this 

estimate gives the operator a valuable insight into each BEV’s storage capabilities, so that an 

arbitrage (vehicle-to-grid and vehicle-to-vehicle charging) can be implemented. This is beyond 

the scope of this paper and is suggested as a future work. 
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6 Octopus Charger-Based Optimization Protocol 

6.1 Introduction 

While the overall market share of EVs is currently small, recent years have seen a 

significant increase in sales [7]. Significant increases in EV production/sales are imminent, with 

beneficial impacts on fossil fuel consumption and greenhouse gas emissions. Non-uniform 

concentrations of EV sales and increasing power levels, however, can cause difficulties for 

electricity delivery systems at the regional and/or residential levels [8]. As BEV battery sizes 

increase, faster charging rates become necessary. With enough BEVs and fast enough charging 

rates, BEV charging could create significant power demand. Large spikes in demand could 

negatively affect parking garage circuitry, increase electricity costs (e.g. demand charges), and 

exacerbate stress in critical times (e.g., high usage durations on hot days). These issues could be 

addressed by deploying smart-charging strategies in parking garages. 

In Section 5, a charging protocol that allows BEVs to individually generate their charging 

profiles is presented. The parking structure aggregator gathers all of the charging profiles and 

assigns BEVs to charging stations such that multiple BEVs are charged by a single station (see 

Section 5.2 for a detailed overview of the charging protocol). The BEV-based Optimization 

Protocol can reduce peak loads, monthly electricity costs, and the number of needed charging 

stations. The decentralized nature of this protocol allows BEV owners to maintain a measure of 

privacy, while participating in smart charging. 

If octopus chargers generate the charging profiles of their assigned BEVs, however, the 

benefits of smart charging can be further improved. Such an approach would require octopus 

chargers to use their assigned BEVs’ driving data to generate their charging profiles. Thus, 
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privacy is not maintained for the participating BEVs. If privacy is not a high priority and drivers 

are willing to share their driving patterns, then this protocol can be used to reduce the number of 

octopus charger needed in a workplace parking structure. 

Such a smart-charging protocol can also be applied to destination-charging locations 

where privacy is not a priority (e.g., delivery companies and bus terminals). Driving patterns for 

entire fleets of buses or delivery trucks, for example, are generally known. Furthermore, many 

delivery companies have announced plans to convert significant portions of their delivery trucks 

to battery-electric propulsion, in recent years [36],[37]. Such conversions require significant 

investments in charging stations. By using smart-charging protocols delivery companies (along 

with other businesses that require large fleets of EVs) can reduce electricity costs and charging 

infrastructure investments. 

In this chapter, a comprehensive Octopus Charger-based mixed integer linear 

programming (MILP) protocol for workplace charging is proposed. The protocol is developed 

with the goal of reducing infrastructure and operational costs for a workplace parking structure, 

while meeting BEV drivers’ charging needs. This work is focused on BEVs but applies to PEVs 

in general. The following are the main contributions of this work. 1) A simple and well-known 

algorithm is used to assign BEVs to octopus chargers based on charging flexibility. 2) A smart-

charging strategy, that allows octopus chargers to schedule charging for their assigned BEVs via 

MILP methods is proposed (see Section 6.4.2). The Octopus Charger-based MILP strategy 

manages the parking structure demand load by allowing octopus chargers to act as individual 

agents. Thus, distributing the computational burden among the octopus chargers. By using the 

appropriate cost signal, the proposed smart-charging strategy can generate a parking structure 

demand load with desirable characteristics. 
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6.2 Overview of Octopus Charger-Based Optimization Protocol 

For this charging protocol, it is assumed that a set number of Octopus Chargers with a set 

number of cables are installed in the parking structure. The Flexibility Ratios of all the 

participating BEVs are collected by the parking structure operator, in order to assign BEVs to 

octopus chargers. The parking structure operator then uses an assignment algorithm to assign 

each BEV to the octopus charger that it will be connected to, for the entire workday. Once 

assigned, BEVs share their expected driving patterns for the day (along with basic BEV 

specifications/information) to their assigned octopus chargers. A queue is then generated to 

dictate the order in which octopus chargers generate charging profiles for their assigned BEVs. 

Once an octopus charger is ready to generate the charging profiles of its assigned BEVs, it 

receives a cost signal. The octopus charger then uses mixed integer linear programming (MILP) 

techniques to generate the charging profiles. The octopus charger then sends the sum of all the 

charging profiles (i.e., the octopus charger’s demand profile) to the parking structure operator, 

where it is aggregated for an updated cost signal. The process is repeated with the next octopus 

charger in the queue, until all BEV charging profiles have been generated.  

In Section 5, it was necessary to execute the BEV-based protocol before the first BEV 

arrived at work when ordering BEVs via Flexibility Ratio. Similarly, this Octopus Charger-based 

MILP Protocol must be performed before the first BEV arrives (since each BEV needs to know 

which charger it is assigned to). Thus, each BEV driver inputs their expected driving patterns the 

night before or in the early morning via the BEV’s user interface or a smartphone app. Once the 

information is gathered, the protocol above is executed. 

In this protocol, the charging profiles of the BEVs assigned to an octopus charger are 

obtained by said octopus charger. Thus, this charging protocol is centralized at the octopus 
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charger level (with respect to the BEVs). The octopus chargers, however, generate the profiles as 

independent agents so this protocol is decentralized at the parking structure level (with respect to 

the octopus chargers). 

This work assumes that BEV drivers participating in the proposed smart-charging 

protocol are willing to share their expected driving schedules (as well as basic BEV 

specifications/information). This assumption is based on the emergence and advancement of 

location and calendar information on smart phones (e.g., location reminders). Furthermore, this 

assumption is generally true when considering delivery and bus companies (where the schedules 

for the entire fleet are generally known). 

6.3 Octopus Charger Assignment 

In Section 5, octopus charger assignment was performed after each BEV individually 

obtained its charging profile. Since the BEVs must me assigned to each octopus charger before 

the charging profiles are obtained, a new assignment strategy must be developed. In order to 

effectively assign BEVs to octopus chargers, an appropriate assignment algorithm must have the 

following characteristics: 1) It must minimize the number of octopus chargers needed to 

accommodate all BEVs, 2) It must have a reasonably fast computational time, 3) It must 

maximize compatibility among BEVs assigned to the same octopus charger. In order to generate 

a suitable assignment, all BEVs assigned to an octopus charger must be able to meet their 

charging needs. Thus, grouping of BEVs with undesirable characteristics (large charging 

demands and/or low Flexibility Ratios) must be avoided. 
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6.3.1 Octopus Charger Assignment via Sorted-Balance 

A well-established assignment problem is the Load Balancing Problem [35]. The Load 

Balancing Problem occurs when a set of 𝑛 jobs must be assigned to 𝑚 identical machines, 𝑀𝑖, 

such that the workload among the machines is as balanced as possible. The processing time of 

each job (i.e., load) is given by 𝑙𝑗. We can define the total load on each machine, 𝐿𝑖, as the sum 

of the processing times (𝑙𝑗) of its assigned jobs. We define the makespan, 𝐿, as the maximum 

load on any machine (i.e., 𝐿 = max(𝐿1, … , 𝐿𝑚)). Thus, the objective is to minimize the 

makespan. Acquiring the optimal solution to the Load Balancing Problem is NP-hard, which 

could lead to long computational times. Two approximation algorithms that run in polynomial 

time exist, which can find solutions that are guaranteed to be close to the optimal solution [35]. 

The optimal solution to the Load Balancing Problem is unknown, however, a lower 

bound can be determined. The lower bound of the optimal solution is given by 𝐿∗, which has the 

following characteristics: 𝐿∗ ≥
1

𝑚
∑ 𝑙𝑗𝑗  and 𝐿∗ ≥ max

𝑗
𝑙𝑗 [35]. The first lower bound is the average 

work done by all the machines. The second lower bound is the case where the processing time of 

one job is longer than the combined processing time of all the other jobs. 

Sorted-Balance is a well-known approximation algorithm that can find solutions to the 

Load Balancing Problem such that 𝐿 ≤
3

2
𝐿∗ (see [35] for details). The Sorted-Balance algorithm 

does this by first sorting jobs in decreasing order of processing time (𝑙𝑗). The algorithm then goes 

through each job in the queue and assigns it to the machine with the smallest load (𝐿𝑖) [35]. 

The Sorted-Balance algorithm above can be used to assign BEVs to octopus chargers 

such that BEVs with undesirable characteristics (e.g., low Flexibility Ratios) are distributed 

evenly among the chargers. In this case, The BEVs represent the jobs and the octopus chargers 
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represent the machines. The processing time of each job in the algorithm can represent each 

BEV’s Inverse Flexibility Ratio, 𝐹𝑛
−1, given in (10). Balancing the Inverse Flexibility Ratios 

results in similar flexibility among the octopus chargers in the parking structure. By having some 

flexibility, the octopus chargers are less constrained when generating the charging profiles for 

their assigned BEVs. In this work, we focus on balancing BEVs’ Inverse Flexibility Ratios, 

however any parameter can be used (see Section 6.5.1 for an example where requested charge is 

balanced).  

𝐹𝑛
−1 =

(
−(𝐵𝐶𝑛,0 − 𝐵𝐶𝑛,𝑑𝑒𝑠)

𝜂 + ∑
𝑦𝑛,𝑘
𝜂

𝐷𝑛
𝑘=1 ) /𝑝𝑛

∑ Δ𝑡𝑛(𝑡𝑖)𝑖
 

(10) 

 

The assignment algorithm above can be implemented if the parking structure operator 

gathers the Inverse Flexibility Ratios of all participating BEVs ahead of time. This requires the 

operator to communicate the with the participating BEVs. If communication (before the BEV 

arrives at the parking structure) is not possible, then a different assignment algorithm must be 

used (see Section 7.3). 

Note that the guarantee that the Sorted-Balance solution is close to the optimal solution 

(𝐿 ≤
3

2
𝐿∗) is maintained only if the octopus chargers are assumed to have an unlimited number of 

cables. If a limit is placed on the number of cables per octopus charger, then the assignment 

could result solutions above the guaranteed limit. For example, an octopus charger could have 

the lowest load (𝐿𝑖) but no more available cables. In this case, the current BEV will be assigned 

to the octopus charger with the smallest load and available cables. Due to the queue, however, 

these BEVs will have the smallest Inverse Flexibility Ratios (i.e., most flexibility). Thus, this 
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assignment algorithm is still effective. The focus of this work is on 4-Cable and 8-Cable octopus 

chargers. 

The Sorted-Balance algorithm is used in this work without any modifications, except 

limiting the number of cables. Thus, no contributions are made to the assignment algorithm used 

in this work. The detailed description above is given only for ease of understanding to the reader. 

For more information see [35]. 

Note that the Inverse Flexibility Ratio and requested charge can also be used to limit 

participation in this protocol. For example, if a BEV has very little flexibility and will be 

charging for a long period, then said BEV might be better suited with a single-cable charging 

station. These details are omitted to focus on the main concepts of this work. 

6.4 Smart Charging: Octopus Charger-Based Optimization 

For this strategy, each octopus charger must generate the charging profiles of all its 

assigned BEVs. Thus, the octopus charger must have access to the expected driving patterns and 

basic specifications of all assigned BEVs. Two Octopus Charger-based Optimization strategies 

are described in the following sections. 

A key observation of this strategy is that timeslots must be defined differently from the 

timeslots in BEV-based optimization. In BEV-based optimization, timeslots were dependent on 

each individual BEV. For example, a BEV that arrived at 1:18 pm and left at 7:33 pm had a 

dwell time of 6.25 hours. This BEV would have 6 one-hour timeslots and one 15-minute timeslot 

for BEV-based optimization. For octopus charger-based optimization, however, all BEVs must 

have identical timeslots. Timeslots in this chapter (and in Section 7) will have a resolution of one 

hour and start at the top of the hour (unless stated otherwise). Timeslots will, however, be split 
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up every time that a BEV connects or disconnects to/from an octopus charger. The following 

table contains sample BEV data, that will be used in examples in the following sections. 

Table 8 Sample BEV data 

 Arrival Time Departure Time Charge Needed Charging Rate 

BEV #1 6:20 am 9:35 am 12 kWh 6.6 kW 

BEV #2 7:00 am 9:15 am 7 kWh 6.6 kW 

BEV #3 7:30 am 9:15 am 8 kWh 6.6 kW 

 

For the sample data there is initially a one-hour timeslot from 6-6:59 am. This timeslot is 

split into two timeslots of 20 and 40 minutes. Note that no charging occurs in the first (20-

minute) timeslot, since there are no parked BEVs. The 7:00-7:59 am timeslot is split into two 30-

minute timeslots, and so on. The following table contains the timeslots for the sample BEV data 

in Table 8. 

Table 9 Timeslots for PEV data from Table 8 

6:00-6:19 6:20-6:59 7:00-7:29 7:30-7:59 8:00-8:59 9:00-9:14 9:15-9:34 9:35-9:59 

 

6.4.1 Octopus Charger-Based Optimization: Linear Programming 

The problem formulation from the BEV-based Optimization strategy can be expanded to 

incorporate the constraints of the Octopus Charger-based strategy. The objective function from 

BEV-based Optimization (Equation (2)) is expanded to incorporate all the BEVs assigned to an 

octopus charger. Doing so results in the objective function given in Equation (11). The decision 

variables, 𝑥𝑛(𝑡𝑖), are defined as the energy requested by the 𝑛𝑡ℎ BEV during timeslot 𝑡𝑖. The 

cost signal for BEV 𝑛, during timeslot, 𝑡𝑖, is given by 𝐶𝑛(𝑡𝑖). Note that the cost signal can be the 

same or different for each BEV (see Section 6.4.2.1 for more details). 
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𝑚𝑖𝑛 ∑∑𝐶𝑛(𝑡𝑖)𝑥𝑛(𝑡𝑖)

𝐼

𝑖=1

𝑁

𝑛=1

 (11) 

 

The total amount of energy requested by the 𝑛𝑡ℎ BEV is given by 𝑏𝑛 in Equation (5) of 

BEV-based optimization strategy. Similarly expanding Equation (5) produces the following 

equality constraints for the assigned BEVs. Where the value of 𝑏𝑛 for each BEV is still given by 

Equation (5) and 𝐼 is the total number of universal timeslots. 

 

ℎ1(𝑥) =∑𝑥1(𝑡𝑖)

𝐼

𝑖=1

− 𝑏1 = 0

⋮

ℎ3(𝑥) =∑𝑥𝑁(𝑡𝑖)

𝐼

𝑖=1

− 𝑏𝑁 = 0

   

}
  
 

  
 

 (12) 

 

 

Expanding the lower and upper bounds in Equation (3) gives the constraints in Equations 

(13) and (14), respectively. Equation (13) sets charging during each timeslot to be positive (i.e. 

no vehicle-to-grid or vehicle-to-vehicle charging). 

𝑔𝑙𝑏,1(𝑥) = [
−𝑥1(𝑡1)

⋮
−𝑥1(𝑡𝐼)

] ≤ [
0
⋮
0
]

⋮

𝑔𝑙𝑏,N(𝑥) = [
−𝑥𝑁(𝑡1)

⋮
−𝑥𝑁(𝑡𝐼)

] ≤ [
0
⋮
0
]

   

}
  
 

  
 

 (13) 

 

Equation (14) limits the amount of charging that each BEV can do during each timeslot. 

The limit, 𝑟𝑛(𝑡𝑖), is given by Equation (4) and based on each BEVs’ maximum charging rate and 
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timeslot length. For example, a BEV with a 3.6 kW charging rate can only charge 1.8 kWh 

during a 30-minute timeslot. 

𝑔𝑢𝑏,1(𝑥) = [
𝑥1(𝑡1) − 𝑟1(𝑡1)

⋮
𝑥1(𝑡5) − 𝑟1(𝑡5)

] ≤ [
0
⋮
0
]

⋮

𝑔𝑢𝑏,N(𝑥) = [
𝑥𝑁(𝑡1) − 𝑟𝑁(𝑡1)

⋮
𝑥𝑁(𝑡𝐼) − 𝑟𝑁(𝑡𝐼)

] ≤ [
0
⋮
0
]

   

}
  
 

  
 

 (14) 

 

In order to respect the maximum charging rate of the octopus charger, a limit must be 

placed on the amount of charging that can be done by the assigned BEVs during each timeslot. 

Equation (15) limits the amount of charging can be provided by the octopus charger, 𝑅(𝑡i), 

during each timeslot, 𝑡i. For example, a 7.2 kW charging station can only provide 7.2 kWh of 

charging during a one-hour timeslot. Thus, the combined charging done by all assigned BEVs 

must be less than 7.2 kWh.  

𝑔𝑠𝑡𝑎𝑡𝑖𝑜𝑛(𝑥) = [
𝑥1(𝑡1) + ⋯+ 𝑥𝑁(𝑡1) − 𝑅(𝑡1)

⋮
𝑥1(𝑡𝐼) + ⋯+ 𝑥3(𝑡𝐼) − 𝑅(𝑡𝐼)

] ≤ [
0
⋮
0
] (15) 

 

Note that the equations above are given for the case where each BEV has a single, 

continuous dwell time. In order to take the constraints of multiple dwell times into consideration 

(as in Section 5) the additional inequality constraints from Equations (5)-(8) must be applied to 

each BEV.  

6.4.1.1 Proof of Characteristics 

This strategy allows all BEVs to charge at their maximum charging rate, except for one 

timeslot (similar to [19]) during each dwell time and when the maximum capacity of the 
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charging station is reached. A proof of this can be found below. For simplicity, the case where 

BEVs has one dwell time is presented. The following notation will be used in the proof. 

𝑥𝑛 = [
𝑥𝑛(𝑡1)
⋮

𝑥𝑛(𝑡I)
] (16) 

 

𝑥 = [

𝑥1
⋮
𝑥N
] (17) 

 

𝑟 = [

𝑟1
⋮
𝑟N
] (18) 

 

𝜕𝑓

𝜕𝑥
= [

𝜕𝑓

𝜕𝑥1
…

𝜕𝑓

𝜕𝑥𝑚
] (19) 

 

 

The Lagrangian for the problem stated by Equations (11)-(15) is given below. 

ℒ = [𝐶𝑇 𝐶𝑇 𝐶𝑇]𝑥 − 𝜈1 [∑𝑥1(𝑡𝑖)

I

𝑖=1

− 𝑏1] − ⋯− 𝜈N [∑𝑥N(𝑡𝑖)

I

𝑖=1

− 𝑏N] + 𝜆
𝑇𝑥

+ 𝜇𝑇[𝑥 − 𝑟] + 𝑝𝑇[𝑥1 +⋯+ 𝑥N − 𝑅] 

 

(20) 

 

The gradient of the Lagrangian is found to be 

𝜕ℒ

𝜕𝑥
= [𝐶𝑇 𝐶𝑇 𝐶𝑇] − [𝜈1 … 𝜈1 ⋯ ⋯ ⋯ 𝜈N … 𝜈N] + 𝜆𝑇 + 𝜇𝑇

+ [𝑝𝑇 𝑝𝑇 𝑝𝑇] = 0 

 

(21) 

 

The gradient gives the following KKT Conditions. 
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𝜕ℒ

𝜕𝑥
= 𝐶𝑛(𝑡𝑖) − 𝜈𝑛 + 𝜆𝑛(𝑡𝑖) + 𝜇𝑛(𝑡𝑖) + 𝑝(𝑡𝑖) = 0 (22) 

𝜈𝑛 [∑𝑥𝑛(𝑡𝑖)

I

𝑖=1

− 𝑏𝑛] = 0 (23) 

𝜆𝑛(𝑡𝑖)𝑥𝑛(𝑡𝑖) = 0 (24) 

𝜇𝑛(𝑡𝑖)[𝑥𝑛(𝑡𝑖) − 𝑟𝑛(𝑡𝑖)] = 0 (25) 

𝑝(𝑡𝑖) [∑ 𝑥𝑛(𝑡𝑖)

N

𝑛=1

− 𝑅(𝑡𝑖)] = 0 (26) 

 

We now look at all the possible cases for the KKT Conditions above. 

Case 1: 𝒙𝒏(𝒕𝒊) ≠ 𝟎 

We are interested in charging time, so that means that 𝜆𝑛(𝑡𝑖) = 0. Which changes 

Equations (22)-(26) to the following.  

𝜕ℒ

𝜕𝑥
= 𝐶𝑛(𝑡𝑖) − 𝜈𝑛 + 𝜇𝑛(𝑡𝑖) + 𝑝(𝑡𝑖) = 0 (27) 

𝜈𝑛 [∑𝑥𝑛(𝑡𝑖)

I

𝑖=1

− 𝑏𝑛] = 0 (23) 

𝜆𝑛(𝑡𝑖) = 0 (28) 

𝜇𝑛(𝑡𝑖)[𝑥𝑛(𝑡𝑖) − 𝑟𝑛(𝑡𝑖)] = 0 (25) 

𝑝(𝑡𝑖) [∑ 𝑥𝑛(𝑡𝑖)

N

𝑛=1

− 𝑅(𝑡𝑖)] = 0 (26) 

 

Case 1.1: 𝒙𝒏(𝒕𝒊) ≠ 𝟎 and 𝝁𝒏(𝒕𝒊) ≠ 𝟎 

If 𝝁𝒏(𝒕𝒊) ≠ 𝟎, then the timeslot charges at maximum power. 

𝜕ℒ

𝜕𝑥
= 𝐶𝑛(𝑡𝑖) − 𝜈𝑛 + 𝜇𝑛(𝑡𝑖) + 𝑝(𝑡𝑖) = 0 (27) 
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𝜈𝑛 [∑𝑥𝑛(𝑡𝑖)

I

𝑖=1

− 𝑏𝑛] = 0 (23) 

𝜆𝑛(𝑡𝑖) = 0 (28) 

𝑥𝑛(𝑡𝑖) = 𝑟𝑛(𝑡𝑖) (29) 

𝑝(𝑡𝑖) [∑ 𝑥𝑛(𝑡𝑖)

N

𝑛=1

− 𝑅(𝑡𝑖)] = 0 (26) 

 

Case 1.2: 𝒙𝒏(𝒕𝒊) ≠ 𝟎 and 𝝁𝒏(𝒕𝒊) = 𝟎 

If  𝜇𝑛 = 0, we get the following equations. We now look at 𝑝(𝑡𝑖). 

𝜕ℒ

𝜕𝑥
= 𝐶𝑛(𝑡𝑖) − 𝜈𝑛 + 𝑝(𝑡𝑖) = 0 (30) 

𝜈𝑛 [∑𝑥𝑛(𝑡𝑖)

I

𝑖=1

− 𝑏𝑛] = 0 (23) 

𝜆𝑛(𝑡𝑖) = 0 (28) 

𝜇𝑛(𝑡𝑖) = 0 (31) 

𝑝(𝑡𝑖) [∑ 𝑥𝑛(𝑡𝑖)

N

𝑛=1

− 𝑅(𝑡𝑖)] = 0 (26) 

 

Case 1.2.1: 𝒙𝒏(𝒕𝒊) ≠ 𝟎, 𝝁𝒏(𝒕𝒊) = 𝟎, and 𝒑(𝒕𝒊) = 𝟎 

If 𝑝(𝑡𝑖) = 0, it means that the charging capacity of the octopus charger has not been 

reached. Thus, we have 𝐶𝑛(𝑡𝑖) = 𝜈𝑛. There is only one 𝜈𝑛 for each BEV. If all 𝐶𝑛(𝑡𝑖) values are 

distinct, then there is only one timeslot that that will not charge at maximum power under these 

conditions. 

𝐶𝑛(𝑡𝑖) = 𝜈𝑛 (32) 

𝜈𝑛 [∑𝑥𝑛(𝑡𝑖)

I

𝑖=1

− 𝑏𝑛] = 0 (23) 
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𝜆𝑛(𝑡𝑖) = 0 (28) 

𝜇𝑛(𝑡𝑖) = 0 (31) 

𝑝(𝑡𝑖) = 0 (33) 

 

Case 1.2.2: 𝒙𝒏(𝒕𝒊) ≠ 𝟎, 𝝁𝒏(𝒕𝒊) = 𝟎, and 𝒑(𝒕𝒊) ≠ 𝟎 

If 𝑝(𝑡𝑖) ≠ 0, then that means that the charging capacity for the station is reached. In this 

case, BEVs may not charge at the maximum power. 

𝐶(𝑡𝑖) = 𝜈𝑛 − 𝑝(𝑡𝑖) (34) 

𝜈𝑛 [∑𝑥𝑛(𝑡𝑖)

I

𝑖=1

− 𝑏𝑛] = 0 (23) 

𝜆𝑛(𝑡𝑖) = 0 (28) 

𝜇𝑛(𝑡𝑖) = 0 (31) 

∑𝑥𝑛(𝑡𝑖)

N

𝑛=1

− 𝑅(𝑡𝑖) = 0 (35) 

 

Thus, all BEVs will charge at their maximum charging rate, except for one timeslot (if 

there is one dwell time only) and when the maximum capacity of the charging station is reached. 

This is based on the requirement that all values of the cost signal are distinct (as in [19]). A basic 

example of these characteristics is presented in the following section. 

6.4.1.2 Example of Characteristics 

A simple example of the characteristics described above are presented in Figure 12. The 

three sample BEVs from Table 8 are assigned to an octopus charger with a maximum output rate 

of 15 kW. The cost signal used was set up such that earlier timeslots had a lower cost. 
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Figure 12 Linear programming solution for Octopus Charger-based Optimization for 

a 15 kW octopus charger with the BEVs from Table 8 

  

BEVs #1 and #2 charge at the maximum rate during all timeslots except for their last one. 

BEV #3 contains two timeslots that do not charge at the maximum rate. The first occurs at 7:30 

am, when the maximum capacity of the charging station is reached, and the second occurs at 

9:00 am. If the BEVs can charge at variable rates, then there can be a subset of BEVs charging at 

a rate lower than the maximum power (when the station capacity is reached). 

To avoid the first non-maximum timeslot for BEV #3 at 7:30 am, the constraint on the 

charging possible by each octopus charger during each dwell time (𝑅(𝑡𝑖)) can be modified to be 

dependent on maximum charge possible by the BEVs (i.e., [𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦] =

𝑟𝑛(𝑡𝑖) × 𝑓𝑙𝑜𝑜𝑟 (
𝑅(𝑡𝑖)

𝑟𝑛(𝑡𝑖)
)). This workaround, however, requires that all assigned BEVs have the 

same charging rate and would prevent the grouping of BEVs with different charging rates. An 
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example of this modification is given in Figure 13. All BEVs charge at the maximum rate for all 

timeslots except for one. The maximum output rate of the octopus charger is 13.2 kW, due to the 

modified capacity. 

 

Figure 13 Linear programming solution for octopus charger-based optimization for a 

13.2 kW charging station with BEVs from Table 8 

 

As seen in Figure 12 and Figure 13, choosing the cost signal such that earlier timeslots 

are cheaper forces charging to occur as early as possible. This can be very beneficial as it would 

allow the charging station to accommodate charging for unexpected BEV arrivals that occur later 

in the day (since most charging is done as early as possible). 

This charging strategy is suitable for BEVs that can charge at variable rates. It is, 

however, is not fully developed for BEVs that can only (or prefer to only) charge at their 

maximum charging rate. As seen in the 7:30 am timeslot of Figure 12, all three BEVs cannot 
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charge at the maximum rate, as this would result in a 19.8 kW power rate. Therefore BEV #3 

must charge below its maximum charge rate. This can be overcome if all BEVs have the same 

maximum charging rate (Figure 13) but prevents BEVs with different maximum charging rates 

from being grouped together. This charging strategy will not be pursued in this work. It does, 

however, provide some valuable insight into the characteristics of the mixed integer linear 

programming approach discussed in the following section. 

6.4.2 Octopus Charger-Based Optimization: Mixed Integer Linear Programming 

In order to ensure that all BEVs can charge at their maximum rate during all timeslots 

except for one, modifications and constraints from mixed integer linear programming (MILP) 

can be applied. The objective function from Equation (11) is modified to include binary 

variables. As in Equation (11) the decision variables, 𝑥𝑛(𝑡𝑖), are defined as the energy requested 

by the 𝑛𝑡ℎ BEV during timeslot 𝑡𝑖. The cost signal for BEV 𝑛, during timeslot, 𝑡𝑖, is given by 

𝐶𝑛(𝑡𝑖). Note that the cost signal can be the same or different for each BEV (see Section 6.4.2.1 

for more details). The binary variables, 𝑙𝑛(𝑡𝑖), can be constrained such that they equal one when 

𝑥𝑛(𝑡𝑖) is nonzero (see Equation (37) for details). The variable 𝐵 is the cost associated with 

charging a BEV during any timeslot and must be positive. The total number of assigned BEVs 

and the total number of timeslots are given by 𝑁 and 𝐼, respectively. 

𝑚𝑖𝑛 ∑∑𝐶𝑛(𝑡𝑖)𝑥𝑛(𝑡𝑖)

𝐼

𝑖=1

𝑁

𝑛=1

+∑∑𝐵𝑙𝑛(𝑡𝑖)

𝐼

𝑖=1

𝑁

𝑛=1

 (36) 

 

The equality constraints that dictate total charging for each BEV are the same as in the 

linear programming case. The total amount of energy requested by the 𝑛𝑡ℎ BEV is given by 𝑏𝑛 in 

Equation (5) of BEV-based Optimization strategy (in Section 5.3.2). 
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ℎ1(𝑥) =∑𝑥1(𝑡𝑖)

𝐼

𝑖=1

− 𝑏1 = 0

⋮

ℎ3(𝑥) =∑𝑥𝑁(𝑡𝑖)

𝐼

𝑖=1

− 𝑏𝑁 = 0

   

}
  
 

  
 

 (12) 

 

The lower bounds used for MILP are the same as in the linear programming case and are 

repeated for clarity. Equation (13) sets charging during each timeslot to be positive (i.e. no 

vehicle-to-grid or vehicle-to-vehicle charging). 

 

𝑔𝑙𝑏,1(𝑥) = [
−𝑥1(𝑡1)

⋮
−𝑥1(𝑡𝐼)

] ≤ [
0
⋮
0
]

⋮

𝑔𝑙𝑏,N(𝑥) = [
−𝑥𝑁(𝑡1)

⋮
−𝑥𝑁(𝑡𝐼)

] ≤ [
0
⋮
0
]

   

}
  
 

  
 

 (13) 

 

The upper bound on BEV charging during each timeslot can be set with the following 

constraints. Where 𝑟𝑛(𝑡𝑖) is the maximum amount of charging that the 𝑛𝑡ℎ BEV can do during 

timeslot 𝑡𝑖. If the 𝑛𝑡ℎ BEV performs any amount of charging during timeslot 𝑡𝑖, the constraint 

below can only be satisfied if  𝑙𝑛(𝑡𝑖) is equal to one. If there is no charging, then the value of 

𝑙𝑛(𝑡𝑖) can be either zero or one. The cost associated with each binary variable, 𝐵, in the objective 

function, however, prevents nonzero values for 𝑙𝑛(𝑡𝑖) when there is no charging. Thus, 𝑙𝑛(𝑡𝑖) 

equals zero when 𝑥𝑛(𝑡𝑖) = 0 and one when 𝑥𝑛(𝑡𝑖) is nonzero.  
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𝑔𝑢𝑏,1(𝑥) = [
𝑥1(𝑡1) − 𝑟1(𝑡1)𝑙1(𝑡1)

⋮
𝑥1(𝑡𝐼) − 𝑟1(𝑡𝐼)𝑙1(𝑡𝐼)

] ≤ [
0
⋮
0
]

⋮

𝑔𝑢𝑏,𝑁(𝑥) = [
𝑥𝑁(𝑡1) − 𝑟𝑁(𝑡1)𝑙𝑁(𝑡1)

⋮
𝑥𝑁(𝑡𝐼) − 𝑟𝑁(𝑡𝐼)𝑙𝑁(𝑡𝐼)

] ≤ [
0
⋮
0
]

   

}
  
 

  
 

 (37) 

 

With the binary variables, the constraint on the octopus charger can be changed to 

consider charging power (kW), as opposed to charge (kWh) as in Equation (15). The constraints 

set on charging power, during each timeslot are given below. Where 𝑝𝑛 is the maximum 

charging rate of the 𝑛𝑡ℎ BEV and 𝑃𝑜𝑐𝑡 is the maximum output rate of the octopus charger. 

  

𝑔𝑜𝑐𝑡(𝑥) = [
𝑙1(𝑡1)𝑝1 +⋯+ 𝑙𝑁(𝑡1)𝑝𝑁 − 𝑃𝑜𝑐𝑡

⋮
𝑙1(𝑡𝐼)𝑝1 +⋯+ 𝑙𝑁(𝑡𝐼)𝑝𝑁 − 𝑃𝑜𝑐𝑡

] ≤ [
0
⋮
0
] 

 

(38) 

 

The sum of the charging rates of all connected BEVs, 𝑝𝑛, must be less than or equal to 

the maximum output rate of the octopus charger, 𝑃𝑜𝑐𝑡. Thus, the charging capacity of the octopus 

charger cannot be exceeded.  

Note that the equations above are given for the case where each BEV has a single, 

continuous dwell time. In order to take the constraints of multiple dwell times into consideration 

(as in Section 5) the additional inequality constraints from Equations (5)-(8) must be applied to 

each BEV. 

Each octopus charger generates the charging profiles for its assigned BEVs as an 

individual agent. Thus, this strategy is centralized at the octopus charger level with respect to the 
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BEVs. It is, however, decentralized at the parking structure level with respect to the octopus 

chargers. While this strategy can used by the parking structure to generate the charging profiles 

of all the BEVs in a centralized manner, it may not scale well in a computational sense. Thus, 

leading to a heavy computational burden on the parking structure operator [38]. The 

decentralized nature of this strategy allows for the computational burden to be distributed among 

the octopus chargers and results in fast running times. 

The chances of satisfying all assigned BEVs are maximized if the octopus charger has 

access to all of the BEVs’ driving patterns by the time that the first BEV connects to the octopus 

charger. If the driving patterns for all BEVs are known, then all BEVs will be satisfied when 

feasible. Thus, it is may preferable to run the protocol in the morning (like the ordered BEV-

based protocol). If the driving patterns of all assigned BEVs are not known when the charging 

profiles are first generated, then the optimization problem above must be re-run when the other 

driving patterns become available. The worst case occurs when driving patterns are not known 

until the BEV connects to the octopus charger. This scenario is studied in Section 7. 

As with BEV-based Optimization, an appropriate cost signal must be chosen in order to 

develop a final parking structure demand load with desirable characteristics. Details on various 

potential cost signals are described below. 

6.4.2.1 Cost Signal 

Cost Signal: Early Charging 

The cost signal for the nonbinary variables, 𝐶𝑛(𝑡𝑖), depends each BEV (𝑛) and each 

timeslot (𝑡𝑖). While the cost signal is chosen to be distinct, these distinct values can be chosen 

such that priority is given to some BEVs over others. In this work, priority is always given to 
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BEVs that arrive first. The value 𝑛 dictates the order of arrival of each BEV that is assigned to 

the octopus charger (i.e., BEVs with smaller values of 𝑛 are prioritized). 

If it is preferred to charge BEVs as early as possible, then earlier timeslots can be given a 

lower cost by satisfying Equation (39). Doing so, allows octopus chargers to accommodate 

charging for unexpected BEV arrivals that occur later in the workday. If priority for early 

charging is given to BEVs that arrive earlier, then the cost signal must be chosen such that 

Equation (40) is satisfied. Suppose that there are two timeslots, 𝑡𝑗 and 𝑡𝑘 such that 𝑗 < 𝑘, and 

both BEV 𝑛 and BEV 𝑛 + 1 can charge during either of these timeslots. If any charging by the 

prioritized BEV (𝑛) is done during the later timeslot (𝑡𝑘 ) when it can be done during the earlier 

timeslot (𝑡𝑗), then a higher cost will be incurred. Suppose, however, that BEV 𝑛 + 1 can only 

charge during the earlier timeslot (𝑡𝑗), if its charging needs are to be satisfied. If BEV 𝑛 can 

charge during either timeslot, then BEV 𝑛 + 1 is charged earlier so that all BEVs can satisfy 

their charging needs. 

𝐶𝑛(𝑡𝑖) < 𝐶𝑛(𝑡𝑖+1)      ∀ 𝑖, 𝑛 (39) 

 

|𝐶𝑛(𝑡𝑖+1) − 𝐶𝑛(𝑡𝑖)| > |𝐶𝑛+1(𝑡𝐼) − 𝐶𝑛+1(𝑡1)|     ∀ 𝑖, 𝑛 (40) 

 

A sample cost signal, that satisfies Equations (39) and (40), for three BEVs (𝑁 = 3) and 

with four universal timeslots (𝐼 = 4) is given in Equation (41). Note that the true values of the 

cost signal are not relevant. Only their values relative to each other are important. For example, 

multiplying 𝐶𝑛 by a constant will still satisfy Equations (39) and (40) above.  

𝐶 = [𝐶1(𝑡𝑖)|𝐶2(𝑡𝑖)|… |𝐶𝑁(𝑡𝑖)] = [18 34 50 66 | 5 9 13 17 | 1 2 3 4] (41) 
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Cost Signal: Valley Filling 

As previously mentioned, the true values of the cost signal are not relevant. Only their 

values relative to each other are important. Reordering the cost signal of each individual BEV 

Equation (41) in any order will always satisfy Equation (40). Thus, the cost signal of each 

individual BEV can be rearranged to develop a final demand profile with desirable 

characteristics (i.e., Valley Filling). The smart-charging strategy for the BEV-based Optimization 

Strategy can be used to perform Valley Filling when the cost signal is an aggregation of the 

initial parking structure baseload and all previously scheduled BEV charging profiles 

(represented by 𝐶𝑙𝑜𝑎𝑑(𝑡𝑖)). If each BEV charging profile is rearranged such that Equations (40) 

and (42) are satisfied, then the cost signal can be used to perform valley filling. By changing the 

values of 𝐶𝑛, such that the lowest values of each BEV’s cost signal coincide with the lowest 

values of the current parking structure demand load, the valleys in the demand load can be filled. 

𝐶𝑛(𝑡𝑗) < 𝐶𝑛(𝑡𝑘)      𝑖𝑓𝑓      𝐶𝑙𝑜𝑎𝑑(𝑡𝑗) < 𝐶𝑙𝑜𝑎𝑑(𝑡𝑘)      ∀ 𝑗, 𝑘, 𝑛 (42) 

 

A sample parking structure demand load (averaged at each timeslot) is given in Equation 

(43). A sample cost signal that satisfies Equations (40) and (42) is given in Equation (44). Note 

that all BEVs will attempt to charge during timeslot 𝑡3 if they are available. Priority is given to 

the earliest arrivals, but it can be changed as needed. 

𝐶𝑙𝑜𝑎𝑑(𝑡𝑖) = [𝐶𝑙𝑜𝑎𝑑(𝑡1)   𝐶𝑙𝑜𝑎𝑑(𝑡2) 𝐶𝑙𝑜𝑎𝑑(𝑡3) 𝐶𝑙𝑜𝑎𝑑(𝑡4)] = [100 90 60 70] (43) 

 

𝐶 = [𝐶1|𝐶2| … |𝐶𝑁] = [66 50 18 34 | 17 13 5 9 | 4 3 1 2] (44) 
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Cost Signal: Augmented Cost 

The cost signal for Valley Filling above reduces peaks throughout the day. In some cases, 

however, it may be beneficial to avoid charging during certain periods of the day. This could be 

due to high electricity prices, limitations in the local charging infrastructure, or the need to 

reduce the load during scheduled maintenance. With minor modifications to the initial parking 

structure demand load, 𝐶𝑙𝑜𝑎𝑑(𝑡𝑖), the Octopus Charger-based MILP Strategy can steer demand 

away from (or towards) specific hours. The initial load used for Valley Filling is artificially 

increased during certain times to generate an augmented load (and, thus, augmented cost signal). 

The artificially high cost signal, thus, discourages BEVs from charging during those times.  

For example, if we wish to avoid charging during the third timeslot, then the value of 

𝐶𝑙𝑜𝑎𝑑(𝑡3) can be increased from 60 to 1,000. A simple application of this strategy is avoiding 

charging during the more expensive On-Peak hours of Time-Of-Use (TOU) electricity rate plans. 

Thus, the demand load, 𝐶𝑙𝑜𝑎𝑑(𝑡𝑖), used by octopus chargers is artificially increased during On-

Peak hours in order to reduce electricity costs for the parking structure. 

6.4.2.2 Visual Example of Characteristics 

A simple example of the MILP octopus charger-based optimization is presented in Figure 

14. The three sample BEVs from Table 8 are assigned to an octopus charger with a maximum 

output rate of 15 kW. The cost signal used is set up for early charging (i.e., Equations (39) and 

(40) are satisfied). All BEVs charge at their maximum charging rate except for one timeslot. A 

simple post-processing can be performed on the non-maximum charging timeslot such that 

charging during said timeslot is done at the maximum rate. For example, the charging done by 

BEV #1 between 8:00 and 9:00 am is about 1 kWh. This can be accomplished by charging the at 
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6.6 kW for about 9 minutes instead. Doing so, however, leaves a large gap between 8:10 and 

9:00 am that goes unused. Such gaps, however, can be reduced choosing a smaller timeslot 

resolution (e.g., 15 minutes instead of one hour). In cases where valley filling is performed, the 

post-processing can be performed such that the 9 minutes of 6.6 kW charging above are set to fill 

the valleys of non-maximum timeslots. 

 

Figure 14 Mixed integer linear programming solution for octopus charger-based 

optimization for a 15 kW octopus charger with the BEVs from Table 8 

 

6.5 Results 

Results for the Octopus Charger-based MILP Strategy are presented in the following 

sections. The same parking structures and BEVs from Section 5 were tested under the same 

conditions (i.e., same driving patterns, same baseloads, etc.). For more details see Section 4. 

Unless stated otherwise, all charging scenarios presented here assume that all BEVs attempt to 
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get the highest possible SOC by the end of the day (i.e., they attempt to get a 100% SOC when 

possible). All BEVs charge at a rate of 3.6 kW. All 4-Cable and 8-Cable octopus chargers have 

maximum output rates of 3.6 kW and 7.2 kW, respectively. Thus, 4-Cable octopus chargers can 

charge one BEV at a time and 8-Cable octopus chargers can charge two BEVs at a time. 

6.5.1 Octopus Charger Assignment 

The Sorted-Balance algorithm was used in conjunction with the Octopus Charger-based 

MILP Strategy to find the number of 4-Cable and 8-Cable octopus chargers needed to satisfy the 

charging requirements of 100 and 500 BEV parking structures. The minimum number of octopus 

chargers were initially used (i.e., 25 4-Cable or 13 8-Cable chargers for a 100 BEV parking 

structure). If all the BEVs received their requested charge (𝑏𝑛 in Equation (12)), then that 

number of octopus chargers was used for that parking structure. If at least one BEV did not 

receive its requested charge, then the number of octopus chargers was increased iteratively until 

a feasible assignment was found. 

The Sorted-Balance algorithm was evaluated for 50 simulated parking structures with 

two cases. For the first case, the BEVs’ requested charge (𝑏𝑛) was balanced among the octopus 

chargers. For the second case, the BEVs’ Inverse Flexibility Ratio was balanced among the 

octopus chargers. The number of octopus chargers needed to satisfy 50 simulated 100 BEV 

parking structures are presented in Table 10. The largest number of octopus chargers needed is 

27, which is only two more octopus chargers than the minimum. On average, balancing the 

Inverse Flexibility Ratio results in the lowest number of required octopus chargers. 
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Table 10 Number of octopus chargers needed for 50 simulated 100-BEV parking 

structures 

  Min. Avg. Max. 

Fo
u

r-
C

ab
le

 

Sorted-Balance: 
Requested Charge 

25 25.14 26 

Sorted-Balance: 
Inverse Flex. Ratio 

25 25.1 27 
Ei

gh
t-

C
ab

le
 

Sorted-Balance: 
Requested Charge 

13 13 13 

Sorted-Balance: 
Inverse Flex. Ratio 

13 13 13 

 

The number of octopus chargers needed to satisfy 50 simulated 500 BEV parking 

structures are presented in Table 11. The largest number of octopus chargers required is 130, 

which is only five more than the minimum. Note that the minimum number of bins satisfied all 

cases when the Inverse Flexibility Ratio was balanced among 8-Cable octopus chargers. This is 

likely because it is easier for a “problematic” BEV (with large charging demands or low 

flexibility) to cause a disruption for a 4-Cable octopus charger than an 8-Cable octopus charger. 

Thus, if there is a mixture of 4-Cable and 8-Cable octopus chargers, then it is better to place 

more problematic BEVs in 8-Cable chargers. In this work, however, we focus on the two 

extremes where all chargers have 4 cables or 8 cables. 

Table 11 Number of octopus chargers needed for 50 simulated 500-BEV parking 

structures 

  Min. Avg. Max. 

Fo
u

r-
C

ab
le

 

Sorted-Balance: 
Requested Charge 

125 125.86 130 

Sorted-Balance: 
Inverse Flex. Ratio 

125 125.48 129 

Ei
gh

t-
C

ab
le

 

Sorted-Balance: 
Requested Charge 

63 63.02 64 

Sorted-Balance: 
Inverse Flex. Ratio 

63 63 63 
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In general, balancing the Inverse Flexibility Ratio among the octopus chargers requires 

less chargers. Since these results only check for the feasibility of satisfying all BEV charging 

requests, any cost signal can be combined with the Octopus Charger-based MILP Strategy. Thus, 

the same number of octopus chargers will be used if we wish to perform valley filling or if we 

wish to shift BEV charging to the morning (i.e., the Augmented Cost Signal). 

A key observation of the Sorted-Balance assignment is that while a set number of octopus 

chargers may satisfy a parking structure, adding another octopus charger will affect the 

assignment. This can potentially lead to an assignment that does not satisfy all BEVs. This can 

be overcome by developing more specialized assignment algorithms. These details are omitted to 

focus on the main concepts of this work and are suggested as future works 

6.5.2 Octopus Charger-Based MILP: Early Charging 

Representative results from parking structure #2 (out of 50 simulated parking structures) 

are presented in the following sections. The Octopus Charger-based MILP Strategy from Section 

6.4.2 was used to set charging for BEVs to occur as early as possible. Thus, allowing BEVs to 

accommodate unexpected arrivals to the parking structure later in the day. Results for the Early 

Charging strategy are presented in Figure 15. Cases where both 4-Cable and 8-Cable octopus 

chargers were installed at the parking structure were studied. The maximum load experienced in 

both cases is slightly above 400 kW. The profile of the demand load has a saw-tooth pattern with 

peaks at the top of the hour. This is caused by the simple post-processing done to charge BEVs at 

their maximum rate during non-maximum timeslots (see Section 6.4.2.2). This saw-tooth pattern 
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can be reduced by using a finer resolution when generating the timeslots for the octopus charger 

(i.e., using 15 minutes instead of an hour). 

 

Figure 15 Early Charging demand profiles for a simulated parking structure with 500 

BEVs attempting to get a full charge and no baseload 

 

6.5.3 Octopus Charger-Based MILP: Valley Filling 

The Octopus Charger-based MILP strategy from Section 6.4.2 can be used to perform 

Valley Filling when the cost signal is an aggregation of the initial parking structure baseload and 

all previously assigned BEV charging profiles. Results for the Valley Filling strategy are given 

in Figure 16. The maximum peaks experienced when using 4-Cable and 8-Cable octopus 

chargers were both about 190 kW for 500 BEV parking structures. This is comparable to the 184 

kW peaks generated when the BEV-based strategy was paired with ordering via Flexibility Ratio 

in Section 5.6.2.   
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Figure 16 Valley Filling demand profiles for a simulated parking structure with A) 100 

and B) 500 BEVs attempting to get a full charge and no baseload 

 

6.5.4 Octopus Charger-Based MILP: Augmented Cost Signal 

Simulation results for the Augmented Cost Signal Strategy with 2018 On-Peak-Hours (12 

pm – 6 pm) and 2019 On-Peak Hours (4 pm – 9 pm) are presented in Figure 17 and Figure 18, 

respectively. The load during On-Peak Hours is lowered in both cases. As in Section 5.6.3, the 

Augmented Cost Signal strategy avoids charging during the 2019 On-Peak hours more 

effectively than with the 2018 On-Peak hours. This is because 2019 On-Peak hours (4 pm – 9 
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pm) occur during the decline of BEV availability at work. A small dip is seen in Figure 17 as 6 

pm approaches. This is because a subset of BEVs that can avoid charging during On-Peak hours 

shift their charging after 6 pm. 

 

Figure 17 Augmented Cost Signal demand profiles with 2018 On-Peak Hours for a 

simulated parking structure with 500 BEVs attempting to get a full charge and no initial 

load 



87 

 

 

Figure 18  Augmented Cost Signal demand profiles with 2019 On-Peak Hours for a 

simulated parking structure with 500 BEVs attempting to get a full charge and no initial 

load 

 

6.5.5 Effects on Parking Structure Demand Load 

The maximum 24-hour loads experienced by 500 BEV parking structures are presented in 

Figure 19-A. The respective values from Uncontrolled Charging in Section 5 are included for 

comparison. Early Charging reduces the maximum load compared to Uncontrolled Charging but 
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has the highest load among the smart-charging strategies. Valley Filling results in the lowest 

loads in all cases, demonstrating its peak reduction capabilities. In all cases, the Octopus 

Charger-based MILP Protocol resulted in reduced loads when compared with Uncontrolled 

Charging. 

The maximum On-Peak loads experienced by 500 BEV parking structures are given in 

Figure 19-B. The Augmented Cost Signal strategy reduces the maximum On-Peak load when 

compared with all other strategies. The flattening nature of the Valley Filling strategy shifts 

charging and results in the highest On-Peak load for all cases with 2019 On-Peak hours. Early 

charging results in the highest On-Peak loads for all cases with 2018 On-Peak hours. 

 

Figure 19 A) Maximum 24-hour load and B) Maximum On-Peak load for 50 simulated 

parking structures with 500 BEVs attempting to get a full charge with the Octopus 

Charger-based MILP Protocol 
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6.5.6 Effects on Electricity Costs 

The monthly cost of electricity was calculated for each parking structure demand load. 

For simplicity, the demand load for each simulation was assumed to be the same for each 

weekday of the month. It was also assumed that the month contained 20 weekdays and that there 

was no charging or electricity usage during the weekends. The fixed monthly charge associated 

with each rate schedule was also included in the calculated costs. 

For simplicity and consistency, electricity costs for all parking structures were calculated 

with the corresponding TOU-GS-3 summer rate schedule, except for 100 BEV parking structures 

without a baseload. For more details on the rate plans used, see Section 4.5 and 5.8. 

The monthly electricity costs for the simulated parking structures are given in Figure 20. 

The Valley Filling and Augmented Cost Signal strategies reduce monthly electricity costs in all 

cases where 2018 On-Peak hours are used. With 2019 On-Peak Hours, however, Valley Filling 

results in monthly costs that are comparable to those of Early Charging. As in Section 5.8, this 

occurs because Valley Filling shifts charging to the more expensive On-Peak Hours.  

Average monthly savings between 32-40% are seen for all cases with no baseload, except 

for Early Charging and Valley Filling with 2019 rates (compared to Uncontrolled Charging). 

Note that these savings are comparable to those seen when the BEV-based strategy was paired 

with ordering via Flexibility Ratio (34-40%) in Section 5.6.2. 
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Figure 20 Estimated monthly cost of electricity for 50 simulated parking structures 

with A) 100 and B) 500 BEVs attempting to get a full charge with the Octopus Charger-

based MILP Protocol 

6.6 Conclusion 

A mixed integer linear programming strategy that allows octopus chargers to 

independently generate charging profiles for their assigned BEVs is proposed in this work. By 

allowing the octopus charger to act as independent agents, the computational burden is 

distributed among all chargers. With simple modifications to the cost signal, this smart-charging 

strategy can be used to charge BEVs as early as possible, reduce parking structure load variation 

(Valley Filling), or shift charging away from On-Peak hours (Augmented Cost Signal). The 

Augmented Cost Signal strategy significantly reduced monthly electricity costs in all cases, 

when compared with Uncontrolled Charging from Section 5.3.1 and the Early Charging strategy 

proposed here. Furthermore, savings from the Augmented Cost Signal strategy in this work were 
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comparable to those seen when the BEV-based strategy was paired with ordering via Flexibility 

Ratio in Section 5.6.2. 

A simple and well-known algorithm is used to assign BEVs to octopus chargers. In all 

cases, the assignment algorithm required less than five extra 4-Cable octopus chargers to satisfy 

the charging demands of 50 simulated parking structures. No extra octopus chargers were needed 

when using 8-Cable octopus chargers. By reducing the number of octopus chargers needed, the 

proposed assignment strategy can reduce investments needed for parking structures’ charging 

infrastructure. Such an assignment, however, requires the driving patterns of all BEVs before the 

protocol is performed. In some cases, privacy may not be a high priority. For example, schedules 

for delivery trucks and public buses are generally known. Thus, this charging strategy can be 

used to generate the charging schedules for the entire fleet of a bus or delivery company. If 

driving schedules are not known until each BEV arrives, then the assignments used here may not 

be feasible. In this case, driving patterns are obtained in real time and more octopus chargers 

may be needed. Such a real-time charging strategy is studied in the following section. 

The comprehensive smart-charging protocol presented in this work can be used to reduce 

electricity and charging infrastructure costs associated with workplace charging, while increasing 

the utilization of renewable resources. Renewable energy is uncertain and electricity prices can 

vary significantly across regions, adding to the need for smart-charging protocols that are robust 

enough to deal with these variations (i.e., optimization based vs. ad-hoc). 
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7 Real-Time Octopus Charger-Based Optimization 

7.1 Introduction 

Access to electric vehicle chargers can mitigate the negative effects of range anxiety and 

charger anxiety. In [5] it is found that increases in charging station deployment result in increases 

of EV sales. In [29] a survey found that 71.7% of participants placed a high degree of importance 

on having recharging facilities at work or near businesses they frequent, when considering a 

future PHEV purchase. Some BEV manufacturers have capitalized on this by donating charging 

stations to qualifying businesses and property owners [34]. Significant investments in charging 

infrastructure would, however, be required if single-cable charging stations remain the standard. 

In Section 4.2, it is shown that single-cable charging stations go unused for large portions of time 

(when BEVs are connected, but not charging). By charging multiple BEVs with a single 

charging station, utilization rates can be improved. Thus, resulting in more cost-effective 

infrastructure investments for workplace parking structures. 

In [30], “octopus chargers” are proposed as a cost-effective solution for charger anxiety. 

Octopus chargers are designed to contain several cables, such that a single octopus charger can 

charge multiple PEVs. Thus, octopus chargers allow workplace parking structure operator to 

reduce charging infrastructure investments by reducing the number of needed charging stations. 

Some utility companies offer Demand Response programs that provide incentives for reducing 

electricity usage when the demand is high [39]. Thus, smart-charging strategies for octopus 

chargers can be used in conjunction with demand response programs such that savings 

businesses (with large fleets of PEVs) are maximized. 
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In Section 6, it is necessary to execute the Octopus Charger-based MILP Protocol in the 

morning (before the first BEV arrives). To do this, the parking structure operator must gather the 

charging flexibility of all participating BEVs ahead of time. This approach requires somewhat 

more complex interaction between the BEVs and the octopus chargers but provides significant 

benefits. In some cases, however, drivers may be unable or unwilling to share their expected 

driving patterns ahead of time. In this case, the driving patterns of each BEV are obtained in real 

time as each car connects to its assigned octopus charger. In order to do this, an assignment 

strategy that does not depend on the BEV’s driving patterns must be used. Furthermore, 

eliminating the communication requirements from Section 6 allows octopus chargers to be 

installed in more destination-charging locations that can service multiple BEVs (e.g., apartment 

buildings, shopping malls, universities). 

In this chapter, a comprehensive Real-Time Octopus Charger-based mixed integer linear 

programming (MILP) protocol for workplace charging is proposed. The protocol is developed 

with the goal of reducing infrastructure and operational costs for a workplace parking structure, 

while meeting BEV drivers’ charging needs. The following are the main contributions of this 

work. 1) A simple and well-known algorithm is used to assign BEVs to octopus chargers, 

without prior information about the BEVs. 2) A smart-charging strategy, that allows octopus 

chargers to schedule charging for their assigned BEVs in real time is proposed (see Section 7.2). 

The Real-Time Octopus Charger-based MILP Protocol requires that drivers share their 

expected driving patterns with their assigned octopus chargers. Thus, user privacy is not 

maintained. This protocol, however, eliminates communication requirements from the BEV-

based Optimization Protocol and the Octopus Charger-based MILP Protocol. Once the driver 

parks, they can simply input their expected driving patterns via the octopus charger’s user 
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interface. The Real-Time Octopus Charger-based MILP strategy manages the parking structure 

demand load by allowing octopus chargers to act as individual agents. Thus, distributing the 

computational burden among the octopus chargers.  

7.2 Overview of Real-Time Octopus Charger-Based Optimization Protocol 

For this charging protocol, it is assumed that a set number of Octopus Chargers with a set 

number of cables are installed in the parking structure. As each BEV arrives to the parking 

structure, it is assigned to the octopus charger with the most flexibility (without any prior 

information about the BEV). As the driver connects their BEV to the octopus charger, the BEV’s 

expected driving patterns for the day become available to the octopus charger. If it is the first 

BEV to connect, then Octopus Charger-based MILP Strategy (from Section 6.4.2) is executed on 

the lone BEV. If other BEVs were previously connected, then the connected BEVs cancel their 

charging profile for the rest of the day and the Octopus Charger-based MILP Strategy is 

executed on all BEVs whose driving patterns have already been provided. Thus, updating the 

charging profiles of all previously connected BEVs. The octopus charger then sends the sum of 

all the charging profiles (along with the cancelled profiles) to the parking structure operator, 

where they are aggregated for an updated cost signal. The process is repeated with the next BEV 

to arrive, until all BEV charging profiles have been generated.  

As each BEV arrives, it is assigned to the octopus charger with the smallest workload, 

that has available cables. The driver’s assignment can be provided by a parking structure 

attendant, by electronic signs, or via short-range communication with the BEV. Once the BEV is 

parked, the driver can input their expected driving patterns via the octopus charger’s user 

interface. Of course, if the BEV can communicate with the octopus charger (via the cable or 
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short-range communication), then the driver can input their expected driving patterns into their 

BEV computer or a smart-phone application.  

7.3 Octopus Charger Assignment via Greedy-Balance 

In Section 6.3.1, BEVs are assigned to octopus chargers ahead of time by collecting the 

Inverse Flexibility Ratios of all of the participating BEVs. The Sorted-Balance algorithm does 

this by queueing all Inverse Flexibility Ratios in decreasing order and then assigning them to the 

octopus chargers with the smallest sum of Inverse Flexibility Ratios. Since BEVs must me 

assigned as they arrive, with no prior information, a variation of the Sorted-Balance algorithm 

must be used. 

Greedy-Balance is another well-known approximation algorithm that can be used to find 

solutions to the Load Balancing Problem [35]. The structure of Greedy-Balance is generally the 

same as Sorted-Balance, except that the loads (i.e., Inverse Flexibility Ratios) are not initially 

queued. Thus, Greedy-Balance can be set to assign BEVs in no particular order. The Greedy-

Balance algorithm can find solutions to the Load Balancing Problem such that 𝐿 ≤ 2𝐿∗ [35]. See 

Section 6.3.1 for more details. 

The Greedy-Balance algorithm above can be used to assign BEVs to octopus chargers 

such that charging flexibility is distributed among the chargers. By distributing flexibility, the 

octopus chargers are less constrained when generating the charging profiles for their assigned 

BEVs. The guarantee that the Greedy-Balance solution is close to the optimal solution (𝐿 ≤ 2𝐿∗) 

is maintained only if the octopus chargers are assumed to have an unlimited number of cables. 

Since a limit is placed on the number of cables per octopus charger here, the assignment could 

result solutions above the guaranteed limit.  
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7.4 Results 

Results for the Real-Time Octopus Charger-based MILP Strategy are presented in the 

following sections. The same parking structures and BEVs from Sections 5 and 6 were tested 

under the same conditions (i.e., same driving patterns, same baseloads, etc.). For more details see 

Section 4. All charging scenarios presented here assume that all BEVs attempt to get the highest 

possible state of charge by the end of the day (i.e., they attempt to get a full charge when 

possible). All parking structures in the following results were simulated without a baseload. All 

BEVs charge at a rate of 3.6 kW and 8-Cable octopus chargers have a maximum output rate of 

7.2 kW (i.e., 8-Cable octopus chargers can charge two BEVs at a time). 

7.4.1 Octopus Charger Assignment via Greedy-Balance 

The Greedy-Balance algorithm was used to assign BEVs to octopus chargers in real time. 

The Octopus Charger-based MILP Strategy was used to find the number of chargers needed to 

satisfy the charging demands of all BEVs in 100 and 500 BEV parking structures. The minimum 

number of octopus chargers were initially used (i.e., 25 4-Cable or 13 8-Cable chargers for a 100 

BEV parking structure). If all charging requests were satisfied, the number of octopus chargers 

was determined for the parking structure. If at least one BEV did not receive its full requested 

charge, then the number of octopus chargers was increased iteratively until a feasible assignment 

was found. 

The Greedy-Balance algorithm was used to assign BEVs to octopus chargers in 50 

simulated parking structures, such that the flexibility among octopus chargers was distributed 

evenly. It was found that several cases with 4-Cable octopus chargers resulted large numbers of 

octopus chargers. Specifically, several 500 BEV parking structures required more than 200 4-
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Cable octopus chargers; an amount larger than those required for the BEV-based optimization 

strategies in Section 5. Results for the real-time assignment of 4-Cable octopus chargers are, 

thus, omitted from this work. 

While the Greedy-Balance algorithm resulted in large numbers of 4-Cable octopus 

chargers, it should be noted that Greedy-Balance is a general algorithm that is not tailored for 

octopus charger assignment. Several modifications can be made to the Greedy-Balance algorithm 

to improve its performance when dealing with 4-Cable octopus chargers. For example, the 

Inverse Flexibility Ratio and requested charging can be used to limit the BEVs that can use 

octopus chargers. If a BEV has very little flexibility and will be charging for a long period, then 

said BEV might be better suited with a single-cable charging station. These details are omitted to 

focus on the main concepts of this work and suggested as future works. 

The number of 8-Cable octopus chargers needed to satisfy 50 simulated 100 BEV 

parking structures are presented in Table 12. The largest number of octopus chargers needed is 

17 and occurs when Valley Filling is performed. On average, only one extra octopus charger is 

required to satisfy the charging demands of all BEVs. 

Table 12 Number of 8-Cable octopus chargers needed for 50 simulated 100-BEV 

parking structures 

Charging 
Strategy 

No Baseload 

Min. Avg. Max. 

Real-Time: 
Early Charging 

13 13.12 15 

Real-Time: Aug. Cost 
Signal (2018) 

13 13.22 15 

Real-Time: Aug. Cost 
Signal 2019 

13 13.28 16 

Real-Time: 
Valley Filling 

13 13.78 17 
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The number of 8-Cable octopus chargers needed to satisfy 50 simulated 500 BEV 

parking structures are presented in Table 13. The largest number of octopus chargers required is 

101; which occurs when Valley Filling is performed. This occurs because some BEVs, that 

arrive early, delay charging to fill valleys in the afternoon. By doing so, they do not charge 

earlier in the day and decrease the charging flexibility of the octopus charger when new arrivals 

connect. All other strategies, on the other hand, shift charging to the morning and require less 

octopus chargers. On average, less than 3 extra octopus chargers are required for all charging 

strategies, except for Valley Filling. 

Table 13 Number of 8-Cable octopus chargers needed for 50 simulated 500-BEV 

parking structures 

Charging 
Strategy 

No Baseload 

Min. Avg. Max. 

Real-Time:  
Early Charging 

63 63.96 74 

Real-Time: Aug. Cost 
Signal (2018) 

63 65.7 72 

Real-Time: Aug. Cost 
Signal (2019) 

63 65.44 70 

Real-Time: 
Valley Filling 

64 78.56 101 

 

7.4.2 Real-Time Octopus Charger-Based MILP: Early Charging 

Representative results from parking structure #2 (out of 50 simulated parking structures) 

are presented in the following sections. The Real-Time Octopus Charger-based MILP Protocol 

was used to set BEV charging as early as possible, to allow octopus chargers to accommodate 

unexpected arrivals. Results for the Real-Time Early Charging strategy are presented in Figure 

21. As previously mentioned, only cases with 8-Cable octopus chargers and no initial baseload 

were studied. The maximum load experienced is about 425 kW, which is slightly higher than the 
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loads seen in Figure 15 (about 400 kW). The saw-tooth pattern in the demand profile caused by 

the post-processing is seen here again (see Section 6.4.2.2 and Section 6.5.2). This saw-tooth 

pattern can be avoided by using a finer resolution when generating the timeslots for the octopus 

charger (i.e., using 15 minutes instead of an hour). 

 

Figure 21 Real-Time Early Charging demand profile for a simulated parking structure 

with 500 BEVs attempting to get a full charge, no initial baseload, and 8-Cable octopus 

chargers 

7.4.3 Real-Time Octopus Charger-Based MILP: Valley Filling 

Results for the Real-Time Valley Filling strategy are given in Figure 22. The maximum 

peak experienced in this simulation is about 230 kW. This is significantly higher than the loads 

experienced when the Octopus Charger-based MILP Protocol is executed ahead of time (about 

190 kW in Figure 16). This is, however, comparable to the 230 kW peaks experienced when the 

BEV-based strategy was ordered by arrival time in Section 5.6.2. 
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Figure 22 Real-Time Valley Filling demand profile for a simulated parking structure 

with 500 BEVs attempting to get a full charge, no initial baseload, and 8-Cable octopus 

chargers 

7.4.4 Real-Time Octopus Charger-Based MILP: Augmented Cost Signal 

Simulation results for the Real-Time Augmented Cost Signal Strategy 2018 On-Peak-

Hours (12 pm – 6 pm) and 2019 On-Peak Hours (4 pm – 9 pm) are presented in Figure 23 and 

Figure 24, respectively. The load during On-Peak Hours is lowered in both cases. As in Section 

5.6.3, the Augmented Cost Signal strategy avoids charging during the 2019 On-Peak hours more 

effectively than with the 2018 On-Peak hours. When compared to Figure 17 (when the protocol 

is executed ahead of time), the peaks are increased by 32 kW and 43 kW during On-Peak and 

non-On-Peak hours.   
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Figure 23 Augmented Cost Signal demand profile with 2018 On-Peak Hours for a 

simulated parking structure with 500 BEVs attempting to get a full charge, no initial 

baseload, and 8-Cable octopus chargers 

 

 

Figure 24 Augmented Cost Signal demand profile with 2019 On-Peak Hours for a 

simulated parking structure with 500 BEVs attempting to get a full charge, no initial 

baseload, and 8-Cable octopus chargers 

 



102 

 

7.4.5 Effects on Parking Structure Demand Load 

The maximum 24-hour loads and the maximum On-Peak loads experienced by 500 BEV 

parking structures are presented in Figure 25-A and Figure 25-B, respectively. Similar trends to 

those found in Figure 19 (in Section 6.5.5) are found here. Valley Filling gives the lowest 24-

hour loads and the Augmented Cost Signal strategy give the lowest On-Peak loads. The Real-

Time strategies, however, result in higher loads in all cases when compared to the strategies in 

Section 6.5.5. Since the driving patterns of BEVs are not known until each BEV connects, the 

octopus charger cannot schedule charging as effectively. Thus, resulting in higher peaks during 

On-Peak and non-On-Peak hours.  

 

Figure 25 A) Maximum 24-hour load and B) Maximum On-Peak load for 50 simulated 

parking structures with 500 BEVs attempting to get a full charge with the Real-Time 

Octopus Charger-based MILP Protocol 
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7.4.6 Effects on Electricity Costs 

The monthly cost of electricity was calculated for each parking structure demand load. 

For simplicity, the demand load for each simulation was assumed to be the same for each 

weekday of the month. It was also assumed that the month contained 20 weekdays and that there 

was no charging or electricity usage during the weekends. The fixed monthly charge associated 

with each rate schedule was also included in the calculated costs. 

For simplicity and consistency, the TOU-GS-2 and TOU-GS-3 summer rate schedules 

were used to calculate the electricity costs for parking structures with 100 and 500 BEVs, 

respectively. The B and D versions of the above rate plans were used for 2018 and 2019 TOU 

schedules, respectively. For more details on the rate plans used, see Section 4.5 and 5.8. 

The monthly electricity costs for the simulated parking structures are given in Figure 26. 

Valley Filling significantly increased monthly electricity costs for 2019 On-Peak Hours when 

compared to Early Charging. The Augmented Cost Signal strategy resulted in the lowest costs 

for all cases.  

Average monthly savings between 25-30% are seen for all cases here, except for Early 

Charging and Valley Filling with 2019 rates (compared to Uncontrolled Charging). Note that 

these savings are comparable to those seen when the BEV-based strategy was paired with 

ordering via arrival time (20-31%) in Section 5.6.2. When compared to the strategies in Section 

6.5.6, however, the Real-Time strategies resulted in higher costs for most cases.  
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Figure 26 Estimated monthly cost of electricity for 50 simulated parking structures 

with A) 100 and B) 500 BEVs attempting to get a full charge with the Real-Time Octopus 

Charger-based MILP Protocol 

 

7.5 Conclusion 

A mixed integer linear programming strategy that allows octopus chargers to generate 

charging profiles for BEVs as they arrive in real time is proposed in this work. By scheduling 

charging in real time, the burden of communication with the parking structure operator (from 

Sections 5 and 6) is eliminated. Before drivers connect their BEV to their assigned octopus 

charger, they can simply enter their expected driving patterns into the octopus charger’s user 

interface. Furthermore, by allowing the octopus charger to act as independent agents, the 

computational burden is distributed among all chargers. By contrast, centralized charging 

strategies would place the entire computational burden on the parking structure operator. Such 
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computations would be even more challenging for real-time charging if the protocol is expected 

to be executed/updated after each BEV arrival. 

With simple modifications to the cost signal, this smart-charging strategy can be used to 

charge BEVs as early as possible, reduce parking structure load variation (Valley Filling), or 

shift charging away from On-Peak hours (Augmented Cost Signal). The Augmented Cost Signal 

strategy significantly reduced monthly electricity costs in all cases, when compared with 

Uncontrolled Charging from Section 5.3.1 and the Early Charging strategy proposed here. 

A simple and well-known algorithm is used to assign BEVs to octopus chargers in real 

time, without any prior information about the BEVs. On average, the Early Charging and 

Augmented Cost Signal strategies required less than 66 8-Cable octopus chargers for 500 BEV 

parking structures (i.e., less than three additional chargers). The Valley Filling strategy required 

79 and 101 8-cable octopus chargers on average and in the worst case, respectively. By reducing 

the number of octopus chargers needed, the proposed assignment strategy can reduce 

investments needed for parking structures’ charging infrastructure. 

The comprehensive smart-charging protocol presented in this work can be used to reduce 

electricity and charging infrastructure costs associated with workplace charging, while providing 

charging opportunities to long-range commuters and workers without access to home charging 

(i.e., apartment dwellers).  

While the results for the assignment algorithm were quite underwhelming for 4-Cable 

octopus chargers, modifications can be made to the Greedy-Balance algorithm to improve its 

performance. For example, limits can be placed so that “problematic” BEVs are assigned to 

single-cable octopus charger. Machine learning algorithms can also be used to anticipate and 
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plan for predicted BEV arrivals. These topics are beyond the scope of this work and are 

suggested as a future works. 
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8 Conclusions 

Three comprehensive smart-charging protocols with varying applications are proposed in 

this work. Each protocol is developed with varying degrees of focus on communication 

requirements and privacy concerns. The BEV-based Optimization Protocol is a decentralized, 

non-iterative strategy that allows BEVs to individually generate their own charging profiles via 

linear programming methods. The Octopus Charger-based MILP Protocol is a smart-charging 

strategy that allows octopus chargers to independently schedule charging for their assigned 

BEVs via MILP methods. The Real-Time Octopus Charger-based MILP Protocol is a smart-

charging strategy that allows octopus chargers to independently schedule charging for their 

assigned BEVs in real time, without any prior BEV information. 

Simulations were performed to verify and quantify the effectiveness of each of the 

proposed protocols. By using octopus chargers, all protocols were able to reduce the number of 

charging stations needed at parking structures, while meeting the charging requests of all BEVs. 

With simple modifications to the cost signal, the proposed protocols can manage the demand 

load of a parking structure to reduce parking structure load variation (Valley Filling) or shift 

charging away from On-Peak hours (Augmented Cost Signal). The Augmented Cost Signal 

strategy significantly reduced monthly electricity costs in all cases, when compared with 

Uncontrolled charging. 

All three smart-charging protocols can reduce operational and charging infrastructure 

costs associated with workplace charging, while providing charging opportunities to long-range 

commuters and workers without access to home charging. Savings, however, were significantly 

influenced by the charging strategy and electricity rate plans used. Electricity prices can vary 
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significantly across regions, thus, adding to the need for smart-charging protocols that are robust 

enough to deal with these variations (i.e., optimization based vs. ad-hoc).  

The implementation of the proposed protocols require investment to parking structures’ 

charging infrastructure (i.e., octopus chargers). Such investments have already been proposed as 

possible methods of mitigating charger anxiety [30]. Future iterations of octopus chargers should 

be designed with smart-charging capabilities in order to reduce infrastructure and electricity 

costs for parking structure operators further. In order to implement the strategies proposed here, 

limited communication is required between the BEVs and the charging stations (traditional or 

octopus). This technology is currently feasible and can be implemented in new octopus charger 

models. 

8.1 BEV-based Optimization Protocol 

A decentralized smart-charging strategy that addresses the constraints and limitations of 

multiple dwell times is proposed. The protocol first uses an ordering strategy, based on each 

vehicle’s load shifting flexibility, to develop a queue. Next, a decentralized smart-charging 

strategy that allows BEVs to individually generate their own charging profile is used. Finally, an 

assignment algorithm is used to assign BEVs to octopus chargers. 

By allowing BEVs to individually generate their charging profiles, drivers can avoid 

sharing their driving patterns with the parking structure operator. Thus, maintaining a measure of 

user privacy. For this protocol, the parking structure operator must gather the charging flexibility 

of all participating BEVs in the morning (before the first BEV arrives). The operator then 

generates a queue and executes the appropriate smart-charging strategy. Thus, this approach 
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requires somewhat more complex communication between the BEVs and the parking structure 

operator but provides significant benefits. 

8.2 Octopus Charger-based MILP Protocol 

The Octopus Charger-based MILP Protocol can manage a parking structure demand load 

by having octopus chargers schedule charging for their assigned BEVs. By allowing octopus 

chargers to act as individual agents, the protocol distributes the computational burden among the 

octopus chargers. This protocol requires that the octopus chargers have access to their assigned 

BEVs’ driving data, so privacy is not maintained for the participating drivers. In some cases, 

however, privacy may not be a concern. For example, driving patterns for entire fleets of buses 

or delivery trucks are generally known. Thus, this protocol can be used to reduce electricity costs 

and charging infrastructure investments for public transportation and delivery companies. 

This protocol must be executed ahead of time, which requires more communication 

between the BEVs and the octopus chargers. These increased communication requirements, 

however, provide significant benefits. A simple and well-known algorithm is used to assign 

BEVs to octopus chargers. The Octopus Charger-based MILP Protocol significantly reduced the 

number of charging stations required when compared to the BEV-based Optimization Protocol. 

In all cases, the assignment algorithm required less than five extra 4-Cable octopus chargers to 

satisfy the charging demands of 50 simulated parking structures. No extra octopus chargers were 

needed when using 8-Cable octopus chargers.  

8.3 Real-Time Octopus Charger-based MILP Protocol 

A comprehensive protocol that allows octopus chargers to independently schedule 

charging for their assigned BEVs in real time is proposed. The Real-Time Octopus Charger-



110 

 

based MILP Protocol requires that drivers share their expected driving patterns with their 

assigned octopus chargers, so user privacy is not maintained. This protocol, however, eliminates 

the communication requirements from the BEV-based Optimization Protocol and the Octopus 

Charger-based MILP Protocol. Once the driver parks, they can simply input their expected 

driving patterns via the octopus charger’s user interface. By eliminating these communication 

requirements octopus chargers can be installed in more destination-charging locations that 

typically service multiple BEVs (e.g., apartment buildings, shopping malls, universities). 

Furthermore, by allowing the octopus chargers to act as independent agents, the 

computational burden is distributed among all chargers. By contrast, centralized charging 

strategies would place the entire computational burden on the parking structure operator. Such 

computations would be even more challenging for real-time charging, if the protocol is expected 

to be executed/updated after each BEV arrival. 

A simple and well-known algorithm is used to assign BEVs to octopus chargers in real 

time, without any prior information about the BEVs. On average, the Early Charging and 

Augmented Cost Signal strategies required less than three additional 8-cable octopus chargers to 

satisfy charging for all BEVs. A significant reduction compared to the BEV-based Optimization 

Protocol. The Valley Filling strategy required 101 octopus chargers in the worst-case scenario. 

The Real-Time Octopus Charger-based MILP Protocol, however, required more than 200 4-

cable octopus chargers for several cases; an amount larger than those required for the BEV-based 

Optimization Protocol. 



111 

 

8.4 Future Work 

While the results for the assignment algorithm were quite underwhelming for 4-Cable 

octopus chargers, modifications can be made to the Sorted-Balance algorithm to improve its 

performance. For example, if a BEV needs the entire workday to charge and has little/no 

flexibility (due to long commutes), then it may not be compatible with any BEVs assigned to an 

octopus charger. Such BEVs might be best assigned to a single-cable charger. Furthermore, 

machine learning algorithms can also be used to anticipate and plan for predicted BEV arrivals. 

These topics are beyond the scope of this work and are suggested as a future works. 

In some cases, there may be discrepancies between predicted/scheduled driving patterns 

and actual driving patterns. BEV drivers can attempt to get a full charge at work, to minimize the 

risk of not having enough charge at the end of the workday. This is particularly true for BEVs 

with large battery capacities that are generally maintained at a high state of charge. If driving 

between dwell times is underestimated, however, more complications could arise. Thus, robust 

methods to handle the effects or random deviations from typical driving patterns must be 

developed. 

The strategies proposed in this work can be developed further to estimate the energy 

storage capabilities of parking structures. On emergency days, the Augmented Cost Signal 

strategy can be used to provide as much charging as possible before On-Peak hours. Thus, giving 

the parking structure operator an estimate of the energy stored in the parked BEVs. Having this 

estimate gives the operator a valuable insight into each BEV’s storage capabilities, so that an 

arbitrage (vehicle-to-grid and vehicle-to-vehicle charging) can be implemented. This is beyond 

the scope of this paper and is also suggested as a future work. 



112 

 

9 Appendix 

A draft of the manuscript that appeared in Volume 113 of Energy by Edgar Ramos 

Muñoz, Ghazal Razeghi, Li Zhang, and Faryar Jabbari is provided below. 

9.1 Electric Vehicle Charging Algorithms for Coordination of the Grid and 

Distribution Transformer Levels 

9.1.1  Abstract 

 The need to reduce greenhouse gas emissions and fossil fuel consumption has increased 

the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric 

vehicles can pose challenges at the grid and local distribution levels. Various charging strategies 

have been proposed to address such challenges, often separately. In this paper, it is shown that, 

with uncoordinated charging, distribution transformers and the grid can operate under highly 

undesirable conditions. Next, several strategies that require modest communication efforts are 

proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the 

grid and local levels.  Existing transformer and battery electric vehicle characteristics are used 

along with the National Household Travel Survey to simulate various charging strategies. It is 

shown through the analysis of hot spot temperature and equivalent aging factor that the 

coordinated strategies proposed here reduce the chances of transformer failure with the addition 

of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and 

uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. 

Keywords: 

Plug-in electric vehicle, Valley filling, Distribution transformer, PEV charging, BEV, Loss of 

life 
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Notation 

The symbols used in this paper are as follows. 

𝑏𝑛 Energy used by each BEV, between charging cycles 

𝐶𝑔𝑟𝑖𝑑(𝑡𝑖) Broadcast cost from the grid for each timeslot 

𝐶𝑡𝑟𝑎𝑛𝑠(𝑡𝑖) Broadcast cost from the transformer for each timeslot 

𝐼𝐶𝐷 Cooling down period 

𝐽 Total charging cost 

n PEV number 

𝑃𝑙𝑖𝑚𝑖
 Desired maximum power limit for the transformer 

𝑃𝑙𝑖𝑚𝑖
̅̅ ̅̅ ̅̅  Desired maximum power limit for the transformer with 

cooling down period 

𝑝𝑛(𝑡𝑖) Charging power for each BEV 

𝑟𝑛(𝑡𝑖) Maximum charging energy for each BEV n, at each timeslot 

𝑡𝑖 Timeslot i 

∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ Time each BEV n is plugged in during timeslot i 

𝑥𝑛(𝑡𝑖) Charging energy for each BEV n, at each timeslot 

𝜂 BEV charging efficiency 

 

The abbreviations used in this paper are as follows. 
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AAF Aging Acceleration Factor 

BEV Battery Electric Vehicle 

BSOC Battery State of Charge 

EAF Equivalent Aging Factor 

HST Hot Spot Temperature 

PEV Plug-in Electric Vehicle 

PHEV Plug-in Hybrid Electric Vehicle 

TOU Time-of-Use 

 

9.1.2  Introduction 

Plug-in electric vehicles (PEVs) have been gaining popularity in recent years due to the 

need to reduce fossil fuel consumption and greenhouse gas emissions [1]. PEVs include plug-in 

hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs). In [3], it is shown that 

meeting ambitious reduction in greenhouse gasses, such as those planned for California, requires 

large numbers of PEVs. According to [40] market share of PHEVs is expected to increase to 

25% by 2020.  This would lead to an overall PHEV penetration of about 9% of all vehicles in 

use. While this penetration level might seem low, concentrations of PEVs could become quite 

high in more affluent and tech savvy neighborhoods (e.g. Silicon Valley) [19]. This uneven 

distribution can occur across national boundaries. For example, the Tremove model predicts a 

PHEV penetration as high as 30% for Belgium by 2030 [41]. Here, it is assumed that the 

vehicles rely on electric power primarily, therefore the focus is on BEVs. 
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Interactions between large number of electric vehicles and power networks have been 

studied by several groups.  In [42], integration of PEVs is studied with regard to reconfigurable 

microgrids, while [43] analyzes the impact of 100% PEV penetration on the power transmission 

network.  Reference [44] shows that PEVs can be used as storage, in vehicle-to-grid (V2G) 

charging, to reduce reliance on coal/natural gas. In [18], similarly, PEVs are studied as 

alternative energy storage, for high renewable penetration levels, given the intermittency of 

renewable sources (see, e.g., [45] and [46] on challenges in integrating wind and solar energy 

into a conventional grid). In [47], PEV batteries (although only at their automotive end of life) 

are repurposed as stationary storage systems to integrate intermittent wind power. In [23], it is 

found that large number electric vehicles that recharge at night, can level the electricity demand, 

and increase the amount of wind power that can be used. High concentrations of PEVs, however, 

can also cause grid level challenges during high demand periods if vehicle charging is 

uncoordinated.  

Large, and non-uniform penetration levels have the potential to pose additional 

challenges, namely at the local level through distribution transformers. These transformers are 

often designed and sized for the non-BEV power demand of a group of residences (e.g., a street). 

Large loads, extended over long periods can shorten the life, as well as increase the risk of 

serious damage [1] to distribution system equipment (including transformers). While 

transformers are designed to tolerate certain levels of overload, excessive overloads can be 

problematic.  Overloading can increase the hot spot temperature (HST), which can increase the 

equivalent aging factor (EAF). This would cause more frequent replacement of transformers [1] 

and upgrades to the distribution system.  
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Scheduling EV charging properly, may reduce the daily cycling of power plants and the 

operational cost of the electric utility [11]. The issue of accommodating the charging needs of a 

large number of PEVs without placing extreme stress on the electricity distribution network have 

been studied by a number of research groups. EV charging control strategies fall into three main 

categories: time-of-use (TOU), centralized control, and decentralized control [48].  In [41] 

quadratic and dynamic programming techniques are used to generate charging profiles for PEVs 

by minimizing power losses in the distribution grid. In [14] a decentralized charging strategy is 

proposed for the case where all EVs have identical characteristics (same charging horizon, power 

consumption, and maximum charging rate). In [48] another decentralized charging strategy is 

proposed which alleviates the necessity for the identical characteristics assumed in [14].  

In this paper, the focus is on leveling the grid scale power demand by developing a smart 

charging strategy for high electric vehicle penetrations, while avoiding excess damage to the 

infrastructure (e.g., distribution transformers).  Due to the communication and computational 

requirements for a real-world application, the focus is on a decentralized approach. This paper 

starts with the simple algorithm proposed in [19], in which a non-iterative approach is developed 

that results in maximum charging rates for all charging periods, is capable of achieving valley 

filling (when desired), and can be modified easily to follow specific grid level demand profiles 

(e.g., to accommodate the integration of renewable power generation in the grid, thought that is 

not the main focus). It is then shown that under reasonably mild conditions, a large number of 

distribution transformers can operate under undesirable conditions (i.e. significantly higher than 

designed power levels), be it under a grid level coordination or uncoordinated charging. 

Charging strategies have also been developed to improve performance at the distribution 

level as well. The effects of uncontrolled and off-peak charging are studied in [1] and [40]. Both 
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papers find that smart-charging strategies can mitigate the negative effects of PEV charging. 

Two smart-charging strategies are proposed in [40]. The first prevents transformers from 

overloading by delaying charging of PEVs. The second sheds or defers non-critical household 

loads (e.g. water heaters and dryers) during PEV charging. Load shedding is not considered in 

this work due to communication, technical, and privacy concerns. Neither algorithm addresses 

grid level concerns and deal with the safety of local transformers only. Another local control 

strategy is proposed in [49] that depends only on local network conditions and the battery state of 

charge (BSOC) of the PEV. A centralized control charging strategy where a single controller 

manages the charging rates of all PEVs is then also proposed. 

In [50], Distribution Feeder Reconfiguration (DFR) is used to coordinate PEV operation 

in a stochastic framework. The DFR strategy is employed to minimize operational costs and 

increase the penetration of PEVs with the use of V2G. An application of the proposed approach 

demonstrates its robustness and effectiveness. In this paper, V2G is not investigated and focus is 

given to more readily available technologies. In [51] the integration of a high number of 

electrical vehicles in a renewable-dominated power system is studied. The problem is formulated 

using a two-stage stochastic programming model. 

A critical issue that remains unresolved is that improved grid performance can negatively 

affect local distribution components. In [52] decentralized charging protocols are developed that 

use cost signals to achieve a valley filling profile at the grid. The charging strategy from [48] is 

expanded to develop three different iterative algorithms that incorporate capacity constraints, 

relying on stochastic optimization techniques using nested iterative algorithms. The capacity 

constraints in [52] can be used to prevent failure and/or improve the efficiency of local 

components (e.g. transformers).  
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The focus of this work is on the development of a decentralized algorithm, with minimal 

communication and delay considerations (e.g., non-iterative) that addresses both grid level 

concerns (i.e., utility level economics) and local levels (e.g., safety and maintenance concerns), 

with priority given to local concerns. Here, the two concerns are combined by expanding the 

algorithm in [19], with only slight increases in communication and computation requirements.  

The algorithm from [19] requires modest communication between the grid operator and the 

BEV. As in [52], the modifications made to the algorithm from [19] requires communication 

between the BEV and the local distribution transformer. However, since iterative techniques are 

not used, the increase in computational effort (performed by the BEV) is negligible. This 

communication is used to prevent charging during times that could cause overloading. Naturally, 

the algorithm proposed here is not limited to only distribution transformers. With minor 

modifications, this algorithm can be used in conjunction with any (or indeed multiple) other local 

infrastructure components affected by BEV charging. Finally, this paper compares key 

performance variables of the transformers (load factor, HST, and life span) for different 

algorithms to gain a better, and quantitative, understanding of the benefits. 

9.1.3  Parameters, Data, and Related Assumptions 

The parameters, data, and related assumptions used in the following simulations are 

described below. 

9.1.3.1 Transformer Data 

Measured data from a 75-kVA transformer, from a residential area in Irvine, California is 

used to obtain a Baseload for the simulations performed. The Baseload is the load demand on the 

transformer.  See the black curve in Figure 27-A. Transformer data from Irvine (for which 
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measured data has already been obtained) is used, because of its suitable socio-economic 

population regarding PEV sales. The measured 75 kVA transformer serves 20 homes. Eight of 

these homes have air conditioning. These homes range in size from 177 to 269 square meters 

(1900 to 2900 square feet). These attributes are relatively common for the socio-economic 

groups most enthusiastic about BEVs. The Baseload transformer data used throughout this paper 

did not include any electric vehicle charging. 

The Baseload was obtained from the transformer data on Thursday September 25, 2014. 

The temperature on this day had highs of 31.7° C and lows of 21.7° C [53]. The transformer data 

have a sampling time of five minutes. This sampling time could exaggerate changes in the load 

(see Figure 27-A). The transformer profile chosen here is used as a representative load for all 

transformers in the following simulations. For a clear presentation of the results, a smoother 

profile would be desirable, since many short-term peaks clutter the figures (without altering the 

main findings). In practice, a predicted (or average – based on history) profile is used and it is 

unlikely that such a predicted history would have a large number of significant jumps over 5 or 

15-minute time slots. Without smoothing, the results are quite similar, though with higher peaks 

and lower valleys (which might be more problematic for transformers in hot days).  Furthermore, 

we use this representative profile, in Figure 33, for grid level impact. As a result, some form of 

averaging or smoothing is needed to represent a large number of transformers.  Therefore, the 

data are first “smoothed out” with a central moving average with nine data points.  The data are 

then interpolated on MATLAB, to obtain a one minute resolution. A power factor of 1 was 

assumed for the transformer at all times.  

During August and September of 2014 (months for which transformer data were 

recorded), there were 17 days (28%) with highs of at least 31.7° C. Figure 27-B shows a 
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comparison of the Baseload used here with Baseloads from two other days:  August 25, 2014 and 

September 16, 2014. The temperature on September 16 had highs of 37.8° C and lows of 24.4° 

C. August 25 had highs of 26.7° C and lows of 21.1° C. Similar traits can be seen in the three 

Baseloads. To use an intermediate – and relatively common – condition, the Baseload from 

September 25 (which is represented by the middle curve in Figure 27-B) will be used in all of the 

following simulations unless otherwise stated.  

 

Figure 27 Transformer Baseload data a) before and after “smoothing” and b) for three 

days 
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9.1.3.2  PEV Data 

The 2009 National Household Travel Survey (NHTS), [54], is used to obtain the vehicle 

travel behavior data for the following simulations. The same processing steps from [19] were 

used to prepare the data. Trips without a personally owned vehicle were deleted, person-chain 

data was converted to vehicle chain data, daily trip data with unlinked destinations or significant 

over-speed were deleted, and tours were organized to start and end at home. This processing 

resulted in travel data for 20,295 vehicles. 

Main  Electric Vehicle Assumptions: (i) An all-electric range of 40 miles (64.4 km) 

(which is a conservative number), (ii) A rate of 0.34 kWh/mi (0.21 kWh/km), (iii) BEVs in the 

simulation are either given a 3.3 kW or 7.2 kW charging rate with a charging efficiency of 0.85, 

(iv) If PHEV, vehicles will try to use battery power before gasoline (the focus of this work is on 

BEVs). 

Penetration Assumptions: Electric vehicle sales will vary depending on regions. Current 

prices suggest that sales will be higher in areas with people of higher socio-economic standing. 

This, added with the fact that views on PEVs vary depending on regional affiliation, results in 

the clustering of sales in certain areas (e.g. California leads the United States in PEV sales). 

Consistent with the notion of non-uniform distribution of PEV sales, it is assumed that PEVs 

have higher penetration in individual neighborhoods and streets. Here it is assumed that (i) An 

overall penetration of 10%, (ii) Average penetration on streets with PEVs of 25%, (iii) A ratio of 

1.86 cars per household [55], and (iv) 20 houses per distribution transformer. These assumptions 

lead to 9 BEVs per transformer.  
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Given that there are 20,295 vehicles in the data-set (and it is assumed they are all BEVs), 

the vehicles are served by 2,255 transformers that need to be studied for possible damage. The 

20,295 BEVs are randomly assigned to the 2,255 transformers, to maintain a ratio of 9 BEVs per 

transformer. The original random assignment is maintained throughout all simulations. In 

practice, there could be many variations in the number of BEVs a transformer supports, as well 

as the expected demand of these vehicles. The assignment can be interpreted as an estimation of 

the chance of overloading due to variations in BEV usage.  For example, if 225 transformers 

overload, then this could also be interpreted as a 10% chance of a transformer overloading. 

9.1.3.3  Charging Power 

Most electric vehicles have charging rates of 3.3 kW [56]. Others have 6.6, 7.2, or 10 kW 

charging rates. The Tesla Model S even has an optional 20 kW twin charger. In the current study, 

only charging rates of 3.3 and 7.2 kW are used in all simulations. For each of the algorithms, the 

three following charging scenarios are simulated: 

i. 3.3 kW Charging: All BEVs have a charging rate of 3.3 kW 

ii. Mixed Charging: Half of the BEVs have a charging rate of 3.3 kW and the other half 

have a rate 7.2 kW. 

iii. 7.2 kW Charging: All BEVs have a charging rate of 7.2 kW 

 

High levels of BEVs with 7.2 kW charging could exacerbate the issues discussed here. For the 

mixed charging method, the 7.2 kW BEVs were randomly assigned to the 2,255 transformers. 

Since the assignment was random, some transformers have more BEVs with 7.2 charging than 

others. 



123 

 

9.1.4  Algorithms 

In the following, we describe different charging scenarios. 

9.1.4.1 Uncontrolled Charging 

BEV charging is first simulated in an uncontrolled charging scenario. In this scenario, 

charging begins as soon as the driver arrives home and plugs in their BEV. The BEV continues 

to charge until it has a full battery state of charge (BSOC). 

9.1.4.2 TOU Charging 

Time-Of-Use (TOU) is a pricing structure that charges different rates for electricity [57]. 

The varying rates depend on the season and time of the day. The TOU pricing structure from 

Southern California Edison (SCE) is used in these simulations. The SCE TOU pricing scheme 

includes two seasons: summer and winter. The summer season is June-September, while winter 

season is October-May. SCE refers to its three pricing periods as On-Peak, Off-Peak, and Super 

Off-Peak. With On-Peak having the highest energy price and Super Off-Peak having the lowest. 

During the summer season, the On-Peak hours are 2 pm to 8 pm. The Super Off-Peak hours are 

10 pm to 8 am. The rest are Off-Peak hours. Winter hours are the same as summer hours for 

residential customers, but prices are generally lower. Table 1 contains the typical periods for the 

TOU pricing structure during the summer (the actual prices can vary significantly across 

regions). 

Table 14 Summer residential time-of-use hours 

Super Off-Peak Off-Peak On-Peak 

10 pm – 8 am 8 am – 2 pm & 8 pm – 10 pm 2 pm – 8 pm 
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For this strategy, the BEVs attempt to charge during times when the electricity price is 

the lowest. If the BEV cannot get a full charge during Super Off-Peak hours, then it tries to only 

avoid On-Peak hours. If this is not possible either, then there are no limitations set on when the 

BEV can charge. 

9.1.4.3 Grid Valley Filling 

In this section, the protocol in Zhang et al. [19] is briefly reviewed. The non-iterative 

protocol in [19] ensures maximum charging power during the scheduled charging times for 

BEVs, to achieve close to “valley filling” profile or other desired profile (e.g., to accommodate 

renewable resources). This is done to the extent that the arrival and departure times of BEVs 

allow. The algorithm works by having the grid operator send a “cost” signal to the BEV.  The 

BEV then optimizes its own cost with the cost signal in order to form a charging profile. The 

charging profile is then sent to the grid operator. The cost signal is updated after a certain amount 

of time has passed or certain number of BEVs have established their profile (see [19] and the 

Appendix for more details). 

The power needed by each BEV 𝑛, for each timeslot 𝑡𝑖 is given by 𝑥𝑛(𝑡𝑖). The total 

charging cost is 

𝐽 =  ∑𝐶𝑔𝑟𝑖𝑑(𝑡𝑖) × 𝑥𝑛(𝑡𝑖)

𝑖

 (45) 

where 𝐶𝑔𝑟𝑖𝑑(𝑡𝑖) is the most recent broadcast cost for each timeslot. The cost used in Equation 45 

is the net grid level load. It is broadcasted by the grid operator and updated throughout the day. 

The grid load, without BEV charging, is estimated through forecast, based on historical data.  

The following constraints are needed for the optimization problem. The energy consumed 

by the BEV must be equal to the energy used in between charging cycles, 𝑏𝑛. 
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∑𝑥𝑛(𝑡𝑖) =  𝑏𝑛
𝑖

 (46) 

The lower bound for the power is set to zero. The upper bound is set as the product of the 

charging power 𝑝𝑛(𝑡𝑖), the charging efficiency 𝜂 (0.85), and the fraction of dwell time during 

each timeslot ∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ . The value of ∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅  depends on the dwelling time of the vehicle. For 

example, for a dwelling time of 6.25 hours, ∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅  would equal one for the first six timeslots 

and 0.25 for the final timeslot. 

0 ≤  𝑥𝑛  ≤  𝑟𝑛(𝑡𝑖) (47) 

 

𝑟𝑛(𝑡𝑖) =  𝑝𝑛(𝑡𝑖)  ×  ∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅  ×  𝜂 (48) 

 

The algorithm is thus the following:  Once a BEV is connected, it receives the current 

predicted load for the next 24 hours (including all the previously assigned BEV charges).  It then 

uses that as the cost, 𝐶𝑔𝑟𝑖𝑑(𝑡𝑖)  in Equation 45. The charging power at each timeslot (i.e., 𝑥𝑛(𝑡𝑖)) 

are the variables that minimize the cost in Equation 45 subject to Equations 46-48. This is a 

linear program and a variety of fast and robust algorithms exist to obtain the unique solution.   

Figure 28 (which is similar to Figure 8 of [19]) is a typical result.  The BEV power 

demand in mustard yellow clearly achieves near complete valley filling.  The red lines are the 

power forecast at each successive update (i.e., the signal that is broadcasted), started from the 

lowest level upward. 
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Figure 28 Grid load and updating cost function for Grid Valley Filling charging 

strategy with 3.3 kW charging rates and b) zoomed in view (similar to Figure 8 in [19]) 

 

9.1.5 Grid Valley Filling with Timeslot Rejection (By Transformer) 

While the above protocol results in near ideal valley filling solution, it can lead to 

significant overload and overheating in a large portion of distribution transformers. To address 

this problem, the following adjustments are made: 

A. At the time the BEV engages the network, the local transformer sends it the predicted 

demand profile (household use plus power usage planned by earlier BEVs) with a desired 

max power limit. For now, let this 𝑃𝑙𝑖𝑚𝑖
 = 75 kVA ∀𝑖. 

B. If at any timeslot 𝑡𝑖, the current forecasted demand on the transformer (𝐶𝑡𝑟𝑎𝑛𝑠(𝑡𝑖)) plus 

the charging power of the BEV violates 𝑃𝑙𝑖𝑚𝑖
, the upper bound for allowable power in 

that 𝑡𝑖 is set to zero, which leads to 𝑟𝑛(𝑡𝑖) = 0 in (4). 

C. The BEV attempts to solve the valley filling problem — i.e.  minimizing the cost 

function in (1) subject to (2), (3) and (5) - - i.e., now (4) is replaced with (5) 
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𝑟𝑛(𝑡𝑖) =  {
𝑝𝑛(𝑡𝑖)  ×  ∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅  ×  𝜂        𝑖𝑓 𝐶𝑡𝑟𝑎𝑛𝑠(𝑡𝑖) + 𝑝𝑛(𝑡𝑖) <  𝑃𝑙𝑖𝑚𝑖

0                              𝑒𝑙𝑠𝑒                              
 (49) 

 

Note that the algorithm can be modified easily for BEVs with advanced power 

management technology that allows multiple charging power — it simply reduced the value of 

𝑝𝑛(𝑡𝑖) to the amount that does not violate 𝑃𝑙𝑖𝑚𝑖
. 

If some BEVs, with high energy requirements, engage the network late in the evening, 

the modification above can result in an insufficient number of timeslots for those BEVs. If the 

vehicle is a PHEV, this might not be problematic. If it is a pure BEV, the following further 

enhancement can be used. It is based on the fact that transformers can operate at higher levels 

than the nameplate capacity, for a limited time — as long as this period is relatively brief, or 

there is a “cooling off” period in which the transformer is operating below capacity (more on this 

below).  

It should be noted that this and the following two charging strategies require modest 

communication between transformers and BEVs.  There are no iterations and vehicle receives 

the current grid level demand estimates from the grid operator (say 96 data points corresponding 

to the overall demand at 15 minute intervals) and the capacity availability from the transformer 

for the same time slots, which can be used to avoid charging during high transformer load times.  

The simple optimization is performed at the vehicle level and the resulting charging times are 

sent to the grid operator and the local transformer to be aggregated. 
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9.1.5.1 Grid Valley Filling with Modified Timeslot Rejection 

Failure of the Timeslot Rejection algorithm implies that the BEV has limited number of 

timeslots to charge. To accommodate this BEV, the value of 𝑃𝑙𝑖𝑚𝑖
 is increased by the power level 

of the BEV (see Equation 50 below). For example, if a 3.3 kW BEV cannot get a full charge and 

𝑃𝑙𝑖𝑚𝑖
 is 50 kVA, then 𝑃𝑙𝑖𝑚𝑖

 is increased to 53.3 kVA. 

𝑃𝑙𝑖𝑚𝑖
= 𝑃𝑙𝑖𝑚𝑖

+ 𝑝𝑛(𝑡𝑖) (50) 

 

This would open up all timeslots. However, for safety and transformer lifetime 

considerations, it would be desirable to first use the timeslots that would violate the limits only 

slightly. For this, it minimizes the cost in Equation 50 and thus solves the local (transformer 

level) valley filling problem; i.e., minimizing the cost in Equation 51 subject to Equations 46 and 

47 with 𝑟𝑛(𝑡𝑖) and 𝑃𝑙𝑖𝑚𝑖
 from Equations 49 and 50. The local (i.e., transformer level) valley 

filling is used to ensure the lowest transformer load periods are used first – i.e., for these rare 

(and late) cases, the safety of the transformer is made higher priority than the grid level 

economic considerations. Thus, instead of Equation 45, the cost to minimize is now 

𝐽 =  ∑𝐶𝑡𝑟𝑎𝑛𝑠(𝑡𝑖) × 𝑥𝑛(𝑡𝑖)

𝑖

 (51) 

where 𝐶𝑡𝑟𝑎𝑛𝑠(𝑡𝑖) is the current forecasted total load on the transformer and Equation 49 is 

updated to reflect the new value of 𝑃𝑙𝑖𝑚𝑖
  from Equation 50. 

This algorithm ensures that the BEV will receive significant charge, as long as it is 

physically feasible (i.e., the BEV has enough time to charge without any other grid/transformer 

restrictions). The use of local demand for cost ensures that the BEV uses the timeslots in which 

the violation of the old 𝑃𝑙𝑖𝑚𝑖
 is the smallest [19]. 
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9.1.5.2 Forced Cool-Down Period Method 

The previous modification would face challenges if the limit is raised for multiple 

vehicles. In that case, increasing the power limit repeatedly would be counter to the main safety 

concern. To address this situation, a slight modification can be made: There would be an upper 

limit for the maximum power for certain timeslots for cooling down. This is implemented 

through placing a maximum value for 𝑃𝑙𝑖𝑚𝑖
 , say 𝑃𝑙𝑖𝑚𝑖

̅̅ ̅̅ ̅̅ . For cooling down periods, say 𝑖 ∈ {𝐼𝐶𝐷}  

(e.g., 8-10 pm, just after typically high usage period) this value can be, for example, 65kVA. The 

rest of the timeslots (𝑖 ∉ {𝐼𝐶𝐷}) would be set at a higher value (e.g. 75 kVA). Again, if the 

cooling down periods do not allow a BEV to get a full charge, then the maximum value for the 

cooling down period is raised (meeting the energy requirement while staying close to the cooling 

down plan). The BEV attempts to solve Equations 45-47 with Equation 53. If the BEV cannot 

get a full charge, then it implements Equation 52 and solves Equations 51, 46, 47, and 53 until it 

can obtain a full charge. 

𝑃𝑙𝑖𝑚𝑖
= 𝑃𝑙𝑖𝑚𝑖

+ 𝑝𝑛(𝑡𝑖)    𝑓𝑜𝑟 𝑖 ∉ {𝐼𝐶𝐷} (52) 

 

𝑟𝑛(𝑡𝑖) =  {
𝑝𝑛(𝑡𝑖)  ×  ∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅  ×  𝜂        𝑖𝑓 𝐶𝑡𝑟𝑎𝑛𝑠(𝑡𝑖) + 𝑝𝑛(𝑡𝑖) <  𝑃𝑙𝑖𝑚𝑖

̅̅ ̅̅ ̅̅

0                              𝑒𝑙𝑠𝑒                              
 (53) 

 

 

 

9.1.6  Results at the Transformer Level 

The results of the different charging scenarios described in Section 9.1.4 are presented 

below. 
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9.1.6.1  Uncontrolled Charging 

Figure 29-A shows the result of Uncontrolled Charging for the scenario in which of all 

the simulated BEVs have a 3.3 kW charging rate. It is also assumed that the 20 homes are served 

by either a 50 kVA or 75kVA transformer. In this plot, the cyan curves represent the load on all 

2,255 randomly assigned transformers. The black curve represents the Baseload (i.e., the load on 

the transformer without any BEV charging). As each vehicle selects its charging times, the 

power use is added to the Baseload to obtain the new demand for the transformer. The final 

profile for each individual transformer is plotted in Figure 29-A, below. 

It can be seen that charging occurs throughout the day. The highest load reaches about 

109 kVA and the BEV charging significantly increases overloading in the transformers. This 

type of loading would cause overloading even in a 75 kVA transformer. With 3.3 charging, 955 

(42.4 %) of the 75 kVA transformers experience loads greater than 100% of rated capacity for 

more than an additional two hours. It should be noted that when discussing additional overload, 

overloading caused by the Baseload is not considered. Only the extra overloading caused by 

BEVs is considered. This number is raised to 1,377 (61.1%) with 7.2 kW charging. With 3.3 kW 

and mixed charging, all BEVs except for one were fully recharged. This vehicle turns out to be a 

BEV which was not at home long enough to get a full recharge (without any transformer related 

restrictions). In these results, a BEV with a BSOC above 98% will be considered fully recharged. 

For the sake of brevity, representative simulations will be included. Figure 29-B shows 

the results for the charging strategy with only 7.2 kW charging rates. A total of 722 (32%) 

transformers are subjected to loads above 100 kVA. Of these transformers, 30 (1.3%) maintained 

the 100kVA load for over an hour. This means that these transformers would be overloaded to 

over 200% capacity for more than an hour if they had a 50kVA rating. The highest load now 
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appears to reach over 120 kVA. This change is attributed to the fact that 7.2 kW charging has 

been introduced. Similar results were found for the mixed charging method. The effects on the 

transformer are discussed in Section 9.1.7 in detail. 

 

Figure 29 Transformer loads for uncontrolled charging strategy with a) 3.3 kW,  b) 7.2 

kW charging rates and TOU charging strategy with c) 3.3 kW, d) 7.2 kW charging rates 
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9.1.6.2 TOU Charging 

The results for the TOU charging strategy with only 3.3 kW charging rates can be seen in 

Figure 29-C. All BEVs are able to get a full charge during Super Off-Peak hours. As mentioned 

in [19], 80% of vehicles are home between 8 pm and 7 am. This is the reason why all BEVs are 

able to charge during Super Off-Peak hours. It can be seen that the TOU charging strategy causes 

a big “jump” at 10 pm. This is because a large number of BEVs are waiting for the lower price 

and start charging at 10 pm. The maximum load appears to occur at 10 pm at about 98 kVA. 

Figure 29-D shows the results for the TOU charging strategy with only 7.2 kW charging 

rates. The magnitude of the 10 pm peak increases significantly. The peak is at about 134 kVA. It 

is found that all of the 2,255 transformers are subject to loads above 100kVA. This would place 

all 50 kVA transformers at 200% capacity at some point during the day. Of these transformers, 

603 (26.7%) were subjected to loads above 100kVA for at least one hour. While individual 

owners have attempted to be responsible, uncoordinated actions can lead to transformer damage 

and grid issues using this scheduling strategy. Any changes made to the time-of-use pricing 

structure would cause the same problems in this charging strategy. For example, suppose that the 

electric company decided to shift the load by shifting TOU times by two hours. A similar peak 

would occur, just two hours later. Thus, an intelligent approach is needed. 

9.1.6.3 Grid Valley Filling 

Figure 30-A gives the results for the Grid Valley Filling strategy with 3.3 kW charging 

rates. Most charging occurs between 10 pm and 6 am, since that is the overall grid level 

objective; similar to the TOU charging strategy. However, the problem with the 10 pm jump is 

not present. The highest load appears to stay below 92 kVA (less than the 98 kVA peak seen in 
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the TOU strategy in Figure 30-C). The highest load for 7.2 kW charging, in Figure 30-B, is 

approximately 104 kVA with this charging strategy. Here 1,667 (73.9%) transformers were 

subjected to additional overloading above 75 kVA. Of those, 86 (3.8%) transformers experienced 

additional overloading above 75 kVA for longer than an hour. 

 

Figure 30 Transformer loads for Grid Valley Filling charging strategy with a) 3.3 kW,  

b) 7.2 kW charging rates and Grid Valley Filling with Timeslot Rejection charging strategy 

with only 3.3 kW charging rates for c) 50 kVA transformers and d) 75 kVA transformers 
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9.1.6.4 Grid Valley Filling with Timeslot Rejection (By Transformer) 

In these simulations 𝑃𝑙𝑖𝑚𝑖
 is set to 50 and 75 kVA to examine the effects on both 50 and 

75 kVA transformers. For this Baseload, the 50kVA transformer is undersized but since all 

transformers are capable of withstanding some level of overload, it is possible that a lower 

capacity transformer is used even when the peak power exceeds the limits occasionally. Figure 

30-C shows the result of the Grid Valley Filling with Timeslot Rejection algorithm with 50kVA 

transformers, while Figure 30-D corresponds to 75 kVA transformers.  Note that the BEV 

charging does not force the transformers to go above 50 or 75 kVA limits in each case (further 

than the durations that were due to Baseload –non-BEV – energy demand). In order to prevent 

overloading, some BEVs were denied the opportunity to charge.  

With 50kVA transformers, in 3.3 kW charging only, a total of 23.7 MWh of electric 

energy was denied to BEVs. The amount denied is 12.7% of the total charge requirements of all 

vehicles. A total of 37.5 MWh and 51.2 MWh of charge were denied to the scenarios with mixed 

charging and 7.2 kW charging, respectively. Their respective percentages of the total charge 

were 20.1% and 27.5%. These percentages might seem modest, but a significant number of 

BEVs did not get fully charged as a result of their charge requests being denied in this strategy. 

Table 15 shows the number of BEVs that received the given percentage of charge that they 

originally requested. For example, with mixed charging, 437 BEVs received only 70-80% of the 

charge that they originally requested upon arrival, while nearly 1,500 cars received less than 10% 

of the requested charge. It can be seen that BEVs with 7.2 kW charging had more timeslots 

rejected than those with 3.3 kW charging. This is due to the fact that 7.2 kW charging is more 

likely to cause violation of the transformer rated capacity.  This suggests that when the 

transformer is undersized (or nearly so) a further modification is needed. 
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With 75kVA transformers, vast majority of cars received at least 90% of requested 

charge, as shown in the lower half of Table 15. Even in this case, guaranteeing full charge would 

need the modification discussed in the following subsection. Of course, even with 75kVA the 

problem would be more severe in hotter days (e.g., consider the higher Baseload in Figure 27-B). 

Table 15 Percentage of required charge consumed (50 and 75 kVA Trans.) 

 

9.1.6.5 Grid Valley Filling with Modified Timeslot Rejection 

Figure 31-A/B shows the results for the Modified Timeslot Rejection strategy. The 

transformers in these simulations have a 50 kVA rating, since there is little need for this 

modification for the 75kVA transformers, in this relatively warn – but not hot – day. With this 

charging strategy, all BEVs obtain a full charge (except for the single one that was not at home 

long enough to receive full charge even without any constraints, as previously mentioned). In 

these simulations, the highest load is about 87 kVA. This load is caused by the Baseload. The 

loads caused by BEV charging stay below about 66 kVA for 3.3 kW charging and below 64 kVA 

for 7.2 kW charging. Vehicle charging is shifted and occurs throughout the day as the result of 

attempting to reduce transformer overloading. This is due to the management of the charging 

schedules of the small portion of BEVs at home between 6am and 4 pm.  

   

 0-10% 10-
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30% 

30-
40% 

40-
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50-
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60-
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70-
80% 

80-
90% 

90-
98% 

Full 
Charge 

50 kVA Transformers 

3.3 259 150 252 297 372 391 600 531 667 1,007 15,769 

Mixed 1,465 229 264 268 465 343 448 437 667 1,218 14,491 

7.2 2,670 295 286 220 567 341 273 286 658 1,528 13,171 

75 kVA Transformers 

3.3 0 0 0 0 0 0 1 0 17 570 19,707 

Mixed 0 0 0 0 0 0 1 16 34 931 19,313 

7.2 0 0 0 0 0 1 0 34 47 1,359 18,854 
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Figure 31 50 kVA transformer loads for Grid Valley Filling with Modified Timeslot 

Rejection charging strategy with a) 3.3 kW,  b) 7.2 kW charging rates and Forced Cool-

Down Period charging strategy with c) 3.3 kW, d) 7.2 kW charging rates 

 

9.1.6.6 Forced Cool-Down Period Method 

Figure 31-C/D shows the results for the Forced Cool-Down Period Method. The 

transformers in these simulations have a 50 kVA rating. 𝑃𝑙𝑖𝑚𝑖
̅̅ ̅̅ ̅̅  is set at 40 kVA for the cooling 

down period. The cooling period is set for 1-2 am. It can be seen that all transformers maintain a 

load below 87 kVA throughout the day. Note that this peak load is caused by the Baseload and 

BEV load is considerably smaller, due to fact that in this approach, the local demand is used as 
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the broadcast cost, guiding the vehicles to low demand timeslot, whenever possible. All 

transformers also stay below 40 kVA during the cooling down period. 

9.1.6.7 Grid Valley Filling with Modified Timeslot Rejection using a Different 

Baseload 

For comparison, the Grid Valley Filling with Modified Timeslot Rejection strategy was 

simulated with a different Baseload. The Baseload from August 25, 2014 shown in Figure 27-B 

was used. This Baseload was taken from a day with a lower temperature than the Baseload that 

has been used in all the other simulations. The lower temperature results in lower loads on the 

transformer. This is most likely partly caused by the lower demand of electricity by the eight 

homes with air conditioning. The results for the simulation can be seen in Figure 32. The smaller 

Baseload allows the transformer to maintain lower loads throughout the day when compared to 

the original Baseload. Note that although the results may vary depending on the specific day 

simulated, the trends are similar, and thus the outcomes and conclusions of the study are not 

limited to a specific day and instead correspond to an “average” summer day in southern 

California.  
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Figure 32 Transformer loads for Grid Valley Filling with Modified Timeslot Rejection 

charging strategy using a new Baseload with only 3.3 kW charging rates 

 

9.1.7 Effects on the Grid and Distribution Life Cycle 

The effects of the different charging scenarios on the grid and distribution cycle are 

discussed below. 

9.1.7.1 Grid Level Demand  

The effect of the charging strategies on the grid load can be seen in Figure 33, which is 

based on a typical demand profile for California. To estimate the effect at the grid level, the 

number of BEVs used is scaled to represent 10% of vehicles, with the same 9 vehicles per 

transformer (the same distribution used above).  As expected, the left panel shows that 

Uncontrolled and TOU charging strategies do not result in a desirable grid load. Uncontrolled 

charging increases the existing peak, while TOU charging creates another one.  The valley filling 

uses the low demand region for vehicle charging, resulting in a flat demand profile from 10 p.m. 

to 6 a.m.  Left panel shows that the Modified Timeslot Rejection strategy does not maintain a 
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valley filling profile with only 50 kVA transformers. Of course, this is an exaggerated effect 

since it is based on the assumption that all BEVs are connected to 50kVA transformers, which is 

highly unlikely and it is used as a “worst case” scenario.  When 75 kVA transformers are used, 

due to their higher capacity, the strategy maintains a valley filling profile while preventing 

transformers from overloading.  The overall load in this case essentially overlaps with the “Grid 

Valley Filling”, since the 75 kVA transformers have less timeslot rejection in the algorithm.  

 

Figure 33 Grid load for various charging strategies (3.3 kW charging) 

 

9.1.7.2 Effects on Distribution Transformers 

As previously mentioned, the electricity demand imposed on the distribution transformer 

by the BEVs might result in transformer accelerated loss of life and even failure. The major 

factor in transformer loss of life is degradation of the winding insulation due to thermal, 

electrical and to induced mechanical stresses [58].  The thermal stress is considered as the most 

important factor affecting the life of an oil-immersed transformer [59], which can be predicted 
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by estimating the hot spot temperature (HST), the highest temperature observed in the winding 

[60]. Furthermore, residential transformers are more likely to be affected by peak temperatures 

during very high short-term loads [61]. A heat transfer model for oil-immersed transformers, 

previously developed by Razeghi et al. [1], is used to determine the HST of the transformers in 

each of the scenarios. Ambient temperatures consistent with the daily temperature profile for a 

summer day in southern California are used in the model. 

First the load factor and the HST are compared to the limits recommended by IEEE 

C.57.91 [60] (Table 16). If any one of these three limits is reached, the transformer is highly 

likely to fail.  The IEEE standard is then used to determine the Equivalent Aging Factor (EAF) 

and loss of life based on the dynamic HST calculations. 

Table 16 Recommended limits of temperature and loading for a distribution 

transformer 

 

9.1.7.2.1 Load Factor 

In cases and scenarios discussed above (including both transformer sizes), none of the 

transformers experience a load factor of 3 or higher for more than 30 minutes. In some scenarios 

with 50 kVA transformers, some transformers experience a load factor of 2 or greater for 30 

minutes or longer (Table 17).  Although these transformers might not fail, the manufacturer 

should be consulted before overloading the transformers for an extended period of time. 
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Table 17 Number of 50 kVA transformers (out of 2255) experiencing a load factor of 2 

or greater for more than 30 minutes 

 

9.1.7.2.2 Hot Spot Temperature  

The model developed in [1] is used to determine the HST for the transformers in each 

scenario.  The results for the Baseload – i.e., before any BEV charging is added  (for 50 kVA and 

75 kVA transformers), shown in Figure 34-A, reveal that the Baseload 50 kVA transformer does 

not exceed the 200°C limit; however, this transformer is operating at temperatures higher than 

140°C.  At these temperatures, gassing in the solid insulation and the oil might result in 

significant transformer loss of life and even failure.  

Charging Profile Charging Level (kW) Number of Transformers 
Exceeding 200% Loading 

Uncontrolled  3.3 8 

7.2 67 

Mixed 37 

TOU 7.2 1876 

Mixed 940 

Grid Valley Filling Mixed 1 
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Figure 34 a) Hot spot temperature for the Baseload and b) Equivalent aging factor 

histogram for uncontrolled charging at 7.2 kW for 75 kVA transformer 

 

The scenarios that might result in transformer failure and the corresponding percent of 

transformers that exceed the HST limit of 200°C and are thus susceptible to failure are shown in 

Table 18.  The scenarios not shown in the table do not result in transformer failure.  In all of the 

scenarios with 50 kVA transformer, and in the Uncontrolled charging at 7.2 kW and mixed 

charging with 75 kVA transformer, temperatures higher than 140° C are observed, justifying 

caution.  
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All the Uncontrolled and TOU charging profiles result in transformer failure with 50 

kVA transformers, with the TOU profile having a higher rate of failure.  This was expected since 

these two charging profiles result in the excessive demand occurring simultaneously in the 

circuit. With Uncontrolled charging, the start of charging depends on the arrival time. In the 

TOU strategy, the start of charging is the same for all drivers, resulting in higher failure rate.  

The Grid Valley Filling charging profile also results in a small failure percentage at 7.2 kW and 

mixed charging rates with 50 kVA, this is again due to concentrated charging of the vehicles at 

specific times. 

The failure rate decreases as the transformers are replaced with 75 kVA transformers; 

however, some transformers still fail in the scenarios with TOU charging profile at 7.2 kW and 

mixed charging, further suggesting that TOU charging profile is not a suitable strategy with 

regards to the distribution system. 

Table 18 Percent of Transformers exceeding the HST limit 

 

9.1.7.2.3 Transformer Aging  

In the previous section, the HST was determined and the transformers likely to fail under 

each scenario identified.  The HST is then used to calculate the aging acceleration factor (AAF) 

Charging Profile Charging Level 
(kW) 

Percent of Transformers Exceeding  
HST of 200°C 

50 kVA 75 kVA 

Uncontrolled 3.3 52.37 0 

7.2 84.17 0 

Mixed 67.27 0 

TOU 3.3 91.57 0 

7.2 100 62.00 

Mixed 95.92 31.40 

Grid Valley Filling 
 

7.2 1.64 0 

Mixed 1.06 0 
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and subsequently the equivalent aging factor (EAF) and loss of life percent for a period of 24 

hours.  The EAF results for the scenario with Uncontrolled charging at 7.2 kW with a 75 kVA 

transformer, are shown in Figure 34-B.  The summary of the results for all scenarios is shown in 

Table 19.  Note that for scenarios resulting in transformer failure, the data in the table 

corresponds only to transformers that do not fail (the percent of transformers failing in each 

scenarios is shown in Table 18). 

Table 19 Equivalent aging factor for a period of 24 hours (corresponding only to 

transformers that do not fail) 

 

The overall take away from Table 19 is that a 50 kVA transformer needs to be replaced 

frequently for the load profiles studied as indicated by high EAFs.  This was expected since, for 

the Baseload, the average loading of the 50 kVA transformer is 102 percent. The distribution 

transformers have an average load of 15-40% of the rating (the average load factor calculated in 

Charging Profile Charging 
Level (kW) 

 50 kVA    75 kVA  

Min Avg Max  Min Avg Max 

Baseload NA - 17.2747 -  - 0.2796 - 

Uncontrolled 3.3 20.7338 52.2008 93.5889  0.3384 0.8035 3.4403 
7.2 18.3938 49.7296 95.0892  0.3090 1.2954 13.7031 

Mixed 20.7338 51.7277 93.3408  0.3381 1.0449 13.0923 

TOU 3.3 20.8548 32.4661 63.8518  0.3285 0.5385 0.7633 

7.2 NA NA NA  0.8144 11.9926 37.3946 

Mixed 21.3782 31.9941 62.9448  0.3351 3.6066 37.3946 

Grid Valley Filling 3.3 17.2837 17.9620 26.7779  0.2805 0.2938 0.3746 

7.2 17.2824 19.1061 39.7619  0.2803 0.3088 0.7551 

Mixed 17.2835 18.5358 36.7366  0.2804 0.3031 2.9188 

Grid Valley Filling 
with Timeslot 
Rejection 

3.3 17.2775 17.2828 17.2887  0.2808 0.2906 0.3032 
7.2 17.2772 17.2805 17.2854  0.2814 0.2904 0.3114 

Mixed 17.2770 17.2817 17.2887  0.2818 0.2905 0.3036 

Grid Valley Filling 
with Modified 
Timeslot Rejection 

3.3 17.2775 17.2877 17.3454  0.2808 0.2906 0.3032 

7.2 17.2773 17.2871 17.3380  0.2814 0.2904 0.3114 

Mixed 17.2770 17.2875 17.3454  0.2818 0.2905 0.3036 

Forced Cool-Down 
Period Method 

3.3 17.2270 17.3213 18.5008  0.2808 0.2904 0.3028 

7.2 17.2776 17.2960 17.2969  0.2811 0.2895 0.3032 

Mixed 17.2776 17.3094 18.5008  0.2818 0.2902 0.3041 
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[62] is 26.6% with 70% of the transformers having a load factor of 19-34%, while the average 

load factor determined in [63] is equal to 30%). As a result, the 50 kVA transformer is under-

designed for the Baseload alone.  However, it is interesting to note that implementing the 

majority of the controlled charging strategies presented here, reduces the chances of transformer 

failure with the addition of plug-in electric vehicles’ load even for a poorly designed transformer.  

Among these scenarios Grid Valley Filling with Timeslot Rejection, Grid Valley Filling with 

Modified Timeslot Rejection, and Forced Cool-Down Period method result in better EAF 

outcomes in the order mentioned.   

For the 75 kVA transformer, Grid Valley Filling with Timeslot Rejection and Modified 

Timeslot Rejection are almost identical since the load profiles for these scenarios differ only in 

order of a few kW and only for a handful of transformers.  For these transformers, the Forced 

Cool-Down Period method results in lowest loss of life.  These transformers are operating at 

lower temperatures and as a result the one-hour cool-down time has a greater impact compared 

to 50 kVA transformers operating at high temperatures (higher than 140°C) where the one hour 

cool-down might not be sufficient to bring the HST to temperatures below the limit. 

9.1.8  Conclusion 

Various PEV charging control strategies are analyzed. The Uncontrolled and TOU 

charging strategies exacerbate overloading when dealing with PEV charging. Roughly 32% and 

100% of transformers were subjected to loads above 100 kVA with 7.2 kW charging for the 

Uncontrolled and TOU charging strategies, respectively. Grid Valley Filling generates a valley 

filling profile at the grid level, but can further increase transformer overloading. It was found that 

73.9% of transformers were subjected to additional overloading above 75 kVA with 7.2 kW 
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charging. When 50 kVA transformers are used, overloading can still be minimized, but the 

profile charging will be steered away from the desired valley filling profile. 

It was found that the Modified Timeslot Rejection strategy produces a valley filling 

profile at the grid level while preventing overloading with 75 kVA transformers. All loads 

caused by BEV charging for the Modified Timeslot Rejection strategy were below 64 kVA with 

the 7.2 kW charging rate.  Simple modifications can be made to the proposed algorithms to take 

other capacity constraints into consideration. A cooling down period is an example of a 

modification that has been studied.   

Uncontrolled and TOU charging profiles are the two strategies with the most negative 

impacts on the distribution transformers.  In particular, it is likely that substantial distribution 

circuit upgrade is required to accommodate TOU charging across the grid. Vehicle charging 

management substantially reduces the chance of transformer failure even for under-designed 

transformers. 

The proposed algorithm could be used prevent transformers from overloading, while 

achieving a desirable level of valley filling at the grid level simultaneously. In order to 

implement this algorithm, some limited communication between transformers and BEVs is 

required. This technology, while feasible, is not readily available in current transformers, and an 

upgrade of hardware would be required. It should also be noted that the algorithm uses predicted 

daily Baseloads. Since such predictions are based recent usage data, given the limited scale and 

the number of users, variability might be high. Thus, more effort is needed on obtaining 

reasonable predictions for the daily (non-BEV) load. 
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