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ABSTRACT OF THE DISSERTATION

Modern Statistical Methods for Complex Survival Data

by

Jue Hou

Doctor of Philosophy in Mathematics (with a specialization in Statistics)

University of California San Diego, 2019

Professor Ronghui Xu, Chair

With the booming of big complex data, various Statistical methods and Data Science

techniques have been developed to retrieve valuable information from them. The progress is

slower with survival data due to the additional difficulty from censoring and truncation. Except

for a few straightforward extensions, most modern learning methods have been absent in survival

analysis for years since their invention. The theory on the survival version of those methods also

falls further behind. There is a strong demand on computational efficient and theoretical reliable

methods for big complex data with time-to-event outcomes in various Health related fields where

xvi



immense resource has been poured into.

This thesis is devoted to incorporating censoring and truncation to state-of-art Statistical

methodology and theory, to promote the evolution of survival analysis and support Medical

research with up-to-date tools. In Chapter 1, I study the mixture cure-rate model with left

truncation and right-censoring. We propose a Nonparametric Maximum Likelihood Estimation

(NPMLE) approach to effectively handle the truncation issue. We adopt an efficient and stable

EM algorithm. We are able to give a closed form variance estimator giving rise to valid inference.

In Chapter 2, I study the estimation and inference for the Fine-Gray competing risks model

with high-dimensional covariates. We develop confidence intervals based on a one-step bias-

correction to an initial regularized estimator. We lay down a methodological and theoretical

framework for the one-step bias-corrected estimator with the partial likelihood. In Chapter 3,

I study the inference on treatment effect with censored time-to-event outcome while adjusting

for high-dimensional covariates. We propose an orthogonal score method to construct honest

confidence intervals for the treatment effect. With a slight modification, we obtain a doubly robust

estimator extremely tolerant to both estimation inconsistency and volatility. All the methods in

aforementioned chapters are tested through extensive numerical experiments and applied on real

data with authentic medical interests.

xvii



Chapter 1

A Nonparametric Maximum Likelihood

Approach for Survival Data with Observed

Cured Subjects, Left Truncation and

Right-Censoring

1.1 Introduction

Our work was motivated by research carried out at the Organization of Teratology Infor-

mation Specialists (OTIS), which is a North American network of university or hospital based

teratology services that counsel between 70,000 and 100,000 pregnant women every year. Re-

search subjects are enrolled from the Teratology Information Services and through other methods

of recruitment, where the mothers and their babies are followed over time. Phone interviews

1



are conducted through the length of the pregnancy along with pregnancy diaries recorded by

the mother. An outcome phone interview is conducted shortly after the pregnancy ends, and

if it results in a live birth, a dysmorphology exam is done within six months and with further

follow-ups at one year and possibly later dates. Recently it has been of interest to assess the effects

of medication exposures on spontaneous abortion (SAB) [XC11, CJXJ11]. Here we examine the

OTIS autoimmune disease in pregnancy database for risk factors as well as effects of medications

on spontaneous abortion.

By definition SAB occurs within the first 20 weeks of gestation; any spontaneous preg-

nancy loss after that is called still birth. Ultimately we would like to know if an exposure modifies

the risk of SAB for a woman, which may be increased or decreased. It is known that in the

population for clinically recognized pregnancies the rate of SAB is about 12% [WWO+88]. On

the other hand, in our database the empirical SAB rate is consistently lower than 10%. This

is due to the fact that women may enter a study any time before 20 weeks’ gestation. Figure

1.1 left panel shows the histograms of study entry times up to 20 weeks of gestation from our

autoimmune disease in pregnancy database. This way women who have early SAB events are less

likely to be captured in our studies, and such selection bias is known as left truncation in survival

analysis. Left truncation has been studied by many authors since the 1980s, and has attracted

much recent attention in the context of length-biased data [AWZ06, QNLS11, among others]. In

addition the women are subject to right-censoring due to loss to follow-up. Figure 1.1 right panel

shows the left truncated as well as right-censored Kaplan-Meier curve for the SAB event.

As seen from the Kaplan-Meier curve the majority of the pregnant women are free

of SAB; they are considered ‘cured’ in the time-to-event context. Cure models are used in

2
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Figure 1.1: Study entry times for all individuals in the SAB data (left), and left truncated

Kaplan-Meier curves (95% confidence intervals) for the SAB events (right).

various biomedical studies where data often include a substantial portion of ‘long-term’ survivors

[Far82, Far86]. Our data, however, differ from classic cure data where the ‘cured’ subjects are

always right-censored and never actually observed to be cured [ST00, LY04]. In our case, ‘cured’

is defined as surviving 20 weeks of gestation, and we observe over 80% of our subjects as cured

from SAB.

Cure rate models are well studied in the literature for right-censored data. The models

effectively analyze the survival distribution of those who are susceptible along with the probability

of an individual being ‘cured’. In the approaches using mixture models, logistic regression is often

used to model the cured probability. For the dependency of the survival function on the covariates

among the non-cured, various regression models have been considered: the Cox proportional

hazards model [KC92, ST00], transformation models [LY04], and richly parametrized models

3



when the shape of the hazard function is of interest [HBJT03]. Cure rate models have also

been developed along the lines of non-mixture models [CIS99, ZYI06]. In addition to right-

censored data, cure-rate models have also been developed for interval-censored data [KJ08].

Recently, [CSWL17] studied left truncation under cure-rate transformation models. The data

they considered was the ‘classic’ cure type mentioned above, i.e. all the cured subjects were

right-censored. This led to an ease of handling in the likelihood function, where a maximum

follow-up time was assumed before the ‘cure’ actually happened, resulting in a bounded parameter

space for theoretical development. On the contrary our definition of SAB leads to a large portion

of observed cured subjects, and forces the cumulative hazard function for the non-cured subjects

to diverge to infinity as gestation timing approaches 20 weeks.

In the following we consider the mixture cure rate model. This choice has been made based

on in-depth discussions with our scientific collaborators, because it is important to understand

both the risk factors for SAB (yes/no) as well as the predictors of timing of SAB events among

those who experience them. Different timing of SAB can reflect different underlying biological

processes. In the next section we write out the likelihood function with many observed ‘cured’

women in our data. We discuss computational challenges with the likelihood, and adopt an EM

algorithm using ‘ghost copies’ of the observed data. In Section 1.3, the resulting estimator is

shown to be consistent and asymptotic normal, despite the fact that the cumulative baseline hazard

function diverges at the finite time point before ‘cure’ is achieved. We illustrate the effectiveness

of the method on finite samples via simulation experiments in Section 1.4. We analyze the SAB

data from the OTIS database in Section 1.5, and conclude with some additional discussion.
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1.2 Model and NPMLE

1.2.1 Model and data

Let τ < ∞ be a strict upper bound of time for the event of interest, beyond which a subject

is considered cured. In the pregnancy example above, this would be the 20 weeks of gestation.

The whole population consists of two subpopulations: cured and non-cured. We note that the τ

here is not defined as the longest possible follow-up time as in many other survival literatures. Let

the binary random variable A indicate whether a subject belongs to the non-cured subpopulation;

and let T ∗ ∈ (0,τ) be the failure time random variable for this subpopulation. The overall outcome

time T is given by the mixture [LY04]: T = AT ∗+(1−A)τ. Let Z1 and Z2 be two covariate

vectors; they may share common covariates depending on the application. We assume that A

given Z1 follows the logistic regression model

P(A = 1|Z1) = p(Z1) =
eα
>Z1

1+ eα>Z1
, (1.1)

and that T ∗ given Z2 follows the proportional hazard regression model with cumulative baseline

hazard function λ0(t) =
∫ t

0 λ0(u)du:

P(T ∗ ≥ t|Z2) = S(t|Z2) = exp{−Λ0(t)eβ
>Z2}. (1.2)

Note that Λ0(τ) = +∞ so that S(τ|Z2) = 0. The survival function for T is then

P(T ≥ t|Z1,Z2) = {1− p(Z1)}+ p(Z1)S(t|Z2). (1.3)

Our data is subject to left truncation and right-censoring. Let Q be the left truncation time

and C the right-censoring time, satisfying 0≤ Q <C; we also assume that they are independent
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of (A,T ∗) conditioning on Z1 and Z2. For subjecrts i = 1, ...,n, the observed data include Z1i,

Z2i, Qi, Xi = Ti∧Ci, δ1
i = Ai · I(Ti ≤Ci), δ0

i = (1−Ai)I(Ci ≥ τ) and δc
i = I(Ci < Ti ≤ τ). In other

words δ1
i is the indicator that a subject has an observed event (non-cured), δ0

i is the indicator that

a subject is observed to be cured, and δc
i is the indicator that a subject is censored before τ so that

we do not know whether she is cured or not. All three indicators are necessary, since the subjects

sojourn beyond time τ are observed as cured. This is different from the existing cure-rate model

literature where the cured subjects are always marked as censored. Note also that the subject i

is observed only if Ti > Qi, hence left truncation is known to lead to a biased sample from the

population. Because of right-censoring, Ai may not be observed; but we emphasize here that we

do observe many Ai = 0 in our data.

Denote θ = (α,β,Λ0). For the purposes of nonparametric maximum likelihood es-

timation (NPMLE), it is necessary to discretize Λ0 to be Λ0(t) = ∑
K
k=1 λkI(t ≥ tk), where

0 < t1 < · · · < tK < ∞ are the unique failure times [Joh83, Mur94]. NPMLE under trunca-

tion and censoring was also discussed in [Tur76] and [LY91] for a distribution function, and

under regression settings by, for example, [LMD88] and [GL96], and many other authors.

We apply the likelihood approach conditional upon the left truncation time Qi and the right-

censoring time Ci, as no parametric distributional assumptions are made about these two random

variables. Denote pi = eα
>Z1i/(1+ eα

>Z1i), λi(t) = λ0(t)exp(β>Z2i), fi(t) = λi(t)Si(t), and

Si(t) = exp{−Λ0(t)eβ
>Z2i}. The likelihood for our observed data is

L(θ) =
n

∏
i=1

Li(θ;Xi,δ
1
i ,δ

0
i ,δ

c
i |Ti > Qi,Z1i,Z2i,Qi,Ci)

=
n

∏
i=1

{
piλi(Xi)Si(Xi)

}δ1
i (1− pi)

δ0
i
{

1− pi + piSi(Xi)
}δc

i

1− pi + piSi(Qi)
, (1.4)
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where 1− pi + piSi(Xi) = P(Ti > Qi).

1.2.2 NPMLE through EM

Complete data likelihood

The complexity of observed likelihood (1.4) leads to the challenge of optimization. To

reduce the problem we follow the approach of [QNLS11], who re-formulated the likelihood

function of [Var85].

To augment the observed data, we first note that the group indicator Ai is latent whenever

censoring occurs. In addition, we compensate for the left truncation through the “ghost copy"

algorithm proposed in [QNLS11]. For each observed subject with the pair of covariates (Z1i,Z2i)

and entry time Qi, there are Mi hypothetical “truncated samples" with latent event time T̃i j < Qi,

j = 1, ...,Mi. The resulting complete likelihood is

Lc(θ) =
n

∏
i=1

{
piλi(Xi)Si(Xi)

}δ1
i (1− pi)

δ0
i
{

piSi(X)
}Aiδ

c
i (1− pi)

(1−Ai)δ
c
i

× pMi
i

Mi

∏
j=1

∏
k:tk≤Qi

{
λkeβ

>Z2iSi(tk)
}I(T̃i j=tk) (1.5)

In this way, the two sets of parameters α and β are separated in the complete data likelihood. All

remaining product terms are those in the usual likelihoods for the logistic and the Cox regression

model. Consequently, the M-step update is instantly available from existing solvers.

Given the observed data O, it can be seen that for subject i who is censored at Xi, the

unobserved group indicator Ai follows Bernoulli distribution with P(Ai = 1) = piSi(Xi)/{1−

pi + piSi(Xi)}. For a subject with truncation time Qi and covariates (Z1i,Z2i), it can be seen that

the number of truncated “ghost” copies Mi follows the geometric distribution with probability
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P(Ti < Qi) = pi{1− Si(Qi)}. For the “ghost” event times let T̃i j be one of the observed event

times tk < Qi with probability proportional to fi(tk) = λkeβ
>Z2iSi(tk):

P(T̃i j = tk|Mi,O) =
I(tk ≤ Qi)λkeβ

>Z2iSi(tk)

∑k:tk≤Q λkeβ>Z2iSi(tk)
. (1.6)

By restricting the “ghost” event times to certain discrete times, we are able to exploit the

convenience of directly applying the weighted Cox regression later. The price we pay for the

discretization is a slight discrepancy between ∑k:tk≤Q λkeβ
>Z2iSi(tk) and 1−Si(Qi). Integrating

out the latent variables in Lc(θ) does not give exactly the observed likelihood L(θ). However, we

show later that this difference is asymptotically negligible so that the solution from the above EM

is asymptotically equivalent to the true NPMLE.

The EM Algorithm

From (1.5) we can write the complete data log-likelihood lc = logLc as

lc(α,β,λ) =
n

∑
i=1

[
δ

1
i Ai

K

∑
k=1

I{Xi = tk} log fi(tk)+Mi ∑
k:tk<Qi

I{T̃i = tk} log fi(tk)

+(1−δ
1
i )Ai logSi(Xi)+(1−Ai) log(1− pi)+(Ai +Mi) log(pi)

]
, (1.7)

where λ= (λ1, ...,λK).

Though the algorithm runs stably from any initial values of the parameters in the support,

we recommend to fit a naïve logistic regression without censored subjects for α(0) and a naïve

Cox regression for β(0) and λ(0) treating the observed cured subjects as censored at τ, to minimize

the number of iterations until convergence.

E-step
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At the (l +1)-th iteration (l = 0,1, ...), let α(l),β(l),λ(l) be the parameter values at the

current iteration upon which p(l)i , f (l)i and S(l)i are defined. The distributions of the latent variables

conditioning on the observed data are given in the above, and their conditional expectations can

be computed as

E[I{T̃i j = tk}|Mi,O;α(l),β(l),λ(l)] =
I(tk < Qi) f (l)i (tk)

∑h:th<Qi f (l)i (th)
, (1.8)

E[Mi|O;α(l),β(l),λ(l)] =
p(l)i ∑k:tk<Qi f (l)i (tk)

1− p(l)i ∑k:tk<Qi f (l)i (tk)
, (1.9)

E[Ai|O;α(l),β(l),λ(l)] = δ
1
i +δ

c
i

p(l)i S(l)i (Xi)

1− p(l)i + p(l)i S(l)i (Xi)
. (1.10)

Since the latent variables all enter linearly into the complete data log-likelihood, the expected

complete data log-likelihood is

E(lc|O) =
n

∑
i=1

{
K

∑
k=1

w f
i,k log fi(tk)+wS

i logSi(Xi)+wp
0,i log(1− pi)+wp

1,i log(pi)

}
, (1.11)

where the weights are computed as

w f
i,k = δ

1
i I{Xi = tk}+

p(l)i f (l)i (tk)

1− p(l)i ∑h:th<Qi f (l)i (th)
I{tk < Qi},

wS
i = δ

c
i

p(l)i S(l)i (Xi)

1− p(l)i + p(l)i S(l)i (Xi)
,

wp
0,i = δ

0
i +δ

c
i

1− p(l)i

1− p(l)i + p(l)i S(l)i (Xi)
,

wp
1,i = δ

1
i Ai +δ

c
i

p(l)i S(l)i (Xi)

1− p(l)i + p(l)i S(l)i (Xi)
+

p(l)i ∑k:tk<Qi f (l)i (tk)

1− p(l)i ∑k:tk<Qi f (l)i (tk)
.

M-step

From (1.11) the expected log-likelihood can be written as the sum of two parts, so that
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the M-step can be achieved using a weighted logistic regression optimized over α:

lglm(α) =
n

∑
i=1

wp
0,i log(1− pi)+wp

1,i log(pi); (1.12)

and a weighted Cox proportional hazard regression optimized over β and λ:

lcox(β,λ) =
n

∑
i=1

K

∑
k=1

w f
i,k log fi(tk)+

n

∑
i=1

wS
i logSi(Xi). (1.13)

Easily implemented solution is available from existing glm and coxph solvers in R, to obtain

α(l+1), β(l+1) and λ(l+1), where λ(l+1) is the Breslow-type baseline hazard estimator from the

fitted coxph object with weights.

The application of the EM algorithm to NPMLE’s under semiparametric models was

discussed in [VX00], including convergence properties and variance estimation following the

EM. In particular, once the baseline hazard function has been discretized to finite many mass

points given the observed data, the convergence properties of the EM algorithm known for

parametric models carry over. In this case, the convergence of the EM algorithm is guaranteed by

the log-concaveness of the complete data likelihood Lc(θ), which in turn is guaranteed by the

log-concaveness of the logistic likelihood and the Cox proportional hazards likelihood. We show

in Section 1.3.1 that under mild conditions the EM solution converges to the NPMLE.

Variance Estimator

At convergence of the EM algorithm where θ̂ denotes the NPMLE, the [Lou82] formula

can be used to give the observed Fisher information:

Iobs(θ̂) =
n

∑
i=1

E
θ̂
[Bi|O]−

n

∑
i=1

E
θ̂
[SiS>i |O]−2

n

∑
i<i′

E
θ̂
[Si|O]E

θ̂
[Si|O]>, (1.14)
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where Si and Bi are the gradient ∇lc
i and the negatives of Hessian −∇2lc

i of the complete data

log-likelihood. The above is in closed form, and the details are given in Section 1.8. We show in

the next section that (1.14) provides a consistent variance estimator for the NPMLE, and its use in

association with the NPMLE has been advocated in the literature, in particular for its numerical

stability [VX00, ZL07, GMX09].

1.3 Theory

Let θ0 =(α0,β0,Λ0(·)) denote the true parameter value. Following [ABGK93], we define

the counting process Ni(t) = δ1
i I(Xi ≤ t) and the at-risk process Yi(t) = I(Qi ≤ t ≤ Xi). Their

sums are denoted as N̄(t) = ∑
n
i=1 Ni(t), and Ȳ (t) = ∑

n
i=1Yi(t). By Doob-Meyer decomposition, a

martingale with respect to the filtration Ft = σ{Ni(u),Yi(u),Z1,Z2,u≤ t} is

Mi(t) = Ni(t)−
∫ t

0
φ
θ0
i (u)Yi(u)eβ

>
0 Z2idΛ0(u), (1.15)

where

φ
θ
i (t) =

exp{α>Z1i−Λ(t)eβ
>Z2i}

1+ exp{α>Z1i−Λ(t)eβ>Z2i}
= Pθ(Ai = 1|Xi ≥ t). (1.16)

To make use of the martingale framework, we write the observed log-likelihood ln = logL, where

L(θ) was given in (1.4), as

ln =
n

∑
i=1

∫
τ

0
log
(

φ
θ
i (u)e

β>Z2i
)

dNi(u)−
∫

τ

0
Yi(u)φθi (u)e

β>Z2idΛ(u)

+
∫

τ

0
log
(

∆Λ(u)
)

dNi(u),

where ∆Λ(u) is the size of jump of the baseline cumulative hazard at u [Mur94]. We establish the

theory under the following assumptions. The vector norm throughout this paper is the uniform
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norm, i.e. the largest absolute value among all elements.

Assumption 1. The true finite-dimensional parameter (α0,β0) is an element of the interior of a

compact set {(α,β) : ‖α‖∨‖β‖ ≤ D1} for some constant D1.

Assumption 2. The covariates (Z1,Z2) follow distribution FZ(·, ·). They are bounded a.s.:

there exists D2 > 0, such that P(max{‖Z1‖,‖Z2‖} ≤ D2) = 1. Also, their covariance matrices

Var(Z1)(without intercept term) and Var(Z2) are both positive-definite. Denote constant m such

that

0 < m−1 = e−D1D2 ≤ eα
>Z1 ∧ eβ

>Z2 ≤ eα
>Z1 ∨ eβ

>Z2 ≤ eD1D2 = m < ∞ a.s.. (1.17)

Assumption 3. The baseline cumulative hazard function Λ0(t) is a non-decreasing continuous

function on [0,τ). Λ0(0) = 0 and Λ0(τ−) = ∞. And

inf
t∈[0,τ]

E[Y (t)|Z1,Z2]> ε > 0, a.s.. (1.18)

Assumption 4. There exists ζ ∈ (0,τ) such that P(Q > ζ) = 0. Λ0(t) is strictly increasing over

[0,ζ], and E[Y (t)|Z1,Z2] is Lipschitz continuous w.r.t to Λ0(t) on [0,ζ] a.s.; that is, there is a

constant

L ≥ sup
0≤t<s≤ζ

{
|E[Y (t)|Z1,Z2]−E[Y (s)|Z1,Z2]|

|Λ0(t)−Λ0(s)|

}
, a.s.. (1.19)

Assumption 3 above is specifically made for cure rate models with an observed cured

portion. This assumption enforces that the failure time must occur prior to a well-defined upper

bound. Equation (1.18) requires that not all subjects (including cured) are censored prior to

a maximal possible event time. Hence, all existing theoretical results for which the baseline

cumulative hazard is assumed finite at a maximum follow-up time do not apply to our case.
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Equation (1.18) also requires that certain proportion of subjects enter the study at time zero.

While this may not always be the case for our pregnancy studies, time zero may be replaced by

the earliest entry time into the study and the inference is conditional upon survival beyond that

time, and all the results established in this section carry over. Assumption 4 gives the regularity

conditions on truncation and censoring. The truncation times should be bounded away from time

τ; this is required in order to establish Lemma 1 below. The truncation-censoring distribution

also has to possess certain level of continuity with respect to the distribution of event time. For

example, the continuity condition is satisfied when the distributions for Q, C and T given Z1 and

Z2 all have densities that are bounded away from ∞ and 0 almost surely. This condition can be

weakened to allow Λ0(t) to be constant over some open set and require only that E[Y (t)|Z1,Z2]

is Lipschitz continuous with respect to Λ0(t) on a open set Ω⊂ [0,ζ] consisting of finite many

open intervals, on which
∫

Ω
dΛ0 = Λ0(ζ). All theoretical results under this weakened condition

can be achieved by repeatedly applying the steps in the current proof.

For the asymptotic normality we make the following assumption where τ′ is defined later.

Assumption 3’. The baseline cumulative hazard Λ0(t) is a non-decreasing continuous function

on [0,τ′]. Λ0(0) = 0, Λ0(τ
′)< ∞ and Λ0(τ−) = ∞. And

inf
t∈[0,τ′]

E[Y (t)|Z1,Z2]> ε > 0, a.s..

1.3.1 Existence of NPMLE and convergence of EM

First, we show the existence of the NPMLE.

13



Theorem 1. Under Assumptions 1 and 2, if ∑
n
i=1 Ni(τ) > 0, then a maximizer of ln(θ), θ̂ =

(α̂, β̂, Λ̂(·)) exists and is finite.

For the proof we use the same technique as in [Mur94]. All the proofs are in Section 1.7.

We now show that the previously described EM algorithm converges and its solution is

asymptotically equivalent to the NPMLE.

Lemma 1. Let θ̂ be the NPMLE for the observed likelihood (1.4). Under Assumptions 1 - 4,

1. the EM algorithm with complete data likelihood (1.5) converges almost surely to θ̃;

2. n−1{ln(θ̂)− ln(θ̃)}= Op(1/n).

Theorem 2. Under Assumptions 1- 4, ‖θ̂− θ̃‖= op(1).

Theorem 2’. Under Assumptions 1, 2, 4 and 3’, θ̂− θ̃ = op(1/
√

n).

1.3.2 Consistency of NPMLE

Next, we show the consistency of the NPMLE.

Theorem 3. Under Assumptions 1 - 4, the NPMLE estimator for L in (1.4), θ̂ = (α̂, β̂, Λ̂(·)), is

consistent. That is

α̂−α0→ 0, β̂−β0→ 0, sup
t∈[0,τ]

|e−Λ̂(t)− e−Λ0(t)| → 0 a.s..

The proof follows the general framework in [Mur94]. The estimator for the baseline

hazard satisfies the equation

Λ̂(t) =
∫ t

0

{
n

∑
i=1

W θ̂
i (u)eβ̂

>Z2i

}−1

dN̄(u), (1.20)
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where

Wθ
i (t) =

{
δ

1
i +δ

c
i φ

θ
i (Xi)

}
I{t ≤ Xi}−φ

θ
i (Qi)I{t ≤ Qi}, (1.21)

and φθi (·) is given in (1.16). A bridge between Λ̂ and Λ0 is constructed as

Λ̄(t) =
∫ t

0

{
n

∑
i=1

φ
θ0
i (u)Yi(u)eβ

>
0 Z2i

}−1

dN̄(u). (1.22)

The details of the proof deserve some extra comments here, as it achieves the a.s. conver-

gence with a baseline hazard unbounded in its support using a few innovative steps. First, we

apply Helly’s selection theorem to the Càdlàg function sequence e−Λ̂. Then, the upper bound for

Λ̂ in any interval [0,τ∗]⊂ (0,τ) is established via the lower bound for n−1
∑

n
i=1W θ̂

i (u)eβ̂
>Z2i . We

manage to show that the ratio γ(t) = dΛ̂(t)/dΛ̄(t) is bounded between zero and infinity for all

t ∈ (0,τ) despite the indefinite quotient at 0 and τ. Finally, we conclude the proof by showing

that γ(t) = 1 using an identifiability argument.

For the purposes of the asymptotic normality below, we have a similar result:

Theorem 3’. Under Assumptions 1, 2, 3’ and 4, the NPMLE estimator for LI defined later in

(1.24), θ̂ = (α̂, β̂, Λ̂(·)), is consistent. That is

α̂−α0→ 0, β̂−β0→ 0, sup
t∈[0,τ′]

|Λ̂(t)−Λ0(t)| → 0 a.s.. (1.23)

1.3.3 Asymptotic Normality of NPMLE

The divergence of the cumulative baseline hazard Λ0 at τ eventually becomes an obstacle

in the study of weak convergence. It is involved in all the second order terms including both the

parametric parts and the nonparametric part. Existing techniques, mostly relying on a finite upper
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bound of Λ0, cannot deal with it. To proceed with the theoretical endeavor, we avoid the divergent

tail by slightly modifying the likelihood. That is, we make an interval censoring window (τ′,τ)

close to the end of study, so that the failure indicator A is always observed for those at-risk at time

τ′, but their failure times are unknown if A = 1. We note that this is for technical reason only, so

that the baseline cumulative hazard is always bounded at the observed failure times as n→ ∞. In

practical applications this modification of the likelihood is unnecessary since the observed SAB

events are recorded in dates, so that there is always at least one day gap between when a (possibly

censored) SAB event can happen and when a woman is considered cured.

Let δτ = A · I(X > τ′) be the interval-censoring indicator in (τ′,τ). Notice that S(t)−

S(τ) = S(t) for any t < τ. We have the resulting interval-censored data likelihood that is modified

from (1.4):

LI(θ) =
n

∏
i=1

{
pλi(Xi)eβ

>Z2iSi(Xi)
}δ1

i (1− pi)
δ0

i
{

1− pi + piSi(Xi)
}δc

i {piSi(τ
′)}δτ

i

1− pi + piSi(Qi)
. (1.24)

The corresponding log-likelihood lI
n = logLI is

lI
n =

n

∑
i=1

∫
τ′

0
log
(

φ
θ
i (u)e

β>Z2i4Λ(u)
)

dNi(u)−
∫

τ′

0
Yi(u)φθi (u)e

β>Z2idΛ(u)

+{Ni(τ)−Ni(τ
′)} logφ

θ
i (τ
′)+Yi(τ) log(1−φ

θ
i (τ
′)). (1.25)

The proof then follows the framework in [Mur95] to verify the conditions of Theorem 3.3.1 from

[VdVW96]. We shall describe the functional space in which weak convergence is established.

Let H∞ be the space containing elements in the form of h = (a,b,η), where the vectors a and b

are of the same dimensions as α and β, respectively, and the function η(·) is defined on [0,τ′]
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with η(0) = 0 and is of bounded variation, i.e. the total variation of η over [0,τ′],

V τ′
0 η = sup

0=u0<···<us=τ′
s=1,2,...

s

∑
j=1
|η(u j)−η(u j−1)|

is finite. Define a norm ‖ · ‖H on H∞:

‖(a,b,η)‖H = ‖a‖1 +‖b‖1 +V τ′
0 |η|,

and spaces indexed by a positive real number p

Hp = {h : ‖h‖H < p} .

For each p, define l∞(Hp) as the functional space of all uniformly bounded linear map Hp 7→ R,

i.e.

∀Ψ ∈ l∞(Hp), sup
h∈Hp

|Ψ(h)|< ∞.

The parameter θ = (α,β,Λ) as a function in l∞(Hp) is defined as

θ(h) = a>α+b>β+
∫

τ′

0
η(u)dΛ(u).

The induced functional norm is equivalent to the norm in (1.23) where consistency (Theorem 3’)

is established; we denote ‖θ‖.

Theorem 4. Let θ̂ = (α̂, β̂, Λ̂0(·)) be the NPMLE for the log-likelihood lI
n in (1.25). Under

Assumptions 1, 2, 3’ and 4,

√
n(θ̂−θ0)−→ G , in l∞(Hp)

weakly for a tight Gaussian process G on l∞(Hp) with covariance process

Cov(G(h),G(h∗)) = a>σ−1
a (h∗)+b>σ−1

b (h∗)+
∫

τ′

0
η(u)σ−1

η (h∗)(u)dΛ0(u),

where h = (a,b,η), and σ(h) =
(
σa(h),σb(h),ση(h)

)
is given in the (1.48).
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Let σ̂ be a nature estimator for the operator σ by substituting the true parameter θ0 and

expectation with the estimator θ̂ and the sample average.

Theorem 5. Under Assumptions 1, 2, 3’ and 4, σ̂ is asymptotically equivalent to the information

matrix in (1.14). The solution to g = σ̂−1(h) exists with probability going to 1 as n increases and

a>σ̂−1
a (h∗)+b>σ̂−1

b (h∗)+
∫

τ′

0
η(u)σ̂−1

η (h∗)(u)dΛ̂(u) P−→ Cov(G(h),G(h∗)).

1.4 Simulation study

1.4.1 Simulation setup

Here we detail our data simulation procedure for all of the simulation studies. Simulating

cure-rate model data presents its own challenges. To be comparable with the spontaneous abortion

data which we examine in the next section, we consider finite time τ, which is set to be 20 (weeks).

The covariates are the same for the logistic and the Cox part of the regression models and, unless

otherwise specified, consisting of Z1 ∼ N(4,1), with corresponding parameters (α1,β1), and

Z2 ∼ Bernouilli (p = 0.3), with corresponding parameters (α2,β2). The logistic regression part

also includes an intercept α0.

We begin by generating a larger sample than we desire to account for those who will be

left out due to truncation. Values for α are chosen to procure the desired percentage of cured

individuals on average in the population, and we refer to this as the % of cured individuals

in a simulation study. An individual is designated as either cured or not with the probability

determined from the logistic model.
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The baseline survival function for the Cox model is set as S0(t) = 20− t, the survival func-

tion of a Uniform (0,20) random variable. The baseline cumulative hazard is thus Λ0(t) = 20{1−

e−t}. For those not cured individuals we generate an event time T = 20{1−Uexp(−β1Z1−β2Z2)},

where U ∼ Uniform (0,1).

Truncation times are generated from Uniform (0,a) for some a < 15 chosen so that

on average the desired percentage of uncured individuals are truncated out. We refer to this

percentage as the % of truncation. Once the truncation times are generated, all individuals with

event times less than their truncation times are removed, and we reduce the data set to the desired

sample size by taking the first n individuals from those who remain. Finally, when there is

censoring the censoring times are generated from Uniform (15,b) for some b > 20 so that on

average the desired percentage of the n individuals (including those who are cured) will have a

censoring time less than min(Ti,20). We refer to this percentage as the % of censoring. We ran

all simulations with 500 trials below.

1.4.2 Simulation results

In Tables 1.1 we examine the performance of the NPMLE. We consider a smaller sample

size n = 200 and a larger sample size n = 1000, and like in the pregnancy studies for SAB we

assume that a majority 75% of the subjects are cured. We ran simulations over the combination

of two truncation scenarios (10%, 20%) and two censoring scenarios (0%, 20%). In the tables

we provide the average parameter estimates (“Estimate"), the sample standard deviation of these

estimates over the 500 simulation trials (“Sample SD"), the mean over the 500 trials of the

standard errors based on our variance estimation (“SE"), and the empirical coverage probabilities
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Table 1.1: Simulation results using the EM algorithm for NPMLE.

True n = 200 n = 1000

Value Estimate Sample SD SE Coverage Estimate Sample SD SE Coverage

10% Truncation, 0% Censoring

α0 1.00 1.01 0.79 0.75 94.0 % 0.98 0.35 0.33 93.6 %

α1 -0.63 -0.64 0.20 0.19 94.8 % -0.63 0.09 0.08 94.3 %

α2 1.00 1.00 0.36 0.37 95.6 % 1.01 0.16 0.16 94.8 %

β1 -0.20 -0.23 0.20 0.17 92.2 % -0.20 0.07 0.07 95.6 %

β2 0.30 0.33 0.34 0.32 94.2 % 0.29 0.14 0.13 93.4 %

20% Truncation, 0% Censoring

α0 1.00 0.97 0.80 0.79 94.8 % 0.99 0.34 0.35 96.0 %

α1 -0.63 -0.64 0.21 0.20 95.4 % -0.63 0.09 0.09 96.2 %

α2 1.00 0.98 0.40 0.39 95.4 % 0.99 0.17 0.17 95.2 %

β1 -0.20 -0.20 0.20 0.18 94.6 % -0.20 0.07 0.07 95.2 %

β2 0.30 0.31 0.37 0.34 94.6 % 0.30 0.14 0.14 94.2 %

10% Truncation, 20% Censoring

α0 1.00 1.18 0.97 0.99 96.6 % 1.02 0.41 0.42 95.8 %

α1 -0.63 -0.69 0.25 0.26 96.2 % -0.64 0.11 0.11 96.2 %

α2 1.00 1.01 0.50 0.49 95.4 % 1.00 0.20 0.21 96.0 %

β1 -0.20 -0.21 0.30 0.26 91.6 % -0.21 0.11 0.11 94.4 %

β2 0.30 0.31 0.53 0.49 93.4 % 0.30 0.21 0.20 93.8 %

20% Truncation, 20% Censoring

α0 1.00 1.05 1.00 0.96 95.8 % 0.98 0.37 0.41 97.0 %

α1 -0.63 -0.66 0.27 0.25 96.6 % -0.63 0.10 0.11 96.6 %

α2 1.00 1.05 0.49 0.47 95.6 % 1.01 0.20 0.20 94.6 %

β1 -0.20 -0.19 0.30 0.26 90.4 % -0.20 0.11 0.11 95.0 %

β2 0.30 0.33 0.54 0.48 92.2 % 0.31 0.21 0.20 94.8 %
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(“Coverage") of the nominal 95% confidence intervals using the SE’s.

According to the table, the performance of NPMLE is quite good. The average estimates

of the parameters are generally close to their true values in all scenarios. This includes for the

Cox part of the model under the smaller sample size n = 200, where only about 25% of the sample

have events when there is no censoring, and even few in the presence of censoring. The variance

estimator generally improves with larger sample size, especially for the Cox part of the model

and with 20% censoring, which also reflects in the coverage probabilities of the nominal 95%

confidence intervals. Note that with 500 simulation trials these empirical coverage probabilities

have about ±2% margin of error.

At the suggestion of a reviewer, we also compared our EM algorithm with the numerical

optimization algorithm of [CSWL17], and the results are summarized in Tables 1.2 and 1.3. We

see that the performance of the two numerical algorithms were generally comparable. [CSWL17]

reported occurrence of divergence (up to 0.3% of the times) in their simulation experiments, while

we did not experience any such issues with the EM algorithm. This is consistent with our past

experience with the EM algorithm under other semiparametric models [GMX09].

1.5 Analysis of spontaneous abortion data

The data we investigate come from the OTIS autoimmune disease in pregnancy database

as mentioned earlier. Our sample includes pregnant women who entered a research study between

2005 and 2012. It consists of n = 911 women who entered the study before week 20 of their

gestation, with complete covariate information. Among them 473 (52%) were pregnant women
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Table 1.2: Comparison with Chen et al. (2017) simulation results, 20% censoring. In every two

lines of the results, the first line is our approach, the second line is from Chen et al. (2017). True

β =−0.693.

n = 200 n = 400

β γ0 γ1 β γ0 γ1

(γ0,γ1) = EST -0.657 0.987 -0.535 -0.681 1.007 -0.534

-0.657 1.015 -0.544 -0.657 1.004 -0.533

(1,−0.5) SD 0.207 0.250 0.331 0.149 0.168 0.222

0.254 0.242 0.340 0.170 0.168 0.245

ASE 0.205 0.242 0.323 0.144 0.171 0.228

0.235 0.247 0.343 0.167 0.173 0.242

CP 0.952 0.937 0.937 0.935 0.953 0.952

0.932 0.959 0.952 0.944 0.957 0.956

(γ0,γ1) = EST -0.661 0.975 -1.021 -0.672 0.992 -1.023

-0.653 1.024 -1.032 -0.659 1.008 -1.015

(1,−1) SD 0.233 0.257 0.331 0.159 0.175 0.222

0.254 0.241 0.336 0.173 0.169 0.235

ASE 0.220 0.242 0.322 0.154 0.171 0.226

0.239 0.250 0.330 0.170 0.175 0.232

CP 0.933 0.937 0.945 0.930 0.942 0.950

0.931 0.956 0.943 0.928 0.963 0.949
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Table 1.3: Comparison with Chen et al. (2017) simulation results, 40% censoring. in every two

lines of the results, the first line is our approach, the second line is from Chen et al. (2017). True

β =−0.693.

n = 200 n = 400

β γ0 γ1 β γ0 γ1

(γ0,γ1) = EST -0.673 0.968 -0.509 -0.687 0.988 -0.521

-0.719 0.999 -0.508 -0.707 1.003 -0.509

(1,−0.5) SD 0.203 0.257 0.344 0.144 0.180 0.236

0.210 0.263 0.336 0.143 0.182 0.239

ASE 0.206 0.253 0.335 0.145 0.180 0.237

0.204 0.266 0.344 0.142 0.187 0.242

CP 0.956 0.946 0.946 0.950 0.944 0.952

0.955 0.966 0.960 0.957 0.952 0.963

(γ0,γ1) = EST -0.664 0.967 -1.032 -0.672 0.989 -1.017

-0.691 1.016 -1.018 -0.690 1.004 -1.001

(1,−1) SD 0.229 0.254 0.342 0.161 0.179 0.228

0.239 0.286 0.376 0.167 0.202 0.256

ASE 0.223 0.256 0.338 0.155 0.182 0.239

0.236 0.295 0.379 0.164 0.207 0.266

CP 0.946 0.957 0.960 0.938 0.958 0.956

0.955 0.958 0.955 0.939 0.956 0.952
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with certain autoimmune diseases who were treated with medications under investigation, 261

(29%) were women with the same specific autoimmune diseases who were not treated with the

medications under investigation, and the rest 177 (19%) were healthy pregnant women without

autoimmune diseases who were not treated with the medications. [CBB+01] discussed the

importance of having a diseased control group, since some of the adverse outcomes in pregnancy

may be due to the diseases instead of the medications. There were a total of 66 SAB events, and

2 women were lost to follow up before 20 weeks of gestation.

Since the data was collect through phone interviews roughly each trimester, despite the

fact that we obtain medical records of all study subjects, there were 10 SAB events in the data

set without exact event times, instead a window was available during which each event had

occurred. These events were therefore interval censored. For the purposes of this analysis

we applied the multiple imputation (MI) method of [Pan00]; a separate research project was

carried out to develop specific methodology and theory to handle interval censoring in this setting

(https://arxiv.org/abs/1708.06838). More specifically, we imputed the actual SAB event times

from the uniform distribution over the interval censoring windows, and the imputation was

repeated 10 times. The analysis results from each of the 10 imputed data sets were combined

using standard MI methodology to obtain the final parameter estimates and their standard errors

[Pan00, RL02].

There are a number of risk factors for spontaneous abortion that have been identified in

the literature [CJX+13, for example]. Alternatively, we can use a data driven selection method

for risk factors in our cure rate model. For each baseline covariate, we use the Wald test with

two degrees of freedom for both coefficients in the logistic and the Cox part of the model. We

24



first screen the covariates with a univariate cure rate model, with a p-value cutoff of 0.2 from the

Wald test; this step also considers different possible codings of a variable, for example, some of

the four categories of BMI (under-weight, normal, over-weight, obese) might be combined, if the

p-value is lowered. We then run a backward selection, with a p-value cutoff of 0.1 from the Wald

test. The selected variables are maternal age ≥ 34 years or not, body mass index (BMI) ≥ 25 or

not, whether there was smoking (Y/N) or alchohol (Y/N) intake during early pregnancy. We fit

our final cure model to the data with these covariates and exposure status, and the results using

the NPMLE are given in Table 1.4 left columns.

From Table 1.4, we see that older maternal age significantly increases the probability of

SAB in the logistic part of the model. The probability of SAB of either healthy control group

or diseased control group is not significantly different from the medication exposed women.

The Cox regression part of the model identified smoking and alcohol as significant factors for

the hazard of SAB. In the cure model context since the Cox model is only used for those who

eventually have events (observed or censored), this part of the model should be understood as

impact of the covariates on the timing of SAB; that is, significantly later timing of SAB for those

who smoked, and significantly earlier timing for those who had alcohol. The findings about BMI

appears counter intuitive here. In discussion with our medical colleagues, it is possible that obese

or overweight women have higher risk for early SAB, which were not captured in our data due to

left truncation; it then might occur that for what we observe, they appear to be at lower risk for

SAB. In addition in this data there was slightly more drinking in the BMI < 25 group, and the

lower the BMI, the higher the blood alcohol level for a given alcohol dose, leading to possibly

higher risk for SAB.

25



0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weeks in Gestation

1−
S

A
B

 P
ro

ba
bi

lit
ie

s

KM : Materal Age < 34
KM : Materal Age >= 34
Fitted : Materal Age < 34
Fitted : Materal Age >= 34

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weeks in Gestation

1−
S

A
B

 P
ro

ba
bi

lit
ie

s

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weeks in Gestation

1−
S

A
B

 P
ro

ba
bi

lit
ie

s

KM : Smoking
KM : No Smoking
Fitted : Smoking
Fitted : No Smoking

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weeks in Gestation

1−
S

A
B

 P
ro

ba
bi

lit
ie

s

Figure 1.2: Left truncated Kaplan-Meier and fitted curves for SAB events according to maternal

age (top) or smoking (bottom), among the full data set (left) and without the observed cured

individuals (right). The fitted curves are averages of individual fitted curves in the group.
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Figure 1.2 illustrates for maternal age and smoking the stratified Kaplan-Meier and the

fitted curves under the cure model (the curves for BMI and alcohol were similar and not shown

here). The fitted curves are averages of individual fitted curves in each group, such as among

those with maternal age < 34, etc. It is seen that all curves drop to zero among the non-cured

subjects (right panel of the figure), and that the effects in the Cox model part translate to timing of

the SAB events. In the left panel of the figure the survival probabilities at 20 weeks of gestation

reflect the cured portions in each group.

Accounting for the left truncation, classical survival analysis methods including the Cox

proportional hazards regression model have been advocated in the literature [MS08, XC11]. As a

comparison, Table 1.4 right columns (lower half) show the results of the classic Cox regression

model fitted to the data by treating all the cured individuals as right-censored at 20 weeks of

gestation, as is currently done in the practical analysis of SAB data [CJX+13]. BMI and alcohol

are no longer significant predictors of SAB. Note that under the proportional hazards assumption,

nonsignificant effects of BMI or alcohol translates to no significant differences in the cumulative

risks of SAB; that is, the impact on the timing of SAB is no longer distinguished from the impact

on the overall cumulative risk of SAB (Y/N) by 20 weeks of gestation. In addition, as mentioned

before, treating the majority of the women (who did not have SAB) as right-censored can lead to

substantial loss of information.

Finally we also fit the ‘naive’ logistic regression model alone to the data, using whether

a woman has SAB (Y/N) as the outcome, while excluding the two right-censored observations.

The results are also given in the right columns (upper half) of Table 1.4. We note that this model

does not properly handle left truncation, and the results should be not trusted.
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1.6 Discussion and Conclusion

In this paper we have developed an NPMLE approach to fit the mixture type cure rate

models to data with left truncation in addition to right-censoring. As illustrated in the data

analysis, the cure rate model methodology developed here is able to make use of the information

from both the women who had SAB and those who were observed not to have SAB, as well as to

separate the differential regression effects of the covariates on both the cumulative risk of SAB as

well as the timing of it among those who experience SAB. We anticipate this methodology to

impact the practical analysis of pregnancy and other similar types of data. An ‘alpha’ version of a

corresponding R package is currently being tested internally.

Different from the usual cure data literature where the long-term survivors are always

right-censored, in our pregnancy studies we observe the majority of the ‘cured’ women. This

greatly improves the practical identifiability of the cured portion (Sy and Taylor, 2000; Lu and

Ying, 2004), as well as substantially increases the amount of information available for estimating

the model parameters. Our inference procedures utilize the NPMLE, together with the “ghost

copy” EM algorithm to produce estimators for the model parameters. The variances of the

estimators can be obtained in closed form using the [Lou82] formula. In our simulations, the

variance estimator leads to relatively accurate coverage of the 95% confidence intervals.

In our proof for consistency, we have worked through an unbounded cumulative baseline

hazard, which has rarely been discussed in existing literatures. Ideally, we would like to show

asymptotic normality without assuming the interval-censoring tail window. However, the weak

convergence of nonparametric estimators often requires a stronger set of assumptions. As a
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result, the unbounded Λ0 in the log-likelihood causes trouble in the Fréchet differentiability and

continuously invertibility steps. The “chop-off" argument applied in consistency does not work

here as Λ0 appears in both the parametric and the nonparametric part of the directional score.

Finally for left truncated data much work has been done recently under the length-biased

assumption [AWZ06, NQS10, QNLS11, among others]. For enrollment into observational

pregnancy studies like ours, we do not think that the uniform distributional assumption necessarily

holds, as is evident in Figure 1.1. Other parametric assumptions might be explored that are more

suitable for the entry times to pregnancy studies.

1.7 Proofs

1.7.1 The Existence of NPMLE

Proof of Theorem 1. Let θB be the maximizer on the compliment of compact set {‖α‖∨‖β‖∨

‖λ‖ ≤ B}. We show that l(θB)→−∞ when B→ ∞.

By Assumptions 1 and 2, we have the bound (1.17).

All terms in the log-likelihood are bounded except for

n

∑
i=1

{
δ

1
i logλ(Xi)−δ

1
i eβ

>Z2iΛ(Xi)
}
.

Let λmax be the largest element in λ. The expression above has the upper bound

log(λmax/m)−λmax/m−K logm,

which diverges to −∞ when we set B→ ∞.
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Then, the global maximizer must be in one of the compact set {‖α‖∨‖β‖∨‖λ‖ ≤ B∗}

for some B∗ > 0.

Let Wθ
i (t) be defined as in (1.21). We define a generic inequality to be referenced later, for

any θ = (α,β,Λ) in the parameter space whose baseline cumulative hazard Λ is a step function

jumping only at the observed event times, t1, . . . , tK:

0 < dΛ(tk)≤

(
n

∑
j=1

Wθ
j (tk)e

β>Z2 j

)−1

dN̄(tk), k = 1, . . . ,K. (1.26)

The conclusion of the following Lemma is used in the proofs of both Lemma 1 and Theorem 3.

Lemma 2. Let θ(n) =
(
α(n),β(n),Λ(n)

)
be a sequence in the parameter space where Λ(n) is a

non-decreasing step function with jumps only at the observed event times. Suppose that θ(n)

satisfies (1.26) and has a subsequence θ(nk) converging to a limiting point θ∗ = (α∗,β∗,Λ∗) a.s.:

α(nk)−α
∗→ 0, β(nk)−β

∗→ 0, sup
t∈[0,τ]

|e−Λ(nk)
(t)− e−Λ∗(t)| → 0, a.s.. (1.27)

Under Assumptions 1 - 4,

1. Λ∗(t)< ∞ for all t < τ;

2. inft∈[0,ζ]E[Wθ∗(t)eβ
∗>Z2]>Cw, for some Cw > 0.

Proof of Lemma 2. By checking the uniform continuity of Wθ
i (t)eβ

>Z2i in (α,β,e−Λ(t)), we may

establish

sup
t∈[0,τ]

∣∣∣∣Wθ∗
i (t)eβ

∗>Z2i−W
θ(nk)
i (t)e

β>(nk)
Z2i

∣∣∣∣→ 0, a.s..

Wθ
i (t) as a function of observed random variables belongs to a Glivenko-Cantelli class of

uniformly bounded functions with uniformly bounded variation. Thus, the pointwise convergence
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can be strengthen to be uniform convergence,

sup
t∈[0,τ]

∣∣∣∣∣1n nk

∑
i=1

W
θ(nk)
i (t)e

β>(nk)
Z2i−E

[
Wθ∗(t)eβ

∗>Z2
]∣∣∣∣∣ a.s.−→ 0.

Note that n−1
∑

nk
i=1W

θ(nk)
i (t)e

β>(nk)
Z2i is càglàd, so its limit E[Wθ∗(t)eβ

∗>Z2] must also be càglàd.

1. Let τ∗ = inf{t ∈ [0,ζ] : e−Λ∗(t) = 0}. We shall prove that τ∗ = τ.

Suppose that τ∗ is an interior point of [0,τ]. From Assumption 4, dΛ0([s, t]) = Λ0(t)−

Λ0(s) > 0 for any s < t in [0,τ]. By the definition of τ∗, Λ∗(t) = ∞ and φθ
∗
(t) = 0 for

t ∈ [τ∗,τ], so we have

E
[
Wθ∗(τ∗)eβ

∗>Z2
]
= E

[∫
τ

τ∗−
eβ
∗>Z2dN(u)

]
> 0.

By the left continuity of Wθ
i (t), ∃ s < τ∗, s.t.

inf
t∈[s,τ∗]

E
[
Wθ∗(t)eβ

∗>Z2
]
≥ 1

2
E
[∫

τ

τ∗−
eβ
∗>Z2dN(u)

]
.

The total increment of Λ(nk) in [s,τ∗] must be bounded almost surely according to (1.26).

By the definition of τ∗, Λ∗(s)< ∞. Putting these together, we reach the contradiction,

Λ
∗(τ∗)≤ lim

k→∞
Λ(nk)(τ

∗)≤ lim
k→∞

Λ(nk)(s)+
∫

τ∗

s+

dN̄(u)

∑
nk
i=1W

θ(nk)
i (u)e

β>
(nk)

Z2i

≤Λ
∗(s)+

τ∗− s
inft∈[s,τ∗]E[Wθ∗(t)eβ∗>Z2 ]

< ∞.

The other case is τ∗ = 0. Then, Λ∗(t) = ∞ and φθ
∗
(t) = 0 for t ∈ [0,τ]. The contradiction

is easily established as

E
[
Wθ∗(0)eβ

∗>Z2
]
= E

[∫
τ

0
eβ
∗>Z2dN(u)

]
> 0.
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2. Since E[Wθ∗(t)eβ
∗>Z2] is càglàd, θ(nk) satisfies (1.26) and converges uniformly to θ∗, it

can be seen that E[Wθ∗(t)eβ
∗>Z2]≥ 0 over the interior of [0,ζ].

Write n−1
k ∑

nk
i=1Wθ

i (t)eβ
>Z2i as

n−1
k

nk

∑
i=1

∫
τ

t−

{
1−φ

θ
i (u)

}
eβ
>Z2idNi(u)+

∫
τ

t
Yi(u)eβ

>Z2idφ
θ
i (u)+Yi(t)φθi (t)e

β>Z2i

=n−1
k

nk

∑
i=1

∫
τ

t+

1−φ
θ
i (u)−

∑
nk
j=1Yj(u)φθj (u)

{
1−φθj (u)

}
eβ
>Z2 j

∑
nk
j=1Wθ

j (u)e
β>Z2 j

eβ
>Z2idNi(u)

+
{

1−φ
θ
i (t)

}
eβ
>Z2idNi(t)+Yi(t)φθi (t)e

β>Z2i. (1.28)

By Assumption 4, all Qi < ζ a.s.. Thus,

E
[
Wθ∗(ζ)eβ

∗>Z2
]
=E
[{

δ
1 +δ

c
φ
θ∗(X)

}
I{ζ≤ X}eβ

∗>Z2
]

≥E
[∫

τ

ζ

eβ
∗>Z2dN(u)

]
> 0.

For t < ζ, the difference E[Wθ∗(t)eβ
∗>Z2 ]−E[Wθ∗(ζ)eβ

∗>Z2] is the limit of an integral

like that in (1.28), where the integrand has ∑
nk
j=1Wθ

j (u)e
β>Z2 j in the denominator. So it

has potential singularities at the zeros of E[Wθ∗(u)eβ
∗>Z2] for u ∈ [t,ζ]. We shall show

that E[Wθ∗(u)eβ
∗>Z2] is differentiable with respect to dΛ0(u) in [0,ζ], so that its zero u0

leads to the divergent form −
∫

ζ

t |u− u0|−1du. We will then reach the contradiction that

E[Wθ∗(t)eβ
∗>Z2] =−∞, as seen below.

Denote R0 the set of zeros and limiting zeros from right for E[Wθ∗(u)eβ
∗>Z2]. Let set R4u

be the4u neighborhood of R0 and Ωt
4u = [t,ζ]\R4u. E[Wθ∗(u)eβ

∗>Z2] is bounded away

from zero on Ωt
4u. Through (1.28),

E
[
Wθ∗(t)eβ

∗>Z2
]
−E

[
Wθ∗(ζ)eβ

∗>Z2
]
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≤−
∫

Ωt
4u

E[Y (u)φθ∗(u)
{

1−φθ
∗
(u)
}

eβ
∗>Z2]

E[Wθ∗(u)eβ∗>Z2 ]
E
[
eβ
∗>Z2dN(u)

]
+E

[∫
ζ

t+
{1−φ

θ∗(u)}dN(u)+
{

1−φ
θ∗(t)

}
eβ
∗>Z2dN(t)+Y (t)φθ

∗
(t)eβ

∗>Z2

]
. (1.29)

From part 1, e−Λ∗(ζ) > 0. For any u < ζ,

φ
θ∗
i (u)≥ φ

θ∗
i (ζ)≥ m−1e−mΛ∗(ζ)

1+m−1e−mΛ∗(ζ)
> 0.

So the limit of numerator term E[Y (u)φθ∗(u){1−φθ
∗
(u)}eβ∗>Z2] is bounded away from

zero. And ∀u ∈ [0,ζ],∣∣∣∣∣dEWθ∗(u)
dΛ0(u)

∣∣∣∣∣=
∣∣∣∣E[{1−φ

θ∗(u)
}

Y (u)φθ0(u)eβ
>
0 Z2−φ

θ∗(u)
dE[Y (u)|Z1,Z2]

dΛ0(u)

]∣∣∣∣
≤m+L < ∞.

The first term in (1.29) diverges to −∞ when 4u→ 0. The other terms are bounded, so

this is the desired contradiction.

Proof of Lemma 1. 1. Define the marginal of the complete data likelihood

L̃(θ) = ∑
Ai=0,1

∞

∑
Mi=0

∑
T̃i1=tk:tk≤Qi

· · · ∑
T̃iMi=tk:tk≤Qi

Lc
i (θ)

=
n

∏
i=1

{
piλi(Xi)Si(Xi)

}δ1
i (1− pi)

δ0
i
{

piSi(Xi)+1− pi
}δc

i

1− pi ∑k:tk≤Qi λkeβ>Z2iSi(tk)
.

From (1.5) it can be seen that the complete data likelihood Lc(θ) can be decomposed into

the product of one logistic part with one Cox part. The Assumptions 1 - 3 contain the
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regularity conditions of these two parts. The event rate P(Ai = 1) is bounded away from

both zero and one,

0 <
m−1

m−1 +1
≤ P(Ai = 1)≤ m

m+1
< 1.

The average at-risk process E[Yi(t)] is bounded away from zero almost surely. The matrices

Z1 and Z2 are almost surely of full rank, as Var(Z1) and Var(Z2) are positive definite.

Under these conditions, both parts of the likelihood are concave in the associated sets of

parameters, α and (β,λ), respective. Thus, Lc(θ) is almost surely concave in θ. L̃(θ) is

also concave as the sum over concave functions. The almost sure convergence of the EM

algorithm is guaranteed by the almost sure concaveness of the marginal of the complete

data likelihood [DLR77].

2. To prove the second result, we take the following strategy. For any θ denote λmax,ζ =

max{λk : tk ≤ ζ}, where ζ is the upper bound of truncation time defined in Assumption 4.

Define a set in the parameter space:

Θ =
{
θ = (α,β,Λ)|λmax,ζ ≤ n−12/Cw

}
, (1.30)

with Cw defined in Lemma 2. We would like to show that

lim
n→∞

P(θ̂, θ̃ ∈ Θ̂) = 1. (1.31)

This is done through applying Lemma 2, so we will need to verify condition (1.26) for θ̃

and θ̂. The convergence of the EM algorithm is obtained in the first step.

First, we show that the EM finds the unique stationary point of L̃(θ), which then must be

the global maximizer since it is concave from the proof of part 1. Consider the conditional
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expectation given the observed data as in (1.8) - (1.10). It can be verified directly (we skip

the algebraic details here) that:

∇ log L̃(θ) = Eθ[∇ logLc(θ)|O].

The estimator θ̃ is by definition the solution to the left-hand side of the above being zero,

hence also the stationary point of L̃(θ).

We write down the stationary equation θ(l) = θ(l+1) = θ̃ for λ̃k’s at convergence,

λ̃k =

1+ λ̃k ∑
n
i=1

p̃ieβ̃>Z2i S̃i(tk)I(Qi≥tk)
1−p̃i ∑h:h<Qi f̃i(th)

∑
n
i=1

{
δ1

i I(Xi ≥ tk)+δc
i φθ̃i (Xi)I(Xi ≥ tk)+∑ j≥k

p̃i f̃i(t j)I(Qi≥t j)

1−p̃i ∑h:h<Qi f̃i(th)

}
eβ̃>Z2i

, (1.32)

where fi was previously defined just above (1.6). Combining λ̃k terms leads to

λ̃
−1
k =

n

∑
i=1

{
δ

1
i I(Xi ≥ tk)+δ

c
i φ

θ̃
i (Xi)I(Xi ≥ tk)

− p̃i
S̃i(tk)I(Qi ≥ tk)−∑ j≥k f̃i(t j)I(Qi ≥ t j)

1− p̃i ∑h:h<Qi f̃i(th)

}
eβ̃>Z2i. (1.33)

By the mean value theorem,

0≤ eλkeβ
>Z2i −1−λkeβ

>Z2i ≤ 1
2

(
λkeβ

>Z2i
)2

eλkeβ
>Z2i ≤ 1

2
m2

λ
2
keλkm. (1.34)

where m is defined in (1.17). Applying (1.34) to the denominator in (1.33), we get

1− p̃i ∑
h:h<Qi

f̃i(th)≥ 1− p̃i{1− S̃i(Qi)}.

By a similar argument, we have almost surely

S̃i(tk)I(Qi ≥ tk)−∑
j≥k

f̃i(t j)I(Qi ≥ t j)
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= S̃i(Qi)I(Qi ≥ tk)+ ∑
j≥k

{
1− e−λ̃ jeβ̃>Z2i − λ̃ jeβ̃>Z2i

}
S̃i(t j)I(Qi > t j)

≤ S̃i(Qi)I(Qi ≥ tk).

Then, θ̃ satisfies (1.26).

For θ̂, it must satisfy the score equation for λk’s:

∂l(θ)
∂λk

=
n

∑
i=1

{
dNi(tk)

λk
−Wθ

i (tk)eβ
>Z2i

}
= 0, ∀k = 1, . . . ,K.

This is the equation version of (1.26) after rearrangement.

Now let λ̂max,ζ and λ̃max,ζ be the largest jump for Λ̂ and Λ̃ on [0,ζ], correspondingly. By

Lemma 2 part 2, we have

limsup
n→∞

n̂λmax,ζ ≤C−1
w , limsup

n→∞

ñλmax,ζ ≤C−1
w ,a.s..

Hence (1.31) is established.

In the set Θ, we evaluate the discrepancy between log L̃(θ) and logL(θ), which can be

bounded as following

1−Si(Qi)− ∑
k:tk<Qi

λkeβ
>Z2iSi(tk) = ∑

k:tk<Qi

Si(tk)
(

eλkeβ
>Z2i −1−λkeβ

>Z2i

)
. (1.35)

Applying (1.34) to | logL(θ)− log L̃(θ)|, we have the bound

∣∣∣logL(θ)− log L̃(θ)
∣∣∣≤ n

∑
i=1

∣∣∣∣∣log{1− pi + piSi(Qi)}− log

{
1− pi ∑

k:tk<Qi

λkeβ
>Z2iSi(tk)

}∣∣∣∣∣
≤

n

∑
i=1

∣∣∣∣ pi

1− pi

n
2

m2
λ

2
keλkm

∣∣∣∣≤ 1
2

n2emλmax,ζm3
λ

2
max,ζ.

Using the upper bound for λmax,ζ in Θ, we can bound

sup
θ∈Θ

∣∣∣logL(θ)− log L̃(θ)
∣∣∣≤ e

2m
Cw

2m3

C2
w
. (1.36)
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In summary whenever θ̂, θ̃ ∈Θ, we have

0≤ logL(θ̂)− logL(θ̃)≤ logL(θ̂)− log L̃(θ̂)+ log L̃(θ̃)− logL(θ̃)< e
2m
Cw

4m3

C2
w
. (1.37)

Combining (1.37) and (1.31) completes the proof.

Proof of Theorem 2 and 2’. From Lemma 1, we only need to establish the following two facts:

1) E[l1(θ)] exists with one unique maximal, and 2) it is locally invertible at the maximal. We

will see that 1) is verified through the proof of Theorem 3, and 2) is verified through the proof of

Theorem 4.

1.7.2 Consistency of NPMLE

Proof of Theorem 3. The constants m, c, ε and L are defined in (1.17), (1.18) and (1.19).

First, we show that the “bridge” Λ̄ defined in (1.22) converges to the true Λ0 in the

following sense:

sup
t∈[0,τ]

∣∣∣e−Λ̄(t)− e−Λ0(t)
∣∣∣→ 0,a.s. (1.38)

as n→ ∞. We have the bound for ∀t ∈ (0,τ),

m≥
E
[
Y (t)φθ0(t)eβ

>
0 Z2
]

E
[
log
{

1+ exp
(
α>0 Z1−Λ0(t)eβ

>
0 Z2i

)}] ≥ ε

m2 +m
. (1.39)

For any τ∗ < τ in Q the set of rational numbers, E[Y (t)φθ0(t)eβ
>
0 Z2] is bounded away from zero

over [0,τ∗]. The uniform convergence of Λ̄ to Λ0 over any [0,τ∗] can be obtained in the way like

[Mur94]. To extend the result to (1.38), we use a trick described in (1.40)-(1.43). By Assumption
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3, Λ0 is non-decreasing and diverges to ∞ at τ. Therefore,

∀ε > 0, ∃τ∗ ∈ (0,τ)∩Q, s.t.e−Λ0(τ
∗) < ε/3. (1.40)

Through Rao’s law of large number and Helly-Bray argument, we have

sup
t∈[0,τ∗]

|Λ̄(t)−Λ0(t)| → 0, a.s.. (1.41)

By continuity of the exponential function,

∃N, ∀n > N, sup
t∈[0,τ∗]

|e−Λ̄(t)− e−Λ0(t)|< ε/3. (1.42)

Then,

∀n > N, sup
t∈[τ∗,τ]

|e−Λ̄(t)− e−Λ0(t)| ≤ 2e−Λ0(τ
∗)+ |e−Λ̄(τ∗)− e−Λ0(τ

∗)|< ε. (1.43)

Therefore, we have proved (1.38).

Next, we evaluate the difference between the limits of Λ̂ and Λ̄. According to Assumption

1 and e−Λ̂(t) ∈ [0,1], (α̂, β̂,e−Λ̂(t)) is bounded. Λ̂(t) is Càdlàg, so is e−Λ̂(t). By Helly’s Selection

theorem, there is a subsequence converging uniformly almost surely to some θ∗ = (α∗,β∗,e−Λ∗).

Lemma 2 part 2 gives the bound for E{Wθ(t)eβ
>Z2} over [0,ζ]. We only need to find its bound

on [ζ,τ] in order to mimic the proof of Lemma 1 of [Mur94]. Note that

E
[
Wθ(t)eβ

>Z2
]
=E
[∫

τ

t−

{
1−φ

θ(u)
}

eβ
>Z2dN(u)

]
−E

[∫
τ

t
φ
θ(u)eβ

>Z2dE[Y (u)|Z1,Z2]

]
.

By Assumption 4, P(Qi ≤ ζ) = 1, so E[Y (u)|Z1,Z2] is decreasing on [ζ,τ]. Along with the

Lipschitz continuity, we have for ∀t ∈ [ζ,τ)

ML ≥ E[Wθ(t)eβ
>Z2]

E
[
log
{

1+ exp
(
α>0 Z1−Λ0(t)eβ

>
0 Z2i

)}] ≥ ε

m2 +m
.
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Therefore, γ(t) =
E
[
Wθ0(t)eβ

>Z2
]

E
[
Wθ∗(t)eβ

∗>Z2
] is bounded away from both ∞ and zero, and

sup
t∈[0,τ]

∣∣∣∣∣dΛ̂

dΛ̄
(t)− γ(t)

∣∣∣∣∣→ 0 and sup
t∈[0,τ∗]

∣∣∣∣Λ̂(t)−∫ t

0
γdΛ0

∣∣∣∣→ 0 a.s.,∀τ∗ < τ in Q. (1.44)

After all these preparation, we can use the semi-parametric Kullback-Leibler divergence

argument from [Mur94]. We have

0≤1
n

{
ln(α̂, β̂, Λ̂)− ln(α0,β0, Λ̄)

}
=

1
n

n

∑
i=1

∫
τ

0
log
{

φθ̂i (u)e
β̂>Z2idΛ̂(u)

φ
θ0
i (u)eβ

>
0 Z2idΛ̄(u)

}{
dNi(u)−φ

θ0
i (u)Yi(u)eβ

>
0 Z2idΛ̄(u)

}

+
∫

τ

0

[
log
{

φθ̂i (u)e
β̂>Z2idΛ̂(u)

φ
θ0
i (u)eβ

>
0 Z2idΛ̄(u)

}
−
{

φθ̂i (u)e
β̂>Z2idΛ̂(u)

φ
θ0
i (u)eβ

>
0 Z2idΛ̄(u)

−1
}]

×φ
θ0
i (u)eβ

>
0 Z2iYi(u)dΛ̄(u). (1.45)

Denote the function in the logarithm above as ψi(u). Using the definition of Λ̄, we can rewrite

the first term in (1.45) as

1
n

n

∑
i=1


∫

τ

0
log
(
ψi(u)

)
−

∑
n
j=1 log

(
ψ j(u)

)
φ
θ0
j (u)Yj(u)eβ

>
0 Z2 j

∑
n
j=1 φ

θ0
j (u)Yj(u)eβ

>
0 Z2 j

dNi(u)

=
1
n

n

∑
i=1


∫

τ

0
log
(
ψi(u)

)
−

∑
n
j=1 log

(
ψ j(u)

)
φ
θ0
j (u)Yj(u)eβ

>
0 Z2 j

∑
n
j=1 φ

θ0
j (u)Yj(u)eβ

>
0 Z2 j

dMi(u) (1.46)

Inside ψi(u), the ratio dΛ̂/dΛ̄ is bounded away from 0 and ∞ according to (1.44). Denote

the range of the ratio as [1/R,R]. The φ
θ0
i (u) term and φθ̂i (u) term in ψi(u) creates potential

singularity for (1.46) at τ, but its decay rate is bounded by e−mRΛ0(u) by Assumptions 1 and 2.

The integrands of martingale integral (1.46) are all bounded a.s., and the quadratic variation of

(1.46) is bounded a.s. by

1
n2

n

∑
i=1

∫
τ

0
4
{

mRΛ0(u)+ log(R)
}2

φ
θ0
i (u)Yi(u)eβ

>
0 Z2idΛ0(u).
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It is of order Op(1/n), so the limit of (1.46) is zero almost surely.

The integrands in the second term of (1.45) is of the form log(x)− (x−1)≤ 0. In order

to satisfy the inequality in (1.45), we must have

lim
n→∞

1
n

n

∑
i=1

∫
τ

0

{
log
(
ψi(u)

)
−
(
ψi(u)−1

)}
φ
θ0
i (u)eβ̂

>Z2iYi(u)dΛ̄(u) = 0.

Applying the same argument as in [Mur94], we get

E
(∫

τ

0

∣∣∣φθ∗(u)eβ∗>Z2γ(u)−φ
θ0(u)eβ

>
0 Z2
∣∣∣Y (u)dΛ0(u)

)
= 0 (1.47)

in the almost sure set. The identifiability of our model is verified in [LTS01] Theorem 2. Along

with our regularity conditions in Assumptions 2 and 3, (1.47) leads to α∗ = α0, β∗ = β0 and

γ(t) = 1. This implies that

sup
t∈[0,τ∗]

∣∣∣Λ̂(t)−Λ0(t)
∣∣∣→ 0 a.s.,∀τ∗ < τ in Q.

Repeating the trick in (1.40)-(1.43), we have

sup
t∈[0,τ]

∣∣∣e−Λ̂(t)− e−Λ0(t)
∣∣∣→ 0 a.s..

Finally, we summarize all usage of almost sure arguments to ensure that intersection of all

almost sure sets still has probability one under σ-additivity. The steps (1.40)-(1.43) involves one

almost sure argument for each choice of τ∗. We preserve the almost sure property by restricting

τ∗ to be in the countable set Q. One almost sure argument is made for Helly’s selection theorem.

In Lemma 2, we use the Glivenko-Cantelli Theorem to avoid the dependence on the choice of θ∗,

so the almost sure argument is only applied once. Two more almost sure arguments are used in

calculating the limit of the terms in (1.45).
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Proof of Theorem 3’. The proof is essentially the same as the proof of Theorem 3, so the details

are omitted. In fact, it is less technical due to the boundedness of Λ0 over [0,τ′].

1.7.3 Asymptotic Normality

First, we provide the definition of several quantities below. In Theorem 4 σ(h) =(
σa(h),σb(h),ση(h)

)
is

σa(h) = E

[
Z1

{
−

∫
τ′

0
Kθ0

1 (h)(u)Y (u)dφ
θ0(u)

+Kθ0
2 (h)Y (τ′)φθ0(τ′)

(
1−φ

θ0(τ′)
)}]

,

σb(h) = E

[
Z2

{∫
τ′

0
Kθ0

1 (h)(u)Y (u)eβ
>
0 Z2d

[
Λ0(u)φθ0(u)

]
−Kθ0

2 (h)Y (τ′)eβ
>
0 Z2Λ0(τ

′)φθ0(τ′)
(

1−φ
θ0(τ′)

)}]
,

ση(h) = E

[
eβ
>
0 Z2

{
Kθ0

1 (h)(u)φθ0(u)Y (u)−Kθ0
2 (h)Y (τ′)φθ0(τ′)

(
1−φ

θ0(τ′)
)

−
∫

τ′

u
Kθ0

1 (h)(s)φθ0(s)
(

1−φ
θ0(s)

)
Y (s)eβ

>
0 Z2dΛ0(s)

}]
, (1.48)

where

Kθ
1 (h)(u) =a>Z1

(
1−φ

θ(u)
)
+b>Z2

{
1−
(

1−φ
θ(u)

)
Λ(u)eβ

>Z2
}

+η(u)−
(

1−φ
θ(u)

)
eβ
>Z2

∫ u

0
ηdΛ,

Kθ
2 (h) =

{
a>Z1−b>Z2Λ(τ′)eβ

>Z2−
∫

τ′

0
ηeβ

>Z2dΛ

}
. (1.49)

Let θ+ th =
(
α+ ta,β+ tb,

∫ ·
0(1+ tη)dΛ

)
. Define the directional derivatives

lim
t→0

lI
n(θ+ th)− lI

n(θ)

t
= Sθn = Sθn,a +Sθn,b +Sθn,η,
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where

Sθn,a =
1
n

n

∑
i=1

a>Z1i

{∫
τ′

0

(
1−φ

θ
i (u)

)
dNi(u)−

∫
τ′

0
Yi(u)φθi (u)

(
1−φ

θ
i (u)

)
eβ
>Z2idΛ(u)

+
(

Ni(τ)−Ni(τ
′)
)(

1−φ
θ
i (τ
′)
)
−Yi(τ)φ

θ
i (τ
′)

}
Sθn,b =

1
n

n

∑
i=1

b>Z2i

[∫
τ′

0

{
1−
(

1−φ
θ
i (u)

)
Λ(u)eβ

>Z2i
}

dNi(u)

+
∫

τ′

0
Yi(u)φθi (u)e

β>Z2i
{(

1−φ
θ
i (u)

)
Λ(u)eβ

>Z2i−1
}

dΛ(u)

−
(

Ni(τ)−Ni(τ
′)
)(

1−φ
θ
i (τ
′)
)

Λ(τ′)eβ
>Z2i +Yi(τ)φ

θ
i (τ
′)Λ(τ′)eβ

>Z2i

]
Sθn,η =

1
n

n

∑
i=1

∫
τ′

0

[
η(u)−

{
1−φ

θ
i (u)

}
eβ
>Z2i

∫ u

0
ηdΛ

]
dNi(u)

+
∫

τ′

0
Yi(u)φθi (u)e

β>Z2i

[{
1−φ

θ
i (u)

}
eβ
>Z2i

∫ u

0
ηdΛ−η(u)

]
dΛ(u)

−
(

Ni(τ)−Ni(τ
′)
)(

1−φ
θ
i (τ
′)
)∫ τ′

0
ηdΛeβ

>Z2i +Yi(τ)φ
θ
i (τ
′)
∫

τ′

0
ηdΛeβ

>Z2i.

Their expectations are denoted as

Sθ = Sθa +Sθb +Sθη = E
(

Sθn,a
)
+E

(
Sθn,b
)
+E

(
Sθn,η
)
.

Again let θ0 be the true parameter and θ another element in the paramter space. Define

4θ = θ−θ0 with

4α=α−α0,4β = β−β0 and4Λ(·) =
{

Λ(·)−Λ0(·)
}
.

Define linΘ to be the linear space spanned by {θ−θ0 : θ in parameter space}. Let θt = θ0+t4θ.

The functional Hessian is a linear operator linΘ 7→ l∞(Hp) defined as

Ṡθ0(4θ)(h) = lim
t→0

Sθt (h)−Sθ0(h)
t
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=−4α>σa(h)−4β>σb(h)−
∫

τ′

0
ση(h)(u)d4Λ(u) (1.50)

with σ defined in (1.48).

The following Lemma 3 is used in the proofs of Theorems 4 and 5. It tells us about the

property of σ, the essential element in the functional Hessian.

Lemma 3. Let the operator σ : (a,b,η) 7→
(
σa(h),σb(h),ση(h)

)
be defined as in (1.48). Under

the conditions of Theorem 4, σ is a continuously invertible bijection from H∞ to H∞.

Proof of Lemma 3. First we prove that σ is injection by an identifiability argument. Define an

inner-product between σ(h) and h as

〈
σ(h),h

〉
=a>σa(h)+b>σb(h)+

∫
τ′

0
ση(h)(u)η(u)dΛ0(u)

=
∫

τ′

0
E
[{

Kθ0
1 (h)(u)

}2Y (u)φθ0(u)eβ
>
0 Z2
]

dΛ0(u)

+E
[{

Kθ0
2 (h)

}2Y (τ′)φθ0(τ′)
(

1−φ
θ0(τ′)

)]
.

If
〈

σ(h),h
〉
= 0, we have almost surely Kθ0

2 (h) = 0 and Kθ0
1 (h)(u) = 0 a.e. u∈ [0,τ′]. Therefore,

∫ t

0
Kθ0

1 (h)(u)φθ0(u)eβ
>
0 Z2dΛ0(u) = 0,∀t ∈ [0,τ′],a.s..

Calculating the integral, we have for for any t ∈ [0,τ′] a.s.

−a>Z1φ
θ0(t)+b>Z2φ

θ0(t)Λ0(t)eβ
>
0 Z2 +

∫ t

0
η(u)dΛ0(u)φθ0(t)eβ

>
0 Z2 = 0.

Setting t = 0, we have−a>Z1φθ0(0) = 0, so a>Z1 = 0. By Assumption 2, a = 0. Plugging a = 0

into Kθ0
2 yields

Kθ0
2 (h) = eβ

>
0 Z2
{

b>Z2Λ0(τ
′)−

∫
τ′

0
η(u)dΛ0(u)

}
= 0,a.s..
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Again, b>Z2 =
∫

τ′

0 η(u)dΛ0(u)/Λ0(τ
′) is deterministic, so b = 0. This way η must also be

constantly zero. As a result, σ(h) = σ(h′)⇒
(

σ(h−h′),h−h′
)
= 0⇒ h = h′.

To show it is a bijection, we apply Theorem 3.11 in [Con90]. It suffices to decompose σ

as the sum of one invertible operator and one compact operator. The invertible operator is defined

as

Σ(h) =
(
E
(

Z1Z1
>
)

a,E
(

Z2Z2
>
)

b,η(t)E
{

eβ
>
0 Z2φ

θ0(t)Y (t)
})

.

Since E
(
Z1Z1

>), E(Z2Z2
>) are both positive definite, and inft∈[0,τ′]Eeβ

>
0 Z2φθ0(t)Y (t)> 0, the

inverse exists as

Σ
−1(h) =

([
E
{

Z1Z1
>}]−1

a,
[
E
{

Z2Z2
>}]−1

b,η(t)
[
E
{

eβ
>
0 Z2φ

θ0(t)Y (t)
}]−1)

.

For the compactness of σ(h)− Σ(h), classical Helly-selection plus dominated convergence

method applies as all terms are conveniently bounded.

The proof of Theorem 4 is the application of Theorem 3.3.1 from [VdVW96]. We shall

verify all the required conditions for the Theorem.

Proof of Theorem 4. Since we work under a modified Assumption 3’ now, the martingale rep-

resentation in (1.15) needs to change accordingly beyond τ′. We still use Mi(t) as the nota-

tion. Define the filtrations
{

Ft : t ∈ [0,τ]
}

. On [0,τ′], Ft is the natural σ-algebra generated by

{Ni(t),Yi(t),Z1i,Z2i, i = 1, . . . ,n}. Since there is no extra information in the tail window (τ′,τ),

we set Ft = Fτ′ for t ∈ (τ′,τ). Fτ is the σ-algebra generated by {Ni(τ)−Ni(τ
′),Yi(τ),Z1i,Z2i, i =

1, . . . ,n}, where Yi(τ) = Yi(τ
′)− dNi(τ

′) is measurable in Fτ′ . The filtrations on [0,τ′] stay the

same, so Mi(t) defined in (1.15) is still a martingale up to time τ′. In the tail window (τ′,τ), we
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set Mi(t) constantly equals Mi(τ
′). To extend its definition to time τ, we define

dMi(τ) = Mi(τ)−Mi(τ
′) =

{
Ni(τ)−Ni(τ

′)
}
−Yi(τ)φ

θ0
i (τ′). (1.51)

It is easy to verify that E[Mi(τ)|Fτ′] = Mi(τ
′), so Mi(t) thus defined is a martingale with respect

to the new filtrations
{

Ft : t ∈ [0,τ′]∪{τ}
}

. Analogously, we define the process Mθ
i (·) which

replaces the true parameter θ0 in Mi(·) by arbitrary θ in the parameter space. Apparently,

Mθ0
i (·) = Mi(·). From here, we establish the needed results based on the martingale theory.

First, we prove weak convergence of the empirical score

√
n(Sθ0

n −Sθ0)
l∞(Hp)−→ W . (1.52)

Notice that Sθ0
1 − Sθ0 is a martingale integral with respect to (1.51). The weak convergence

follows from martingale central limit theorem. The covariance process is given by the expectation

of its quadratic variation:

Cov
(
G (h),G (h∗)

)
= E

[∫ τ′

0
Kθ0

1 (h)Kθ0
1 (h∗)Y (u)φ0(u)eβ

>
0 Z2dΛ0(u)

+Kθ0
2 (h)Kθ0

2 (h∗)φ0(τ
′)
{

1−φ0(τ
′)
}]

,

where K1 and K2 are defined as in (1.49).

Next, we verify the approximation condition

√
n
(

Sθ̂n −Sθ̂−Sθ0
n −Sθ0

)
= op(1). (1.53)

Consider the class {Sθ1 (h)− Sθ0
1 (h) : ‖θ−θ0‖ ≤ ε,h ∈ Hp}. All terms involved in this class

are uniformly bounded with uniformly bounded variation, so it is a Donsker class for the set of
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observable random variables. By checking that φθi is Lipschitz in θ under the l∞(Hp) norm, we

have almost surely

sup
t,Z2,Z1

|φθi (t)−φ
θ0
i (t)|= O(‖θ−θ0‖) ,

and similarly

sup
t,Z2,Z1

|φθi (t)Λ(t)−φ
θ0
i (t)Λ0(t)|= O(‖θ−θ0‖) .

For a single summand in the score,

sup
h∈Hp

E[Sθ1 (h)−Sθ0
1 (h)]2 = O

(
‖θ−θ0‖2) .

We plug θ̂ into the expression above. Thus, the variance of the limiting process of (1.53) is o(1)

by the consistency of θ̂ from Theorem 3’, so the process itself is op(1).

We then show the Fréchet differentiability of expected score S at θ0 in the direction of

θ̂−θ0,

Sθ̂t −Sθ0 = tṠθ0(θ̂−θ0)+op(t‖θ̂−θ0‖). (1.54)

We use a shorthand notation for the expected score at θ:

Sθ(h) = E
[∫

τ′

0
Kθ

1 (h)(u)dMθ(u)+Kθ
2 (h)dMθ(τ)

]
= E

[∫
τ

0
Vθ(h)(u)dMθ(u)

]
,

by setting

Vθ(h)(t) = I(t ≤ τ
′)Kθ

1 (h)(t)+ I(t = τ)Kθ
2 (h).

By the Lipschitz continuity with respect to ‖θ‖ for all terms involved, Kθ
1 (h), Kθ

2 (h) and dMθ,

Sθt (h)−Sθ(h)

= E
[∫

τ′

0
Vθt (h)(u)dMθt (u)

]
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= E
[∫

τ′

0
Vθ0(h)(u)d

{
Mθt (u)−Mθ0(u)

}]
+E

[∫
τ′

0
Vθt (h)(u)dMθ0(u)

]
+E
[∫

τ′

0

{
Vθt (h)(u)−Vθ0(h)(u)

}
d
{

Mθt (u)−Mθ0(u)
}]

= tṠθ0(θ−θ0)(h)+0+Op(t2‖θ−θ0‖2).

Again, we plug-in θ̂ and use the consistency result to verify the condition (1.54).

Afterwards, we find the local inverse of the functional Hessian in (1.50). We have shown

in Lemma 3 that the functional operator σ is a continuously invertible bijection from H∞ to H∞.

The invertibility of Ṡθ0 in Hp follows from the following argument. By the continuous invertibility

of σ, there is some q so that σ−1(Hq)⊆ Hp, and

inf
4θ∈linΘ

suph∈Hp
|(α−α0)

>σa(h)+(β−β0)
>σb(h)+

∫
τ′

0 ση(h)d(Λ−Λ0)|
‖4θ‖l∞(Hp)

≥ inf
4θ∈linΘ

suph∈σ−1(Hq) |(α−α0)
>σa(h)+(β−β0)

>σb(h)+
∫

τ′

0 ση(h)d(Λ−Λ0)|
p‖4θ‖

= inf
4θ∈linΘ

suph∈Hq
|4θ(h)|

p‖4θ‖
>

q
2p

. (1.55)

Finally, let us put everything together. The NPMLE θ̂ is shown to be consistent in

Theorem 3’, and (1.52), (1.53), (1.54) and (1.55) verify the conditions of Theorem 3.3.1 from

[VdVW96].

Proof of Theorem 5. The proof for the continuous invertibility of σ̂ is similar to the proof of

Lemma 3. The approximation error between the natural estimator σ̂ and Louis’ formula variance

estimator using (1.14) again comes from the “ghost copies” like the case in Lemma 1, so the

same argument applies to show their asymptotic equivalence.
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1.8 Details on Variance Estimator

1.8.1 Derivatives of Log-likelihood

Let lc(α,β,λ) = ∑
n
i=1 lc

i (α,β,λ) be the complete data log-likelihood,

lc
i (α,β,λ) =(Ai +Mi)α

>Z1i− (1+Mi) log(1+ eα
>Z1i)

+δ
1
i Ai

K

∑
k=1

I{Xi = tk}(logλk +β
>Z2i)−Ai ∑

k:tk≤Xi

λkeβ
>Z2i

+Mi ∑
k:tk<Qi

I{κi = k}
(

logλk +β
>Z2i−

k

∑
h=1

λheβ
>Z2i
)
.

Its gradient is given by

∇lc
i =

(
∂lc

i
∂α

,
∂lc

i
∂β

,
∂lc

i
∂λ

)>
,

where

∂lc
i

∂α
=Z1i

{
Ai +Mi− (1+Mi)

eα
>Z1i

1+ eα>Z1i

}
= Z1i

{
Ai− pi +Mi(1− pi)

}
,

∂lc
i

∂β
=Z2i

{
Aiδ

1
i +Mi−

(
Ai ∑

k:tk≤Xi

λk +Mi

κi

∑
k=1

λk

)
eβ
>Z2i

}

=Z2i

{
Aiδ

1
i +Mi−AiΛi(Xi)−MiΛi(κi)

}
,

∂lc
i

∂λk
=
(

Aiδ
1
i I{Xi = tk}+MiI{κi = k}

) 1
λk
−
(

AiI{tk ≤ Xi}+MiI{κi ≥ tk}
)

eβ
>Z2i

=Ai

(
δ1

i I{Xi = tk}
λk

− I{tk ≤ Xi}eβ
>Z2i
)
+Mi

(I{κi = k}
λk

− I{κi ≥ tk}eβ
>Z2i
)
.

Its Hessian is given by

∇
2lc

i =


∂2lc

i
∂α∂α>

0 0

0 ∂2lc
i

∂β∂β>
∂2lc

i
∂β∂λ>

0
[

∂2lc
i

∂β∂λ>

]>
diag(∂2lc

i
∂λ2

k
)

 ,
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where

∂2lc
i

∂α∂α>
=Z1iZ1

>
i

{
− (1+Mi)

eα
>Z1i

(1+ eα>Z1i)2

}
=−Z1iZ1

>
i (1+Mi)pi(1− pi),

∂2lc
i

∂β∂β>
=Z2iZ2

>
i

{
−
(

Ai ∑
k:tk≤Xi

λk +Mi

κi

∑
k=1

λk

)
eβ
>Z2i

}
,

∂2lc
i

∂β∂λk
=Z2i

{
−
(

AiI{tk ≤ Xi}+MiI{tk ≤ κi}
)

eβ
>Z2i

}
,

∂2lc
i

∂λ2
k
=−

(
Aiδ

1
i I{Xi = tk}+MiI{κi = k}

) 1
λ2

k
,

∂2lc
i

∂α∂β>
=

∂2lc
i

∂α∂λ>
=

∂2lc
i

∂λk∂λh
= 0, k 6= h.

1.8.2 Conditional Expectations

By the conditional expectations (1.8) - (1.10), we are able to calculate the ‘first order’

conditional expectations, E[∇lc
i |O] and E[∇2lc

i |O]:

E
[

∂lc
i

∂α

]
=Z1i

{
E(Ai)− pi +E(Mi)(1− pi)

}
,

E
[

∂lc
i

∂β

]
=Z2i

[
E(Ai)

{
δ

1
i + logSi(Xi)

}
+E(Mi)

{
1+ ∑

k:tk<Q j

P(T̃i j = tk) logSi(tk)
}]

,

E
[

∂lc
i

∂λk

]
=E(Ai)

{
δ1

i I{tk = Xi}
λk

− I{tk ≤ Xi}eβ
>Z2i
}

+E(Mi)
{P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i
}
.

E
[

∂2lc
i

∂α∂α>

]
=−Z1iZ1

>
i (1+E(Mi))pi(1− pi),

E
[

∂2lc
i

∂β∂β>

]
= Z2iZ2

>
i

{
E(Ai) logSi(Xi)+E(Mi) ∑

k:tk<Qi

P(T̃i j = tk) logSi(tk)
}
,

E
[

∂2lc
i

∂β∂λk

]
=−Z2i

{
E(Ai)I{tk ≤ Xi}+E(Mi)P(tk ≤ κi)

}
eβ
>Z2i,
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E
[

∂2lc
i

∂λ2
k

]
=−

{
E(Ai)δ

1
i I{T̃i j = tk}+E(Mi)P(T̃i j = tk)

} 1
λ2

k
.

To calculate ‘second order’ expectation E[∇lc
i ∇lc

i
>|O], we first compute the conditional variances:

Var[Ai|O] = δ
c
i

pi(1− pi)Si(Xi){
1− pi + piSi(Xi)

}2 ,

Var[Mi|O] =
pi

[
1−Si(Qi)

}
{

1− pi + piSi(Qi)
}2 .

Then,

E

[
∂lc

i
∂α

∂lc
i

∂α

>
]
=E
[

∂lc
i

∂α

]
E
[

∂lc
i

∂α

]>
+Z1iZ1

>
i
{
(1− pi)

2 Var(Mi)+Var(Ai)
}
,

E

[
∂lc

i
∂α

∂lc
i

∂β

>
]
=E
[

∂lc
i

∂α

]
E
[

∂lc
i

∂β

]>
+Z1iZ2

>
i

[
Var(Ai)

{
δ

1
i + logSi(Xi)

}
+Var(Mi)(1− pi)

{
1+ ∑

k:tk<Qi

P(T̃i j = tk) logSi(tk)
}]

,

E

[
∂lc

i
∂β

∂lc
i

∂β

>
]
=E
[

∂lc
i

∂β

]
E
[

∂lc
i

∂β

]>
+Z2iZ2

>
i

[
Var(Ai)

{
δ

1
i + logSi(Xi)

}2

+Var(Mi)
{

1+ ∑
k:tk<Qi

P(T̃i j = tk) logSi(tk)
}2

+E(Mi)
{

∑
k:tk<Qi

P(T̃i j = tk) logSi(tk)2−
(

∑
k:tk<Qi

P(T̃i j = tk) logSi(tk)
)2
}]

,

E
[

∂lc
i

∂α

∂lc
i

∂λk

]
=E
[

∂lc
i

∂α

]
E
[

∂lc
i

∂λk

]
+Z1i

[
Var(Ai)

{
δ1

i I{tk = Xi}
λk

− I{tk ≤ Xi}eβ
>Z2i
}

+Var(Mi)(1− pi)
{P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i
}]

,

E
[

∂lc
i

∂β

∂lc
i

∂λk

]
=E
[

∂lc
i

∂β

]
E
[

∂lc
i

∂λk

]
+Z2i

[
Var(Ai)

{
δ

1
i + logSi(Xi)

}{δ1
i I{tk = Xi}

λk
− I{tk ≤ Xi}eβ

>Z2i
}

+Var(Mi)
{P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i
}{

1+ ∑
h:th<Qi

P(T̃i j = th) logSi(th)
}
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−E(Mi)
{

∑
h:th<Qi

P(T̃i j = th) logSi(th)
P(T̃i j = tk)

λk
−

P(T̃i j = tk) logSi(tk)
λk

−P{T̃i j ≥ tk}eβ
>Z2i ∑

h:th<Qi

P(T̃i j = th) logSi(th)

+ eβ
>Z2i

th<Qi

∑
h=k

P(T̃i j = th) logSi(th)
}]

,

E
[

∂lc
i

∂λk

∂lc
i

∂λh

]
= EAi

{
−δ1

i I{Xi = tk∨h}
λk∨h

eβ
>Z2i + I{Xi ≥ tk∨h}e2β>Z2i

}
+E(Ai)E(Mi)

{
δ1

i I{T̃i j = tk}
λk

− I{Xi ≥ tk}eβ
>Z2i

}{
P(T̃i j = th)

λh
−P(T̃i j ≥ th)eβ

>Z2i

}

+E(Ai)E(Mi)

{
δ1

i I{Xi = th}
λh

− I{Xi ≥ th}eβ
>Z2i

}{
P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i

}

+E[M2
i −Mi]

{
P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i

}{
P(T̃i j = th)

λh
−P(T̃i j ≥ th)eβ

>Z2i

}

+E(Mi)

{
−
P(T̃i j = tk∨h)

λk∨h
eβ
>Z2i +P(κi ≥ tk∨h)e2β>Z2i

}
,

E
[

∂lc
i

∂λk

∂lc
i

∂λk

]
= EAi

{
δ1

i I{T̃i j = tk}
λk

− I{Xi ≥ tk}eβ
>Z2i

}2

+E(Ai)E(Mi)

{
δ1

i I{T̃i j = tk}
λk

− I{Xi ≥ tk}eβ
>Z2i

}{
P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i

}

+E(Ai)E(Mi)

{
δ1

i I{T̃i j = tk}
λk

− I{Xi ≥ tk}eβ
>Z2i

}{
P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i

}

+E[M2
i −Mi]

{
P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i

}{
P(T̃i j = tk)

λk
−P(T̃i j ≥ tk)eβ

>Z2i

}

+E(Mi)

{
P(T̃i j = tk)

λ2
k

−2
P(T̃i j = tk)

λk
eβ
>Z2i +P(T̃i j ≥ tk)e2β>Z2i

}
.
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Table 1.4: Cure rate model versus separate model fits for SAB data.

Cure model Separate models

Estimate (SE) P-value Estimate (SE) P-value

Logistic

Intercept −1.72 (0.28) < 0.01 −2.54 (0.26) < 0.01

Healthy −0.60 (0.49) 0.22 −0.86 (0.45) 0.06

Diseased Control 0.15 (0.30) 0.63 0.01 (0.28) 0.98

Maternal Age ≥ 34 0.59 (0.28) 0.04 0.65 (0.26) 0.01

BMI > normal −0.62 (0.29) 0.04 −0.32 (0.28) 0.24

Smoking 0.51 (0.38) 0.17 0.80 (0.35) 0.02

Alcohol −0.23 (0.29) 0.43 −0.34 (0.27) 0.20

Cox PH

Healthy −0.49 (0.44) 0.27 −0.35 (0.45) 0.43

Diseased Control −0.30 (0.27) 0.26 0.29 (0.27) 0.28

Maternal Age ≥ 34 −0.04 (0.26) 0.86 0.55 (0.25) 0.03

BMI > normal −0.71 (0.29) 0.01 −0.39 (0.26) 0.14

Smoking −1.18 (0.41) < 0.01 0.78 (0.33) 0.02

Alcohol 0.78 (0.28) 0.01 −0.43 (0.26) 0.10
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Chapter 2

Inference under Fine-Gray Competing

Risks Model with High-Dimensional

Covariates

2.1 Introduction

High-dimensional regression has attracted increasing interest in statistical analysis and

has provided a useful tool in modern biomedical, ecological, astrophysical or economics data

pertaining to the setting where the number of parameters is greater than the number of samples

(see [BvdG11] for an overview). Regularized methods [Tib96, FL01] provide straightforward

interpretation of resulting estimators while allowing the number of covariates to be exponentially

larger than the sample size. While they can be consistent for prediction (i.e. estimating the

underlying regression function), confidence intervals cannot be consistently formulated, as

54



firm guarantees of correct variable selection can only be established under a restrictive set of

assumptions, including but not limited to the assumption of the minimal signal strength of the true

parameter [WR09, FL10, MY09], which cannot be verified in practice. For practical purposes,

it is of interest to develop inferential tools, most commonly confidence intervals and p-values,

that do not depend on such assumptions and are yet able to provide theoretical guarantees of the

quality of estimation and/or testing; and this is the goal of our work here.

For the purposes of constructing confidence intervals or testing significance of the effect

from certain covariates, relying on a naive regularized estimation alone is not appropriate; notably,

construction of confidence intervals for those coefficients that have been shrunk to zero is

impossible. [ZZ14] and [vdGBRD14] proposed the one-step bias-correction estimator, which can

be subsequently used to carry out proper statistical inference. Our work here was motivated by

an illustration project of how information contained in patients’ electronic medical records can

be harvested for precision medicine. The data set linking the Surveillance, Epidemiology and

End Results (SEER) Program database of the National Cancer Institute with the federal health

insurance program Medicare database contained prostate cancer patients of age 65 or older. A

total of 57,011 patients diagnosed between 2004 and 2009 had information available on 7 relevant

clinical variables (age, PSA, Gleason score, AJCC stage, and AJCC stage T, N, M, respectively),

5 demographical variables (race, marital status, metro, registry and year of diagnosis), plus 9321

binary insurance claim codes. Among these patients 1,247 died due to cancer, and 5,221 had

deaths unrelated to cancer by December 2013. An important goal of the project was to evaluate

the impact of risk factors (clinical, demographical, and claim codes) on the non-cancer versus

cancer mortality, with appropriate statistical inference. Cancer and non-cancer versus cancer
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mortality are known as competing risks in survival analysis, and cannot be handled using linear

or generalized linear regression models as considered in [ZZ14] and [vdGBRD14]. Instead, we

consider the proportional subdistribution hazards regression model, often known as the Fine-Gray

model [FG99]. Under classical low-dimensional setting, Fine and Gray derived the estimation

and inference for the model coefficients via the partial likelihood principle, and handled right

censoring by inverse probability censoring weighting (IPCW).

Considerable research effort has been devoted to developing regularized methods to handle

various regression settings [RWL10, BC11, OWJ11, MB06, BM15, CF15], including those for

right-censored time-to-event data [SLFL14, BFJ11, GG12a, Joh08, Lem16, BS15, HMX06,

among others]. However, regression has been little studied for the competing risks setting, with

random censoring and high-dimensional covariates. The purpose of this paper has two folds: 1) to

study estimators under the Fine-Gray regression model for competing risks data with many more

covariates than the number of events; 2) to develop statistical inference procedures in this setting.

To our best knowledge, no published work exists on statistical inference for competing risks data

that allows high-dimensional models; univariate testing was studied in Cox proportional hazards

model – however, our construction allows for the testing of general linear hypothesis.

There are at least three significant challenges for addressing high-dimensional competing

risks regression under the Fine-Gray model. The structure of the score function related to the

partial likelihood causes a somewhat subtle issue with many of the unobserved factors preventing

a simple martingale representation. Additionally, the structure, as well as, size of the sample

information matrix renders both methodology and theoretical analysis based on the Hessian

matrix problematic. Thirdly, random censoring presents non-trivial challenges in the presence of
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competing risks and weighting is needed which further complicates the theoretical analysis. Also,

although bootstrap has been considered for inference under the Fine-Gray regression model, this

approach is no longer applicable given the known problems of the bootstrap in high-dimensional

settings. Development of high-dimensional inferential methods for competing risks data and

under the Fine-Gray model, in particular, may have been hampered by these considerations.

In this paper, we propose a natural and sensible formulation of inferential procedure

for this high-dimensional competing risks regression. We first study a regularized estimator

of the high-dimensional parameter of interest and derive its finite-sample properties where the

interplay between the sparsity, ambient dimension and the sample size can be directly seen.

We then propose a bias-correction procedure by formulating a new pragmatic estimator of the

inverse of a large covariance matrix that allows broad dependence structures within the Fine-Gray

model. We find that the bias-corrected estimator is effective at capturing strong as well as weak

signals, and can be used for statistical inference. This combination leads to an efficient and

simple-to-implement procedure under the Fine-Gray model with many covariates.

2.1.1 Model and notation

For subject i = 1, ...,n in a study, let Ti be the event time, with the event type or cause

εi; we use the two words interchangeably in the following. Under the Fine-Gray model that

we consider below, we assume without loss of generality that the event type of interest is ‘1’,

and we code all the other event types as ‘2’ without further specification. In the presence of a

potential right-censoring time Ci, the observed time is Xi = Ti∧Ci. We denote the event indicator

as δi = I(Ti ≤Ci). The type of the event εi is observed, if the event occurs before the censoring
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time, i.e., when δi = 1. Let Zi(·) be the vector of covariates that are possibly time-dependent. We

focus on the situation that the dimension of Zi(·), p, is larger than the sample size n. Assume

that the observed data {(Xi,δi,δiεi,Zi(·))} are independent and identically distributed (i.i.d.) for

i = 1, . . . ,n.

Since the cumulative incidence function (CIF) is often the quantity of interest, [FG99]

proposed a proportional subdistribution hazards model where the CIF

F1(t|Zi(·)) = Pr(Ti ≤ t,εi = 1|Zi(·)) = 1− exp
(
−
∫ t

0
eβ

o>Zi(u)h1
0(u)du

)
, (2.1)

the p-dimensional coefficient βo is the unknown parameter of interest, and h1
0(t) is the baseline

subdistribution hazard. Under the model (2.1) corresponding subdistribution hazard h1(t|Zi(·)) =

h1
0(t)e

βo>Zi(t). Throughout the paper, we assume that there exists a sparsity factor so = |supp(βo)|

for some so≤ n. Note that if we define an improper random variable T 1
i = TiI(εi = 1)+∞I(εi > 1),

then the subdistribution hazard can be seen as the conditional hazard of T 1
i given Zi(·).

We denote the counting process for type 1 event as N1
i (t) = I(T 1

i ≤ t) and its observed

counterpart as No
i (t) = I(δiεi = 1)I(Xi≤ t). We also denote the counting process for the censoring

time as Nc
i (t) = I(Ci ≤ t). Let Yi(t) = 1−N1

i (t−) (note that this is not the ‘at risk’ indicator like

under the classic Cox model), and ri(t) = I(Ci ≥ Ti∧ t). Note that ri(t)Yi(t) = I(t ≤ Xi)+ I(t >

Xi)I(δiεi > 1) is always observable, even though Yi(t) or ri(t) may not. Let G(t) = Pr(Ci ≥ t)

and let Ĝ(·) be the Kaplan-Meier estimator for G(·). Here we assume that C is independent of T ,

ε and Z. Following the notation of Fine and Gray we call the IPW at-risk process:

ωi(t)Yi(t) = ri(t)Yi(t)
Ĝ(t)

Ĝ(t ∧Xi)
; (2.2)

in other words, the weight for subject i is one if t < Xi, zero after being censored or failure due to
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cause 1, and Ĝ(t)/Ĝ(Xi) after failure due to other causes. The log pseudo likelihood (as recently

named in [BKRF18]) that gives rise to the weighted score function in [FG99] for β is

m(β) = n−1
n

∑
i=1

∫ t∗

0

{
β>Zi(t)− log

(
n

∑
j=1

ω j(t)Yj(t)eβ
>Z j(t)

)}
dNo

i (t). (2.3)

where t∗ < ∞ is the study end time.

In the following, for a vector v, let v⊗0 = 1, v⊗1 = v and v⊗2 = vv>. We define for

l = 0,1,2

s(l)(t,β) = E
{

G(t)/G(t ∧Xi)ri(t)Yi(t)eβ
>Zi(t)Zi(t)⊗l

}
, µ(t) = s(1)(t,βo)/s(0)(t,βo),

S(l)(t,β) = n−1
n

∑
i=1

ωi(t)Yi(t)eβ
>Zi(t)Zi(t)⊗l, Z̄(t,β) = S(1)(t,β)/S(0)(t,β). (2.4)

We then have the score function, i.e. derivative of the log pseudo likelihood (2.3),

ṁ(β) = n−1
n

∑
i=1

∫ t∗

0
{Zi(t)− Z̄(t,β)}dNo

i (t).

Regarding notation, let us mention that all constants are assumed to be independent of n,

p and so. We use K and ρ with corresponding enumerated subscripts to denote “big" and “small"

constants. We use Q to denote intermediate terms used in the statements or the proofs of various

results. We label the subscripts by the corresponding order of their appearance.

2.1.2 Organization of the paper

This paper is organized as follows. In Section 2.2, we provide the bias corrected es-

timator, Section 2.2.1, as well as the confidence interval construction, Section 2.2.2, for the

high-dimensional Fine-Gray model. Construction of a new Hessian estimator, the cornerstone for

our bias correction and variance estimation, is presented in Section 2.2.3. Section 2.3 presents
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properties of the developed estimator. Additional notations for theoretical considerations are

presented in Section 2.3.1. Bounds for the prediction error are presented in Section 2.3.2; The-

orem 6 is the main result on estimation. Section 2.3.3 studies the sampling distribution of a

newly develop test statistics while not requiring model selection consistency or minimal signal

strength. Theorem 7 is the main result regarding asymptotic distribution. There we present a

sequence of intermediate results as well. We examine our regularized estimator and the one-step

bias-corrected estimator through simulation experiments in Section 2.4, and apply them to the

SEER-Medicare data in Section 2.5.

2.2 Estimation and inference for competing risks with more

regressors than events

2.2.1 One-step corrected estimator

A natural initial estimator to consider under the high dimensional setting is a l1-regularized

estimator, where the particular loss function of interest would be the log pseudo likelihood as

defined in (2.3). We note that our results are easily generalizable to any sparsity-inducing and

convex penalty functions, but due to the simplicity of presentation we present details only for the

l1 regularization. That is, we consider

β̂(λ) = argmin
β∈Rp

{
−m(β)+λ‖β‖1

}
(2.5)

for a suitable choice of the tuning parameter λ > 0. Whenever possible, we suppress λ in the

notation above and use β̂ to denote the l1-regularized estimator. In the Section 2.3.2, we quantify
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the non-asymptotic oracle risk bound and show that the estimator above, as a typical regularized

estimator with p� n, converges at a rate slower than root-n. This implies that for inferential

purposes the bias of the estimator cannot be ignored.

Inspired by the work of [ZZ14] and [vdGBRD14], we propose the one-step bias-correction

estimator

b̂ := β̂+ Θ̂ṁ(β̂), (2.6)

where β̂ is defined in (2.5), Θ̂ is an estimator of the “asymptotic" precision matrix Θ to be

defined later. The above construction of the one-step estimator is inspired by the first order Taylor

expansion of ṁ(·),

ṁ(βo)≈ ṁ(β̂)− m̈(βo)(β̂−βo)

≈ m̈(βo)
[
βo−{β̂+ Θ̂ṁ(β̂)}

]
= m̈(βo){βo− b̂}. (2.7)

The notation “≈" in the above indicates that the equivalence is approximate with the higher order

error terms omitted. We aim to find a good candidate matrix Θ̂, such that −m̈(βo)Θ̂≈ Ip, with

Ip denoting the p× p identity matrix. Note that when p ≤ n an inverse of the Hessian matrix

above would naturally be a good candidate for Θ̂, but when p ≥ n such an inverse does not

necessarily exist. We will elucidate the construction of Θ̂ towards the end of this section.

2.2.2 Confidence Intervals

To construct the confidence intervals for components of βo, we need the asymptotic

distribution of b̂. We will first establish the asymptotic distribution of the score ṁ(βo). With

p > n, we have to restrict the space in which we want to establish the asymptotic distribution.
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The asymptotic distribution for ṁ(βo) is established in the following sense — for any c ∈ Rp

such that ‖c‖1 = 1 we have

√
nc>ṁ(βo)

d→ N(0,c>V c),

where V is the variance-covariance matrix for
√

nṁ(βo). We construct the following estimator

for V :

V̂ = n−1
n

∑
i=1

(η̂i + ψ̂i)
⊗2, (2.8)

where η̂i and ψ̂i are defined as follows:

η̂i =
∫ t∗

0
{Zi(t)− Z̄(t, β̂)}ωi(t)dM̂1

i (t), (2.9)

ψ̂i =
∫ t∗

0

q̂(t)
π̂(t)

dM̂c
i (t), (2.10)

q̂(t) = n−1
n

∑
i=1

I(t > Xi)
∫ t∗

t
{Zi(u)− Z̄(u, β̂)}ωi(u)dM̂1

i (u), (2.11)

π̂(t) = n−1
n

∑
i=1

I(Xi ≥ t), (2.12)

dM̂1
i (t) = dNo

i (t)−
ωi(t)Yi(t)eβ̂

>Zi(t)

S(0)(t, β̂)
n−1

n

∑
j=1

dNo
j (t), (2.13)

dM̂c
i (t) = I(Xi ≥ t)dNc

i (t)−
I(Xi ≥ t)

π̂(t)
n−1

n

∑
j=1

I(X j ≥ t)dNc
j (t). (2.14)

As illustrated in (2.7), we have
√

nc>(b̂−βo) to be asymptotically equivalent to

√
nc>Θṁ(βo)

d→ N(0,c>ΘV Θ>c).

We may now estimate the variance of
√

nc>(b̂−βo) using a “sandwich" estimator c>Θ̂V̂ Θ̂>c.

Therefore a (1−α)100% confidence interval for c>βo is

[
c>b̂−Z1−α/2

√
c>Θ̂V̂ Θ̂>c/n, c>b̂+Z1−α/2

√
c>Θ̂V̂ Θ̂>c/n

]
(2.15)
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with standard normal quantile Z1−α/2.

Our proposed approach addresses various practical questions as special cases. First, we

can construct confidence interval for a chosen coordinate βo
j in βo. To that end, one needs

to consider c = e j, the j-th natural basis for Rp and apply the result (2.15). Generally, we

can construct a confidence interval for any linear contrasts c>βo, potentially of any dimension.

For example, we can have confidence intervals for the linear predictors Z>βo if the non-time-

dependent covariate Z is also sparse so that we may assume ‖Z‖1 to be bounded. As the dual

problem, we may use the Wald test statistic

Z =
√

n(c>b̂−θ0)/

√
c>Θ̂V̂ Θ̂>c (2.16)

to test the hypothesis with H0 : c>βo = θ0.

2.2.3 Construction of the inverse Hessian matrix

Although the early works under the linear model inspire the construction here, the specifics,

as well as the theoretical analysis, the latter remains a challenge. We start by writing the negative

Hessian of the log pseudolikelihood (2.3):

− m̈(β) = n−1
n

∑
i=1

∫ t∗

0

{
S(2)(t,β)
S(0)(t,β)

− Z̄(t,β)⊗2

}
dNo

i (t). (2.17)

We define

Σ= E
[∫ t∗

0
{Zi(t)−µ(t)}⊗2 dNo

i (t)
]
= E

[∫ t∗

0
{Zi(t)−µ(t)}dNo

i (t)
]⊗2

. (2.18)

Under the regularity conditions, to be specified later, we have Σ as the “asymptotic negative

Hessian" in the sense that the element-wise maximal norm ‖Σ+ m̈(βo)‖max converges to zero in
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probability. Our goal is to estimate its inverse Θ=Σ−1 = (θ1, . . . ,θp)
>, where θ j’s are the rows

of Θ.

By definition (2.18), the positive semi-definite matrix Σ is also the second moment of the

random vector

Ξi =
∫ t∗

0
{Zi(t)−µ(t)}dNo

i (t) (2.19)

with µ(t) defined in (2.4). The expectation of Ξi is zero,

E(Ξi) = E
[∫ t∗

0
{Zi(t)−µ(t)}Yi(t)I(Ci ≥ t)eβ

t>Zi(o)h1
0(t)dt

]
= 0.

Hence, to estimate Θ, we may draw inspiration from the early work on inverting the high-

dimensional variance-covariance matrix [ZRXB11]. Consider the minimizers of the expected

loss functions

γ∗j = argmin
γ j∈Rp

E(Ξ j−Ξ>− jγ j)
2, τ

2
j = E(Ξ j−Ξ>− jγ

∗
j )

2, (2.20)

where Ξ j is the jth element of Ξ, and Ξ− j is a p− 1 dimensional vector created by dropping

the jth element from Ξ. We show that the quantities γ∗j and τ j defined in (2.20) can be used to

construct the inverse of Σ. This is because τ2
j can also be alternatively written as

E{(Ξ j−Ξ>− jγ
∗
j )Ξ j}−γ∗>j E{(Ξ j−Ξ>− jγ

∗
j )Ξ− j}. (2.21)

By the convexity of the target function E(Ξ j−Ξ>− jγ j)
2, γ∗j must satisfy the first order Karush-

Kuhn-Tucker conditions (KKT)

−γ∗>j E{(Ξ j−Ξ>− jγ
∗
j )Ξ− j}= 0. (2.22)

Applying (2.22) to (2.21), we have

τ
2
j = E{(Ξ j−Ξ>− jγ

∗
j )Ξ j}.
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We can then define a vector θ1 = (1,−γ∗>1 )>/τ2
1 that satisfies

θ>1 Σ= E{(Ξ1−Ξ>−1γ
∗>
1 )Ξ}/E{(Ξ1−Ξ>−1γ

∗
1)Ξ1}= (1,0p−1) = e1.

Without loss of generality, we may define θ j accordingly for j = 2, . . . , p, satisfying θ>j Σ= e j.

The matrix Θ= (θ1, . . . ,θp)
> satisfies

ΘΣ= (e1, . . . ,ep) = Ip,

therefore Θ is the inverse of Σ. We now utilize the sample form of Σ, (2.18),

Σ̂= n−1
n

∑
i=1

∫ t∗

0
{Zi(t)− Z̄(t, β̂)}⊗2dNo

i (t). (2.23)

In particular we observe that Σ̂ is that it can be written as the sample second moment Σ̂ =

n−1
∑

n
i=1 Ξ̂

⊗2
i where

Ξ̂i =
∫ t∗

0
{Zi(t)− Z̄(t, β̂)}dNo

i (t). (2.24)

This form allows us to define the inverse of Σ as a regression between the vectors Ξ̂i. For that

purpose we define the least squares loss function as

Γ j(γ j, β̂) = n−1
n

∑
i=1

(
Ξ̂i, j− Ξ̂>i,− jγ j

)2
, j = 1, . . . , p, (2.25)

where Ξ̂i, j is the jth element of Ξ̂i, and Ξ̂i,− j is a p−1 dimensional vector obtained by dropping

the jth element from Ξ̂i. We then define the nodewise LASSO in our context to be

γ̂ j = argmin
γ j∈Rp−1

{
Γ j(γ j, β̂)+2λ j‖γ j‖1

}
, τ̂

2
j = Γ j(γ̂ j, β̂)+λ j‖γ̂ j‖1. (2.26)
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Accordingly, we use γ̂ j and τ̂2
j to construct

Θ̂ jk =


−γ̂ j,k/(̂τ

2
j), k < j;

1/(̂τ2
j), k = j;

γ̂ j,k−1/(̂τ
2
j), k > j.

(2.27)

By the first order KKT condition, we have (Θ̂Σ̂) j, j = 1 and |(Θ̂Σ̂) j,k| ≤ λ j for j 6= k. Choosing

λmax = max j=1,...,p λ j = op(1), we achieve that ‖Θ̂Σ̂− Ip‖max goes to zero. The one-step

estimator proposed in (2.6) with such Θ̂ hence converges to the true coefficient βo approximately

at the rate equivalent to ṁ(βo), as illustrated in (2.7).

Our proposed nodewise LASSO estimator is innovative in several aspects. Given the

difficulty imposed by the model, we cannot make high-dimensional inference by simply inverting

the XX> for a design matrix X like in a linear or generalized linear model. The log pseudo

likelihood (2.3) has dependent entries. The covariates Zi(t) for i = 1, . . . ,n are allowed to be

time-dependent. Nevertheless, we identify for our model that the key element for the high-

dimensional inference is each observation’s contribution to the score, the Ξi’s. Our solution

generalizes high-dimensional matrix inversion in a non-trivial way to complex models with

censoring, non-standard likelihoods and weighting.

2.3 Theoretical considerations

In this section, we present the theory for the estimators β̂, b̂ and the confidence intervals

described in the previous section. We will quantify the non-asymptotic oracle risk bound for

the estimator above while allowing p� n with a minimal set of assumptions. Theoretical study

of this kind is novel, since in the context of competing risks, the martingale structures typically
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utilized are unavailable and new techniques need to be developed. In particular, we show that

the inverse probability weighting has a finite-sample effect that separates this model from the

classical Cox model (see comments after Theorem 6). We will also establish that a certain tighter

bound can be established whenever the hazard rate is bounded (Theorem 8).

Throughout our work we assume that {(Ti,Ci,εi,Zi(t)) : t ∈ [0,∞)} are i.i.d. with Ci

independent of (Ti,εi,Zi(·)). Moreover, for any t ∈ [0, t∗], G(t) = I(Ci ≥ t) is differentiable, and

its hazard function hc(t) =−G′(t)/G(t)≤ K1. We also assume that the baseline CIF F1(t;0) is

differentiable. The baseline subdistribution hazard h1
0(t) =−d log{F1(t;0)}/dt ∈ [ρ1,K2] for all

t ∈ (0, t∗) and some ρ1 > 0 and K2 < ∞.

2.3.1 Additional notation

In the following, we introduce some additional notations. The counting process martin-

gales

M1
i (t) = N1

i (t)−
∫ t

0
Yi(u)eβ

o>Zi(u)h1
0(u)du (2.28)

are essentially helpful tools in high-dimensions for establishing theory with dependent partial

likelihoods. Unfortunately, the uncensored counting processes {N1
i (t), i = 1, . . . ,n} are not

always observable. The observable counterpart No
i (t) has no known martingale related to it under

the observed filtration Ft = σ{No
i (u), I(Xi ≥ u),ri(u) : u ≤ t, i = 1, . . . ,n}. The Doob-Meyer

compensator for the submartingale No
i (t) under the observed filtration involves the nuisance

distribution of Ti|εi > 1. To utilize the martingale structure for our theory, we have to define the
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“censoring complete" filtration

F ∗t = σ{No
i (u), I(Ci ≥ u),Zi(·) : u≤ t, i = 1, . . . ,n}, (2.29)

on which we have a martingale related to No
i (t),∫ t

0
I(Ci ≥ t)dM1

i (u) = No
i (t)−

∫ t

0
I(Ci ≥ u)Yi(u)eβ

o>Zi(u)h1
0(u)du. (2.30)

To relate the martingale (2.30) with our log pseudo likelihood m(β), we define its proxy with F ∗t

measurable integrand

m̃(β) = n−1
n

∑
i=1

∫ t∗

0
β>Zi(t)− log

(
n

∑
j=1

I(C j ≥ t)Yj(t)eβ
>Z j(t)

)
dNo

i (t). (2.31)

We define processes related to m̃(β) and its derivatives as

S̃(l)(t,β) = n−1
n

∑
i=1

I(Ci ≥ t)Yi(t)eβ
>Zi(t)Zi(t)⊗l, Z̃(t,β) = S̃(1)(t,β)/S̃(0)(t,β). (2.32)

They can also be seen as proxies to the processes in (2.4). To see that, observe that by conditioning,

E
{

S̃(l)(t,β)
}
= E

[
E{I(Ci ≥ t)Yi(t)|Ft}eβ

>Zi(t)Zi(t)⊗l
]

= E
{

ω̃i(t)Yi(t)eβ
>Zi(t)Zi(t)⊗2

}
,

where

ω̃i(t) = ri(t)G(t)/G(t ∧Xi) (2.33)

is the weight with the true censoring distribution G(·). We denote their expectations as

s(l)(t,β) = E
{

S̃(l)(t,β)
}
= E

{
ω̃i(t)Yi(t)eβ

>Zi(t)Zi(t)⊗2
}
. (2.34)

Our proxies precisely target those weighted samples, as S̃(l)(t,β) differs from S(l)(t,β) only at

those summands with observed type-2 events.
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Note that the Kaplan-Meier estimator for G(t) can be written as

Ĝ(t) = ∏
u≤t

(
1−

dNc
i (u)

I(Xi ≥ u)

)
.

To study the convergence of Ĝ(t) to G(t), we denote a martingale related to Nc
i (t), the count-

ing process of observed censoring, Mc
i (t). Let the censoring hazard be defined as hc(t) =

−d log(G(t))/dt. Under the “censoring" filtration

Ft = σ{Nc
i (u),Ti,εi,Zi(·) : u≤ t, i = 1, . . . ,n}, (2.35)

we have a martingale

Mc
i (t) = Nc

i (t)−
∫ t

0
I(Ci ≥ u)hc(u)du. (2.36)

We use the integration-by-parts arguments [Mur94, the Helly-Bray argument on page

727] with random martingale measures, e.g. dM1
i (t), in our proof. The total variation of M1

i (t;w)

is defined as

t∗∨
0

M1
i (t;w) = sup

k=1,2,...
sup

0≤t1<···<tk≤t∗

n

∑
j=2
|M1

i (t j;w)−M1
i (t j−1;w)|. (2.37)

Since M1
i (t;w) can be decomposed into a nondecreasing counting process N1

i (t) minus another

nondecreasing compensator
∫ t

0 Yi(u)eβ
o>Zi(u)h1

0(u)du, we have a bound for its total variation

t∗∨
0

M1
i (t;w)≤ N1

i (t
∗)+

∫ t∗

0
Yi(u)eβ

o>Zi(u)h1
0(u)du. (2.38)

Similar conclusion also applies to Mc
i (t), i.e. we have a bound for its total variation

t∗∨
0

Mc
i (t;w)≤ Nc

i (t
∗)+

∫ t∗

0
I(Ci ≥ t)hc(u)du. (2.39)

As a convention, from hereon we suppress the w in the notation to keep it simple.
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2.3.2 Oracle inequality

We first establish oracle inequality for the initial estimation error ‖β̂−βo‖1 based on the

following set of conditions that are weaker than those in the next subsection.

(C1) (Design) With probability equal to one, the covariates satisfy

sup
i=1,...,n

sup
t∈[0,t∗]

‖Zi(t)‖∞ ≤ K3/2. (2.40)

The expected at-risk process is bounded away from zero, i.e., for positive K4 and ρ2

inf
t∈[0,t∗]

E
[
I(Ci ≥ t∗)I(t∗ < T 1

i < ∞)min{K4,eβ
o>Zi(t)}

]
> ρ2. (2.41)

(C2) (Covariance) For K4 in (2.41), the smallest eigenvalue of the matrix

Σ(K4) = E


∫ t∗

0

Z(t)−
E
[
Z(t){1−F1(t;Z)}min{K4,eβ

o>Z(t)}
]

E
[
{1−F1(t;Z)}min{K4,eβ

o>Z(t)}
]
⊗2

h1
0(t)dt


is at least ρ3 > 0.

(C3) (Continuity) Zi(t) may have K5,i jumps at ti,1 < ti,2 < · · ·< ti,K5,i with minimal gap between

jumps bounded away from zero,

min
i=1,...,n

min
1<k≤K5,i

ti,k− ti,k+1 ≥ ρ4.

Between two consecutive jumps, Zi(t) has at most K6 elements Lipschitz continuous with

Lipschitz constant K7 while the rest of the elements are considered to be constant.

Remark 1. Overall, the conditions above are minimal in the sense that they appear in results

pertaining to the Cox model [HSY+13, see e.g, (3.9) on page 1149; (4.5) and Theorem 4.1 on

page 1154].
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Remark 2. We consider a finite interval [0, t∗]. Due to missing censoring times among those

with observed type-2 events, we have to make the additional assumptions to control the weighting

errors. Although the weighted at-risk processes ωi(t)’s are asymptotically unbiased, the approxi-

mation errors in the tail t→ ∞ are poor for any finite n. To avoid unnecessary complications, we

set the [0, t∗] such that we always have sufficient at-risk subjects; note that (2.41) implies that

P(C > t∗)> 0.

Remark 3. We assume a finite maximal norm of Z(t). Condition (2.40) in (C1) is equivalent to

the apparently weaker assumption (see for example [HSY+13] equation (3.9)):

sup
1≤i< j≤n

sup
t∈[0,t∗]

‖Zi(t)−Z j(t)‖∞ ≤ K3. (2.42)

This can be seen by noting that the Cox type partial likelihood for the proportional hazards model

is invariant when subtracting Zi(t) by any deterministic ζ(t).

Remark 4. Condition (C1) (2.41) carries two facts. First, the at-risk rate for type 1 events is

bounded away from zero. Second, relative-risks arbitrarily close to zero is truncated at a finite K4;

this is necessary in high-dimensions, in order to rule out the irregular cases where the non-zero

expectation of the relative risk is dominated by a diminishing proportion of the excessively large

relative risks. The same argument applies for (C2) in which a lower bound of the restricted

eigenvalue of the negative Hessian [BRT09] is defined.

Remark 5. We assume the smoothness of the time-dependent covariates Z(t). Subjects with

observed type 2 events, remain indefinitely in the risk sets for type 1 events. For time-dependent

covariates, continuity is helpful in establishing a slow growing rate of the maximal relative risks
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among those subjects; something that is a fact for time independent covariates. Note that the

coordinate wise continuity in Zi(t) is insufficient as p grows to infinity. We propose (C3) taking

into account likely practical scenarios, where the covariates are either constant, or change only

at finitely many discrete time points.

Under the above assumptions, we are ready to present our estimation error result. Since

the result holds in finite samples, we define a sequence of important constants first. For a ε > 0

and constants K1, · · · ,K7 as well as ρ1, · · · ,ρ4 (introduced in the conditions above)

Q1(ε) = eK6K7‖βo‖∞ρ4 log(n/ε)/ρ4ρ1, (2.43)

Q(l)
2 (n, p,ε) =

Q1(ε)Kl
3

2l

{
4K2

4 (1+K1t∗)
ρ2

2

√
4log(2/ε)

n
+

4K2
4 K1t∗

ρ2
2n

+

√
2log(2npl/ε)

n
+

1
n

}
,

(2.44)

where l = 0,1, and

Q3(n, p,ε) =
{

2Q(1)
2 (n, p,ε)+K3Q(0)

2 (n, p,ε)
}
/ρ2 +K3

√
2log(2p/ε)/n. (2.45)

In high-dimensional models an additional constant, the so called compatibility factor, plays an

important role. For a positive constant ξ > 1, the compatibility factor

κ
(
ξ,O;−m̈(βo)

)
= sup

0 6=b∈C (ξ,O)

√
sob>{−m̈(βo)b}
‖bO‖1

(2.46)

where C (ξ,O) denotes the cone set

C (ξ,O) = {b ∈ Rp : ‖bOc‖1 ≤ ξ‖bO‖1},

with O denoting the indices of non-zero elements βo and Oc denoting its compliment.

72



Theorem 6. For ξ > 1 and a ε > 0, let

λ = Q3(n, p,ε)(ξ−1)/(ξ+1)

with Q3(n, p,ε) defined in (2.45). When n > − log(ε/3)/(2ρ2
2) with ρ2 given in (C1), we have

under regularity conditions (C1) and (C3) that

‖β̂−βo‖1 <
eη(ξ+1)soλ

2Q2
4

occurs with probability no less than

Pr
(
κ
(
ξ,O;−m̈(βo)

)
> Q4

)
− e−nρ2

2/(2K2
4 )−ne−n(ρ2−2/n)2/(8K2

4 )−5ε,

where Q4 is a positive constant satisfying

2K3(ξ+1)soλ/(2Q4)
2 ≤ 1/e

and η is the smaller solution of ηe−η = 2K3(ξ+1)soλ/(2Q4)
2.

Our proof of Theorem 6 applies to the result with l2-norm and general lq-norm for q≥ 1.

Namely, under the same conditions we have that

‖β̂−βo‖q <
2eηξs1/q

o λ

(ξ+1)Q4

occurs with probability no less than

Pr
(
Fq(ξ,O)> Q4

)
− e−nρ2

2/(2K2
4 )−ne−n(ρ2−2/n)2/(8K2

4 )−5ε,

with the weak cone invertibility condition defined as

Fq(ξ,O) = sup
0 6=b∈C (ξ,O)

−s1/q
o b>m̈(βo)b
‖bO‖1‖b‖q

.
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A few comments are in order. For a fixed ε, Q3(n, p,ε) is of order log(n)
√

log(p)/n.

Thus, Theorem 6, together with Lemma 5 (see below), guarantee that for λ chosen to be of the

order log(n)
√

log(p)/n

‖β̂−βo‖1 = Op

(
so log(n)

√
log(p)/n

)
.

The above estimation error rate to the error rate
√

log(p)/n of the simple Cox model [HSY+13,

YBS19], differing only by a factor of log(n). This factor is brought in by the error induced by

the IPCW weights. Therefore, under the rate condition so log(n)
√

log(p)/n = o(1), we obtain an

asymptotically l1-consistent regularized estimator β̂.

The quantity Q1(ε) describes the error from IPCW weights through the measurable

approximation to processes S(l), S(l)(t,βo)− S̃(l)(t,βo). A naïve bound for the measurable

approximation is proportional to the magnitude of the relative risks in S(l), naturally of the order

e‖β
o‖1K3 � eso , potentially growing in exponential rate of n if so � na for some a > 0. Such

bound grows way too rapidly to deliver any meaningful result. Observing that the summands in

S(l) and S̃(l) at a particular index i differ from each other only when the i-th subject has type-2

event we are able to establish a significantly sharper bound. For that purpose, we develop ε-tail

bound of the maximal relative risk among observed type 2 events (see Lemma 17). The quantity

Q(l)
2 (n, p,ε), involving Q1(ε) directly in the definition, gives the bound for the error from the

measurable approximation to S(l) (See in Section 2.7 Lemma 19).

For the rest of this section, we provide further details on the proof of Theorem 6, as well as

the technical challenges involved. We highlight two results, Lemma 4 and 5. The first establishes

properties of the score vector while the second one establishes the properties of the compatibility
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factor (2.46).

Lemma 4. Let Q3(n, p,ε) be defined as in (2.45). Under Assumptions (C1) and (C3),

Pr
(
‖ṁ(βo)‖∞ < Q3(n, p,ε)

)
≥ 1− e−nρ2

2/(2K2
4 )−ne−n(ρ2−2/n)2/(8K2

4 )−5ε.

Lemma 4 establishes that such event {‖ṁ(βo)‖∞ < λ(ξ− 1)/(ξ+ 1)} (of interest in

Theorem 6) happens with high probability. This task is not straightforward in the presence of

both competing risks and censoring. The greatest challenge is the lack of the martingale property

in ṁ(βo). Even if we use its martingale proxy (an approach useful in low-dimensions) as the

gradient of (2.31)

˙̃m(βo) = n−1
n

∑
i=1

∫ t∗

0
{Zi(t)− Z̃(t,β)}dNo

i (t) (2.47)

with Z̃(t,β) defined in (2.32), the approximation error between ṁ(βo) and ˙̃m(βo) is difficult to

control because the error is determined by {ωi(t)− I(Ci ≥ t)}eβo>Zi(t) with ωi(t) defined in (2.2),

which can be significantly amplified when the relative risks grow with the dimension. To prove

Lemma 4, we first show that the relative risks among subjects with observed type 2 events has

sub-Gaussian tails. This is achieved through the argument that their CIF cannot be arbitrarily

close to one; otherwise, these subjects would have probability close to one experiencing type 1

event. As the CIF is monotonically increasing with the relative risks, it is also unlikely to observe

excessively large relative risks among the subjects with observed type 2 events. We then use

Lemma 13(i) in the Section 2.7 to establish the concentration of S(l)(t,βo)− S̃(l)(t,βo) around

zero across all observed type 1 event times.

Theorem 6 assumes that Pr
(
κ
(
ξ,O;−m̈(βo)

)
> Q4

)
converges to zero for a sequence of

Q4 bounded away from zero, as sample size n goes to infinity. In Lemma 5, we show that such
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event happens with high probability. Using the connection between the compatibility factor and

the restricted eigenvalue [vdGB09], we show that κ
(
ξ,O;−m̈(βo)

)
, the compatibility factor in

the cone C (ξ,O), is bounded away from zero with probability tending to one.

Lemma 5. Let Q(l)
2 (n, p,ε) be defined as in (2.44). Denote

Q5(n, p,ε) =
{

2Q(2)
2 (n, p,ε)+4K3Q(1)

2 (n, p,ε)+(5/2)K2
3 Q(0)

2 (n, p,ε)
}
/ρ2

+K2
3

{
(1+ t∗K2)

√
2log

(
p(p+1)/ε

)
/n+(2/ρ2)t∗K2Q6(n, p,ε)2

}
,

where Q6(n, p,ε) is the solution of

p(p+1)exp{−nQ6(n, p,ε)2/(2+2Q6(n, p,ε)/3)}= ε/2.221.

If so
√

log(p)/n = o(1), we have under Assumptions (C1)- (C2) for n sufficiently large

Pr
(

κ
(
ξ,O;−m̈(βo)

)
≥
√

ρ3− so(ξ+1)Q5(n, p,ε)
)
≥ 1−6ε.

2.3.3 Asymptotic normality for one-step estimator and honest coverage of

confidence intervals

Obtaining the asymptotic normality is technically challenging. The log-likelihood has de-

pendent summands both through the initial lasso estimator as well as the Kaplan-Meier estimator.

We establish the asymptotic normality for the one-step estimator b̂ and coverage of the confidence

intervals without requiring model-selection consistency of the initial estimator. To remove the

small-sample bias of IPCW, we need slightly stronger conditions than in the previous section. In

this section alone, we use K and ρ without subscript to denote the constants independent of n, p
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and so; we have only one constant Kn that is allowed to grow with the dimension and is therefore

denoted differently.

(D1) (Design) The true linear predictors are uniformly bounded with probability one

sup
i=1,...,n

sup
t∈[0,t∗]

∣∣∣βo>Zi(t)
∣∣∣≤ K. (2.48)

(D2) (Hessian) The smallest eigenvalue λmin(Σ)≥ ρ > 0, where Σ is defined in (2.18).

(D3) (Continuity) Each Zi(t) can be represented as

Zi(t) = Zi(0)+
∫ t

0
dz

i (u)du+
∫ t

0
∆z

i (u)dNz
i (u).

for random processes dz
i (t), ∆

z
i (t) and the counting process Nz

i (t) such that , βo>dz
i (t) is

uniformly bounded between ±K and uniformly Lipschitz-K. Moreover, Nz
i (t)’s number of

jumps Kn = o
(√

n/(log(p) log(n))
)

and an intensity function hN(t)≤ K.

(D4) (Dimension) The rows of the matrix Σ−1 are ‖θ j/Θ j, j‖1 ≤ K and sparse with sparsities

s1, . . . ,sp ≤ smax. Lastly, so(smax + so) log(p)/
√

n = o(1).

We next present Theorem 7 that justifies all the proposed inference procedures in Section

2.2.2. For that purpose we denote the asymptotic variance of ṁ(βo) with

V = E{ηi +ψi}⊗2, (2.49)

where

ηi =
∫ t∗

0
{Zi(t)−µ(t)}ω̃i(t)dM1

i (t), (2.50)
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ψi =
∫ t∗

0

∫ t∗

0

q(t)
π(t)

I(Xi ≥ t)dMc
i (t), (2.51)

q(t) = E
[

I(t > Xi)
∫ t∗

t
{Zi(u)−µ(u)}ω̃i(u)dM1

i (u)
]
, (2.52)

π(t) = Pr(Xi ≥ u), (2.53)

with M1
i (t), Mc

i (t) as defined in (2.28) and (2.36).

Theorem 7. Let Θ be defined as in Section 2.2.3. Let V , b̂, Θ̂ and V̂ be defined as in (2.49),

(2.6), (2.27) and (2.8), respectively. Let c ∈ Rp with ‖c‖1 = 1 and c>ΘV Θc→ ν2 ∈ (0,∞).

Then, whenever (C1) and (D1)-(D4) hold,

√
nc>(b̂−βo)√
c>Θ̂V̂ Θ̂>c

d→ N(0,1).

As a result of the stronger conditions required for Theorem 7, which we will explain in

more details below, we are able to achieve an improved estimation error for the initial estimator

as stated in the next theorem.

Theorem 8. Under (C1) and (D1)-(D4), we can choose λ�
√

log(p)/n and Q4 =
√

ρ3/2, such

that

‖β̂−βo‖1 = Op

(
so
√

log(p)/n
)
= op(1).

For the rest of this section, we explain the assumptions and theoretical results needed for

Theorem 7 summarized in Lemmas 6-10. Condition (D1) is needed whenever the model departs

significantly from the linear case [vdGBRD14, FNL17]. In our case, the asymptotic normality

of
√

nṁ(βo) depends fundamentally on the asymptotic tightness of
√

n ˙̃m(βo). As a necessary
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condition, the predictable quadratic variation under filtration F ∗t of the martingale
√

n ˙̃m(βo)

〈
√

n ˙̃m(βo)〉t∗ =
∫ t∗

0
n−1

n

∑
i=1

I(Ci ≥ t)Yi(t)eβ
o>Zi(t){Zi(t)− Z̃(t,βo)}⊗2h1

0(t)dt, (2.54)

must have a finite bound independent of the dimension of the covariates. This requires that the

magnitude of the summands in (2.54) either be bounded or have light tails. Hence, we cannot

allow the relative risk eβ
o>Zi(t) to grow arbitrarily large. We next observe that (D2) is a standard

assumption for the validity of the nodewise penalized regressions (2.26). Finally, note that

Theorem 7 utilizes Condition (D3); a condition stronger than (C3) needed for
√

n- approximation

error between ṁ(βo) and ˙̃m(βo).

If we define the population versions of the nodewise components defined in (2.24)-(2.26),

Ξ=
∫ t∗

0
{Z(t)−µ(t)}dNo(t), Γ̄ j(γ) = E{Ξ j−Ξ>i,− jγ}2,

γ∗j = argmin
γ∈Rp−1

Γ̄ j(γ), τ
2
j = Γ̄ j(γ

∗
j ), (2.55)

then the true parameters {γ∗j ,τ2
j : j = 1, . . . , p} uniquely define the inverse negative Hessian Θ as

described in Section 2.2.3. We prove this statement in the following Lemma.

Lemma 6. Under (D2), Θ j, j = 1/τ2
j and θ j,− jτ

2
j = γ

∗
j . Moreover, ‖γ∗j ‖1 ≤ K, τ2

j ≥ ρ and

‖Θ‖1 ≤ K/ρ.

Next, we discuss the properties of estimands γ̂ j, τ̂ j and Θ̂ – defining components of the

variance estimate.

Lemma 7. Under (C1) and (D1)-(D4), for λ j � so
√

log(p)/n, we obtain

sup
j
‖γ̂ j−γ∗j ‖1 = Op

(
sos j
√

log(p)/n
)
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and sup j |̂τ2
j − τ2

j |= Op(sos j
√

log(p)/n), leading to ‖Θ̂−Θ‖1 = Op

(
sosmax

√
log(p)/n

)
.

The nodewise LASSO in (2.26), unlike [vdGB09] that has i.i.d. entries, has dependent

Ξ̂i’s through the common Z̄(t, β̂); see (2.24). Thus, our error rate takes the multiplicative form

sosmax, instead of the summation so + smax that may be expected under the generalized linear

models. In general, we consider our rate to be optimal under our model.

Using Lemma 7, we can establish the approximation condition for b̂ proposed in (2.7).

Lemma 8. Under (C1) and (D1)-(D4), the one-step estimator b̂ satisfies the approximation

condition

√
nc>

{
Θṁ(βo)+βo− b̂

}
= Op

(
so(smax + so) log(p)/

√
n
)
= op(1)

for any c such that ‖c‖1 = 1.

Next, we show the asymptotic normality of ṁ(βo).

Lemma 9. Under conditions (C1) and (D1)-(D4), for directional vector c ∈ Rp with ‖c‖1 = 1

and c>ΘV Θ>c→ ν2 ∈ (0,∞),

√
nc>Θṁ(βo)/

√
c>ΘV Θ>c d→ N(0,1).

The proof uses the same approach as the initial low-dimensional result in [FG99]. We

approximate ṁ(βo) by the sample average of i.i.d. terms ηi +ψi plus an op

(
n−1/2

)
term. We

note that the same approach involves nontrivial techniques in order to be valid in high-dimensions.

In particular, we discover and exploit the martingale property of the term {ωi(t)− I(Ci≥ t)}/G(t).

The last piece of our proof for Theorem 7 is the element-wise convergence of the “meat"

matrix (2.8) in the “sandwich" variance estimator.
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Lemma 10. Under conditions (C1) and (D1)-(D4),

sup
i=1,...,n

‖η̂i(β̂)+ ψ̂i(β̂)−ηi−ψi‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
= op(1).

Hence, ‖V̂ −V ‖max = op(1).

Putting Lemmas 9 and 10 together, we obtain the main result stated in the Theorem 7.

The details of the proofs are presented in the Section 2.7. Throughout the proof, we rely

heavily on our concentration results for time-dependent processes, which we state in Section 2.7.1

and prove in Section 2.7.2.

2.4 Numerical Experiments

To assess the finite sample properties of our proposed methods, we conduct extensive

simulation experiments with various dimensions and dependence structure among covariates.

2.4.1 Setup 1

Our first simulation setup follows closely the one of [FG99] but considers high-dimensional

covariates. In particular, each Zi is a vectors consisting of i.i.d. standard normal random variables.

For cause 1, only β1,1 = β1,2 = 0.5 are non-zero. The cumulative incidence function is:

Pr(Ti ≤ t,εi = 1|Zi) = 1− [1− p{1− exp(−t)}]exp(β>1 Zi).

For cause 2, β2,1 = β2,3 = · · ·= β2,p−1 =−0.5 and β2,2 = β2,4 = · · ·= β2,p = 0.5, with

Pr(Ti ≤ t|εi = 2,Zi) = 1− exp
(

teβ
>
2 Zi
)
.
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Table 2.1: Simulation results with independent covariates.

True Mean Est SD SE SE corrected Coverage Level/Power

n=200, p=300

β1,1 0.5 0.51 0.16 0.13 0.25 0.94 0.92

β1,2 0.5 0.47 0.15 0.14 0.22 0.94 0.93

β1,10 0 0.03 0.12 0.15 0.18 0.98 0.04

n=200, p=500

β1,1 0.5 0.51 0.16 0.14 0.19 0.93 0.95

β1,2 0.5 0.48 0.15 0.13 0.19 0.93 0.88

β1,10 0 -0.01 0.10 0.14 0.16 1.00 0.01

n=200, p=1000

β1,1 0.5 0.46 0.17 0.13 0.18 0.94 0.86

β1,2 0.5 0.48 0.14 0.13 0.18 0.93 0.92

β1,10 0 -0.00 0.11 0.14 0.17 0.99 0.06

n=500, p=1000

β1,1 0.5 0.51 0.10 0.08 0.14 0.99 1.00

β1,2 0.5 0.50 0.10 0.08 0.15 0.99 0.99

β1,10 0 -0.00 0.07 0.08 0.14 1.00 0.03

We consider four different combinations: n= 200, p= 300; n= 200, p= 500; n= 200, p= 1000;

and n = 500, p = 1000. Note that this setup considers sparsity for cause 1 but non-sparsity for

cause 2 effects. As the Fine-Gray model does not require modeling cause 2 to make inference

on cause 1, we expect that the non-sparsity in cause 2 effects should not affect the inference on

cause 1.

The results are presented in Table 2.1. We focus on inference for the two non-zero
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coefficients β1,1 and β1,2, as well as one arbitrarily chosen zero coefficient β1,10. The mean

estimates are the average of the one-step b̂ over the 100 repetitions, reported together with other

quantities described below. We can see from the average estimates column that the one-step b̂ is

bias-corrected and that the presence of many non-zero coefficients for causet 2 does not affect our

inference on cause 1.

In practice the choice of the tuning parameters is particularly challenging; the optimal

value is determined up to a constant. Moreover, the theoretical results are asymptotic. These

together with the finite sample effects of n� p, lead to suboptimal performance of many proposed

one-step correction estimators [vdGBRD14, FNL17]. Suboptimality is amplified for survival

models, due to the nonlinearity of the loss function and the presence of censoring – both require

more significant sample size (to observe asymptotic statements in the finite samples). In the

following, we propose a finite-sample correction to the construction of confidence intervals and

in particular the estimated standard error (SE).

Let se(b̂ j; β̂) denote the asymptotic standard error as given in Section 2.2.2. As a finite-

sample correction we propose to consider se(b̂ j; b̂) in place of se(b̂ j; β̂), where the variance

estimation based on the initial LASSO estimate β̂ is replaced by the one-step b̂. This can be

viewed as another iteration of the bias-correction formula. The resulting SE is therefore a “two-

step" SE estimator. We report the coverage rate of the confidence intervals constructed with

this finite-sample correction in Table 2.1 and we observe good coverage close to the nominal

level of 95%. We note that with 100 simulation runs the margin of error for the simulated

coverage probability is about 2.18%, if the true coverage is 95%; that is, the observed coverage

can range between 95+/−4.36%. We note that the coverage is good for all three coefficients,
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Figure 2.1: Power curve for testing β1,1 = 0 at nominal level 0.05.

where non-zero or zero. In contrast, results in the existing literature suffer under-coverage of the

non-zero coefficients.

The last column ‘level/power’ in Table 2.1 refers to the empirical rejection rate of the null

hypothesis that the coefficient is zero, by the two-sided Wald test Z = (b̂ j−β1, j)/se(b̂ j; β̂) at a

nominal 0.05 significance level. We see that although se(b̂ j; β̂) is used, the nominal level is well

preserved for the zero coefficient β1,10, and the power is high for the non-zero coefficients β1,1

and β1,2 for the given sample sizes and signal strength.

We repeat the above simulations with different values for β1,1 to investigate the power of

the Wald test. The results are illustrated in Figure 2.1, where we see that the power increases with

n and decreases with p as expected.
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2.4.2 Setup 2

In the second setup we consider the case where the covariates are not all independent,

which is more likely the case in practice for high dimensional data. We consider the block

dependence structure also used in [BASB09]. We consider n = 500, p = 1000; β1,1∼8 = 0.5,

β1,9∼12 =−0.5 and the rest are all zero. β2,1∼4 = β2,13∼16 = 0.5, β2,5∼8 =−0.5 and the rest of

β1 are all zero. The covariates are grouped into four blocks of size 4, 4, 8 plus the rest, with the

within-block correlations equal to 0.5, 0.35, 0.05 and 0. The four blocks are separated by the

horizontal lines in Table 2.2.

Table 2.2 shows the inferential results for the non-zero coefficients β1,1 ∼ β1,12, as well

as the zero coefficients β1,13 ∼ β1,16 from the third correlated block that also contains some of

the non-zero coefficients, and plus arbitrarily chosen zero coefficient β1,30. The initial LASSO

estimator tended to select only one of every four non-zero coefficients of the correlated covariates

(data not shown), as it is known that block dependence structure is particularly challenging for

the Lasso type estimators. On the other hand, the one-step estimator performed remarkably well,

capturing all of the non-zero coefficients.

Compared to the results in the last part of Table 2.1 with the same n and p, the block

correlated covariates led to slightly more bias in b̂, although the CI coverage remained high. The

power also remained high, although in the third block with the mixed signal and noise variables

the type I error rates appeared slightly high.
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Table 2.2: Simulation results with block correlated covariates.

True Mean Est SD SE SE corrected Coverage Level/Power

n=500, p=1000

β1,1 0.5 0.47 0.10 0.07 0.12 0.97 1.00

β1,2 0.5 0.48 0.10 0.07 0.12 0.94 0.98

β1,3 0.5 0.47 0.10 0.07 0.12 0.98 1.00

β1,4 0.5 0.47 0.10 0.07 0.12 0.94 1.00

β1,5 0.5 0.48 0.10 0.06 0.11 0.93 1.00

β1,6 0.5 0.46 0.10 0.06 0.11 0.94 1.00

β1,7 0.5 0.47 0.09 0.06 0.11 0.95 1.00

β1,8 0.5 0.47 0.08 0.06 0.11 0.98 1.00

β1,9 -0.5 -0.44 0.08 0.06 0.11 0.93 1.00

β1,10 -0.5 -0.42 0.08 0.06 0.11 0.92 1.00

β1,11 -0.5 -0.41 0.08 0.06 0.11 0.91 1.00

β1,12 -0.5 -0.43 0.07 0.05 0.11 0.94 1.00

β1,13 0 -0.01 0.06 0.05 0.11 0.98 0.11

β1,14 0 -0.02 0.05 0.05 0.11 1.00 0.06

β1,15 0 -0.02 0.06 0.06 0.11 0.99 0.08

β1,16 0 -0.02 0.06 0.05 0.11 1.00 0.05

β1,30 0 -0.00 0.05 0.06 0.11 1.00 0.01
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2.5 SEER-Medicare data example

The SEER-Medicare linked database contains clinical information and claims codes for

57011 patients diagnosed between 2004 and 2009. The clinical and demographic information

were collected at diagnosis, and the insurance claim data were from the year prior to diagnosis.

The clinical information contained PSA, Gleason Score, AJCC stage and year of diagnosis.

Demographic information included age, race, and marital status. The same data set was considered

in [HPH+18a], where the emphasis was on variable selection and prediction error. Our focus is

on testing and construction of confidence intervals.

In the following, we consider 2000 patients diagnosed during the year of 2004. The only

cause for loss to follow-up was the administrative censoring at the end of the study which was

year 2011. Consequently, the year of enrollment was the only factor affecting the censoring

distribution. In our sample, all the subjects share the same year of enrollment 2004, so we may

reasonably make the independent censoring assumption. Among them 76 died from the cancer

and 337 had deaths unrelated to cancer. The process of identifying of the causes is detailed in

[RTH+19]. There were 9326 binary claims codes in the data. Here we would like to identify the

risk factors for non-cancer mortality using the Fine-Gray model. We kept only the claims codes

with at least 10 and at most 1990 occurrences. The resulting dataset had 1197 covariates. We

center and standardize all the covariates before performing the analysis. To determine the penalty

parameters λ and λ j we used 10-fold cross-validation.

In Table 2.3, we present the result for 21 coefficients. Here, we focused on potential risk

factors for non-cancer mortality, such as heart disease and colon cancer (different than prostate
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cancer); the coefficients to be tested were chosen ahead of time following recommendations

from the doctors. We also include the clinical markers associated with the prostate cancer in

comparison. A descriptions of the variables is given in Table 2.4. For each coefficient, we

report the initial estimate β̂, one-step estimate b̂, corrected SE, the 95% CI constructed with the

corrected SE and the Wald test p-value (2-sided) calculated using the uncorrected SE.

In Table 2.3, we see that the claims codes ICD-9 4280, CPT 93015, ICD-9 42731 are all

related to the heart disease, and are all significant at 5% level Bonferonni correction for the 21

variables included in the table. However, a heart attack indicator variable, ICD-9 41189, shows

up significant at 10% level although the naive regularized estimator was not able to select this

variable as important; this indicates that our inference procedure is much more delicate (stable)

at discovering significant variables. In support of that, an indicator of a possible cancer in the

abdomen, CPT 74170, is reported as significant at 5% although the initial Lasso regularized

method failed to include such variable. Similar result is seen for the indicator of a fall (CPT

72050) which for an elderly person can be fatal. An indicator of a colon cancer (CPT 45380)

turns out to be significant at 10% although the Lasso method set it to zero initially. Therefore,

our one-step method is able to recover important risk factors that would have been missed by the

initial regularized estimator.

In contrast, non-life-threatening diseases, were not selected as significant predictors for

the non-cancer mortality. These include Parkinson’s (ICD-9 3320), Psychosis (ICD-9 2989),

Bronchitis (ICD-9 49121) and Dementia (ICD-9 2948) in the table. It is worth noting that

some of these were selected by the initial estimate but were then corrected by our test. We also

note that the prostate cancer related variables, PSA, Gleason Score ahd AJCC all have large
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Table 2.3: Inference for the SEER-Medicare linked data on non-cancer mortality among prostate

cancer patients.

Variables Initial estimate One-step estimate and Inference

β̂ b̂ se(b̂) 95% CI p-value

Age 0.075 0.096 0.009 [ 0.078, 0.114] 2e-24*

Marital 0 0.218 0.147 [-0.071, 0.507] 0.042

Race.OvW 0 -0.213 0.224 [-0.652, 0.225] 0.317

Race.BvW 0.244 0.528 0.122 [ 0.288, 0.767] 1e-04*

PSA 0 0.005 0.003 [-0.000, 0.010] 0.041

GleasonScore 0 0.084 0.050 [-0.014, 0.182] 0.085

AJCC-T2 0 -0.130 0.146 [-0.418, 0.157] 0.218

ICD-9 51881 0.866 1.357 0.361 [ 0.650, 2.064] 4e-07*

ICD-9 4280 0.404 0.697 0.062 [ 0.576, 0.818] 2e-06*

CPT 93015 -0.061 -1.042 0.327 [-1.683, -0.401] 4e-05*

ICD-9 42731 0.135 0.459 0.191 [ 0.086, 0.833] 0.001*

CPT 72050 0 3.718 0.208 [ 3.310, 4.125] 4e-05*

ICD-9 6001 0 -2.454 0.577 [-3.585, -1.322] 0.000*

CPT 74170 0 -1.689 0.288 [-2.255, -1.124] 0.001*

ICD-9 2948 0.539 0.746 0.205 [ 0.343, 1.148] 0.009

ICD-9 49121 0.150 0.476 0.215 [ 0.055, 0.896] 0.015

ICD-9 2989 0.079 0.450 0.135 [ 0.184, 0.715] 0.062

ICD-9 79093 -0.056 -0.348 0.176 [-0.693, -0.002] 0.088

ICD-9 41189 0 1.332 0.434 [ 0.480, 2.184] 0.003**

CPT 45380 0 -2.250 0.544 [-3.318, -1.182] 0.003**

ICD-9 3320 0 0.378 0.373 [-0.353, 1.110] 0.327

* denotes 5% significance after Bonferroni correction for these 21 variables;

** denotes 10% significance after Bonferroni correction for these 21 variables
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Table 2.4: Description of the variables in Table 2.3

Code Description

Age Age at diagnosis

Marital marSt1: married vs other

Race.OvW Race: Other vs White

Race.BvW Race: Black with White

PSA PSA

GleasonScore Gleason Score

AJCC-T2 AJCC stage-T: T2 vs T1

ICD-9 51881 Acute respiratry failure (Acute respiratory failure)

ICD-9 4280 Congestive heart failure; nonhypertensive [108.]

CPT 93015 Global Cardiovascular Stress Test

ICD-9 42731 Cardiac dysrhythmias [106.]

CPT 72050 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Spine and

Pelvis

ICD-9 6001 Nodular prostate

CPT 74170 Diagnostic Radiology (Diagnostic Imaging) Procedures of the Abdomen

ICD-9 2948 Delirium dementia and amnestic and other cognitive disorders [653]

ICD-9 49121 Obstructive chronic bronchitis

ICD-9 2989 Unspecified psychosis

ICD-9 41189 acute and subacute forms of ischemic heart disease, other

CPT 45380 Under Endoscopy Procedures on the Rectum

ICD-9 3320 Parkinsons disease [79.]
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p-values for non-cancer mortality. This is consistent with the results in [HPH+18a], where under

the competing risk models the predictors for a second cause only has secondary importance in

predicting the events due to the first cause.

2.6 Discussion

This article focuses on estimation and inference under the Fine-Gray model with many

more covariates than the number of events, which is well-known to be the effective sample size

for survival data. The article studies the rate of convergence of a Lasso estimator and develops

a new one-step estimator that can be utilized for asymptotically optimal inference: confidence

intervals and testing. These results can be generalized to any sparsity-inducing and convex penalty

functions including but not limited to one-step SCAD, adaptive LASSO, elastic net, to name

a few. Moreover, it is worth noting that the variance estimation is novel in that it regresses a

re-weighted score vector onto the score vector; in this way, the usual difficulty with asymptotic

Hessian is avoided; it is worth pointing that the sandwich estimator or bootstrap carry biases in

high-dimensions.

An often overlooked restriction on the time-dependent covariates Zi(t), i = 1, . . . ,n, under

the Fine-Gray model is that Zi(t) must be observable even after the i-th subject experiences a type

2 event. In practice, Zi(t) should be either time independent or external [KP02]. In our case the

continuity conditions (C3) and (D3) are easily satisfied if the majority of the elements in Zi(t) are

time independent, which is most likely to be the case in practice. Our theory does not apply in

studies involving longitudinal variables that are supposed to be truly measured continuously over
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time.

We have illustrated that the method based on regularization only (without bias correction)

might have severe disadvantages in many complex data situations – for example, it may potentially

fail to identify relevant variables that are associated with the response. From the analysis of the

SEER-medicare data, we see that variables like CPT 72050 (related to fall) or, CPT 74170 (related

to diagnostic imaging of the abdomen, often for suspected malignancies) would not have been

discovered as important risk factors for non-cancer mortality by regularization alone. In reality,

both can be life-threatening events for an elderly patient. The one-step estimate, on the other

hand, was able to detect these, therefore providing a valuable tool for practical applications. The

one-step estimator is applicable as long as the model is sparse, and no minimum signal strength is

required; this is another important aspect which makes the estimator more desirable for practical

use than the LASSO type estimators.

2.7 Proof

We denote global quantities as Q and event sets as Ω with subscripts labelled by their

order of appearance. Other quantities are all local, i.e. only defined for the current Lemma. We

denote the ordered observed type-1 event times as T 1
(1), . . . ,T

1
(KT )

.

2.7.1 Concentration Inequalities

Here we give the statements of the inequalities frequently used in our proofs. The notations

in this section are all generic.

92



Classical Concentration Inequalities

Lemma 11. Hoeffding’s Inequality (Theorem 2 of [Hoe63] p.4) If X1, . . . ,Xn are independent

and ai ≤ Xi ≤ bi (i = 1,2, . . . ,n), then for t > 0

Pr(X̄−µ≥ t)≤ exp
(
− 2n2t2

∑
n
i=1(bi−ai)2

)
.

Lemma 12. A version of Azuma’s Inequality (Theorem 1 and Remark 7 of [Sas13] p.3 and p.5)

Let {Xk,Fk}k = 0∞ be a discrete-parameter real-valued martingale sequence such that for every

k, the condition |Xk−Xk−1| ≤ ak holds almost surely for some non-negative constants {ak}∞
k=1.

Then

Pr
(

max
k∈1,...,n

|Xk−X0| ≥ t
)
≤ 2exp

(
− t2

2∑
n
k=1 a2

k

)

Concentration Inequalities for Time-dependent Processes

Lemma 13. Let {(Si(t),Ni(t)) ∈ Rq×N : i = 1, . . . ,n, t ∈ [0, t∗]} be i.i.d. pairs of random

processes. Each Ni(t) is a counting process bounded by KN . Denote its jumps as 0≤ ti1 < · · ·<

tiKi ≤ t∗. Let S̄(t) = n−1
∑

n
i=1 Si(t) and E{Si(t)}= s(t). Suppose sup1≤i< j≤n supt∈[0,t∗] ‖Si(t)−

S j(t)‖max ≤ KS almost surely. Then,

(i) Pr
(
supi=1,...,n sup j=1,...,Ki

∥∥S̄(ti j)− s(ti j)
∥∥

max > KSx+(KS)/n
)
< 2nKNqe−nx2/2.

(ii) Assume in addition that each Si(t) is càglàd generated by

Si(t) = Si(0)+
∫ t

0
ds(u)du+

∫ t

0
Js(u)dNi(u)

for some ds(t) and Js(t) satisfying ‖ds(t)‖max < LS and ‖Js(u)‖max < KS, and E{Ni(t)}=
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∫ t
0 hN

i (u)du for some hN
i (t)≤ K. We have

sup
i=1,...,n

sup
t∈[0,t∗]

∥∥S̄(t)− s(t)
∥∥

max = Op(
√

log(nKNq)/n).

Lemma 14. Let {Mi(t) : t ∈ [0, t∗], i = 1, . . . ,n} be a Ft-adapted counting process martin-

gales Mi(t) = Ni(t)−
∫ t

0 Yi(t)hi(u)du satisfying supi=1,...,n supt∈[0,t∗] hi(t) ≤ Kh. Let {Φi(t) : t ∈

[0, t∗], i = 1, . . . ,n} be the q dimensional Ft−-measurable processes such that

sup
i=1,...,n

sup
t∈[0,t∗]

‖Φi(t)‖max ≤ KΦ.

For MΦ(t) = n−1
∑

n
i=1

∫ t
0 Φi(u)dMi(u) , we have

(i) Pr
(

supt∈[0,t∗] ‖MΦ(t)‖max ≥ KΦ(1+Kht∗)x+KΦKht∗/n
)
≤ 2qe−nx2/4.

(ii) Assume in addition supi=1,...,n supt∈[0,t∗] ‖Φi(t)‖max = Op(an) and Kht∗ � O(1). Then,

supt∈[0,t∗] ‖MΦ(t)‖max = Op(an
√

log(q)/n).

2.7.2 Proofs of Main Results

We shall present our proofs in the following order. First, we give the proofs to our

theorems using the main Lemmas stated in Section 2.3. Second, we present the auxiliary lemmas

necessary for the proofs of main Lemmas. Third, we present the proofs to the main Lemmas.

Lastly, we present the proofs to the our concentration inequalities and auxiliary lemmas.

Proofs of Theorems

Proof of Theorem 6. Observe that the same techniques as those of [HSY+13] apply (see for

example Lemmas 3.1 and 3.2 therein). The structure of the partial likelihood is the same as that
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of the Cox model modular the IPW weight functions w j(t). Following the same line of proof we

can easily obtain on the event {‖ṁ(βo)‖∞ < λ(ξ−1)/(ξ+1)}, the estimation error of LASSO

estimator β̂ defined in (2.5) has the bound

‖β̂−βo‖1 ≤
eς(ξ+1)soλ

2κ
(
ξ,O;−m̈(βo)

)2 , (2.56)

where ς is the smaller solution to

ςe−ς = K3(ξ+1)soλ/{2κ
(
ξ,O;−m̈(βo)

)2}.

‖β̂−βo‖1 ≤
eς(ξ+1)soλ

2κ
(
ξ,O;−m̈(βo)

)2 (2.57)

with ςb = supt∈[0,t∗] sup1≤i< j≤n |b>{Zi(t)−Z j(t)}| in the event ‖ṁ(βo)‖1 ≤ λ(ξ− 1)/(ξ+ 1).

The proof is then completed by applying the conclusion of Lemma 4.

Proof of Theorem 7. Be Lemmas 8 and 9, we have

√
n

c>(b̂−βo)

c>ΘV Θ>c
=
√

n
Θṁ(βo)

c>ΘV Θ>c
+op(1)

d→ N(0,1).

In Lemma 10, we have shown that ‖V ‖max is bounded by K2(1+KeKt∗)2{1+ 2(1+

K)eK/ρ2}2 with probability tending to one. In Lemma 6, we have shown that ‖Θ‖1 is bounded

by K/ρ. Then, we can apply Lemmas 7 and 10 to get

|c>ΘV Θ>c− c>Θ̂V̂ Θ̂>c| ≤ ‖c‖1‖Θ− Θ̂‖1‖V ‖max‖Θ‖1‖c‖1

+‖c‖1{‖Θ‖1 +‖Θ̂−Θ‖1}‖V − V̂ ‖max‖Θ‖1‖c‖1

+‖c‖1{‖Θ‖1 +‖Θ̂−Θ‖1}{‖V̂ −V ‖max +‖V ‖max}‖Θ− Θ̂‖1‖c‖1
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= 2Op(‖Θ− Θ̂‖1)+Op(‖V − V̂ ‖max) = op(1).

Note that we use the following fact

‖c>Θ‖1 =
p

∑
j=1
|

p

∑
i=1

ciΘi, j| ≤
p

∑
i=1
|ci|

p

∑
j=1
|Θi, j| ≤ ‖c‖1‖Θ‖1.

Proof of Theorem 8. Since we assume (D1) now, the relative risks are bounded almost surely

from above and below by constants 0< e−K ≤ eβ
o>Zi(t)≤ eK <∞. We may set K4 = eK to directly

obtain (C2) from (D2). We can also improve the rate of estimation error in Theorem 6 by log(n)

because we need not let Q1(ε) in Lemma 19 to grow with n.

Auxiliary Lemmas

Lemma 15. Let {ai(t) : t ∈ [0, t∗], i = 1, . . . ,n} be a set of nonnegative processes. Under (2.40),

where K3 is defined,

∥∥∥∥∑
n
i=1 ai(t)Zi(t)⊗l

∑
n
i=1 ai(t)

∥∥∥∥
max
≤ (K3/2)l, and

∥∥∥∥E{ai(t)Zi(t)⊗l}
E{ai(t)}

∥∥∥∥
max
≤ (K3/2)l.

As a result, the maximal norms defined in (2.4) and (2.32) ,

sup
t∈[0,t∗]

max

{∥∥∥∥∥S(l)(t,β)
S(0)(t,β)

∥∥∥∥∥
∞

,

∥∥∥∥∥ S̃(l)(t,β)

S̃(0)(t,β)

∥∥∥∥∥
∞

,

∥∥∥∥∥ s(l)(t,β)
s(0)(t,β)

∥∥∥∥∥
∞

}
≤ (K3/2)l,

are all uniformly bounded.

Lemma 16. Let K4 and ρ2 be defined as in (2.41). Define

S̃(0)(t;K4) = n−1
n

∑
i=1

I(Ci ≥ t∗)Yi(t∗)min{K4,eβ
o>Zi(t)}. (2.58)
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Let T 1
(1), . . . ,T

1
(KT )

be the observed type-1 events. Under (C1), the event

Ω1 =

{
n−1

∑
i=1

I(Xi ≥ t∗)≥ ρ2/(2K4), sup
k∈1...KT

S̃(0)
(

T 1
(k);K4

)
≥ ρ2/2

}
(2.59)

occurs with probability at least 1− e−nρ2
2/(2K2

4 )−ne−n(ρ2−2/n)2/(8K2
4 ).

On Ω1, we have supk∈1...KT
S̃(0)(T 1

(k))≥ ρ2/2.

Lemma 17. Let Q1(ε) = eK6K7‖βo‖∞ρ4 log(n/ε)/(ρ4ρ1) be defined as in (2.43). Under (C3), the

event

Ω2(ε) =

{
sup

i=1,...,n
sup

t∈[0,t∗]
I(δiεi > 1)eβ

o>Zi(t) < Q1(ε)

}
(2.60)

occurs with probability at least 1− ε.

Lemma 18. Define the IPW weights with true G(t), ω̃i(t) = ri(t)G(t)/G(Xi∧ t), as in (2.33) and

Q7(n, p,ε) = 4(K4/ρ2)
2
{
(1+K1t∗)

√
4log(2/ε)/n+K1t∗/n

}
. (2.61)

Under (C1),

Ω3(ε) =

{
sup

t∈[0,t∗]
sup

t∈[0,t∗]
|ωi(t)− ω̃i(t)| ≤ Q7(n, p,ε)

}
(2.62)

occurs on event Ω1 with probability at least Pr(Ω1)− ε.

Lemma 19. Define

∆(l)(t) = S(l)(t,βo)− S̃(l)(t,βo),

with S(l) and S̃(l) defined in (2.4) and (2.32). Let T 1
(1), . . . ,T

1
(KT )

be the observed type-1 events for

some KT ≤ n. Denote Q1(ε) = eK6K7‖βo‖∞ρ4 log(n/ε)/(ρ4ρ1) and

Q(l)
2 (n, p,ε) =

Q1(ε)Kl
3

2l

{
4K2

4 (1+K1t∗)
ρ2

2

√
4log(2/ε)

n
+

4K2
4 K1t∗

ρ2
2n

+

√
2log(2npl/ε)

n
+

1
n

}
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as in (2.43) and (2.44). Under (C1) and (C3),

Ω4(ε) =

{
max

l=0,1,2
sup

k∈1...KT

∥∥∥∆(l)
(

T 1
(k)

)∥∥∥
max
≤ Q(l)

2 (n, p,ε)

}
∩Ω1∩Ω2(ε)∩Ω3(ε), (2.63)

with Ω1, Ω2(ε) and Ω3(ε) defined in Lemmas 16, 17 and 18, occurs with probability at least

1− e−nρ2
2/(2K2

4 )−ne−n(ρ2−2/n)2/(8K2
4 )−5ε.

On Ω4(ε), we have for l = 1,2,

sup
k∈1...KT

∥∥∥∥∥∥
S(l)
(

T 1
(k),β

o
)

S(0)
(

T 1
(k),β

o
) − S̃(l)

(
T 1
(k),β

o
)

S̃(0)
(

T 1
(k),β

o
)
∥∥∥∥∥∥

max

≤ 2{Q(l)
2 (n, p,ε)+(K3/2)lQ(0)

2 (n, p,ε)}/ρ2.

Lemma 20. Denote ∆(l)(t) = S(l)(t,βo)− S̃(l)(t,βo) as in Lemma 19, with S(l)(t,βo) and

S̃(l)(t,βo) defined in (2.4) and (2.32), respectively. Under (C1), (D1) - (D3) and (D4),

(i) supt∈[0,t∗] ‖∆(0)(t)‖max = Op

(√
log(n)/n

)
;

supl=1,2 supt∈[0,t∗] ‖∆(l)(t)‖max, supt∈[0,t∗] ‖Z̄(t,βo)− Z̃(t,βo)‖∞,

supt∈[0,t∗] ‖Z̃(t,βo)−µ(t)‖∞ and supt∈[0,t∗] ‖Z̄(t,βo)−µ(t)‖∞ are all Op

(√
log(p)/n

)
;

(ii) Define

∆i(t) = {ωi(t)− I(Ci > t)}Yi(t). (2.64)

Let φ(Z) be a differentiable operator Rp 7→ Rq uniformly bounded by Kφ � 1 with

‖∇φ(Z)‖1 < Lh � 1, and g(t) be a F ∗t− adapted process in Rq′ with bound in maximal

norm uniformly in time supt∈[0,t∗] ‖g(t)‖max ≤ Kg � 1. Whenever qq′ = p, we have∥∥∥∥∥n−1/2
n

∑
i=1

∫ t∗

0
n−1

n

∑
j=1

∆ j(t)φ(Z j(t))g(t)>I(Ci ≥ t)dM1
i (t)

∥∥∥∥∥
max

= op(1); (2.65)

(iii) for any β̃ ∈ Rp, supt∈[0,t∗] ‖Z̄(t,βo)− Z̄(t, β̃)‖∞ = Op(‖β̃−βo‖1); if ‖β̃−βo‖1 = op(1),

sup
i=1,...,n

sup
t∈[0,t∗]

∣∣∣∣∣ eβ
o>Zi(t)

S(0)(t,βo)
− eβ̃

>Zi(t)

S(0)(t, β̃)

∣∣∣∣∣= Op(‖β̃−βo‖1).
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Lemma 21. Let S(0) and S̃(0) be defined as in (2.4) and (2.32), respectively. Under (C1) and

(D1), supt∈[0,t∗] |n/{∑n
i=1 I(Xi ≥ t∗)}|, supt∈[0,t∗] |S(0)(t,βo)−1| and supt∈[0,t∗] |S̃(0)(t,βo)−1| are

all Op(1).

Lemma 22. Let Γ j, β̂ and γ∗j be defined as in (2.25), (2.5) and (2.20), respectively. On the event

Ω5(λ,ξ j) :=
{∥∥∥∇γΓ j

(
γ∗j , β̂

)∥∥∥
∞

≤ (ξ j−1)λ j/(ξ j +1),∀ j = 1, . . . , p
}
, (2.66)

we have under (D2)

(i) the estimation error γ̃ j := γ̂ j−γ∗j belongs to the cone

C j(ξ j,O j) := {v ∈ Rp−1 : ‖vOc
j
‖1 ≤ ξ j‖vO j‖1} (2.67)

(ii) and ‖γ̂ j−γ∗j ‖1 ≤ {s jλ j(ξ j +1)}/{2κ j(ξ j,O j)
2}, with compatibility factor

κ j(ξ j,O j) = sup
0 6=g∈C j(ξ j,O j)

√
s jg>∇2

γΓ(γ
∗, β̂)g

‖gO j‖1
(2.68)

for all j = 1, . . . , p.

Lemma 23. Let Γ j, β̂ and γ∗j be defined as in (2.25), (2.5) and (2.20), respectively. Under (C1)

and (D1)-(D4), max j=1,...,p

∥∥∥∇γΓ j
(
γ∗j , β̂

)∥∥∥
∞

= Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

Lemma 24. Let Σ̂, Σ, m̈ be defined as in (2.23), (2.18) and (2.17), respectively. Under (C1) and

(D1)-(D4),

(i)
∥∥∥Σ̂−Σ

∥∥∥
max

= Op

(
so
√

log(p)/n
)

;

(ii) for any β̃ such that ‖β̃−βo‖1 = op(1),∥∥∥−m̈(β̃)−Σ
∥∥∥

max
= Op

(
‖β̃−βo‖1 +

√
log(p)/n

)
.
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Lemma 25. Let κ j(ξ j,O j) be define as in Lemma 22 (2.67). Under (C1) and (D1)-(D4), setting

ξmax = max j=1,...,p ξ j � 1, we have

Pr
(

inf
j

κ j(ξ j,O j)
2 ≥ ρ/2

)
→ 1.

Proof of Main Lemmas

Proof of Lemma 4. Let T 1
(1), . . . ,T

1
(KT )

be the observed type-1 events. We may decompose the

score ṁ(βo) as its martingale proxy plus an approximation error,

ṁ(βo) = ˙̃m(βo)+n−1
∑

k=1,...,KT

{
Z̃
(

T 1
(k),β

o
)
− Z̄

(
T 1
(k),β

o
)}

,

with Z̃ and Z̄ defined in (2.4) and (2.32), respectively.

Recall that the counting process for observed type-1 event can be written as No
i (t) =∫ t

0 I(Ci ≥ u)dN1
i (t). Moreover, ˙̃m(βo) takes the form of the Cox model score with counting

process {No
i (t)} and at-risk process {I(Ci ≥ t)Yi(t)}. The “censoring complete" filtration F ∗t can

also be equivalently generated by {No
i (t), I(Ci ≥ t)Yi(t),Zi(t)}. Thus, we may apply Lemma 3.3

in [HSY+13] under (2.40) from (C1),

Pr(‖ ˙̃m(βo)‖∞ > K3x)≤ 2pe−nx2/2.

Notice that the inequality is sharper than that in Lemma 14(i) because the compensator part of

˙̃m(βo) is zero.

The concentration result for approximation error

Z̃
(

T 1
(k),β

o
)
− Z̄

(
T 1
(k),β

o
)
=

S(1)
(

T 1
(k),β

o
)

S(0)
(

T 1
(k),β

o
) − S̃(1)

(
T 1
(k),β

o
)

S̃(0)
(

T 1
(k),β

o
)
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is established in Lemma 19 on Ω4(ε). We obtain the concentration inequality for ṁ(βo) by

adding the bounds and tail probabilities together.

Proof of Lemma 5. Our strategy here is the same as that for Lemma 4. We first show that

κ
(
ξ,O;−m̈(βo)

)
is lower bounded by κ(ξ,O;− ¨̃m(βo)) plus a diminishing error. Since ¨̃m(βo)

takes the form of a Cox model Hessian, we then may apply the results from [HSY+13].

By Lemma 4.1 in [HSY+13] (for a similar result, see [vdGB09] Corollary 10.1),

κ
2(ξ,O;−m̈(βo))≥ κ

2(ξ,O;− ¨̃m(βo))− so(ξ+1)2‖m̈(βo)− ¨̃m(βo)‖max.

Let T 1
(1), . . . ,T

1
(KT )

be the observed type-1 events. We can write m̈(βo)− ¨̃m(βo) as

−n−1
KT

∑
k=1

S(2)
(

T 1
(k),β

o
)

S(0)
(

T 1
(k),β

o
) − S̃(2)

(
T 1
(k),β

o
)

S̃(0)
(

T 1
(k),β

o
) − Z̄

(
T 1
(k),β

o
)⊗2

+ Z̃
(

T 1
(k),β

o
)⊗2

 ,
with S(l), S̃(l), Z̃ and Z̄ defined in (2.4) and (2.32). By Lemma 15, supt∈[0,t∗] ‖Z̄(t,βo)‖∞ and

supt∈[0,t∗] ‖Z̃(t,βo)‖∞ are both bounded by K3/2. On the Ω4(ε) as defined in Lemma 19, we

apply Lemma 19 once with l = 2 and twice with l = 1 to get

‖m̈(βo)− ¨̃m(βo)‖max ≤
{

2Q(2)
2 (n, p,ε)+4K3Q(1)

2 (n, p,ε)+(5/2)K2
3 Q(0)

2 (n, p,ε)
}
/ρ2,

with Q(l)
2 (n, p,ε) defined in (2.44).

Our (C1) and (C2) contains all the condition for Theorem 4.1 in [HSY+13]. Hence, we

may apply their result

κ
2(ξ,O;− ¨̃m(βo))≥ κ

2(ξ,O;Σ(K4))− so(ξ+1)2K2
3

×
{
(1+ t∗K2)

√
2log

(
p(p+1)/ε

)
/n+(2/ρ2)t∗K2Q6(n, p,ε)2

}
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with probability at least Pr(Ω4(ε))− 3ε. We have bounded S̃(0)(t;K4) away from zero at all

observed type-1 events in Ω4(ε), so the e−nρ2
2/(8K2

4 ) term is absorbed into Pr(Ω4(ε)).

Proof of Lemma 6. The notations in the proof are defined in Section 2.2.3. Denote

Ξ=
∫ t∗

0
{Z(t)−µ(t)}dNo(t).

Without loss of generality, we set j = 1. Since we define γ∗1 = argminγ Γ̄(γ) as the minimizer of

a convex function, it must satisfy the first order condition

∇γΓ̄(γ
∗
1) = E

{
(Ξ1−Ξ>−1γ

∗
1)Ξ−1

}
= 0p−1.

Recall that τ2
1 = Γ̄(γ∗1). Applying the first order condition, we get

τ
2
1 = E{Ξ1−Ξ>−1γ

∗
1}2 = E{(Ξ1−Ξ>−1γ

∗
1)Ξ1}.

We construct a vector θ1 = (1,−γ∗>1 )>/τ2
1 ∈ Rp. Then, θ1 satisfies

θ>1 Σ= (1,−γ∗>1 )E{ΞΞ>}/τ
2
1 = (1,0>p−1).

Hence, we have

(θ1, . . . ,θp)
> =Σ−1 =Θ.

We can directly bound

‖γ∗j ‖1 = ‖θ j/Θ j, j‖1−1≤ K−1 < K.

By (D2), the minimal eigenvalue of Σ is at least ρ. We obtain through a spectral decom-

position that the maximal eigenvalue of Θ=Σ−1 is at most ρ−1. Hence, we have

τ
2
j =
(

e>j Θe j

)−1
≥ ρ
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and

‖Θ‖1 ≤ max
j=1,...,p

‖θ j/Θ j, j‖ max
j=1,...,p

|Θ j, j| ≤ K/ρ.

Proof of Lemma 7. By Lemma 23, we may choose ξ1 = · · ·= ξp = 2 and λ1 = · · ·= λp = λε �

Op(so
√

log(p)/n) such that Ω5(λ,ξ j) defined in Lemma 22 occurs with probability 1− ε. Then,

we establish the oracle inequality by Lemma 22,

Pr
(

max
j=1,...,p

‖γ̂ j−γ∗j ‖1/s j ≤
2λε

ρ

)
≥ Pr

(
min

j=1,...,p
κ j(ξ j,O j)

2 ≥ ρ/2
)
− ε.

We have shown that Pr
(
min j=1,...,p κ j(ξ j,O j)

2 ≥ ρ/2
)

tends to one in Lemma 25. Hence,

max j=1,...,p ‖γ̂ j−γ∗j ‖1 = Op

(
sosmax

√
log(p)/n

)
.

Define according to (2.55) Ξi =
∫ t∗

0 {Zi(t)−µ(t)}dNo
i (t). By Lemma 15, we have

supi=1,...,n ‖Ξi‖∞ ≤ K. We introduce

Γ̃ j(γ) = n−1
n

∑
i=1
{Ξ j−Ξ>i,− jγ

∗
j }= n−1

n

∑
i=1

∫ t∗

0
{Zi j(t)−µ j(t)−γ>Zi,− j(t)+γ>µ− j(t)}2dNo

i (t)

and decompose

τ̂
2
j − τ

2
j = Γ j(γ̂ j, β̂)− Γ̃ j(γ

∗
j )+ Γ̃ j(γ

∗
j )− Γ̄ j(γ

∗
j ).

Γ j(γ̂ j, β̂)− Γ̃ j(γ
∗
j ) = Op

(
sos j
√

log(p)/n
)

by the results from Theorem 8, Lemma 20 and first

part of this Lemma. Apparently, Γ̃ j(γ
∗
j ) is the average of i.i.d. terms. The expectation of the

summands in Γ̃ j(γ
∗
j ) is defined as Γ̄ j(γ

∗
j ) in (2.55). Hence, we finish the proof by applying

Lemma 11.

Along with Lemma 6, we can prove with the previous results in this Lemma, ‖Θ̂−Θ‖1 =

Op

(
sosmax

√
log(p)/n

)
.
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Proof of Lemma 8. We decompose

√
nc>

{
Θṁ(βo)+βo− b̂

}
(2.69)

=
√

nc>{Θ− Θ̂}ṁ(β̂)+
√

nc>Θ{ṁ(βo)− ṁ(β̂)}+
√

nc>(βo− β̂). (2.70)

By Lemma 7, ‖Θ−Θ̂‖1 =Op(sosmax
√

log(p)/n). Each summand in ṁ(β̂) is the integral

of Zi(t) minus a weighted average Z̄(t, β̂) over a counting measure dNo
i (t). By the KKT condition

and Theorem 8, ‖ṁ(β̂)‖∞ � λ� O(
√

log(p)/n). Putting these together, we obtain

√
n|c>{Θ− Θ̂}ṁ(β̂)| ≤

√
n‖c‖1‖Θ− Θ̂‖1‖ṁ(β̂)‖∞ (2.71)

= Op
(
sosmax log(p)/

√
n
)
= op(1). (2.72)

By the KKT condition and Theorem 6, ‖ṁ(β̂)‖ ≤ λ� n−(1/2−d). Hence, the first term in (2.69)

is op(1). Like in the proof of Lemma 9, we have ‖c>Θ‖1 ≤ ‖c‖1‖Θ‖1 ≤ KeK/ρ2 from Lemma

6.

Define βr = β
o+ r(β̂−βo). Applying mean value theorem to h(r) = c>Θṁ(βr), we get

c>Θṁ(βo)− c>Θṁ(β̂) =−h′(r̃) =−c>Θm̈(βr̃)(β̂−βo)

for some r̃ ∈ [0,1]. By Theorem 8, we have

‖βr̃−βo‖1 = r̃‖β̂−βo‖1 = Op

(
so
√

log(p)/n
)
.

By Lemma 24(ii), ‖−m̈(βr̃)−Σ‖max =Op

(
so
√

log(p)/n
)

. Along with Theorem 8 and Lemma

6, we have

√
n|c>Θ{ṁ(βo)− ṁ(β̂)}+ c>(βo− β̂)|=

√
n|c>Θ{Σ+ m̈(βr̃)}(βo− β̂)|
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≤
√

n‖c‖1‖Θ‖1‖− m̈(βr̃)−Σ‖max‖β̂−βo‖1

=Op
(
s2

o log(p)/
√

n
)
.

Proof of Lemma 9. Since ωi(t)Yi(t) 6= I(Ci ≥ t)Yi(t) implies εi > 1 thus N1
i (t
∗) = 0, we have the

equivalence dNo
i (t) = ωi(t)dN1

i (t) = I(Ci ≥ t)dN1
i (t). Recall for the following calculation that

S(l)(t,βo) = n−1
n

∑
i=1

ωi(t)Yi(t)eβ
o>Zi(t)Zi(t)⊗l,

S̃(l)(t,βo) = n−1
n

∑
i=1

I(Ci ≥ t)Yi(t)eβ
o>Zi(t)Zi(t)⊗l,

∆(l)(t) = S(l)(t,βo)− S̃(l)(t,βo),

E{S(l)(t,βo)}= E{S̃(l)(t,βo)}= s(l)(t,βo)

Z̄(t,βo) = S(1)(t,βo)/S(0)(t,βo), Z̃(t,βo) = S̃(1)(t,βo)/S̃(0)(t,βo),

µ(t) = s(1)(t,βo)/s(0)(t,βo), Yi(t) = 1−N1
i (t−)

and M1
i (t) = N1

i (t)−
∫ t

0
Yi(t)eβ

o>Zi(u)h1
0(u)du.

We decompose

√
nṁ(βo) =n−1/2

n

∑
i=1

∫ t∗

0

{
Zi(t)− Z̄(t,βo)

}
dNo

i (t)

=n−1/2
n

∑
i=1

∫ t∗

0

{
Zi(t)− Z̄(t,βo)

}
ωi(t)dM1

i (t)

=n−1/2
n

∑
i=1

∫ t∗

0

{
µ(t)− Z̃(t,βo)

}
I(Ci ≥ t)dM1

i (t)

+n−1/2
n

∑
i=1

∫ t∗

0

{
Z̃(t,βo)− Z̄(t,βo)

}
I(Ci ≥ t)dM1

i (t)
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+n−1/2
n

∑
i=1

∫ t∗

0

{
Z̄(t,βo)−µ(t)

}
∆
(0)(t)h1

0(t)dt

+n−1/2
n

∑
i=1

∫ t∗

0
{Zi(t)−µ(t)}ωi(t)dM1

i (t)

,I1 + I2 + I3 + I4.

Notice that I1 is a F ∗t martingale. We have ‖µ(t)− Z̃(t,βo)‖∞ = Op(
√

log(p)/n) from

Lemma 20(i). Hence, we can apply Lemma 14(ii) to get ‖I1‖∞ =
√

nOp(
√

log(p)/n
2
) = op(1).

We further decompose I2 into 3 terms

−n−1/2
n

∑
i=1

∫ t∗

0

∆(1)(t)

S̃(0)(t,βo)
I(Ci ≥ t)dM1

i (t)−n−1/2
n

∑
i=1

∫ t∗

0

∆(0)(t)

S̃(0)(t,βo)
µ(t)I(Ci ≥ t)dM1

i (t)

+n−1/2
n

∑
i=1

∫ t∗

0

∆(0)(t)

S̃(0)(t,βo)
{µ(t)− Z̄(t,βo)}I(Ci ≥ t)dM1

i (t)

,I′2 + I′′2 + I′′′2 .

By (D1) and (D3), each M1
i (t) has one jump at observed event time and eKK−Lipschitz else-

where. Since the {Ci,T 1
i : i = 1, . . . ,n} is a set of independent continuous random variables,

there is no tie among them with probability one. Hence, we may modify the integrand in

I′2 and I′′2 at observed censoring times without changing the integral. Replacing ∆(l)(t) with

n−1
∑

n
j=1 ∆i(t)eβ

o>Zi(t)Zi(t)⊗l , we can apply Lemma 20(ii) to get that ‖I′2‖∞ and ‖I′′2 ‖∞ are both

op(1).

The total variation of M1
i (t) is at most max{1,eKKt∗} � 1. By Lemma 20(i), we have

‖∆(0)(t){µ(t)− Z̄(t,βo)}‖∞ = Op(
√

log(n) log(p)/n). Hence, we obtain the order for I′′′2 ,

‖I′′′2 ‖∞ =Op(
√

log(n) log(p)/n)= op(1). Similarly, we obtain ‖I3‖∞ =Op(
√

log(n) log(p)/n)=

op(1).
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Besides the one in Lemma 18, ωi(t)− ω̃i(t) has another martingale representation. Denote

the Nelson-Aalen estimator

Ĥc(t) =
n

∑
i=1

∫ t

0

I(Xi ≥ u)
∑

n
j=1 I(X j ≥ u)

dNc
i (u).

We have a Ft martingale

Mc(t) = Ĥc(t)−
∫ t

0
hc(u)du =

n

∑
i=1

∫ t

0

I(Xi ≥ u)
∑

n
j=1 I(X j ≥ u)

dMc
i (u).

By Lemma 14(i), supt∈[0,t∗] |Mc(t)|= Op

(
n−1/2

)
For t > Xi and δiεi > 1,

ωi(t)− ω̃i(t) =−ω̃i(t)
∫ t

0
I(u > Xi)dMc(u)+Ri(t)

with an error

Ri(t) =
Ĝ(t)

Ĝ(Xi)
− exp

{
Ĥc(Xi)− Ĥc(t)

}
+

G(t)
G(Xi)

[
e−

∫ t
0 I(u>Xi)dMc(u)+

∫ t

0
I(u > Xi)dMc(u)

]
.

It is the discrepancy between the Kaplan-Meier and the Nelson-Aalen plus a second order Tailer

expansion remainder. We shall show that it is Op(1/n). Since

∣∣∣∣∫ t

0
I(u > Xi)dMc(u)

∣∣∣∣≤ 2 sup
t∈[0,t∗]

|Mc(t)|= Op

(
n−1/2

)
,

the second order remainder

∣∣∣∣e−∫ t
0 I(u>Xi)dMc(u)+

∫ t

0
I(u > Xi)dMc(u)

∣∣∣∣= Op(1/n).

Under (C1), {∑n
i=1 I(Xi ≥ t)}−1 ≤ {∑n

i=1 I(Xi ≥ t∗)}−1 = Op(1/n). Let ck be an observed cen-

soring time. The increment in − log(Ĝ(t))− Ĥc(t) at ck is a second order remainder

log
(

1− 1
∑

n
i=1 I(Xi ≥ ck)

)
− 1

∑
n
i=1 I(Xi ≥ ck)

= Op
(
n−2) .
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Hence, supt∈[0,t∗] | − log(Ĝ(t))− Ĥc(t)| = Op(1/n). Applying the Mean Value Theorem, we

obtain supt∈[0,t∗] |Ĝ(t)− exp{−Ĥc(t)}|= Op(1/n). Under (C1), G(t)≥ G(t∗) is bounded away

from zero, and − log(G(t)) ≤ − log(G(t∗)) is bounded from above. We have shown that both

Ĝ(t) and Ĥc(t) are uniformly
√

n consistent. We obtain that Ĝ(Xi) is bounded away from zero

and Ĥc(t) is bounded with probability tending to one. Putting these together, we obtain

sup
i=1,...,n

sup
t∈[0,t∗]

|Ri(t)|= Op(1/n).

Define

q̃(t) = n−1
n

∑
i=1

I(t ≥ Xi)
∫ t∗

t
{Zi(u)−µ(u)} ω̃i(u)dM1

i (u),

π̂(t) = n−1
∑

n
i=1 I(Xi ≥ t) and q(t) = E{q̃(t)}, π(t) = E{π̂(t)}. We write I4 as i.i.d. sum plus

error through integration by parts,

n−1/2
n

∑
i=1

∫ t∗

0
{Zi(t)−µ(t)} ω̃i(t)dM1

i (t)

+n−1/2
n

∑
i=1

∫ t∗

0
{Zi(t)−µ(t)}{ωi(t)− ω̃i(t)}dM1

i (t)

=n−1/2
n

∑
i=1

∫ t∗

0
{Zi(t)−µ(t)} ω̃i(t)dM1

i (t)+n−1/2
n

∑
i=1

∫ t∗

0
{Zi(t)−µ(t)}Ri(t)dM1

i (t)

−n−1/2
n

∑
k=1

∫ t∗

0

q(t)
π(t)

I(Xk ≥ u)dMc
k(t)

+n−1/2
n

∑
k=1

∫ t∗

0

q(t)
π̂(t)π(t)

{π̂(t)−π(t)}I(Xk ≥ u)dMc
k(t)

+n−1/2{q(0)− q̃(0)}
n

∑
k=1

∫ t∗

0

1
π̂(t)

I(Xk ≥ u)dMc
k(t)

−n−1/2
n

∑
k=1

∫ t∗

0

{q(0)−q(t)− q̃(0)+ q̃(t)}
π̂(t)

I(Xk ≥ u)dMc
k(t)

,I(1)4 + I(2)4 + I(3)4 + I(4)4 + I(5)4 + I(6)4 .
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I(1)4 + I(3)4 is already a sum of i.i.d.. We have shown that supt∈[0,t∗] |Ri(t)| = Op(1/n). Hence,

we have ‖I(2)4 ‖∞ = Op

(
n−1/2

)
= op(1). I(t ≥ Xi)

∫ t∗
t {Zi(u)−µ(u)} ω̃i(u)dM1

i (u) is uniformly

bounded by K(Kt∗+1). It has at most one jump and is KK−Lipschitz elsewhere. Hence, we

can apply Lemma 13(ii) to get supt∈[0,t∗] ‖q(t)− q̃(t)‖∞ = Op(
√

log(p)/n) and supt∈[0,t∗] |π(t)−

π̂(t)|= Op(
√

log(n)/n). Notice that I(4)4 , I(6)4 and n−1
∑

n
k=1

∫ t∗
0 π̂(t)−1I(Xk ≥ u)dMc

k(t) in I(5)4 are

all Ft martingales. We may apply Lemmas 14(i) and 14(ii) to obtain I(4)4 =Op(
√

log(n) log p/n)=

op(1), I(5)4 = Op(
√

log p/n) = op(1) and I(6)4 = Op(log p/
√

n) = op(1).

By Lemma 6, we can bound the l1 norm of c>Θ by

‖c>Θ‖1 =
p

∑
i=1

p

∑
j=1
|ci||Θi j| ≤

p

∑
i=1
|ci|K/ρ = K/ρ.

Finally, we write c>Θṁ(βo) as i.i.d. sum

n−1/2
n

∑
i=1

c>Θ
[∫ t∗

0
{Zi(t)−µ(t)} ω̃i(t)dM1

i (t)−
∫ t∗

0

q(t)
π(t)

I(Xi ≥ u)dMc
i (t)
]
+op(1)

,n−1/2
n

∑
i=1

c>Θ{ηi−ψi}+op(1).

We have E{c>Θηi}= 0 because of its martingale structure. We show E{c>Θψi}= 0 again by

introducing its martingale proxy

E{c>Θψi}=E
[∫ t∗

0
c>Θ{Zi(t)−µ(t)} I(Ci ≥ t)dM1

i (t)
]

+E
[∫ t∗

0
c>Θ{Zi(t)−µ(t)}E{ω̃i(t)− I(Ci ≥ t)|Ti,Zi(·)}dM1

i (t)
]
.

The first term above is zero because of the martingale structure. The second term is zero

because the IPW weights satisfy E{ω̃i(t)− I(Ci ≥ t)|Ti,Zi(·)} = 0. Each c>Θ{ψi− ηi} is

mean zero and bounded by K/ρK(1+Kt∗)+K/ρK(1+Kt∗)(1+Kt∗)2eK/ρ2 with probability
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equaling one. The variance c>ΘV Θc has a bounded and non-degenerating limit ν2. Hence,

{c>Θ(ψi−ηi) : i = 1, . . . ,n} satisfies the Lindeberg condition.

By Lindeberg-Feller CLT,

√
n

c>Θṁ(βo)√
c>ΘV Θc

=
c>Θ∑

n
i=1{ηi−ψi}√

nc>ΘV Θc
+op(1)

d→ N(0,1).

We conclude the proof of the Lemma.

Proof of Lemma 10. We define

η̃i =
∫ t∗

0
{Zi(u)−µ(u)}ω̃i(u)dM̃1

i (u),

with

M̃1
i (t) = No

i (t)−n−1
n

∑
j=1

∫ t

0

Yi(u)eβ
o>Zi(u)

S̃(0)(u,βo)
dNo

j (u).

Under (D1) and (C1), the total variation of M̃1
i (t) is at most 1+2e2K/ρ2 with probability tending

to one by Lemma 21. The difference between η̃i and η̂i is

η̂i− η̃i =n−1
n

∑
j=1

∫ t∗

0
{Zi(u)− Z̄(u, β̂)}ωi(u)Yi(u)

{
eβ

o>Zi(u)

S̃(0)(u,βo)
− eβ̂

>Zi(u)

S(0)(u, β̂)

}
dNo

j (u)

+
∫ t∗

0
{µ(u)ω̃i(u)− Z̄(u, β̂)ωi(u)}dM̃1

i (u).

By Lemmas 18, 20(i) and 20(iii), supi=1,...,n ‖η̂i− η̃i‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

Then, we study

ηi− η̃i = n−1
n

∑
j=1

∫ t∗

0
{Zi(u)−µ(u)}ω̃i(u)I(C j ≥ u)dM1

j (u).

We have the bound ‖Zi(u)−µ(u)‖∞ ≤ K from Lemma 15. ω̃i(u) is not F ∗t measurable, but we

can define a new filtration F ∗i,t = σ{Xi,δi,εi,Zi(·), I(C j ≥ u),N1
j (u),Z j(·) : u≤ t, j 6= i} for each
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i, such that

n−1
∑
j 6=i

∫ t∗

0
{Zi(u)−µ(u)}ω̃i(u)I(C j ≥ u)dM1

j (u) = ηi− η̃i +Op(1/n)

is a F ∗i,t martingale. Hence, we can apply Lemma 14(i) to get

Pr
(
‖ηi− η̃i‖∞ ≥ K(1+ eKKt∗)

√
4log(2np/ε)/n+K(1+2eKKt∗)/n

)
≤ ε/n.

Taking union bound, we get ‖ηi− η̃i‖∞ = Op(
√

log(p)/n). Hence, supi=1,...,n ‖η̂i−ηi‖∞ =

Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

Recall that q̂(t) and q(t) also take a similar form. We can likewise define

q̃(t) = n−1
n

∑
i=1

I(t > Xi)
∫ t∗

t
{Zi(u)−µ(u)}ω̃i(u)dM̃1

i (u)

and

q̃∗(t) = n−1
n

∑
i=1

I(t > Xi)
∫ t∗

t
{Zi(u)−µ(u)}ω̃i(u)dM1

i (u).

By Lemmas 18, 20(i) and 20(iii), we have

sup
i=1,...,n

sup
t∈[0,t∗]

‖q̃(t)− q̂(t)‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

By Lemma 13(ii), supt∈[0,t∗] ‖q̃∗(t)−q(t)‖ = Op

(√
log(p)/n

)
. We only need to find the rate

for

q̃∗(t)− q̃(t) = n−1
n

∑
i=1

I(t > Xi)n−1
n

∑
j=1

∫ t∗

t
n−1

n

∑
i=1
{Zi(u)−µ(u)}ω̃i(u)I(C j ≥ u)dM1

j (u).

We repeat the trick for ηi− η̃i. Applying Lemma 14(ii) to the F ∗i,t martingale

Mq
i (t) = n−1

∑
j 6=i

∫ t

0
n−1

n

∑
i=1
{Zi(u)−µ(u)}ω̃i(u)I(C j ≥ u)dM1

j (u)
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and obtain supi=1,...,n supt∈[0,t∗] ‖M
q
i (t)‖∞ = Op(

√
log(p)/n). Hence,

sup
t∈[0,t∗]

‖q̃∗(t)− q̃(t)‖∞ ≤ 2 sup
i=1,...,n

sup
t∈[0,t∗]

‖Mq
i (t)‖∞ +Op(1/n) = Op(

√
log(p)/n).

Putting the rates together, we have supt∈[0,t∗] ‖q̂(t)−q(t)‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

We can directly obtain supt∈[0,t∗] |π̂(t)−π(t)| = Op

(√
log(n)/n

)
from Lemma 13(ii).

Define

ψ̃i =
∫ t∗

0

q(t)
π(t)

dM̂c
i (t)

The total variation of M̂c
i (t) is at most 1+2eK/ρ2 with probability tending to one by Lemma 21.

Using the results so far, we have

sup
i=1,...,n

‖ψ̂i− ψ̃i‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

The remainder

ψi− ψ̃i = n−1
n

∑
j=1

∫ t∗

0

q(t)
π(t)

I(Ci ≥ t)I(X j ≥ t)dMc
j(t)

is a Ft martingale. We can put the n martingales in Rp into a Rnp vector and apply Lemma 14(i),

sup
i=1,...,n

‖ψi− ψ̃i‖∞ = Op

(√
log(np)/n

)
= Op

(√
log(p)/n

)
.

Therefore, we get supi=1,...,n ‖ψi− ψ̂i‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

Finally, we decompose

‖V̂ −V ‖max ≤n−1
n

∑
i=1
‖η̂i + ψ̂i‖∞‖η̂i + ψ̂i−ηi−ψi‖∞

+n−1
n

∑
i=1
‖η̂i + ψ̂i−ηi−ψi‖∞‖ηi +ψi‖∞

+

∥∥∥∥∥n−1
n

∑
i=1

(ηi +ψi)(ηi +ψi)
>−V

∥∥∥∥∥
max

.
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We have shown that supi=1,...,n ‖η̂i + ψ̂i−ηi−ψi‖∞ = op(1). Moreover, supi=1,...,n ‖η̂i + ψ̂i‖∞

is Op(1) by Lemmas 15 and 21. In addition, we observe that n−1
∑

n
i=1(ηi +ψi)(ηi +ψi)

> is an

average of i.i.d. terms whose expectation is defined as V . By Lemmas 15 and 21, we have the

uniform maximal bound

sup
i=1,...,n

‖(ηi +ψi)(ηi +ψi)
>‖max = sup

i=1,...,n
‖(ηi +ψi)‖2

∞

is also Op(1). We finish the proof by applying Lemma 11 to the last term in the decomposition

above,
∥∥n−1

∑
n
i=1(ηi +ψi)(ηi +ψi)

>−V
∥∥

max.

Proofs of Auxiliary Lemmas

Proof of Lemma 13. (i) Without loss of generality, let t11 be the first jump time of N1(t). By

the i.i.d. assumption, t11 is independent of all Si(t) with i≥ 2. Thus, the sequence

Ll = n−1
l

∑
i=2
{Si(t11)− s(t11)}

is a martingale with respect to filtration
{

σ
(
Si(t), i≤ l

)
, l = 2, . . . ,n

}
. The increment is

bounded as

n−1 {Si(t11)− s(t11)}= n−1ES j

{
Si(t11)−S j(t11)

}
≤ n−1KS.

Applying Lemma 12 to Ln, we get Pr(‖Ln‖max > KSx) < 2qe−nx2/2. Since the dropped

first term is also bounded by KS/n, we get

Pr
(∥∥S̄(t11)− s(t11)

∥∥
max > KSx+KS/n

)
< 2qe−nx2/2.

We use simple union bound to extend the result to all ti j’s whose number is at most nKN .

113



(ii) Define a deterministic set Tn = {kt∗/n : k = 1, . . . ,n}∪Tz. By the union bound of Hoeffd-

ing’s inequality [Hoe63] , we have

Pr

(
sup
t∈Tn

∥∥S̄(t)− s(t)
∥∥

max > KSx

)
< 2(n+ |Tz|)qe−nx2/2.

Combining the result from Lemma 13(i), we obtain

∥∥S̄(t)− s(t)
∥∥

max = Op(
√

log(npq)/n)

over a grid containing Tn and jumps of Ni(t). We only need to show that the variation of

S̄(t)− s(t) is sufficiently small inside each bin created by the grid.

Let t ′ and t ′′ be consecutive elements by order in Tn. By our construction, there is no jump

of any of the counting processes Ni(t) in the interval (t ′, t ′′). Otherwise, the jump time

is another element in Tn between t ′ and t ′′ so that t ′ and t ′′ are not consecutive elements

by order. Under the assumption of the lemma, elements of all Si(t)’s are LS−Lipschitz in

(t ′, t ′′). Moreover, |t ′′− t ′| ≤ t∗/n because of the deterministic {kt∗/n : k = 1, . . . ,n} ⊂ Tn.

Along with the càglàd property, we obtain a bound of variation of S̄(t) in (t ′, t ′′)

sup
t∈(t ′,t ′′)

‖S̄(t)− S̄(t ′′)‖max ≤ sup
i=1,...,n

sup
t∈(t ′,t ′′)

‖Si(t)−Si(t ′′)‖max ≤ LS|t ′′− t ′| ≤ LSt∗/n.

For any t ∈ (t ′, t ′′), we bound the variation of s(t) by

‖s(t)−s(t ′′)‖max ≤
∫ t ′′

t
E‖ds(u)‖maxdu+

∫ t ′′

t
E{‖Js(u)‖maxhN

i (u)}du≤ (LS+KSK)t∗/n.

For arbitrary t ∈ [0, t∗], we find the the corresponding bin (t ′, t ′′] contains t. Putting the

results together, we have

‖S̄(t)− s(t)‖max ≤ ‖S̄(t)− S̄(t ′′)‖max +‖s(t)− s(t ′′)‖max +‖S̄(t ′′)− s(t ′′)‖max
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≤ Op(
√

log(npq)/n)+O(1/n).

Proof of Lemma 14. (i) The summands in MΦ(t) are the integrals of Ft−-measurable pro-

cesses over Ft-adapted martingales, so MΦ(t) is a Ft-adapted martingale [KP02, p.165].

Suppose {Ti : i = 1, . . . ,n} are the jump times of {Ni(t)}. We artificially set Ti = t∗ if

Ni(t) has no jump in [0, t∗]. Define 0 ≤ R1 ≤ ·· · ≤ R2n be the order statistics of {Ti : i =

1, . . . ,n}∪{kt∗/n : k = 1, . . . ,n}. Hence, {Rk : k = 1, . . . ,2n} is a set of ordered Ft stopping

times. Applying optional stopping theorem, we get a discrete time martingale MΦ(Rk)

adapted to FRk .

The increment of MΦ(Rk) comes from either the counting part or the compensator part,

which we can bound separately. By our construction of Rk’s, each left-open right-closed bin

(Rk,Rk+1] satisfies two conditions. There is at most one jump from ∑
n
i=1 Ni(t) in the bin at

Rk+1. The length of the bin is at most t∗/n. The increment of the martingale MΦ(t) over

(Rk,Rk+1] is decomposed into two coordinate-wise integrals, a jump minus a compensator,

MΦ(t) = n−1
n

∑
i=1

∫ Rk+1

Rk

Φi(u)dNi(u)−n−1
n

∑
i=1

∫ Rk+1

Rk

Φi(u)hi(u)du.

With the assumed a.s. upper bound for supt∈[0,t∗] ‖Φi(t)‖max ≤ KΦ, we have almost surely

the jump of MΦ(t) in the bin be bounded by∥∥∥∥∥n−1
n

∑
i=1

∫ Rk+1

Rk

Φi(u)dNi(u)

∥∥∥∥∥
max

≤ KΦ/n.
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Additionally with the assumed upper bound for supi=1,...,n supt∈[0,t∗] hi(t) ≤ Kh, we have

the compensator of MΦ(t) increases over the bin by at most∥∥∥∥∥
∫ Rk+1

Rk

n−1
n

∑
i=1

Φi(u)hi(u)du

∥∥∥∥∥
max

≤ KΦKh(Rk+1−Rk)≤ KΦKht∗/n.

We obtain a uniform concentration inequality for MΦ(Rk) by Lemma 12

Pr

(
sup

k=1,...,2n
‖MΦ(Rk)‖max ≥ KΦ(1+Kht∗)x

)
≤ 2qe−nx2/4.

Remark that the uniform version of Lemma 12 is the application of Doob’s maximal

inequality [Dur10, Theorem 5.4.2, page 213]. For t ∈ (Rk,Rk+1), we use the bounded

increment derived above

‖MΦ(t)−MΦ(Rk)‖max ≤

∥∥∥∥∥
∫ Rk+1+

Rk+
n−1

n

∑
i=1

Φi(u)hi(u)du

∥∥∥∥∥
max

≤ KΦKht∗/n.

(ii) Under the additional assumption supi=1,...,n supt∈[0,t∗] ‖Φi(t)‖max = Op(an), we can find

KΦ,ε for every ε > 0 such that

Pr

(
sup

i=1,...,n
sup

t∈[0,t∗]
‖Φi(t)‖max ≤ KΦ,εan

)
≥ 1− ε/2

for any n. We apply Lemma 14(i) to obtain that event{
sup

t∈[0,t∗]
‖MΦ(t)‖max ≤ KΦ,εan{(1+Kht∗)

√
2log(4q)/n+Kht∗/n},

sup
i=1,...,n

sup
t∈[0,t∗]

‖Φi(t)‖max ≤ KΦ,εan

}

occurs with probability no less than 1− ε.
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Proof of Lemma 15. Notice all ai(t)’s are nonnegative. Hence, ∑
n
i=1 |ai(t)| = ∑

n
i=1 ai(t). We

apply Hölder’s inequality for each coordinate∣∣∣∣∣
{

∑
n
i=1 ai(t)Zi(t)⊗l

∑
n
i=1 ai(t)

}
j

∣∣∣∣∣=
∣∣∣∣∣ n

∑
i=1

ai(t)
∑

n
i=1 ai(t)

{
Zi(t)⊗l

}
j

∣∣∣∣∣≤ ∑
n
i=1 |ai(t)|
|∑n

i=1 ai(t)|
sup

i=1,...,n

∣∣∣∣{Zi(t)⊗l
}

j

∣∣∣∣ .
Hence, the maximal norm of ∑

n
i=1 ai(t)Zi(t)⊗l is bounded by (K3/2)l under (2.40). Similar result

can be achieved with the sum replaced by the expectation.

To apply the result above to the processes S(l)(t,β)/S(0)(t,β), S̃(l)(t,β)/S̃(0)(t,β) and

s(l)(t,β)/s(0)(t,β), we set ai(t) as ωi(t)Yi(t)eβ
>Zi(t) and I(Ci ≥ t)Yi(t)eβ

>Zi(t).

Proof of Lemma 16. Since {I(Xi ≥ t∗), i = 1, . . . ,n} are i.i.d. Bernoulli random variable, we may

apply Lemma 11 for lower tail,

Pr

(
n−1

n

∑
i=1

I(Xi ≥ t∗)< Pr(Xi ≥ t∗)− x

)
≤ exp(−2nx2).

By (2.41), we can find lower bounds for the probability

Pr(Xi ≥ t∗)≥ Pr(Ci ≥ t∗,∞ > T 1
i ≥ t∗) = G(t∗)E{F1(∞;Zi)−F1(t∗;Zi)} ≥ ρ2/K4.

We may relax the inequality at x = ρ2/(2K4) to

Pr

(
n−1

n

∑
i=1

I(Xi ≥ t∗)< ρ2/(2K4)

)
≤ e−nρ2

2/(2K2
4 ).

Because I(Ci ≥ t)≥ I(Ci ≥ t∗) and Yi(t)≥ Yi(t∗), S̃(0)(t;K4) is a lower bound for S̃(0)(t).

The summands in S̃(0)(t;K4) are i.i.d. uniformly bounded by K4. Thus, we may apply Lemma

13(i) with one-sided version,

Pr

(
sup

k∈1...KT

S̃(0)(t;K4)< E{S̃(0)(t;K4)}−K4x−K4/n

)
< ne−nx2/2.
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By (C3), the expectation has a lower bound

E{S̃(0)(t;K4)}= G(t∗)E
[
{1−F1(t;Zi)}min{K4,eβ

o>Zi(t)}
]
> ρ2.

We relax the inequality at x = (ρ2/2−1/n)/K4,

Pr

(
sup

k∈1...KT

S̃(0)(t;K4)< ρ2

)
< ne−n(ρ2−2/n)2/(8K2

4 ).

Proof of Lemma 17. Since εi > 1 implies T 1
i = ∞, the probability of observing a type-2 event

conditioning on Zi(·) has an upper bound

Pr
(
εi > 1|Zi(·)

)
=exp

{
−
∫

∞

0
eβ

o>Zi(u)h1
0(u)du

}
≤exp

{
−Kex

∫
∞

0
I
(

eβ
o>Zi(u) ≥ Kex

)
h1

0(u)du
}
.

Hence, we may derive a bound for

Pr

(
δiεi > 1, sup

t∈[0,t∗]
eβ

o>Zi(t) > Ke

)
≤ Pr

(
εi > 1

∣∣∣ sup
t∈[0,t∗]

eβ
o>Zi(t) > Ke

)
if we can bound

∫
∞

0 I
(

eβ
o>Zi(u) ≥ Kex

)
h1

0(u)du away from zero with a certain x whenever

eβ
o>Zi(t ′) > Ke for some t ′ ∈ [0, t∗].

Under (C3), there is an interval I′ containing t ′ of length ρ4 in which Zi(·) has no jumps.

The variation of linear predictor is bounded

sup
t∈I′

∣∣∣βo>Zi(t)−βoZi(t ′)
∣∣∣≤ K6K7‖βo‖∞ρ4.

So, the relative risk eβ
o>Zi(t) is greater than Ke exp{−K6K7‖βo‖∞ρ4} over I′. Hence, we get a

lower bound for

∫
∞

0
I
(

eβ
o>Zi(u) ≥ Ke exp{−K6K7‖βo‖∞ρ4}

)
h1

0(u)du≥ ρ4ρ1.
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We finish the proof by taking a union bound over i = 1, . . . ,n.

Proof of Lemma 18. Recall that Mc
i (t) = I(Ci ≤ t)−

∫ t
0 I(Ci ≥ u)hc(u)du is a counting process

martingale adapted to complete data filtration Ft . The Kaplan-Meier estimator Ĝ(t) has the

martingale representation [KP02, p.170 (5.45)],

MG(t) =
Ĝ(t)
G(t)

−1 = n−1
n

∑
i=1

∫ t

0

Ĝ(u−)I(Xi ≥ u)
G(u)n−1 ∑

n
j=1 I(X j ≥ u)

dMc
i (u).

For δiεi > 1 and t > Xi,

ωi(t)− ω̃i(t) =−
Ĝ(t)

Ĝ(Xi)
MG(Xi)+

G(t)
G(Xi)

MG(t),

so we will be able to establish a concentration result for the error from Kaplan-Meier∥∥∥∥∥n−1
n

∑
i=1
{ωi(t)− ω̃i(t)}Yi(t)eβ

o>Zi(t)Zi(t)⊗l

∥∥∥∥∥
max

≤ 2Q1(ε)(K3/2)l sup
t∈[0,t∗]

|MG(t)|

if we first obtain a concentration result for supt∈[0,t∗] |MG(t)|. On event n−1
∑

n
j=1 I(X j ≥ u) ≥

ρ2/(2K4), the integrated functions are Ft−-adapted with uniform bound 2(K/
4 ρ2)

2. The hazard

hc(t)≤ K1 by (C1). Hence, we may apply Lemma 14(i) with x =
√

4log(2/ε)/n to obtain

Pr

(
sup

t∈[0,t∗]
|MG(t)|< 2(K4/ρ2)

2
{
(1+K1t∗)

√
4log(2/ε)/n+K1t∗/n

})
(2.73)

≤ Pr(Ω1∩Ω2(ε))− ε. (2.74)

Proof of Lemma 19. A sharper inequality is available if Zi’s are not time-dependent. We may

exploit the martingale structure of ∆(l)(t)/G(t). With general time-dependent covariates, we

would decompose the approximation error ∆(l)(t) into two parts, the error from Kaplan-Meier

estimate Ĝ(t) and the error from missingness in Ci’s among the type-2 events.
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Define the indicator υi(t) = I(t > Xi)I(δiεi > 1). Since {ωi(t)− I(Ci ≥ t)}Yi(t) is non-

zero only when υ(t) = 1, we may alternatively write

∆(l)(t) = n−1
n

∑
i=1
{ωi(t)− I(Ci ≥ t)}υi(t)eβ

o>Zi(t)Zi(t)⊗l.

We may use the upper bound supi=1,...,n supt∈[0,t∗]

∣∣∣υi(t)eβ
o>Zi(t)

∣∣∣≤ Q1(ε) on Ω2(ε). By Lemma

18, ∥∥∥∥∥n−1
n

∑
i=1
{ωi(t)− ω̃i(t)}υi(t)eβ

o>Zi(t)Zi(t)⊗l

∥∥∥∥∥
max

≤ Q1(ε)(K3/2)lQ7(n, p,ε)

on Ω2(ε)∩Ω3(ε).

Define the error from missingness in Ci’s among the type-2 events as

∆̃(l)(t) = n−1
n

∑
i=1
{ω̃i(t)− I(Ci ≥ t)}υi(t)eβ

o>Zi(t)Zi(t)⊗l.

Since E{ri(t)|Ti}= G(t ∧Ti), [FG99] has shown that

E{ω̃i(t)|Ti}= E{I(Ci ≥ t)|Ti}= G(t).

Applying tower property, we have E
{
∆̃(l)(t)

}
= 0. Hence, we can apply Lemma 13(i) with

x =
√

2log(2npl/ε)/n

Pr

(
sup

k∈1...KT

∥∥∥∆̃(l)
(

T 1
(k)

)∥∥∥
max
≤ Q1(ε)(K3/2)l

{√
2log(2npl/ε)/n+1/n

})

is at least Pr(Ω1∩Ω2(ε))− ε. This finishes the proof of the first result.

We prove the other result by decomposing the differences into terms with ∆(l)(t),

S(l)(t,βo)

S(0)(t,βo)
− S̃(l)(t,βo)

S̃(0)(t,βo)
=

1

S̃(0)(t,βo)
∆(l)(t)− S(l)(t,βo)

S(0)(t,βo)S̃(0)(t,βo)
∆
(0)(t).
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S(l)(t,βo)/S(0)(t,βo) is the weighted average of Zi(t)⊗l , so its maximal norm is bounded by

(K3/2)l . On the event Ω1,∥∥∥∥∥S(l)(t,βo)

S(0)(t,βo)
− S̃(l)(t,βo)

S̃(0)(t,βo)

∥∥∥∥∥
∞

≤ 2
ρ2
‖∆(l)(t)‖∞ +

Kl
3

2l−1ρ2
|∆(0)(t)|.

We can simply plug in the bounds and tail probabilities for ∆(0)
(

T 1
(k)

)
and ∆(1)

(
T 1
(k)

)
in

(2.63).

Proof of Lemma 20. (i) By (C1) and (D1), we have
∥∥∥eβ

o>Zi(t)Zi(t)⊗l
∥∥∥

max
≤ (K3/2)leK � 1.

Thus, all terms involved are bounded. Moreover, eβ
o>Zi(t)Zi(t)⊗l jumps only at the jumps

of Nz
i (t) by (D3). Define the outer product of arrays u ∈ Rp1×···×pd and v ∈ Rq1×···×qd′ as

u⊗v ∈ Rp1×···×pd×q1×···×qd′ , (u⊗v)i1,...,id+d′ = ui1,...,id ×vid+1,...,id+d′ .

Between two consecutive jumps of Nz
i (t),∥∥∥∥ d

dt
eβ

o>Zi(t)Zi(t)⊗l
∥∥∥∥

max

=
∥∥∥eβ

o>Zi(t)Zi(t)⊗lβo>dz
i (t)+ I(l > 0)eβ

o>Zi(t)lZi(t)⊗l−1⊗dz
i (t)
∥∥∥

max

≤eK{(K3/2)lK + I(l > 1)(K3/2)l−1K} � 1.

Hence, eβ
o>Zi(t)Zi(t)⊗l satisfies the continuity condition for Lemma 13(ii).

Like in Lemma 19, we first replace ωi(t) by ω̃i(t) = ri(t)G(t)/G(Xi∧ t). Denote ∆̃(l)(t) =

n−1
∑

n
i=1{ω̃i(t)− I(Ci ≥ t)}Yi(t)eβ

o>Zi(t)Zi(t)⊗l . By Lemma 18, supt∈[0,t∗] ‖∆(l)(t)−

∆̃(l)(t)‖max = Op

(
n−1/2

)
. Then, we apply Lemma 13(ii) to the i.i.d. mean zero pro-

cess ∆̃(l)(t),

sup
t∈[0,t∗]

‖∆̃(l)(t)‖max = Op

(√
log(nplKn)/n

)
.
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Similarly,

sup
t∈[0,t∗]

‖S̃(l)(t,βo)− s(l)(t,βo)‖max = Op

(√
log(nplKn)/n

)
.

Finally, we extend to results to the quotients by decomposition

S(1)(t,βo)

S(0)(t,βo)
− S̃(1)(t,βo)

S̃(0)(t,βo)
=

1

S̃(0)(t,βo)
∆(l)(t)− S(l)(t,βo)

S(0)(t,βo)S̃(0)(t,βo)
∆
(0)(t).

The denominators are bounded away from zero by Lemma 21 by choosing K4 = eK .

(ii) First, we show that ∆i(t) is related to the martingales

Mc
i (t) = Nc

i (t)−
∫ t

0
{1−Nc

i (u−)}hc(u)du.

∆i(t) is non-zero only after an observed type-2 event. To simplify notation, we define the

indicator for non-zero ∆i(t), υi(t) = ri(t)Yi(t)I(t > Xi) = I(δiεi > 1)I(t > Xi).

Denote the Nelson-Aalen type estimator for censoring cumulative hazard as

Ĥc(t) =
n

∑
i=1

∫ t

0

{ n

∑
j=1

I(X j ≥ u)
}−1

I(Xi ≥ u)dNc
i (u).

Define Ri(t) = Ĝ(t)/Ĝ(Xi)− 1+
∫ t

Xi
Ĝ(u−)dĤc(u)/Ĝ(Xi). Let ck and ck+1 be two con-

secutive observed censoring times greater than Xi. The increment Ri(ck+1)−Ri(ck) is in

fact

Ĝ(ck)

Ĝ(Xi)

{
∑

n
j=1 I(X j ≥ ck+1)−1

∑
n
j=1 I(X j ≥ ck+1)

−1+
1

∑
n
j=1 I(X j ≥ ck+1)

}
= 0.

For t > Xi, we have Ri(t) = 0. Thus,

∆i(t) ={Ĝ(t)/Ĝ(Xi)−1+Nc
i (t)−Nc

i (Xi)−Ri(t)}υi(t)
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=
∫ t

Xi

υi(u)dMc
i (u)−

∫ t

Xi

ωi(u−)υi(u)
∑

n
j=1 I(X j ≥ u)dMc

j(u)

∑
n
j=1 I(X j ≥ u)

+

+
∫ t

Xi

{I(Ci ≥ u)−ωi(u−)}υi(u)hc(u)du. (2.75)

Notice υi(t) does not change beyond Xi if Ci > Xi, i.e. an event is observed. Since

hc(u)≤ K < ∞, we may modify the integrand at countable many points without changing

the integral

∫ t

Xi

{I(Ci ≥ u)−ωi(u−)}υi(u)hc(u)du =−
∫ t

Xi

∆i(u)hc(u)du.

Hence, (2.75) gives an first order linear integral equation for ∆i(u). The general solution to

the related homogeneous problem

∆i(t) =−
∫ t

Xi

∆i(u)hc(u)du, ∆i(Xi) = 0

has only one unique solution ∆i(t) = 0. Thus, we only need to find one specific solution

to (2.75). Define an integral operator I ◦ f =
∫ t

Xi
f (u)hc(u)du. Then, the solution to f (t) =

g(t)− I ◦ f (t) can be written as

f (t) = (1− I + I2− I3 + . . .)◦g(t), e−I ◦g(t).

By inductively using integration by parts, we are able to calculate

In ◦g(t) =
1
n!

n

∑
k=1

(
n
k

)
(−1)kHc(t)n−k

∫ t

Xi

Hc(u)kdg(t).

Hence, the solution can be calculated as the series

f (t) =
∞

∑
n=1

(−1)nIn ◦g(t) =
∞

∑
n=1

n

∑
k=1

{−Hc(t)}n−k

(n− k)!

∫ t

Xi

Hc(u)k

k!
dg(u)
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=
∞

∑
k=1

∫ t

Xi

Hc(u)k

k!
dg(u)

∞

∑
n=k

{−Hc(t)}n−k

(n− k)!
= G(t)

∫ t

Xi

G(u)−1dg(u).

Applying to (2.75), we get

∆i(t) = G(t)
∫ t

Xi

G(u)−1dM∆
i (u),

with a Ft− martingale

M∆
i (t) =

∫ t

0
I(Ci ≥ u)υi(u)dMc

i (u)−
∫ t

0
ωi(u−)υi(u)

∑
n
j=1 I(X j ≥ u)dMc

j(u)

∑
n
j=1 I(X j ≥ u)

.

Now, we use the martingale structure to prove the Lemma. Denote the F ∗t martingale

Mg(t) = n−1
n

∑
i=1

∫ t

0
G(u)eβ

o>Z j(u)g(u)I(Ci ≥ u)dM1
i (u).

Mg(t) satisfies the condition for Lemma 14(i). Hence, we have supt∈[0,t∗] ‖Mg(t)‖max =

Op

(√
log(q′)/n

)
. Also define

∆̃i(t) = {ω̃i(t)− I(Ci > t)}Yi(t).

By Lemma 18, supi=1,...,n supt∈[0,t∗] |∆i(t)− ∆̃i(t)| = Op

(
n−1/2

)
. The total variation of

each ∆i(t) is at most 2. Hence, we can apply integration by parts to (2.65),

G−1(t∗)Mg(t∗−)⊗n−1/2
n

∑
j=1

∆ j(t∗−)φ(Z j(t∗−))

−n−1/2
n

∑
j=1

∫ t∗

0
Mg(t)⊗φ(Z j(t))dM∆

j (t)

−n1/2
∫ t∗

0
Mg(t)⊗G−1(t)n−1

n

∑
j=1

∆ j(t)dφ(Z j(t))

,I1− I2− I3.
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We have shown that |Mg(t∗−)|= Op

(√
log(q′)/n

)
and sup j=1,...,n |∆ j(t∗−)− ∆̃ j(t∗−)|=

Op

(
n−1/2

)
. By assumption, ‖φ(Z j(t∗−))‖max ≤ Kφ � 1. As a result, we may replace the

∆i(t) in I1 by ∆̃i(t) with with an Op

(√
log(q′)/n

)
error. Since ∆̃ j(t∗−)φ(Z j(t∗−))’s are

i.i.d. mean zero random variables,

‖n−1
n

∑
j=1

∆̃ j(t∗−)φ(Z j(t∗−))‖max = Op

(√
log(q)/n

)
by Lemma 11. Multiplying the rates together, we get ‖I1‖max =Op

(√
log(q) log(q′)/n

)
=

op(1).

I2 can be expanded as

n−1/2
n

∑
j=1

∫ t∗

0
G(t)−1Mg(t)

{
I(C j ≥ t)υ j(t)h(Z j(t))

−∑
n
k=1 ωk(t−)υk(t)h(Zk(t))

∑
n
k=1 I(Xk ≥ t)

I(X j ≥ t)
}

dMc
j(t)

By Lemma 21, n
{

∑
n
k=1 I(Xk ≥ t)

}−1
= Op(1). The integrand in I2 is the product of

Mg(t) and a Op(1) term. Hence, we can apply Lemma 14(ii) to get the order for I2,

‖I2‖max = Op

(√
log(q′) log(qq′)/n

)
= op(1).

By (D3), we may further expand I3 into

n1/2
∫ t∗

0
Mg(t)⊗G−1(t)n−1

n

∑
j=1

∆ j(t)∇φ(Z j(t))>dz
j(t)dt

+n1/2
∫ t∗

0
Mg(t)⊗G−1(t)n−1

n

∑
j=1

∆ j(t)4φ(Z j(t))dNz
j(t)

,I′3 + I′′3 ,

where 4φ(Z j(t)) = φ(Z j(t))−φ(Z j(t−)). By assumption on h(Z) and (D3), we have

|∇φ(Z j(t))>dz
j(t)| and 4φ(Z j(t)) are bounded by LhK and LhK, respectively. With
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supt∈[0,t∗] |Mg(t)|=Op

(√
log(q′)/n

)
and Nz

j(t
∗)<Kn = o(

√
n/(log(p) log(n))), we may

replace the ∆ j(t)’s by ∆̃ j(t)’s with an op(1) error. Each ∆̃ j(t)∇φ(Z j(t))>dz
j(t) has mean

zero and at most Kn +1 jumps, and it is (LhK +KφK)-Lipschitz between two consecutive

jumps under (D3) and conditions on φ(z). By applying Lemma 13(ii), we get

sup
t∈[0,t∗]

∥∥∥∥∥n−1
n

∑
j=1

∆̃ j(t)∇φ(Z j(t))>dz
j(t)

∥∥∥∥∥
max

= Op(
√

log(nq)/n).

Hence, ‖I′3‖max = Op(
√

log(q′) log(nq)/n)+op(1) = op(1). By applying Lemma 13(i) to

{∆̃ j(t)4h(Z j(t)),Nz
j(t) : j = 1, . . . ,n},

we get at the jumps of Nz
i (t)’s, at the tik, satisfy

sup
i=1,...,n

sup
k∈1...KT

∣∣∣∣∣n−1
n

∑
j=1

∆ j(tik)4φ(Z j(tik))

∣∣∣∣∣
= Op(

√
log(nKnq)/n) = Op(

√
log(nq)/n).

Hence, ‖I′′3 ‖max = Op

(
Kn
√

log(nq) log(q′)/n
)
= op(1). This completes the proof.

(iii) Define βr = β
o + r{β̃−βo} and h j(r; t) = Z̄ j(t,βr). The subscript j means the j-th

element of corespondent vector. By mean-value theorem, we have some r ∈ (0,1) such that

h j(1; t)−h j(0; t) =

(
{β̃−βo}>S(2)(t,βr)S(0)(t,βr)−S(1)(t,βr)

⊗2

S(0)(t,βr)2

)
j

=

(
{β̃−βo}>

n

∑
i=1

ωi(t)Yi(t)eβ
>
r Zi(t)

nS(0)(t,βr)
{Zi(t)− Z̄ j(t,βr)}⊗2

)
j

Since each
∥∥{Zi(t)− Z̄ j(t,βr)}⊗2

∥∥
max ≤ K2

3 under (C1), their weighted average∥∥∥∥∥ n

∑
i=1

ωi(t)Yi(t)eβ
>
r Zi(t)

nS(0)(t,βr)
{Zi(t)− Z̄ j(t,βr)}⊗2

∥∥∥∥∥
max

≤ K2
3 .
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Hence, we have shown that

sup
t∈[0,t∗]

‖Z̄(t,βo)− Z̄(t, β̃)‖∞ ≤ ‖β̃−βo‖1K2
3 = Op(‖β̃−βo‖1).

By a similar argument, we can show for some r ∈ (0,1)

eβ
o>Zi(t)

S(0)(t,βo)
− eβ̃

>Zi(t)

S(0)(t, β̃)
=

eβ
>
r Zi(t)(β̃−βo)>

S(0)(t,βr)

n

∑
j=1

ω j(t)Yj(t)eβ
>
r Z j(t)

nS(0)(t,βr)
{Zi(t)−Z j(t)}.

On event {‖β̃−βo‖1 ≤ K, n−1
∑

n
i=1 I(Xi ≥ t∗)≥ e−Kρ2/2}, we have

inf
t∈[0,t∗]

S(0)(t, β̃)> r∗/2∗ e2K, inf
t∈[0,t∗]

S(0)(t,βo)> r∗/2∗ eK.

Hence,

|eβ
o>Zi(t)/S(0)(t,βo)−eβ̃

>Zi(t)/S(0)(t, β̃)| ≤ ‖β̃−βo‖12K3e4KeK/ρ2 =Op

(
‖β̃−βo‖1

)
.

The event occurs with probability tending to one because we have‖β̃−βo‖1 = op(1) from

Theorem 8 and supt∈[0,t∗] |S(0)(t,βo)−1|= Op(1) from Lemma 21.

Proof of Lemma 21. Consider the event

Ω
∗
1 =

{
n−1

n

∑
i=1

I(Xi ≥ t∗)I(εi = 1)≥ e−K
ρ2/2

}
.

Each I(Xi ≥ t∗)I(εi = 1) is i.i.d. with expectation G(t∗)E[{F1(∞;Z)−F1(t∗;Z)}]. Applying

Lemma 11 under (2.41) and (2.48) from (C1) and (D1), we get that Ω1 occurs with probability

1− e−ne−2Kρ2
2 .

Apparently, we have I(Xi≥ t∗)≥ I(Xi≥ t∗)I(εi = 1). Morevoer, S(0)(t,βo) and S̃(0)(t,βo)

are both lower bounded by n−1
∑

n
i=1 I(Xi ≥ t∗)e−K .
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On Ω1, supt∈[0,t∗] |n/{∑n
i=1 I(Xi ≥ t∗)}| ≤ 2eK/ρ2 and

max

{
sup

t∈[0,t∗]
|S(0)(t,βo)−1|, sup

t∈[0,t∗]
|S̃(0)(t,βo)−1|

}
≤ 2eKeK/ρ2.

Proof of Lemma 22. To simplify notation, wherever possible we will use Γ̂ j(γ) = Γ j(γ, β̂).

(i) We want to prove that for all j = 1, . . . , p, the differences γ̃ j := γ̂ j−γ∗j belong to a certain

convex cone.

It follows from the KKT conditions that, for l = 1, . . . , p−1,
∂Γ̂ j(γ̂ j)

∂γ j,l
+λ jsgn(γ̂ j,l) = 0 if γ̂ j,l 6= 0;∣∣∣∣∂Γ̂ j(γ̂ j)

∂γ j,l

∣∣∣∣≤ λ j if γ̂ j,l = 0.

Denote O j :=
{

l ∈ {1, . . . , p−1} : γ∗j,l 6= 0
}

and Oc
j := {1, . . . , p−1}\O j. For ξ j > 1, it

follows from the KKT conditions above that on the event

Ω0 := {‖∇γΓ̂ j(γ
∗
j )‖∞ ≤ (ξ j−1)λ j/(ξ j +1)},

with γ̄ j = αγ̂ j +(1−α)γ∗j , α ∈ (0,1)

0≤ 2γ̃>j ∇
2
γ Γ̂ j(γ̄ j)γ̃ j

= γ̃>j
{

∇γΓ̂ j(γ̂ j)−∇γΓ̂ j(γ
∗
j )
}

= ∑
l∈Oc

j

γ̃ j,l
∂Γ̂ j(γ̂ j)

∂γ j,l
+ ∑

l∈O j

γ̃ j,l
∂Γ̂ j(γ̂ j)

∂γ j,l
− γ̃>j ∇γΓ̂ j(γ

∗
j )

≤−λ j ∑
l∈Oc

j

γ̂ j,lsgn(γ̂ j,l)+λ j ∑
l∈O j

|γ̃ j,l|+
(ξ j−1)λ j

ξ j +1

∥∥γ̃ j,O j

∥∥
1 +

(ξ j−1)λ j

ξ j +1

∥∥γ̃ j,Oc
j

∥∥
1

=−
2λ j

ξ j +1

∥∥γ̃ j,Oc
j

∥∥
1 +

2ξ jλ j

ξ j +1

∥∥γ̃ j,O j

∥∥
1.
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(ii) Let v = γ̃/‖γ̃‖1 be the l1-standardized direction for γ̃ = γ̂−γ∗. By part (i) and convexity

of Γ j in γ j, any x ∈ (0,‖γ̃‖1] satisfies

v>
{

∇γΓ̂ j(γ
∗+ xv)−∇γΓ̂ j(γ

∗)
}
≤−

2λ j

ξ j +1
‖vOc

j
‖1 +

2ξ jλ j

ξ j +1

∥∥vO j‖1.

We relax the inequality about x above to establish an upper bound for ‖γ̃‖1. By the

definition of κ j, the left hand side can be bounded by

v>
{

∇γΓ̂ j(γ
∗+ xv)−∇γΓ̂ j(γ

∗)
}
= xv>∇

2
γ Γ̂ j(γ

∗)v≥
x‖vO j‖2

1κ j(ξ j,O j)

s j
.

The right hand side can be bounded using the complete square {‖vO j‖1−2/(ξ j +1)}2,

−
2λ j

ξ j +1
‖vOc

j
‖1 +

2ξ jλ j

ξ j +1

∥∥vO j‖1 = 2λ j‖vO j‖1−
2λ j

ξ j +1
≤ λ j(ξ j +1)‖vO j‖

2
1.

Combining the bounds for both sides in the inequality, we get an upper bound for ‖γ̃‖1.

Proof of Lemma 23. We define

Γ̃ j(γ) = n−1
n

∑
i=1

∫ t∗

0
{Zi j(t)−µ j(t)−γ>Zi,− j(t)+γ>µ− j(t)}2dNo

i (t).

By Lemmas 20 and 6,

max
j=1,...,p

‖∇γΓ̂ j(γ
∗
j , β̂)−∇γΓ̃ j(γ

∗
j )‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

∇γΓ̃ j(γ
∗
j ) is the average of i.i.d. vectors with mean ∇γΓ̄ j(γ

∗
j ) = 0 and maximal bound K2(1+K).

We can apply Lemma 11 to the matrix (∇γΓ̃1(γ
∗
1), . . . ,∇γΓ̃p(γ

∗
p)) to get

max
j=1,...,p

‖∇γΓ̃ j(γ
∗
j )‖∞ = ‖(∇γΓ̃1(γ

∗
1), . . . ,∇γΓ̃p(γ

∗
p))‖max
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= Op(
√

log(p2)/n) = Op(
√

log(p)/n).

Proof of Lemma 24. (i) We define

Σ̃= n−1
n

∑
i=1

∫ t∗

0
{Zi(t)−µ(t)}⊗2dNo

i (t).

The total variation of each No
i (t) is at most 1. By Lemma 20, we have

sup
t∈[0,t∗]

‖Z̄(t, β̂)−µ‖∞ = Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

Hence,

‖Σ̂− Σ̃‖max ≤ 2KOp

(
‖β̂−βo‖1 +

√
log(p)/n

)
= Op

(
‖β̂−βo‖1 +

√
log(p)/n

)
.

Now, Σ̃ is average of i.i.d. with mean Σ and bounded maximal norm K2. We apply Lemma

11 with union bound,

Pr
(
‖Σ̃−Σ‖max ≥ K2x

)
≤ 2p2e2nx2

.

Choosing x =
√

log(2p2/ε)/(2n), we have ‖Σ̃−Σ‖max = Op(
√

log(p)/n).

(ii) We alternatively use the following form

m̈(β) = n−1
n

∑
i=1

∫ t∗

0

{
n−1

n

∑
j=1

ω j(t)Y j(t)eβ
>Z j(t)

S(0)(t,β)
Zi(t)⊗2− Z̄(t,β)⊗2

}
dNo

i (t).

By Lemma 20(iii), we have

‖m̈(β̃)− m̈(βo)‖max = Op(‖β̃−βo‖1).
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We also have a similar form for

¨̃m(β) = n−1
n

∑
i=1

∫ t∗

0

{
n−1

n

∑
j=1

I(C j ≥ t)Yj(t)eβ
>Z j(t)

S̃(0)(t,β)
Zi(t)⊗2− Z̃(t,β)⊗2

}
dNo

i (t).

By Lemma 20(i), we have

‖m̈(βo)− ¨̃m(βo)‖max = Op

(√
log(p)/n

)
.

Finally, we use the martingale property of

¨̃m(βo)− Σ̃= n−1
n

∑
i=1

∫ t∗

0

{
S̃(2)(t,βo)

S̃(0)(t,βo)
− Z̃(t,βo)⊗2

}
I(Ci ≥ t)dM1

i (t)

−n−1
n

∑
i=1

∫ t∗

0
{Zi(t)− Z̃(t,βo)}⊗2I(Ci ≥ t)dM1

i (t)

+n−1
n

∑
i=1

∫ t∗

0

[
{Zi(t)− Z̃(t,βo)}⊗2−{Zi(t)−µ(t)}⊗2

]
I(Ci ≥ t)dNo

i (t)

under filtration F ∗t . The integrands in the first two martingale terms are bounded by

K2. Hence, we can apply Lemma 14(ii) to obtain that their maximal norms are both

Op

(√
log(p)/n

)
. We apply Lemma 20(i) to the integrand of the third term, equivalently

expressed as

{µ(t)− Z̃(t,βo)}{Zi(t)− Z̃(t,βo)}>+{Zi(t)−µ(t)}{µ(t)− Z̃(t,βo)}>.

Therefore, we obtain ‖ ¨̃m(βo)− Σ̃‖max = Op

(√
log(p)/n

)
.

We put the rates together by the triangle inequality.

Proof of Lemma 25. The proof is similar to that of Lemma 5. Define the compatibility factor for

C j(ξ j,O j) and symmetric matrix Φ as

κ j(ξ j,O j;Φ) = sup
06=g∈C j(ξ j,O j)

√
s jg>Φg

‖gO j‖1
.
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Apparently, κ j(ξ j,O j) = κ j
(
ξ j,O j;∇2

γΓ(γ
∗, β̂)

)
. Notice that

∇
2
γΓ(γ

∗, β̂) = n−1
n

∑
i=1

∫ t∗

0
{Zi,− j(t)− Z̄− j(t, β̂)}⊗2dNo

i (t) = Σ̂− j,− j,

where Σ̂− j,− j is a Σ̂ dropping its jth row and column. By Lemma 4.1 in [HSY+13] (for a similar

result, see [vdGB09] Corollary 10.1),

κ j(ξ j,O j)
2 = κ

2
j
(
ξ j,O j;Σ̂− j,− j

)
≥ κ

2
j(ξ j,O j;Σ− j,− j)− s j(ξ j +1)2‖Σ− j,− j− Σ̂− j,− j‖max.

For any non-zero g ∈ Rp−1, let g∗ be its embedding into Rp defined as

g∗k =


gk k < j

0 k = j

gk−1 k > j

Then, we may establish a lower bound for the smallest eigenvalue of Σ− j,− j by (D2)

inf
06=g∈Rp−1

g>Σ− j,− jg = inf
06=g∈Rp−1

g∗>Σg∗ ≥ ρ‖g‖2
2.

Hence, inf j=1,...,p κ2
j(ξ j,O j;Σ− j,− j)≥ ρ. Using the result in Lemma 24(i) under (D4), we have

inf
j=1,...,p

κ j(ξ j,O j)
2 ≥ ρ−‖Σ− Σ̂‖maxsmax max

j=1,...,p
(ξ j +1)2 = ρ−op(1).

Therefor, if ξmax � 1, we must have that
{

inf j κ j(ξ j,O j)
2 ≥ ρ/2

}
occurs with probability tending

to one.
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Chapter 3

Estimating Treatment Effect for

Time-to-Event Outcome with

High-dimensional Covariates in

Observational Studies

3.1 INTRODUCTION

The proliferation of publicly accessible “big data" from Electronic Health Records (EHR)

provides an abundant resource to study the effect of various treatments on the patients. This

type of comparative effectiveness studies serve as the alternative or exploratory projects when

a randomized trial is implausible or uneconomical [HYB+10, SKD+15]. With the availability

of linked large databases the challenge in studying causal treatment effects, is to handle a large
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“p > n" number of potential confounders.

Motived by studies in cancer, we consider the situation where the treatment effect of

interest is on a survival outcome, while having to account for a large number of potential

confounders. Despite scientific knowledge [HHWM02], in databases like these whether each

covariate is a true confounder is often unknown. Machine learning methods had been considered

for confounder selection in this type of high dimensional settings, but it is now known that

directly applying such methods can lead to bias in the estimated treatment effect. This is well

understood, for example, in the case of regularization, the control of estimation variance with

diverging dimensions is achieved at the cost of estimation bias [vdGB11].

Orthogonal score is a familiar concept from the semiparametric statistics literature [New90,

BKRW98]. It relates to the profile likelihood and the least favorable direction in likelihood

inference, which includes nonparametric likelihood for semiparametric models [SW92, MvdV00].

The efficient score function generated by the profile likelihood is a special case of the orthogonal

score function. It is known that an estimator obtained from an orthogonal score function should

not be affected by the bias (or equivalently, slower than root-n convergence) in the estimation

of the nuisance parameters, or misspecification of the nonparametric (i.e. nuisance parameter)

part of the model [New90, BKRW98]. Recently the orthogonal score has been applied for

debiasing purposes in estimating treatment effects [BCH13, Far15, CCD+18], and was referred

to as [Ney59] orthogonality.

There is a connection between orthogonal score and double robustness that has not always

been made explicit in the literature. Doubly robust (DR) property refers to the context of causal

inference and missing data problems, where there are at least two working models, one for the
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outcome and another for the missing data mechanism (or equivalently, treatment assignment since

the same subject cannot be observed under more than one treatment). An estimator is doubly

robust if it is consistent as long as one of the two working models is correct [RR95, RR01, BR05].

When p is larger than n, [Far15] showed that the doubly robust estimator in [RR95] is still

consistent. For time-to-event outcome subject to censoring, DR estimators have been studied by

[ZS12], [ZZYK15], [KLZ18], [WLL+17] and [JLS+17] when the number of covaraites is fixed.

A form of DR estimators was proposed in [RMN92] where the score function was the product of

the error terms of the two working models [RRvdL00, VBC12, KLZ18]. By the error terms we

mean the observed outcome or treatment assignment minus its expectation under the working

model. Such a score function turns out to be very similar in its form as an orthogonal score under

certain models, as will be seen in later works and our derivation below.

In this paper, we use the propensity score model for treatment assignment to construct

an orthogonal score function for the estimation of the treatment effect. In addition, we also

consider the cases where the propensity score model might be wrong, or the specified survival

outcome model might be wrong, and in the high dimensional setting the sparsity assumption is

violated. We study such double robustness properties of our estimator of the treatment effect. The

organization of the rest of the paper is as follows. In Section 3.2, we propose inference method on

treatment effect when both the Aalen additive hazards model and the logistic regression propensity

model are correct. In Section 3.3, we develop doubly robust estimation with the extensions in

closed form estimator, cross-fitting and further regularized estimators. Section 3.4 contains an

extensive simulation study. In Section 3.5, we apply our method to the empirical study on the

treatment effect of radical prostatectomy versus conservative management using SEER-Medicare
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Linked Data. The conclusions and discussions are given in Section 3.6. The detail of theoretical

derivations is given in the Section 3.7.

3.2 Treatment Effect with High-Dimensional Covariates

3.2.1 Model and Orthogonal Score

Let T be the event time of interest, C be the censoring time. We observe X = min(T,C)

and δ = I(T ≤C), where I(·) is the indicator function. Let D be the treatment assignment, and Z

be a p×1 vector of covariates. Let λ(t;D,Z) be the conditional hazard function of T given D

and Z. Under the additive hazards model [CO84, Tho86, ED87, LY94],

λ(t;D,Z) = λ0(t)+Dθ+β>Z, (3.1)

where λ0(·) is the baseline hazard function. The treatment effect under model (3.1) is θ, which is

our parameter of interest. Our goal is to draw inference on θ while allowing the dimension of the

covariates p to be much larger than the sample size n.

In this paper, we consider binary treatment assignments. For example, we may assume

the logistic regression model for D given Z:

P(D = 1|Z) = eγ
>Z1

1+ eγ>Z1
, (3.2)

where Z1 = (1,Z1, . . . ,Zp)
> represents the vector of covariates with the intercept term. The

above conditional probability of treatment assignment is often called the propensity score in the

literature.
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In the following we will use W = (X ,δ,D,Z) to denote a single copy of n independent and

identically distributed observations. Let Λ(·) =
∫ ·

0 λ0(u)du denote the baseline cumulative hazard

function; and the subscript ‘0’ in the following will be used to index the true parameter value

under which the data are generated. Following the convention of [AG82], we denote the counting

process and at-risk process for subjects i = 1, . . . ,n as Ni(t) = δiI(Xi ≤ t) and Yi(t) = I(Xi ≥ t),

respectively. By Doob-Meyer decomposition we define

Mi(t;β,Λ) = Ni(t)−
∫ t

0
Yi(u){(Diθ+β

>Zi)du+dΛ(u)}, (3.3)

which is a martingale with respect to the filtration Fn,t = σ{Ni(u),Yi(u),Di,Zi : u≤ t, i= 1, . . . ,n}

when evaluated at the true parameter values.

In the presence of high dimensional covariates, directly fitting model (3.1) via regulariza-

tion methods such as LASSO is known to lead to bias in the estimate of coefficient (θ,β>)>; this

is also illustrated in our simulation results later (Table 3.1). Instead we consider the orthogonal

score for estimating the treatment effect. Writing the nuisance parameter η = (β,Λ,γ), a score

function ψ is an orthogonal score for θ if the Gâteaux derivative with respect to η

∂

∂r
E{ψ(θ0;η0 + r4η)}

∣∣∣∣
r=0

= 0, (3.4)

where θ0 and η0 are the true values, respectively, and 4η = η− η0. In other words, the

orthogonality of a score function is defined as the local invariance of the score to a small

perturbation in the nuisance parameter around the true parameters. Under orthogonality, the

estimation to the treatment effect is not affected by the convergence rate of any consistent

estimation to the nuisance parameter, as illustrated in Figure 3.1. We note that this orthogonality
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Figure 3.1: The contour for score functions with simulated data under additive hazards model

and logistic regression models at sample size 5000. Left - the score without orthogonality

[LY94]; Right - our orthogonal score with true propensity score. The orthogonal score is robust

to error in nuisance parameter for estimation of the causal parameter.

was given in [New94] as the condition such that the limiting distribution of estimators of the

parameters of interest is not affected by the estimation of the nuisance parameters.

In order to construct the orthogonal score for our parameter of interest, θ, we utilize the

propensity model (3.2). We state our score and its orthogonality in the following Lemma.

Lemma 26. Under models (3.1) and (3.2) and the assumption

C ⊥⊥ (T,D)|Z, (3.5)
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the score

φ(θ;β,Λ,γ) =
1
n

n

∑
i=1

{
Di− expit(γ>Z1i)

}∫
τ

0
eDiθtdMi(t;β,Λ), (3.6)

where τ < ∞ is an upper limit of time, identifies the true parameters (θ0;β0,Λ0,γ0) and is an

orthogonal score for θ.

To utilize the orthogonal score to estimate θ, (3.6) is seen as an equation for θ only, and

after solving for θ we plug in a consistent estimate of the nuisance parameter (β,Λ,γ) to obtain

θ̂. Under proper regularity conditions regarding how the dimensions expand, we find that the

asymptotic variance of θ̂ may follow from the classic estimating equation theory, with (β,Λ,γ)

again replaced by its consistent estimator to obtain a consistent estimate of the asymptotic

variance.

The condition (3.5) is stronger than the usual non-informative censoring assumption,

where C ⊥⊥ T |(D,Z). This condition can be relaxed if a consistent estimator of the conditional

distribution of C given D and Z is available, and we discuss this more later.

3.2.2 Inference on θ

Before proceeding we extend the above description of how to use (3.6) by allowing an

estimator of the baseline cumulative hazard function to depend θ, Λ̂(·;θ). This is natural since

under the additive hazards model (3.1), the usual estimator of Λ(t) is a function of θ̂ [LY94]. The

extension is useful for the doubly robust estimator that we develop in the next section. Under

conditions specified below, the property of the orthogonal score still holds with the ‘estimator’ of

the nuisance parameter (β̂, Λ̂(·;θ), γ̂).
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For the purpose of guaranteeing firm guarantees on inference regarding θ, that is not

dependent on exact model-selection consistency of regularized estimators, we make the following

set of assumptions.

Assumption 5.

(i) W is generated according to models (3.1) and (3.2);

(ii) C ⊥⊥ (T,D)|Z;

(iii) P
(
supi=1,...,n ‖Zi‖∞ < KZ

)
= 1;

(iv) supt∈[0,τ]λ0(t)< KΛ;

(v) E{E(Y (τ)|Z;D = 0)Var(D|Z)} ≥ εY > 0;

(vi) E{E(N(τ)|Z;D = 0)Var(D|Z)} ≥ εN > 0;

(vii) the total variation of Λ̂(·;θ) is bounded by Kv uniformly in θ with probability tending to

one;

(viii) Λ̂(t;θ) is approximately linear in θ with respect to the total variation in the neighborhood

of θ0,
τ∨

t=0

{
Λ̂(t;θ)− Λ̂(t;θ0)

}
= Op(|θ−θ0|); (3.7)

(ix) the rates of estimation errors follow

log(p)‖β̂−β0‖1 + sup
t∈[0,τ]

|Λ̂(t;θ0)−Λ0(t)|+‖γ̂−γ0‖1
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+
√

n‖γ̂−γ0‖1

(
‖β̂−β0‖1 + sup

t∈[0,τ]
|Λ̂(t;θ0)−Λ0(t)|

)
= op(1), (3.8)

and the estimation error to the baseline hazard follows additionally∫
τ

0
H(t)d{Λ̂(t,θ0)−Λ0(t)}= op(1) (3.9)

for any process H(t) adapted to the filtration Fn,t = σ{Ni(u),Yi(u),Di,Zi : u ≤ t, i =

1, . . . ,n} with tight uniform bound, supt∈[0,τ] |H(t)|= Op(1).

Then we have:

Theorem 9. Under Assumption 5 , θ̂ that solves φ(θ; β̂, Λ̂(θ), γ̂) = 0 satisfies

σ̂
−1√n(θ̂−θ0) N(0,1), (3.10)

where the variance estimator takes the closed form

σ̂
2 =

n−1
∑

n
i=1 δi{Di− expit(γ̂>Z1i)}2e2θ̂DiXi{

n−1 ∑
n
i=1(1−Di)expit(γ̂>Z1i)Xi

}2 . (3.11)

Remark 6. Several penalization approaches are available to estimate the high-dimensional

regression coefficients in the additive hazards model (3.1) under various assumptions [GG12b,

LL13]. [LM07] proposed a Lasso estimator of the form

β̂ = argmin
β∈Rp

β>Hnβ−2β>hn +λ‖β‖1, (3.12)

where Hn = ∑
n
i=1

∫
τ

0 {Zi − Z̄(t)}⊗2Yi(t)dt/n, hn = ∑
n
i=1

∫
τ

0 {Zi − Z̄(t)}dNi(t)/n, with Z̄(t) =

∑
n
i=1 ZiYi(t)/∑

n
i=1Yi(t) and a⊗2 = aa> for a vector a. To estimate β in our model (3.1), we

may use β∗ = (θ,β) in (3.12). The estimation of γ from model (3.2) is similar; we may use the

LASSO estimator for the logistic regression model [SK03]:

γ̂ = argmin
γ∈Rp+1

−1
n

n

∑
i=1

{
{Diγ

>Z1i− log(1+ eγ
>Z1i)

}
+λ

p

∑
j=1
|γ j|. (3.13)
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Remark 7. For Λ̂ a natural choice is the Breslow type estimator

Λ̂(t) =
∫ t

0

∑
n
i=1{dNi(u)−Yi(u)(β̂>∗ ZDi)du}

∑
n
i=1Yi(u)

(3.14)

with ZDi = (Di,Z>i )>. According to our Lemma 37 in Section 3.7.5, the total variation of (3.14)

is bounded with large probability as required by Assumption 5-vii. One may also use estimators

dependent on θ under Assumption 5-viii. We expand on one special choice Λ̌(·,θ) in Section

3.3.1.

Remark 8. For the LASSO estimators given in Remark 6, oracle inequality for l1-estimation

error have been established under either the restricted eigenvalue condition [BRT09] or the

compatibility condition [vdG07, vdGB09]. By [GG12b], [ZSZH17] and [vdG08], the LASSO

estimators with oracle penalty parameters follow

‖β̂−β0‖1 = Op

(
sβ

√
log(p)/n

)
, ‖γ̂−γ0‖1 = Op

(
sγ

√
log(p)/n

)
(3.15)

under suitable regularity conditions, where sβ and sγ are the sparsity of β0 and γ0, respectively.

The estimator of the baseline cumulative hazard Λ̂ defined in (3.14) has a rate of uniform

convergence Op

(
‖β̂−β0‖1

)
, and Λ̂ satisfies (3.9) whenever β̂ is consistent. If the dimensions

and the sparsity levels satisfy sβsγ = o(
√

n/ log(p)), then Assumption 5-ix holds. This means

that the dimension p can be of ultra-high exponential order when the sparsity levels grow slowly.

When p is of polynomial order in n, the sparsity of both models may grow up to rate n1/4. Or, the

sparsity of one model is allowed to grow as rapid as
√

n while the sparsity of the other model is

constant.

Remark 9. Assumption 5-v has two implications. First, the treatment assignments cannot be

deterministically decided by the covariates; we need a proportion of subjects with propensity
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strictly between zero and one. Second, there should be a proportion at-risk at the longest possible

followup time among these subjects with propensity strictly between zero and one. The first

part is a relaxed form of the positivity condition,also known as overlapping condition: the

propensity score P(D = 1|Z) is bounded away from zero and one for every possible Z which

applies to all subjects [Imb03, WC10]. In practice, the treatment assignment may violate the

positivity condition when a subpopulation is guaranteed to receive the treatment or the control.

As an example in our data, the distribution of estimated propensity of receiving received radical

prostatectomy is not bounded away from one in Figure 3.4.

Remark 10. Assumption 5-iii is a common assumption for high-dimensional non-linear models

[HSY+13, vdGBRD14]. Assumption 5-iv is a standard assumption under additive hazards model

[LY94, LL13]. We rely on the Assumptions 5-iii and 5-iv to obtain the concentration results of

various empirical processes. Assumption 5-vi implies a positive event rate among subjects with

positive chance of being assigned into either treatment arm.

The proof of Theorem 9 has two parts. In the first part, we establish the asymptotic

equivalence between the score with the estimated nuisance parameter and the score with the true

nuisance parameter,

φ(θ; β̂, Λ̂(·,θ), γ̂) = φ(θ;β0,Λ0,γ0)+op
(√

n|θ−θ0|+1
)
, (3.16)

by utilizing one consequence of the orthogonality that the score is insensitive to perturbation in

nuisance parameter. In the second part, we use the identifiability from Lemma 26 to establish the

asymptotic normality of θ̂. Our proof allows the hazard contribution from the covariates, β>0 Zi,

to grow arbitrarily large with the growing dimensions. Our asymptotic normality is the first result
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established with unbounded hazards of a time-to-event outcome, which distinguished us from

existing literatures on the topic [HBX17, YBS18].

Theorem 9 leads immediately to inference on the treatment effect θ. Using computation-

ally efficient methods like LASSO for the nuisance parameters, our inference procedure adds no

extra computational burden, and is therefore ready for practical uses.

3.3 Exploring the Doubly Robust Property

It is immediate from (3.6) that the estimator from solving the orthogonal score equation

might be doubly robust (DR) when p is fixed, since it is of the form as the product of the error

terms from the two models. While this may not be the most common way to construct a DR

estimator in the literature, it was noted in [RMN92] , [VBC12] and [KLZ18]. In the classical

literature on misspecified models, the estimators obtained under the misspecified model are known

to converge to the so-called ‘least false’ parameters. Extension of DR approaches into high-

dimensional settings so far mainly relies on the convergence of the estimators to the ‘least false’

parameters, which now need to be well-defined as p increases [Far15]. Few work has studied the

asymptotic behavior of estimators under model misspecification under high-dimensional settings

[Tan18]. In our empirical analysis, we find that the LASSO estimator with penalty parameter

selected by cross-validation deviates substantially from the ‘least false’ parameters under dense

or misspecified model (see Table 3.1). The observation suggests that the theory established on the

convergence to the ‘least false’ parameter may be unsound for directing practice. Moreover, the

‘least false’ framework cannot handle a special type of ‘misspecification’ under high-dimensional
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setting— the dense coefficient in a correct model cannot be estimated consistently. Given the

limitation of ‘least false’ parameter framework, we propose the measurement on the magnitudes

of estimators and develop our DR methodology and theory based on the magnitudes. As we shall

show, our magnitudes framework provides both a weaker requirement in theory and a broader

applicability in practice.

In this section, we first describe a special case of our estimators from Section 3.2, which

has a closed-form expression that is computationally efficient and stable. In Section 3.3.2 we

introduce the cross-fitting scheme, which generally leads to relaxed sparsity conditions. Finally

in Section 3.3.3 we develop the the doubly robust estimator.

3.3.1 A closed-form estimator

As discussed in Remark 7 earlier, we may have different choices for the estimator of the

cumulative baseline hazard Λ. A particular choice is the weighted Breslow estimator:

Λ̌(t,θ;β,γ) =
∫ t

0

∑
n
i=1 w1

i (γ){dNi(u)−Yi(u)(Diθ+β
>Zi)du}

∑
n
i=1 w1

i (γ)Yi(u)
, (3.17)

where w1
i (γ) = Di{1− expit(γ>Z1i)} = DiP(Di = 0|Zi). Note that the w1

i ’s are the weights

among the treated subjects. With (3.17) the score (3.6) becomes a linear function in θ:

φ
(
θ;β, Λ̌(·,θ;β,γ),γ

)
= −1

n

n

∑
i=1

(1−Di)expit(γ>Z1i)
∫

τ

0

(
dNi(u)−Yi(u)

[
β>{Zi− Z̃(u;γ)}du+dÑ(u;γ)

])
−θ

n

n

∑
i=1

(1−Di)expit(γ>Z1i)Xi, (3.18)
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where we denote the weighted processes Z̃(t;γ) = ∑
n
i=1 Ziw1

i (γ)Yi(t)/∑
n
i=1 w1

i (γ)Yi(t), and

dÑ(t;γ) = ∑
n
i=1 w1

i (γ)dNi(t)/∑
n
i=1 w1

i (γ)Yi(t) with the same weights as in (3.17). Therefore

we have

θ̌ =
∑

n
i=1 w0

i (γ̂)
∫

τ

0

(
dNi(u)−Yi(u)

[
β̂>{Zi− Z̃(u; γ̂)}du+dÑ(u; γ̂)

])
−∑

n
i=1 w0

i (γ̂)Xi
, (3.19)

where w0
i (γ) = (1−Di)expit(γ>Z1i) = (1−Di)P(Di = 1|Zi) are the weights among the subjects

in the control group.

In Section 3.7.1, we show that θ̌ can be seen as through directly estimating the difference

between the two cumulative hazard functions of the treated and the control groups.

Remark 11. Since Λ̌ defined in (3.17) depends linearly on θ, it is easy to see that Λ̌ satisfies

Assumption 5-viii. The average weight in the risk set at any time t is bounded away from zero

under Assumptions 5-ii and 5-v because

E{w1(γ0)Y (t)} ≥ E{w1(γ0)Y (τ)}= E{Var(D|Z)E(Y (τ)|Z;D = 0)}e−θ0.

Following that, one can verify that Λ̌ meets all conditions given in Assumption 5. Hence, the

inference result in Theorem 9 applies for the closed-form estimator θ̌ in (3.19). Note that

according to Theorem 9, the asymptotic variance of θ̂ does not depend on the specific estimator

of the cumulative baseline hazard, so there is no loss of asymptotic efficiency by only using the

treated subjects in Λ̌.

Remark 12. In the construction of θ̌, we weight treated subjects by w1
i (γ) and controls by w0

i (γ),

defined after (3.17) and (3.19), respectively. Consider the standardized version of the weights
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with true parameter

w̄1
i = w1

i (γ0)/
n

∑
j=1

w1
j(γ0), w̄0

i = w0
i (γ0)/

n

∑
j=1

w0
i (γ0). (3.20)

We discover that the weights in (3.20) balance the covariates between treatment and control.

Following the popular R package twang [RMM+17, RM07], we manifest the covariate balance

after weighting by the weighted empirical cumulative distribution functions,

Fd,n(z) =
n

∑
i=1

w̄d
i I(Zi ≤ z) =

n−1
∑

n
i=1 wd

i (γ0)I(Zi ≤ z)
n−1 ∑

n
i=1 wd

i (γ0)
, d = 0,1, (3.21)

where we denote the multivariate indicator I(Z ≤ z) = ∏
p
j=1 I(Z j ≤ z j) with Z j and z j being

the j-th coordinate of vectors Z and z, respectively. Under logistic regression model (3.2), the

expectations of the weights given covarites both equal the conditional variance of treatment,

E{wd(γ0)|Z}= expit(γ>0 Z1){1− expit(γ>0 Z1)}= Var(D|Z). (3.22)

Using (3.22), we heuristically obtain the limit of (3.21)

Fd,n(z) 
E{wd(γ0)I(Z≤ z)}

E{wd(γ0)}
=

E{Var(D|Z)I(Z≤ z)}
E{Var(D|Z)}

, d = 0,1. (3.23)

Notice the right-hand side in (3.23) does not depend on d, so the distributions of covariates

in both treatment arms are roughly the same after weighting. The covariate balancing plays

an important role in the robustness when the outcome model is misspecified. Following the

tradition of [RR83], classical causal inference methods including matching, stratification and

weighting [RR83, RR84, RR85, Ros87, RB00, VD14] have been recently revisited and improved

with high-dimensional covariates when the estimation to the propensity score becomes challenging

[IR14, vdL14, VV15, Tan17].
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3.3.2 A cross-fitted orthogonal score

Cross-fitting, also known as data-splitting [Cox75], allows relaxed conditions on ...,

and is increasing being used in high-dimensional problems [CCD+18, ATW19]. Algorithm 1

demonstrates a cross-fitted version of our orthogonal score method.

Data: split the data into k folds of equal size with the indices set I1, I2, . . . , Ik

for each fold indexed by j do

1. estimate the nuisance parameters
(
β̂( j), Λ̂( j), γ̂( j)

)
using the out-of-fold

samples indexed by I− j = {1, . . . ,n}\ I j ;

2. construct the cross-fitted score using the in-fold samples

φ
( j)
(

θ; β̂( j), Λ̂( j), γ̂( j)
)
=

1
|I j| ∑i∈I j

[
Di− expit(γ̂( j)>Z1i)

]
×

∫
τ

0
eDiθt

[
dNi(t)−Yi(t)

{(
Diθ+ β̂

( j)>Zi

)
dt +dΛ̂

( j)(t;θ)
}]

. (3.24)

end

Result: Obtain the estimated treatment effect θ̂c f by solving

1
k

k

∑
j=1

φ
( j)
(

θ; β̂( j), Λ̂( j), γ̂( j)
)
= 0. (3.25)

Algorithm 1: Estimation of the Treatment Effect via k-fold Cross-fitting

The cross-fitting algorithm described in the box induces independence between the score

and the estimated nuisance parameters, further reducing the effect of the nuisance parameters on

the estimation of the treatment effect in addition to the orthogonality of the score function. For

our purposes, the cross-fitting has two main advantages. First, it simplifies our methodology and

149



theory for the doubly robust estimation in the next subsection, as we use survival information to

further regularize the initial LASSO estimator; measurability issues in the martingale argument

would otherwise arise without the independence induced by cross-fitting. Second, we are able to

handle cases with less sparsity (see also Remark 13 below). This is achieved because it allows the

convergence in Assumption 5 to be relaxed from uniform error (l1 distance in the coefficients) to

average model deviance below (often proportional to l2 distance in the coefficients). To describe

the estimation error of the out-of-fold estimators evaluated on the in-fold samples, we denote

(X∗,δ∗,D∗,Z∗) as an independent copy from the same distribution as the original data, for which

the expectation E∗ is taken. We define the average model deviance for the estimated model

coefficients in (3.1) and (3.2) as

Dβ(β̂,β0) =

√
E∗
[∫

τ

0

{
(β̂−β0)>Z∗

}2
Y∗(t)dt

]
,

Dγ(γ̂,γ0) =

√
E∗
[{

expit
(
γ̂>Z∗

)
− expit

(
γ>0 Z∗

)}2
]
. (3.26)

Note that Dβ(β̂,β0) is the same as the norm used in [GG12b] equation (15). Compared to the

uniform error, the average model deviance has a convergence rate that grows slower when sparsity

increases.

Now we state our relaxed conditions for inference.

Assumption 6. Suppose conditions 5-i to 5-viii in Assumption 5 are satisfied with (β̂, Λ̂, γ̂) =(
β̂( j), Λ̂( j), γ̂( j)

)
for all j = 1, . . . ,k. Assume additionally,

(i) the rates of estimation errors follow

Dβ

(
β̂( j),β0

)
+ sup

t∈[0,τ]

∣∣∣Λ̂( j)(t;θ0)−Λ0(t)
∣∣∣+Dγ

(
γ̂( j),γ0

)
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+
√

nDγ

(
γ̂( j),γ0

)(
Dβ

(
β̂( j),β0

)
+ sup

t∈[0,τ]

∣∣∣Λ̂( j)(t;θ0)−Λ0(t)
∣∣∣)= op(1). (3.27)

We have the inference result for θ with the cross-fitted estimator θ̂c f defined in (3.25).

Theorem 10. Under Assumption 6, θ̂c f obtained from Algorithm 1 satisfies

σ̂
−1
c f
√

n(θ̂c f −θ0) N(0,1), (3.28)

with the closed-form variance estimator

σ̂
2
c f =

n−1
∑

k
j=1 ∑i∈I j δi{Di− expit(γ̂( j)>Z1i)}2e2θ̂DiXi{

n−1 ∑
k
j=1 ∑i∈I j(1−Di)expit(γ̂( j)>Z1i)Xi

}2 . (3.29)

The proof of Theorem 10 follows the same strategy as that of Theorem 9.

Remark 13. The cross-fitted score (3.25) can handle a larger number of covariates, less sparse

models and more flexible estimators of the baseline hazard. We explain these three advantages by

comparing Assumption 6-i to Assumption 5-ix. First, (3.27) allows a larger dimension without the

extra log(p) factor in (3.8). Second, the average model deviance is less sensitive to the growth

in sparsity than the uniform error. For LASSO estimators (3.12) and (3.13) with oracle penalty

parameters in particular, the rates in terms of average model deviance has been established as

[GG12b, ZSZH17, vdG08]

Dβ(β̂,β0) = Op

(√
sβ log(p)/n

)
, Dγ(γ̂,γ0) = Op

(√
sγ log(p)/n

)
. (3.30)

If sβsγ = o
(
n/{log(p)}2), then (3.27) holds. When p is of polynomial order in n, the sparsity of

both models may grow up to rate n1/2. Or, the sparsity of one model is allowed to grow as rapid

as n while the sparsity of the other model is constant. The tolerance to sparsity of our method is
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comparable with results established under linear models without censoring [BCH13]. Third, the

removal of condition (3.9) allows various estimation methods of the baseline hazards besides the

Breslow type estimators, e.g. parametric models or splines.

3.3.3 A doubly robust estimator

With the preparation in Sections 3.3.1 and 3.3.2, we present our methodology on the

doubly robust estimation. Here we consider the partially linear additive hazards model [YLZ08]

λ(t,D,Z) = Dθ+g(t;Z), (3.31)

and the general propensity model

P(D = 1|Z) = π(Z). (3.32)

Under model (3.31), θ retains the treatment effect interpretation.

We apply the cross-fitting algorithm described in Section 3.3.2 to the score (3.18) in

Section 3.3.1. Suppose that (β̂( j), γ̂( j)) is the LASSO estimator of (β,γ) using the out-of-fold

samples for fold j. The cross-fitted version of (3.19) takes the following form,

θ̌c f =
∑

k
j=1 ∑i∈I j w0

i (γ̂
( j))

∫
τ

0

(
dNi(u)−Yi(u)

[
β̂( j)>{Zi− Z̃( j)(u; γ̂( j))}du+dÑ( j)(u; γ̂( j))

])
−∑

k
j=1 ∑i∈I j w0

i (γ̂
( j))Xi

,

(3.33)

with the weighted processes under cross-fitting Z̃( j)(t;γ) = ∑i∈I j Ziw1
i (γ)Yi(t)/∑i∈I j w1

i (γ)Yi(t),

and dÑ( j)(t;γ) = ∑i∈I j w1
i (γ)dNi(t)/∑i∈I j w1

i (γ)Yi(t). The weights w0 and w1 defined in Section

3.3.1 for the weighted Breslow Λ̌ and closed form estimator θ̌.

Define the average model deviance as in (3.26) for the correctly specified model. Similar

to the definition of the average model deviance, we denote (X∗,δ∗,D∗,Z∗) as an independent
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copy from the same distribution as the original data, for which the expectation E∗ is taken. We

define the magnitude of the estimation for the misspecified model within each cross-fitting fold,

Mβ

(
β̂
)
=

√∫
τ

0
β̂>E∗

[
{Z∗−µ(t)}⊗2Y∗(t)

]
β̂dt,

Mγ (γ̂) =
[
E∗
{

w0
∗ (γ̂)X∗

}]−1
+
[
E∗
{

w1
∗ (γ̂)Y∗(τ)

}]−1
(3.34)

with µ(t) = E∗(Z∗)/E∗{Y∗(t)}. Here we define the magnitudes with (β̂, γ̂) for the brevity in

notation of the ensuing discussion. Eventually, we shall establish our doubly robust estimation

under the magnitude condition with the cross-fitted estimator (β̂( j), γ̂( j)) and the samples in fold-j

as the stared random variables.

Throughout this section we will make an assumption that the magnitudes above are

bounded. That in turn, can be simply guaranteed by a bounded l1-norm ‖β̂‖1 or ‖γ̂‖1. To see

that, observe

Mβ(β̂)≤ ‖β̂‖1‖Z∗‖∞

√
τ, Mγ(γ̂)≤

1+ e‖γ̂‖1KZ

τE∗{(1−D∗)Y∗(τ)}
+

1+ e‖γ̂‖1KZ

E∗{D∗Y∗(τ)}
.

Hence, with a finite ‖Z∗‖∞ and strictly positive E∗{D∗Y∗(τ)} and E∗{(1−D∗)Y∗(τ)}, r.h.s. above

is guaranteed to be finite as long as both l1-norms are finite. Moreover, we discover that using

cross-validation to select the penalty factor in LASSO is sufficient to control the magnitudes. Let

{β̂(λ) : λ > 0} and {γ̂(λ) : λ > 0} be classes of LASSO estimators with different penalty factors

λ under additive hazards model and logistic regression model, respectively. The sets are often

called the LASSO regularization path [FHT10]. In practice, the most common way of deciding

the penalty factors λ is k-fold cross-validation. Suppose the optimal penalty factors are selected
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by the risk minimization

λ̂β = argmin
λ>0

l∗
β
(β̂(λ)), λ̂γ = argmin

λ>0
l∗γ (γ̂(λ)), (3.35)

where the generalization losses for β and γ are defined as

l∗
β
(β) =

∫
τ

0
E∗
([
β> {Z∗−µ(t)}

]2
Y∗(t)

)
dt−2

∫
τ

0
E∗
[
β> {Z∗−µ(t)}dN∗(t)

]
,

l∗γ (γ) =−E∗(D∗γ>Z∗)+E∗
{

log
(

1+ eγ
>Z∗
)}

. (3.36)

Mβ describes how large the average predicted contribution of covariates in the hazard is, so

Mβ

(
β̂(̂λβ)

)
at the best estimator in the LASSO regularization path should not be excessively

larger than the true contribution of the covariates in the hazard. Using the connection between

Mβ

(
β̂
)

and the quadratic term in the l∗
β
(β) above, we establish a bound for the magnitude of the

additive hazards LASSO estimator with optimal cross-validated penalty.

Lemma 27. Under the partially linear additive hazards model (3.31) , we have

Mβ

(
β̂(̂λβ)

)2
≤ 4

∫
τ

0
E∗{g(t,Z∗)2Y∗(t)}dt. (3.37)

We prove Lemma 27 by comparing the l∗
β
(β̂(̂λβ)) to l∗

β
(0) = 0. Since zero is always in

the LASSO regularization path for a sufficiently large λ [GRS12], we must have the upper bound

l∗
β
(β̂(̂λβ)) ≤ 0. We use the Cauchy-Schwartz inequality to obtain a lower bound of l∗

β
(β̂(̂λβ)).

We reach (3.37) by the fact that the lower bound is always less than or equal to the upper bound

for l∗
β
(β̂(̂λβ)). Mγ describes how close the estimated propensity scores are to the actual treatment

assignments in both treatment arms of the risk-set at t = τ, so Mγ(γ̂ (̂λγ)) should be bounded

when the treatment has enough randomness in the risk-set at t = τ, as required by the Assumption
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5-v. We derive an equivalent characterization of the Assumption 5-v that there exist a set Z on

which P(Z∗ ∈ Z), E∗(D∗|Z), E∗(1−D∗|Z) and E∗(Y∗(τ)|Z) are all bounded away from zero.

Focusing on the analysis of the set Z, we establish a bound for the magnitude of the logistic

regression LASSO estimator with optimal cross-validated penalty.

Lemma 28. Under Assumption5-v, we have with probability tending to one

Mγ

(
γ̂ (̂λγ)

)
≤ (1+ τ

−1)8ε
−3
Y e−4log(εY )/ε2

Y . (3.38)

We prove Lemma 28 by comparing the l∗γ (γ̂ (̂λγ)) to l∗γ (γ̂0), where γ̂0 is the intercept only

estimator (log(1−n/∑
n
i=1(Di)),0, . . . ,0). The intercept only estimator γ̂0 is also always in the

LASSO regularization path for a sufficiently large λ [FHT10], so l∗γ (γ̂0) is an upper bound for

l∗γ (γ̂ (̂λγ)). Assumption 5-v implies the existence of a set Z in the covariate space with positive

probability, at-risk rate at t = τ and true propensities bounded away from zero and one. Using the

Jensen’s inequality on the expectation taken over set Z, we establish a lower bound for l∗γ (γ̂ (̂λγ)).

The lower bound is closely connected with the magnitude Mγ

(
γ̂ (̂λγ)

)
. We obtain (3.38) by the

fact that lower bound is less than or equal to the upper bound for l∗γ (γ̂ (̂λγ)).

Remark 14. Lemmas 27 and 28 give surprisingly nice guarantees on the LASSO estimators with

cross-validated penalty when the model assumption is wrong. Our results here has opened up a

new direction of studying the properties of penalization methods under model misspecification.

Unlike the common “least false parameter" argument, our bounds on the magnitudes require no

quasi-model assumptions like sparsity. Consequently, our doubly robust estimation developed

under the magnitude conditions is extremely sharp in theory and broadly valid in application.
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Remark 15. When the model assumption is correct under suitable regularity conditions, the rate

of consistency for LASSO with cross-validated penalty factor is always controlled by that for

LASSO with oracle penalty factor. Quite surprisingly, this connection between the oracle penalty

factor and the cross-validation is seldom manifested, though such fact is fundamental for any

property established under oracle penalty factor to carry practical significance. Since the LASSO

with oracle penalty factor is one element in the regularization path, any bound on its estimation

error is also a bound for the estimation error of the “best" element along the regularization

path. When the generalization loss possesses local convexity at the true coefficient, the cross-

validated penalty attains such “best" element. Therefore, the LASSO with cross-validated penalty

factor converges to the true coefficient in at least the same order of the LASSO with oracle

penalty factor. Extension from the generalization loss to the sample cross-validated loss usually

requires the same set of regularity conditions under which the oracle inequalities are established

[GG12b, ZSZH17, vdG08].

Our regularity conditions for the doubly robust estimation are stated with the estimation

magnitudes below.

Assumption 7.

(a)- Suppose conditions 5-ii to 5-iv in Assumption 5 are satisfied.

(i) {Wi}n
i=1 is generated according to model (3.1) and (3.31);

(ii) sup j=1,...,k Dβ

(
β̂( j),β0

)
= op(1) and sup j=1,...,k Mγ

(
γ̂( j)

)
≤ KMg

+op(1).

Or:
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(b)- Suppose conditions 5-ii, 5-iii and 5-v in Assumption 5 are satisfied.

(i) {Wi}n
i=1 is generated according to model (3.31) and (3.2);

(ii) the hazard g(t;Z) satisfies
√

E
{∫

τ

0 g2(t;Zi)Yi(t)dt
}
= KΛ = o(

√
n);

(iii) the rate condition{
KΛ + sup

j=1,...,k
Mβ

(
β̂( j)

)}
sup

j=1,...,k
Dγ

(
γ̂( j),γ0

)
= op(1). (3.39)

Under either Assumption 7(a) or Assumption 7(b), the average model deviance for the

correct model converges to zero. That is, Dβ

(
β̂( j),β0

)
= op(1) under Assumption 7(a) and

Dγ

(
γ̂( j),γ0

)
= op(1) under Assumption 7(b). When the logistic regression model is wrong, we

assume a bounded Mγ

(
γ̂( j)

)
so that the denominators in θ̌c f (3.33) are bounded away from zero.

When the additive hazards model is wrong, we allow Mβ

(
β̂( j)

)
and

√
E
{∫

τ

0 g2(t;Zi)Yi(t)dt
}

,

the measure of the true average contribution of covariates in hazard in Lemma 27, to grow with

sample size.

Theorem 11. When either of Assumption 7(a) or Assumption 7(b) holds, θ̌c f , defined in (3.33),

is consistent for θ0, i.e. |θ̌−θ0|= op(1).

Our proof relies on the double robustness of our score at population level. When the addi-

tive hazards model (3.1) is correct, the true θ0 solves the equation E
{

φ( j)
(

θ0;β0,Λ0, γ̂
( j)
)}

= 0

for any γ̂( j). When the logistic regression model (3.2) is correct, the true θ0 solves the equation

E
{

φ( j)
(

θ0; β̂( j), Λ̂( j),γ0

)}
= 0 with any β̂( j) and Λ̂( j).

Theorem 11 implies an important corollary on the doubly robust estimation when the

violation of the sparsity assumption on one model renders the consistent estimation of that model.
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We state the immediate consequence of Lemmas 27 and 28 and Theorem 11 in the following

corollary.

Corollary 1. Suppose we use LASSO (3.12) and (3.13) to estimate (β̂( j), γ̂( j)) in k-fold cross-

fitting. The penalty factors are selected by generalized cross-validation. Under the conditions 5-i

to 5-v in Assumption 5 and additionally:

(i)
∫

τ

0 E∗{(β>0 Z∗)2Y∗(t)}dt < KΛ,

(ii) the dimensions satisfy
√

(sβ∧ sγ) log(p)/n = o(1),

(iii) other regularity conditions from [GG12b] and [vdG08],

θ̌c f , defined in (3.33), is consistent for θ0, i.e. |θ̌−θ0|= op(1).

Corollary 1 demonstrates our unique contribution to the doubly robust estimation in

high-dimensions in developing the magnitude condition. When the sparsity s exceeds sample

size n, various concentration results on the estimators by penalization methods no longer hold.

Regardless, we are able to show that our orthogonal score method produces consistent estima-

tion with very common LASSO-cross-validation estimation procedure on the high-dimensional

nuisance parameters when the sparsity of either model is small.

The other forms of our orthogonal score method, θ̂ in Section 3.2 with Breslow estimator,

the closed form θ̌ in Section 3.3.1 and θ̂c f in Section 3.3.2 with Breslow estimator, may also

produce doubly robust estimation, as suggested by our simulation study later. The estimators

constructed with Breslow estimator require obscure condition for the derivative of score with

respect to θ being bounded away from zero. In practice, such requirement may trigger numerical
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instability when the extra condition is violated. The estimators without cross-fitting generally

require stronger conditions in dimensions or sparsities, similar to the inference case discussed in

Section 3.3.2. Here we choose not to expand on those results to free the readers from unnecessary

technicality for the suboptimal methods.

The orthogonality of our proposed score, as shown in Lemmas 26, no longer holds

when one of the models is misspecified. As a result, the estimation error in causal parameter is

dominated by the bias from the nuisance parameter estimator. With increasing dimensionality

p, the bias from LASSO grows faster than
√

n-order. Therefore, the inference problem on θ

through θ̌c f under the double robustness setting is fundamentally different from the work with

low-dimensional covariates [ZS12, ZZYK15, KLZ18, WLL+17, JLS+17]. The task requires a

quite different approach, which goes beyond the scope of the current paper. Nevertheless, our

consistency result provides a solid initial estimate for future pursuit of inference method.

3.4 Simulation

We assess the performance of the proposed estimators in the following simulation. In the

simulation, we consider three pairs of dimensions n = p = 300 and n = p = 1500. The covariates

Z1, . . . ,Zp are independently generated from N(0,1). The censoring time C is generated as the

smaller between τ and Uni f (0,c0). For each setup below, the parameters τ and c0 are chosen

such that n/10 treated subjects are expected to be at risk at t = τ , and the censoring rate is around

30%. For each scenario with each sample size, we repeat the simulation 500 times.

To test the inference method, we generate the event time T from the additive hazards
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model,

λ(t|D,Z) =−0.25D+β>Z (3.40)

and the treatment assignment D from the logistic regression propensity model

P(D = 1|Z) = logit
(

γI +γ
>Z
)
. (3.41)

Under model (3.40), the true treatment effect θ0 is −0.25, and the baseline hazard λ0 is set as 0.

To ensure that the baseline hazard is non-negative, only samples satisfy β>Zi ≥ 0.25 are accepted

in the data. The coefficients β and γ contain two types of signals, the strong signal of size 1

and the weak signal of sizes 0.1 and 0.05 for β and γ, respectively. We consider the following 3

sparsity levels in :

very sparse (sβ = 2, sγ = 1): β = (1,0.1,0, . . . ,0︸ ︷︷ ︸
p−2

),γ = (1,0, . . . ,0︸ ︷︷ ︸
p−1

);

sparse (sβ = 6, sγ = 3): β = (1,0.1, . . . ,0.1︸ ︷︷ ︸
5

,0, . . . ,0︸ ︷︷ ︸
p−6

),γ = (1,0.05,0.05,0, . . . ,0︸ ︷︷ ︸
p−3

);

moderately sparse (sβ = 15, sγ = 10): β = (1,0.1, . . . ,0.1︸ ︷︷ ︸
13

,0, . . . ,0︸ ︷︷ ︸
p−15

),

γ = (1,1,0.05, . . . ,0.05︸ ︷︷ ︸
8

,0, . . . ,0︸ ︷︷ ︸
p−10

).

All the intercepts γI’s in the propensity models are chosen such that P(D = 1) = 0.5, i.e. the

treatment rate is around 0.5 marginally. We set the sparsities of the logistic regression model to be

smaller than those of the additive hazards model because the LASSO of the former is empirically

more sensitive to increase in sparsity. Four pairs of sparsities, (sβ = 2,sγ = 1), (sβ = 2,sγ = 10) ,

(sβ = 15,sγ = 1) and (sβ = 6,sγ = 3), are studied in the simulation.
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To test the doubly robust estimation method, we consider several setups under which the

estimation to model is no longer consistent. First, we simulate from the models (3.40) and (3.41)

with dense coefficients:

Dense (sβ = 30, sγ = 20): β = (1, . . . ,1︸ ︷︷ ︸
4

,0.1, . . . ,0.1︸ ︷︷ ︸
26

,0, . . . ,0︸ ︷︷ ︸
p−30

),

γ = (1, . . . ,1︸ ︷︷ ︸
4

,0.05, . . . ,0.05︸ ︷︷ ︸
16

,0, . . . ,0︸ ︷︷ ︸
p−20

).

Two pairs of very sparse - dense combinations, (sβ = 2,sγ = 20) and (sβ = 30,sγ = 1), are studied.

Second, we consider the misspecified model for event time with exponential link

λ(t|D,Z) =−0.25D+ exp
(
β>Z

)
+0.25 (3.42)

when the logistic regression propensity model is correct. The coefficients are set as (sβ = 2,sγ = 1).

Third, we consider the misspecified propensity model with probit link

P(D = 1|Z) = probit
(

γI +γ
>Z
)

(3.43)

when the addive hazards model for event time is correct. The coefficients are alse set as

(sβ = 2,sγ = 1). Finally, we consider another misspecified propensity model with determin-

istic treatment assignment

D|Z = I
(
γ>Z > µ

)
(3.44)

with µ being the median of γ>Z. The additive hazards model for event time is correct, and the

coefficients are also set as (sβ = 2,sγ = 1).

We estimate the coeffcient of the logistic regression with covariates Z by LASSO γ̂ (3.13)

by the R-package glmnet and the coefficient of the additive hazards model with covariates (D,Z)
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by LASSO (θ̂lasso, β̂) (3.12) by the R-package ahaz. The penalty parameters are selected by 10-

fold cross-validation. We estimate the baseline cumulative hazard by the Breslow estimator (3.14)

Λ̂(t; θ̂lasso, β̂). We set the number of folds in cross-fitting as 10, and estimate the coefficients for

each fold by LASSO with 9-fold cross-validation. In Table 3.1, we present the estimation error

of the nuisance parameters from LASSO with respect to the true parameters or the least false

parameters. The uniform error panel contains the estimation errors from LASSO in l1-norm and

the Breslow estimator in l∞-norm. The deviance panel contains the mean estimation errors from

cross-fitted models in terms of the deviance (3.26). Here we use sample average n−1
∑

k
j=1 ∑i∈Ik

to approximate expectation E∗,

D̂β =

√√√√n−1
k

∑
j=1

∑
i∈Ik

[∫
τ

0

{
(β̂( j)−β0)>Zi

}2
Yi(t)dt

]
,

D̂γ =

√√√√n−1
k

∑
j=1

∑
i∈Ik

[{
expit

(
γ̂( j)>Zi

)
− expit

(
γ>0 Zi

)}2
]
. (3.45)

The magnitude panel contains the median estimated magnitudes from cross-fitted models as

defined in (3.34). Here we use sample average k/n∑i∈Ik
to approximate expectation E∗, and take

maximum across all folds,

M̂β = max
j=1,...,k

√∫
τ

0
β̂( j)> k

n ∑
i∈I j

[{
Zi− Z̄( j)(t)

}⊗2Yi(t)
]
β̂( j)dt,

M̂γ = max
j=1,...,k

 n/k

∑i∈I j w0
i

(
β̂( j)

)
Xi

+
n/k

∑i∈I j w1
i

(
β̂( j)

)
Yi(τ)

 . (3.46)

When the Assumption 5-v holds, for all setups except the deterministic treatment assignment

(3.44), the magnitudes are controlled quite well empirically by cross-validation, there is no

evidence suggesting that magnitudes may blow up with larger dimensions.
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Table 3.1: Estimation error of the nuisance parameters. Letters “E", “P" and “D" represent the

misspecified models with exponential link, probit link and deterministic treatment assignment.

Under dense case (sβ = 30,sγ = 20), the LASSO estimators do not concentrate around the true

coeffcients. The least false parameter is infinite under deterministic treatment assignment. The

magnitude is properly controlled with cross-validation.

n & p Sparsity/

Misspec.

Uniform Errors of LASSO

and Breslow

Deviance from

Cross-fitting

Magnitude

from Cross-

fitting

for β,γ β̂ in l1 γ̂ in l1 Λ̂ in l∞ D̂β D̂γ M̂β M̂γ

300 2, 1 0.61 1.38 0.27 0.34 0.09 0.37 36.73

1500 2, 1 0.42 0.80 0.13 0.20 0.05 0.41 29.78

300 6, 3 1.13 1.75 0.31 0.46 0.10 0.35 29.84

1500 6, 3 0.90 1.13 0.17 0.27 0.05 0.40 23.49

300 15, 10 2.87 2.97 0.46 0.67 0.12 0.38 35.11

1500 15, 10 2.43 2.02 0.28 0.45 0.07 0.44 27.16

300 30, 20 6.22 5.01 0.60 0.96 0.15 0.42 48.72

1500 30, 20 5.19 3.75 0.36 0.63 0.09 0.48 34.97

300 E, P – – – 0.71 0.09 0.58 29.19

1500 E, P – – – 0.47 0.05 0.65 22.91

300 –, D – > 100 – – 0.17 – > 100**

1500 –, D – > 100 – – 0.13 – > 100**

* The dashed entries are not well-defined due to misspecification;

** The divergence of magnitude is expected because setup “D" violates Assumption 5-v.
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We present the results of 4 proposed estimators for inference and doubly robust estimation:

θ̂ obtained from (3.6) with the Breslow estimator (3.14), the closed form estimator θ̌ (3.19)

and their cross-fitted counterparts θ̂c f and θ̌c f as described in Algorithm 1 and (3.33). As the

benchmark, we also present the result of the estimation of θ from LASSO for the additive hazards

model with covariates (D,Z) which set the penalty for θ to be zero. Since θ̃ is not penalized, its

estimation bias is entirely caused by the partially adjusted confounding due to estimation errors

in the nuisance parameter.

We present the inference result in Table 3.2. The benchmark θ̃β has large bias/sd ratio,

which confirms the difficulty of drawing inference in our design. Our devised orthogonality has

corrected the bias in all four variations of our proposed method. The biases are at least reduced

by half from LASSO, and the reduction rate grows rapidly with sample size. All of our four

variations achieve the coverage rates of the 95 % confidence intervals very closed to the nominal

level at the large sample size n = p = 1500. At the smaller sample size n = p = 300, θ̌c f the

closed from estimator with crossfitting also has a reasonably close coverage rate to the nominal

level. has the best coverage. With a closer look especially at the smaller dimensions n = p = 300,

we find the comparative advantage of the closed form estimator and the crossfitting scheme. θ̂c f

and θ̌c f demonstrate the benefit of cross-fitting with even smaller Bias. The closed form θ̌c f with

enhanced numerical stability has smaller sd than θ̂c f with Breslow, which leads to the improved

CI coverage.

We present the estimation result with inconsistent estimation to one model in Table 3.3. In

the dense scenarios, we observe from Table 3.1 that the LASSO estimators deviate substantially

from the underlying true coefficients. When the treatment assignment is deterministic, the least
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Table 3.2: Inference result for simulation under moderately sparse Scenarios. True ATE = -0.25.

Censoring rate 30%.

Sparsity Benchmark ATE Inference Result

LASSO θ̃β θ̂ with Breslow Closed form θ̌

sβ sγ Bias sd Bias sd se Cover Bias sd se Cover

n=p=300

2 1 0.054 0.097 0.029 0.097 0.091 92.4 % 0.032 0.094 0.091 93.0 %

6 3 0.071 0.094 0.050 0.095 0.093 92.0 % 0.052 0.092 0.093 93.0 %

15 1 0.088 0.135 0.051 0.123 0.128 93.6 % 0.049 0.122 0.128 94.0 %

2 10 0.099 0.094 0.050 0.099 0.094 89.6 % 0.052 0.096 0.094 89.8 %

n=p=1500

2 1 0.031 0.040 0.009 0.041 0.041 94.2 % 0.011 0.041 0.041 94.0 %

6 3 0.033 0.042 0.015 0.043 0.042 93.0 % 0.017 0.042 0.042 93.6 %

15 1 0.047 0.063 0.019 0.064 0.058 91.4 % 0.020 0.063 0.058 91.2 %

2 10 0.077 0.041 0.019 0.043 0.043 91.6 % 0.022 0.043 0.043 91.6 %

Sparsity ATE Inference Result with Cross-fitting

θ̂c f with Breslow Closed form θ̌c f

sβ sγ Bias sd se Cover Bias sd se Cover

n=p=300

2 1 0.012 0.100 0.090 91.0 % 0.011 0.093 0.090 93.4 %

6 3 0.027 0.100 0.092 92.4 % 0.028 0.089 0.092 94.6 %

15 1 0.018 0.134 0.127 93.8 % 0.013 0.123 0.127 95.8 %

2 10 0.032 0.106 0.094 89.4 % 0.032 0.097 0.094 93.2 %

n=p=1500

2 1 0.006 0.042 0.041 94.8 % 0.009 0.040 0.041 95.4 %

6 3 0.010 0.044 0.041 92.8 % 0.014 0.041 0.042 94.2 %

15 1 0.006 0.064 0.058 92.4 % 0.012 0.061 0.058 93.0 %

2 10 0.017 0.044 0.043 92.4 % 0.019 0.042 0.043 92.8 %
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Table 3.3: Doubly robust estimation with inconsistent nuisance estimator. True ATE = -0.25.

Censoring rate 30%.

Sparsity Benchmark ATE Estimation Result

LASSO θ̃β θ̂ with Breslow Closed form θ̌

sβ sγ Bias sd
√

MSE Bias sd
√

MSE Bias sd
√

MSE

n=p=300

30 1 0.141 0.202 0.247 0.080 0.169 0.187 0.074 0.169 0.185

2 20 0.078 0.090 0.119 0.051 0.099 0.111 0.052 0.096 0.109

E 1 0.233 0.397 0.461 0.117 0.375 0.393 0.106 0.366 0.381

2 P 0.095 0.102 0.139 0.041 0.101 0.109 0.043 0.097 0.106

2 D -0.598 0.204 0.632 -0.103 0.217 0.240 -0.124 0.223 0.255

n=p=1500

30 1 0.057 0.083 0.101 0.018 0.082 0.084 0.018 0.081 0.083

2 20 0.061 0.042 0.074 0.020 0.048 0.052 0.022 0.047 0.052

E 1 0.132 0.169 0.214 0.049 0.167 0.174 0.049 0.163 0.171

2 P 0.050 0.043 0.066 0.012 0.045 0.046 0.014 0.044 0.046

2 D -0.308 0.092 0.321 -0.032 0.104 0.109 -0.040 0.107 0.114

Sparsity ATE Estimation Result with Cross-fitting

θ̂c f with Breslow Closed form θ̌c f

sβ sγ Bias sd
√

MSE Bias sd
√

MSE

n=p=300

30 1 0.049 0.197 0.203 0.026 0.177 0.179

2 20 0.036 0.106 0.112 0.034 0.099 0.104

E 1 0.054 0.396 0.400 0.001 0.364 0.364

2 P 0.021 0.105 0.107 0.019 0.097 0.099

2 D -0.216 * 0.506 * 0.550* -0.133 0.258 0.290

n=p=1500

30 1 0.000 0.085 0.085 0.004 0.080 0.080

2 20 0.018 0.049 0.052 0.020 0.047 0.051

E 1 0.027 0.169 0.171 0.024 0.163 0.165

2 P 0.008 0.045 0.046 0.011 0.043 0.045

2 D -0.031 0.107 0.111 -0.040 0.116 0.123

* One divergent iteration is removed from the summary.

166



false parameter does not exist. Under these situations, our magnitude condition may still hold or

be enforced while the classical condition of concentration around the least false parameter is no

longer valid. All four variations of our orthogonal score approach have reasonable estimation error

decaying with larger sample size, showing evidence of consistency. Our estimators have smaller

bias than LASSO θ̃β. Most notably under the determinist treatment assignment scenario when the

benchmark LASSO fails completely, our proposed methods still have quite accurate estimation.

Similar pattern among our variations as in Table 3.2 is observed. θ̂c f and θ̌c f demonstrate the

benefit of cross-fitting with even smaller Bias. Under most scenarios, the closed form θ̌c f with

enhanced numerical stability has smaller sd than θ̂c f with Breslow at n = p = 300, which leads

to the improved MSE. Again in the scenario “D" at n = p = 300, θ̌c f demonstrates the clearest

evidence of the enhanced numerical stability when it avoids the divergence experienced by θ̂c f

for exactly the same task.

3.5 Data Analysis

Typically clinical databases like the United States National Cancer Institute’s Surveillance,

Epidemiology, and End Results (SEER) contain disease specific variables, but only limited

information on the subjects’ health status such as comorbidities otherwise. In studying causal

treatment effects, this leads to unobserved confounding [HYB+10, YXM19]. On the other

hand, the availability of information from claims databases could make up for some of these

’unobserved’ confounders, as they have been shown to contain much information about these

comorbidities [HPH+18b, RTH+19].
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Table 3.4: Description of the SEER-Medicare Linked Data.

12114 Conservative 5623 Surgery

Feature Label Count (%) or Mean (SD) Count (%) or Mean (SD)

Age 66-69 4523 (37.3 %) 2443 (43.4 %)

70-74 7591 (62.7 %) 3180 (56.6 %)

Marital status Married 8743 (72.2 %) 4181 (74.4 %)

Divorced 726 ( 6.0 %) 315 ( 5.6 %)

Single 985 ( 8.1 %) 408 ( 7.3 %)

Other 1660 (13.7 %) 719 (12.8 %)

Race White 9855 (81.4 %) 4704 (83.7 %)

Black 1560 (12.9 %) 543 ( 9.7 %)

Asian 201 ( 1.7 %) 115 ( 2.0 %)

Hispanic 143 ( 1.2 %) 86 ( 1.5 %)

Other 355 ( 2.9 %) 175 ( 3.1 %)

Tumor stage T1 8293 (68.5 %) 2426 (43.1 %)

T2 3821 (31.5 %) 3197 (56.9 %)

Tumor grade Well differentiated 6238 (51.5 %) 2963 (52.7 %)

Moderately differentiated 71 ( 0.6 %) 58 ( 1.0 %)

Poorly differentiated 5786 (47.8 %) 2594 (46.1 %)

Undifferentiated 19 ( 0.2 %) 8 ( 0.1 %)

Prior Charlson 0 7932 (65.5 %) 3875 (68.9 %)

comorbidity score ≤ 1 2716 (22.4 %) 1174 (20.9 %)

≥ 2 1466 (12.1 %) 574 (10.2 %)

Prostate-Specific- < 10 9292 (76.7 %) 4519 (80.4 %)

-Antigen ≥ 10 2822 (23.3 %) 1104 (19.6 %)

Gleason score < 7 6186 (51.1 %) 2979 (53.0 %)

≥ 7 5928 (48.9 %) 2644 (47.0 %)

Year 2004 1783 (14.7 %) 953 (16.9 %)

2005 1715 (14.2 %) 928 (16.5 %)

2006 2153 (17.8 %) 1006 (17.9 %)

2007 2393 (19.8 %) 1041 (18.5 %)

2008 2260 (18.7 %) 954 (17.0 %)

2009 1810 (14.9 %) 741 (13.2 %)

Claims codes Ave count (SD) 57.7 (31.6) 60.9 (31.9)
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Figure 3.2: Kaplan-Meier curve for treatment (solid) vs control (dashed) across all years.

Motivated by our previous linked SEER-Medicare database projects, we consider 16854

prostate cancer patients diagnosed during 2004-2009 as recorded in the SEER-Medicare linked

database. The data contains the survival of patients, the treatment information, demographic

information, clinical markers and the insurance claims codes. We include in our analysis age,

race, martital status, tumor stage, tumor grade, Prostate-Specific-Antigen (PSA), Gleason Score,

Prior Charlson Comorbidity Score and 20675 claims codes possessed by at least 10 patients.

Among all the patients, 1158 (6.87 %) deaths were observed while 15696 (93.13 %)were still

alive by the end of year 2011. Our main focus is the treatment effect of surgery on the overall

survival of the patient. In our sample, 5360 (31.80 %) patients received surgery while 11494

(68.20 %) patients received other types of treaments. The Kaplan-Meier curves for the treatment

and control groups are presented in Figure 3.2. A summary of statistics of the clinical markers,

demographical features and total number of claims codes are presented in Table 3.4. On average
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at diagnosis, a patient receiving prostatectomy has 60.7 claims codes while a patient receiving

conservative management has 57.7 claims codes.

With the improvement in diagnosis, treatment and management for the disease, the non-

cancer causes become the dominant over cancer related causes for the death of patients over

the years[LYSY04]. Such changes suggest a comprehensive consideration on both the cancer

related and health maintenance related factors for medical decisions on initial treatment. Radical

prostatectomy is quite effective reducing the cancer related death, but it comes with its own risk.

With the progress in a combination of radiotherapy, chemotherapy and hormonal therapy, the

benefit of conservative management can also be competitive for the disease with a rather slow

rate of development. To account for the confounding issues, studying the comparative effect of

radical prostatectomy on the overall survival of the patient using the observational data requires

information from cancer related prognosis and general health factors including demographic

information and the medical records, as reflected in the claims codes. Due to the lack of tool for

handling high-dimensional claims code data, existing work on the topic either gives up the rich

information on the patients’ health status [SKD+15, YXM19], or only uses very limited propor-

tion of the information through some summary statistic [HYB+10], and they reached different

conclusions. Another issue reported in the study is the existence of heterogeneity in treatment

pattern across geographic region [HPG+01]. In our data, the information on the geographic

region is described by the hospital referral region (HRR). Conventionally for low-dimensional

data, covariates like HRR are excluded from the analysis if they do not associate with the outcome.

For high-dimensional data, however, [BCH13] have shown with their proposed“double-selection"

that adjusting for covariates associated with either the propensity or the outcome effectively

170



High-dimensional Confounders
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Cancer Patient)

(a) Analysis I: adjust for confounding in clinical markers, demographic features and claims code.

High-dimensional Confounders
(Prognostic Variables
and the Claims Codes)

Treatment Assignment
(Radical Prostatectomy vs.
Conservative Management)

Survival Event
(Death of

Cancer Patient)

Treatment Pattern
(Hospital Referral Region)

(b) Analysis II: modelling the heterogeneity in treatment pattern across hospital referral regions

(HRR) by interactions between HRR and patient features including clinical markers,

demographic features and claims code in the propensity score model.

Figure 3.3: Causal diagram of our analyses.
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(a) Analysis I: clinical markers, demographic

features and claim codes.
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(b) Analysis II: clinical markers, demographic

features, claim codes and their interaction with

Hospital Referral Region (HRR).

Figure 3.4: Distribution of Estimated Propensity Scores. In both analysis, some subjects in the

treatment has propensity score close to one while others in control has propensity score close to

zero.

corrects bias from the initial regularization and selection process. With the proposed method in

Section 3.2-3.3, we study the comparative treatment effect of radical proctectomy in two analyses

involving high-dimensional covariates. The causal diagrams of the analyses are illustrated in

Figure 3.3. In our Analysis I, we adjust for the potential confounding effect from clinical markers,

demographic features and high-dimensional claims code. In our Analysis II, we model the

treatment heterogeneity across geographic regions by adding into the propensity score model the

interaction between HRR and the covariates in Analysis I. The numbers of covariates considered

in the analyses are 4056 and 20676, respectively, both exceeding the number of observed events

1158.
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In both analyses, we apply the same methodology as described in the simulation Section

3.4 to estimate the propensity score model (PS) and the additive hazards model (OR) by LASSO.

The penalty factors are selected by 10-fold cross-validation. In Figure 3.4, we present the kernel

smoothed densities of the estimated propensity scores from both analyses. As mentioned earlier,

we observe that some patients received deterministic treatment assignment with the propensity

score very close to ether zero and one. The cross-fitted estimators for PS and OR are also obtained

through LASSO. The penalty factors in cross-fitting are selected by 9-fold cross-validation. We

estimate and draw inference on the treatment effect by θ̂ with Breslow, closed form θ̌ and their

cross-fitted counterparts θ̂c f and θ̌c f . We also provide the results from the marginal analysis

without any adjustment, regression adjusted by low-dimensional clinical marks and demographical

features and the IPW with the PS estimated by logistic regression on the low-dimensional clinical

marks and demographical features. For Analyses I and II, we report the estimates by the additive

hazard model LASSO estimate that does not penalize the treatment effect term and the IPW with

PS estimated by LASSO. Since the estimators from these two methods are not regular, we do not

give variance estimation or inference result.

We report the analysis results in Table 3.5. The point estimates for the treatment effect

from all methods are negative, but they vary in the strength and significance of the effect. Both low-

dimensional analyses, the covariate adjusted regression and the IPW, suggest that the treatment

is not significant at 0.05 level. Once one of the PS model or OR model is employed to adjust

for confounding explained by the claims codes through LASSO, the effect strength is magnified,

but inference is not available. When both models are utilized through our orthogonal score

method, three of the four variations of the method, θ̂ with Breslow, closed form θ̌ and closed
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Table 3.5: Estimates of treatment effect (×10−3) from the linked SEER-Medicare data. Crude

analysis did not adjust for any covariates. θ̂, θ̌, θ̂c f and θ̌c f are the four variations of our

orthogonal score approach, where the subscript ‘cf’ denotes the cross-fitted version; LASSO

estimator θ̃ penalizes only the covariates effects β but not θ.

Approach Estimate SE 95 % CI p value

Crude analysis -3.910 0.911 [ -5.695 , -2.125 ] < 0.001

Adjusted by clinical and demographic features -1.342 0.972 [ -3.247 , 0.564 ] 0.168

IPW with PS estimated from clinical and de-

mographic features

-0.437 0.627 [ -1.666 , 0.792 ] 0.486

Analysis I: clinical, demographical and claims

data

LASSO θ̃ * -2.674 – – –

IPW with PS estimated by LASSO * -2.642 – – –

θ̂ with Breslow -2.112 0.969 [ -4.012 , -0.212 ] 0.029

Closed form θ̌ -2.094 0.969 [ -3.994 , -0.194 ] 0.031

θ̂c f with Breslow and cross-fitting -1.809 0.979 [ -3.729 , 0.110 ] 0.065

Closed form θ̌c f with cross-fitting -3.223 0.975 [ -5.134 , -1.311 ] 0.001

Analysis II: clinical, demographical, claims

data and their interaction with Hospital Refer-

ral Region

LASSO θ̃ * -2.674 – – –

IPW with PS estimated by LASSO * -2.939 – – –

θ̂ with Breslow -2.050 0.973 [ -3.957 , -0.142 ] 0.035

Closed form θ̌ -2.026 0.973 [ -3.934 , -0.119 ] 0.037

θ̂c f with Breslow and cross-fitting -1.770 0.982 [ -3.694 , 0.154 ] 0.071

Closed form θ̌c f with cross-fitting -3.210 0.978 [ -5.126 , -1.293 ] 0.001

* Inference is not directly available. Only the estimates are reported.
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form θ̌c f with cross-fitting, suggest that radical prostatectomy has significant benefit compared

to conservative managements at level 0.05. According to our simulation study, we recommend

to follow the conclusion of θ̌c f . The conclusion of our analysis differs from that of [HYB+10],

which suggests a potential change in treatment effectiveness between 1995-2003 and 2004-2009.

Yet we infer from our analysis a message similar to that of [HYB+10], that the low-dimensional

covariates including clinical markers and the demographical features are inadequate to account

for confounding. The detail information on the patients past medical records in the claims

code, including but not limited to life threatening disease like the heart attack, is very likely the

confounder omitted from the low-dimensional analysis. The finding is consistent with existing

findings on treatment pattern [HPG+01].

3.6 Discussion

In this paper we have devised the propensity score in a novel way so that the resulting

estimate of the treatment effects with biased input from regularized regression is consistent

and asymptotically normal (at root-n rate). In addition, we provide several refinements to our

proposed method to achieve doubly robust estimation in the cases where the propensity score

model might be wrong, or the specified survival model might be wrong, or the sparsity assumption

is violated. With a delicate choice on the estimator for the nuisance parameter, we obtain a closed

form estimator. We also improve our inference result with a relaxed model sparsity condition by

incorporating cross-fitting (also known as data-splitting) to our method. We combine the closed

form estimator and the cross-fitting together to achieve the doubly robust estimation. Our result
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on double robustness extends the existing work by relaxing the assumption of convergence to the

“least false" parameter to that of the boundedness of estimation magnitude. While the convergence

assumption can hardly be verified in practice, we propose a further regularization step to enforce

the proposed bound of the estimation magnitude.

Compared to existing literatures on the inference problem with high-dimensional data,

most notably the work of [CCD+18, ZZ14, vdGBRD14, JM14], our paper has its unique contri-

bution. [CCD+18] studied the inference on the treatment effect under partially linear conditional

mean model. Their Double Machine Learning approach relies on the orthogonal score constructed

with the cross-fitting scheme. The proposed inference method in the Section 4 of [CCD+18]

is very general, but it cannot be applied for survival data due to censoring, when the time to

event response is not always observable. Moreover, typical models for survival outcome are

conditional hazard models that cannot be directly treated as the conditional mean model. Our

methodology makes significant progress in the analysis of censored time-to-event data based on

the martingale technique under the conditional hazard models. By focusing on the LASSO, we

are able to give clear theory for orthogonal score approach without cross-fitting in our Section 3.2,

which shows a stronger performance in simulation than its cross-fitted counterpart. The one-step

debiasing methods [ZZ14, vdGBRD14, JM14] address the inference problem for low-dimension

projection of the coefficients from the high-dimensional regression, which can be applied to draw

inference on the treatment effect. Unlike our orthogonal score approach that uses a single score

for the treatment effect, the debiased estimation and inference for one coefficient of interest by

the one-step debiasing involves the scores for all other nuisance coefficients. Since no covariate

is identified as the treatment, the one-step debiasing methods do not involve any propensity
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model. All methods of this class utilize a consistent estimation to the sparse precision matrix, i.e.

the negative inverse Hessian, to reduce the bias of the initial regularized estimator. Compared

to our sparsity assumption enforced upon the propensity model, the sparsity condition on the

precision matrix is harder to interpret and verify in practice. As for the finite sample performance,

the debiased LASSO is reported to have substantial under-coverage of confidence interval for

non-zero coefficients [DBMM15], while our method has shown decent close-to-nominal coverage

for the non-zero treatment effect in our simulation.

When the distribution of the censoring time given treatment and covariates can be consis-

tently estimated, we may relax the independence between treatment and censoring in condition

(3.5) for inference. Suppose the survival probability of censoring time follows

P(C ≥ t|D,Z) = S(t;D,Z). (3.47)

We modify our score in (3.6) to include ν(t;D,Z)= S(t;D= 0,Z)/S(t;D,Z) in the list of nuisance

parameter,

φc(θ;β,Λ,γ,ν) =
1
n

n

∑
i=1

{
Di− expit(γ>Z1i)

}∫
τ

0
eDiθt

ν(t;Di,Zi)dMi(t;β,Λ). (3.48)

The score (3.48) possesses orthogonality property, so we can use (3.48) to draw inference similar

to Theorem 9 with suitable estimator to ν. The doubly robust estimation depends on the actual

model for (3.47) and requires potentially delicate arrangements as in Sections 3.3.1-3.3.3.

It is natural to consider the extension of our inference method to the more popular Cox

proportional hazards model,

λ(t;D,Z) = eDθ+β>Z
λ0(t). (3.49)
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However, such extension is not trivial as the usual score for the relative risk of the treatment is

fully nonlinear,

1
n

n

∑
i=1

∫
τ

0
Di

{
dNi(t)−Yi(t)eDiθ+β>ZidΛ(t)

}
(3.50)

The orthogonalization takes a way more complicated form,

1
n

n

∑
i=1

{
Di− expit

(
γ>Z1i

)}∫
τ

0

dNi(t)−Yi(t)eDiθ+β>ZidΛ(t)
exp
{

Diθ+
∫ t

0
(
eDiθ−1

)
eβ>ZidΛ(u)

} . (3.51)

We are working on the problem in a separate paper.

Another future direction is the inference on treatment affect based on the doubly robust

estimation. We suggest three potential solutions to overcome the lack of orthogonality discussed

at the end of Section 3.3.3. First, inference is possible when the distribution of the nuisance

estimator either is known or can be approximated. Though the distribution of LASSO is largely

unknown, some progress has been made under the linear models [TTLT16]. Second, replacing the

LASSO by debiased LASSO [ZZ14, vdGBRD14, JM14] could be an attractive approach to supply

information on the distribution of the nuisance estimator. However, several challenges exist for

this approach. The performance of debiased LASSO under misspecification needs to be studied,

and the modification of the debiased LASSO is needed to make consistent model predications.

Third, alternative estimation methods for the nuisance parameter can be explored to minimize the

bias passed to the estimation of the treatment effect. The idea has been studied for linear models

under various names including Targeted estimation (TMLE)[vdL14], bias reduced estimation

[VV15] and calibrated estimation [Tan18]. The extension to survival outcomes, however, can be

quite technical.
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3.7 Technical Details and Proofs

In this section we provide details of all of the theoretical results. We provide additional

details on the closed form estimator in Section 3.7.1. We present the proofs of the Theorems

and Lemmas stated in the main text in Section 3.7.2. The auxiliary results needed in the proofs,

including classical and new concentration results, are stated and proved in Sections 3.7.3-3.7.6,

whose proofs are given in Section 3.7.7. The results in Section 3.7.3 are technical preliminary

steps in the proofs of the main results. We state and prove them separately to promote the

conciseness and readability of the proofs of the main results. Section 3.7.4 contains the classical

concentration equalities we use in our proofs. We establish some new concentration results in

Section 3.7.5. We put some minor but frequently used results in Section 3.7.6. The notations with

letter H are all generic and are replaced by suitable objects when we apply the results.

3.7.1 Details on the closed form estimator

Define

Λ̌
1(t;β,γ) =

∫ t

0

∑
n
i=1 w1

i (γ){dNi(u)−Yi(u)β>Zidu}
∑

n
i=1 w1

i (γ)Yi(u)
,

Λ̌
0(t;β,γ) =

∫ t

0

∑
n
i=1 w0

i (γ){dNi(u)−Yi(u)β>Zidu}
∑

n
i=1 w0

i (γ)Yi(u)
. (3.52)

Under the additive hazards model (3.1), Λ̌1 and Λ̌0 can be seen to estimate Λ0(t)+θt and Λ0(t),

respectively. It is then immediate that (3.19) is equivalent to

θ̌ =
∑

n
i=1

∫
τ

0 w0
i (γ̂)Yi(t)d

{
Λ̌1(t; β̂, γ̂)− Λ̌0(t; β̂, γ̂)

}
∑

n
i=1 w0

i (γ̂)Xi
, (3.53)

which estimates θ under the additive hazards model (3.1).
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Remark 16. As a generalization to (3.53), we may draw inference on θ using the estimator

θ̌(H) =

∫
τ

0 H(t)d
{

Λ̌1(t; β̂, γ̂)− Λ̌0(t; β̂, γ̂)
}

∫
τ

0 H(t)dt
(3.54)

for any adapted process H(t) such that
∫

τ

0 H(t)dt is bounded away from zero. It can be shown

that all such θ̌(H) have the same asymptotic distribution under the conditions of Theorem 9.

3.7.2 Proof of Main Results

Proof of Lemma 26. We first verify the identifiability of the true parameters by the score. At

the true parameters (θ0,β0,Λ0,γ0), Mi(t;θ0,β0,Λ0) is a martingale with respect to filtration

Fn,t = σ{Ni(u),Yi(u),Di,Zi : u ≤ t, i = 1, . . . ,n}. Since the other elements Di and Zi are all

measurable with respect to Fn,t , the martingale integral φ(θ0;β0,Λ0,γ0) is also a Fn,t-martingale.

Therefore, E{φ(θ0;β0,Λ0,γ0)}= 0.

To show the orthogonality, we define the directional perturbations

βr = β0 + r4β, Λr(t) = Λ0(t)+ r4Λ(t) and γr = γ0 + r4γ.

We decompose the expected directional derivative in nuisance parameters at the true parameters

into 2 terms,

∂

∂r
E{φ(θ0;βr,Λr,γr)}

∣∣∣∣
r=0

=−E

[
1
n

n

∑
i=1

{
Di− expit(γ>0 Z1i)

}∫
τ

0
eDiθ0tYi(t)

{
4β>Zidt +d4Λ(t)

}]

−E

1
n

n

∑
i=1

eγ
>
0 Z1i(

1+ eγ
>
0 Z1i

)24γ
>Z1i

∫
τ

0
eDiθ0tdMi(t;θ0,β0,Λ0)

 .
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The effect of treatment Di on the conditional expectation of the at-risk process

E{Yi(t)|Di,Zi}= P(Ti ≥ t|Di,Zi)P(Ci ≥ t|Di,Zi)

has two components, the effect on the event-time and that on the censoring time. Under the

additive hazards model (3.1), the survival probability at time t is modified by a e−Diθ0t factor,

P(Ti ≥ t|Di,Zi) = P(Ti ≥ t|Di = 0,Zi)e−
∫ t

0 Diθ0dt = P(Ti ≥ t|Di = 0,Zi)e−Diθ0t .

With the conditional independence between treatment and censoring (3.5), we have

P(Ci ≥ t|Di,Zi) = P(Ci ≥ t|Di = 0,Zi) = P(Ci ≥ t|Zi).

We prove in Lemma 41, that E{eDiθ0tYi(t)|Zi,Di} = E{Yi(t)|Zi,Di = 0} is σ{Zi}-measurable

under model (3.1) and condition (3.5). Using the fact E
{

Di− expit(γ>0 Z1i)|Zi
}
= 0 under model

(3.2), we apply the tower property of conditional expectation to calculate that the first term equals

zero,

∫
τ

0
E
[
E
{

Di− expit(γ>0 Z1i)|Zi

}
E
{

eDiθ0tYi(t)|Di,Zi

}{
4β>Zidt +d4Λ(t)

}]
= 0.

The second term is again a Fn,t-martingale, so it also has mean zero. Therefore, the expected

directional derivative in nuisance parameters at the true parameters is the sum of two zero terms,

which is zero. By definition of orthogonality, the score φ is orthogonal.

Proof of Theorem 9. We use the orthogonality of the score (3.6) to establish under Assumption 5

θ̂−θ0 =
φ(θ0;β0,Λ0,γ0)+op(|θ̂−θ0|)

n−1 ∑
n
i=1 Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0

. (3.55)

The proof of (3.55) involves tedious calculation, so we present the proof separately in Lemma 29.
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When the dimension of covariates Z is fixed, the representation (3.55) immediately leads

to asymptotic normality through mere formality. However, the growing dimension of covariates

in our high-dimensional setting may cause the violation of the classical boundedness assumptions

on the summands of φ(θ0;β0,Λ0,γ0). We go through the following technicalities to achieve the

same asymptotic normality result in high-dimensions without any additional assumption.

The rest of our proof takes 4 steps. First, we show that θ̂ is consistent for θ0. Second,

we establish the asymptotic normality of the score φ at true parameter. Third, we obtain the
√

n-

tightness and the asymptotic distribution of θ̂−θ0. Finally, we show that the variance estimator

is consistent.

Step 1:

Under model (3.1),

φ(θ0;β0,Λ0,γ0) =
1
n

n

∑
i=1

∫
τ

0
{Di− expit(γ>0 Z1i)}eθ0DitdMi(t) (3.56)

is the final point of a martingale with respect to filtration Fn,t = σ{Ni(u),Yi(u),Di,Zi : u≤ t, i =

1, . . . ,n}. Its expectation is thus zero,

E{φ(θ0;β0,Λ0,γ0)}= 0. (3.57)

The true θ0 is thus identified by the score φ. We apply the concentration result of Lemma 35 with

(3.57), getting

φ(θ0;β0,Λ0,γ0,Wi) = op(1). (3.58)

Under Assumption 5-ii, we use the martingale property of M(t), defined by (3.3), and Lemma 41
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to calculate the derivative with respect to θ at θ0

∂

∂θ
E{φ(θ;β0,Λ0,γ0)}

∣∣∣∣
θ=θ0

= EE
(
{D− expit(γ>0 Z1))}DE

[∫
τ

0
eDθ0t{tdM(t;D,Z)−Yi(t)dt}

∣∣∣∣D,Z
]∣∣∣∣Z)

= −
∫

τ

0
E[E{Y (t)|Z;D = 0}Var(D|Z)]dt. (3.59)

Under Assumption 5-v, (3.59) is bounded away from zero

∫
τ

0
E[E{Y (t)|Z;D = 0}Var(D|Z)]dt ≥

∫
τ

0
E[E{Y (τ)|Z;D = 0}Var(D|Z)]dt ≥ τεY . (3.60)

Since the summands in the denominator of (3.55) has bound

|Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0| ≤ eτθ0τ, (3.61)

we can use the Hoeffding’s inequality (as in Lemma 31) to establish a lower bound

P

(
n−1

n

∑
i=1

Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0 > εY/2

)
> 1− e

− nε2
Y

8e2τθ0 τ2 . (3.62)

Plugging the rate (3.58) and the lower bound (3.62) into (3.55), we conclude that θ̂−θ0 = op(1).

Step 2: Let X(1), . . . ,X(n) be the order statistics of the observed times and

M1
k =

1
n

n

∑
i=1

∫ X(k)

0
Di{1− expit(γ>0 Z1i)}eθ0tdMi(t),

M0
k =

1
n

n

∑
i=1

∫ X(k)

0
(1−Di)expit(γ>0 Z1i)dMi(t), (3.63)

for k = 0, . . . ,n. We note that the score φ with true parameters can be alternatively expressed as

φ(θ0;β0,Λ0,γ0) = M1
n−M0

n. (3.64)

Since both integrands in (3.63) are nonnegative and bounded by τ(1∨ eθ0τ), we can apply

the Lemma 36 to get that both M1
k and M0

k , hence M1
k −M0

k , are martingales under filtration
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F M
k = σ{Ni(u),Yi(u+),Di,Zi : u ∈ [0, tk], i = 1, . . . ,n} satisfying, most importantly,

max
{
E
{
(M1

k −M1
k−1)

2|F M
k
}
,E
{
(M0

k −M0
k−1)

2|F M
k
}}
≤ 8τ

2(1∨ eθ0τ)2/n2. (3.65)

By the Cauchy-Schwartz inequality, we have

(M1
k −M0

k −M1
k−1 +M0

k−1)
2 ≤ 2(M1

k −M1
k−1)

2 +2(M0
k −M0

k−1)
2. (3.66)

Hence, we establish an upper bound for the quadratic variation of ψ(θ0;β0,Λ0,γ0) from (3.65)

and (3.66),

E
{
(M1

k −M1
k−1−M0

k +M0
k−1)

2|F M
k
}
≤ 32τ

2(1∨ eθ0τ)2/n2. (3.67)

As a result, the variance

σ
2
φ = Var{

√
nφ(θ0;β0,Λ0,γ0)}= nE

[
n

∑
i=1

E
{
(M1

k −M0
k −M1

k−1 +M0
k−1)

2|F M
k
}]

(3.68)

is finite, bounded by 32τ2(1∨ eθ0τ)2.

Now, we verify the Lindeberg condition for the martingale central limit theorem [Bro71].

The event

√
n|M1

k −M1
k−1−M0

k +M0
k−1|> ε (3.69)

occurs only if one of

√
n|M1

k −M1
k−1|> ε/2 or

√
n|M0

k −M0
k−1|> ε/2 (3.70)

occurs. Thus, we must have the following inequality

I(
√

n|M1
k −M1

k−1−M0
k +M0

k−1|> ε)

≤ I(
√

n|M1
k −M1

k−1|> ε/2)+ I(
√

n|M0
k −M0

k−1|> ε/2). (3.71)
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Along with (3.66), we have

n
n

∑
i=1

E
{
(M1

k −M1
k−1−M0

k +M0
k−1)

2;
√

n|M1
k −M0

k −M1
k−1 +M0

k−1|> ε
}

≤ 2n
n

∑
i=1

E
{
(M1

k −M1
k−1)

2;
√

n|M1
k −M1

k−1|> ε/2
}

+2n
n

∑
i=1

E
{
(M0

k −M0
k−1)

2;
√

n|M0
k −M0

k−1|> ε/2
}
. (3.72)

By Lemma 36, the limit of the right hand side in (3.72) is zero. Hence, we can apply the

martingale central limit theorem to

√
nσ
−1
φ

φ(θ0;β0,Λ0,γ0,Wi) N(0,1). (3.73)

Step 3: We define the asymptotic standard deviation of
√

n(θ̂−θ0) as

σ = σφ/E[D{1− expit(γ>0 Z1)}(eθ0X −1)/θ0]. (3.74)

Since θ̂ solves φ(θ; β̂, Λ̂(θ), γ̂) = 0, we have along with Lemma 29

√
nσ
−1(θ̂−θ0)−

√
n

σφ

φ(θ0;β0,γ0,Wi)

=

√
n(θ̂−θ0)

σφ

(
E[D{1− expit(γ>0 Z1)}(eθ0X −1)/θ0]

−1
n

n

∑
i=1

Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0

)
+op(1+

√
n|θ̂−θ0|). (3.75)

Again using the bound (3.61), we apply the Hoeffding’s inequality (as in Lemma 31) to establish

that

E[D{1− expit(γ>0 Z1)}(eθ0X −1)/θ0]−
1
n

n

∑
i=1

Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0 (3.76)
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is of order Op(n−1/2). Hence, the right hand side of (3.75) is of order op(1+
√

n|θ̂−θ0|). Along

with the normality (3.73), we establish the
√

n-tightness of the estimation error

|θ̂−θ0|= Op
(
n−1/2). (3.77)

Plugging in the rate of estimation error into the righthand side of (3.75), we obtain the asymptotic

equivalence

√
nσ
−1(θ̂−θ0)−

√
nσ
−1
φ

φn(θ0; β̂, γ̂) = op(1). (3.78)

Step 4: To show that σ̂−1 defined in (3.11) is a consistent estimator for σ−1, we decom-

pose the numerator of σ̂2 into

1
n

n

∑
i=1

δi{Di− expit(γ̂>Z1i)}2e2θ̂DiXi

=
1
n

n

∑
i=1

[
δi{Di− expit(γ̂>Z1i)}2e2θ̂DiXi−{Di− expit(γ>0 Z1i)}2e2θ0DiXi

]
+

1
n

n

∑
i=1

∫
τ

0
[{Di− expit(γ>0 Z1i)}eθ0Dit ]2dNi(t). (3.79)

By mean value theorem, the first term in the righthand side of (3.79) can be written in terms of

θξ = (1−ξ)θ0 +ξθ̂ and γξ = (1−ξ)γ0 +ξγ̂ with some ξ ∈ [0,1],

(γ0− γ̂)>

n

n

∑
i=1

δi{Di− expit(γ>
ξ

Z1i)}e
γ>

ξ
Z1ie2θξDiXi(

1+ eγ
>
ξ

Z1i
)2

+
(θ̂−θ0)

n

n

∑
i=1

2δiDiXi{1− expit(γ>
ξ

Z1i)}2e2θξDiXi

= Op(‖γ̂−γ0‖1 + |θ̂−θ0|). (3.80)

The second term on the righthand side of (3.79) is the optional quadratic variation of φ(θ0;β0,γ0,Λ0)

bounded by e2θ0τ. By the Hoeffding’s inequality (as in Lemma 31), we have the concentration of
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the second term around the variance of φ(θ0;β0,γ0,Λ0),

1
n

n

∑
i=1

∫
τ

0
[{Di− expit(γ>0 Z1i)}eθ0Dit ]2dNi(t)

= E
(∫

τ

0
[{Di− expit(γ>0 Z1i)}eθ0Dit ]2dNi(t)

)
+Op(n−1/2)

= σ
2
φ +op(1). (3.81)

Putting (3.80) and (3.81) together, we have the numerator of σ̂2 (3.58) equals σ2
φ
+op(1). Simi-

larly, we decompose the denominator of σ into

1
n

n

∑
i=1

[
Di{1− expit(γ̂>Z1i)}

eθ̂Xi−1

θ̂0
−Di{1− expit(γ>0 Z1i)}

eθ0Xi−1
θ0

]
(3.82)

minus (3.76). Again, we have (3.82) is of order Op(|θ̂−θ0|+‖γ̂−γ0‖1) = op(1) through mean

value theorem. Under the additive hazards model (3.1), we must have

β>0 Z+dΛ0(t)≥ 0 (3.83)

for all Z such that Pr(D = 0|Z)> 0. Under Assumptions 5-ii, 5-v and 5-vi, we can establish a

lower bound for σφ

σφ = E
[∫

τ

0
{D− expit(γ>0 Z)}2e2Dθ0tY (t){(Dθ0 +β

>
0 Z)dt +dΛ0(t)}

]
= E

[∫
τ

0
{D− expit(γ>0 Z)}2eDθ0tE{Y (t)|Z;D = 0}{(Dθ0 +β

>
0 Z)dt +dΛ0(t)}

]
= E

[∫
τ

0
D{1− expit(γ>0 Z)}2eθ0tE{Y (τ)|Z;D = 0}θ0dt

]
+E
[∫

τ

0
{D− expit(γ>0 Z)}2eDθ0tdE{N(t)|Z;D = 0}

]
≥ 0+ e1∧θ0τE[Var(D|Z)E{N(τ)|Z;D = 0}]

≥ e1∧θ0τ
εN . (3.84)
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Hence, the limit is bounded by

σ
−1 =

E
[
D{1− expit(γ>0 Z1)} eθ0X−1

θ0

]
√

E[δ{D− expit(γ>0 Z1)}2e2Dθ0X ]
≤ τeθ0τ√

e1∧θ0τεN
. (3.85)

Therefore, we have

σ̂
−1 = σ

−1 +op(1) (3.86)

by continuous mapping theorem.

Combining the results (3.73), (3.78) and (3.86), we obtain

√
nσ̂
−1(θ̂−θ0) N(0,1). (3.87)

This is the desired conclusion. We hence finish the proof.

Proof of Theorem 10. We obtain from Lemma 30 the same representation as (3.55),

θ̂c f −θ0 =
φ(θ0;β0,Λ0,γ0)+op(|θ̂−θ0|)

n−1 ∑
n
i=1 Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0

. (3.88)

The rest of the proof is identical to the Steps 1-4 in the proof of Theorem 9.

Proof of Lemma 27. To see that zero is always in the LASSO regularization path, we shall spell

out the associated penalty factor. The gradient of the loss lβ(β) =β>Hnβ−2β>hn in the additive

hazards model LASSO (3.12) at β = 0 is

∇lβ(0) =−hn =−
2
n

n

∑
i=1

∫
τ

0

[{
Zi− Z̄(t)

}
dNi(t)

]
.

Since we are studying a pure computational matter, we may use the computable vector ∇lβ(0)

to set up λ > ‖∇lβ(0)‖∞ [GRS12]. With the λ thus chosen, we have β = 0 satisfy the LASSO

KKT condition
∥∥∇lβ(0)

∥∥
∞
< λ. Therefore, zero is an element in the regularization path. By the

optimality of λ̂β according to (3.35), l∗
β
(0) = 0 must be an upper bound for l∗

β
(β̂(̂λβ)).
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Then, we derive the lower bound of l∗
β
(β̂(̂λβ)) related to the magnitude Mβ

(
β̂
)

. We

apply the Cauchy-Schwartz inequality to the linear term in l∗
β
(β),

l∗
β
(β) =Mβ (β)

2−2
∫

τ

0
E∗
[
β> {Z∗−µ(t)}dN∗(t)

]
=Mβ (β)

2−2
∫

τ

0
E∗
[
β> {Z∗−µ(t)}Y∗(t)g(t,Z∗)dt

]
≥Mβ (β)

(
Mβ (β)−2

√∫
τ

0
E∗ [Y∗(t)g(t,Z∗)2]dt

)
.

Putting the upper bound and lower bound to gather, we must have

Mβ (β)≤ 2

√∫
τ

0
E∗ [Y∗(t)g(t,Z∗)2]dt.

This is the conclusion of the Lemma.

Proof of Lemma 28. To see that the intercept only estimator γ̂0 is always in the LASSO reg-

ularization path, we shall spell out the associated penalty factor. The intercept only esti-

mator γ̂0 makes constant predictions expit(γ̂>0 z) = D̄ = ∑
n
i=1 Di/n. The gradient of the loss

∇lγ(γ) =−n−1
∑

n
i=1{Diγ

>Zi− log(1− eγ
>Zi)} in the logistic regression LASSO (3.13) is

∇lγ(γ̂0) =−
1
n

n

∑
i=1

{Di− D̄}

 1

Zi

=

 0

−1
n ∑

n
i=1{Di− D̄}Zi

 .

Since we are studying a pure computational matter, we may use the computable vector ∇lβ(0)

to set up λ > ‖1
n ∑

n
i=1{Di− D̄}Zi‖∞ [FHT10]. Notice that we follow [FHT10] in (3.13) by

leaving the intercept term not penalized. With the λ thus chosen, we have the first coordinate

in |∇lγ(γ̂0)| being zero and the rest strictly smaller than λ. Therefore, γ̂0 is an element in the

regularization path. By the Markov inequality, γ̂0 converges to (log(1−1/E∗(D∗)),0, . . . ,0).

Under Assumption 5-v, εY ≤ E∗(D∗)≤ 1− εY , so we have an upper bound for l∗γ (γ̂0),

l∗γ (γ̂0)≤−E∗(D∗) log(E∗(D∗))−{1−E∗(D∗)} log(1−E∗(D∗))+op(1)≤− log(εY )+op(1).
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By the optimality of λ̂γ according to (3.35), the upper bound of l∗γ (γ̂0) must also be an upper

bound for l∗γ (γ̂ (̂λγ)).

Define the set Z = {z :E∗(D∗|Z∗= z)≥ εY/2,E∗(1−D∗|Z∗= z)≥ εY/2 and E∗(Y∗(τ)|Z∗=

z,D∗ = 0)≥ εY/2}. We decompose

E∗[Var
∗
(D∗|Z∗)E∗{Y∗(τ)|Z∗,D∗ = 0}]

=E∗[E∗(D∗|Z∗)E∗(1−D∗|Z∗)E∗{Y∗(τ)|Z∗,D∗ = 0}]

=E∗[E∗(D∗|Z∗)E∗(1−D∗|Z∗)E∗{Y∗(τ)|Z∗,D∗ = 0}I(Z∗ ∈ Z)]

+E∗[E∗(D∗|Z∗)E∗(1−D∗|Z∗)E∗{Y∗(τ)|Z∗,D∗ = 0}I(Z∗ ∈ Zc)]

≤P∗(Z∗ ∈ Z)+ εY/2.

To satisfy Assumption 5-v, P∗(Z∗ ∈ Z) must be at least εY/2. Then, we derive a lower bound of

l∗γ (γ) by analyzing the expectation in set Z

l∗γ (γ) =−E∗[D∗ log{expit(γ>Z∗)}+(1−D∗) log{1− expit(γ>Z∗)}]

≥−E∗[D∗ log{expit(γ>Z∗)}+(1−D∗) log{1− expit(γ>Z∗)}|Z∗ ∈ Z]P∗(Z∗ ∈ Z)

≥− ε
2
Y/4E∗[log{expit(γ>Z∗)}|Z∗ ∈ Z]− ε

2
Y/4E∗[log{1− expit(γ>Z∗)}|Z∗ ∈ Z]

≥− ε
2
Y/4log

(
E∗{expit(γ>Z∗)|Z∗ ∈ Z}

)
− ε

2
Y/4log

(
E∗{1− expit(γ>Z∗)|Z∗ ∈ Z}

)
.

The last step above is the consequence of the Jensen’s inequality.

Putting the upper bound and lower bound of l∗γ (γ̂ (̂λγ)) together, we have

E∗{expit(γ̂ (̂λγ)
>Z∗)|Z∗ ∈ Z} ≥ e−4log(εY )/ε2

Y ,

E∗{1− expit(γ̂ (̂λγ)
>Z∗)|Z∗ ∈ Z} ≥ e−4log(εY )/ε2

Y .
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The bounds above are connected to Mγ

(
γ̂ (̂λγ)

)
through

E∗{w0
∗(γ̂ (̂λγ))X∗} ≥ τε

3
Y/8E∗{expit(γ̂ (̂λγ)

>Z∗)|Z∗ ∈ Z},

E∗{w1
∗(γ̂ (̂λγ))Y∗(τ)} ≥ ε

3
Y/8E∗{1− expit(γ̂ (̂λγ)

>Z∗)|Z∗ ∈ Z}.

Therefore, we obtain the bound Mγ

(
γ̂ (̂λγ)

)
≤ (1+ τ−1)8ε

−3
Y e−4log(εY )/ε2

Y .

Proof of Theorem 11. We prove the theorem under two setups given by Assumptions 7(a) and

7(b) separately. We denote the cross-fitted weighted Breslow estimator Λ̌ defined in (3.17) as

Λ̌
( j)(t,θ;β,γ) =

∫ t

0

∑i∈I j w1
i (γ){dNi(u)−Yi(u)(Diθ+β

>Zi)du}
∑i∈I j w1

i (γ)Yi(u)
, (3.89)

constructed with samples in fold- j. We denote the cross-fitted score associated with the closed

form estimator θ̌c f for fold- j as

ψ
( j) (θ;β,γ)

=φ
( j)
(

θ;β, Λ̌( j)(·,θ;β,γ),γ
)

=− 1
n ∑

i∈I j

w0
i (γ̂

( j))
∫

τ

0

(
dNi(u)−Yi(u)

[
β̂( j)>{Zi− Z̃( j)(u; γ̂( j))}du+dÑ( j)(u; γ̂( j))

])
− θ

n ∑
i∈I j

(1−Di)expit(γ>Z1i)Xi, (3.90)

(a) First, we show that the true parameter is identified by the score. That is

ψ
( j)
(

θ0; β̂( j), γ̂( j)
)
= op(1). (3.91)

We decompose

ψ
( j)
(

θ0; β̂( j), γ̂( j)
)
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= −1
n ∑

i∈I j

{Di− expit(γ̂( j)>Z1i)}
∫

τ

0
eDiθ0tYi(t)(β̂( j)−β0)

>Zidt

+
1
n ∑

i′∈I j

∫
τ

0

∑i∈I j{Di− expit(γ̂( j)>Z1i)}eDiθ0tYi(t)

∑i∈I j w1
i (γ̂

( j))Yi(t)
w1

i′(γ̂
( j))Yi′(t)(β̂

( j)−β0)
>Zi′dt

+
1
n ∑

i∈I j

{Di− expit(γ̂( j)Z1i)}
∫

τ

0
eDiθ0tdMi(t)

−1
n ∑

i′∈I j

∫
τ

0

∑i∈I j{Di− expit(γ̂( j)>Z1i)}eDiθ0tYi(t)

∑i∈I j w1
i (γ̂

( j))Yi(t)
w1

i′(γ̂
( j))dMi′(t)

= Q1 +Q2 +Q3 +Q4. (3.92)

We shall show that each term Q1-Q4 in (3.92) is negligible.

By applying twice the Cauchy-Schwartz inequality, first to the sum then to the integral, we

have a bound for Q1,

|Q1| ≤
1
n ∑

i∈I j

1eKθτ

∫
τ

0
Yi(t)(β̂( j)−β0)

>Zidt ≤ 1
n

√
|I j|eKθτ

√
∑
i∈I j

{(β̂( j)−β0)>Zi}2Xi.

(3.93)

Also from Assumption 7a-ii, the squared average model deviance E∗{(β̂( j)−β0)
>Z∗}2X∗

converges to zero. Applying the Markov inequality conditioning on the out-of-fold data,

we have its asymptotic equivalence to the empirical counterpart

1
|I j| ∑i∈I j

{(β̂( j)−β0)
>Zi}2Xi = E∗{(β̂( j)−β0)

>Z∗}2X∗+op(1) = op(1). (3.94)

Plugging (3.94) to (3.93), we conclude that Q1 = op(1).

Similarly for Q2, we apply the Cauchy-Schwartz inequality twice,

|Q2| ≤
1
n

√√√√∫
τ

0

[
∑i∈I j{Di− expit(γ̂( j)>Z1i)}eDiθ0tYi(t)

∑i∈I j w1
i (γ̂

( j))Yi(t)

]2

∑
i∈I j

w2
i (t;θ0, γ̂( j))Yi(t)dt

×
√

∑
i∈I j

{(β̂( j)−β0)>Zi}2Xi. (3.95)
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From Assumption 7a-ii, we have a lower bound for E∗{w1
∗(γ̂

( j))Y∗(τ)} ≥ K−1
Mg

. Applying

the Hoeffding’s inequality to the empirical version of the process, we get 1
|I j|∑i∈I j w1

i (γ̂
( j))Yi(τ)≥

K−1
Mg

/2 with probability tending to one. The denominator term in Q2 is decreasing process

in t thus achieves it minimal at t = τ, so it has the lower bound K−1
Mg

/2 with probability

tending to one. Along with (3.94), we conclude from (3.95) with probability tending to one

Q2 ≤ 2e2Kθτ
τKMg

Op

(
Dβ

(
β̂( j),β0

))
= op(1). (3.96)

Q3 and Q4 are martingale integrals with respect to filtration

FI j,t = σ
(
{(Ni(u),Yi(u),Di,Zi) : i ∈ I j,u≤ t}∪{(Xi,δi,Di,Zi) : i ∈ I− j}

)
.

The integrands are bounded with probability tending to one under Assumption 7a-ii, so we

obtain by Lemma 37 that Q3 = Op

(
n−1/2

)
and Q4 = Op

(
n−1/2

)
.

We combine the results for Q1−Q4 to establish the identifiability result (3.91).

By the Assumption 7a-ii, we have the denominator in θ̌ (3.33)

Q′ =−1
n

k

∑
j=1

∑
i∈I j

(1−Di)expit(γ̂( j)>Z1 j)Xi. (3.97)

bounded from below by 2kK−1
Mg

with probability tending to one.

Utilizing the linearity of ψ, we can write

(θ̌−θ0) =
1
n ∑

k
j=1 ψ( j)(θ0; β̂( j), γ̂( j))

Q′
= op(1). (3.98)

We hence obtain the consistency of θ̌.
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(b) Under model (3.31), we have for i ∈ I j the following martingale with respect to filtration

FI j,t = σ
(
{(Ni(u),Yi(u),Di,Zi) : i ∈ I j,u≤ t}∪{(Xi,δi,Di,Zi) : i ∈ I− j}

)
Mi(t) = Ni(t)−

∫
τ

0
Yi(t){Diθ0 +g0(t;Zi)}dt. (3.99)

First, we prove the identifiability result like (3.91). We decompose

ψ
( j)(θ0; β̂( j), γ̂( j))

=
1
n ∑

i∈I j

{Di− expit(γ̂( j)>Z1i)}
∫

τ

0
eDiθ0tdMi(t)

+
1
n ∑

i∈I j

∫
τ

0
{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)g0(t;Zi)dt

−
∫

τ

0

1
n ∑

i∈I j

{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)β̂( j)>{Zi−µ(t)}dt

+
∫

τ

0

1
n ∑

i∈I j

{Di− expit(γ>0 Z1i)}eDiθ0tYi(t){θ0dt−dÑ( j)(t; γ̂( j))}

+
∫

τ

0

1
n ∑

i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}eDiθ0tYi(t)g0(t;Zi)dt

−
∫

τ

0

1
n ∑

i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}eDiθ0tYi(t)β̂( j)>{Zi−µ(t)}dt

+
∫

τ

0

1
n ∑

i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}eDiθ0tYi(t){θ0dt−dÑ( j)(t; γ̂( j))}

−
∫

τ

0

1
n ∑

i∈I j

{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)β̂( j)>{µ(t)− Z̃( j)(t; γ̂( j))}dt

−
∫

τ

0

1
n ∑

i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}eDiθ0tYi(t)β̂( j)>{µ(t)− Z̃( j)(t; γ̂( j))}dt

= Q1 +Q2 +Q3 +Q4 +Q5 +Q6 +Q7 +Q8 +Q9. (3.100)

Q1 is the final element of the FI j,t-martingale,

Q1,t =
1
n ∑

i∈I j

{Di− expit(γ̂( j)>Z1i)}
∫ t

0
eDiθ0udMi(u). (3.101)
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The measurable quadratic variation of Q1,t is

〈Q1,·〉t =
1
n2 ∑

i∈I j

{Di− expit(γ̂( j)>Z1i)}2
∫ t

0
e2Diθ0uYi(u)g0(t;Zi)du. (3.102)

By the Cauchy-Schwartz’s inequality, we have the upper bound for

Var(Q1) = E〈Q1,·〉τ ≤ E

 1
n2

√
ne2Kθττ

√
∑
i∈I j

∫
τ

0
g0(t;Zi)dt

 .

Under Assumption 7(b), we have

√
∑
i∈I j

∫
τ

0
g0(t;Zi)dt = Op(nKΛ)

by Markov’s inequality. Thus, we have Var(Q1) = O(KΛ/n) = o(1). By the Tchebychev’s

inequality, we obtain Q1 = op(1).

Using Lemma 41, we have for Q2

E[{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)g0(t;Zi)]

=E(E[{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)|Zi]g0(t;Zi))

=0.

The variance of Q2 has bound

Var(Q2) =
1
n
E

([∫
τ

0
{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)g0(t;Zi)dt

]2
)

≤1
n

e2KθτE
[∫

τ

0
Yi(t)g2

0(t;Zi)dt
]
.

Under Assumption 7(b), we have Var(Q2) = O(Kλ/n) = o(1). By the Tchebychev’s

inequality, we obtain Q2 = op(1).
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Similarly for Q3, we obtain from Lemma 41 that E(Q3) = 0. Using the above fact, we give

a bound for the variance of Q3,

Var(Q3)≤
1
n
E

([∫
τ

0
{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)β̂( j)>{Zi−µ(t)}dt

]2
)

≤1
n

e2KθτE
(∫

τ

0

[
β̂( j)>{Zi−µ(t)}

]2
Yi(t)dt

)
. (3.103)

Under Assumption 7(b), we have Var(Q3) = O
({

Mβ

(
β̂( j)

)}2
/n
)

= o(1). By the

Tchebychev’s inequality, we obtain Q3 = op(1).

For Q4, we also have from Lemma 41

sup
t∈[0,τ]

∣∣∣∣∣1n ∑
i∈I j

{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)

∣∣∣∣∣= Op

(
n−

1
2

)
.

Again using the Cauchy-Schwartz inequality, we bound the total variation of the measure

in Q4,

∫
τ

0
[{θ0 + β̂

( j)>Z̃( j)(t; γ̂( j))}dt +dÑ( j)(t; γ̂( j))]dt

≤Kθτ+1+

√√√√∫
τ

0

n{
∑i∈I j w1

i (γ̂
( j))Yi(t)

}2 dt

√
e2Kθτ ∑

i∈I j

Xi

(
β̂( j)>Zi

)2
.

Using Lemma 42 and the Markov inequality, we have the bound above is of order

Op

(
‖β̂( j)‖I j

)
. Therefore, we obtain under Assumption 7b-iii Q4 = Op

(
‖β̂( j)‖I jn

− 1
2

)
=

op(1).

For terms Q5, we use the Cauchy-Schwartz inequality

|Q5| ≤
1
n

√
τ ∑

i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}2

√
e2Kθτ ∑

i∈I j

∫
τ

0
g2

0(t;Zi)Yi(t)dt.
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We apply the Markov’s inequality under Assumptions 7(b) and 7b-iii to get

Q5 = Op

(
Dγ

(
γ̂( j),γ0

)
KΛ

)
= op(1).

For terms Q6, we use the Cauchy-Schwartz inequality

|Q6| ≤

√√√√τ

n ∑
i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}2 e2Kθτ

n ∑
i∈I j

∫
τ

0
[β̂( j)>{Zi−µ(t)}]2Yi(t)dt

We apply the Markov’s inequality under Assumption 7b-iii to get

Q6 = Op

(
Dγ

(
γ̂( j),γ0

)
Mβ

(
β̂( j)

))
= op(1).

In term Q7, we establish a uniform bound

sup
t∈[0,τ]

∣∣∣∣∣1n ∑
i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}eDiθ0tYi(t)

∣∣∣∣∣
≤1

n

√
∑
i∈I j

{expit(γ>0 Z1i)− expit(γ̂( j)>Z1i)}2
√
|I j|e2Kθτ

by the Cauchy-Schwartz inequality. Hence, the process above has a bound of order

Op

(
Dγ

(
γ̂( j),γ0

))
uniformly in t ∈ [0,τ]. We have the same upper bound for the total

variation of the measure as that in Q4, Op

(
Mβ

(
β̂( j)

))
. Thus, we establish the order

Q7 = Op

(
Dγ

(
γ̂( j),γ0

)
Mβ

(
β̂( j)

))
= op(1).

For terms Q8 and Q9, we use the Cauchy-Schwartz inequality to bound the discrepancy

between µ(t) in Mβ

(
β̂( j)

)
and the empirical Z̃( j)(t, β̂( j)),

|β̂( j)>{µ(t)− Z̃( j)(t, γ̂( j))}|2 =

∣∣∣∣∣∑i∈I j

w0
i (γ̂

( j))Yi(t)

∑i′∈I j w0
i′(γ̂

( j))Yi′(t)
β̂( j)>{µ(t)−Zi}

∣∣∣∣∣
2

≤
∑i′∈I j{w

0
i′(γ̂

( j))Yi′(t)}2{
∑i′∈I j w0

i′(γ̂
( j))Yi′(t)

}2 ∑
i∈I j

[
β̂( j)> {Zi−µ(t)}

]2
Yi(t)
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≤
∑i∈I j

[
β̂( j)> {Zi−µ(t)}

]2
Yi(t)

∑i′∈I j w0
i′(γ̂

( j))Yi′(t)
. (3.104)

The last step above comes from the fact that w0
i′(γ̂

( j))Yi′(t) ∈ [0,1]. Under Assumption

(7b-iii), we obtain

∫
τ

0
|β̂( j)>{µ(t)− Z̃( j)(t, γ̂( j))}|2dt = Op

(
Mβ(β̂

( j))
)
= op

(
Dγ(γ̂

( j))−1
)
.

Therefore, we follow the strategy of Q3 and Q6 to get Q8 = op(1) and Q9 = op(1).

Combining the results for Q1-Q9, we establish that ψ( j)(θ0; β̂( j), γ̂( j)) = op(1).

By the Lemma 42, we have the denominator in θ̌ (3.33)

Q′ =−1
n

k

∑
j=1

∑
i∈I j

(1−Di)expit(γ̂( j)>Z1 j)Xi (3.105)

is bounded from below by kεY/2.

Along with the identifiability of θ0 by ψ, we obtain the consistency for θ̌.

3.7.3 Preliminary Results

Lemma 29. Under the Assumption 5, we have for θ in a compact neighborhood of θ0 such that

|θ| ≤ Kθ

√
nφ

(
θ; β̂, Λ̂(·,θ), γ̂

)
=
√

nφ(θ0;β0,Λ0,γ0)−
1√
n
(θ−θ0)

n

∑
i=1

Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0

+op(1+
√

n|θ−θ0|)+Op(
√

n|θ−θ0|2)+Op(
√

n|θ−θ0|3). (3.106)
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Lemma 30. Suppose the |I j| � n. Under the Assumption 6, we have for θ in a compact neighbor-

hood of θ0 such that |θ| ≤ Kθ

√
nφ

( j)
(

θ; β̂( j), Λ̂( j)(·,θ), γ̂( j)
)

=
√

nφ
( j)(θ0;β0,Λ0,γ0)−

1√
n
(θ−θ0) ∑

i∈I j

Di{1− expit(γ>0 Z1i)}(eθ0Xi−1)/θ0

+op(1+
√

n|θ−θ0|)+Op(
√

n|θ−θ0|2)+Op(
√

n|θ−θ0|3). (3.106)

3.7.4 Classical Concentration Inequalities

Lemma 31. Hoeffding’s Inequality Theorem 2 p.4 in [Hoe63]. If X1, . . . ,Xn are independent

and ai ≤ Xi ≤ bi (i = 1,2, . . . ,n), then for t > 0

Pr(X̄−µ≥ t)≤ exp
(
− 2n2t2

∑
n
i=1(bi−ai)2

)
.

Lemma 32. A version of Azuma’s Inequality Theorem 1 p.3 and Remark 7 p.5 in [Sas13]. Let

{Xk,Fk}k = 0∞ be a discrete-parameter real-valued martingale sequence such that for every

k, the condition |Xk−Xk−1| ≤ ak holds almost surely for some non-negative constants {ak}∞
k=1.

Then

Pr
(

max
k∈1,...,n

|Xk−X0| ≥ t
)
≤ 2exp

(
− t2

2∑
n
k=1 a2

k

)
Lemma 33. Bernstein Inequality for Sub-exponential Random Variables

a) For i.i.d. sample as in Chapter 2 Section 1.3 of [Wai19]:

Let X be a random variable with mean E(X) = µ. If X satisfies the Bernstein’s condition

with parameter b, i.e. ∣∣∣E{(X−µ)k
}∣∣∣≤ 1

2
k!bk, for k = 2,3, . . . ,
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the following concentration inequality holds for an i.i.d. sample X1, . . . ,Xn

P

(∣∣∣∣∣1n n

∑
i=1

Xi−µ

∣∣∣∣∣≥ t

)
≤ 2exp

{
− nt2

2(b2 +bt)

}
.

b) For martingale as in Chapter 2 Section 2.2 of [Wai19]: Let M1, . . . ,Mn be a martingale

series with respect to filtration F1 ⊂ ·· · ⊂ Fn. If the martingale differences satisfies the

Bernstein’s condition with parameter b, i.e.

∣∣∣E{(M j+1−M j)
k|F j

}∣∣∣≤ 1
2

k!bk, for j = 1, . . . ,n−1 and k = 2,3, . . . ,

the following concentration inequality holds

P

(
sup

j=1,...,n
|M j| ≥ t

)
≤ 2exp

{
− t2

2(nb2 +bt)

}
.

Lemma 34. Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality [DKW56, Mas90] Let X1, . . . ,Xn

be i.i.d. samples from a distribution with c.d.f. F(x). Define the empirical c.d.f. as Fn(x) =

n−1
∑

n
i=1 I(Xi ≤ x). For any ε > 0,

Pr
(

sup
x∈R
|Fn(x)−F(x)|

)
≤ 2e−2nε2

.

3.7.5 New Concentration Results

All the concentration results are adapted to the cross-fitting scheme. We repeated use the

following two notations for index set and index set specific filtration.

Definition 1. We denote I ⊂ {1, . . . ,n} be a index set independent of observed data {Wi, i =

1, . . . ,n} whose cardinality satisfies |I| � n.
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Definition 2. We define the filtration for index set I as

FI,t = σ({Ni(u),Yi(u+),Di,Zi : u≤ t, i ∈ I}∪{δi,Xi,Di,Zi : i ∈ Ic}) .

Remark 17. The difference between FI,t with Yi(u+) and the usual filtration defined with Yi(u)

is that the former contains information about independent out of fold samples and the censoring

times at present time t so that the observed censoring times are stopping times with respect to

FI,t . On the other hand, we still have the martingale property

E{Mi(t)|FI,t−}= E{Mi(t)|F ∗I,t−}= Mi(t−) (3.107)

because the extra censoring information at t is not in FI,t−, and out of fold samples are indepen-

dent of Mi(t) for i ∈ I.

Lemma 35. Define the filtration F(i)
t = σ({Ni(u),Yi(u),Di,Zi : u≤ t}). Let Hi(t) be a F(i)

τ -

measurable random process, satisfying P(supt∈[0,τ] |Hi(t)|< KH) = 1. Under the model (3.1) and

the Assumption 5-iv,

P
(∫

τ

0
Hi(t)Yi(t)β>0 Zidt > x

)
(3.108)

Moreover, we have

∣∣∣∣∫ τ

0
E{Hi(t)Yi(t)β>0 Zi}dt

∣∣∣∣< 2K2
H(KΛ +θ0∨0)τ+4KH (3.109)

and the concentration result for all ε ∈
[
0,
√

2
]

and index set I defined as in Definition 1

P

(∣∣∣∣∣ 1
|I|∑i∈I

∫
τ

0
Hi(t)Yi(t)β>0 Zidt−

∫
τ

0
E{Hi(t)Yi(t)β>0 Zi}dt

∣∣∣∣∣> Kε

)
< 4e−|I|ε

2/2, (3.110)

where K = 2KH(KΛ +θ0∨0)τ+2|µ|+4KH .
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Lemma 36. For an index set I defined as in Definition 1, we define the filtration FI,t as in

Definition 2. Let Mi(t) be the martingale (3.3) under model (3.1) and Hi(t) be a nonnegative

FI,t-measurable random processes, satisfying P(supt∈[0,τ] |Hi(t)|< KH) = 1. Denote the order

statistics of observed times as X(1), . . . ,X(|I|). Then,

MH
k =

1
|I|∑i∈I

∫ X(k)

0
Hi(t)dMi(t), k = 0, . . . , |I| (3.111)

is a martingale with respect to FI,t , and we have for j ≥ 2

∣∣E{(MH
k −MH

k−1)
j|F H

k−1
}∣∣≤ j!(2KH/|I|) j. (3.112)

Besides, for every ε > KH/
√
|I| we have

|I|∑
i∈I

E
{
(MH

k −MH
k−1)

2;
√
|I||MH

k −MH
k−1|> ε

}
<(ε2|I|+2KH

√
|I|+2K2

H)e
−ε
√
|I|/KH . (3.113)

Lemma 37. For an index set I defined as in Definition 1, we define the filtration FI,t as in

Definition 2. Let Mi(t) be the martingale (3.3) under model (3.1) and Hi(t) be a FI,t-measurable

random processes, satisfying P(supt∈[0,τ] |Hi(t)|< KH) = 1. Denote X(1), . . . ,X(|I|) be the order

statistics of observed times. Under Assumption 5-iv, for any ε < 1,

P

(∣∣∣∣∣ 1
|I|∑i∈I

∫
τ

0
Hi(t)dMi(t)

∣∣∣∣∣< 8KHε

)
> 1−4e−|I|ε

2/2. (3.114)

Moreover, we also have

τ∨
t=0

{
1
|I|∑i∈I

∫ t

0
Hi(u)dMi(u)

}
≤ 1
|I|∑i∈I

τ∨
t=0

∫ t

0
Hi(u)dMi(u)< 4KH +8KHε (3.115)
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where
∨

τ
t=0 f (t) is the total variation of function f (t) over [0,τ], and

sup
t∈[0,τ]

∣∣∣∣∣ 1
|I|∑i∈I

∫ t

0
Hi(u)dMi(u)

∣∣∣∣∣< 8KHε+2KH/|I| (3.116)

whenever the event in (3.114) occurs.

Lemma 38. For an index set I defined as in Definition 1, we define the filtration FI,t as in Defini-

tion 2. Let Mi(t) be the martingale (3.3) under model (3.1) and Hi(t) be a FI,t-measurable random

processes with tight supremum norm maxi=1,...,n supt∈[0,τ] |Hi(t)| = Op(1). Under Assumption

5-iv, for any ε < 1, ∣∣∣∣∣ 1
|I|∑i∈I

∫
τ

0
Hi(t)dMi(t)

∣∣∣∣∣= Op

(
n−

1
2

)
. (3.117)

Lemma 39. Let Hi be a random variable, satisfying P
(
supi=1,...,n |Hi| ≤ KH

)
= 1. For an index

set I defined as in Definition 1, we have the concentration result

P

(
sup

t∈[0,τ]

∣∣∣∣∣ 1
|I|∑i∈I

HiYi(t)−E{HiYi(t)}

∣∣∣∣∣> 5KHε

)
< 8e−|I|ε

2/2. (3.118)

Lemma 40. For an index set I defined as in Definition 1, we define the filtration FI,t as in Defini-

tion 2. Let Mi(t) be the martingale (3.3) under model (3.1) and Hi(t) be FI,t-measurable random

processes, satisfying P(supt∈[0,τ] |Hi(t)|< KH) = 1. Let H be a set of functions, potentially not

FI,t-measurable, but having a finite bound P
(

supH̃∈H supt∈[0,τ] |H̃(t)|< KV

)
= 1 and a finite

total variation P
(

supH̃∈H
∨

τ
0 H̃(t)< KV

)
= 1, where

∨
τ
0 is the total variation on [0,τ]. Under

Assumptions 5-iv and 5-v,

P

(
sup

H̃∈H

∣∣∣∣∣ 1
|I|∑i∈I

∫
τ

0
H̃(t)Hi(t)dMi(t)

∣∣∣∣∣> 16KHKV ε+2KHKV/|I|

)
< 4e−|I|ε

2/2. (3.119)
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3.7.6 Other Auxiliary Results

Lemma 41. Under Assumption (5-ii) and models (3.1), or more general partially linear additive

risks model (3.31), we have

E[eDiθ0tYi(t)|Di,Zi] = E{Yi(t)|Zi,Di = 0}. (3.120)

Under model (3.2),

E[{Di− expit(γ>0 Zi)}eDiθ0tYi(t)] = 0 and E[{Di− expit(γ>0 Zi)}eDiθ0tYi(t)Zi] = 0. (3.121)

Moreover, we have for index set I defined as in Definition 1 under Assumption 5-iii,

sup
t∈[0,τ]

∣∣∣∣∣ 1
|I|∑i∈I

{Di− expit(γ>0 Zi)}eDiθ0tYi(t)

∣∣∣∣∣= Op

(
n−

1
2

)
and

sup
t∈[0,τ]

∥∥∥∥∥ 1
|I|∑i∈I

{Di− expit(γ>0 Zi)}eDiθ0tYi(t)Zi

∥∥∥∥∥= Op

(
log(p)√

n

)
. (3.122)

Lemma 42. Suppose model (3.2) is correct, and γ̂ is consistent for γ0, i.e. Dγ(γ̂,γ0) = op(1).

For an index set I defined as in Definition 1, we have under Assumption 5-v

lim
n→∞

P

(
inf

t∈[0,τ]

1
|I|∑i∈I

w1
i (γ̂)Yi(t)> e−Kθτ

εY/2

)
= 1 (3.123)

and lim
n→∞

P

(
inf

t∈[0,τ]

1
|I|∑i∈I

(1−Di)expit(γ̂>Z1i)Yi(t)> εY/2

)
= 1. (3.124)

3.7.7 Proofs of the Auxiliary Results

Definition 3. By the Mean Value Theorem for eθt− eθ0t , we have

eθt− eθ0t = (θ−θ0)teθt t , for θt = ξtθ0 +(1−ξt)θ with ξt ∈ [0,1]. (3.125)
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In a bounded set of θ such that |θ|< Kθ, we have the bound supt∈[0,τ] e
θt t ≤ eKθτ. Since

θt depends on θ, potentially estimated with all information from the data, the process eθt t is not

necessarily FI j,t-adapted, causing extra complication in our proof.

Proof of Lemma 29. We define the filtration as

Fn,t = σ({Ni(u),Yi(u+),Di,Zi : u≤ t, i = 1, . . . ,n}) ,

using I = {1, . . . ,n} in Definition 2.

We prove the statement (3.106) by investigating each terms in the following expansion,

√
nφ(θ; β̂, Λ̂(·,θ), γ̂)

=
√

nφ(θ;β0,Λ0,γ0)

−n−
1
2

n

∑
i=1
{Di− expit(γ>0 Z1,i)}

∫
τ

0
eDiθtYi(t)(β̂−β0)

>Zidt

−n−
1
2

n

∑
i=1
{Di− expit(γ>0 Z1,i)}

∫
τ

0
eDiθtYi(t)

{
dΛ̂(t,θ)−dΛ0(t)

}
−n−

1
2

n

∑
i=1
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}

∫
τ

0
eDiθtdMi(t;θ,β0,Λ0)

+n−
1
2 (β̂−β0)

>
n

∑
i=1
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}

∫
τ

0
eDiθtYi(t)Zidt

+n−
1
2

n

∑
i=1
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}

∫
τ

0
eDiθtYi(t)

{
dΛ̂(t,θ)−dΛ0(t)

}
= Q1 +Q2 +Q3 +Q4 +Q5 +Q6. (3.126)

The first term Q1 contains the leading terms. The rest Q2−Q6 are the remainders.

We expand Q1 with respect to θ at θ0,

Q1 =
√

nφ(θ0;β0,Λ0,γ0)
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−n−
1
2 (θ−θ0)

n

∑
i=1
{Di− expit(γ>0 Z1,i)}

∫
τ

0
eθ0tDiYi(t)dt

+
1√
n
(θ−θ0)

n

∑
i=1
{Di− expit(γ>0 Z1,i)}

∫
τ

0
eθ0tDitdMi(t)

+
1√
n
(θ−θ0)

2
n

∑
i=1
{Di− expit(γ>0 Z1,i)}

∫
τ

0
eθttDi{t2dMi(t)+ tYi(t)dt}

= Q1,1 +Q1,2 +Q1,3 +Q1,4, (3.127)

where Q1,4 comes from the Mean Value Theorem for eθt− eθ0t (3.125). Q1,1 is the leading term.

Each summands in Q1,2 is bounded by eθ0τ, so Q1,2 is of order Op(
√

n|θ− θ0|). Through an

integral calculation, we have

∫
τ

0
eDiθ0tDiYi(t)dt = Di

∫ Xi

0
eθ0tdt = Di(eθ0Xi−1)/θ0, (3.128)

so we can write Q1,2 as

− 1√
n
(θ−θ0)

n

∑
i=1

Di{1− expit(γ>0 Z1,i)}(eθ0Xi−1)/θ0. (3.129)

In Q1,3, we have a Fn,t-martingale

1
n

n

∑
i=1

∫
τ

0
{Di− expit(γ>0 Z1,i)}eDiθ0tDitdMi(t), (3.130)

whose integrand is bounded by eθ0τ. By Lemma 37, (3.130) is of order Op(n−1/2). Hence, Q1,3

is of order Op(|θ−θ0|) = op(
√

n|θ−θ0|). Note that we need to prove our statement uniformly

in θ, so we cannot directly utilize the martingale structure in Q1,4∫
τ

0
eθt t 1

n

n

∑
i=1
{Di− expit(γ>0 Z1,i)}Dit2dMi(t). (3.131)

Alternatively, we use Lemma 40 to establish the rate of (3.131) as Op(n−1/2). The other term in

Q1,4

1
n

n

∑
i=1
{Di− expit(γ>0 Z1,i)}

∫
τ

0
eθt tDitYi(t)dt (3.132)
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is bounded by eKθττ. Then, Q1,4 is of order Op(
√

n|θ−θ0|2). Therefore, we have term Q1 equals

1√
n

n

∑
i=1

φ(θ0;β0,Λ0,γ0)−
1√
n
(θ−θ0)

n

∑
i=1

Di{1− expit(γ>0 Z1,i)}(eθ0Xi−1)/θ0 (3.133)

plus an op(
√

n|θ−θ0|)+Op(
√

n|θ−θ0|2) error.

We expand Q2 with respect to θ,

Q2 = −n−
1
2

n

∑
i=1
{Di− expit(γ>0 Z1,i)}

∫
τ

0
eDiθ0tYi(t)(β̂−β0)

>Zidt

−n−
1
2 (θ−θ0)

n

∑
i=1

Di{1− expit(γ>0 Z1,i)}
∫

τ

0
eθt tYi(t)(β̂−β0)

>Zidt

= Q2,1 +Q2,2, (3.134)

where Q2,2 comes from the Mean Value Theorem for eθt−eθ0t as in Definition 3. By the Hölder’s

inequality, we have an bound for Q2,1,

|Q2,1| ≤
√

nτ‖β̂−β‖1 sup
t∈[0,τ]

∥∥∥∥∥1
n

n

∑
i=1
{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)Zi

∥∥∥∥∥
∞

.

From Lemma 41, we have

sup
t∈[0,τ]

∥∥∥∥∥1
n

n

∑
i=1
{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)Zi

∥∥∥∥∥
∞

= Op

(
log(p)√

n

)
.

Under Assumption 5-ix, we have Q2,1 = Op

(
log(p)‖β̂−β‖1

)
= op(1). We again apply the

Hölder’s inequality to find the upper bound for Q2,2,

|Q2,2| ≤
√

n|θ−θ0|τ‖β̂−β‖1 sup
t∈[0,τ]

∥∥∥∥∥1
n

n

∑
i=1

Di{1− expit(γ>0 Z1,i)}eθ0tYi(t)Zi

∥∥∥∥∥
∞

.

Under Assumptions 5-iii and 5-ix, we have Q2,2 = Op

(√
n|θ−θ0|‖β̂−β‖1

)
= o(
√

n|θ−θ0|).

Hence, term Q2 = Q2,1 +Q2,2 is of order op(
√

n|θ−θ0|+1).
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Very similar to our treatment of Q2, we expand Q3 with respect to θ,

Q3 = −
√

n
∫

τ

0

[
1
n

n

∑
i=1
{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)

]{
dΛ̂(t,θ)−dΛ̂(t,θ0)

}
−
√

n
∫

τ

0

[
1
n

n

∑
i=1
{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)

]{
dΛ̂(t,θ0)−dΛ0(t)

}
−n−

1
2 (θ−θ0)

n

∑
i=1

Di{1− expit(γ>0 Z1,i)}
∫

τ

0
teθttYi(t)

{
dΛ̂(t,θ)−dΛ0(t)

}
= Q3,1 +Q3,2 +Q3,3, (3.135)

where Q3,3 comes from the Mean Value Theorem for eθt− eθ0t as in Definition 3. From Lemma

41, we know that,

sup
t∈[0,τ]

∣∣∣∣∣1n n

∑
i=1
{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)

∣∣∣∣∣= Op

(
n−

1
2

)
.

Together with Assumption 5-viii, the integral Q3,1 as an upper bound

√
n sup

t∈[0,τ]

∣∣∣∣∣1n n

∑
i=1
{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)

∣∣∣∣∣ τ∨
t=0

{
Λ̂(t,θ)− Λ̂(t,θ0)

}
= op(

√
n|θ−θ0|).

We apply (3.9) in Assumption 5-ix to Q3,2 and get Q3,2 = op(1). By Helly-Bray argument

[Mur94], we have a bound for Q3,3

|Q3,3| ≤
√

n|θ−θ0|
{∣∣∣Λ̂(τ,θ)−Λ0(τ)

∣∣∣τeKθτ +
∫

τ

0

∣∣∣Λ̂(t,θ)−Λ0(t)
∣∣∣dteθtt

}
.

Under Assumptions 5-viii and 5-ix, our bound gives the rate Q3,3 = op(
√

n|θ−θ0|)+Op(
√

n|θ−

θ0|2). Therefore, Q3 = Q3,1 +Q3,2 +Q3,3 = op(
√

n|θ−θ0|+1)+Op(
√

n|θ−θ0|2).

In terms Q4−Q6, we have the model estimation error for the logistic regression. By a

Mean Value Theorem argument, we have a uniform bound for the error

∣∣∣expit(γ̂>Z1,i)− expit(γ>0 Z1,i)
∣∣∣≤ ‖γ̂−γ‖1 sup

i=1,...,n
‖Zi‖∞ (3.136)
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because the derivative of function expit(·) is uniformly bounded by one.

We expand Q4 with respect to θ,

Q4 =−n−
1
2

n

∑
i=1

∫
τ

0
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}eDiθ0tdMi(t)

−n−
1
2 (θ−θ0)

n

∑
i=1

∫
τ

0
eθt tDi{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}tdMi(t)

+n−
1
2 (θ−θ0)

n

∑
i=1
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}

∫
τ

0
Yi(t)Dieθt t(tθt− tθ0 +1)dt

=Q4,1 +Q4,2 +Q4,3, (3.137)

where Q4,3 comes from the Mean Value Theorem for eθt − eθ0t as in Definition 3. γ̂ is Fn,t-

measurable, so we can apply Lemma 38 to Q4,1. According to (3.136) and Assumptions 5-iii

and 5-ix, Q4,1 = Op(‖γ̂−γ‖1) = op(1). For Q4,2, we apply Lemma 40 with H be the set of

{eθt t : |θt | ≤ Kθ} to get Q4,2 = Op(|θ−θ0|). For Q4,3, we use the uniform bound from (3.136)

|Q4,3| ≤
√

n|θ−θ0|‖γ̂−γ‖1 sup
i=1,...,n

‖Zi‖∞eKθτ(2Kθτ+1).

Under Assumption 5-iii and 5-ix, Q4,3 = op(
√

n|θ−θ0|). Therefore, we obtain Q4 = op(
√

n|θ−

θ0|+1).

We apply the Hölder’s inequality and (3.122) to Q5,

|Q5| ≤
√

n‖γ̂−γ0‖1‖β̂−β0‖1eKθτ
τ

{
max

i=1,...,n
‖Zi‖∞

}2

.

Under Assumptions 5-iii and 5-ix, we have Q5 = op(1).

We expand Q6 with respect to θ similar to Q3,

Q6 =
√

n
∫

τ

0

[
1
n

n

∑
i=1
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}eDiθ0tYi(t)

]{
dΛ̂(t,θ)−dΛ̂(t,θ0)

}
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+
√

n
1
n

n

∑
i=1
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}

∫
τ

0
eDiθ0tYi(t)

{
dΛ̂(t,θ0)−dΛ0(t)

}
+n−

1
2 (θ−θ0)

n

∑
i=1
{expit(γ̂>Z1,i)− expit(γ>0 Z1,i)}

∫
τ

0
teθt tYi(t)

{
dΛ̂(t,θ)−dΛ0(t)

}
=Q6,1 +Q6,2 +Q6,3,

where Q6,3 comes from the Mean Value Theorem for eθt− eθ0t as in Definition 3. By (3.122) and

Assumptions 5-viii, we have an upper bound for the integral Q6,1

√
n sup

t∈[0,τ]
‖γ̂−γ‖1 sup

i=1,...,n
‖Zi‖∞

τ∨
t=0

{
Λ̂(t,θ)− Λ̂(t,θ0)

}
= op(

√
n|θ−θ0|).

By Helly-Bray argument [Mur94], we have a bound for the integral∣∣∣∣∫ τ

0
eDiθ0tYi(t)

{
dΛ̂(t,θ0)−dΛ0(t)

}∣∣∣∣≤{∣∣∣Λ̂(τ,θ0)−Λ0(τ)
∣∣∣eKθτ +

∫
τ

0

∣∣∣Λ̂(t,θ0)−Λ0(t)
∣∣∣deθt t

}
.

Apply the bound to Q6,2 along with (3.122), we have

Q6,2 = Op

(
√

n‖γ̂−γ0‖1 max
i=1,...,n

‖Zi‖∞ sup
t∈[0,τ]

∣∣∣Λ̂(t,θ0)−Λ0(t)
∣∣∣) .

Under Assumptions 5-iii and 5-ix, Q6,2 = op(1). Similarly, we have Q6,3 = Op
(√

n|θ−θ0|2
)
+

op(
√

n|θ− θ0|). Hence, we obtain the rate Q6 = Q6,1 + Q6,2 + Q6,3 = Op
(√

n|θ−θ0|2
)
+

op(
√

n|θ−θ0|+1).

Combining the results for Q1-Q6, we finish the proof.

Proof of Lemma 30. The proof of the lemma follows fundamentally the same strategy as that of

Lemma 29. The main difference is that we use the Cauchy Schwartz inequality instead of the

Hölder’s inequality to derive MSE type of bounds.

We define the filtration for the j-th fold as

FI j,t = σ
(
{Ni(u),Yi(u+),Di,Zi : u≤ t, i ∈ I j}∪{δi,Xi,Di,Zi : i ∈ I− j}

)
,
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using I = I j in Definition 2.

We prove the statement (3.106) by investigating each terms in the following expansion,

√
nφ

( j)(θ; β̂( j), Λ̂( j)(·,θ), γ̂( j))

=
√

nφ
( j)(θ;β0,Λ0,γ0)

−n−
1
2 ∑

i∈I j

{Di− expit(γ>0 Z1,i)}
∫

τ

0
eDiθtYi(t)(β̂( j)−β0)

>Zidt

−n−
1
2 ∑

i∈I j

{Di− expit(γ>0 Z1,i)}
∫

τ

0
eDiθtYi(t)

{
dΛ̂

( j)(t,θ)−dΛ0(t)
}

−n−
1
2 ∑

i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}
∫

τ

0
eDiθtdMi(t;θ,β0,Λ0)

+n−
1
2 ∑

i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}
∫

τ

0
eDiθtYi(t)(β̂( j)−β0)

>Zidt

+n−
1
2 ∑

i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}
∫

τ

0
eDiθtYi(t)

{
dΛ̂

( j)(t,θ)−dΛ0(t)
}

= Q1 +Q2 +Q3 +Q4 +Q5 +Q6. (3.138)

The first term Q1 contains the leading terms. The rest Q2−Q6 are the remainders.

Following exactly the same derivations in the proof of Lemma 29, we have term Q1 equals

1√
n ∑

i∈I j

φ
( j)(θ0;β0,Λ0,γ0)−

1√
n
(θ−θ0) ∑

i∈I j

Di{1− expit(γ>0 Z1,i)}(eθ0Xi−1)/θ0 (3.139)

plus an op(
√

n|θ−θ0|)+Op(
√

n|θ−θ0|2) error.

We expand Q2 with respect to θ,

Q2 = −n−
1
2 ∑

i∈I j

{Di− expit(γ>0 Z1,i)}
∫

τ

0
eDiθ0tYi(t)(β̂( j)−β0)

>Zidt

−n−
1
2 (θ−θ0) ∑

i∈I j

Di{1− expit(γ>0 Z1,i)}
∫

τ

0
eθt tYi(t)(β̂( j)−β0)

>Zidt

= Q2,1 +Q2,2, (3.140)
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where Q2,2 comes from the Mean Value Theorem for eθt− eθ0t as in Definition 3. Denote

Q2,1,i = {Di− expit(γ>0 Z1,i)}
∫

τ

0
eDiθ0tYi(t)(β̂( j)−β0)

>Zidt.

Using the independence across folds, we can calculate the expectation for i ∈ I j

E(Q2,1,i)

=
∫

τ

0
E(β̂( j)−β0)

>E[{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)Zi]dt

=
∫

τ

0
E(β̂( j)−β0)

>E[E{Di− expit(γ>0 Z1,i)|Zi}E{eDiθ0tYi(t)|Di,Zi}Zi]dt, (3.141)

which equals zero by Lemma 41. Hence, E(Q2,1) = 0. We calculate the variance of Q2,1

Var(Q2,1) = n−1
∑
i∈I j

E(Q2
2,1,i)+2n−1

∑
i< j,{i, j}⊂I j

E(Q2,1,iQ2,1, j). (3.142)

Note that we have ∣∣∣∣∫ τ

0
eDiθtYi(t)(β̂( j)−β0)

>Zidt
∣∣∣∣≤ eKθτXi

∣∣∣(β̂( j)−β0)
>Zi

∣∣∣ . (3.143)

Under Assumption 6-i,

n−1
∑
i∈I j

E(Q2
2,1,i)≤

|I j|
n

e2Kθτ
τ

{
Dβ

(
β̂( j),β0

)}2
= Op(r∗2n ) = op(1).

Using the independence across folds again, we have

E(Q2,1,iQ2,1, j) = E{E(Q2,1,i|β̂( j))E(Q2,1, j|β̂( j))}= 0. (3.144)

Thus, we establish the rate Var(Q2,1) = op(1). By the Tchebychev’s inequality, we have Q2,1 =

op(1). For Q2,2, we denote

Q2,2,i = Di{1− expit(γ>0 Z1,i)}
∫

τ

0
eθt tYi(t)(β̂( j)−β0)

>Zidt (3.145)
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apply Cauchy-Schwartz inequality to give an upper bound

|Q2,2| ≤ n−
1
2 (θ−θ0)

√
n ∑

i∈I j

Q2
2,2,i. (3.146)

Under Assumption 6-i, we have from bound (3.143)

E{Q2
2,2,i} ≤ e2Kθτ

τ

{
Dβ

(
β̂( j),β0

)}2
= op(1).

Applying the Markov’s inequality to ∑i∈I j Q2
2,2,i, we have Q2,2 = op(

√
n|θ−θ0|). Hence, term

Q2 is of order op(
√

n|θ−θ0|+1).

Very similar to our treatment of Q2, we expand Q3 with respect to θ,

Q3 = −
√

n
∫

τ

0

[
1
n ∑

i∈I j

{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)

]{
dΛ̂

( j)(t,θ)−dΛ̂
( j)(t,θ0)

}
−n−

1
2 ∑

i∈I j

{Di− expit(γ>0 Z1,i)}
∫

τ

0
eDiθ0tYi(t)

{
dΛ̂

( j)(t,θ0)−dΛ0(t)
}

−n−
1
2 (θ−θ0) ∑

i∈I j

Di{1− expit(γ>0 Z1,i)}
∫

τ

0
teDiθt tYi(t)

{
dΛ̂

( j)(t,θ)−dΛ0(t)
}

= Q3,1 +Q3,2 +Q3,3, (3.147)

where Q3,3 comes from the Mean Value Theorem for eθt− eθ0t as in Definition 3. From Lemma

41, we have,

sup
t∈[0,τ]

∣∣∣∣∣1n ∑
i∈I j

{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)

∣∣∣∣∣= Op

(
n−

1
2

)
.

Together with Assumption 5-viii, the integral Q3,1 as an upper bound

√
n sup

t∈[0,τ]

∣∣∣∣∣1n ∑
i∈I j

{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)

∣∣∣∣∣ τ∨
t=0

{
Λ̂
( j)(t,θ)− Λ̂

( j)(t,θ0)
}
= op(

√
n|θ−θ0|).

Denote

Q3,2,i = {Di− expit(γ>0 Z1,i)}
∫

τ

0
eDiθ0tYi(t)

{
dΛ̂

( j)(t,θ0)−dΛ0(t)
}
.
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Using the independence across folds, we can calculate the expectation for i ∈ I j according to

Lemma 41

E(Q3,2,i) =
∫

τ

0
E
(
E[{Di− expit(γ>0 Z1,i)}eDiθ0tYi(t)|Zi]

)[
dE
{

Λ̂
( j)(t,θ0)

}
−dΛ0(t)

]
,

which equals zero by Lemma 41. Hence, E(Q3,2) = 0. Moreover, we have a diminishing bound

for Q3,2,i by Helly-Bray argument [Mur94] under Assumption 6-i

max
i∈I j
|Q3,2,i| ≤

∣∣∣Λ̂( j)(τ,θ0)−Λ0(τ)
∣∣∣eKθτ +

∫
τ

0

∣∣∣Λ̂( j)(t,θ0)−Λ0(t)
∣∣∣deθ0t = op(1).

We denote M3,2,m = 1√
n ∑i∈I1:m

j
Q3,2,i as the partial sum of the first m terms in Q3,2 whose indices

are in I1:m
j . It is a martingale with respect to filtration F3,2,m = σ

(
{Wi : i ∈ I1:m

j ∪ I− j}
)

. By the

Azuma’s inequality (as in Lemma 32), we have Q3,2 = M3,2,|I j| = op(1). Similarly, we apply

Helly-Bray argument [Mur94] to show that

|Q3,3| ≤
√

n|θ−θ0|
{∣∣∣Λ̂( j)(τ,θ)−Λ0(τ)

∣∣∣τeKθτ +
∫

τ

0

∣∣∣Λ̂( j)(t,θ)−Λ0(t)
∣∣∣deθt t

}
.

Under Assumptions 5-viii and 6-i, we have Q3,3 = op(
√

n|θ−θ0|)+Op(
√

n|θ−θ0|2). Therefore,

Q3 = Q3,1 +Q3,2 +Q3,3 = op(
√

n|θ−θ0|+1)+Op(
√

n|θ−θ0|2).

We expand Q4 with respect to θ,

Q4 =−n−
1
2 ∑

i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}
∫

τ

0
eDiθ0tdMi(t)

−n−
1
2 (θ−θ0) ∑

i∈I j

∫
τ

0
eθt tDi{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}tdMi(t)

+n−
1
2 (θ−θ0) ∑

i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}
∫

τ

0
Yi(t)Dieθt t(tθt− tθ0 +1)dt

=Q4,1 +Q4,2 +Q4,3, (3.148)

214



where Q4,3 comes from the Mean Value Theorem for eθt− eθ0t as in Definition 3. Denote

Q4,1,i(t) = {expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}
∫ t

0
eDiθ0tdMi(t).

Since {expit(γ̂( j)>Z1,i)−expit(γ>0 Z1,i)}eDiθ0t is FI j,t-adapted, each Q4,1,i(t) is FI j,t-martingales.

Then, E{Q4,1}= 0. The optional quadratic variation of ∑i∈I j Q4,1,i is[
∑
i∈I j

Q4,1,i

]
t

= ∑
i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}2
∫ t

0
e2Diθ0tdNi(t)

≤∑
i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}2e2Kθτ.

Under Assumption 6-i, we have E{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}2 =
{

Dγ

(
γ̂( j),γ0

)}2
=

op(1). Hence,

Var(Q4,1) = n−1
∑
i∈I j

E

{[
∑
i∈I j

Q4,1,i

]
τ

}
= op(1).

We obtain Q4,1 = op(1) by the Tchebychev’s inequality. For Q4,2, we apply Lemma 40 with H be

the set of {eθt t : |θt | ≤ Kθ} to get Q4,2 = Op(|θ−θ0|). For Q4,3, we apply the Cauchy-Schwartz

inequality

|Q4,3| ≤ n−
1
2 |θ−θ0|

√
∑
i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}2
√

ne2Kθτ(Kθτ+ τ)2.

Again with E{expit(γ̂( j)>Z1,i)−expit(γ>0 Z1,i)}2 =Op(q∗n)= op(1), we obtain from the Markov’s

inequality that ∑i∈I j{expit(γ̂( j)>Z1,i)−expit(γ>0 Z1,i)}2 = op(1). Hence, Q4,3 = op(
√

n|θ−θ0|).

Therefore, we obtain Q4 = op(
√

n|θ−θ0|+1).

We apply the Cauchy-Schwartz inequality to Q5,

|Q5| ≤ n−
1
2 eKθτ

√
∑
i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}2

√
∑
i∈I j

{
(β̂( j)−β0)>Zi

}2
X2

i .

215



Using the independence across folds, we apply the Markov’s inequality to get

Q5 = Op

(√
nDγ

(
γ̂( j),γ0

)
Dβ

(
β̂( j),β0

))
,

which is op(1) under Assumption 6-i.

Similarly, we apply the Cauchy-Schwartz inequality to Q6,

|Q6| ≤n−
1
2 eKθτ

√
∑
i∈I j

{expit(γ̂( j)>Z1,i)− expit(γ>0 Z1,i)}2

×

√√√√∑
i∈I j

[∫
τ

0
eDiθtYi(t)

{
dΛ̂( j)(t,θ)−dΛ0(t)

}]2

.

Under Assumption 5-vii, we can apply the Helly-Bray argument [Mur94] to find the bound,∣∣∣∣∫ τ

0
eDiθtYi(t)

{
dΛ̂

( j)(t,θ)−dΛ0(t)
}∣∣∣∣≤ ∣∣∣eDiθXi

{
Λ̂
( j)(Xi,θ)−Λ0(Xi)

}∣∣∣
+

∣∣∣∣∫ Xi

0
Diθeθt

{
Λ̂
( j)(t,θ)−Λ0(t)

}
dt
∣∣∣∣ .

Hence, Q6 = Op

(√
nDγ

(
γ̂( j),γ0

)
supt∈[0,τ]

∣∣∣Λ̂( j)(t,θ)−Λ0

∣∣∣), which is op(1+
√

n|θ−θ0|) un-

der Assumptions 5-viii and 6-i.

Combining the results for Q1-Q6, we finish the prove.

Proof of Lemma 35. We prove the result for nonnegative Hi(t). The general result can be obtained

through decomposing Hi(t) into the difference of two nonnegative processes

Hi(t) = Hi(t)∨0− [−{Hi(t)∧0}] (3.149)

and use the union bound with the result for the nonnegative processes.

Under the model (3.1), µ satisfies P(Diθ0 +β
>
0 Zi ≥−dΛ0(t)) = 1. By the Assumption

5-iv, we have a lower bound P(β>0 Zi >−KΛ−θ0∨0) = 1. The β>0 Zi is potentially unbounded
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from above, so we have to study the bound for the upper tail. For x > KH(KΛ +θ0∨0)τ,

P
(∫

τ

0
Hi(t)Yi(t)β>0 Zidt > x

)
≤ P

(
KHXiβ

>
0 Zi > x

)
≤ E

[
I(β>0 Zi > KΛ +θ0∨0)I(Ci > x/KH)exp

{
− x

KH

Diθ0 +β
>
0 Zi

β>0 Zi
−Λ0

(
x/KH

β>0 Zi

)}]
≤ e−x/(2KH). (3.150)

Denote Ai =
∫

τ

0 Hi(t)Yi(t)β>0 Zidt, µ=
∫

τ

0 E{Hi(t)Yi(t)β>0 Zi}dt and KA =KH(KΛ+θ0∨0)τ. First,

we can find a bound for the expectation

|µ| =

∣∣∣∣∫ τ

0
E{Hi(t)Yi(t)β>0 Zi}dt

∣∣∣∣
≤

∣∣∣∣∫ τ

0
E{Hi(t)Yi(t)β>0 ZiI(|β>0 Zi|< KA)}dt

∣∣∣∣
+

∣∣∣∣E{∫ τ

0
Hi(t)Yi(t)β>0 ZiI(β>0 Zi ≥ KA)dt

}∣∣∣∣
≤ KHKAτ+

∫
∞

0
P
(∫

τ

0
Hi(t)Yi(t)β>0 ZiI(β>0 Zi ≥ KA)dt > x

)
dx

≤ KHKA +2KH . (3.151)

Then, we bound the centered moments for k ≥ 2

E(Ai−µ)k = E{(Ai−µ)kI(Ai < KA +µ∨0)}+E{(Ai−µ)kI(Ai ≥ KA +µ∨0)}

≤ (KA + |µ|)k +
∫

∞

0
P{(Ai−µ)kI(Ai ≥ KA +µ∨0)> x}dx

≤ (KA + |µ|)k +
∫ (KA−µ∧0)k

0
P(Ai ≥ KA +µ∨0)dx

+
∫

∞

(KA−µ∧0)k
P(Ai > x1/k +µ)dx

≤ 2(KA + |µ|)k + k!(2KH)
k

≤ k!(KA + |µ|+2KH)
k (3.152)
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Thus, Ai is sub-exponential. By Bernstein inequality for sub-exponential random variables (as in

Lemma 33), we have for any ε ∈ [0,
√

2]

P

(∣∣∣∣∣ 1
|I|∑i∈I

Ai−µ

∣∣∣∣∣> ε(KA + |µ|+2KH)

)
< 2e−|I|ε

2/2. (3.153)

We thus complete the proof.

Proof of Lemma 36. Let X(1), . . . ,X(|I|) be the order statistics of observed times. Under filtration

FI,t , they are ordered stopping times (see Definition 2 and Remark 17). By optional stopping

theorem [Dur10], we construct a discrete stopped martingale

MH
k =

1
|I|∑i∈I

∫ X(k)

0
Hi(t)dMi(t) (3.154)

under filtration F H
k = σ{Ni(u),Yi(u+),Di,Zi,X(k) : u ∈ [0,X(k)], i ∈ I}. The increment of the

discrete martingale has two components,

MH
k −MH

k−1 =
1
|I|∑i∈I

Hi(X(k))dNi(X(k))

− 1
|I|∑i∈I

Yi(X(k−1))
∫ X(k)

X(k−1)

Hi(t)[{Diθ0 +β
>
0 Zi}dt +dΛ0(t)], (3.155)

one from the jumps of Ni(t) and the other from the compensator. Under Assumption 5-iv, there is

almost surely no ties in the observed event times, so we have a bound

P

(∣∣∣∣∣ 1
|I|∑i∈I

Hi(X(k))dNi(X(k))

∣∣∣∣∣≤ KH/|I|

)
= P

(
1
|I|

max
i∈I

Hi(X(k))≤ KH/|I|
)
= 1. (3.156)

The compensator term in (3.155), second on the right hand side, is potentially unbounded. We

have to study its tail distribution. Conditioning on F H
k−1, we calculate the distribution of X(k) as

P(X(k) ≥ X(k−1)+ x|F H
k−1)
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=
|I|

∏
i=1

P(Ci∧Ti ≥ X(k−1)+ x|Ci∧Ti ≥ X(k−1))
Yi(X(k−1))

≤ exp

[
−∑

i∈I
Yi(X(k−1)){(Diθ0 +β

>
0 Zi)x+Λ0(X(k−1)+ x)−Λ0(X(k−1))}

]
. (3.157)

We denote the function in the exponential index as

A(x) = ∑
i∈I

Yi(X(k−1)){(Diθ0 +β
>
0 Zi)x+Λ0(X(k−1)+ x)−Λ0(X(k−1))}. (3.158)

Note that A(x) is nondecreasing, so its inverse A−1(x) is well defined. Next, we evaluate the tail

distribution of the compensator term

P

(
1
|I|∑i∈I

Yi(X(k−1))
∫ X(k)

X(k−1)

Hi(t)[{Diθ0 +β
>
0 Zi}dt +dΛ0(t)]≥ x

∣∣∣∣F H
k−1

)
≤ P(KHA(X(k)−X(k−1))/|I| ≥ x)

= P{X(k) ≥ X(k−1)+A−1(nx/KH)}

≤ e−|I|x/KH . (3.159)

For j ≥ 2, we calculate the moments

∣∣E{(MH
k −MH

k−1)
j|F H

k−1
}∣∣

≤

[
E


∣∣∣∣∣ 1
|I|∑i∈I

Hi(X(k))dNi(X(k))

∣∣∣∣∣
j ∣∣∣∣F H

k−1


1
j

+E


∣∣∣∣∣ 1
|I|∑i∈I

Yi(X(k−1))
∫ X(k)

X(k−1)

Hi(t)[{Diθ0 +β
>
0 Zi}dt +dΛ0(t)]

∣∣∣∣∣
j ∣∣∣∣F H

k−1


1
j ] j

≤

[
KH

|I|
+

{∫
∞

0
e−|I|x

1
j /KH dx

} 1
j
] j

=

[
KH

|I|
+

KH

|I|
( j!)

1
j

] j

≤ j!(2KH/|I|) j. (3.160)
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This statement above proves (3.112), the first conclusion of the lemma.

For ε > KH/
√
|I|, event √

|I||MH
k −MH

k−1|> ε (3.161)

occurs only if the following event occurs,

1
|I|∑i∈I

Hi(X(k))dNi(X(k))+ ε/
√
|I|

<
1
|I|∑i∈I

Yi(X(k−1))
∫ X(k)

X(k−1)

Hi(t)[{Diθ0 +β
>
0 Zi}dt +dΛ0(t)]. (3.162)

We can bound

E
{
(MH

k −MH
k−1)

2;
√
|I||MH

k −MH
k−1|> ε

}
≤ E

{(
1
|I|∑i∈I

Yi(X(k−1))
∫ X(k)

X(k−1)

Hi(t)[{Diθ0 +β
>
0 Zi}dt +dΛ0(t)]

)2

×I

(
1
|I|∑i∈I

Yi(X(k−1))
∫ X(k)

X(k−1)

Hi(t)[{Diθ0 +β
>
0 Zi}dt +dΛ0(t)]> ε/

√
|I|

)}
≤ ε2

|I|
e−ε
√
|I|/KH +

∫
∞

ε2/|I|
e−|I|

√
x/KH dx

=
ε2|I|+2KH

√
|I|+2K2

H
|I|2

e−ε
√
|I|/KH . (3.163)

This proves (3.113), the other conclusion of the lemma.

Proof of Lemma 37. Without loss of generality, we again prove the result for the nonnegative

Hi(t).

Let X(1), . . . ,X(|I|) be the order statistics of observed times. We define the sequence

MH
k , k = 1, . . . ,n, along with filtration F ∗k = FI,X(k) , as in Lemma 36. By Lemma 36, MH

k is

a F ∗k -martingale satisfying (3.112), so we can apply the Bernstein’s inequality for martingale
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differences (as in Lemma 33). For ε < 1, we have

P

(
sup

k=1,...,|I|

∣∣∣∣∣ 1
|I|∑i∈I

∫ X(i)

0
Hi(t)dMi(t)

∣∣∣∣∣> 4KHε

)
= P

(
sup

k=1,...,|I|
|MH

k |> 4KHε

)
< 2e−|I|ε

2/2.

(3.164)

This proves (3.114), the first result of the lemma.

The total variation of the integral with nonnegative Hi(t)’s can be written as

τ∨
t=0

{
1
|I|∑i∈I

∫ t

0
Hi(u)dMi(u)

}
=

1
|I|∑i∈I

τ∨
t=0

∫ t

0
Hi(u)dMi(u)

=
2
|I|∑i∈I

∫
τ

0
Hi(u)dNi(u)−

1
|I|∑i∈I

∫
τ

0
Hi(u)dMi(u).(3.165)

Hence, (3.115) the second result of the lemma follows directly from the first result (3.164).

To find the bound of variation between X(k−1) and X(k), simply consider that Hi(t) is

nonnegative while dNi(t) and Yi(t){(Diθ0+β
>
0 Zi)dt+dΛ0(t)} are nonnegative measures. Hence,

the extremal values in the intervals can be explicitly expressed as

sup
t∈[X(k−1),X(k))

1
|I|∑i∈I

∫ t

0
Hi(u)dMi(u) =

1
|I|∑i∈I

∫ X(k−1)

0
Hi(u)dMi(u) = MH

k−1, (3.166)

and

inf
t∈[X(k−1),X(k))

1
|I|∑i∈I

∫ t

0
Hi(u)dMi(u) =

1
|I|∑i∈I

∫ X(k)−

0
Hi(u)dMi(u) = MH

k −
Hik(X(k))

|I|
. (3.167)

Therefore,

sup
t∈[0,τ]

∣∣∣∣∣ 1
|I|∑i∈I

∫ t

0
Hi(u)dMi(u)

∣∣∣∣∣≤ sup
k=1,...,n

|MH
k |+KH/|I|. (3.168)

For general Hi(t), we simply decompose Hi(t) = H+
i (t)−H−i (t) and use the union

bound.
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Proof of Lemma 38. The proof uses the conclusion of Lemma 37. For any ε > 0, we can find Kε

according to the tightness of Hi(t) such that P
(

maxi=1,...,n supt∈[0,τ] |Hi(t)|> Kε

)
< ε/2. Define

the truncated processes Hi,ε(t) = (−Kε)∨{Hi(t)∧Kε}, which is still FI,t-adapted, as well as

bounded by Kε. By Lemma 37, we have

P

(∣∣∣∣∣ 1
|I|∑i∈I

∫
τ

0
Hi,ε(t)dMi(t)

∣∣∣∣∣< 8Kε

log(8/ε)√
|I|/2

)
> 1− ε/2.

Since Hi,ε(t) = Hi(t) for all i = 1, . . . ,n and t ∈ [0,τ] with probability at least 1− ε/2, we have

P

(∣∣∣∣∣ 1
|I|∑i∈I

∫
τ

0
Hi(t)dMi(t)

∣∣∣∣∣< 8Kε

log(8/ε)√
|I|/2

)
> 1− ε.

The last equation defines the rate in (3.117).

Proof of Lemma (39). Let Bi, i ∈ I, be independent Bernoulli random variables with rate (Hi +

KH)/(2KH). By a simple calculation, we have the following empirical distribution for BiXi

1
|I|∑i∈I

BiYi(t) =
1
|I|∑i∈I

I(BiXi ≥ t) and E{BiYi(t)}=
1

2KH
E{HiYi(t)}+

1
2
E{Y (t)}. (3.169)

We decompose

1
|I|∑i∈I

HiYi(t)−E{HiYi(t)} =
2KH

|I| ∑
i∈I

BiYi(t)−E{HiYi(t)}−KHE{Y (t)}

−KH

|I| ∑i∈I
Yi(t)+KHE{Y (t)}

−2KH

|I| ∑
i∈I

(
Bi−

Hi +KH

2KH

)
Yi(t). (3.170)

Applying the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (as in Lemma 34) to the first two

terms in (3.170), we have

P

(
sup

t∈[0,τ]

∣∣∣∣∣2KH

|I| ∑
i∈I

BiYi(t)−E{HiYi(t)}−KHE{Y (t)}

∣∣∣∣∣> KHε

)
≤ 2e−|I|ε

2/2 (3.171)

222



and P

(
sup

t∈[0,τ]

∣∣∣∣∣KH

|I| ∑i∈I
Yi(t)−KHE{Y (t)}

∣∣∣∣∣> KHε

)
≤ 2e−|I|ε

2/2. (3.172)

Denote X(i), i = 1, . . . ,n, as the order statistics of Xi’s. We further decompose the third term in

(3.170) as

2KH

|I| ∑
i∈I

(
Bi−

Hi +KH

2KH

)
Yi(X(k)) =

2KH

|I| ∑
i∈I

(
Bi−

Hi +KH

2KH

)
−2KH

|I|

k

∑
i=1

(
B(i)−

H(i)+KH

2KH

)
. (3.173)

By the Hoeffding’s inequality (as in Lemma 31), we bound the first term in (3.173)

P

(∣∣∣∣∣2KH

|I| ∑
i∈I

(
Bi−

Hi−KH

2KH

)∣∣∣∣∣> KHε

)
< 2e−|I|ε

2/2. (3.174)

Let (i) be the i-th element in fold I. We define a filtration F H
m = σ({(Hi,Xi) : i ∈ I}∪{B(i) : i =

1, . . . ,m}) under which we have the following martingale

MH
m =

2KH

|I|

m

∑
i=1

(
B(i)−

H(i)+KH

2KH

)
. (3.175)

By the Azuma’s inequality (as in Lemma 32), we have

P
(∣∣∣MH

|I|

∣∣∣> 2KHε

)
< 2e−|I|ε

2/2. (3.176)

We finish the proof by putting the concentration inequalities together.

Proof of Lemma 40. By Lemma 37, the probability that the event

1
n

n

∑
i=1

∫
τ

0
Hi(u)dMi(u)< 8KHε (3.177)

is no less than 1−4e−nε2/2. We shall show that∣∣∣∣∣1n n

∑
i=1

∫
τ

0
H̃(t)Hi(t)dMi(t)

∣∣∣∣∣< 16KHKV ε+2KHKV/n (3.178)
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on such event.

By Lemma 37, the following function

1
n

n

∑
i=1

∫ t

0
Hi(u)dMi(u) (3.179)

has total variation bounded by 4KH + 8KHε on event (3.178). As a result, we can apply the

Helly-Bray integration by parts [Mur94]

1
n

n

∑
i=1

∫
τ

0
H̃(t)Hi(t)dMi(t) =

H̃(τ)

n

n

∑
i=1

∫
τ

0
Hi(t)dMi(t)−

∫
τ

0

{
1
n

n

∑
i=1

∫ t

0
Hi(u)dMi(u)

}
dH̃(t).

(3.180)

By Lemma 37, both terms have bound on event (3.178)∣∣∣∣∣H̃(τ)

n

n

∑
i=1

∫
τ

0
Hi(t)dMi(t)

∣∣∣∣∣≤ KV ×8KHε, (3.181)∣∣∣∣∣
∫

τ

0

{
1
n

n

∑
i=1

∫ t

0
Hi(u)dMi(u)

}
dH̃(t)

∣∣∣∣∣≤ KV × (8KHε+2KH/n). (3.182)

Plugging in the upper bounds to (3.180) finish the proof.

Proof of Lemma 41. Since we assume that Ti and Ci are independent given Di and Zi, we have

E[Yi(t)|Di,Zi] = P(Ti∧Ci ≥ t|Di,Zi) = P(Ci ≥ t|Di,Zi)P(Ti ≥ t|Di,Zi). (3.183)

Under Assumption 5-ii, the censoring time is independent of treatment given covariates, so

P(Ci ≥ t|Di,Zi) = P(Ci ≥ t|Zi) (3.184)

is σ{Zi}−measurable. Under model (3.31),

P(Ti ≥ t|Di,Zi) = e
∫ t

0 λ(t;Di,Zi)dt = e−Diθ0t−
∫ t

0 g0(t;Zi)dt = e−Diθ0tP(Ti ≥ t|Di = 0,Zi). (3.185)
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Therefore, we have the following representation

E[eDiθ0tYi(t)|Di,Zi] = P(Ci ≥ t|Zi)e−
∫ t

0 g0(t;Zi)dt = E{Yi(t)|Zi,Di = 0}, (3.186)

which is obviously σ{Zi}−measurable. By the tower property of conditional expectation, we can

calculate the expectations for any σ{Zi}-measurable random variable Ui through

E[{Di− expit(γ>0 Zi)}eDiθ0tYi(t)Ui]

= E[{Di− expit(γ>0 Zi)}E{eDiθ0tYi(t)|Di,Zi}Ui]

= E[E{Di− expit(γ>0 Zi)|Zi}E{Yi(t)|Zi,Di = 0}Ui]

= 0. (3.187)

We obtain the two equations in (3.121) by setting Ui above as 1 and Zi, respectively.

To deliver the concentration result (3.122), we decompose

1
|I|∑i∈I

{Di− expit(γ>0 Z1i)}eDiθ0tYi(t) =
1
|I|∑i∈I

Di{1− expit(γ>0 Z1i)}Yi(t)

− 1
|I|∑i∈I

(1−Di)expit(γ>0 Z1i)}Yi(t).

Each coordinate of

1
|I|∑i∈I

Di{1− expit(γ>0 Z1,i)}Yi(t) and
1
|I|∑i∈I

expit(γ>0 Z1,i)Yi(t),

is bounded, so we can apply Lemma 39 to get

sup
t∈[0,τ]

∣∣∣∣∣eθ0t 1
|I|∑i∈I

Di{1− expit(γ>0 Z1,i)}Yi(t)− eθ0tE
[
Di{1− expit(γ>0 Z1,i)}Yi(t)

]∣∣∣∣∣= Op

(
n−

1
2

)
,

sup
t∈[0,τ]

∣∣∣∣∣ 1
|I|∑i∈I

(1−Di)expit(γ>0 Z1i)}Yi(t)−E
[
(1−Di)expit(γ>0 Z1i)}Yi(t)

]∣∣∣∣∣= Op

(
n−

1
2

)
.

(3.188)
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From (3.121), we know that

eθ0tE
[
Di{1− expit(γ>0 Z1,i)}Yi(t)

]
= E

[
(1−Di)expit(γ>0 Z1,i)Yi(t)

]
. (3.189)

Therefore, we have proved the first rate in (3.122) by combining (3.188) and (3.189). In the same

way under Assumption 5-iii, we have a concentration result from Lemma 39 for each coordinate

of 1
|I|∑i∈I{Di− expit(γ>0 Z1i)}eDiθ0tYi(t)Zi. We take the union bound to obtain the second rate in

(3.122).

Proof of Lemma 42. We provide the proof for the first result (3.123). The proof for the second

result (3.124) is identical. Since the weights w1
i (γ̂) are nonnegative and Yi(t)’s are non-increasing,

we have lower bound

1
|I|∑i∈I

w1
i (γ̂)Yi(t)≥

1
|I|∑i∈I

Di{1− expit(γ̂>Z1i)}Yi(τ). (3.190)

it is sufficient to show

lim
n→∞

P

(
1
|I|∑i∈I

w1
i (γ̂)Yi(τ)> εY/2

)
= 1. (3.191)

We decompose

1
|I|∑i∈I

w1
i (γ̂)Yi(τ) =

1
|I|∑i∈I

w1
i (γ0)Yi(τ)

− 1
|I|∑i∈I

Di{expit(γ̂>Z1i)− expit(γ>0 Z1i)}Yi(τ). (3.192)

The first term in (3.192) has expectation bounded away from zero by Assumption 5-v

E{w1
i (γ0)Yi(τ)}= E{Var(Di|Z1i)eθ0tE{Yi(τ)|Z1i,Di = 0}} ≥ e−Kθτ

εY . (3.193)
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Since w1
i (γ0)Yi(τ) are i.i.d. random variables in [0,1], we have by Hoeffding’s inequality (as in

Lemma 31),

1
|I|∑i∈I

w1
i (γ0)Yi(τ) = E{Var(Di|Z1i)eθ0tE{Yi(τ)|Z1i,Di = 0}}+Op(n−1/2)≥ e−Kθτ

εY +op(1).

(3.194)

By the Cauchy-Schwartz inequality, we have the bound for the second term in (3.192),∣∣∣∣∣ 1
|I|∑i∈I

Di{expit(γ̂>Z1i)− expit(γ>0 Z1i)}Yi(τ)

∣∣∣∣∣
≤

√
1
|I|∑i∈I

{expit(γ̂>Z1i)− expit(γ>0 Z1i)}2. (3.195)

By the Markov’s inequality, the bound above is of order Op
(
Dγ(γ̂,γ0)

)
= op(1). Therefore, we

have

1
|I|∑i∈I

w1
i (γ̂)Yi(τ)+op(1)≥ εY . (3.196)

Hence, we obtain (3.191), a sufficient condition for (3.123).
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application to an hiv/aids study. The Annals of Applied Statistics, 11(3):1763–1786,
2017.

[JM14] Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis
testing for high-dimensional regression. Journal of Machine Learning Research,
15:2869–2909, 2014.

[Joh83] S. Johansen. An extension of Cox’s regression model. International Statistics
Review, 51:165–174, 1983.

[Joh08] Brent A Johnson. Variable selection in semiparametric linear regression with
censored data. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(2):351–370, 2008.

233



[KC92] A. Y. Kuk and C.-H. Chen. A mixture model combining logistic regression with
proportional hazards regression. Biometrika, 79(3):531–541, 1992.

[KJ08] Y.-J. Kim and M. Jhun. Cure rate model with interval censored data. Statistics in
Medicine, 27(1):3–14, 2008.

[KLZ18] Suhyun Kang, Wenbin Lu, and Jiajia Zhang. On estimation of the optimal treatment
regime with the additive hazards model. Statistica Sinica, 28(3):1539–1560, 2018.

[KP02] John D. Kalbfleisch and Ross L. Prentice. The Statistical Analysis of Failure Time
Data (2nd ed.). John Wiley & Sons, Inc., Hoboken, New Jersey, 2002.

[Lem16] Sarah Lemler. Oracle inequalities for the lasso in the high-dimensional multiplica-
tive Aalen intensity model. Annales de l’Institut Henri Poincaré, Probabilités et
Statistiques, 52(2):981–1008, 2016.

[LL13] Wei Lin and Jinchi Lv. High-dimensional sparse additive hazards regression.
Journal of the American Statistical Association, 108(501):247–264, 2013.

[LM07] Chenlei Leng and Shuangge Ma. Path consitent model selection in additive risk
model via Lasso. Statistics in Medicine, 26:3753–3770, 2007.

[LMD88] S W Lagakos, L M Marraj, and V De Gruttola. Nonparametric analysis of truncated
survival data, with application to aids. Biometrika, 75:515–523, 1988.

[Lou82] T. Louis. Finding the observed information matrix when using the em algorithm.
Journal of the Royal Statistical Society, Series B, 44(2):226–233, 1982.

[LTS01] Chin-Shang Li, Jeremy MG Taylor, and Judy P Sy. Identifiability of cure models.
Statistics & Probability Letters, 54(4):389–395, 2001.

[LY91] T L Lai and Z Ying. Estimating a distribution function with truncated and censored
data. Annals of Statistics, 19:417–442, 1991.

[LY94] Dan Yu Lin and Zhiliang Ying. Semiparametric analysis of the additive risk model.
Biometrika, 81(1):61–71, 1994.

[LY04] W. Lu and Z. Ying. On semiparametric transformation cure models. Biometrika,
91(2):331–343, 2004.

[LYSY04] Grace Lu-Yao, Therese A. Stukel, and Siu-Long Yao. Changing patterns in
competing causes of death in men with prostate cancer: A population based study.
The Journal of Urology, 171(6, Part 1):2285 – 2290, 2004. Part 1 of 2.

[Mas90] P. Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The
Annals of Probability, 18(3):1269–1283, 1990.

234



[MB06] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable
selection with the lasso. The Annals of Statistics, pages 1436–1462, 2006.

[MS08] R. Meister and C. Schaefer. Statistical methods for estimating the probability of
spontaneous abortion in observational studies - analyzing pregnancies exposed to
coumarin derivatives. Reproductive Toxicology, 26:31–35, 2008.

[Mur94] S. A. Murphy. Consistency in a proportional hazards model incorporating a random
effect. Annals of Statistics, 22(2):712–731, 1994.

[Mur95] S. A. Murphy. Asymptotic theory for the frailty model. Annals of Statistics,
23(1):182–198, 1995.

[MvdV00] Susan Murphy and A van der Vaart. On profile likelihood. Journal of the American
Statistical Association, 95:449–485, 2000.

[MY09] Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations
for high-dimensional data. The Annals of Statistics, pages 246–270, 2009.

[New90] Whitney K. Newey. Semiparametric efficient bounds. Journal of Applied Econo-
metrics, 5(2):99–135, 1990.

[New94] Whitney K. Newey. The asymptotic variance of semiparametric estimators. Econo-
metrica, 62(6):1349–1382, 1994.

[Ney59] Jerzy Neyman. Optimal asymptotic tests of composite statistical hypotheses. In
Ulf Grenander, editor, Probability and Statistics (The Harold Cramér Volume),
pages 416–444. Almquist and Wiksells, Uppsala, Sweden, 1959.

[NQS10] J. Ning, J. Qin, and Y. Shen. Non-parametric tests for right-censored data with
biased sampling. Journal of the Royal Statistical Society, Series B, 72:609–630,
2010.

[OWJ11] Guillaume Obozinski, Martin J. Wainwright, and Michael I. Jordan. Support union
recovery in high-dimensional multivariate regression. The Annals of Statistics,
39(1):1–47, 2011.

[Pan00] Wei Pan. A multiple imputation approach to Cox regression with interval-censored
data. Biometrics, 56(1):199–203, 2000.

[QNLS11] J. Qin, J. Ning, H. Liu, and Y. Shen. Maximum likelihood estimations and EM
algorithms with length-biased data. Journal of the American Statistical Association,
106(496):1434–1449, 2011.

[RB00] Miguel Ángel Robins, James M.and Hernán and Babette Brumback. Marginal
structural model and causal inference in epidemiology. Epidemiology, 11:550–560,
2000.

235



[RL02] D Rubin and R J A Little. Statistical Analysis with Missing Data. Wiley, New
York, second edition edition, 2002.

[RM07] Greg Ridgeway and Daniel F. McCaffery. Comment: Demystifying double ro-
bustness: A comparison of alternative strategies for estimating a population mean
from incomplete data. Statistical Science, 22(4):540–543, 2007.

[RMM+17] Greg Ridgeway, Daniel F. McCaffery, Andrew Morral, Morral Burgette, and
Beth Ann Griffin. Toolkit for Weighting and Analysis of Nonequivalent Groups: A
tutorial for the twang package. R Foundation for Statistical Computing, 2017.

[RMN92] James M. Robins, Steven D. Mark, and Whitney K. Newey. Estimating exposure
effects by modelling the expectation of exposure conditional on confounders.
Biometrics, 48:479–495, 1992.

[Ros87] Paul R. Rosenbaum. Model-based direct adjustment. Journal of the American
Statistical Association, 82(398):387–394, 1987.

[RR83] Paul R. Rosenbaum and Donald B. Rubin. The central role of the propensity score
in observational studies for causal effects. Biometrika, 70(1):41–55, 1983.

[RR84] Paul R. Rosenbaum and Donald B. Rubin. Reducing bias in observational studies
using subclassification on the propensity score. Journal of the American Statistical
Association, 79(387):516–524, 1984.

[RR85] Paul R. Rosenbaum and Donald B. Rubin. Constructing a control group using
multivariate matched sampling methods that incorporate the propensity score. The
American Statistician, 39(1):33–38, 1985.

[RR95] James M. Robins and Andrea Rotnitzky. Semiparametric efficiency in multivari-
ate regression models with missing data. Journal of the American Statistical
Association, 90(429):122–129, 1995.

[RR01] James M. Robins and Andrea Rotnitzky. Comment on “inference for semipara-
metric models: Some questions and an answer". Statistica Sinica, 11(4):920–936,
2001.

[RRvdL00] James M. Robins, Andrea Rotnitzky, and Mark van der Laan. On profile likelihood:
Comment. Journal of the American Statistical Association, 95(450):477–482,
2000.

[RTH+19] Paul Riviere, Christopher Tokeshi, Jiayi Hou, Vinit Nalawade, Reith Sarkar, An-
thony J. Paravati, Melody Schiaffino, Brent Rose, Ronghui Xu, and James D.
Murphy. Claims-based approach to predict cause-specific survival in men with
prostate cancer. JCO Clinical Cancer Informatics, (3):1–7, 2019.

236



[RWL10] Pradeep Ravikumar, Martin J Wainwright, and John D Lafferty. High-dimensional
ising model selection using l1-regularized logistic regression. The Annals of
Statistics, 38(3):1287–1319, 2010.

[Sas13] Igal Sason. On refined versions of the Azuma-Hoeffding inequality with applica-
tions in information theory. ArXiv e-prints:1704.07989, March 2013.

[SK03] S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

[SKD+15] Raj Satkunasivam, Andre E. Kim, Mihir Desai, Mike M. Nguyen, David I. Quinn,
Leslie Ballas, Juan Pablo Lewinger, Mariana C. Stern, Ann S. Hamilton, Monish
Aron, and Inderbir S. Gill. Radical prostatectomy or external beam radiation
therapy vs no local therapy for survival benefit in metastatic prostate cancer: A
seer-medicare analysis. The Journal of Urology, 194:378–385, 2015.

[SLFL14] Hokeun Sun, Wei Lin, Rui Feng, and Hongzhe Li. Network-regularized high-
dimensional Cox regression for analysis of genomic data. Statistica Sinica,
24(3):1433–1459, 2014.

[ST00] J. P. Sy and J. M. Taylor. Estimation in a cox proportional hazards cure model.
Biometrika, 56(1):227–236, 2000.

[SW92] Thomas A Severini and Wing Hung Wong. Profile likelihood and conditionally
parametric models. Annals of Statistics, 20:1768–1802, 1992.

[Tan17] Zhiqiang Tan. Regularized calibrated estimation of propensity scores with model
misspecification and high-dimensional data. arXiv, 2017.

[Tan18] Zhiqiang Tan. Model-assisted inference for treatment effects using regularized
calibrated estimation with high-dimensional data. arXiv, 2018.

[Tho86] D. C. Thomas. Use of auxiliary information in fitting nonproportional hazards
models. Modern Statistical Methods in Chronic Disease Epidemiology, pages
197–210, 1986.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 58(1):267–288,
1996.

[TTLT16] Ryan J. Tibshirani, Jonathan Taylor, Richard Lockhart, and Robert Tibshirani.
Exact post-selection inference for sequential regression procedures. Journal of the
American Statistical Association, 111(514):600–620, 2016.

[Tur76] B. W. Turnbull. The empirical distribution function with arbitrarily grouped,
censored and truncated data. Journal of the Royal Statistical Society, Series B,
38(3):290–295, 1976.

237



[Var85] Y. Vardi. Empirical distributions in selection bias models. Annals of Statistics,
13(1):178–203, 1985.

[VBC12] Stijn Vansteelandt, Maarten Bekaert, and Gerda Claeskens. On model selection
and model misspecification in causal inference. Statistical Methods in Medical
Research, 21:7–30, 2012.

[VD14] S. Vansteelandt and R.M. Daniel. On regression adjustment for the propensity
score. Statistics in Medicine, 33(23):4053–4072, 2014.

[vdG07] Sara A. van de Geer. The deterministic LASSO. Technical Report 140. ETH Zürich,
Switzerland, 2007.

[vdG08] Sara Anna van de Geer. High-dimensional generalized linear models and the lasso.
Annals of Statistics, 36(2):614–645, 2008.

[vdGB09] Sara van de Geer and Peter Bühlmann. On the conditions used to prove oracle
results for the Lasso. Electronic Journal of Statistics, 3:1360–1392, 2009.

[vdGB11] Sara van de Geer and Peter Bühlmann. Statistics for High-Dimensional Data:
Methods, Theory and Applications. Springer, 2011.

[vdGBRD14] Sara van de Geer, Peter Bühlmann, Ya’acov Ritov, and Ruben Dezeure. On
asymptotically optimal confidence regions and tests for high-dimensional models.
The Annals of Statistics, 42(3):1166–1202, 2014.

[vdL14] Mark van der Laan. Targeted estimation of nuisance parameters to obtain valid
statistical inference. The International Journal of Biostatistics, 10(1):29–57, 2014.

[VdVW96] A. W. Van der Vaart and J. A. Wellner. Weak convergence and empirical processes.
Springer Series in Statistics. Springer-Verlag, New York, 1996.

[VV15] Karel Vermeulen and Stijn Vansteelandt. Bias-reduced doubly robust estimation.
Journal of the American Statistical Association, 110(511):1024–1036, 2015.

[VX00] F. Vaida and R. Xu. Proportional hazards model with random effects. Statistics in
Medicine, 19:3309–3324, 2000.

[Wai19] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic View-
point. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2019.

[WC10] Daniel Westreich and Stephen R. Cole. Invited Commentary: Positivity in Practice.
American Journal of Epidemiology, 171(6):674–677, 2010.

[WLL+17] Yan Wang, Mihye Lee, Pengfei Liu, Liuhua Shi, Zhi Yu, Yara Abu Awad, Antonella
Zanobetti, and Joel D. Schwarts. Doubly robust additive hazards models to estimate
effects of a continuous exposure on survival. Epidemiology, 28(6):771–779, 2017.

238



[WR09] Larry Wasserman and Kathryn Roeder. High dimensional variable selection. The
Annals of Statistics, 37(5A):2178–2201, 2009.

[WWO+88] A. J. Wilcox, C. R. Weinberg, J. F. O’Connor, D. D. Baird, J. P. Schlatterer, R. E.
Canfield, E. G. Armstrong, and B. C. Nisula. Incidence of early loss of pregnancy.
New England Journal of Medicine, 319(4):189–194, 1988.

[XC11] R. Xu and C. Chambers. A sample size calculation for spontaneous abortion in
observational studies. Reproductive Toxicology, 32(4):490–493, 2011.

[YBS18] Yi Yu, Jelena Bradic, and Richard J. Samworth. Confidence intervals for high-
dimensional Cox models. arXiv e-prints, page arXiv:1803.01150, 2018.

[YBS19] Yi Yu, Jelena Bradic, and Richard J. Samworth. Confidence intervals for high-
dimensional Cox models. to appear in Statistica Sinica, 2019.

[YLZ08] Guosheng Yin, Hui Li, and Donglin Zeng. Partially linear additive hazards regres-
sion with varying coefficients. Journal of the American Statistical Association,
103(483):1200–1213, 2008.

[YXM19] A. Ying, R. Xu, and J. Murphy. Two-stage residual inclusion for survival data and
competing risks - an instrumental variable approach with application to SEER-
Medicare linked data. Statistics in Medicine, 38(10):early view, 2019.

[ZL07] D Zeng and D Y Lin. Maximum likelihood estimation in semiparametric regression
models with censored data. Journal of the Royal Statistical Society, Series B,
69:507–564, 2007.

[ZRXB11] Shuheng Zhou, Philipp Rütimann, Min Xu, and Peter Bühlmann. High-
dimensional covariance estimation based on gaussian graphical models. Journal
of Machine Learning Research, 12:2975–3026, 2011.

[ZS12] Min Zhang and Douglas E. Schaubel. Contrasting treatment-specific survival
using double-robust estimators. Statistics in Medicine, 31(30):4255–4268, 2012.

[ZSZH17] Haixiang Zhang, Liuquan Sun, Yong Zhou, and Jian Huang. Oracle inequalities
and selection consistency for weighted LASSO in high-dimensional additive
hazards model. Statistica Sinica, 27:1903–1920, 2017.

[ZYI06] D. Zeng, G. Yin, and J. G. Ibrahim. Semiparametric transformation models for
survival data with a cure fraction. Journal of the American Statistical Association,
101:670–684, 2006.

[ZZ14] Cun-Hui Zhang and Stephanie S. Zhang. Confidence intervals for low dimensional
parameters in high dimensional linear models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 76(1):217–242, 2014.

239



[ZZYK15] Y. Q. Zhao, D. Zeng, M. Yuan, and M. R. Kosorok. Doubly robust learning for
estimating individualized treatment with censored data. Biometrika, 102(1):151–
168, 2015.

240


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	A Nonparametric Maximum Likelihood Approach for Survival Data with Observed Cured Subjects, Left Truncation and Right-Censoring
	Introduction
	Model and NPMLE
	Model and data 
	NPMLE through EM

	Theory
	Existence of NPMLE and convergence of EM
	Consistency of NPMLE
	Asymptotic Normality of NPMLE

	Simulation study
	Simulation setup
	Simulation results

	Analysis of spontaneous abortion data
	Discussion and Conclusion
	Proofs
	The Existence of NPMLE 
	Consistency of NPMLE
	Asymptotic Normality

	Details on Variance Estimator
	Derivatives of Log-likelihood
	Conditional Expectations

	Acknowledgement

	Inference under Fine-Gray Competing Risks Model with High-Dimensional Covariates
	Introduction
	Model and notation
	Organization of the paper

	Estimation and inference for competing risks with more regressors than events
	One-step corrected estimator
	Confidence Intervals
	Construction of the inverse Hessian matrix

	Theoretical considerations
	Additional notation
	Oracle inequality 
	Asymptotic normality for one-step estimator and honest coverage of confidence intervals

	Numerical Experiments
	Setup 1
	Setup 2

	SEER-Medicare data example
	Discussion
	Proof
	Concentration Inequalities
	Proofs of Main Results

	Acknowledgement

	Estimating Treatment Effect for Time-to-Event Outcome with High-dimensional Covariates in Observational Studies
	INTRODUCTION
	Treatment Effect with High-Dimensional Covariates
	Model and Orthogonal Score
	Inference on 

	Exploring the Doubly Robust Property
	A closed-form estimator
	A cross-fitted orthogonal score
	A doubly robust estimator

	Simulation
	Data Analysis
	Discussion
	Technical Details and Proofs
	Details on the closed form estimator
	Proof of Main Results
	Preliminary Results
	Classical Concentration Inequalities
	New Concentration Results
	Other Auxiliary Results
	Proofs of the Auxiliary Results

	Acknowledgement

	Bibliography



