
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Infrastructure for Scalable Analysis of Genomic Variation

Permalink
https://escholarship.org/uc/item/2qk5g3jx

Author
Novak, Adam Matthew

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2qk5g3jx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

INFRASTRUCTURE FOR SCALABLE ANALYSIS OF GENOMIC
VARIATION

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BIOMOLECULAR ENGINEERING & BIOINFORMATICS

by

Adam M. Novak

June 2017

The Dissertation of Adam M. Novak
is approved:

Professor Joshua Stuart, Chair

Distinguished Professor David Haussler

Associate Professor Richard E. Green

Professor Beth Shapiro

Dean Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Adam M. Novak

2017

Table of Contents

List of Figures vi

List of Tables viii

List of Algorithms ix

Abstract x

Dedication xi

Acknowledgments xii

How to Read This Document 1

1 Introduction and Background 2
1.1 Introduction . 2
1.2 Background . 5

1.2.1 How Genomics Works . 5
1.2.2 The Release of GRCh38 . 6
1.2.3 The Genome Reference Consortium Assembly Model 8
1.2.4 Modeling Human Genomic Variants with VCF 9
1.2.5 The 1000 Genomes Project . 12
1.2.6 Substring Search with the Suffix Array 12
1.2.7 String Compression with the Burrows-Wheeler Transform 14
1.2.8 Searching in BWTs with the FM-index 16
1.2.9 Bidirectional DNA Search with the FMD-Index 18
1.2.10 Sequence Graphs . 21
1.2.11 Graph Substring indexes . 22
1.2.12 Data Models with Protobuf . 24
1.2.13 vg, the Variation Graph Toolkit 25
1.2.14 Copy-Number-Variable Alignments with Cactus 26
1.2.15 Finding Variable Sites in Graphs 27
1.2.16 Reliable, Portable Cloud Computing with Toil 29

iii

1.3 Research Program Overview . 30

2 Canonical, Stable, General Mapping Using Context Schemes 36
2.1 Abstract . 36

2.1.1 Motivation: . 36
2.1.2 Results: . 36
2.1.3 Availability and Implementation: 37
2.1.4 Supplementary Information: . 37

2.2 Introduction . 37
2.3 Methods . 38

2.3.1 Mapping . 39
2.3.2 Contexts . 39
2.3.3 Context-Driven Mapping . 40
2.3.4 The Natural Context-Driven Mapping Scheme 42
2.3.5 The α-β-Natural Context-Driven Mapping Scheme 44
2.3.6 Credit . 48

2.4 Results . 49
2.4.1 Mapping MHC Alt Loci . 49
2.4.2 Mapping Simulated Short Reads 53

2.5 Discussion . 59

3 A Graph Extension of the Positional Burrows-Wheeler Transform and
its Applications 62
3.1 Abstract . 62
3.2 Introduction . 63
3.3 Definitions . 64
3.4 Extracting Threads . 67
3.5 Succinct Storage . 75
3.6 Embedding Threads . 75
3.7 Batch Embedding Threads . 78
3.8 Counting Occurrences of Subthreads . 80
3.9 Results . 81

3.9.1 Random Walks . 83
3.9.2 Scaling Characteristics . 84

3.10 Discussion . 88
3.11 List of Abbreviations . 90
3.12 Declarations . 90

3.12.1 Ethics approval and consent to participate 90
3.12.2 Consent for publication . 91
3.12.3 Availability of data and material 91

3.13 Competing interests . 91
3.13.1 Funding . 92

3.14 Author’s contributions . 92

iv

3.15 Acknowledgements . 92

4 Genome Graphs 93
4.1 Abstract . 93
4.2 Introduction . 94
4.3 Results . 95

4.3.1 Graph Read Mapping . 97
4.3.2 Graph Variant Calling . 103
4.3.3 Short Path Accuracy . 107
4.3.4 Graph Character . 111

4.4 Discussion . 112
4.5 Online Methods . 117

4.5.1 Source Data . 117
4.5.2 Graph Format . 118
4.5.3 Alignment Target Quality . 118
4.5.4 Platinum Genomes Variant Calling Evaluation 119
4.5.5 Reference-Free Evaluation . 121
4.5.6 Assessing Graph Completeness 122
4.5.7 URLs . 122
4.5.8 Software Versions and Commit Hashes 123
4.5.9 Acknowledgments . 123
4.5.10 Author Contributions . 124

5 Towards a Human Genome Variation Map 125
5.1 Introduction . 125
5.2 Methods . 126

5.2.1 Graph Construction . 126
5.2.2 Variant Calling Techniques . 128
5.2.3 Assembly Realignment Evaluation 130
5.2.4 Structural Variant Evaluation . 131
5.2.5 Software and Hardware . 132

5.3 Results . 132
5.3.1 Graph Construction . 132
5.3.2 Assembly Realignment Evaluation 133
5.3.3 Structural Variant Evaluation . 134

5.4 Conclusion . 139
5.5 Availability of Materials . 142
5.6 Acknowledgements . 143

Bibliography 144

v

List of Figures

1.1 An example BWT matrix for the string “GATTACA” 16

1.2 Graph node data model . 25

2.1 Example of two nonredundant context sets 42

2.2 Diagram of a β′-synteny block . 48

2.3 Results of MHC alignment . 50

2.4 MHC alignment rearrangements . 52

2.5 Results of read alignments . 56

2.6 Minimum β′ = 0 context lengths . 58

3.1 An illustration of the B1[] array . 69

3.2 A diagram of a graph containing two embedded threads 71

3.3 Consistent haplotypes . 86

3.4 Disk space usage for the gPBWT . 87

4.1 Example sequence graphs . 96

4.2 Mapping reads to sequence graphs . 101

4.3 Variant calling with genome graphs . 105

4.4 Variant calling evaluation . 109

4.5 Reference versus non-reference calls . 110

4.6 Short path completeness and accuracy 111

vi

4.7 Empirical graph statistics . 114

5.1 Mole realignment evaluation . 136

vii

List of Tables

1.1 Populations and superpopulations from the 1000 Genomes Project . . . 13

3.1 Bs[] and c() values for Figure 3.2 . 67

4.1 Pilot regions . 97

4.2 Genome graph submissions . 99

5.1 Structural variant precision . 138

5.2 Structural variant recall . 139

viii

List of Algorithms

3.1 Algorithm for extracting threads from a graph 74

3.2 Algorithm for embedding a thread in a graph 77

3.3 Algorithm for embedding all threads at once into a directed acyclic graph 79

3.4 Algorithm for searching for a subthread in the graph 81

ix

Abstract

Infrastructure for Scalable Analysis of Genomic Variation

by

Adam M. Novak

The scale of the problems which human genomics is asked to solve necessitates that

the field develop an ability to integrate and synthesize information across the entire

human population. The abstraction of a single-copy human reference genome assembly,

and the linear coordinate space that it induces, are more of a hindrance than a help

at these scales. They can only ever represent one sample at any given place, and

they make combining information about human variation across multiple studies and

modalities difficult. To rectify these problems, I propose the construction and adoption

of a graph-based alternative to the human reference genome assembly: a Human Genome

Variation Map. I present here four research projects. The first is a theory of mapping

to references that is extensible to graphs. The second describes a novel data structure

for embedding individual haplotype sequences into a graph reference. The third surveys

graph construction techniques to discover methods that produce graphs yielding read

mapping and variant calling results superior to those obtained with linear, variation-free

references. The fourth extends these improvement results to chromosome-scale graphs

constructed from multiple sources and modalities of variation data. These four projects

describe a research program aimed towards the eventual release of an official Human

Genome Variation Map build, providing a piece of vital infrastructure for the analysis

of human genomic variation at population scale.

x

Dedicated to all those who carry human genomes.

xi

Acknowledgments

In addition to my advisor, Prof. David Haussler, and the other members of my commit-

tee, I would like to thank Dr. Benedict Paten for helping to direct my research efforts,

Erik Garrison for his leadership of the vg team, Glenn Hickey for all the software plumb-

ing he has written, Yohei Rosen for his amazing mathematics skills, Jordan Eizenga for

his useful algorithms, Charles Markello for his data wrangling, Maciek Smuga-Otto and

Sean Blum for their help on the GA4GH bake-off project, Mike Lin for his technical

challenges, Jouni Sirén for his stringology expertise, Lynn Brazil, Kelly Sauder, and

Tracie Tucker for their administrative assistance, and Microsoft Corporation for their

provision of computing resources. I would also like to thank Anna Henderson for her

contributions as an editor, a partner, and a friend, and my family for making all of this

possible.

The text of this thesis includes reprints of the following previously published

or preprint material:

A. M. Novak, Y. Rosen, D. Haussler, and B. Paten. Canonical, stable, general mapping
using context schemes. Bioinformatics, page btv435, 2015.

In this work, I specifically helped develop the context scheme theory, wrote

the majority of the custom software used in the analysis, produced the figures, and

contributed substantially to the text of the manuscript.

A. M. Novak, E. Garrison, and B. Paten. A graph extension of the positional Burrows-
Wheeler transform and its applications. In M. Frith and C. N. Storm Pedersen, editors,
Algorithms in Bioinformatics, pages 246–256, Cham, 2016. Springer International Pub-
lishing.

In this work, I specifically developed the details of the eponymous graph exten-

sion and its algorithms, wrote most of the implementation code, ran the experiments,

produced the figures, and contributed substantially to the text of the manuscript.

A. M. Novak, G. Hickey, E. Garrison, S. Blum, A. Connelly, A. Dilthey, J. Eizenga,
M. S. Elmohamed, S. Guthrie, A. Kahles, et al. Genome graphs. bioRxiv, 2017. doi:
10.1101/101378. URL http://biorxiv.org/content/early/2017/01/18/101378.

xii

http://biorxiv.org/content/early/2017/01/18/101378

In this work, I specifically distributed the source data to participants, produced

the Camel graph, developed and ran the reference-free evaluation, ran and analyzed the

low-coverage read alignments, produced high-coverage alignments for variant calling,

developed about half of the variant calling code, made numerous improvements and

bug fixes to the vg software to facilitate the analysis, and led the production of the

manuscript.

The co-authors Benedict Paten and David Haussler listed in these publications

directed and supervised the research which forms the basis for this thesis.

xiii

How to Read This Document

This document consists of several mostly-independent chapters, with an introduction at

the beginning explaining how they fit together. For an introduction to genomics in gen-

eral and the idea of graph-based genomic references in particular, read the introduction

in Chapter 1. To jump directly into a description of context schemes and a formal treat-

ment of mapping to linear references, skip ahead to Chapter 2. For a succinct, efficient

method for storing haplotype databases embedded in a graph reference, read Chapter 3.

For a demonstration of the utility of graph-based genomic references, including novel

evaluation techniques, skip to Chapter 4. Finally, for a description of the construction

and evaluation of a large-scale prototype graph reference, and for suggestions for future

work, skip all the way to Chapter 5.

1

Chapter 1

Introduction and Background

1.1 Introduction

The human body is a four-billion-year-old piling-up of nanotechnological hacks, which

exists because, for that four billion years, none of its ancestors died without issue; we

have hijacked it and are now attempting to use it for our own ends. We don’t know

how it works, and we don’t have the servicing equipment to fix it when it breaks. The

goal of human genomics is to figure out how our bodies actually work, so that we can

do more than change the nanotechnological oil.

Achieving this goal is relatively difficult, because of the scale of the problem.

Each human genome is about 3.2 billion base pairs, and each human has two genomes

(one from each gamete). Human brains struggle to think about a even a single billion of

anything, a number so large that a one-in-a-million chance occurs on average a thousand

times. Add to this the already difficult to comprehend lack of design throughout the

system, where no part is for anything, and you can begin to get a sense of the difficulty

of the problem.

Fortunately, despite our limitations, we are beginning to develop techniques

and guiding principles for working with problems at these scales. One of those prin-

2

ciples is that large problems can be effectively addressed by integrating across large

datasets [30]. With a population now exceeding 7.5 billion individuals, humans may

constitute a sufficiently large dataset to begin to approach this problem [105]. However,

effective tools to use genomic information at the scale of the human population will be

required.

Human genomics as it exists today is organized around something referred

to as “the human genome”, obtained at great expense through the Human Genome

Project [88]. There is a clear distinction in the field between the human genome, em-

bodied by the primary assembly in reference genome assembly builds produced by the

Genome Reference Consortium (GRC) [94], and databases of genomic variation, such as

the variant sets produced by the 1000 Genomes Project [3] or the Simons Genome diver-

sity Project [96, 97]. Such efforts generally distribute variation information in Variant

Call Format (VCF) files, which present the data in the coordinate space defined by the

GRC’s assembly. Actual sequencing data is presented in Binary Alignment/Map (BAM)

files, which give each sequencing read’s alignment to the GRC’s assembly. This linear

coordinate system, which refers to locations in peoples’ genomes by the chromosome

and base index in the primary assembly, is the foundation of genomics.

Unfortunately, this approach will not scale, because as our view of the human

population becomes wider, our view of human genomic variation is also broadening.

The most recent release of the GRC’s human reference genome assembly, GRCh38, con-

tains 261 alternate (alt) loci [26], up from a mere nine in the previous assembly [25].

Alternate loci are sequences intended to provide alternative versions of parts of other

sequences in the primary assembly, in order to be more representative of large-scale

and structural variation in the human population [44]. When analyzing or describing

a sample with a haplotype closer to one of the alt loci than to the corresponding pri-

mary assembly region, that alt locus can be used to fulfill the functions of a reference

sequence for that region, replacing part of the primary assembly sequence. The num-

3

ber of genomes for which this replacement ought to be performed is relatively large.

A recent study [42] found that some alternate loci are likely to be present in 90% or

more of the individuals in some populations. The eight alternate loci for the Major

Histocompatibility Complex (MHC) region were chosen to be representative of people

of European ancestry [36]; many analyses of the genomes of people of European an-

cestry might benefit from using one of those alternate loci in place of what is in the

primary assembly. However, available variation datasets [3], and indeed the VCF format

itself [12, 66], do not allow for this, and instead cram all individuals into the space of the

primary assembly, regardless of its appropriateness for the individuals or populations

under study. On the software side, alternate loci support is still a novelty [42].

In genomic regions where these alternate loci apply, the traditional, primary-

assembly-based linear coordinate system begins to break down. To properly reason

about such genomic regions, we need to abandon either the idea that bases in peo-

ples’ genomes correspond to bases in a reference, or the idea that references are linear.

Whereas in the previous assembly the problem was relatively contained, in GRCh38

this sudden proliferation of alternate loci is poking holes in that abstraction all over the

genome, making the problem much more urgent.

The linear organization of the reference genome also frustrates attempts to

study regions of the genome which are difficult to assemble, or which, due to sequence

similarity, are very difficult to distinguish from similar regions at other locations in

the genome. To facilitate analysis of the centromeres, for example, GRCh38 includes

plausible synthetic linear centromere sequences [44]. We have more precise, graph-based

models of what we actually know about the centromeres, but these models cannot

be indexed by linear sequence coordinates or processed by tools that expect a linear

reference sequence [72].

I propose a nonlinear, graph-based “Human Genome Variation Map”, or

HGVM. This new type of genomic reference will eliminate the artificial distinction

4

between the reference genome assembly—“the human genome”—and what we know

about variation among the genomes of the human population. A graph-based reference

can capture in a first-class way the sequence information which is currently relegated to

alt loci, as well as additional variant information from sources like the 1000 Genomes

Project [3]. If it managed to avoid giving preference to one version of a region with

alternate loci over another, a human genome variation map could potentially combat

reference (allele mapping) bias, an effect in which alleles that match a single lin-

ear reference are easier to detect than those which do not [5, 13]. The adoption of a

unified representation of genomes will allow genomic analysis software to scale to much

larger cross-dataset analyses, with a more representative view of individuals’ genomes,

allowing progress to be made in the understanding of human biology.

1.2 Background

1.2.1 How Genomics Works

The human reference genome assembly was built at great expense at the turn of the

millennium and is maintained by the Genome Reference Consortium (GRC) [8]. This

reference genome assembly was originally created by stitching together actual observed

pieces of DNA sequence into a single-copy haploid golden path representing a complete

genome [8]. Under this model, a hypothetical perfect assembly would have a single

contig, or contiguous linear string of DNA bases, per chromosome. This naturally

suggests a coordinate system: bases can be referred to by the contig they are on and

their offset from the beginning of that contig.

This coordinate system is a critical piece of genomics infrastructure. It allows

the reference genome to be annotated with genes and other elements. It provides the

backbone to which descriptions of genomic variation are anchored. It defines the space

in which genome sequencing happens, as short reads from sequencing machines are

5

mapped to positions in this space. The entire field depends on this coordinate system.

Unfortunately, whenever the official human reference genome is updated, and

bases are inserted or removed, the old coordinates are no longer valid on the new refer-

ence, and a period of mass confusion ensues as everyone who studies human genomics

translates everything they are working on over to the new coordinate system, and then

wonders whether their colleagues have done the same. Resources that aren’t converted

to the new system are at best lost to the field, and at worst applied inappropriately to

the wrong genomic locations.

The golden path model is inextricably bound to the concept of “the human

genome”—the idea that one prototypical set of 24 chromosomes is a suitable foundation

for the field of genomics. This idea has been central to human genomics, but it is not

without its flaws. Putting aside the unfortunate normative implications of declaring the

allele from whomever you sequenced first as “reference” and any alternatives from other

populations as “variant”, using a single reference genome when mapping sequencing

reads leads to the well-known phenomenon of reference bias [5, 13]. Reads matching

the reference genome at a variant site tend to map better and more often than those

supporting differences from the reference. This reference bias affects many popular

short-read aligners [61]. Additionally, in some genomic regions there are dramatically

structurally distinct haplotypes present in the population [8]. One example of this

phenomenon is the extremely variable Major Histocompatibility Complex (MHC) region

on chromosome 6. Mapping reads only against the single haplotype actually included

in the assembled golden path will almost certainly make it harder to map reads from

other haplotypes.

1.2.2 The Release of GRCh38

A new version of the official human reference genome, GRCh38, was released in 2013 [26].

In addition to marking the transition to a unified version numbering scheme across major

6

genome browsers, this new release continues the GRC’s gradual migration away from the

golden path concept. Although GRCh38 is still constructed around a single (chimeric)

haploid genome, the new reference assembly also provides sequences for hundreds of so-

called alt loci—additional pieces of sequence with a specified alignment to that genome

which describe some of the structurally distinct local genomic arrangements which have

been observed in humans. The older GRCh37, by comparison, contained only three

genomic regions with alt loci [8]. This means that the GRCh38 assembly, taken as

a whole, is fundamentally nonlinear at more than just a few problematic locations.

Unfortunately, popular tools like the Burrows-Wheeler Aligner (BWA), being originally

designed for aligning to a single-copy primary assembly, need to apply complex heuristics

to account for these alt loci [50, 51].

The new assembly also contains sequence for the centromeres—the central

portions of the chromosomes, which contain extremely repetitive sequences that con-

tinue to defy conventional sequencing and assembly methods [44]. However, these new

centromere sequences are not directly derived from actual sequence observations, but

are instead plausible linearizations of a series of graph-based centromere models [72].

Unfortunately, the linear format discards much of the uncertainty information present

in the graph models. Moreover, during testing, this additional sequence was found to

cause trouble for traditional short-read alignment pipelines, so GRCh38 also comes as

an “analysis set” with these sequences masked out [44]. The real problem, though, lies

with the tools, which cannot handle either a full nonlinear description of what we know

about the centromeres or even the placeholder linearization that GRCh38 includes.

In summary, GRCh38 marks the continuation of a trend towards nonlinearity

in the human reference and provides an example of the shortcomings of the golden path

approach. Until tools can be updated to account for alt loci and centromere sequences,

GRCh38 cannot be used to its full potential.

7

1.2.3 The Genome Reference Consortium Assembly Model

Containing as it does both the golden-path-style assembled primary chromosomes and

an increasing number of alternate loci, the GRC’s human genome assembly needs to have

a formally organized structure. The assembly is broken down into units, each of which

contains a set of sequences [94]. The most important unit is the primary assembly

unit, which is also referred to as the “primary assembly” or “primary path”. This unit

contains the full-chromosome sequences for all of the human chromosomes (1-22, X, and

Y), as well as unplaced scaffolds, which are pieces of DNA that are thought to be

chromosomal but have not yet been associated with a chromosome, and unlocalized

scaffolds, which are associated with a chromosome but have not been inserted into that

chromosome’s sequence [94]. The point of the primary assembly unit is to be a complete

haploid genome, containing exactly one version of every component [94]. (Note, however,

that mitochondrial DNA is relegated to its own non-nuclear assembly unit.)

The alternate loci are layered on top of the primary assembly unit in a se-

ries of alternate loci assembly units [94], which are numbered (ALT REF LOCI 1,

ALT REF LOCI 2, ...). Each alternate loci assembly unit contains at most one alternate

locus for each genomic region having alternate loci. This means that the first alter-

nate loci assembly unit will have the most alternate loci in it, and later units will have

fewer, with the total number of units being the same as the number of alternate loci

for the region that has the most alternate loci (which, in GRCh38, is the LRC KIR

region) [26, 94]. This data model is designed to be able to represent distinct, linked

haplotypes, as is done in the GRC mouse assembly, but for human this capability is not

used, and so no significance is assigned to two alternate loci being in the same assembly

unit [94].

Finally, as an attempt to work around the disruptive impact of new assembly

releases with changed coordinate systems, the GRC assembly model includes a patches

8

assembly unit, containing patch scaffold sequences [94]. The patches are divided

into two types: fix patches, which are intended to replace an erroneous part of a

sequence from another assembly unit with an improved, corrected sequence, and novel

patches, which represent new alternate loci [94]. The GRC uses this patch model so

that the coordinates of the other assembly units can be preserved (avoiding disruption

and maintaining backward compatibility with existing annotations) while still allowing

new alt loci or corrections to existing sequence to be rolled out in a timely fashion (i.e.

once per quarter, rather than once every few years) [94].

The regions to which alternate loci belong, and official GRC alignments of the

alternate loci to the portions of the primary assembly unit that they are intended to

replace, are also part of the assembly model [94]. The region definition mechanism is

also used to model the pseudoautosomal regions of the X and Y chromosomes [94].

1.2.4 Modeling Human Genomic Variants with VCF

Unlike in the assembly world, in the world of human variation data there is no master

group or resource like the GRC and their assemblies. One particularly large database

is dbSNP [95], which works at the level of single variants. There is also the variation

data maintained by the GRC, in the form of alternate loci, which are restricted to

certain genomic regions. However, the most influential institution in the study of hu-

man genomic variation so far has been the 1000 Genomes Project. The 1000 Genomes

Project maintains and distributes variant data for over 2,500 people’s genomes [104].

However, their greatest contribution to the field may be the development of the ex-

tremely popular Variant Call Format (VCF), a column-based text file format used

to represent variation data, now maintained by the Global Alliance for Genomics and

Health [12]. Samples are represented by columns, and polymorphic positions in the hu-

man genome by rows. VCF files can be supplemented by an index on genomic position,

but no work appears to have yet been done to also provide an index by sample; conse-

9

quently, the scalability of VCF is currently limited to numbers of samples that can be

scanned through efficiently [12]. Moreover, being primarily about a file format instead

of a conceptual data model, the VCF specification [66] primarily discusses syntactic

considerations, rather than semantic or pragmatic concerns.

VCF encodes individual samples’ genomes by defining a series of variant sites

along the length of the linear reference genome, defining a set of alternate alleles which

have been observed at each site (in addition to the allele in the reference), and then

indicating which alleles (in what phasing) are present in each sample at each site. This

approach works extremely well for some types of variation, like single nucleotide poly-

morphisms (SNPs) and short indels in structurally quiet regions, but it also has short-

comings.

One problem with the VCF format is it does not define the semantics of the

absence of a variant record. Does it mean that that position in the reference is known

not to be variable in the population (or at least in the sampled portion of it)? Or does

it mean that that location is not in the region covered by the VCF file? To solve this

problem, the VCF format has been extended by Illumina to create the gVCF format,

in which genotyped but nonvariant positions are also described [92].

Another potential problem with the VCF format, at least from the point of

view of people who need to read it, is that it is very featureful. The format is extensible,

through the inclusion of header lines defining various fields. However, different VCF

processing tools need to have different sets of fields defined in order to work, and some

tools or datasets [104] will use extra fields to modify the interpretation of standard fields

defined in the VCF specification [66]. To avoid crashes and to ensure that variant calls

are interpreted as the caller intended, it is vital to check the fields output by one tool

against those accepted by another. This makes VCF a worse standard, because any two

tools that both use VCF cannot necessarily communicate with each other, and because

communication failures can be silent if the two tools agree mostly but not perfectly.

10

Furthermore, there are no fewer than three distinct syntaxes for specifying

variants in VCF: the original syntax, in which alternate alleles are short stretches of se-

quence; a symbolic format, in which alternate alleles are mere specifications of inversion

or duplication, or even references to named alleles defined elsewhere; and a breakend-

based format, in which alternate alleles describe breakends, or points at which the

reference would have had to have been cut and spliced to produce the sample [66].

Available VCF parsers do not help with integrating across or converting between these

different internal formats, and some don’t even support all of them. Tools written to

directly extract information from VCFs without a parser library often support only one

or maybe two of these formats. Between the three different formats and the fact that

different alignment parameters can induce variant callers to describe the same observed

sequence as different variants, it is very difficult to compare two VCF files.

Finally, the VCF format is tightly coupled to the linearity of the reference

genome assembly. While VCF’s breakend system allows the specification of complex

rearrangement graphs for samples, there is no explicit support for even the alt loci

of the current GRCh38 reference. For example, if one were to specify variant records

on one of the MHC alt loci, there would be no way to specify phasing with respect

to variants on the main chromosome 6, because VCF specifies records with different

chromosome names to be unphased relative to each other [66]. Furthermore, there is no

way to explicitly specify that a sample uses a certain alt locus; it would be necessary to

infer this from the existence of called genotypes in the coordinates of that alt. It would

certainly be possible to adopt certain conventions within the existing VCF format to

work around this problem—for example, we could wire the alt loci into their parent

chromosomes with breakends whenever they are present. However, no such conventions

are standardized for data interchange.

A graph-based approach to the description of genomic variants could alleviate

several of these problems, defining explicitly when an individual matches the primary

11

assembly, and expressing clearly and concisely the alt loci that an individual carries,

and any variations on top of them, in a single sufficiently general syntax.

1.2.5 The 1000 Genomes Project

Besides the development of the VCF standard, the 1000 Genomes Project has also

conducted one of the most useful publicly available surveys of human genomic variation

to date [3]. The 1000 Genomes Project dataset is more consistently collected and

analyzed than data from the Personal Genome Project (PGP) [9]. It is also easier to

download than the Simons Genome Diversity Project dataset [97], requiring neither

special software nor manual approval. For these reasons, the 1000 Genomes Project

dataset is the standard human variation dataset to use in analyses.

The dataset contains genomes from 2,504 people across five superpopula-

tions and 26 populations [3], as shown in Table 1.1. Sample collection goals and

informed consent practices were broadly similar to those developed for the HapMap

project, from which some of the initial samples were obtained [40]. In particular, the

seductiveness of the three-letter-code abstraction notwithstanding, the goal is not to

build a system or hierarchy of racial or ethnic categories for dividing up the human

population [40]. Rather, the avowed intention is to describe where and from whom

sample DNA was collected, although this necessarily relies on an implicit system of

racial and ethnic categories.

1.2.6 Substring Search with the Suffix Array

The suffix array of a string is an array of indexes into the string, sorted in the lexico-

graphical order of the suffixes that they point to [64]. For example, the string “dog” has

suffixes “dog” at index 0, “og” at index 1, and “g” at index 2, so its suffix array would

be [0, 2, 1], corresponding to the suffix sort order [“dog”, “g”, “og”]. Another example

suffix array for the string “GATTACA” is visible in the leftmost column of Figure 1.1.

12

Superpopulation Population Provided Description

AFR ESN “Esan in Nigeria”
GWD “Gambian in Western Division,

Mandinka”
LWK “Luhya in Webuye, Kenya”
MSL “Mende in Sierra Leone”
YRI “Yoruba in Ibadan, Nigeria”
ACB “African Caribbean in Barbados”
ASW “People with African Ancestry in

Southwest USA”

AMR CLM Colombians in Medellin, Colombia”
MXL “People with Mexican Ancestry in

Los Angeles, CA, USA”
PEL “Peruvians in Lima, Peru”
PUR “Puerto Ricans in Puerto Rico”

EAS CDX Chinese Dai in Xishuangbanna,
China”

CHB “Han Chinese in Beijing, China”
CHS “Southern Han Chinese”
JPT “Japanese in Tokyo, Japan”
KHV “Kinh in Ho Chi Minh City, Viet-

nam”

EUR CEU Utah residents (CEPH) with North-
ern and Western European ances-
try”

GBR “British in England and Scotland”
FIN “Finnish in Finland”
IBS “Iberian Populations in Spain”
TSI “Toscani in Italia”

SAS BEB Bengali in Bangladesh”
GIH “Gujarati Indians in Houston, TX,

USA”
ITU “Indian Telugu in the UK”
PJL “Punjabi in Lahore, Pakistan”
STU “Sri Lankan Tamil in the UK”

Table 1.1: Populations and superpopulations from the 1000 Genomes Project [3].

13

Suffix arrays have some useful properties. Most importantly, all of the suffixes

that start with the same substring appear in a single contiguous block [22]. This block

starts at the position corresponding to the number of occurrences of lexicographically

smaller substrings of the same length [22]. This is particularly obvious in the case of

single-character substrings: all the suffixes (and, thus, all the substrings) beginning with

a certain character appear in one block, coming immediately after all suffixes beginning

with lexicographically smaller characters.

Suffix arrays can be used as indexes to speed up substring search on the string

they are derived from. Because of the block structure described above, and because

every instance of a substring is at the beginning of some suffix, a simple binary search

is sufficient to find any substring that is present, and a scanning up and down from one

instance can pull out the entire corresponding block [64]. Supplementing the suffix array

with a longest common prefix (LCP) array, holding the length of the prefix shared

by each pair of adjacent suffixes, can further speed up the search, by requiring only a

single-character comparison (instead of a string comparison) at each search step [64].

1.2.7 String Compression with the Burrows-Wheeler Transform

Human genomes, being extremely similar to each other and relatively similar to them-

selves in different places, lend themselves to compression. One particularly useful algo-

rithm in string compression is the Burrows-Wheeler Transform (BWT). The BWT

takes strings and rearranges them for increased compressibility, by putting characters

from similar contexts near each other [6]. (It is interesting to think of the BWT as

defining a new, context-based coordinate system.)

The BWT operates by taking the string to be compressed (with a sentinel value

“$” lexicographically smaller than all other characters appended to it) and imagining

all possible rotations of it [6, 22]. Each rotation is derived from the previous one by

taking the first character and moving it to the end [6]. The rotations are then sorted

14

lexicographically, and the last characters of all the rotations become the transformed

string [6].

The BWT makes strings more compressible by grouping characters by the

contexts they appear in (specifically, the strings they appear before). If two characters

both appear before a suffix starting with “andy”, they will appear near each other

in the BWT. Assuming some letters are more likely, relative to the overall frequency

distribution, to precede this string than others are (for example, “c” and “h” as opposed

to “e” or “n”), this creates a region of the BWT which is enriched for those characters.

This enrichment makes the region more compressible by move-to-front or even simple

run-length encoding [6].

The implied BWT matrix, with all the sorted rotations as rows, is generally

not kept, but it is often useful to consider the BWT string in its context as the last

column of that matrix [6, 22]. It is also useful to think of this matrix as being made up of

“character instances”; characters in the matrix that are derived from the same position

in the original string are the same character instance. (Imagine uniquely numbering

the character at each position on the original string before creating the matrix.) Such

a matrix is visible in Figure 1.1.

We can show that, for each character in the alphabet, corresponding instances

of that character will appear in the same order in the first column and in the last

column. Consider just the rows where the character in question appears in the first

column. When sorting these rows, the first column is uninformative (since it is constant

across all rows), and the rows are sorted lexicographically by the remaining columns in

order. Rotating all the strings so the uninformative column appears last will not change

the order of the other columns, and thus will not change the relative sort order of the

rows we are considering. Thus the instances of the character stay in the same relative

order in the last column as in the first column [46].

15

Figure 1.1: An example BWT matrix for the string “GATTACA”. The sentinel value
“$” is appended to the end of the string, all rotations of the string are calculated, and
the rotations are sorted. Bases are colored according to base identity and numbered
according to position in the original string. The characters in the far right column are
the BWT of the original string, while the numbers in the far left column are the suffix
array (represented as indexes into the original string).

1.2.8 Searching in BWTs with the FM-index

Constructing the BWT matrix is essentially the same task as constructing the suffix

array of the string being transformed. All the rotations of the string contain the “$”

sentinel which is lexicographically less than all other characters. Thus the rotations are

actually sorted by the portion before the “$” character—that is, by the corresponding

suffixes of the original string. This is the same sort used to construct the suffix array.

A BWT can be augmented with a small amount of additional information to

16

create an FM-index (named after the initials of its inventors), which, like a suffix

array, allows efficient substring search on the original string, but which also retains the

compression afforded by the BWT [22]. The FM-index is based primarily on the idea

of a last-first (LF) mapping. This mapping maps each character instance in the last

column of the BWT matrix to the row in which that same character instance appears

in the first column. Because each BWT matrix row is a rotation of the original string,

the last column of the row will contain the character instance immediately preceding

the one just looked up. Thus, following the LF-mapping around the BWT from any

starting position allows the characters of the original string to be enumerated from there

in reverse order [22].

Since only the last column of the BWT matrix (i.e. the actual BWT string)

is used in the algorithm, only that string needs to be stored. Furthermore, the LF-

mapping can easily be calculated from the BWT string. To LF-map the character

instance at a certain index in the BWT, count up the number of characters in the BWT

lexicographically less than the character, and add the character instance’s rank among

all instances of that character. This gives the index of the LF-mapping result in the

BWT.

To see why this works, recall that in a suffix array, and thus also in the BWT

matrix, all the suffixes (or here rotations) that start with a given character form a con-

tiguous block, coming just after all those beginning with smaller characters. Thus, the

first calculation is to find the start of this block. And since, as shown in Subsection 1.2.7,

the relative order of character instances in the first column is the same as that in the

last column, to find the offset of this particular character instance in that contiguous

block, we merely need to find its rank among instances of the same character in the last

column, which is the BWT string [46].

We can now define backward search, a search algorithm using the BWT

which processes the characters in the query string from back to front. The algorithm

17

begins by selecting the entire BWT matrix, which is the range of suffixes that begin with

the empty string. Then, for each character in the query string, from the last forwards,

the algorithm extends the searched string at the front with that character. It takes the

new character and finds the first and last instances of it in the BWT contained within

the currently selected result range. It then LF-maps each of those instances, and takes

the range between them as the new result range for the query string extended with that

character. If there are no instances of the character to map, then the searched string is

not found in the index [22].

Each row of the BWT matrix in the old range started with an instance of the

old query string. Each of the rows that ended in the new query character corresponded

to an instance of the old query string occurring after the new query character, and thus

each implies an instance of the new, one-character-longer query string. The LF-mapping

step finds the contiguous block of rows in the BWT matrix where those instances of the

search string appear, the boundaries of which correspond to the first and last instances

of the new character in the old BWT range (by the conservation of ordering mentioned

at the end of Subsection 1.2.7). Thus, such an algorithm can be used to search for

substrings in a string, using the BWT of the string [22].

By pre-calculating some auxiliary data structures, such as a table with the

start index of each character’s range in the BWT matrix, and by using succinct data

structures for O(1) rank queries, this algorithm can be made to run in time linear in the

length of the query string, and constant in the length of the index [22]. Furthermore,

using a downsampled copy of the suffix array, the location of each result in its source

string can be calculated efficiently [101].

1.2.9 Bidirectional DNA Search with the FMD-Index

BWT-based indexes have found many applications in genomics, mostly due to their

ability to efficiently search for and identify the locations of a substrings in very large

18

datasets—with a few modifications, this search can be extended to align reads to a refer-

ence [50]. The popular short read aligner BWA, for example, is built on an FM-index of

the reference genome; indeed, the name stands for “Burrows–Wheeler Aligner” [50, 53].

The “String Graph Assembler” SGA also uses a BWT-based index to do its work, but

in this case indexes reads themselves [99].

In genomics, the strings being indexed are DNA strings, consisting of As,

Gs, Cs, and Ts. These DNA strings are usually excerpts from double-stranded DNA

genomes, in which, for each chromosome, two strands of DNA form a double helix. One

strand runs in one direction, and the other strand runs in the other direction, with

bases complemented (As and Ts swapped, and Gs and Cs swapped). It’s impossible

to tell whether a DNA sequencing read came from the forward strand or the reverse-

complement strand until a match is found for it in a reference somewhere. Thus, many

analysis problems in genomics need to consider not only some set of DNA strings but

also their reverse complements.

The existence of reverse complements is accounted for in SGA by creating

two FM-indexes of the input data: one index of the forward strand, and one of the

reverse-complement strand [99]. This construction requires DNA query strings to be

searched against both indexes, and the results combined. However, there is a more

elegant approach which allows the same search to be performed against a single index,

and moreover allows bidirectional extension of the query string. This data structure,

the FMD-index (the “D” is for “DNA”), is simply an FM-index of both the forward

and reverse strands of all input sequences, concatenated into a single dataset [48].

The FMD-index provides for double-ended search; that is, an intermediate

search result can be extended with a character on either the left or right end of the

query string. This works by having the FMD-index store as its intermediate result

not just the single range in the BWT corresponding to BWT matrix rows that start

with the query string, but also the (equally long) range for the reverse complement

19

of the query string [48]. The first is the forward range and the second the reverse

range. The fact that these two intervals will always be equally long is the key to the

algorithm: because each string in the index is present as both itself and its reverse

complement, any appearance of the query string has a corresponding appearance of

its reverse complement. Extending the query string on the left causes the forward

range to jump around in BWT coordinate space (to the regions of the BWT matrix

that begin with the newly added character). However, extending on the left always

causes the reverse range to cover a subrange of what it covered previously: the reverse

complement of the query string gets extended on the right, and only BWT matrix rows

which began with the original reverse-complement query string can possibly also begin

with the longer reverse-complement query string.

The FMD-index search algorithm works as follows: When the query string is

extended on the left, the forward range is updated as normal. The reverse range takes

on the new interval length derived from the forward range, and a small dynamic pro-

gramming problem is done over the alphabet to find its new start position. The dynamic

programming problem is fairly simple because the reverse range can be partitioned into

the ranges that would be selected upon left-extension with any character, ordered in

lexicographic order by the reverse complement of the character. The dynamic program-

ming simply consists of looping through the alphabet in lexicographic order by reverse

complement, considering extending on each character up to the one actually being used,

calculating how long the result set would be on the forward strand, and adding that

in to the start of the reverse strand interval [48]. To extend a string on the right, the

forward and reverse ranges are temporarily swapped, and the reverse complement of the

query string is extended on its left with the reverse complement of the new base [48].

20

1.2.10 Sequence Graphs

There are many possible representations of a genomic reference as a graph [11], but one

particularly useful model is a bidirected graph, or, when used to represent genomic

data, a sequence graph [84]. In the sequence graph model, nodes in the graph are

nucleic acid sequences, and each sequence has two sides: a “left” or “start” side and

a “right” or “end” side. The two sides of a sequence are opposites of each other, and

can be written as s and s. The sequences are connected together by edges, each of

which has two ends that are attached to sides of nodes. The model is called “bidirected”

because, unlike in a directed graph where each edge consists of a set of nodes and a

direction (from one node to another), in a bidirected graph each edge consists of a set

of nodes and two directions. The edge can still be from one node to another (in which

case it connects the end side of one node to the start side of the other), but it can also

be “to“ both nodes (in which case it connects their start sides together), or “from” both

nodes (in which case it connects their end sides together).

In a graph such as this, traversals, walks, and other graph-theoretic concepts

generalize from visiting just the nodes to visiting nodes in one of two orientations:

forward (i.e. start side to end side) or reverse (i.e. end side to start side). A visit to a

node in the forward orientation correspond to the node’s sequence, whereas a visit to the

node in the reverse orientation corresponds to the reverse complement of its sequence.

When visiting multiple nodes, it is important that the visits’ orientations be consistent:

if two nodes are connected by an edge from the first to the second, and you visit the

first node in its forward orientation, you may next visit the second node in its forward

orientation (by leaving the first node’s end and arriving at the second node’s start),

but you may not, traversing that edge, visit the second node in its reverse orientation.

In other words, the forward orientation corresponds to arriving at the start side and

leaving via the end side, whereas the reverse orientation corresponds to arriving at the

21

end side and leaving via the start side, and other combinations (such as both arriving

and leaving via the start side) are not permitted [4].

In addition to the bidirected graph formulation, there exists an equivalent

biedged graph formulation [85]. A sequence graph can be modeled as a graph with

two types of edges: sequence, or “black”, edges, and join, or “gray”, edges. In this

formulation, each side becomes a node, connected by a sequence edge labeled with the

sequence that the side belongs to. When traversing the sequence edge in one direction,

the sequence is read forward, while when traversing the sequence edge in the other

direction, the sequence is read in reverse. Every node has exactly one sequence edge

attached to it. The join edges connect nodes, just as the edges in the bidirected graph

model connect sides; join edges are undirected.

1.2.11 Graph Substring indexes

A graph-based Human Genome Variation Map requires an efficient substring search

algorithm, in order to allow sequencing reads to be efficiently aligned to the graph.

Substring search in graphs is not a new idea. Many of the current approaches to

this problem come at it from the perspective of trying to index a multiple sequence

alignment [102]. Several such approaches are described below.

One approach, the Generalized Compressed Suffix Array (GCSA), extends

the XBW transform (itself a generalization of the BWT to trees) to “prefix-range-

sorted automata”, which include de Bruijn graphs but not general directed labeled

graphs [102]. However, the authors of that approach present only an implementation

for acyclic multiple sequence alignments. The existence of nonlinear structures like

polymorphic inversions, where a genomic region is forwards in some individuals but

backwards in others, is not addressed, and no implementation for de Bruijn graphs

is provided [102]. Moreover, the approach presented there provides search over all

possible paths through the graph in question, which is a reasonable choice for indexes

22

derived from multiple alignments, but which might backfire for graphs with short cyclic

structures that could provide pathological productions for many query strings [102].

Another, slightly newer approach uses the concept of a “population reference

graph”, also derived from a multiple sequence alignment [16]. In contrast to the BWT-

based indexing methods described above, the population reference graph method turns

its graph representation of genomes into a Hidden Markov Model (HMM), and iden-

tifies the most likely paths through it to match the k-mer spectrum of any particular

sample [16]. Under this method, a pair of haploid genomes are then synthesized as

sample-specific references, and existing read-to-genome mapping tools are used to map

sequencing reads to these references [16]. Unfortunately, because of the way that k-mer

counts from a sample are divided up to provide input for the HMM model in differ-

ent genomic regions, this method is forced to divide its HMM states into “levels” that

it proceeds through in a fixed, sequential order. The resulting graph model is con-

strained to closely resemble the multiple sequence alignment it was derived from. While

this method can effectively model a wide range of alternative sequences in a region, it

does not appear to be able to effectively model inversions, duplications, or other more

complex structures [16].

A modern implementation of a more traditional substring index is presented

in Maciuca et al. [63]. Known as the vBWT, with the “v” representing variation,

it encodes a graph consisting of a reference backbone and a series of non-overlapping,

potentially length-changing substitutions along that backbone, by demarcating the vari-

able locations and the different alleles with special characters in a single long string,

which is then compressed and indexed using the BWT [63]. These special characters

are integrated into the standard backward search algorithm, splitting the selected range

when required, to enable search over substrings in the graph using the BWT of the

encoded string. This is an elegant and relatively simple approach, and its model is

well-matched to that of the VCF format, which also deals with nonoverlapping replace-

23

ments along a linear reference. Unfortunately, it is even more restrictive than GCSA in

terms of the requirements it imposes on the graph; one important shortcoming is that

it cannot represent nested variation, such as SNPs inside of potential indels Maciuca

et al. [63], Sirén et al. [102].

One final graph substring index is GCSA2, an improved version of GCSA that

makes some different design decisions [100, 102]. Rather than restricting eligible graphs

to prefix-range-sorted automata and indexing them in their entirety, GCSA2 accepts

general directed labeled graphs (which can be generated from bidirected graphs by

doubling out the nodes) [100]. The limitation instead is on the query length; GCSA2

works on an index mapping each k-mer to the positions in the graph at which copies of

it start. The table of k-mers is compressed by representing it as a generalization of a

de Bruijn graph (so that shared pieces of sequence between adjacent k-mers do not need

to be duplicated), and then that graph is in turn represented using succinct self-index

techniques designed for de Bruijn graphs. Search is accomplished by using BWT-based

techniques on the index graph, and then following references from that graph to the

relevant locations in the full graph being indexed [100].

1.2.12 Data Models with Protobuf

Representing human genomic variation as a graph reference requires a data model in

which to represent that graph in software. Moreover, producing an effective Human

Genome Variation Map that can actually be used by other researchers requires selecting

a data model that can itself be easily communicated, that can have broad software

support, and that people can be persuaded to agree on.

A simple way to describe a data model and get code generated in various lan-

guages for free is to use Google’s Protocol Buffers (or “Protobuf”) library [111]. The

system provides a simple language to describe data structures, and a serialization system

to allow multiple languages to read and write those data structures. The availability

24

of libraries such as “json2pb” (https://github.com/shramov/json2pb) permits easy

interoperation with any language or tool that can consume or produce JSON. Addi-

tionally, the relative sparsity of features forces data models to be relatively simple, and

the backing of a large, rich technology company helps convince people (for good or bad

reasons) to agree on the format. Finally, the extensibility of the system allows new

fields to be added to provide new features without invalidating older datasets.

An example Protobuf description of a data model for nodes in a genome graph

is visible in Figure 1.2. Using a Protobuf-based data format for genome graphs allows

for broad accessibility, without some of the disadvantages (such as large size and the

necessity to write correct parsers in various languages) of bespoke text formats.

// ∗Nodes∗ s t o r e sequence data .
message Node {

s t r i n g sequence = 1 ; // Sequence o f DNA bases r ep re s en ted
↪→ by the Node .

s t r i n g name = 2 ; // A name prov ides an i d e n t i f i e r .
i n t64 id = 3 ; // Each Node has a unique p o s i t i v e

↪→ nonzero ID with in i t s Graph .
}

Figure 1.2: Protobuf-format data model for a graph node, from vg [24]. Each kind of
item in the data model is referred to as a “message”, and each field is manually assigned
a unique identifying number to allow its name to be changed later while retaining
backward compatibility.

1.2.13 vg, the Variation Graph Toolkit

One collection of Protobuf data models for genome graphs comes from vg, a software

suite created by Erik Garrison for working with genome graphs [24]. In vg, graphs are

represented by a collection of nodes, each of which has an ID and a sequence, and a

collection of edges, each of which connects one side (the start or end) of one node to

one side of another node (which may actually be the same node, because the vg model

25

https://github.com/shramov/json2pb

allows for cycles and self-loops). Each graph can also have a series of named paths

associated with it, to represent how notable sequences, such as the primary path of a

genome assembly, or the reference version of a particular gene, fit into the graph.

The vg suite is structured as a command-line vg command with a variety

of subcommands (vg construct, vg map, vg view, etc.), which are designed to be

chainable into pipelines and which communicate using streams of Protobuf-serialized

graph data. The combination of the Protobuf-based serialization format, the modular

architecture as a collection of subcommands, and the relatively comprehensive internal

graph manipulation API make vg an attractive option as a framework in which new

genome graph algorithms can be implemented, and a useful toolkit for performing graph-

based analyses.

At the time when vg was selected as a basis for further development, it pro-

vided a data model supporting bidirected graphs, subcommand implementations for

constructing, indexing, and mapping to directed acyclic graphs, and a succinct graph

storage format. In part as a result of software development work undertaken for this

thesis, vg now includes full support for working with bidirected graphs (with GCSA2-

based indexing [100] and succinct graph storage), a variant calling implementation, and

a suite of unit tests.

1.2.14 Copy-Number-Variable Alignments with Cactus

When building a Human Genome Variation Map, it would be desirable to be able to

incorporate variation data in the form of observed sequences, such as the European-

representative MHC sequences obtained in Horton et al. [36], or the many alt loci

provided with GRCh38 [44]. Thus, it is necessary to have a mechanism to go from a

collection of related sequences to a graph representation describing their commonalities.

The vg suite includes a tool designed to do this, vg msga (which stands for “multiple

sequence graph alignment”), but this tool remains under active development.

26

An alternative approach is to use a more mature multiple aligner tool called

Cactus [82]. The Cactus aligner, which has been deployed in production for the pro-

duction of community alignment resources [37], was designed for alignment problems

involving large numbers of whole genomes from different species, and consequently un-

derstands the sorts of structural changes between species’ genomes, such as large-scale

deletions, duplications, and rearrangements, that need to be dealt with when working

at those evolutionary time scales. In regions like the MHC, which are prone to incom-

plete lineage sorting (ILS) [89], interspecies evolutionary distances can exist within

a single individual. Consequently, an aligner that is able to work well at such time scales

might be expected to work well on the MHC alt loci and on other alt loci throughout

the human genome assembly.

Cactus output typically takes the form of a Hierarchical Alignment Format

(HAL) file [35, 37], which uses a phylogenetic tree with internal ancestor nodes to

structure information about how blocks of different genomes relate to each other. The

structure formed by relationships between corresponding blocks in different genomes is

quite similar to a sequence graph, with the genomes being embedded in it as paths, and

so Cactus-based alignments have a natural conversion to sequence graphs.

1.2.15 Finding Variable Sites in Graphs

The VCF format, at least in two of its three syntaxes, reifies the idea of a variant, which

is a potential replacement of part of the linear reference genome assembly with alternate

alleles form a collection of options [66]. A well-defined notion of a variable site, like

the VCF variant, is a useful abstraction, but unfortunately it is difficult to carry over

to the graph context. Sequence graphs intended to provide natural representations for

nested variation—such as SNPs within potentially-deleted regions—but those structures

are awkward to describe as single monolithic variable sites. Moreover, in a graph, it

does not necessarily make sense to restrict the model to only accommodating differences

27

from the path taken by the reference genome assembly; novel material not present in

the reference assembly’s primary path also ought to be able to host variable sites.

One notion of a variable site in a graph context is the ultrabubble [85]. In

terms of the biedged graph representation, an ultrabubble is a subgraph defined by two

distinct boundary sides in it, such that:

1. The opposites of the boundary sides are not in the subgraph.

2. Removing the sequence edges of the boundary sides disconnects the subgraph from

the rest of the graph, but leaves the subgraph connected.

3. Neither one of the boundary sides could be replaced with another side in the

subgraph while still meeting the above conditions.

4. The subgraph is acyclic (i.e. when following valid walks, the same side cannot be

reached twice).

5. Every side in the subgraph has an incident join edge.

These conditions define a subgraph, bounded at both ends by a single node,

which can be traversed from one end to the other in one or more ways. Such a structure

can be used to provide a graph-based notion of a variable site, with the boundaries

giving its “location” in the graph, and the potential traversals from one boundary to

the other replacing the VCF variant’s reference and alternate alleles.

Note that ultrabubble can nest: both of the boundary sides can be replaced

at once to define a smaller child ultrabubble [85]. If you consider child ultrabubbles

to be opaque (i.e. equivalent to sequences) when working with their parents, they can

produce a hierarchical model of nested variable sites that can accommodate things like

SNPs within deletions.

Note also that not all graph structures are decomposable into ultrabubbles.

Some graph-based descriptions of variable genomic regions (for example, descriptions of

28

inversions or duplications that use cycles or reversing edges) do not form ultrabubbles.

Some of these more complex regions can be divided into snarls, which are like ultra-

bubbles but are allowed to contain cycles or unconnected sides. However, since they are

more general than ultrabubbles, snarls are more challenging to work with [85].

1.2.16 Reliable, Portable Cloud Computing with Toil

The vg tool is architected as small components performing relatively simple tasks. In

order to use it to produce a graph reference on the scale of the proposed Human Genome

Variation Map, some sort of orchestration or workflow system is necessary. This is es-

pecially true if one desires to use more than one computer in the build process; tasks

need to be scheduled and code and data moved around the cluster of systems in order

to perform the build. Moreover, because a build process like this might require more

computing resources than are required to work with the final product, it is desirable

to be able to rent those resources from on-demand cloud providers, rather than be-

ing forced to purchase them outright. Unfortunately, cloud computing offerings lack

standardization [80]; integrating cloud computing directly into a workflow can produce

provider lock-in.

One potential solution to this problem is Toil, a Python-based workflow devel-

opment library and execution engine which is capable of composing smaller tasks into

larger workflows, and of executing those workflows either on a single computer or on

a cloud-based virtual cluster from any supported cloud provider [112]. Toil workflows

can be written as Python scripts, which, together with Python virtual environments

housing their dependencies, can be dynamically distributed to worker machines in a

cloud environment. Toil nodes communicate amongst themselves using a job store,

which can be located on a shared filesystem or within a cloud-based distributed storage

system such as Amazon’s S3 or Microsoft’s Azure Storage. The job store is used to keep

track of which parts of the workflow have successfully completed, and which parts have

29

not yet executed or have failed, as well as to store files, arguments, and results that are

communicated from job to job.

Toil jobs can dynamically create and string together additional jobs in a di-

rected acyclic dependency graph, meaning that workflows can dynamically adapt their

shape to the shape of the data they are working with. Moreover, because the informa-

tion required to execute each job is stored in the job store, failed jobs can be retried,

and jobs suffering from bugs can be restarted with a corrected version of the workflow

code, allowing problems with a large workflow to be corrected without losing all of the

work done so far.

To make running on cloud providers easier, Toil provides a system to control

workflow input and output, by importing data from URLs at the beginning of the

workflow, and exporting data to URLs at the end, to eliminate the need to manually

copy data to and from ephemeral cloud instances. Additionally, Toil provides a Python

API for running commands through the Docker container system, allowing workflows to

call command-line tools without the user having to figure out a way to get them installed

on large numbers of ephemeral cloud instances. Finally, Toil integrates with Amazon

Web Services to allow clusters to be automatically scaled up and down as the resource

requirements of a workflow change, or as the spot market price of computing-hours rises

and falls, while for Microsoft Azure Toil provides a cluster template for easy deployment

in a few clicks. Overall, Toil provides a much-needed cloud abstraction layer and puts

power in the hands of the researcher by commoditizing cloud services.

1.3 Research Program Overview

In the pursuit of the Human Genome Variation Map goal, I have spearheaded a number

of research projects, which I have brought together here as a relatively comprehensive

sampling of the overall research program. The story begins with Chapter 2, adapted

30

from Novak et al. [77], wherein I describe a formalized alternative to traditional seed-

and-extend mapping approaches, which suffer from a dependence on complex heuristics

that are difficult to describe and reason about mathematically. This alternative system

of context schemes, described in that chapter, has a natural extension to graph-

based references, and indeed I created an extensive sequence-graphs software system

in order to produce graphs by merging sequences according to context schemes and to

characterize the performance of such reference structures, implementing some of the

ideas described in the ultimately unpublished Paten et al. [83]. However, I was never

satisfied with the software design I used in that implementation, where a graph was built

by progressive alignment and merging of sequences and stored as a large in-memory

FMD index with extra associated bit vectors. I was also not satisfied with the empirical

mapping performance that I was able to achieve using context schemes; I never found

a scheme that produced graphs I was really happy with. Although I did not continue

with the context-scheme approach, that project taught me valuable lessons about the

BWT, the power of succinct data structures, and how a graph-based genomics system

ought to be architected.

The second project presented here, the graph Positional Burrows-Wheeler

Transform, or gPBWT, was an inversion of the previous design. As described in Chap-

ter 3, adapted from Novak et al. [78], rather than representing a graph as a merged

collection of sequences, the gPBWT represents a collection of sequences embedded in a

graph. This is an inversion of my previous design. The idea of modeling the graph as

a first-class object was taken from the vg toolkit [24], within which the implementation

of the gPBWT was constructed. I believe that the overall design of the vg toolkit is far

superior to the design of my original sequence-graph codebase, specifically with regard

to vg’s factoring into relatively small tools that interact, and its focus on serializability

and a coherent data model. While some aspects of vg, such as its lack of full support for

bidirected graphs and some issues with the correctness of some of its library functions,

31

had to be rectified in order to make it a sufficiently stable base for further development,

effort that I put into solving those problems seems to have paid off. The use of the

vg toolkit allowed me to implement the gPBWT much more quickly than would have

otherwise been possible: the initial implementation was completed over the course of

a week-long “BioHackathon” in Sendai, Japan. In addition to providing mechanisms

to construct, manipulate, and store graphs, vg had already integrated a succinct data

structure library, as part of its xg succinct graph storage system. Furthermore, imple-

mentation in the mainline vg project, rather than as a separate one-off piece of software,

allowed the method to reach a broader audience.

The next phase of the research program was the Global Alliance for Genomics

and Health (GA4GH) Graph Bake-off, a cross-institutional collaboration to compare

different methods for constructing graph-based genomic references. As detailed in Chap-

ter 4, adapted from Novak et al. [79], the UCSC team and I collected graph submissions

from across five institutions (including ourselves), and compared them on a few graph-

level statistics as well as on their performance as read mapping targets and variant

calling references. Based in part on experience with vg obtained while creating the

vg-based gPBWT implementation, we used vg as the read mapper for the bake-off, and

developed a new variant calling component for vg to facilitate a downstream variant

calling analysis. In comparison to the other bake-off analyses, which we conducted using

a custom codebase, the vg-based analyses proved dramatically simpler to rerun over the

course of the project.

While the project, being under the auspices of the GA4GH, originally was

intended to showcase the GA4GH’s data interchange API, this aspect did not go as

planned. The graph-based aspects of the GA4GH API, originally developed as a sep-

arate prototype branch of the main system, did get incorporated into the main devel-

opment line, but they were later removed again by the GA4GH, to avoid trying to

prematurely standardize on an API for what was still a highly experimental kind of ge-

32

nomics. The lack of a clear definition of a variable site in a graph context, in particular,

caused a lot of confusion within the GA4GH reference variation working group. More-

over, while the intention had been to have multiple institutions producing evaluations

and creating API endpoints to expose their graphs, with the API being the common

protocol to enable the graphs to be communicated between parts of the system, in ac-

tuality all of the evaluations were produced by UCSC, and only the one reference server

API implementation was used. With our preferred practice being to import submitted

graphs from API endpoints into vg format for further analysis, and with the GA4GH’s

decision to step back from incorporating graph-awareness into its APIs, the vg format

played a significant role in the analysis as a de facto standard for graph interchange.

The results of the bake-off project were encouraging, and supported the idea

that graph-based references can yield better genomics results. The best-performing

graph submissions were the 1000 Genomes graph set and the Cactus graph set. Orig-

inally intended as a simple control, the 1000 Genomes graphs ignored the variation

data supplied to graph submitters, and simply provided a graph representation of the

variants present in the 1000 Genomes point variant VCFs. The surprisingly high per-

formance of these graphs illustrates the principle that working from larger datasets can

often be superior to working with cleverer algorithms [30]. The Cactus graphs, on the

other hand, were produced by aligning the supplied variation data, which came in the

form of long example sequences, using the Cactus aligner, and converting the result to

a graph.

The discovery of high-performance graph reference construction techniques in

the bake-off, and particularly the discovery of two high-performance techniques that

were so different from each other, prompted the final project described in this doc-

ument (Ch. 5). Building on the results of the bake-off, I attempted to combine the

Cactus-based and 1000-Genomes-based graph construction methods into a single tech-

nique, and to scale up from the few-megabase-sized regions used in the bake-off to

33

chromosomal scale. Additionally, for this project, I decided to focus specifically on

large-scale structural variation, which is simple to represent in a graph but disruptive

to the abstractions used by traditional linear genomics. In response to the confusion

among GA4GH members during the bake-off project, our lab developed a clean mathe-

matical description of variable sites in a graph, allowing for nesting of sites within one

another [85]. As part of this final project, I substantially revised the vg variant caller,

allowing it to call complex and nested variants in accordance with this theory. The re-

sults achieved so far at chromosome scale with the improved vg implementation confirm

and extend the results of the bake-off, showing superior variant-calling performance at

chromosome scale when using a graph-based reference incorporating known variation

than when using a linear reference (Subsec. 5.3.2-5.3.3).

However, although my results so far suggest that it should be possible to build

and get improved variant calling results by using a whole-genome-scale HGVM, this

research program is not yet complete. There remains, of course, the task of actually

building and evaluating such a graph. Moreover, the results which I have obtained at

chromosome scale, particularly with respect to structural variants, indicate that some

of the design compromises that the team and I made during the bake-off, in order to get

a working vg variant caller quickly, are now restricting our variant calling performance.

One of the next steps in the research program will be a redesign of the variant caller

to work more directly with individual reads, instead of operating on a pileup, which I

anticipate will reduce the occurrence of some of the more obvious classes of mistakes

that the caller is making. There is also work to be done on the workflow that I am using

to build and evaluate the graph, in order to ensure that it can scale to whole genomes

while making good use of the computing resources available to it. To facilitate this, it

may be necessary or desirable to extend the vg data model to better allow graphs to be

divided into chunks and later reintegrated.

Finally, since looking at some of the preliminary bake-off read mapping results

34

stratified by 1000 Genomes superpopulation, I have wanted to do a paper evaluating

the impact of graph references on reference bias; in theory, including more material

from more populations in the reference should reduce or eliminate any effect of sample

source population on the performance of genomic analyses. In practice, this theory

has proven difficult to test, in part because of understandable confounding between a

sample’s population and where and when it was sequenced [79]. A final release of an

official Human Genome Variation Map intended for serious use as a replacement for

the linear reference genome should be accompanied by a detailed investigation of its

population biases.

35

Chapter 2

Canonical, Stable, General Mapping

Using Context Schemes

This chapter has been adapted from the article Novak et al. [77]1, and contains

material attributable to all authors of that work. Supplementary materials referenced

here are available in the online version of that article.

2.1 Abstract

2.1.1 Motivation:

Sequence mapping is the cornerstone of modern genomics. However, most existing

sequence mapping algorithms are insufficiently general.

2.1.2 Results:

We introduce context schemes: a method that allows the unambiguous recognition

of a reference base in a query sequence by testing the query for substrings from an

1Adam M. Novak, Yohei Rosen, David Haussler, and Benedict Paten, Canonical, stable, general
mapping using context schemes, Bioinformatics, 2015, 31, 22, 3569-3576, by permission of Oxford
University Press.

36

algorithmically defined set. Context schemes only map when there is a unique best

mapping, and define this criterion uniformly for all reference bases. Mappings under

context schemes can also be made stable, so that extension of the query string (e.g.

by increasing read length) will not alter the mapping of previously mapped positions.

Context schemes are general in several senses. They natively support the detection of

arbitrary complex, novel rearrangements relative to the reference. They can scale over

orders of magnitude in query sequence length. Finally, they are trivially extensible to

more complex reference structures, such as graphs, that incorporate additional variation.

We demonstrate empirically the existence of high performance context schemes, and

present efficient context scheme mapping algorithms.

2.1.3 Availability and Implementation:

The software test framework created for this work is available from https://registry

.hub.docker.com/u/adamnovak/sequence-graphs/.

2.1.4 Supplementary Information:

Six supplementary figures and one supplementary section are available with the online

version of the article Novak et al. [77].

2.2 Introduction

Many tools and algorithms exist for mapping reads to a reference genome [31, 47, 54].

These tools are based on the idea of scoring local alignments between a query string and

a reference according to some set of match, mismatch, and gap scoring parameters, and

then finding local alignments with maximal or near-maximal scores. Seed-and-extend

approaches coupled with memory efficient substring indexes or hashing schemes have

been highly successful in heuristically accelerating this search process [17, 47, 54].

37

https://registry.hub.docker.com/u/adamnovak/sequence-graphs/
https://registry.hub.docker.com/u/adamnovak/sequence-graphs/

The core problem with read mapping is ambiguity. There is often no single best

place that a read maps, especially in the case of recent duplication within the reference

genome. The precise base-level alignment of the read to a given location in the reference

is also often ambiguous. To mitigate this, each mapped read is given a mapping quality,

a per read score that indicates how likely the mapping was generated erroneously [56].

Quantifying this uncertainty is a reasonable approach for many applications, but even

then the uncertainty can be difficult to accommodate downstream.

The difficulty of mapping a read to a reference motivates a consideration of

its necessity. Recently, alignment-free methods of variant calling through substring

detection have garnered significant interest [16]. The basic idea is not new; the dbSNP

database has long provided, for each point variant in the database, a flanking nucleotide

string that indicates the DNA context in which the variation was isolated [95]. In

principle such a system of variant identification sidesteps the limitations of score based

alignment, and can be used to canonically detect variations. However, in practice,

insufficient rigor in defining the substrings to detect, and a failure to account for other

variation near identified point mutations have limited the approach’s usefulness. Here we

formalize and extend this core idea; we propose using multiple, algorithmically defined

context strings to canonically identify the presence of each base within a reference

genome (potentially paving the way for high-specificity, alignment-free variant calling)

and evaluate the performance of such a method in practice.

2.3 Methods

Throughout we make use of DNA strings, which are finite strings over the alphabet

of DNA bases {A,C,G,T}. A DNA string x has a reverse complement x∗, which

is the reverse of x with each DNA base replaced with its complement; A and T are

complements of each other, as are G and C.

38

2.3.1 Mapping

A reference (genome) G is a set of DNA strings and an index set of the elements

of these strings, each member of which is called a position. Each position p uniquely

identifies an element b(p) of a string in G. This allows us to unambiguously discuss

the “positions” in that set of DNA strings, rather than “bases” or “characters”, which

could be interpreted as the four DNA bases themselves.

We define the problem of mapping a query DNA string x = (xi)
n
i=1 to a

reference G. A mapping scheme is a function that takes x and G and, for each

query element i of x, either returns a position in G, declaring the query element i to be

mapped to that position in G, or declares the query element to be unmapped in G.

For the scheme to map a query element to a position p in G, b(p) must either be xi (in

which case that query element is forward mapped), or xi
∗ (in which case that query

element is reverse mapped).

2.3.2 Contexts

A context is a tuple (L,B,R), where L is a DNA string called the left part, B the

base, and R is a DNA string called the right part. The string LBR is the context

string of the context (L,B,R). The context distinguishes B from the rest of the context

string, so that when the context is found to occur in a query string, it is clear which

character in the query string (i.e. the one corresponding to B) has been recognized.

For an element i in a DNA string x a context (L,B,R) is called a natural context if

B = xi, L is a (possibly empty) suffix of (xj)
i−1
j=1 and R is a (possibly empty) prefix of

(xj)
n
j=i+1. Some example natural contexts are visible in Supplementary Figure S1.

39

2.3.2.1 Context Generality

A context c1 = (L1, B1, R1) is forward more general than a context c2 = (L2, B2, R2)

if L1 is a suffix of L2, B1 = B2, and R1 is a prefix of R2. That is, if you turned the

two contexts into strings with their bases marked as special characters, the more general

context would be a substring of the less general context. Note that a context is forward

more general than itself. A context c1 is reverse more general than a context c2 if c1

is forward more general than the reverse complement of c2, which is c∗2 = (R∗2, B
∗
2 , L

∗
2).

We define a context c1 to be generically more general than context c2 if it is either

forward more general or reverse more general than c2.

2.3.3 Context-Driven Mapping

It is possible to define a mapping scheme for a query string x to a reference G in terms of

contexts for positions in the reference. Such a mapping scheme makes use of a context

assignment.

2.3.3.1 Context Assignment

A context assignment assigns each position in a reference a nonempty context set,

such that all contexts in the set have the same base as the position, and no context in

one position’s set is more general than any context in any other position’s set (Figure

2.1). This second property of context assignments is called nonredundancy.

2.3.3.2 Matching

An element i in a query string x is said to match a context c = (L,B,R) if the

query, when partitioned into the context ((xj)
i−1
j=1, xi, (xj)

n
j=i+1), is less general than

c. Note that this encompasses both forward less general (in which case element i for-

ward matches the context) and reverse less general (in which case element i reverse

40

matches the context). When the context is in the context set of a reference position,

the element matches the position on the context.

2.3.3.3 Context-Driven Mapping Schemes

A context-driven mapping scheme is a mapping scheme which, for query x and

reference G with context assignment C, maps each element i in x to the unique position

in G which it matches under C, or leaves i unmapped when no such position exists. An

element remains unmapped when it does not match any context of a reference position,

or when it matches contexts of two or more positions; in the latter case we say it

discordantly matches, an example of which is visible in Supplementary Figure S2.

Under a (nonredundant) context assignment, each position p in the reference

can be mapped to, because for each context (L,B,R) of p the context string LBR

matches p on that context. The nonredundancy requirement ensures this matching is

not discordant: no context more general than (L,B,R) can be in the context set of any

other position in the reference.

2.3.3.4 Stability

An extension of a DNA string x is a DNA string that contains x as a substring. An

element k in an extension x′ of x is a partner of an element i in x if the context

((xj)
i−1
j=1, xi, (xj)

n
j=i+1) is more general than ((x′j)

k−1
j=1 , x

′
k, (x

′
j)j=k+1).

A mapping scheme is weakly stable if for each element i in each possible query

string x, if i is mapped to a position p in the reference, its partners in all extensions of x

will map to p or be unmapped. Weak stability is desirable because it guarantees that an

element in a query cannot change its mapping to a different position under extension—

the mapping scheme never has to admit that it mistook one reference position for

another when presented with more information. Unlike score based mapping procedures,

which are generally not weakly stable, all context-driven mapping schemes are weakly

41

Contexts for position P1

(L, b, R)
TGTCGC C CAAGCA

TGGCGC C CAAGCA

TGTCGC C CACA

Contexts for position P2

(L, b, R)
ACGAC C CCAG

CGAC C CT

ACGAC C CCATG

Figure 2.1: Example of two nonredundant context sets. Substitutions relative to the
first context in each set are in bold. If the context (L,B,R) = C, C, C were added to
either set, it would make the context assignment redundant, as it is more general than
contexts that already occur in both sets.

stable, because for any mapped element i, the partners of i in an extension of the query

string can only either map to the same position p, or be discordantly matched and

therefore unmapped. This is because these partners have all the natural contexts of i,

and therefore must match on a context in the context set of p, but may additionally

match on the context of a different position in the reference and therefore discordantly

match.

A mapping scheme is stable if for each element i in each possible query string

x, if i is mapped to a position p in the reference, its partners in all extensions of x

will map to p. Stability is naturally a more desirable property than weak stability, as

it restricts mapping to individual positions aligned with high certainty. By the argu-

ment above, some context-driven mapping schemes are only weakly stable. A stable

context-driven mapping scheme is equivalent to a context-driven mapping scheme

that additionally makes an element of a query string unmapped if a partner element in

any extension of the query would discordantly match.

2.3.4 The Natural Context-Driven Mapping Scheme

In our earlier paper [83] we discussed a number of different context assignments, in-

cluding fixed k-mer approaches. Here we focus on a new scheme that is easy to reason

about and which performed the best in our preliminary empirical tests (Supplementary

Figure S3).

The natural context assignment assigns to each position in the reference

42

the subset of its natural contexts that are not natural contexts of any other position in

the reference. It is trivially nonredundant. The natural (context-driven mapping)

scheme, which uses the natural context assignment, has an intuitive interpretation: an

element i of a query string is mapped to a position p of the reference when all natural

contexts of i with context strings unique in the reference are are assigned to p.

2.3.4.1 Overview of Algorithms

The natural context scheme is also simple to implement. For a reference and query,

a maximum unique match (MUM) is a maximum length substring of the query

present once in the reference. Our definition of a MUM differs from that used by

tools like MUMmer [14] in that it is nonsymmetric; we allow a MUM to have multiple

MUM instances in the query, each of which is a MUM and an interval of the query

corresponding to a location of the substring. For a query x of length n there are

at most n MUM instances, since two cannot start at the same place. Each MUM

instance that contains a given element i can be described as a natural context string

of i: (xj)
i−1xi(xj)i+1. Under the natural context assignment, the context of each such

MUM-derived context string matches exactly one reference position.

Using a suffix tree with suffix links of the strings in a reference (which can be

constructed in time linear in the sum of the length of the reference strings), or a related

substring index data structure, it is possible to find the set of MUM instances for a

query string ordered by ascending start element in O(n) time. These data structures

all provide two O(1) operations, extend and retract, which, given a search result set

for some search string, can produce the result set for a search string one character

longer or shorter, respectively. Employing these operations to find all MUMs in order

by ascending query start position is straightforward. Starting with the empty string,

extend the search string on its right end with successive characters from the query string

until such an extension would produce a search result set with no results (or until the

43

query string is depleted). If at that point there is one result in the result set, and at

least one extension has happened since the last retraction, then a MUM has been found.

Next, retract a single character from the left end of the search string, and go back to

extending with the remaining unused query string characters. Repeat the whole process

until the query string is depleted.

Since each successful extend operation consumes a character from the query

string, no more than O(n) extend operations can ever be performed. Since each retract

operation moves the left end of the search string to the right in the query, no more

than O(n) retract operations can be performed. And since each unsuccessful extend

operation (which would produce an empty result set) is followed by a retract operation,

no more than O(n) of those can happen either. Thus the entire algorithm is O(n).

Once the MUM instances have been found, it is necessary to identify the query

elements that occur in exactly one MUM and therefore can be mapped under the natural

scheme. (If an element is contained in two or more MUM instances then it must be

discordantly mapped, because each must define a context that matches the element to a

distinct position.) Given the MUM instances ordered by ascending query start element,

it can be determined for all elements if each is in one, zero or multiple MUM instances,

by a single traversal of the ordered MUM instances taking O(n) time. We can therefore

determine in O(n) which elements in a query string are mapped. The combined time to

map all the elements in a new query string given an existing reference substring index

data structure of the type discussed is therefore O(n).

2.3.5 The α-β-Natural Context-Driven Mapping Scheme

Under the natural context assignment, for each (by definition minimally unique) refer-

ence context string, there must exist another reference substring that is an edit distance

of one from it. Therefore, while the natural context assignment ensures each context

identifies a single position in the reference, a single substitution, insertion or deletion in

44

a query substring could result in a change in mapping. To avoid this, we now define a

more robust scheme.

Throughout, we use the Levenshtein edit distance, in which a single character

replacement, insertion, or deletion is worth one. This choice of edit distance metric

makes reasoning about the behavior of our algorithms simpler, but they could potentially

be extended to other metrics tailored to different sequence data sources.

For a pair of overlapping substrings (xj), (xk) of a string x, we call elements in

either substring not contained within the intersection of their intervals on x separate.

For two substrings within the reference (not necessarily overlapping or even in the same

reference string) we can similarly talk about their number of separate elements. For a

given reference substring, the α-separation is the minimum edit distance α between

it and any other substring in the reference with a number of separate elements greater

than its edit distance from the original substring. For a given natural context of a

reference position, its α-separation is the α-separation of its context string.

Having a minimum α-separation for contexts in a natural context scheme

makes mappings more stable in the face of edits to the query. Specifically, it ensures

that the number of edits required to transform the context of one position into the

context of another is at least α, for positions whose context strings have more than α

separate elements. When two reference substrings with α edit distance have exactly α

separate elements (it is easy to verify they can not have fewer than α) then there ex-

ists a minimum edit-distance alignment of the two substrings that only aligns together

bases from each substring with the same reference positions, and the α edit distance is

therefore trivially realizable as the removal of a prefix from one substring and a suffix

from the other. However, it is also possible that two substrings with α edit distance

and α separate elements could have other minimum edit distance alignments that would

result in different mappings. Therefore, enforcing α-separation on a context assignment

does not absolutely prevent mismappings produced by fewer than α edits—however,

45

such mismappings would have to be relatively localized on the reference.

Similarly, the natural context assignment is intolerant to edits between the

query string and context strings of positions in the reference to which we might like

query elements to map. To mitigate this issue, for a given context (L,B,R) and element

i in DNA sequence x we define β-tolerance: if xi = B, β is the minimum edit distance

between the context string LBR and a natural context string of i. If xi 6= B then

β = ∞. Hence for a position in the reference p, a β-tolerant context (L,B,R) is a

context such that b(p) = B and LBR is within β edits from a natural context string

of p. The α-β-natural context assignment assigns each position in the reference a

context set containing the minimal length contexts that are at least α-separated, and at

most β-tolerant from it. It can be verified that as long as α is greater than or equal to

one and β is less than α/2 then the context assignment is nonredundant and therefore

valid. The α-β-natural context assignment ensures all admitted contexts are both α-

separated (and therefore unlikely to be matched by chance, requiring α misleading edits

to coincide), and at most β-tolerant (and therefore tolerant of up to β edits obscuring

the true reference position). The natural context-driven mapping scheme is a special

case of the α-β-natural (context-driven mapping) scheme when both α and β

equal 0. (A possible extension would be a context scheme in which the α-separation

and β-tolerance required to admit contexts depended on the context length, but this

would make the parametrization of the context scheme quite complex, and so is not

explored here.)

2.3.5.1 Overview of Heuristic Algorithms for the α-β-Natural Context-

Driven Mapping Scheme

Unfortunately, algorithms built on efficient substring indexes to implement the α-β-

natural scheme require tracking a number of potential matches that is exponential in

both α and β parameters. Instead we pursue an algorithm that heuristically approx-

46

imates this scheme. A full description of this algorithm is available in Supplementary

Section S1; the basic idea, inspired by existing seed-and-extend hashtable methods and

chaining methods like BWA-MEM, is to chain exact matches separated by mismatching

gaps, until a sufficient α-separation is obtained [49, 55].

For a reference, a minimal unique substring (MUS) is a shortest length

substring that appears once in that reference. Two MUSes are disjoint if they do not

overlap. We define α′ as the maximum number of disjoint MUSes within a context

string. It is easy to verify that α′ is a lower bound on α. Intuitively, each disjoint MUS

would need to be disrupted by a distinct edit.

The heuristic algorithm attempts to chain together MUMs to accumulate at

least α′ disjoint MUSes, without requiring more than β′ edits in the interstitial sub-

strings between the MUMs. This creates β′-synteny blocks, as depicted in Figure 2.2,

which are maximal sequences of MUMs that agree in order and orientation, and which

have β′ or fewer edits between the strings they mark out in the reference and the query.

If a β′-synteny block can be created that has at least α′ disjoint MUMs (and is thus α′-

separated), the MUM instances it contains are used as in the natural mapping scheme

above, to define contexts for the involved reference positions.

This heuristic algorithm, as demonstrated in Supplementary Section S1, finds

contexts of reference positions in the query string that are at least α′-separated, and at

most β′-tolerant, and takes O(β′2n) time to map the query string, given the previously

described substring index structure for the reference. Provided α′ < β′, this context

scheme is nonredundant. The contexts found (and thus the matchings made) by this

heuristic scheme are a subset of those that would be produced by the exact algorithm,

although the same is not always true of the resulting mappings. A more thorough,

empirical comparison of this heuristic scheme to an implementation of the exact scheme

is left as future work, primarily due to the above-mentioned computational difficulty

inherent in nontrivial exact β values.

47

Figure 2.2: Diagram of a β′-synteny block for the α′-β′-natural context scheme, com-
posed of two MUMs.

2.3.6 Credit

It is common to find some elements in a query string x which are unmapped, and cannot

be mapped on any extension of x, yet are intuitively recognizable as corresponding

to reference positions. This often happens if bases are between two MUMs but are

not part of any MUM themselves, or if they were part of a MUM between two other

MUMs that cannot join a sufficiently α′-separated β′-synteny block. In these cases, to

create a scheme that maps more elements of the query, we can augment our context

assignments with additional contexts that allow such bases to map on credit, based on

the mappings of the bases on either side. The particular credit method used here looks

at the nearest mapped base on either side of a gap in mapping, and matches up elements

with the correct bases with respect to their implied positions in the reference, allowing

at most one mismatch. Previously unmapped elements that are matched to exactly one

reference position will be mapped on credit, while elements that are matched to zero or

two positions will not map.

48

Since only elements that did not already match, and which could not possibly

match on any extension of the query, are mapped in this way, the addition of credit

does not interfere with the nonredundancy of a context assignment or the stability of a

context-driven mapping scheme.

2.4 Results

In order to test the utility of the theoretical constructs described here, a series of soft-

ware tests were created in order to evaluate the mappings produced by the α-β-natural

scheme described above. Mapping accuracy was evaluated for both error-corrected long

sequences and error-prone short sequences.

2.4.1 Mapping MHC Alt Loci

To evaluate the performance of the new mapping algorithms proposed here a long-

sequence mapping task was defined. The human genome has, on chromosome 6, a region

of approximately 5 megabases known as the major histocompatibility complex

(MHC), rich in antigen presentation genes vital to the function of the immune system

[110]. The region is prone to complex rearrangement, is well-supplied with both coding

and noncoding sequence, and exhibits extreme regional variation in the polymorphism

rate along its span [110]. As one of the most complex and difficult regions of the

genome, it provides a good testbed for methods designed to deal with difficult structural

variation. To better represent the complexity of this region, the Genome Reference

Consortium (GRC)’s current human reference assembly (GRCh38) contains seven full-

length MHC alt loci, each of which serves as a different alternate reference for the

region [8]. These alt loci come with official alignments to the chromosome 6 primary

sequence, which are part of GRCh38 and were generated using the NGAligner tool and

limited manual curation [93, 94].

49

(a) (b)

Figure 2.3: Results of MHC alignment. Points shown in 2.3a are averages of alt-loci
alignments. Lines connect different β′ levels for a given α′. The red dashed line in 2.3b
is the average coverage of the GRC reference alignments.

Each mapping scheme under test took the MHC alt loci (GI568335879, GI568335954,

GI568335976, GI568335986, GI568335989, GI568335992, and GI568335994), and mapped

each to the GRCh38 primary path region, which actually appears in the “chr6” FASTA

record. The resulting alignments were compared against the official GRC alignments

distributed with GRCh38, with the caveat that aligned, mismatched bases in the GRC

alignments were de-aligned to ensure a fair comparison, as the mapping schemes being

evaluated were not permitted to align mismatching bases together. (Allowing mismatch-

ing bases in the GRC alignments to align made no perceptible difference in any figure,

and was not pursued further.) The standard information retrieval metrics of precision

and recall against the GRC alignments were calculated using mafComparator, and can

be seen in Figure 2.3a [19]. Overall coverage (the fraction of bases of an alt locus

aligned to the reference), and the frequency and size of rearrangement events implied

by the alignments, were also calculated, and are visible in Figure 2.3b and Figure 2.4,

respectively.

Mapping schemes using a wide range of α′ and β′ parameters were tried, with

β′ being restricted to values less than α′. Additionally, the natural mapping scheme

50

(α′ = 0, β′ = 0) was tested, with a parameter used to vary the minimum length of

admissible unique substrings (i.e. defining a series of natural context scheme, each only

considering unique reference substrings longer than a minimum threshold).

The strongest performing schemes, in terms of the harmonic mean of precision

and recall (F-score), had a precision greater than 0.99 and a recall of around 0.98.

Coverage was also remarkably close to that of the GRC reference alignments, suggesting

that the conservative nature of the schemes did not result in undue underalignment

(Figure 2.3b).

In all cases the natural length-thresholded context schemes performed substan-

tially worse than the various α′/β′ combinations in terms of recall of the GRC alignments

at a given level of precision (Figure 2.3a), and in terms of coverage (Figure 2.3b). This

suggests that α′ and β′ as defined here are effective heuristics.

Increasing α′ for a given β′ was found to increase precision and decrease recall,

but increasing β′ at a given α′ could restore the lost recall (at the cost of precision).

The α′ = 5, β′ = 4 natural scheme was determined to strike the best balance between

precision and recall, as there was a negligible increase in precision between it and the

α′ = 6, β′ = 5 scheme (Figure 2.3a). Both it and the α′ = 3, β′ = 2 scheme—selected to

provide a good balance between precision and recall while also optimizing for mapping

shorter sequences—were chosen for the short sequence mapping tests in 2.4.2 below.

Two additional configuration options were available for the schemes under test:

whether to map unmapped internal bases on credit, and whether to enforce stability

over weak stability. Our tests, the results of which are visible in Supplementary Fig-

ure S1a and Supplementary Figure S4b, demonstrate that requiring stability had a

negligible impact on recall for long sequences, while the use of credit produced a sizable

gain in recall at a manageable cost in precision (note the scales of the axes in Supple-

mentary Figure S4b). Consequently, credit was used for all analyses, and the stability

requirement was used for the MHC mapping analysis.

51

Figure 2.4: Frequency of rearrangements of different levels of complexity implied by
the alignment of MHC alt loci to the primary path, under the α′ = 5, β′ = 4 natural
scheme, which was selected to give the best balance between precision and recall. The X
axis shows the number of nodes involved in the rearrangement, while the Y axis shows
the number of rearrangements of that size. The red bar shows the number of 4-node
rearrangements that are automatically identifiable as tandem duplications.

The α′ = 5, β′ = 4 natural scheme, which provided the best trade-off be-

tween precision and recall, was also evaluated in terms of the number and complexity

of rearrangements it invoked to relate the MHC alt loci back to the primary path.

Figure 2.4 depicts a “spectrum” plot of rearrangement frequency versus size, where a

rearrangement is defined as a connected component in a multi-breakpoint/adjacency

graph representing the alignment between the primary reference sequence and an alt-

loci sequence [70, 81]. Briefly, the nodes of the graph are the ends (sides) of aligned

sets of two or more bases and the edges the adjacencies, possibly containing interstitial

unaligned sequence, that connect these ends [70, 81]. The spectrum plot shows that the

vast majority of rearrangements involve only two nodes (which is the structure of SNPs

and simple indels), and of the rearrangements involving 4 nodes, slightly under half of

them are recognizable as simple tandem duplications. The tandem duplications, which

frequently involve just a handful of bases, are discoverable because of the non-linear

52

nature of context-driven mapping. The remaining, more complex rearrangements have

not been identified or named. Supplementary Figure S5 shows UCSC Genome Browser

renderings of some of the rearrangements described in the spectrum plot.

2.4.2 Mapping Simulated Short Reads

Perhaps the most important current application of traditional alignment methods is

mapping reads from short read sequencing. To test this scenario a second mapping

task was created. Each of the MHC alt loci sequences was broken into overlapping

200bp fragments at 100bp intervals. The read length was chosen to align with that

of current or expected near future sequencing technologies, and is near the low end

of what the mapping schemes presented here can accommodate [90]. Each of these

fragments had substitution errors introduced with an independent probability of 1%

per base (comparable to current sequencing technologies) [90]. We used this simulated

scenario, rather than actual reads, because it allowed us to assess the reads’ origins to

easily determine if mappings were correct or aberrant.

Two variants of the α′-β′-natural scheme (α′ = 3, β′ = 2, and α′ = 5, β′ = 4),

in both stable and weakly stable versions, were used to map each read to the primary

path MHC from GRCh38. The results of the popular aligners BWA (using default

parameters) and LASTZ (using an empirically-determined restrictive score cut-off), were

also included [31, 54]. BWA in particular functioned as a gold standard: we did not

expect to outperform BWA, but rather sought to recapitulate some of its results in a

context-driven framework.

Mapping accuracy was assessed in two ways. First, the number of reads that

each mapper could place anywhere in the reference, and portion of bases mapped regard-

less of correctness, were measured. These results are visible in Figures 2.5a and 2.5b,

respectively. Second, the number of genes and portion of gene bases with incorrect map-

pings to other genes, as annotated by the UCSC Genome Browser’s “Known Genes”

53

database, were also measured, and are visible in Figures 2.5c and 2.5d [71].

BWA and LASTZ both mapped more of the reads and covered more of the read

bases than the context-driven mapping schemes, though the difference was relatively

small: less than 10% in terms of mapped reads and, for the weakly stable context

schemes, less than 15% in terms of coverage. These results were unsurprising, given that

a context-driven mapping scheme is a function that can not multi-map any position,

while the other two aligners freely produced multi-mappings.

The context-driven mapping schemes examined broadly matched BWA’s per-

formance in terms of avoiding mapping genes to their paralogs (Figures 2.5c and 2.5d).

All four context-driven schemes tested outperformed BWA’s raw output. However, if

BWA’s output was filtered to only include reads mapped with maximum mapping qual-

ity (which was observed to be 60), only the α′ = 5, β′ = 4 natural schemes managed to

outperform it in terms of the portion of genes with any mappings to paralogs—and that

at a very substantial drop in coverage (Figure 2.5b). LASTZ, on the other hand, did not

report mapping qualities; even with what was intended to be a stringent score threshold

applied, it produced the most mappings to paralogs of any aligner tested (Figures 2.5c

and 2.5d).

While the difference between stable and weakly stable mapping schemes was

insignificant for long-read mapping, the coverage difference for these shorter reads was

much greater. Thus stability, rather than weak stability, might seem an impractical

restriction for short reads, albeit one that still admits the mapping of the majority of

query sequence elements.

A final experiment characterized the minimum context lengths with which it

was possible for a base to map in the GRCh38 primary path MHC; the results are shown

in Figure 2.6. The vast majority of bases were found to be mappable with contexts of

100bp or less, and all but about 2% of bases at α′ = 5 were found to be mappable with

contexts of 200bp or less.

54

Figure 2.5: Results of read alignments. Reads were generated from MHC alt loci by
taking tiling 200bp windows at 100bp intervals, and randomly introducing substitution
errors at a frequency of 1%. Reads were aligned to the GRCh38 primary path MHC
region.

55

(a) (b)

(c) (d)

56

Figure 2.6: Minimum β′ = 0 context lengths required to map uniquely in a reference
derived from the GRCh38 primary path MHC, for different α′ values. At an α′ of 1,
1.16% of minimal contexts are longer than 100bp, and 0.97% are longer than 200bp. At
an α′ of 5, 8.85% of minimal contexts are longer than 100bp, and 1.74% are longer than
200bp

57

(a) (b)

58

2.5 Discussion

The new mapping scheme proposed here—both radically different and more conservative

than existing methods—has some important benefits. The first is that it is versatile:

it can be used to map multi-megabase MHC sequences while accounting for complex

rearrangements, but also does reasonably well with 200bp simulated reads. The second

major benefit is stability: although requiring stability reduces coverage when mapping

short reads, it reveals a majority subset of mapped positions that are aligned globally

with high certainty. This is a useful per-base quality assessment somewhat orthogo-

nal and complementary to the widely used read-level mapping quality scores [56]. The

third major benefit—being able to define variants in terms of canonical contexts which

can diagnose their presence—is related to the second: having a stable mapping scheme

enables the articulation of sequences which, when observed, always indicate the pres-

ence of a particular variant. This could ultimately pave the way for a high-specificity

reference-free method of variant calling, building on the dbSNP concept of flanking

strings [95].

Our results show that the context-driven, stable mapping approach can be

more conservative than existing mappers like BWA and LASTZ, at the cost of coverage.

If there is any possibility of later having to admit that it was wrong in mapping a base,

a stable scheme will not map that base. A weakly stable scheme is only slightly more

permissive, willing to map bases only if it knows they cannot possibly map elsewhere.

We show that the α′-β′-natural schemes can be much more selective than LASTZ, and

can in certain circumstances outperform BWA in avoiding mappings to paralogs, and in

the general case are no worse. This specificity comes at the cost of a reduced ability to

contend with high sequencing error rates. However, it is particularly important when

analyzing regions like the MHC, where some genes present in a query may not be present

themselves in the reference to which reads are being mapped, but may nonetheless have

59

close and misleading paralogs in the reference.

The α′-β′-natural scheme presented here is more useful for mapping longer

sequences, where the costs of stability (incurred only near the sequence ends) are lower,

and the chances of finding longer and more distinctive contexts are higher. Longer

reads are also more likely to directly exhibit some of the linearity-breaking structural

rearrangements that our scheme is designed to deal with. The scheme presented here

largely recapitulates the GRC’s official alignments. The α′ = 5, β′ = 4 instantiation,

for example, has approximately 99% precision and 98% recall when compared to the

GRC alignments, as depicted in Figure 2.3a. Given that the GRC alignments for the

MHC alt loci do not contain any duplications, translocations, or inversions, some of the

missing precision is almost certainly due to the correct detection of events that the GRC

alignments did not completely describe. Judging by our manual analysis (illustrated in

Supplementary Figure S5), such calls are generally plausible.

Finally, the context-based mapping scheme method is abstracted from its ref-

erence and query inputs, and thus easy to generalize. In addition to being very general

in the types of queries it can accept, from short reads to entire alt loci, it is also very

general in the types of references it can map to. As long as context sets can be de-

fined for each position, this method can be extended to map to nonlinear, graph-based

reference structures (as in Supplementary Figure S6). Such graph structures, contain-

ing common variation in addition to the primary reference, would help to alleviate the

reference allele bias inherent in current approaches to variant detection. The mapping

scheme presented here provides a concrete approach to mapping to such a structure,

something we explored in our earlier paper [83] and that we are actively pursuing.

Future work to be done on this project includes the creation of a full alignment

tool based on the algorithms described here, and an extension of those algorithms to

graph-structured references. The software test framework created for this work is avail-

able from https://registry.hub.docker.com/u/adamnovak/sequence-graphs/.

60

https://registry.hub.docker.com/u/adamnovak/sequence-graphs/

Acknowledgements

Funding This work was supported by a grant from the Simons Foundation (SFLIFE

#351901). AN was supported by research gift from Agilent Technologies, a fellowship

from Edward Schulak, and an award from the ARCS Foundation. Research reported in

this publication was also supported by the National Human Genome Research Institute

of the National Institutes of Health under Award Number U54HG007990. The content

is solely the responsibility of the authors and does not necessarily represent the official

views of the National Institutes of Health.

61

Chapter 3

A Graph Extension of the Positional

Burrows-Wheeler Transform and its

Applications

This chapter has been adapted from the article Novak et al. [78]1, and contains

material attributable to all authors of that work.

3.1 Abstract

We present a generalization of the Positional Burrows-Wheeler Transform, or PBWT, to

genome graphs, which we call the gPBWT. A genome graph is a collapsed representation

of a set of genomes described as a graph. In a genome graph, a haplotype corresponds to

a restricted form of walk. The gPBWT is a compressible representation of a set of these

graph-encoded haplotypes that allows for efficient subhaplotype match queries. We give

efficient algorithms for gPBWT construction and query operations. As a demonstration,

1WABI 2016: Algorithms in Bioinformatics, A Graph Extension of the Positional Burrows-Wheeler
Transform and Its Applications, Lecture Notes in Computer Science 9838, 2016, 246-256, Adam M.
Novak, Erik Garrison, Benedict Paten, c© Springer International Publishing Switzerland 2016

With permission of Springer

62

we use the gPBWT to quickly count the number of haplotypes consistent with random

walks in a genome graph, and with the paths taken by mapped reads; results suggest

that haplotype consistency information can be practically incorporated into graph-based

read mappers. We estimate that with the gPBWT of the order of 100,000 diploid

genomes, including all forms structural variation, could be stored and made searchable

for haplotype queries using a single large compute node.

3.2 Introduction

The PBWT is a compressible data structure for storing haplotypes that provides an effi-

cient search operation for subhaplotype matches [18]. The PBWT is itself an extension

of the ordinary Burrows-Wheeler Transform (BWT), a method for compressing string

data [6], with some concepts borrowed from the FM-index, an extension of the BWT

that makes it searchable [22]. Implementations of the PBWT, such as BGT [52], can be

used to compactly store and query the haplotypes of thousands of samples. The PBWT

can also allow existing haplotype-based algorithms to work on much larger collections

of haplotypes than would otherwise be practical [60]. The Haplotype Reference Consor-

tium dataset, for example, contains 64,976 haplotypes [67], and PBWT-based software

allows data at this scale to efficiently inform phasing calls on newly sequenced samples,

with significant speedups over other methods [59].

In the PBWT each site (corresponding to a genetic variant) is a binary feature

and the sites are totally ordered. The input haplotypes to the PBWT are binary strings,

with each element in the string indicating the state of a site. In the generalization we

present, each input haplotype is a walk in a general bidirected graph, or genome graph.

Graph-based approaches to genomics problems like mapping and variant calling have

been shown to produce better results than linear-reference-based methods [16, 79], so

adapting the PBWT to a graph context is expected to be useful. Other generalizations

63

of BWT-based technologies to the graph context have been published [38, 63, 100],

but they deal primarily with the substring search problem, rather than the problem of

storing and querying haplotypes.

The PBWT generalization presented here allows haplotypes to be partial (they

can start and end at arbitrary nodes) and to traverse arbitrary structural variation. It

does not require the sites (nodes in the graph) to have a biologically relevant ordering

to provide compression. However, despite these generalizations, essential features of

the PBWT are preserved. The core data structures are similar, the compression still

exploits genetic linkage, and the haplotype matching algorithm is essentially the same.

It is expected that this generalization of the PBWT will allow large embedded haplotype

panels to inform read-to-graph alignment, graph-based variant calling, and graph-based

genomic data visualization, bringing the benefits of the PBWT to the world of genome

graphs.

3.3 Definitions

We define G = (V,E) as a genome graph in a bidirected formulation [69, 83]. Each

node in V has a DNA-sequence label; a left, or 5′, side; and a right, or 3′, side. Each

edge in E is a pairset of sides. The graph is not a multigraph: only one edge may

connect a given pair of sides and thus only one self-loop, or edge from a side to itself,

can be present on any given side.

While more powerful algorithms are generally used in practice, a simple genome

graph can be constructed relatively easily from a reference sequence and a set of nonover-

lapping variants (defined as replacements of a nonempty substring of the reference with

a nonempty alternate string). Start with a single node containing the entire reference

sequence. For each variant to be added, break the nodes in the graph so that the

reference allele of the variant is represented by a single node. Then create a node to

64

represent the alternate allele, and attach the left and right sides of the alternate allele

to everything that is attached to the left and right, respectively, of the reference allele.

We consider all the sides in the graph to be (arbitrarily) ordered relative to

one another. We define the null side, 0, as a value which corresponds to no actual side

in the graph, but which compares less than any actual side. We also define the idea of

the opposite of a side s, with the notation s, meaning the side of s’s node which is not

s (i.e. the left side of the node if s is the right side, and the right side of the node if s

is the left side). Finally, we use the notation n(s) to denote the node to which a side s

belongs.

To better connect the world of bidirected graphs, in which no orientation is

better than any other, and the world of algebra, in which integer subscripts are incred-

ibly convenient, we introduce the concept of an ambisequence. An ambisequence is

like a sequence, but the orientation in which the sequence is presented is insignificant;

a sequence and its reverse are both equal and opposite orientations of the same un-

derlying ambisequence. An ambisequence is isomorphic to a stick-shaped undirected

graph, and the orientations can be thought of as traversals of that graph from one end

to the other. For every ambisequence s, a canonical orientation is chosen arbitrarily,

and the subscripted items si are the items in that arbitrarily selected sequence. This

orientation is also used for defining concepts like “previous” and “next” in the context

of an ambisequence.

Within the graph G, we define the concept of a thread, which can be used

to represent a haplotype or haplotype fragment. A thread t on G is a nonempty ambi-

sequence of sides, such that for 0 ≤ i < N sides t2i and t2i+1 are opposites of each

other, and such that G contains an edge connecting every pair of sides t2i and t2i+1. In

other words, a thread is the ambisequence version of a walk through the sides of the

graph that alternates traversing nodes and traversing edges and which starts and ends

with nodes. Note that, since a thread is an ambisequence, it is impossible to reverse.

65

Instead, the “reverse” of a thread is one of its two orientations.

We consider G to have associated with it a collection of embedded threads,

denoted as T . We propose an efficient storage and query mechanism for T given G.

The Graph Positional Burrows-Wheeler Transform

Our high-level strategy is to store T by grouping together threads that have recently

visited the same sequences of sides, and storing in one place the next sides that those

threads will visit. As with the Positional Burrows-Wheeler Transform, used to store

haplotypes against a linear reference, and the ordinary Burrows-Wheeler Transform, we

consider the recent history of a thread to be a strong predictor of where the thread is

likely to go next [18]. By grouping together the next side data such that nearby entries

are likely to share values, we can use efficient encodings (such as run-length encodings)

and achieve high compression.

More concretely, our approach is as follows. Within an orientation, we call an

instance of side in an even-numbered position 2i a visit; a thread may visit a given

side multiple times, in one or both of its orientations. (We define it this way because,

while a thread contains both the left and right sides of each node it touches, we only

want one visit to stand for the both of them.) Consider all visits of orientations of

threads in T to a side s. For each visit, take the sequence of sides coming before this

arrival at s in the thread and reverse it, and then sort the visits lexicographically by

these (possibly empty) sequences of sides, breaking ties by an arbitrary global ordering

of the threads. Then, for each visit, look two steps ahead in its thread (past s and s) to

the side representing the next visit, and append it (or the null side if there is no next

visit) to a list. After repeating for all the sorted visits to s, take that list and produce

the array Bs[] for side s. An example B[] array and its interpretation are shown in

Figure 3.1. (Note that, throughout, arrays are indexed from 0 and can produce their

66

lengths trivially upon demand.)

Each unoriented edge {s, s′} in E has two orientations (s, s′) and (s′, s). Let

c() be a function of these oriented edges, such that for an oriented edge (s, s′), c(s, s′)

is the smallest index in Bs′ [] of a visit of s′ that arrives at s′ by traversing {s, s′}.

Note that, because of the global ordering of sides and the sorting rules defined for Bs′ []

above, c(s0, s
′) ≤ c(s1, s

′) for s0 < s1 both adjacent to s′. Figure 3.2 and Table 3.1

give a worked example of a collection of B[] arrays and the corresponding c() function

values.

For a given G and T , we call the combination of the c() function and the

B[] arrays a graph Positional Burrows Wheeler Transform (gPBWT). We sub-

mit that a gPBWT is sufficient to represent T , and, moreover, that it allows efficient

counting of the number of threads in T that contain a given new thread as a subthread.

Table 3.1: Bs[] and c() values for the embedding of threads illustrated in Figure 3.2.
Side Bs[] Array

1 [5]
2 [0]
3 [5]
4 [0]
5 [9, 7]
6 [4, 2]
7 [8, 8]
8 [6, 0]
9 [9, 0]
10 [10, 6]

Edge c(s, t) count

{2, 5} 0
{4, 5} 1
{6, 7} 1
{6, 9} 0
{8, 8} 0
{10, 9} 1
{5, 2} 0
{5, 4} 0
{7, 6} 0
{9, 6} 1

3.4 Extracting Threads

To reproduce T from G, and the gPBWT, consider each side s in G in turn. Establish

how many threads begin (or, equivalently, end) at s by taking the minimum of c(x, s) for

all sides x adjacent to s. If s has no incident edges, take the length of Bs[] instead. Call

67

Figure 3.1: An illustration of the B1[] array for a single side numbered 1. (Note that
a similar, reverse view could be constructed for the B2[] array and the opposite ori-
entations of all the thread orientations shown here, but it is omitted for clarity.) The
central rectangle represents a node, and the pairs of solid lines on either side delimit
edges attached to either the left or right side of the node, respectively. These edges
connect the node to other parts of the graph, which have been elided for clarity. The
dashed lines within the edges represent thread orientations traveling along each edge in
a conserved order, while the solid lines with triangles at the ends within the displayed
node represent thread orientations as they cross over one another within the node. The
triangles themselves represent “terminals”, which connect to the corresponding dashed
lines within the edges, and which are wired together within the node in a configuration
determined by the B1[] array. Thread orientations entering this node by visiting side 1
may enter their next nodes on sides 3, 5, or 7, and these labels are displayed near the
edges leaving the right side of the diagram. (Note that we are following a convention
where nodes’ left sides are assigned odd numbers, and nodes’ right sides are assigned
even numbers.) The B1[] array records, for each thread orientation entering through
side 1, the side on which it enters its next node. This determines through which of the
available edges it should leave the current node. Because threads tend to be similar to
each other, their orientations are likely to run in “ribbons” of multiple thread orienta-
tions that both enter and leave together. These ribbons cause the Bs[] arrays to contain
runs of identical values, which may be compressed.

68

69

Figure 3.2: A diagram of a graph containing two embedded threads. The graph consists
of nodes with sides {1, 2, 3, . . . , 10}, connected by edges {2, 5}, {4, 5}, {6, 7}, {6, 9},
{8, 8}, and {10, 9}. Note that, once again, odd numbers are used for left sides and even
numbers are used for right sides. As in Figure 3.1, nodes are represented by rectangles,
and thread orientations running from node to node are represented by dashed lines. The
actual edges connecting the nodes are omitted for clarity; only the thread orientations
are shown. Because each side’s B[] array defines a separate permutation, each node is
divided into two parts by a central double yellow line (like on a road). The top half of
each node shows visits to the node’s right side, while the bottom half shows visits to the
node’s left side. Within the appropriate half of each node, the B[] array entries for the
entry side are shown. The special 0 value is used to indicate that a thread stops and
does not continue on to another node. When moving from the entry side to the exit
side of a node, threads cross over each other so that they become sorted, stably, by the
side of their next visit. Threads’ order of arrival at a node is determined by the relative
order of the edges incident on the side they arrive at, which is in turn determined by
the ordering of the sides on the other ends of the edges. The threads shown here are
[1, 2, 5, 6, 9, 10, 9, 10] and [3, 4, 5, 6, 7, 8, 8, 7]. See Table 3.1 for a tabular representation
of this example.

70

71

this number b. Then, for i running from 0 to b, exclusive, begin a new thread orientation

at n(s) with the sides [s, s]. Next, we traverse from n(s) to the next node. Consult the

Bs[i] entry. If it is the null side, stop traversing, yield the thread orientation, and start

again from the original node s with the next i value less than b. Otherwise, traverse to

side s′ = Bs[i]. Calculate the arrival index i′ as c(s, s′) plus the number of entries in

Bs[] before entry i that are also equal to s′ (i.e. the s′-rank of i in Bs[]). This arrival

index, computed by the where to function in Algorithm 3.1, gives the index in Bs′ []

of the next visit in the thread orientation being extracted. Then append s′ and s′ to

the growing thread orientation, and repeat the traversal process with i← i′ and s← s′,

until the terminating null side is reached.

This process will enumerate both orientations of each thread in the graph. The

collection of observed orientations can trivially be converted to the collection of under-

lying ambisequence threads T , accounting for the fact that T may contain duplicate

threads. Pseudocode for thread extraction is shown in Algorithm 3.1. The algorithm

checks each side for threads, and traces each thread one at a time, doing a constant

amount of work at each step (assuming a constant maximum degree for the graph).

Therefore, the algorithm runs in O(M ·N +S) time for extracting M threads of length

N from a graph with S sides. Beyond the space used by the gPBWT itself, the algorithm

uses O(M ·N) memory, assuming the results are stored.

This algorithm works because the thread orientations embedded in the graph

run through it in “ribbons” of several thread orientations with identical local history

and a conserved relative ordering. The reverse prefix sort specified in the B[] array

definition causes thread orientations’ visits to a side s that come after the same sequence

of immediately prior visits to co-occur in a block in Bs[]. For any given next side s′,

or, equivalently, any edge (s, s′), the visits to s′ that come after visits in that block in

Bs[] will again occur together and in the same relative order in a block in Bs′ []. This

is because the visits at side s′ will share all the same history that the previous visits

72

shared at side s, plus a new previous visit to s that no other visits to s′ can share. By

finding a visit’s index among the visits to s that next take the edge from s to s′, and

by using the c() function to find where in Bs′ [] the block of visits that just came from

s starts, one can find the entry in Bs′ [] corresponding to the next visit, and thus trace

out the whole thread orientation from beginning to end.

73

Algorithm 3.1 Algorithm for extracting threads from a graph.

function starting at(Side, G, B[], c())
. Count instances of threads starting at Side.
. Replace by an access to a partial sum data structure if appropriate.
if Side has incident edges then

return c(s, Side) for minimum s over all sides adjacent to Side.
else

return length(BSide[])

function rank(b[], Index, Item)
. Count instances of Item before Index in b[].
. Replace by rank of a rank-select data structure if appropriate.
Rank ← 0
for all index i in b[] do

if b[i] = Item then
Rank ← Rank + 1

return Rank
function where to(Side, Index, B[], c())

. For a thread orientation visiting Side with Index in the reverse prefix sort order,
get the corresponding sort index of the next visit in that thread orientation in the
side it visits.

. Works by accounting for all thread orientations starting at the next side or
entering the next side via edges before the edge being traversed, and then accounting
for the thread orientation’s rank among all thread orientations that similarly go from
Side to the same next side.

return c(Side,BSide[Index]) + Rank(BSide[], Index,BSide[Index])

function extract(G, c(), B[])
. Extract all oriented threads from graph G.
for all Side s in G do

TotalStarting ← starting at(s,G,B[], c())
for all i in [0, T otalStarting) do

Side← s
Index← i
Orientation← [s, s]
NextSide← BSide[Index]
while NextSide 6= 0 do

Orientation← Orientation+ [NextSide,NextSide]
Index← where to(Side, Index,B[], c())
Side← NextSide
NextSide← BSide[Index]

yield Orientation

74

3.5 Succinct Storage

For the case of storing haplotype threads specifically, we can assume that, because of

linkage, many threads in T are identical local haplotypes for long runs, diverging from

each other only at relatively rare crossovers or mutations. Because of the reverse prefix

sorting of the visits to each side, successive entries in the B[] arrays are thus quite

likely to refer to locally identical haplotypes, and thus to contain the same value for

the side to enter the next node on. Thus, the B[] arrays should benefit from run-length

compression. Moreover, since (as will be seen below) one of the most common operations

on the B[] arrays will be expected to be rank queries, a succinct representation, such

as a collection of bit vectors or a wavelet tree [29], would be appropriate. To keep the

alphabet of symbols in the B[] arrays small, which is beneficial for such representations,

it is possible to replace the stored sides for each Bs[] with numbers referring to the edges

traversed to access them, out of the edges incident to s.

We note that, for contemporary variant collections (e.g. the 1000 Genomes

Project), the underlying graph G may be very large, while there may be relatively few

threads (of the order of thousands) [3]. Implementers should thus consider combining

multiple B[] arrays into a single data structure to minimize overhead.

3.6 Embedding Threads

A trivial construction algorithm for the gPBWT is to independently construct Bs[] and

c(s, s′) for all sides s and oriented edges (s, s′) according to their definitions above.

However, this would be very inefficient. Here we present an efficient algorithm for

gPBWT construction, in which the problem of constructing the gPBWT is reduced to

the problem of embedding an additional thread.

Each thread is embedded by embedding its two orientations, one after the

75

other. To embed a thread orientation t = [t0, t1, . . . t2N , t2N+1], we first look at node

n(t0), entering by t0. We insert a new entry for this visit into Bt0 [], lengthening the

array by one. The location of the new entry is near the beginning, before all the entries

for visits arriving by edges, with the exact location determined by the arbitrary order

imposed on thread orientations. If no other order of thread orientations suggests itself,

the order created by their addition to the graph will suffice, in which case the new

entry can be placed at the beginning of Bt0 []. The addition of this entry necessitates

incrementing c(s, t0) by one for all oriented edges (s, t0) incident on t0 from sides s in

G. We call the location of this entry k. The value of the entry will be t2, or, if t is not

sufficiently long, the null side, in which case we have finished the orientation.

If we have not finished the orientation, we first increment c(s, t2) by one for

each side s adjacent to t2 and after t1 in the global ordering of sides. This updates the

c() function to account for the insertion into Bt2 [] we are about to make. We then find

the index at which the next visit in t ought to have its entry in Bt2 [], given that the entry

of the current visit in t falls at index k in Bt0 []. This is given by the same procedure

used to calculate the arrival index when extracting threads, denoted as where to(t1, k)

(see Alg. 3.1). Setting k to this value, we can then repeat the preceding steps to embed

t2, t3, etc. until t is exhausted and its embedding terminated with a null-side entry.

Pseudocode for this process is shown in Algorithm 3.2.

As this algorithm proceeds, the B[] arrays are always maintained in the cor-

rectly sorted order, because each insertion occurs at the correct location in the array.

After each B[] array insertion, the appropriate updates are made to the c() function to

keep it in sync with what is actually in the array. Thus, after each thread’s insertion,

the data structure correctly contains that thread, and so after the insertions of all the

relevant threads, a properly constructed gPBWT is produced.

Assuming a dynamic succinct representation, where the B[] array information

is both indexed for O(log(n)) rank queries and stored in such a way as to allow O(log(n))

76

insertion and update (in the length of the array n)2, this insertion algorithm is O(N ·

log(N + E)) in the length of the thread to be inserted (N) and the total length of

existing threads (E). Inserting M threads of length N will take O(M ·N · log(M ·N))

time, and inserting each thread will take O(N) memory in addition to the size of the

gPBWT.

Algorithm 3.2 Algorithm for embedding a thread in a graph.

procedure insert(b[], Index, Item)
. Insert Item at Index in b[].
. Replace by insert of a rank-select-insert data structure if appropriate.
length(b[])← length(b[]) + 1 . Increase length of the array by 1
for all i in (Index, length(b[])− 1], descending do

b[i]← b[i− 1]

b[Index] = Item

procedure increment c(Side, NextSide, c())
. Modify c() to reflect the addition of a visit to the edge (Side,NextSide).
for all side s adjacent to NextSide in G do

if s > Side in side ordering then
c(s,NextSide)← c(s,NextSide) + 1

procedure embed(t, G, B[], c())
. Embed a thread orientation t in graph G.
. Call this twice to embed a thread for search in both directions.
k ← 0 . Index we are at in Bt2i []
increment c(0, t0, c())
. Increment c() for all edges to t0, to note a thread start.
for all i in [0, length(t)/2) do

if 2i+ 2 < length(t) then
. The thread has somewhere to go next.
insert(Bt2i [], k, t2i+2) . Fill in the B[] array slot for this visit.
increment c(t2i+1, t2i+2, c()) . Record the traversal of the edge to the

next visit.
k ← where to(t2i, k, B[], c())

else
insert(Bt2i [], k, 0) . End the thread.

2Dynamic data structures at least this good are available as part of the DYNAMIC library, from
https://github.com/xxsds/DYNAMIC.

77

https://github.com/xxsds/DYNAMIC

3.7 Batch Embedding Threads

The embedding algorithm described above, Algorithm 3.2, requires a dynamic imple-

mentation for the succinct data structure holding the B[] array information, which can

make it quite slow in practice due to the large constant factors involved. In order to pro-

duce a more practical implementation, it may be preferable to use a batch construction

algorithm, which handles all threads together, instead of one at a time. For the case of

directed acyclic graphs (DAGs), such an algorithm is presented here as Algorithm 3.3.

This algorithm works essentially like the näıve trivial algorithm of indepen-

dently constructing every Bs[] for every side s and every c(s, s′) for every oriented edge

(s, s′) from the definitions. However, because of the directed, acyclic structure of the

graph, it is able to save redundant work on the sorting steps. Rather than sorting all

the threads at each side, it sorts them where they start, and simply combines pre-sorted

lists at each side to produce the B[] array ordering, and then stably buckets threads

into new sorted lists to pass along to subsequent nodes. The directed, acyclic structure

allows us to impose a full ordering on the sides in the graph, so that the sorted lists

required by a side all come from “previous” sides and are always available when the side

is to be processed.

Although this algorithm requires that all threads be loaded into memory at

once in a difficult-to-compress representation (giving it a memory usage of O(M ·N) on

M threads of length N), and although it requires that the graph be a directed acyclic

graph, it allows the B[] arrays to be generated for each side in order, with no need to

query or insert into any of them. This means that no dynamic succinct data structure

is required. Since the graph is acyclic, each thread can visit a side only once, and so

the worst case is that a side is visited by every thread. Assuming a constant maximum

degree for the graph, since the algorithm visits each side only once, the worst-case

running time is O(M · S) for inserting M threads into a graph with S sides.

78

This algorithm produces the same gPBWT, in the form of the B[] arrays and

the c() function, as the single-thread embedding algorithm would.

Algorithm 3.3 Algorithm for embedding all threads at once into a directed acyclic
graph.

function batch embed into dag(T , G)
. Construct the gPBWT for threads T embedded in directed acyclic graph G.
. The forward orientation of each t must flow forwards through the forward ori-

entation of G.
Create empty Bs[] for each side s in G
Create empty c()
for all o in [FORWARD, REVERSE] do

Messages← []
ThreadsByStart← []
for all t in T do

t′ ← t in orientation o
ThreadsByStart[t′0]← t′

increment c(0, t′0, c())
. Increment c() for all edges to t′0, to note a thread start.

for all leading side s in G traversed in orientation o do
ThreadsHere← []
for all t′ in ThreadsByStart[s] do

ThreadsHere← ThreadsHere+ [(t′, 0)]

for all edge (s′, s) in G, in order do
. Collect messages coming along edges to s.
ThreadsHere← ThreadsHere+Messages[(s′, s)]
Messages[(s′, s)]← []

for all (t′, n) at index i in ThreadsHere do
n← n+ 1
if length(t′) > n ∗ 2 then

NextSide← t′[n ∗ 2]
Messages[(s,NextSide)]←Messages[(s,NextSide)] + [(t′, n)]
increment c(s,NextSide, c())

else
NextSide← 0

Bs[i]← NextSide

return B[], c()

79

3.8 Counting Occurrences of Subthreads

The generalized PBWT data structure presented here preserves some of the original

PBWT’s efficient haplotype search properties [18]. The algorithm for counting all oc-

currences of a new thread orientation t as a subthread of the threads in T runs as

follows.

We define fi and gi as the first and past-the-last indexes for the range of visits

of orientations of threads in T to side t2i, ordered as in Bt2i [].

For the first step of the algorithm, f0 and g0 are initialized to 0 and the

length of Bt0 [], respectively, so that they select all visits to node n(t0), seen as entering

through t0. On subsequent steps, fi+1 and gi+1, are calculated from fi and gi merely by

applying the where to function (see Alg. 3.1). We calculate fi+1 = where to(t2i, fi)

and gi+1 = where to(t2i, gi).

This process can be repeated until either fi+1 ≥ gi+1, in which case we can

conclude that the threads in the graph have no matches to t in its entirety, or until t2N ,

the last entry in t, has its range fN and gN calculated, in which case gN − fN gives the

number of occurrences of t as a subthread in threads in T . Moreover, given the final

range from counting the occurrences for a thread t, we can count the occurrences of any

longer thread that begins (in its forward orientation) with t, merely by continuing the

algorithm with the additional entries in the longer thread.

This algorithm works because the sorting of the B[] array entries by their

history groups entries for thread orientations with identical local histories together into

contiguous blocks. On the first step, the block for just the orientations visiting the

first side is selected, and on subsequent steps, the selected block is narrowed to just the

orientations that visit the current side and which share the sequence of sides we have

previously used in their history. The where to function essentially traces where the

first and last possible consistent thread orientations would be inserted in the next B[]

80

array, and so produces the new bounds at every step.

Assuming that the B[] arrays have been indexed for O(1) rank queries (which

is possible using available succinct data structure libraries such as [28], when insert

operations are not required), the algorithm is O(N) in the length of the subthread t to

be searched for, and has a runtime independent of the number of occurrences of t. It

can be performed in a constant amount of memory (O(1)) in addition to that used for

the gPBWT. Pseudocode is shown in Algorithm 3.4.

Algorithm 3.4 Algorithm for searching for a subthread in the graph.

function count(t, G, B[], c())
. Count occurrences of subthread t in graph G.
f ← 0
g ← length(Bt0 [])
for all i in [0, length(t)/2− 1) do

f ← where to(t2i, f, B[], c())
g ← where to(t2i, g, B[], c())
if f ≥ g then

return 0
return g − f

3.9 Results

The gPBWT was implemented within xg, the succinct graph indexing component of

the vg variation graph toolkit [24]. The primary succinct self-indexed data structure

used, which compressed the gPBWT’s B[] arrays, was a run-length-compressed wavelet

tree, backed by sparse bit vectors and a Huffman-shaped wavelet tree, all provided by

the sdsl-lite library used by xg [28]. The B[] arrays, in this implementation, were

stored as small integers referring to edges leaving each node, rather than as full next-

side IDs. The c() function was implemented using two ordinary integer vectors, one

storing the number of threads starting at each side, and one storing the number of

threads using each side and each oriented edge. Due to the use of sdsl-lite, and

the poor constant-factor performance of dynamic alternatives, efficient integer vector

81

insert operations into the B[] arrays were not possible, and so the batch construction

algorithm (Alg. 3.3), applicable only to directed acyclic graphs, was implemented. A

modified release of vg, which can be used to replicate the results shown here, is available

from https://github.com/adamnovak/vg/releases/tag/gpbwt2.

The modified vg was used to create a genome graph for human chromosome

22, using the 1000 Genomes Phase 3 VCF on the hg19 assembly, embedding information

about the correspondence between VCF variants and graph elements [3]. Note that the

graph constructed from the VCF was directed and acyclic; it described only substitutions

and indels, with no structural variants, and thus was amenable to the batch gPBWT

construction algorithm. Next, haplotype information for the 5,008 haplotypes stored

in the VCF was imported and stored in a gPBWT-enabled xg index for the graph,

using the batch construction algorithm mentioned above. In some cases, the VCF could

not be directly translated into self-consistent haplotypes. For example, a G to C SNP

and a G to GAT insertion might be called at the same position, and a haplotype might

claim to contain the alt alleles of both variants. A näıve interpretation might have the

haplotype visit the C and then the GAT, which would be invalid, because the graph would

not contain the C to G edge. In cases like this, an attempt was made to semantically

reconcile the variants automatically (in this case, as a C followed by an AT), but this was

only possible for some cases. In other cases, invalid candidate haplotype threads were

still generated. These were then split into valid pieces to be inserted into the gPBWT.

Threads were also split to handle other exceptional cases, such as haploid calls in the

input. Overall, splitting for causes other than loss of phasing occurred 203,145 times

across the 5,008 haplotypes, or about 41 times per haplotype.

The xg indexing and gPBWT construction process took 9 hours and 19 min-

utes using a single indexing thread on an Intel Xeon X7560 running at 2.27 GHz, and

consumed 278 GB of memory. The high memory usage was a result of the decision to

retain the entire data set in memory in an uncompressed format during construction.

82

https://github.com/adamnovak/vg/releases/tag/gpbwt2

However, the resulting xg index was 436 MB on disk, of which 321 MB was used by the

gPBWT. Information on the 5,008 haplotypes across the 1,103,547 variants was thus

stored in about 0.93 bits per diploid genotype in the succinct self-indexed representa-

tion, or 0.010 bits per haplotype base. 3 Extrapolating linearly from the 51 megabases

of chromosome 22 to the entire 3.2 gigabase human reference genome, a similar index of

the entire 1000 Genomes dataset would take 27 GB, with 20 GB devoted to the gPBWT.

This is well within the storage and memory capacities of modern computer systems.

3.9.1 Random Walks

The query performance of the gPBWT implementation was evaluated using random

walk query paths. 1 million random walks of 100 bp each were simulated from the graph.

To remove walks covering ambiguous regions, walks that contained two or more N bases

in a row were eliminated, leaving 686,590 random walks. The number of haplotypes in

the gPBWT index consistent with each walk was then determined, taking 61.29 seconds

in total using a single query thread on the above-mentioned Xeon system. The entire

operation took a maximum of 458 MB of memory, indicating that the on-disk index

did not require significant expansion during loading to be usable. Overall, the gPBWT

index required 89.3 microseconds per count operation on the 100 bp random walks. It

was found that 316,078 walks, or 46%, were not consistent with any haplotype in the

graph. The distribution of of the number of haplotypes consistent with each random

walk is visible in Figure 3.3.

3.9.1.1 Read Alignments

To further evaluate the performance of the query implementation, we evaluated read

alignments to measure their consistency with stored haplotypes. 1000 Genomes Low

3The improved size results here relative to the results in our conference paper are related to the use
of a new run-length-compressed storage backend for the B[] arrays, replacing one that was previously
merely succinct [78].

83

Coverage Phase 3 reads for NA12878 that were mapped in the official alignment to

chromosome 22 were downloaded and re-mapped to the chromosome 22 graph, using

the xg/GCSA2-based mapper in vg, allowing for up to a single secondary mapping per

read. (The vg aligner was chosen because of its ease of integration with our xg-based

gPBWT implementation, but in principle any aligner that supports aligning to a graph

could be used.) The mappings with scores of at least 90 points out of a maximum

of 101 points (for a perfectly-mapped 101 bp read) were selected (thus filtering out

alignments highly like to be erroneous) and broken down into primary and secondary

mappings. The number of haplotypes in the gPBWT index consistent with each read’s

path through the graph was calculated (Fig. 3.3). For 1,500,271 primary mappings, the

count operation took 150.49 seconds in total, or 100 microseconds per mapping, using

461 MB of memory. (Note that any approach that depended on visiting each haplotype

in turn, such as aligning each read to each haplotype, would have to do its work for each

read/haplotype combination in less than 20 microseconds, or about 45 clock cycles, in

order to beat this time.) It was found that 2,521 of these primary mappings, or 0.17%,

and 320 of 43,791 secondary mappings, or 0.73%, were not consistent with any haplotype

path in the graph. 4 These read mappings, despite having reasonable edit based scores,

may represent rare recombinations, but the set is also likely to be enriched for spurious

mappings.

3.9.2 Scaling Characteristics

To evaluate the empirical space usage scaling characteristics of our gPBWT implemen-

tation, a scaling experiment was undertaken. The 1000 Genomes VCFs Phase 3 VCFs

for the GRCh38 assembly were downloaded, modified to express all variants on the

forward strand in the GRCh38 assembly, and used together with the assembly data to

4These numbers are expected to differ from those reported in our conference paper due to improve-
ments to the vg mapping algorithms since the conference paper was prepared [78].

84

Figure 3.3: Distribution (top) and cumulative distribution (bottom) of the number of
1000 Genomes Phase 3 haplotypes consistent with short paths in the hg19 chromosome
22 graph. Primary mappings of 101 bp reads with scores of 90 out of 101 or above
(n = 1, 500, 271) are the solid blue line. Secondary mappings meeting the same score
criteria (n = 43, 791) are the dashed green line. Simulated 100 bp random walks in
the graph without consecutive N characters (n = 686, 590) are the dotted red line.
Consistent haplotypes were counted using the gPBWT support added to vg [24].

85

86

produce a graph for chromosome 22 based on the newer assembly. This graph was then

used to construct a gPBWT with progressively larger subsets of the available samples.

Samples were selected in the order they appear in the VCF file. For each subset, an xg

serialization report was generated using the xg tool, and the number of bytes attributed

to “threads” was recorded. The number of bytes used versus the number of samples

stored is displayed in Figure 3.4.

Figure 3.4: Disk space usage for the gPBWT versus sample count for GRCh38 chro-
mosome 22. Points are sampled at powers of two up to 128, and intervals of 128
thereafter up to 1024. The trend line shown corresponds to the function y(x) =
3.16× 106 bytes · ln(x/samples) + 5.12× 104 bytes

sample · x+ 1.84× 108 bytes.

After empirical size data was obtained, a log-plus-linear curve, consisting of

a log component and a linear component, was fit to the data. This curve was used to

extrapolate an estimated size of 5.34 GB on disk for the storage of 100,000 samples’

worth of data on chromosome 22. We choose 100,000 because it is representative of the

scale of large contemporary sequencing projects, such as Genomics England’s 100,000

Genomes Project (https://www.genomicsengland.co.uk/the-100000-genomes-pro

ject/) [76] and the NHLBI’s TOPMed program (https://www.nhlbi.nih.gov/rese

87

https://www.genomicsengland.co.uk/the-100000-genomes-project/
https://www.genomicsengland.co.uk/the-100000-genomes-project/
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed

arch/resources/nhlbi-precision-medicine-initiative/topmed). Linear extrapo-

lation from the 51 megabase chromosome 22 to the 3.2 gigabase human genome yields

a size estimate of 336 GB for the storage of 100,000 diploid genomes, in addition to the

space usage of the underlying graph. Although this extrapolation does not account for

the dependence of graph complexity on the number of samples sequenced, it suggests

that the gPBWT is capable of scaling to the anticipated size of future sequencing data

sets, while using currently available computing resources.

3.10 Discussion

We have introduced the gPBWT, a graph based generalization of the PBWT. We have

demonstrated that a gPBWT can be built for a substantial genome graph (all of hu-

man chromosome 22 and the associated chromosome 22 substitutions and indels in

1000 Genomes). Using this data structure, we have been able to quickly determine

that the haplotype consistency rates of random walks and primary and secondary read

mappings differ substantially from each other, and based on the observed distributions

we hypothesize that consistency with very few haplotypes can be a symptom of a poor

alignment.

Such poor alignments could arise by a variety of means, including similarity

between low complexity sequence, or paralogy; the latter representing true sequence

homology but not true sequence orthology. Paralogous alignments are often difficult to

distinguish from truly orthologous alignments, and can lead to the reporting of false

or misplaced variants. Using haplotype consistency information is one way we might

better detect paralogy, because paralogous sequence is not expected to be consistent with

linkage relationships at a paralogous site. A more sophisticated analysis of haplotype

consistency rate distributions could thus improve alignment scoring.

In the present experiment, we have examined only relatively simple variation:

88

https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed

substitutions and short indels. Instances of more complex variation, like large inversions

and translocations, which would have induced cycles in our genome graphs, were both

absent from the 1000 Genomes data set we used and unsupported by the optimized

DAG-based construction algorithm which we implemented. We expect that complex

structural variation is well suited to representation as a genome graph, so supporting it

efficiently should be a priority for a serious practical gPBWT construction implemen-

tation.

Extrapolating from our results on chromosome 22, we predict that a whole-

genome gPBWT could be constructed for all 5,008 haplotypes of the 1000 Genomes

data on GRCh37 and stored in the main memory of a reasonably apportioned com-

puter, using about 27 GB of memory for the final product. On the GRCh38 data set,

we extrapolate a space usage of 21 GB for the 2,504 samples of the 1,000 Genomes

Project; A whole-genome gPBWT for 100,000 samples on GRCh38, we predict, could

be stored in about 336 GB. Computers with this amount of memory, though expensive,

are readily available from major cloud providers. (The wasteful all-threads-in-memory

construction implementation we present here, however, would not be practical at such

a scale, requiring on the order of 50 TB of memory to handle 100,000 samples when

constructing chromosome 1; a disk-backed implementation or other low-memory con-

struction algorithm would be required.) The relatively modest growth from 5,008 hap-

lotypes (2,504 samples) to 200,000 haplotypes (100,000 samples) is mostly attributable

to the run-length compression used to store the B arrays in our implementation. Each

additional sample is representable as a mere increase in run lengths where it agrees with

previous samples, and contributes an exponentially diminishing number of new variants

and novel linkage patterns. While further empirical experimentation will be necessary

to reasonably extrapolate further, it does not escape our notice that the observed scaling

patterns imply the practicality of storing cohorts of a million or more individuals, such

as those envisaged by the Precision Medicine Initiative [39] and other similar national

89

efforts, within an individual powerful computer. Looking forward, this combination of

genome graph and gPBWT could potentially enable efficient mapping not just to one

reference genome or collapsed genome graph, but simultaneously to an extremely large

set of genomes related by a genome graph.

3.11 List of Abbreviations

• BWT: Burrows-Wheeler Transform

• PBWT: Positional Burrows-Wheeler Transform

• gPBWT: Graph Positional Burrows-Wheeler Transform

• GRC: Genome Reference Consortium

• GRCh37: GRC human genome assembly, build 37

• GRCh37: GRC human genome assembly, build 38

• DAG: Directed Acyclic Graph

3.12 Declarations

3.12.1 Ethics approval and consent to participate

All human data used in this study comes from already published, fully public sources,

namely the 1000 Genomes Project and the human reference assembly. We believe that

the work performed in this study is consistent with the purpose for which these data

resources were created, and that the original ethical reviews of the creation and publi-

cation of these data resources, and the consent assertions given to the original projects,

are sufficient to cover this new work.

90

3.12.2 Consent for publication

Not applicable

3.12.3 Availability of data and material

The datasets analyzed during the current study are available in the 1000 Genomes

repository, at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/AL

L.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz

(md5 ad7d6e0c05edafd7faed7601f7f3eaba), ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v

5a.20130502.genotypes.vcf.gz.tbi (md5 4202e9a481aa8103b471531a96665047),

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_

reference_assembly_sequence/hs37d5.fa.gz (md5 a07c7647c4f2e78977068e

9a4a31af15), and ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/201

30502/supporting/GRCh38_positions/ALL.chr22.phase3_shapeit2_mvncall_in

tegrated_v3plus_nounphased.rsID.genotypes.GRCh38_dbSNP_no_SVs.vcf.gz

(md5 cf7254ef5bb6f850e3ae0b48741268b0), and in the GRCh38 assem-

bly repository, at ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001

/405/GCA_000001405.15_GRCh38/GCA_000001405.15_GRCh38_assembly_stru

cture/Primary_Assembly/assembled_chromosomes/FASTA/chr22.fna.gz (md5

915610f5fb9edfcc9ce477726b9e72c6).

3.13 Competing interests

The authors declare that they have no competing interests.

91

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr22.phase3_shapeit2_mvncall_integrated_v5a.20130502.genotypes.vcf.gz.tbi
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/ALL.chr22.phase3_shapeit2_mvncall_integrated_v3plus_nounphased.rsID.genotypes.GRCh38_dbSNP_no_SVs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/ALL.chr22.phase3_shapeit2_mvncall_integrated_v3plus_nounphased.rsID.genotypes.GRCh38_dbSNP_no_SVs.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/ALL.chr22.phase3_shapeit2_mvncall_integrated_v3plus_nounphased.rsID.genotypes.GRCh38_dbSNP_no_SVs.vcf.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/GCA_000001405.15_GRCh38_assembly_structure/Primary_Assembly/assembled_chromosomes/FASTA/chr22.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/GCA_000001405.15_GRCh38_assembly_structure/Primary_Assembly/assembled_chromosomes/FASTA/chr22.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/GCA_000001405.15_GRCh38_assembly_structure/Primary_Assembly/assembled_chromosomes/FASTA/chr22.fna.gz

3.13.1 Funding

This work was supported by the National Human Genome Research Institute of the

National Institutes of Health under Award Number 5U54HG007990, the W.M. Keck

foundation under DT06172015, the Simons Foundation under SFLIFE# 351901, the

ARCS Foundation, and Edward Schulak. The content is solely the responsibility of the

authors and does not necessarily represent the official views of the National Institutes

of Health or any other funder.

3.14 Author’s contributions

A.M.N. wrote most of the gPBWT implementation presented here, conducted the ex-

periments, and composed the majority of the manuscript. E.G. managed the vg project,

wrote the read simulation and mapping code used here, and collaborated on the gPBWT

implementation. B.P. developed the mathematics of the gPBWT and collaborated on

the manuscript.

3.15 Acknowledgements

We would like to thank Richard Durbin for inspiration, David Haussler for his extremely

helpful comments on the manuscript, and Jordan Eizenga for additional helpful com-

ments on manuscript revisions.

92

Chapter 4

Genome Graphs

This chapter has been adapted from the article Novak et al. [79], and contains

material attributable to all authors of that work. Supplementary materials referenced

here are available in the online version of that article.

4.1 Abstract

There is increasing recognition that a single, monoploid reference genome is a poor uni-

versal reference structure for human genetics, because it represents only a tiny fraction

of human variation. Adding this missing variation results in a structure that can be de-

scribed as a mathematical graph: a genome graph. We demonstrate that, in comparison

to the existing reference genome (GRCh38), genome graphs can substantially improve

the fractions of reads that map uniquely and perfectly. Furthermore, we show that this

fundamental simplification of read mapping transforms the variant calling problem from

one in which many non-reference variants must be discovered de-novo to one in which

the vast majority of variants are simply re-identified within the graph. Using standard

benchmarks as well as a novel reference-free evaluation, we show that a simplistic vari-

ant calling procedure on a genome graph can already call variants at least as well as,

93

and in many cases better than, a state-of-the-art method on the linear human reference

genome. We anticipate that graph-based references will supplant linear references in

humans and in other applications where cohorts of sequenced individuals are available.

4.2 Introduction

The human reference genome, completed in draft form in 2001 and revised several times

subsequently [8, 41], is the single most important resource used in human genetics today.

It acts as a universal coordinate system and as such is the space in which annotations

(genes, promoters, etc.) and genetic variants are described [3, 32, 108]. It is also the

target for read mapping, and, downstream of this mapping, is used for functional assays

and variant calling pipelines [15, 53].

The contemporary definition of a reference genome is completely linear: a

single monoploid assembly of the genome of a species. A key limitation of the linear

human reference genome (the set of chromosome scaffolds) is that it is but a single

genome. As such, it is an imperfect lens through which to study our population’s

variation; there exist variants and annotations that can not be easily described with

respect to the reference genome [36, 86]. Furthermore, as a target for mapping and

interpretation it introduces a reference allele bias: a tendency to over-report alleles

present in the reference genome and under-report other alleles [5, 13]. To mitigate

these issues, recent versions of the reference genome assembly, such as GRCh38, have

contained “alternate locus” sequences (“alts”): extra sequence representations of regions

of the human genome considered to be highly polymorphic, anchored at their ends

to locations within the “primary” (monoploid) reference assembly. Such a structure,

which contains multiple partially-overlapping sequence paths, can be considered a form

of mathematical graph. The explicit use of graphs in biological sequence analysis has a

long history, notably for sequence alignment [83], sequence assembly [75, 87], assembly

94

representation (as in FASTG and now GFA)[27, 109], substring indexes (which are often

thought of in terms of suffix trees or similar data structures) [53, 98], and transcript

splice graphs [34]. Recently the notion of graphs for representing genomes has been

considered explicitly [16, 63, 83], and work has been done towards using these graphs

as references [58]. The alternate loci currently used are just one way to extend the

linear reference genome into a genome graph; many other ways are possible. In this

work, conducted by a task team of the Global Alliance for Genomics and Health, we

experiment with different methods for graph construction and testing the utility of

different graphs for read mapping and variant calling. This work is the first study of

its kind that we are aware of. We attempt to test the simple hypothesis that adding

data into the reference structure—in effect, adding to the “reference prior” on variation

extant in the population—will result in improved genome inferences.

4.3 Results

There are many possible types of genome graph; here we use sequence graphs. The

nodes of a sequence graph are a set of DNA sequences. Each node is therefore a string

of nucleotide characters, called positions, giving the sequence of the node’s forward

strand. We call the terminal 5’ and 3’ ends of this strand the sides of the node. Each

edge in the graph is an unordered pair of sides, representing a (potential) bond between

two sides of a pair of nodes. This is a bidirected graph representation, because features

of the edge indicate to which side of a node (sequence), 5’ or 3’, each end of the edge

connects (Fig. 4.1)[69]. Other representations of genome graphs, such as the directed

acyclic representation, can be useful; see Supplementary Section 1. A longer DNA

sequence can be represented as a thread within a sequence graph, beginning in one

oriented node, ending in the same node or another, and in between walking from node

to node, with the rule that if the walk enters a node on one side it exits through the

95

other side.

Figure 4.1: Example sequence graphs. Each node holds a string of bases. An edge
can connect, at each of its ends, to a base on either the left (5’, blue) or the right (3’,
yellow) side of the node. When reading through a thread to form a DNA sequence, a
valid walk must leave each node via the opposite side from that through which it was
entered; a node’s sequence is read as reverse-complemented if the node is entered on
the 3’ side. One thread that this graph spells out (reading from the left side of the
leftmost sequence to the right side of the rightmost sequence, along the nodes drawn
in the middle) is the sequence “GATTACACATTAG”. Straying from this path, there
are three variants available: a substitution of “G” for “T”, a deletion of a “C”, and
an inversion of “ATTA”. If all of these detours are taken, the sequence produced is
“GAGTAACTAATG”. All 8 possible threads from the leading G to the trailing G are
allowed.

To evaluate the utility of sequence graphs we invited teams to construct and

evaluate graphs for five test regions of the human genome: the major histocompatibility

complex (MHC), the killer cell immunoglobulin-like receptors (LRC KIR) region, the

spinal muscular atrophy (SMA) locus, and the BRCA1 and BRCA2 genes. MHC, SMA

and LRC KIR are all regions with alternate loci represented in GRCh38, while BRCA1

and BRCA2 represent more typical human genes. Regions ranged from 81 kilobases

in size with a single gene (BRCA1) to 5.0 megabases in size with 172 genes (MHC).

We considered graphs from five teams built with eight different pipelines (Table 4.2).

For each region we provided a set of long, high quality input sequences from which to

construct graphs (Table 4.1), but also encouraged the creation of graphs using additional

data of the builder’s choice. Some graphs were built based upon existing variant calls,

such as the 1000 Genomes calls used to construct the 1KG graph [3]. Graphs were also

built with a wide variety of different algorithmic approaches (Table 4.2). Three control

graphs were constructed for each region as points of comparison. The Primary graphs

96

Region Chromo-
some

Length
in Pri-
mary
Refer-
ence
(bp)

GRCh38
Coordi-
nates

Number
of Genes

Alt
Haplo-
types
in pilot
data

BRCA1 17 81,189 43044293-
43125482

1 2

BRCA2 13 84,989 32314860-
32399849

1 2

LRC KIR 19 1,058,685 54025633-
55084318

47 35

MHC 6 4,970,458 28510119-
33480577

172 8

SMA 5 2,397,625 69216818-
71614443

21 2

Table 4.1: Pilot Regions. Selected test cases represent a sampling of both typical and
challenging genomic regions.

contain just the single, linear reference path from GRCh38. The Unmerged graphs

consist of just the set of provided sequences, each represented as a disjoint path. The

Scrambled graphs (see Online Methods) are essentially identical topologically to the

1KG graphs, but with structures shifted to create false variants. These graphs acted as

a negative control for the effects of adding nonsense variation to the graphs.

4.3.1 Graph Read Mapping

To evaluate the utility of sequence graphs for read mapping we used the software pro-

gram vg[107], which contains a mapping algorithm capable of mapping to a fully general

and potentially cyclic sequence graph (see Supplementary Section 2). We mapped all

relevant reads (see Online Methods) from 1000 Genomes Phase 3 low coverage samples

to each graph. We found that vg was able to map almost all such reads to the graphs

(Supplementary Fig. 3).

Relative to the primary graph, a graph containing more of the variants should

produce an increase in the fraction of reads that map perfectly (without either substi-

tutions or indels) to at least one place. For BRCA2 we see a relative increase of 7.3%

97

Table 4.2: Genome Graph Submissions. Submissions were collected from a variety of
institutions, and showcase a variety of graph construction methods.

98

Submissions using pilot data
Submission Team Short

Name
Description of Algorithm

Cactus UCSC Cactus Graph-based multiple sequence
aligner [82].

Camel UCSC Camel Creates graphs progressively by
mapping using context schemes
[77].

De Bruijn
Graph
(k=63)

MSKCC De Bruijn
63

Forms a De Bruijn graph of input
data with k=63, then converts to
a sequence graph.

Population
Reference
Graph

Oxford PRG Creates a graph from a K-mer-
based HMM description of a re-
gion [16].

Seven
Bridges

Seven
Bridges

7BG Multiple genome alignment.

Submissions using other data
Submission Team Short

Name
Description of Algorithm

1000
Genomes
SNP Graph

Sanger/
UCSC

1KG Generated using vg construct
on a VCF containing variants
identified in the 1000 genomes
project. Platinum genome sam-
ples were not included, to avoid
circularity in variant evaluation.

1000
Genomes
Haplotype
50

Sanger/
UCSC

1KG
Haplo 50

Adapted form of 1KG graph
in which phasing information is
used to reduce the number of
unobserved recombinations rep-
resented by the graph. 50 is the
number of bases two variants can
be apart to be considered for this
phasing.

Scrambled
1000
Genomes

Sanger/
UCSC

Scrambled Generated by shifting all the
variants in the standard 1KG
graph 200 bp downstream.

99

Figure 4.2: Mapping reads to sequence graphs. Results for the 1000 Genomes Phase 3
low coverage samples against the BRCA2 and MHC graphs. The median per-sample
portion of reads that are mapped perfectly (Y axis), and the median per-sample portion
of reads that are mapped with a unique, obviously-best alignment (X axis) are both vis-
ible in the top row. The median per-sample substitution rate for a primary mapping,
computed per aligned base, is shown in the second row. The median per sample fre-
quency of indels in primary mapped reads, computed per read base, is given in the third
row. The horizontal black line represents the result for the primary reference graph in
the region. The symbol marks graphs generated using additional data beyond the pro-
vided reference and alternate sequences. The unmerged graphs are excluded because
very few reads mapped uniquely to them.

100

101

in the median number of reads mapping perfectly to the 1KG graph vs. the Primary

graph, but for MHC the increase is 20% (Fig. 4.2 top row, Supplementary Section 3,

Supplementary Fig. 1). The increase for BRCA2 is close to what would be expected

if the sequence graph contained the majority of polymorphisms for a typical region of

the genome (Supplementary Section 3), while the larger increase for MHC is likely due

to a greater degree of polymorphism [5]. Similar, slightly smaller increases are seen for

graphs built from other, smaller collections of variants. The scrambled graphs do not

show significant gains, thus indicating that the effect is specific to graphs containing

known variation. Furthermore, the overall substitution rate between reads and the ex-

perimental graphs was observed to decrease, relative to the rate between the reads and

the Primary control graph. In the highest-performing graphs the decline is slightly below

the bounds of previous read substitution error rate estimates of 0.7-1.6% [1–3, 74] (Fig.

4.2 second row; see Supplementary Section 4 and Supplementary Fig. 4). The decrease

in indel rate (Fig. 4.2 third row) moving from the Primary graph to the 1KG graph

is comparable to estimates of the human indel polymorphism rate[73] (Supplementary

Section 5).

The median fraction of reads that uniquely map increases for many of the

graphs, relative to the primary and scrambled graphs. For example, in the Cactus

graph, an increase of 0.26% is observed in BRCA2, and an increase of 3.7% is observed

in the MHC. No such increase in unique mapping is seen for the comparably complex

scrambled graph. Unique mapping is defined as having a good primary mapping and no

reasonable secondary mapping (see Supplementary Section 3 and Supplementary Fig.

2).

To test if the choice of sequence graph reference affected population level ref-

erence allele bias, we binned samples by 1KG super-population and looked at the dif-

ference in perfect mapping between the 1KG graph and the Primary graph for each

subpopulation. We find a small but significant difference in perfect mapping increase

102

between super-populations for most regions (Supplementary Section 6, Supplementary

Fig. 5), but we also find relatively large differences in absolute rates of perfect mapping

(Supplementary Fig. 6). These latter differences suggest that super-population may be

confounded with sequencing batch, making drawing conclusions from this analysis quite

difficult.

4.3.2 Graph Variant Calling

We implemented a comprehensive, albeit basic, variant calling pipeline based on the

Samtools pileup approach [57], modified to work with sequence graphs (see Online

Methods for more details). In summary (Fig. 4.3), reads are mapped to the refer-

ence graph or base graph and a pileup is computed at each graph position and edge. An

augmented graph is created by extending the base graph with additional sequences and

edges representing possible variants determined from the pileups. This graph is then

analyzed for ultrabubbles (acyclic, tip-free subgraphs connected to the rest of the graph

by at most 2 nodes) which are treated as sites for genotyping[85]. Finally, thresholding

heuristics are used to emit a set of genotypes with sufficient read support, one for each

site, expressed in the coordinates of the GRCh38 primary reference path as embedded

in the graph (see Online Methods).

We compared the results from the graph variant calling pipeline with the Plat-

inum Genomes benchmark data for samples NA12877 and NA12878[21] using vcfeval,

which corrects for VCF representation ambiguity by comparing at the haplotype level

[10] [115]. To provide additional controls, FreeBayes [23], Platypus [91] and Samtools

[57] were run on BWA-MEM [53] alignments of the same input data to GRCh38 with

their default options in order to produce positive control variant calls. Figure 4.4 (A)

shows the precision and recall of each method aggregated across both samples and all

regions. Figure 4.4 (C) and (D) show precision-recall curves for SNPs and indels, re-

spectively. In comparison to the primary graph (the graph containing only the existing

103

Figure 4.3: Variant Calling with Genome Graphs. (A) Read pileup on a base graph
whose reference path is highlighted in green. Only variant or non-reference base values
are shown in the reads. (B) The augmented graph contains the base graph as well as
new structures implied by the pileup. This graph contains three top-level ultrabubbles,
each forming a site. (C) Variant calls for each site. The first two (a heterozygous SNP
and a homozygous insertion) are considered reference calls because they were present in
the base graph, whereas the third (a heterozygous combination of a SNP and a deletion)
is non-reference because it was novel to the augmented graph.

104

105

reference sequence, and therefore a control for the same variant calling algorithm ap-

plied to just the knowledge in the existing reference), the 1KG and Cactus graphs’

F1-scores (Supplementary Table 1) increased by 3.50% and 1.98%, respectively, increas-

ing for both single nucleotide variants (3.13%, 1.95% respectively) and indels (6.02%,

4.40% respectively). Furthermore, 1KG graphs have the overall highest accuracy (F1

score) of all methods, although Samtools and Platypus perform best overall for SNPs

and indels, respectively. Supplementary Section 7 contains additional breakdowns of the

F1-scores by region (Supplementary Figs. 7-8), sample (Supplementary Fig. 9), and

type (Supplementary Fig. 10), as well as scores without clipping to confident regions

(Supplementary Fig. 11). Generally (in 13 out of 18 cases), the 1KG graph has higher

accuracy than both the primary and scrambled controls.

We define a reference call as a call asserting the presence of a position or edge

in the base graph. The experimental graphs can dramatically reduce the number of

non-reference calls, as compared to control. For example, the Cactus and 1KG graphs

reduce non-reference calls by more than a factor of ten (Fig. 4.5 (A)) relative to the

Primary reference graph. Furthermore, the precision of these reference calls is higher

than the non-reference calls for the non-scrambled graphs (Fig. 4.5 (B)).

Larger structural variants can be called using the same logic as point muta-

tions, provided they are already in the graph; Figure 4.5 (C) displays the indel length

distribution for the two top-performing graphs and the primary control, as well as a

breakdown of indel lengths for reference and non-reference calls. The reference call in-

del lengths in the experimental graphs are larger than the Primary and non-reference

lengths and, in the case of Cactus, contain indels exceeding the read length. This adds

up to a large number of additional called bases: for example, across the regions the

Cactus graphs call 94 indel events larger than 50 base pairs totaling 10045 bases, none

of which are found using the Primary graph with the same algorithm.

To mitigate potential biases with the Platinum Genomes benchmark data as

106

a truth set[21], we conducted what we term a “reference-free” evaluation of vg’s vari-

ant calling accuracy, by comparing against de novo assemblies instead of assumed-true

variant calls. In brief, short reads pooled from two haploid assemblies were used to call

variants on each sequence graph. The accuracy of this reconstruction was evaluated us-

ing PacBio-based de novo assembly fragments, which by definition are free of reference

artifacts and are derived from a different sequencing technology (see Online Methods,

Supplementary Section 8 and Supplementary Figure 12). The results can be seen in

Figure 4.4 (B) and Supplementary Figure 13. Several experimental graphs have greater

precision and recall than the Scrambled and Primary controls; combined across all re-

gions except SMA (which was insufficiently covered by PacBio assemblies to be usefully

analyzed), vg on the Cactus graph outperformed existing methods. The results appear

to agree closely with those from the VCF-comparison-based evaluation, considering that

the two techniques use different sources of truth and different evaluation metrics.

4.3.3 Short Path Accuracy

We sought to understand how complete and accurate the sequence graphs studied were

in their representation of common variants. To approximate this, we measured the

fraction of lightly error-pruned K-mer instances (here K=20, see Online Methods) in

a large subset of 1KG sequencing reads that were present within each graph, calling

this metric K-mer recall (see Online Methods). We observe (Fig. 4.6, Supplementary

Section 9, and Supplementary Fig. 14) that graphs built from the largest libraries of

variation contain the great majority of such K-mer instances. For example the 1KG,

PRG and Cactus graphs contain an average across regions of 99% of K-mer instances,

while the primary graph contains an average across regions of 97%. Conversely, we

asked what fraction of 20-mer instances present in a graph were not present in any 1KG

read, calling this metric K-mer precision. Strikingly, we find that precision is greatly

reduced in some graphs relative to control. For example around 15% (averaged across

107

Figure 4.4: Variant Calling Evaluation. (A) Precision (portion of called variation in
agreement with the truth set) and recall (portion of variation in the truth set in agree-
ment with what was called) against the Platinum Genomes truth VCFs aggregated
across NA12877 and NA12878 for all regions, as measured by vcfeval. (B) Per-base
precision and recall as measured by the reference-free evaluation in BRCA1, BRCA2,
LRC KIR, and MHC. The GRCh38 point shows a comparison of the existing primary
reference haplotype sequence against the de novo assembly. (C) - (D) Breakdown of
precision and recall from (A) into SNPs and indels, respectively. Curves are shown
by including accuracies at quality thresholds that fall within a radius of 0.1 around
the maximum F1. Full results featuring F1-scores for all graphs are in Supplementary
Section 7.

108

109

Figure 4.5: Reference versus Non-reference Calls. (A) Total number of reference and
non-reference calls across all samples and regions. (B) Precision of reference and non-
reference calls. (C) Indel lengths of reference and non-reference calls, where insertions
and deletions are represented by positive and negative lengths, respectively. In all
cases we ignore calls of GRCh38 reference alleles, as these numbers are reported from
GRCh38-based output VCFs.

regions) of 20-mers enumerated from 1KG graphs do not appear in any 1000 Genomes

low coverage read. We hypothesize that this is because the density of variation is

sufficient in such graphs to admit many paths implying recombinations that are either

absent or very rare in the population. To attempt to raise precision, for the 1KG data

we constructed graphs using haplotype information to eliminate a substantial subset

of unobserved paths, creating the “1KG Haplo 50” graph (Supplementary Section 10).

This resulted in increased precision (by about 10 percentage points in BRCA2) with

only a small reduction in recall, as shown in Figure 4.6 and Supplementary Figure 13.

However, this comes at the cost of a performance degradation in read mapping (Fig.

4.2) and variant calling (Supplementary Section 7). One possible explanation for the

performance reduction is that the necessary duplication (“unmerging”) of paths in this

procedure reduced the aligner’s ability to unambiguously map reads.

110

Figure 4.6: Short path completeness and accuracy. Assayed by comparing 20-mer in-
stances.

4.3.4 Graph Character

We found that even within each region the different submitted graphs varied substan-

tially in their performance on our evaluations of read mapping and variant calling. They

varied even more so with respect to basic graph properties (Supplementary Section 11,

Supplementary Tables 2-9). To quantify this variability we defined normalized graph

metrics for basic graph properties. Graph compression is the length of the primary ref-

erence sequence within the region divided by the sum of the lengths of the nodes in the

graph. It is a normalized measure of the number of positions in the graph. The (base)

degree is the average per-side degree of the graph in a bidirected graph representation

with single-base nodes, and is a measure of how much branching a graph contains. The

cut width (Supplementary Table 10) is a measure of apparent sequence rearrangement.

Briefly, within a topologically sorted graph, where all positions are ordered, cut width is

the average over all gaps between successive positions of the number of edges connecting

positions on the left side of the gap to positions on the right side of the gap (Supple-

mentary Section 12)[33]. We see wide variation in these measures across the graphs

(Fig. 4.7). Furthermore, across the different regions we find that there is an inverse

correlation (R=-0.674, p=0.00230) between cut width and variant calling accuracy and

111

a positive correlation (R=0.244, p=0.0268) between compression and variant calling

accuracy (Supplementary Fig. 15). The base degree does not significantly correlate

with variant calling accuracy. These correlations suggest that uncompressed and highly

rearranged graphs do not work effectively with our current read mapping and variant

calling process.

4.4 Discussion

Contemporary non-graphical variant calling procedures use different algorithms for each

class of variants: substitutions, small indels, larger indels, balanced rearrangements, and

so on. We have demonstrated that variant calling on a sequence graph mostly obviates

this complexity, because being able to call the presence or absence of elements within

a sample graph is potentially sufficient for calling known structural and point variation

equally well. The simple, nascent variant calling algorithm we tested produced variant

calls that were quite concordant with those from other state-of-the-art variant calling

pipelines, while unifying the calling of known SNPs and other known structural varia-

tion. That individual tools slightly outperformed the variant calling algorithm presented

here in terms of individual variant types, i.e. snps and indels, is unsurprising given the

relative maturity and algorithmic sophistication of those tools. Importantly, many of

the submitted graphs showed improved variant calling performance over the primary

and scrambled graphs. The relative improvements come alongside a large reduction

in the number of non-reference calls. Furthermore, reference calls were more accurate

than non-reference calls, suggesting that variant calling is indeed more accurate overall

when the variants themselves are contained within the graph. These results support the

notion that sequence graphs can transform variant calling by reducing it to the simpler

problem in which only rare variants, absent from the graph, must be discovered de novo.

It is possible to foresee cutting the number of non-reference point variation calls from

112

Figure 4.7: Empirical graph statistics. In each panel the result for each region is shown
by a dot, in the following order: BRCA1, BRCA2, LRC KIR, MHC, and SMA.

113

114

the millions, as in standard genome wide pipelines today, to on the order of thousands

(see Supplementary Section 3).

During the course of the variant calling comparison, we developed an appreci-

ation for the shortcomings of relying solely on the Platinum Genomes benchmark data

as a truth set[21]. A key concern is that the Platinum Genomes calls were derived by

means of a consensus of contemporary methods, all of which use the existing linear ref-

erence and BWA-MEM-based mappings. Additionally, compared to vg, the Platinum

Genomes dataset often uses different combinations of calls to “spell” the same haplo-

type. Moreover, it often omits calls necessary to spell a haplotype because it is not

confident in them. While the omitted calls are in regions marked as low confidence,

a variant normalizer cannot normalize a call that is not there. To get around these

problems and potential biases we introduced a reference-free method for assessing vari-

ation calls. This evaluation demonstrated good consistency with the Platinum Genomes

in terms of the relative ranking of the different methods evaluated, and demonstrated

clearly that the best graph methods slightly outperform existing methods.

Supporting the observed improvements in variant calling, we demonstrate that

read mapping can be made both more comprehensive and less ambiguous with sequence

graphs. Increases in perfect mapping and reductions in substitution and indel rates were

broadly consistent with the effect we would expect if the graphs were representing the

majority of common polymorphisms, leaving the residual read error rates to account for

the majority of alignment differences. In this sense read mappings were demonstrated

to be less locally ambiguous, with mismatches and edits having a more clearly defined

meaning. Furthermore, the fact that read mappings were also less globally ambiguous

(i.e. more certain in their overall placement within the genome) is perhaps surprising.

We thought at the outset that using detailed graphs would have the drawback of in-

creasing the number of times a read maps to two or more places by increasing the

sheer number of mapping possibilities. However, we found that the opposite is true -

115

the addition of known polymorphisms to the graph allows reads to better distinguish

their true mapping location from secondary, paralogous locations. Scaled genome-wide,

these improvements could help canonicalize mapping to the vast majority of variation,

which will become especially important as genome variants are increasingly used in the

clinic. The increases in perfect mapping could also allow alignment to be made more

efficient by allowing larger, more stringent seeds or more aggressive ungapped match-

ing. Our early work with vg indicates that there is ample opportunity for improvement

and investigation of these novel approaches to the design of high-performance mapping

algorithms. We also collected some preliminary data that suggests that the gains in

mapping obtained by moving from the existing reference to a graph like the 1KG graph

are super-population specific, suggesting that sequence graphs have the potential to

reduce the local ethnic bias inherent in a single reference genome.

By taking a community approach, we were able to sample a wide variety of

the contemporary software for building sequence graphs. It is apparent that different

methods produce dramatically different graphs, as measured both by direct graph anal-

ysis and by practical performance as a reference for common genomics tasks, suggesting

that the field is just in its formative stages. In trying to understand how “complete”

and “accurate” graphs built with today’s methods are at representing short sequences

present in the population, we encountered several surprises. In particular, we found a

large number of short non-biological paths created within the highest degree graphs,

such as the de Bruijn graphs, parts of the 1KG graphs, and certain of the Seven Bridges

graphs. We tried modifying the 1KG graphs to reduce the number of false recombina-

tion possibilities without much success. We may in the future find that we can tolerate

these short non-biological paths, or that another approach is needed to eliminate them.

One alternative approach is to create uncompressed, lower-degree graphs by

duplicating variable regions to directly represent haplotypes, but it is likely that, as

demonstrated by the 1KG Haplo 50 and (at the logical extreme) Unmerged graphs,

116

the resulting long, equivalent sequence paths would create too much multi-mapping

ambiguity. Perhaps a better solution may be the use of haplotype information embedded

within the sequence graph[78], making it a variation graph. This would allow algorithms

to map to a common graph coordinate system while accounting for variants, read errors,

and recombinations within the mapping process itself. This approach would eliminate

the need for several inelegant heuristics used in contemporary linear-reference-based

analysis pipelines [2, 68].

Sequence graphs can now be built from libraries of common variants, and

tools like vg, though still experimental, illustrate the huge potential of the graph-based

approach. There are a number of questions yet to be tackled. How should duplications

and repeats be represented? How can one best map to a graph? How should short

variants whose homologies are unclear be parsed? How can graphs be used to enable a

more comprehensive taxonomy of variation? These questions all represent open avenues

for future research.

4.5 Online Methods

4.5.1 Source Data

Participants were provided with a dataset consisting of five genomic regions (BRCA1,

BRCA2, LRC KIR, SMA, and MHC) to use in the creation of their graphs. The dataset

came in the form of a “reference” sequence and one or more “alternate” sequences for

each region. For the LRC KIR, SMA, and MHC regions, those alternate sequences were

the alt loci present in GRCh38.p2 for the regions of the same names in the assembly,

with the reference being the portion of the corresponding chromosome encompassing the

chromosomal coordinates for all of the alts. The reference regions for BRCA1 (ID 672)

and BRCA2 (ID 675) were downloaded from Entrez Direct, while alternate sequences

were the annotated genes from the CHM1 hydatidiform mole assembly, and the LRG

117

sequences for those genes [7, 43, 62]. Some participants used additional source data in

constructing their graphs.

4.5.2 Graph Format

All graphs were generated in or converted into an SQL text format for submission. The

graphs were then loaded into databases compatible with the GA4GH Graph Reference

Server, and servers for the graphs were hosted on a Microsoft Azure cloud instance. Indi-

vidual evaluation tools hit against these API endpoints. For read alignment and variant

calling purposes, graphs were downloaded from the servers using the sg2vg converter

tool, written for this project, and stored in .vg graph format. This on-disk format could

be efficiently indexed for read alignment—a function that the GA4GH server did not

support—and so was preferred for evaluations dependent on read alignment. The graphs

themselves were created using a variety of methodologies and approaches, detailed in

Supplementary Section 10.

4.5.3 Alignment Target Quality

The submitted graphs were used to align reads from 2,691 low-coverage samples from

the 1000 Genomes project, which had been aligned to GRCh38 with BWA-MEM [53].

Alignments to the primary reference and, where available, the GRCh38 alt loci for a

region were downloaded using Samtools [57]. The process took advantage of the tool’s

ability to subset indexed files over FTP in order to obtain just reads mapped within the

region [57]. Next, the alignments were converted into reads, yielding the relevant reads

for that sample and region. Unpaired reads in the downloaded set were discarded. An

attempt was made to correct for a known data corruption bug in the version of BWA-

MEM used to produce the alignments, by taking the sequences given for alignments to

the primary reference over the sequences given for the same read aligned to an alt, where

available (Heng Li, personal communication). Input graphs were downloaded from the

118

reference servers using the sg2vg program. They were then broken into nodes of no more

than 100 bases each and re-numbered according to a heuristic extension of topological

sort to cyclic graphs. Graphs were indexed and alignment was performed with the

vg program, using a K-mer size of 16 and an edge-crossing limit of 3 for the GCSA2

index. The portion of reads mapping uniquely was calculated. To qualify as uniquely

mapped, a read had to have a primary mapping with 0.95 matches per alignment column

or fewer. Additionally, qualifying reads had to have either no secondary mapping or

a secondary mapping having fewer than 0.85 matches per column. The denominator

for the portion mapping uniquely was the number of reads having either a secondary

mapping distinct from the read’s primary mapping or no secondary mapping at all (see

Supplementary Section 3). The portion of reads mapping perfectly was defined as the

portion having 1 match per alignment column. The substitution rate was defined as

the portion of bases in length-conserving replacements out of all substituted or matched

bases. Bases matched or substituted against N characters in the reference graph were

ignored. The indel rate was defined as indel count divided by substituted and matched

bases. Bases matched or substituted against reference Ns were ignored, as were indels

that constituted softclips.

4.5.4 Platinum Genomes Variant Calling Evaluation

A graph variant calling pipeline based on the Samtools pileup method was implemented

in vg and run independently on three 50x coverage samples from Platinum Genomes

(NA12877-9). First, the reads were mapped to each graph as described above. The

alignments were then filtered to remove secondary mappings, as well as mappings with

mapping quality score less than 15, mappings that had been promoted to primary

over another properly paired mapping of greater single-end score, and mappings with

soft-clipped or ambiguous ends (more details in Supplementary Section 7). A pileup

of aligned read bases was then constructed for each position and edge in the graph

119

ignoring bases with read quality score less than 10. The SNPs, insertions, and deletions

implied by the two most supported non-reference entries in each pileup were then added

into the graph to create an “augmented” graph. Sites in the augmented graph were

computed using the ultrabubbles algorithm[85]. For each site, the two non-reference

paths with the most read support were greedily chosen using a breadth-first search. A

path’s read support was defined here as the minimum pileup support of any node or edge

it contains; each node’s support was calculated as the average support across the node’s

bases. Finally, given the reference path and these two alternate paths for each site, a

genotype was computed using a thresholding heuristic based on the ratios of the paths’

pileup supports. Alternate alleles were called as heterozygous if they had at least three

times as much read support as the reference (or six times for a homozygous alt call).

The genotypes were written directly to VCF. The variants were normalized by using

vt[106] to flatten multibase alts that contain reference calls. Calls for both NA12877 and

NA12878 were compared against their respective Platinum Genomes truth set VCFs;

these were the only samples with truth VCFs available. Precision and recall against

the truth set were assessed with vcfeval[10]. True and false positives and negatives

returned from this tool were classified as SNPs and indels using bcftools, and clipped

into the Platinum Genomes confident regions. Precision, recall and F1-scores were

then computed for each possible quality threshold in the VCF. For the vg call results,

minimum read support (AD field in VCF genotype) across called alleles was used as

a proxy for quality. Aggregate results across samples and regions were computed by

pooling the vcfeval results together. The precision-recall curves (Fig. 4.4 (C) and (D))

were drawn by filtering the VCF files by all values of variant quality and displaying only

those within distance 0.1 of the maximum F1-score. The points shown in Figure 4.4

(A) were chosen to correspond to the quality threshold yielding the maximum F1-score.

120

4.5.5 Reference-Free Evaluation

A “synthetic diploid” genome was conceptualized by combining data from two haploid

samples, CHM1 and CHM13[103]. For each sample, GRCh38-aligned low-coverage Il-

lumina reads and relatively complete PacBio-derived assemblies were obtained. The

CHM1 and CHM13 reads were obtained by combining both runs from NCBI SRA

SRX1391727 and SRX1082031, respectively, and mapping to GRCh38 using BWA-

MEM[53]. The CHM1 assembly used was GenBank accession number GCA 001297185.1,

while the CHM13 assembly was GCA 000983455.2. For each region, a pooled collection

of the relevant Illumina reads across both CHM1 and CHM13 was created. Next, the

reads were subsampled for balanced coverage between the two haploid genomes as would

be expected in a real diploid sample. For each submitted graph under tests, the reads

were aligned using vg, and the vg variant caller was used to produce variant calls. The

resulting VCF for each graph construction method and region combination was turned

into a new “sample graph” to which the relevant portions of the PacBio assemblies were

aligned. Treating the aligned assembly fragments as the truth, the precision and recall

of each sample graph were measured as a function of which original submitted graph it

was derived from.

Assembly fragments used for evaluation were selected by alignment of the

primary reference sequences for the regions against the CHM1 and CHM13 assemblies

using BLAT version 36x2 [45]. Aligned regions in the assembly covering more than

either 50% of an assembly contig or 50% of a region, with more than 98% identity,

were extracted from the assembly and used for realignment. The SMA region was

excluded from the evaluation due to patchy, overlapping coverage of the region in the two

assemblies. Additionally, the first 87,796 bases of the LRC KIR region were excluded

from the sample graphs and the aligned truth set contigs due to an apparent lack of

representation in the CHM13 assembly.

121

4.5.6 Assessing Graph Completeness

Reads aligning to the test regions were obtained from 2,691 low-coverage samples in the

1000 Genomes Project, and each sample’s reads were used to generate a collection of

K-mers (K=20) using Jellyfish [3, 65]. These were compared against the collection of

K-mers in each graph as enumerated by vg with an edge-crossing limit of 7. In order to

account for K-mer frequencies, duplicate K-mers were not ignored. K-mers containing

N characters were ignored in both collections, and K-mers only observed once in their

sample were ignored in the 1000 Genomes-derived K-mer collection. This latter filter

was intended to remove the large majority of erroneous K-mers: we expect errors to

be Poisson-distributed one-off events while real variants are likely to recur within a

sample. Recall, defined as the portion of all read-derived K-mers present among the

graph-derived K-mers, and precision, defined as the converse, were computed for each

graph.

4.5.7 URLs

VG, https://github.com/vgteam/vg.

Patches to VG, https://github.com/adamnovak/vg/tree/graph-bakeoff.

GA4GH to VG Importer, https://github.com/glennhickey/sg2vg.

VG to GA4GH Exporter, https://github.com/glennhickey/vg2sg.

GA4GH Graph Schemas, https://github.com/ga4gh/schemas/tree/refVar-graph-

unary.

GA4GH Graph Server, https://github.com/ga4gh/server/tree/graph.

Graph evaluation software, https://github.com/BD2KGenomics/hgvm-graph-bakeoff-

evaluations.

122

https://github.com/vgteam/vg
https://github.com/adamnovak/vg/tree/graph-bakeoff
https://github.com/glennhickey/sg2vg
https://github.com/glennhickey/vg2sg
https://github.com/ga4gh/schemas/tree/refVar-graph-unary
https://github.com/ga4gh/schemas/tree/refVar-graph-unary
https://github.com/ga4gh/server/tree/graph
https://github.com/BD2KGenomics/hgvm-graph-bakeoff-evaluations
https://github.com/BD2KGenomics/hgvm-graph-bakeoff-evaluations

FASTG, http://fastg.sourceforge.net/.

Illumina Platinum Genomes, http://www.illumina.com/platinumgenomes/.

Jellyfish, http://www.cbcb.umd.edu/software/jellyfish/.

Platypus, http://www.well.ox.ac.uk/platypus.

FreeBayes, https://github.com/ekg/freebayes.

Samtools, http://www.htslib.org/.

VCFeval, https://github.com/RealTimeGenomics/rtg-tools.

4.5.8 Software Versions and Commit Hashes

VG, 158d542497445b532b0e9e40223f5023ee6b52dd.

GA4GH to VG Importer, 468026ad70f0425af1959b287ffcaac91b8a9deb.

VG to GA4GH Exporter, 4efde8e64a8bd113a0e83685628bbaf0cbc2be3f.

GA4GH Graph Schemas, ea58ac46dad84be67c500e517ff2fb05a43a187a.

GA4GH Graph Server, c6daebca4c69a4ff4d9d56cfdf587556f2ce1116.

Graph evaluation software, 52b0537713629471f6ea97ccf552d6727c630f3d.

FreeBayes, 9e983667d47f6b5dcbb90070da8de69714038f46.

Samtools, version 1.3.1.

4.5.9 Acknowledgments

This work would not have been possible without the generous support of the Na-

tional Human Genome Research Institute (1U54HG007990 [BD2K] to B.P. and D.H.,

5U41HG007234 [GENCODE] to B.P.); the W. M. Keck Foundation (DT06172015 to

123

http://fastg.sourceforge.net/
http://www.illumina.com/platinumgenomes/
http://www.cbcb.umd.edu/software/jellyfish/
http://www.well.ox.ac.uk/platypus
https://github.com/ekg/freebayes
http://www.htslib.org/
https://github.com/RealTimeGenomics/rtg-tools

B.P. and D.H.); the Wellcome Trust (100956/Z/13/Z to G.M.); the Simons Foundation

(SFLIFE# 351901 to B.P. and D.H.); the ARCS Foundation (2014-15 ARCS fellowship

to A.M.N.) and Edward Schulak (Edward Schulak Fellowship in Genomics to A.M.N.).

4.5.10 Author Contributions

A.M.N. contributed the Camel graphs, wrote read mapping and variant calling code for

vg, ran the read mapping and reference-free evaluations, and contributed extensively

to the organization of the manuscript. G.H. contributed the Cactus, 1KG, 1KG Haplo

50, Primary, and Scrambled graphs, and performed the variant calling evaluation. E.G.

contributed the bulk of the vg tool. S.B. contributed the analysis of graph statistics.

A.C., S.G., N.O., and A.W.Z. contributed the Curoverse graphs, with A.W.Z. supervis-

ing. A.D., J.K., supervised by G.MV., contributed the PRG graphs. J.E. contributed

alignment code to the vg tool. M.A.S.E. contributed advice and corrections to the

manuscript. A.K. contributed the De Bruijn 63 graphs. S.K. contributed code to the

GA4GH graph server and contributed extensive organizational support. D.K. and G.R.

contributed the SBG graphs. H.L. contributed experimental design support for the

read mapping evaluation, and advice on the manuscript. M.L. worked on scaling up

the variant calling pipeline to whole genomes. K.M. contributed a set of graphs for the

chromosome X centromere. M.S-O. contributed code to the GA4GH graph server and

managed the graph data import pipeline for this work. R.D. contributed to the design

of the GA4GH graph server interface and schemas, and supervised other authors. G.M.,

D.H., R.D. and B.P. contributed to the design of the project and supervised authors.

B.P. and organized the project directly, and wrote extensive portions of the manuscript.

All authors edited the manuscript.

124

Chapter 5

Towards a Human Genome Variation

Map

5.1 Introduction

In Chapter 4, it was demonstrated that the use of graph-based genomic references

can result in improved variant calling performance over traditional linear references.

However, in that study, the graph references that produced the most accurate variant

calls compared to truth VCFs were derived from the 1000 Genomes Project’s main

variant call files [3], and allowed the detection of only relatively short indels, under

about 50 bp (Fig. 4.5 (C)). Compared to the approximate 300 bp length of a single Alu

repeat insertion [113], this is inadequate.

In addition to comparison against traditional Illumina-based variant calls, vari-

ant call accuracy was also evaluated using PacBio-based assembly data, by measuring

how well the sample graph produced from the variant calls for a pooled synthetic diploid

sample agreed with separate haploid assemblies. By this metric, variant calling per-

formed with Cactus-based graphs was found to be more accurate than variant calling

performed with 1000 Genomes-derived graphs (Fig. 4.3 (B)). Cactus-based graphs were

125

also shown to allow the detection of longer insertions and deletions than 1000 Genomes-

based graphs can find (Fig. 4.5 (C)). Overall, Cactus-based graphs, which are produced

from the alignment of long alternate loci sequences, have some important advantages

that 1000 Genomes-based graphs lack.

In order to construct a versatile graph-based reference that will serve as a com-

munity resource for read mapping and variant calling, it is desirable to combine the best

aspects of these two types of graph. Additionally, as the bake-off project of Chapter 4

worked only on regions up to a few megabases in size, it is desirable to demonstrate

the effectiveness of graph-based methods at larger scales, where qualities like the abil-

ity to resolve mappings between ambiguous regions, and the ability to effectively use

paired-end information, are more critical.

In this chapter, we present a method to create graph references combining

the best qualities of 1000 Genomes-based and Cactus-based graphs, and validate these

graphs on the scale of a chromosome.

5.2 Methods

5.2.1 Graph Construction

In order to combine a Cactus-based graph with a 1000 Genomes-based graph, we imple-

mented a new subcommand in the vg variation graph toolkit [24]. The new tool, vg add,

augments an existing graph by inserting variants from a VCF file. It works by extract-

ing local haplotypes around each variant that are consistent with the phased samples in

the VCF file, and then aligning them to the relevant region of the graph, as determined

by tracing an embedded primary reference path in the graph. For particularly large

insertions and deletions, where a complete local alignment would be impractical, the

ends of the variant are aligned, and the resulting alignments are stitched together to

describe the actual variant.

126

The vg add tool, along with a Toil-based orchestration script [112], were used

to combine variation information from three sources. The base level graph was obtained

using Cactus [82], by aligning together the chromosome 22 primary sequence and the

chromosome 22 alt loci and so-called random sequences (which are localized to a

chromosome but not placed along it) from GRCh38. The alignment was performed

such that the main chromosome 22 sequence and the random sequences were not aligned

to themselves or each other; only the alt sequences were allowed to align to the other

sequences. The Cactus alignment was converted to a vg graph with the hal2vg tool1,

and the resulting graph had its nodes chopped to a maximum length of 1000 bp using

vg mod.

On top of this graph, vg add was used to add in variants from the 1000

Genomes Phase 3 GRCh38 lifted-over VCF files2. Notably, these variant files as dis-

tributed by the 1000 Genomes Project are not valid; variants lifted over to the reverse

strand of GRCh38 are marked as marked with a MATCHED REV tag in the INFO field but

left in their GRCh37 orientations, and needed to be reverse-complemented using a script

so that the REF field contents will match the actual reference sequence at the variant’s

location.

The vg add tool was also used to add structural variants to the graph. Since

the structural variants in GRCh38 coordinates as originally obtained3 were described

using a complex combination of INFO tags, additional tables, and references to difficult-

to-locate external sequence database records, the files had to be preprocessed in order

for vg add to be able to parse them. All variant alt information was moved into a

fully realized concrete sequence in each variant record’s ALT column, and the reference

sequences, even for very long deletions, were placed in each variant record’s REF column.

1https://github.com/ComparativeGenomicsToolkit/hal2vg
2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_position

s/
3ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_

positions/

127

https://github.com/ComparativeGenomicsToolkit/hal2vg
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_positions/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_positions/

All symbolic allele references and target site duplication sequences were resolved. For

mobile element insertions, the original VCF specified the presence, but not the exact

length, of a poly-A tail; in these cases, several duplicate variant records were created,

with poly-A tail lengths of 10, 25, and 50 bases. This approach was selected in hopes

of providing a mapping target sufficient to collect reads showing the correct poly-A tail

length, which could then potentially be determined through graph-based variant calling.

Once the graph was fully constructed, it was indexed using vg. This produced

the XG and GCSA2 indexes that were required to align reads to the graph. The graph

was then subjected to two evaluations, based on aligning reads to and variant calling

against it. The structural variant evaluation, described in Subsection 5.2.4, involved

comparing variant calls against a truth set, while the assembly realignment evaluation,

described in Subsection 5.2.3, involved evaluating the sample graph derived from the

variant calls with reference to a pair of haploid assemblies.

5.2.2 Variant Calling Techniques

Both of the evaluations presented here relied on some improvements to the vg variant

caller, vg call, made for the purpose of this study. Previously, the caller operated

only on sites defined by top-level ultrabubbles [85], and exclusively produced VCF

output. However, when working with the very large top-level ultrabubbles induced by

the inclusion of large structural variants in the graph, it became necessary to consider

nesting of ultrabubbles. The core of the caller was rewritten to handle ultrabubbles

recursively. In this method, each ultrabubble is treated as a site. Calls are made on

each top-level site while abstracting away variation inside of nested child sites, and then

each nested child site is recursed on and a call is made for it in accordance with the

copy number assigned to it by the higher-level call. An attempt was made to patch

the lower-level call results into the output for the higher-level containing sites, subject

to the limitation that within alternate alleles each child was always represented by its

128

highest-coverage traversal, even if it was given a heterozygous call. This limitation was

added to avoid difficult situations related to phasing between adjacent heterozygous

children.

Additionally, in order to allow ultrabubbles that were not traversed by a pri-

mary reference path to be usefully called, the caller was modified to be able to output

its calls in Locus format, in addition to VCF. This format is a binary, Protobuf-based

format, similar to the other formats used by vg, and represents calls as Locus objects. A

Locus can have a series of graph paths stored within it as alternative alleles, along with

zero or more genotypes called as potentially-empty collections of the available alleles

at the Locus. This format allowed for each top-level site to be represented, and also

allowed for child sites to be represented. Additionally, it allowed gVCF-like assertions

to be made about the existence of a primary reference path outside of variable sites, by

creating Locus objects covering non-variable material.

To improve performance on calling large structural variants, and to account

for the transition to a recursive, child-abstracting architecture, numerous changes to

the internal heuristics used by the variant caller were made. These changes were made

manually, working primarily on the NA12878 sample; no automatic optimization of

caller parameters was performed. All variant calls created in this study were performed

using the default vg call heuristic parameters and an additional --max-dp-multiple

2.5 setting.

Since sample graphs were required for the assembly realignment evaluation,

the vg mod tool that produces sample graphs was enhanced to allow it to read and

process calls in Locus format. Sample graphs were produced for Locus-format calls by

eliminating all nodes and edges not called as present in some Locus.

129

5.2.3 Assembly Realignment Evaluation

The first evaluation was a variant of the assembly realignment evaluation from Chap-

ter 4. A synthetic diploid sample was created from the CHM1 and CHM13 hydatidiform

mole samples aligned to GRCh38 (it was actually the same sample used in Chapter 4).

From this sample, read pairs where either member mapped to chromosome 22 or any of

its random or alt scaffolds were collected.

These reads were aligned to the graph under test and used for variant calling

against it. However, instead of calling variants to VCF, we used our improved version of

vg call to produce Locus-format variant calls for the ultrabubbles in the augmented

graph (including both parent and nested child ultrabubbles) [85], and assertions of the

presence of all primary reference path edges not involved in ultrabubbles. Finally, as in

Chapter 4, the augmented graph was subsetted to create a sample graph. Each graph

under test was also evaluated as if it were a sample graph, without the variant calling

and subsetting steps, in order to provide a control.

We evaluated two graphs in this way: the “HGVM” graph, created using

Cactus and vg add, as described above, and a “Control” graph, consisting of just the

chromosome 22 GRCh38 scaffold and associated random scaffolds, with no variants

added. Each of these gave rise to one actual sample graph, produced by the variant

caller, and one control sample graph, produced by passing through the entire graph

under test as if it were the sample graph.

To evaluate each sample graph, the scaffolds from the CHM1 and CHM13

assemblies relevant to chromosome 22 were determined using a script. This script aligned

10 kb chunks of each scaffold every 100,000 kb to the 24 primary GRCh38 chromosome

scaffolds, until a hit scoring 95% of the maximum possible score was obtained. All

scaffolds for which that first sufficiently good hit was to chromosome 22 were taken

and chopped into pieces every 1000 bp to produce a set of assembly fragments. (The

130

exception was scaffold LBHZ02000095.1 from CHM13, which was manually found to

consist of sequence mapping primarily to chromosome 13, and consequently excluded.)

Overall, the analysis used 37,931,872 bp of sequence from CHM1 and 36,306,973 bp of

sequence from CHM13. The assembly fragments were realigned against each indexed

sample graph, and the quality of each sample graph as a representation of the assembly

fragments was then measured. This was accomplished by going over the alignments and

tabulating the total number of inserted, deleted, substituted, and softclipped bases, and

dividing that total by the size of the Control graph (which consisted of chromosome 22

and the associated random sequences), to get a number of affected bases per primary

reference base in each category.

5.2.4 Structural Variant Evaluation

The second evaluation, by contrast, was a truth set VCF-based measurement of the ac-

curacy of structural variant calls. Reads aligned to GRCh38 were obtained for five sam-

ples: NA12878, NA12889, and NA12890 from the Illumina Platinum Genomes dataset,

and HG00513 and HG00732 from the 1000 Genomes High Coverage dataset. From each

file of aligned reads, read pairs where either member mapped to chromosome 22 or any

of its random or alt scaffolds were collected. These reads were then mapped to the

graph under test, and variant calling for each sample was performed. Variant calls in

VCF format were obtained. For each sample, the called VCF was compared against

the GRCh38 structural variant files that were used for preparing the graph. Recall was

computed by considering each unique variant position in the truth VCF for which an

alternate allele was called in the sample, and treating it as recalled if the variant calls

for the sample in question contained a variant with a length change of 25 bp or more,

having a position within 25 bp of the truth position. Filtered variants were ignored

in both VCFs. Because the truth set VCF used was not believed or warranted to be

complete, precision was computed manually, by randomly sampling a certain number

131

of calls for variants with length changes of 25 bp or more with calls of alternate alleles,

and manually classifying each selected positive call as true or false, by looking at the

original input reads and the truth VCF at the variant’s location on the UCSC genome

browser.

5.2.5 Software and Hardware

The graph construction and evaluation was performed on a Microsoft Azure cluster

using five Standard G5 worker nodes and one Standard A5 master, managed using the

Toil workflow engine [112]. The quay.io/vgteam/vg:v1.5.0-303-gb1a6cc8c-t62-r

un Docker container provided the vg build used in this study.

5.3 Results

5.3.1 Graph Construction

The cluster run to build the graph, starting from the vg-format Cactus graph, and to run

the structural variant and assembly realignment evaluations, took 20 hours, 16 minutes,

and 35 seconds on the Microsoft Azure cluster described above in Subsection 5.2.5. No

attempt was made to fit the size or resource allocations of the cluster to the requirements

of the workflow; the analysis succeeded on the smallest (and only) cluster on which it

was tried.

The final chromosome 22 graph contained 3,630,637 nodes and 4,736,765 edges,

with a total length (summed over all nodes) of 57,097,953 bp. The initial input data

consisted of 51,857,516 bp of primary reference and random scaffold sequence, and

1,625,159 bp of alternate loci (much of which should have aligned to and been merged

with the primary reference and random sequences), meaning that at least 3,615,278 bp

of material, or 6.97%, was created by vg add from VCF files. The input VCF files only

had 132,693 bp of structural variant alternate allele sequence and and 1,167,426 bp of

132

point variant alternate allele sequence. The graph was found to contain 3,750,000 bp

of N bases not on any of the paths from the base Cactus graph. Extraneous N bases

were observed occurring in large collections of parallel nodes containing mostly N bases.

However, as extraneous runs of Ns do not attract reads that ought to map elsewhere,

the graph was still used for further alignment-based analyses.

The graph contained 10 “head” nodes, with nothing attached to their left sides,

and 10 “tail” nodes, with nothing attached to their right sides. This was consistent with

the 10 primary path sequences (chr22 and 9 unlocalized chromosome 22 scaffolds) used

to construct the base graph.

5.3.2 Assembly Realignment Evaluation

For the first evaluation, based on realignment of the mole reads, results are visible in

Figure 5.1. Two graphs were used in the evaluation: the final chromosome 22 HGVM

graph, and the Control graph constructed only from chromosome 22 and the associated

random sequences in GRCh38, without any alignment or additional variants. Each of

these graphs was used as a reference for read alignment and variant calling, and the

resulting sample graphs are the “HGVM” and “Control” conditions in the figure. Each

of the graphs was also evaluated as if it were a sample graph, producing the “No Call”

and “All Ref” conditions, respectively.

On the Deletions, Insertions, and Substitutions metrics (although by a very

small margin on the Insertions metric), the HGVM condition performed best. Calling

variants based on the graph reference, with its included known variation, resulted in

needing to delete fewer bases, insert fewer bases, and substitute fewer bases to explain

the assembly fragment truth set, compared to when variant calling was done using the

Control graph, which contained no embedded variation. Additionally, the variant calling

step itself reduced the number of bases that needed to be deleted by a large factor, and

the number of bases that needed to be inserted or substituted slightly, as can be seen

133

by comparing the HGVM condition to the No Call condition (Fig. 5.1). This suggests

that the variant caller is successful in incorporating information from aligned reads into

the sample graph. Finally, note that, for deletions, substitutions, and insertions, the

decrease in required base modifications attributable to the variant caller operating on

the variation-containing graph (i.e. the drop from No Call to HGVM) was greater than

the decrease attributable to the variant caller operating on the no-variation graph (i.e.

the drop from All Ref to Control). This shows that including variation in the reference

can make variant callers more effective.

On the softclips metric, on the other hand, the “No Call” condition outper-

formed the “HGVM” condition by a small margin, meaning that the graph reference

with no variant call performed on it was a better match for the assembly fragments

being realigned than was the sample graph produced by variant calling, in terms of the

number of softclipped bases required in the assembly fragments’ alignments.

5.3.3 Structural Variant Evaluation

For the second, VCF-based evaluation, the precision statistics for the five samples ana-

lyzed (HG00513, HG00732, NA12878, NA12887, and NA12890) are visible in Table 5.1,

while the recall results for the samples are visible in Table 5.2. Summing across samples,

the overall precision was 20 out of 25, or 0.80, while the overall recall was 106 of 151,

or 0.702. Together, these produce an F1 score of 0.76.

134

Figure 5.1: Bases involved in events required to align fragments of the CHM1 and
CHM13 haploid assemblies to the sample graph created with the vg variant caller for
the combined synthetic diploid sample. Quantities are expressed as bases involved in
each type of event per base in the control graph. For the All Ref condition (blue),
the performance of the primary-reference-only control graph as a sample graph was
evaluated. For the Control condition (green), that reference-only graph was used as
a reference for variant calling, and the resulting sample graph was evaluated. For the
HGVM condition (red), the Human Genome Variation Map graph under test was used
as a reference for variant calling, and the resulting sample graph was evaluated. Finally,
for the No Call condition (black), the HGVM graph was evaluated directly as a sample
graph, with no calling step, to serve as a positive control.

135

136

Table 5.1: Precision estimation from 25 randomly-sampled calls of variants inducing
length changes of 25 bp or more on chromosome 22. From each sample, five called
variants were selected randomly. Variants were manually assessed for correspondence
to calls for their sample from the 1000 Genomes structural variant set, correspondence
to variants in dbSNP 147, and support in the original GRCh38-aligned input reads,
using the UCSC Genome Browser. Variants supported either by the 1000 Genomes
truth set or by the reads were designated as true variants, while other variants were
designated as false variants. Overall, 20 of 25 variants examined were designated as
true, producing a precision estimate of 0.80.

137

Sample Position Type Length (bp) 1KG SV Call In dbSNP In Reads True

HG00513 37661330 Deletion 28 • • •
HG00513 44246856 Insertion 33 • • •
HG00513 45210755 Insertion 36 • • •
HG00513 49343564 Deletion 28 • • •
HG00513 49354907 Deletion 57 • • • •
HG00732 23946708 Insertion 1164 • •
HG00732 22955032 Deletion 38 • •
HG00732 36731029 Deletion 172 • • • •
HG00732 39195778 Deletion 28 • • •
HG00732 41552577 Insertion 40 • • •
NA12878 17801142 Deletion 322
NA12878 24005821 Deletion 52
NA12878 25232595 Deletion 42 • • •
NA12878 44246856 Insertion 33 • • •
NA12878 47920718 Deletion 25 • • •
NA12889 17717386 Insertion 33 • • •
NA12887 20224942 Insertion 29 • • •
NA12887 23506174 Insertion 1095
NA12887 40148663 Insertion 30 • • •
NA12889 42119330 Deletion 28 • • •
NA12890 17224418 Insertion 300 • • •
NA12890 20354675 Deletion 27 • • •
NA12890 27258892 Deletion 3150
NA12890 40652380 Insertion 37 • • •
NA12890 43678002 Deletion 6979

138

Sample Total SVs Called SVs Recall

HG00513 29 20 0.69
HG00732 31 19 0.61
NA12878 30 21 0.70
NA12889 29 21 0.72
NA12890 32 25 0.78

Table 5.2: Recall statistics for structural variants called by vg in five samples, with the
structural variant VCF used to construct the graph used as the truth set. Overall recall
was 106 of 151 variants, or 0.702.

5.4 Conclusion

The results of the assembly realignment evaluation show that the graph built in this

study is a superior reference for chromosome 22 compared to the primary, linear refer-

ence currently in use today, for the purpose of variant calling with the vg toolkit. In

terms of the inserted, deleted, and substituted bases required to represent the CHM1

and CHM13 assemblies on the sample graph called for the synthetic diploid, the vari-

ation-containing graph is superior, producing sample graphs that are more similar to

the assemblies, and amplifying the effectiveness of the variant caller. However, as evi-

denced by the overall required insert frequency of about 1% of primary reference bases

(Fig. 5.1), and by the relatively low overall structural variant F1 score of 0.76, the vg

variant caller is, overall, still not particularly good.

On the one hand, the vg variant caller is capable of feats which ordinary

pileup-based callers cannot accomplish. For example, at chr22:17224418 in NA12890

in Table 5.1, the vg caller successfully used short read data to detect a 300 bp insertion,

which the 1000 Genomes structural variation dataset identifies as an Alu insertion [104].

The use of a graph that already contains the Alu insertion in question allows the insertion

to be detected using the vg caller’s simple pileup-based approach, whereas ordinarily

the detection of such an event would require sophisticated techniques to handle split or

discordantly-paired reads or perform local reassembly [114]. This clearly illustrates the

139

power of the graph-based approach.

However, on the other hand, the vg caller, being a simple pileup-based caller

operating on a few manually-tuned heuristics, makes embarrassing mistakes. Take for

example the deletion that the caller asserts in NA12890 at chr22:43678002, where

the caller asserts a heterozygous deletion of 6,979 base pairs. Nothing of the sort is

visible in that region in the genome browser. Indeed, given the allelic depths that the

caller computes on that particular allele (53 for the reference and 22 for the deletion),

in comparison to the baseline coverage estimate it computes of 35 for the sample, it

seems likely that in this case the caller has somehow been fooled by some additional

extraneous reads supporting the deletion. Cases like this came up in testing, and some

heuristics to reject calls with excessively unbalanced allele depths were added to the

caller. However, there is clearly more work to be done in characterizing this failure

mode, in apportioning blame between the aligner, the graph, and the caller, and in

improving the system’s resistance to failures of this type.

Moreover, if the caller had a more clever architecture (perhaps, like Free-

Bayes [23], something based on a concept of per-read support for local haplotypes,

instead of on pileups), it could potentially be more robust to a variety of failure modes.

As it is, it uses poorly-justified heuristics to try and reduce all of the reads aligned

to that potentially-deleted region down to just forward- and reverse-strand “support”

values, which it compares against the “support” values of the deleted allele to guess

the copy number of each. A more robust read-based framework would potentially allow

the caller to single out low-mapping-quality, misaligned, contaminant, ambiguous, or

supernumerary reads, and to discount their support, ultimately resulting in better calls,

or at least less embarrassing mistakes.

In addition to improvements to the caller, this study has identified ways to

improve graph generation. For example, it is hypothesized that the extraneous N bases

in the graph were generated when N-containing potential haplotype strings were aligned

140

back to the graph in vg add. Because the vg aligner never matches N bases in the query

against even N bases in the reference, and because vg add creates new nodes for all

the pieces of sequence in its candidate haplotypes that do not match against bases in

the existing graph, the vg add logic can produce extra nodes in the final graph when

the base graph contains N bases. The handling of N bases in the input graph to vg add

needs to be improved, so that those bases are not duplicated when candidate haplotypes

are aligned into the graph.

There are also future improvements that should be made to this study’s an-

alytical methods. For example, one shortcoming of the structural variant analysis is

that, of the broad diversity available in the 1000 Genomes dataset, the five samples

analyzed here consisted of three European-ancestry Utah-resident (CEU) individuals,

one Southern Han Chinese (CHS) individual, and one Puerto Rican (PUR) individual.

These individuals were selected because they were included in the 1000 Genomes struc-

tural variation study, and also had high-coverage short-read data aligned to GRCh38

readily available for download. The selection process consisted of taking acceptable

samples present in Illumina’s Platinum Genomes dataset of a CEU pedigree [20], and

augmenting the three samples obtained with two others selected by trying sample names

manually. Consequently, they are not particularly representative of the human popula-

tion, excluding, for example, the entire African continent. Additional individuals also

meeting the data-availability criteria likely could have been added to the analysis, and

should be included in the future. To fairly evaluate the graph reference constructed in

this study, a broader panel of test subjects is needed.

Another reason to test a broader panel of subjects is to avoid overfitting of

caller parameters. This study, working only with the five structural variant samples

and the one synthetic diploid, had no formal separation between training, test, and

validation sets. It is possible that even the relatively low performance of the structural

variant caller is overfit, and that it will be reduced when analysis is expanded to more

141

samples. Additionally, the samples used to evaluate the caller were not removed from the

input datasets, so it is possible that the presence of variants private to these individuals

in the graph artificially inflates the measured performance, relative to what it would be

on a genuinely new sample. Future studies with a formal separation of training, test,

and validation samples might benefit from automatic, machine-learning-based tuning of

the numerous configurable heuristics available in the variant caller used here, or that

will be available in a newly-designed variant caller. In the present study, the heuristics

and parameters were hand-tuned, and are almost certainly not optimal.

Overall, the results of this study indicate that graph-based references can be

used at chromosome scale to improve variant calling performance. They show that

it is possible to combine variation information from disparate sources (in this case,

the GRCh38 alternate loci, the 1000 Genomes point variation dataset, and the 1000

Genomes structural variation dataset) to produce a working graph reference. They show,

given the construction runtimes and resource requirements achieved at this scale, that

it would not be impractical to construct and evaluate a whole-genome graph reference

using these techniques. However, they also show that, in order to use such a whole-

genome graph effectively, more research into graph-based variant calling is needed. A

particular emphasis should be placed on adapting proven, state-of-the-art read- and

read-pair-backed approaches to the graph context.

5.5 Availability of Materials

The hgvm-builder software, used to coordinate the construction and analysis of the

graphs presented here, is available from https://github.com/BD2KGenomics/hgvm-b

uilder. The constructed chromosome 22 Human Genome Variation Map graph, along

with its succinct structural index and substring search indices, is available from http://

hgwdev.soe.ucsc.edu/~anovak/outbox/builds/2017-05-26/hgvm/. This particular

142

https://github.com/BD2KGenomics/hgvm-builder
https://github.com/BD2KGenomics/hgvm-builder
http://hgwdev.soe.ucsc.edu/~anovak/outbox/builds/2017-05-26/hgvm/
http://hgwdev.soe.ucsc.edu/~anovak/outbox/builds/2017-05-26/hgvm/

graph build has been assigned a UUID of 9ef69e94-a95f-455e-8fca-f705a334968a

by the hgvm-builder software.

5.6 Acknowledgements

The author would like to thank Joel Armstrong for performing Cactus alignments used

in this work. The author would also like to thank Charles Markello for preparing

flat structural variant VCF files and for contributing to the useful toil-vg library. The

author would like to thank Glenn Hickey for preparing the synthetic diploid sample used

in the evaluations, for creating the hal2vg tool, and also for contributing to toil-vg.

The author would like to thank Mike Lin for creating the vg docker system used to

package vg for this study. The author would like to thank Anna Henderson for copy-

editing assistance.

143

Bibliography

[1] 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061–1073, 2010.

[2] 1000 Genomes Project Consortium. An integrated map of genetic variation from
1,092 human genomes. Nature, 491(7422):56–65, 1 Nov. 2012.

[3] 1000 Genomes Project Consortium. A global reference for human genetic
variation. Nature, 526(7571):68–74, 2015.

[4] P. M. Bodily, M. S. Fujimoto, Q. Snell, D. Ventura, and M. J. Clement.
ScaffoldScaffolder: solving contig orientation via bidirected to directed graph
reduction. Bioinformatics, 32(1):17–24, 2016.

[5] D. Y. Brandt, V. R. Aguiar, B. D. Bitarello, K. Nunes, J. Goudet, and
D. Meyer. Mapping bias overestimates reference allele frequencies at the HLA
genes in the 1000 Genomes Project phase I data. G3: Genes— Genomes—
Genetics, 5(5):931–941, 2015.

[6] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. In SRC Research Report 124. Digital Equipment Corporation
Systems Research Center, 1994.

[7] M. J. P. Chaisson, J. Huddleston, M. Y. Dennis, P. H. Sudmant, M. Malig,
F. Hormozdiari, F. Antonacci, U. Surti, R. Sandstrom, M. Boitano, J. M.
Landolin, J. A. Stamatoyannopoulos, M. W. Hunkapiller, J. Korlach, and E. E.
Eichler. Resolving the complexity of the human genome using single-molecule
sequencing. Nature, 517(7536):608–611, 29 Jan. 2015.

[8] D. M. Church, V. A. Schneider, T. Graves, K. Auger, F. Cunningham, N. Bouk,
H.-C. Chen, R. Agarwala, W. M. McLaren, G. R. Ritchie, et al. Modernizing
reference genome assemblies. PLOS Biology, 9(7):e1001091, 2011.

[9] G. M. Church. The personal genome project. Molecular systems biology, 1(1),
2005.

[10] J. G. Cleary, R. Braithwaite, K. Gaastra, B. S. Hilbush, S. Inglis, S. A. Irvine,
A. Jackson, R. Littin, M. Rathod, D. Ware, et al. Comparing variant call files

144

for performance benchmarking of next-generation sequencing variant calling
pipelines. bioRxiv, 2015. doi: 10.1101/023754. URL
http://biorxiv.org/content/early/2015/08/03/023754.

[11] Computational Pan-Genomics Consortium. Computational pan-genomics:
status, promises and challenges. Briefings in Bioinformatics, page bbw089, 2016.

[12] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo,
R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, et al. The variant call
format and VCFtools. Bioinformatics, 27(15):2156–2158, 2011.

[13] J. F. Degner, J. C. Marioni, A. A. Pai, J. K. Pickrell, E. Nkadori, Y. Gilad, and
J. K. Pritchard. Effect of read-mapping biases on detecting allele-specific
expression from RNA-sequencing data. Bioinformatics, 25(24):3207–3212, 2009.

[14] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L.
Salzberg. Alignment of whole genomes. Nucleic Acids Research, 27(11):
2369–2376, 1999.

[15] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl,
A. A. Philippakis, G. Del Angel, M. A. Rivas, M. Hanna, et al. A framework for
variation discovery and genotyping using next-generation DNA sequencing data.
Nature Genetics, 43(5):491–498, 2011.

[16] A. Dilthey, C. Cox, Z. Iqbal, M. R. Nelson, and G. McVean. Improved genome
inference in the MHC using a population reference graph. Nature Genetics, 47
(6):682–688, 2015.

[17] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut,
M. Chaisson, and T. R. Gingeras. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics, 29(1):15–21, 2013.

[18] R. Durbin. Efficient haplotype matching and storage using the positional
Burrows–Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014.

[19] D. Earl, N. Nguyen, G. Hickey, R. S. Harris, S. Fitzgerald, K. Beal, I. Seledtsov,
V. Molodtsov, B. J. Raney, H. Clawson, et al. Alignathon: a competitive
assessment of whole-genome alignment methods. Genome Research, 24(12):
2077–2089, 2014.

[20] M. Eberle, M. Kallberg, H. Chuang, P. Tedder, S. Humphray, D. Bentley, and
E. Margulies. Platinum Genomes: A systematic assessment of variant accuracy
using a large family pedigree. In 60th Annual Meeting of The American Society
of Human Genetics, pages 22–26, 2013.

[21] M. A. Eberle, F. Epameinondas, K. Peter, K. Morten, B. L. Moore, M. A.
Bekritsky, I. Zamin, C. Han-Yu, S. J. Humphray, A. L. Halpern, K. Semyon,

145

http://biorxiv.org/content/early/2015/08/03/023754

E. H. Margulies, M. Gil, and D. R. Bentley. A reference dataset of 5.4 million
phased human variants validated by genetic inheritance from sequencing a
three-generation 17-member pedigree. Technical report, 2016.

[22] P. Ferragina and G. Manzini. Opportunistic data structures with applications.
In Proceedings of the 41st Symposium on Foundations of Computer Science
(FOCS 2000), pages 390–398. IEEE, 2000.

[23] E. Garrison and G. Marth. Haplotype-based variant detection from short-read
sequencing. arXiv preprint arXiv:1207.3907, 2012.

[24] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Dawson,
W. Jones, M. F. Lin, B. Paten, and R. Durbin. Sequence variation aware
references and read mapping with the variation graph toolkit, in preparation.

[25] Genome Reference Consortium. GRCh37, 2009. URL
https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37.

[26] Genome Reference Consortium. Announcing GRCh38, 2013. URL
http://genomeref.blogspot.com/2013/12/announcing-grch38.html.

[27] GFA-spec contributors. GFA-spec. URL
https://github.com/GFA-spec/GFA-spec.

[28] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and
play with succinct data structures. In 13th International Symposium on
Experimental Algorithms (SEA 2014), pages 326–337, 2014.

[29] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text
indexes. In Proceedings of the fourteenth annual ACM-SIAM symposium on
discrete algorithms, pages 841–850. Society for Industrial and Applied
Mathematics, 2003.

[30] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data.
Intelligent Systems, IEEE, 24(2):8–12, 2009.

[31] R. Harris. Improved pairwise alignment of genomic DNA. PhD thesis, The
Pennsylvania State University, 2007.

[32] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans,
F. Kokocinski, B. L. Aken, D. Barrell, A. Zadissa, S. Searle, I. Barnes,
A. Bignell, V. Boychenko, T. Hunt, M. Kay, G. Mukherjee, J. Rajan,
G. Despacio-Reyes, G. Saunders, C. Steward, R. Harte, M. Lin, C. Howald,
A. Tanzer, T. Derrien, J. Chrast, N. Walters, S. Balasubramanian, B. Pei,
M. Tress, J. M. Rodriguez, I. Ezkurdia, J. van Baren, M. Brent, D. Haussler,
M. Kellis, A. Valencia, A. Reymond, M. Gerstein, R. Guigó, and T. J. Hubbard.
GENCODE: the reference human genome annotation for the ENCODE project.
Genome Research, 22(9):1760–1774, Sept. 2012.

146

https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37
http://genomeref.blogspot.com/2013/12/announcing-grch38.html
https://github.com/GFA-spec/GFA-spec

[33] D. Haussler, M. Smuga-Otto, B. Paten, A. M. Novak, S. Nikitin, M. Zueva, and
D. Miagkov. A flow procedure for the linearization of genome sequence graphs.
In International Conference on Research in Computational Molecular Biology,
pages 34–49. Springer, 2017.

[34] S. Heber, M. Alekseyev, S.-H. Sze, H. Tang, and P. A. Pevzner. Splicing graphs
and EST assembly problem. Bioinformatics, 18 Suppl 1:S181–8, 2002.

[35] G. Hickey, B. Paten, D. Earl, D. Zerbino, and D. Haussler. HAL: a hierarchical
format for storing and analyzing multiple genome alignments. Bioinformatics,
page btt128, 2013.

[36] R. Horton, R. Gibson, P. Coggill, M. Miretti, R. J. Allcock, J. Almeida,
S. Forbes, J. G. Gilbert, K. Halls, J. L. Harrow, et al. Variation analysis and
gene annotation of eight MHC haplotypes: the MHC Haplotype Project.
Immunogenetics, 60(1):1–18, 2008.

[37] K. L. Howe, B. J. Bolt, S. Cain, J. Chan, W. J. Chen, P. Davis, J. Done,
T. Down, S. Gao, C. Grove, et al. WormBase 2016: expanding to enable
helminth genomic research. Nucleic Acids Research, page gkv1217, 2015.

[38] L. Huang, V. Popic, and S. Batzoglou. Short read alignment with populations of
genomes. Bioinformatics, 29(13):i361–i370, 2013.

[39] K. Hudson, R. Lifton, B. Patrick-Lake, et al. The precision medicine initiative
cohort program — building a research foundation for 21st century medicine,
2015. URL https://www.nih.gov/sites/default/files/research-trainin

g/initiatives/pmi/pmi-working-group-report-20150917-2.pdf.

[40] International HapMap Consortium. Integrating ethics and science in the
International HapMap Project. Nature Reviews Genetics, 5(6):467, 2004.

[41] International Human Genome Sequencing Consortium. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 15 Feb. 2001.

[42] M. Jäger, M. Schubach, T. Zemojtel, K. Reinert, D. M. Church, and P. N.
Robinson. Alternate-locus aware variant calling in whole genome sequencing.
Genome Medicine, 8(1):130, 2016.

[43] J. Kans. Entrez Direct: E-utilities on the UNIX Command Line. National
Center for Biotechnology Information (US), 8 Feb. 2016.

[44] D. Karolchik. The new GRCh38 human genome browser has arrived!, 2014.
URL https://groups.google.com/a/soe.ucsc.edu/d/msg/genome-announc

e/52Kv41YBXNY/n__rnGKMgKwJ.

[45] W. J. Kent. BLAT–the BLAST-like alignment tool. Genome Research, 12(4):
656–664, Apr. 2002.

147

https://www.nih.gov/sites/default/files/research-training/initiatives/pmi/pmi-working-group-report-20150917-2.pdf
https://www.nih.gov/sites/default/files/research-training/initiatives/pmi/pmi-working-group-report-20150917-2.pdf
https://groups.google.com/a/soe.ucsc.edu/d/msg/genome-announce/52Kv41YBXNY/n__rnGKMgKwJ
https://groups.google.com/a/soe.ucsc.edu/d/msg/genome-announce/52Kv41YBXNY/n__rnGKMgKwJ

[46] B. Langmead. Introduction to the Burrows-Wheeler Transform and FM index,
2013. URL http://www.cs.jhu.edu/~langmea/resources/bwt_fm.pdf.

[47] B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, et al. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol, 10(3):R25, 2009.

[48] H. Li. Exploring single-sample SNP and INDEL calling with whole-genome de
novo assembly. Bioinformatics, 28(14):1838–1844, 2012.

[49] H. Li. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.

[50] H. Li. Burrows-Wheeler Aligner, 2014. URL https://github.com/lh3/bwa.

[51] H. Li. The new ALT mapping mode of BWA-MEM, 2014. URL
https://sourceforge.net/p/bio-bwa/mailman/message/32845712/.

[52] H. Li. BGT: efficient and flexible genotype query across many samples.
Bioinformatics, page btv613, 2015.

[53] H. Li and R. Durbin. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[54] H. Li and R. Durbin. Fast and accurate long-read alignment with
Burrows–Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[55] H. Li and N. Homer. A survey of sequence alignment algorithms for
next-generation sequencing. Briefings in Bioinformatics, 11(5):473–483, 2010.

[56] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Research, 18(11):
1851–1858, 2008.

[57] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, et al. The Sequence Alignment/Map format and
SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[58] A. Limasset, B. Cazaux, E. Rivals, and P. Peterlongo. Read mapping on de
Bruijn graphs. BMC Bioinformatics, 17(1):237, 16 June 2016.

[59] P.-R. Loh, P. Danecek, P. F. Palamara, C. Fuchsberger, Y. A. Reshef, H. K.
Finucane, S. Schoenherr, L. Forer, S. McCarthy, G. R. Abecasis, et al.
Reference-based phasing using the Haplotype Reference Consortium panel.
Nature Genetics, 48(11):1443–1448, 2016.

[60] G. Lunter. Fast haplotype matching in very large cohorts using the Li and
Stephens model. bioRxiv, 2016. doi: 10.1101/048280. URL
http://biorxiv.org/content/early/2016/04/12/048280.

148

http://www.cs.jhu.edu/~langmea/resources/bwt_fm.pdf
https://github.com/lh3/bwa
https://sourceforge.net/p/bio-bwa/mailman/message/32845712/
http://biorxiv.org/content/early/2016/04/12/048280

[61] G. Lunter and M. Goodson. Stampy: a statistical algorithm for sensitive and
fast mapping of Illumina sequence reads. Genome Research, 21(6):936–939, 2011.

[62] J. A. L. MacArthur, J. Morales, R. E. Tully, A. Astashyn, L. Gil, E. A. Bruford,
P. Larsson, P. Flicek, R. Dalgleish, D. R. Maglott, and F. Cunningham. Locus
Reference Genomic: reference sequences for the reporting of clinically relevant
sequence variants. Nucleic Acids Research, 42(Database issue):D873–8, Jan.
2014.

[63] S. Maciuca, C. del Ojo Elias, G. McVean, and Z. Iqbal. A natural encoding of
genetic variation in a Burrows-Wheeler transform to enable mapping and
genome inference. In M. Frith and C. N. Storm Pedersen, editors, Algorithms in
Bioinformatics, pages 222–233, Cham, 2016. Springer International Publishing.

[64] U. Manber and G. Myers. Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[65] G. Marçais and C. Kingsford. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 15 Mar. 2011.

[66] J. Marshall et al. The Variant Call Format (VCF) 4.2 specification, 2013. URL
http://samtools.github.io/hts-specs/VCFv4.2.pdf.

[67] S. McCarthy, S. Das, W. Kretzschmar, O. Delaneau, A. R. Wood, A. Teumer,
H. M. Kang, C. Fuchsberger, P. Danecek, K. Sharp, et al. A reference panel of
64,976 haplotypes for genotype imputation. Nature Genetics, 2016.

[68] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. The
Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Research, 20(9):1297–1303,
Sept. 2010.

[69] P. Medvedev and M. Brudno. Maximum likelihood genome assembly. Journal of
Computational Biology, 16(8):1101–1116, 2009.

[70] P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computability of models
for sequence assembly. In Algorithms in Bioinformatics, pages 289–301, Cham,
2007. Springer International Publishing.

[71] L. R. Meyer, A. S. Zweig, A. S. Hinrichs, D. Karolchik, R. M. Kuhn, M. Wong,
C. A. Sloan, K. R. Rosenbloom, G. Roe, B. Rhead, et al. The UCSC genome
browser database: extensions and updates 2013. Nucleic Acids Research, 41(D1):
D64–D69, 2013.

[72] K. H. Miga, Y. Newton, M. Jain, N. Altemose, H. F. Willard, and W. J. Kent.
Centromere reference models for human chromosomes X and Y satellite arrays.
Genome Research, 24(4):697–707, 2014.

149

http://samtools.github.io/hts-specs/VCFv4.2.pdf

[73] R. E. Mills, W. S. Pittard, J. M. Mullaney, U. Farooq, T. H. Creasy, A. A.
Mahurkar, D. M. Kemeza, D. S. Strassler, C. P. Ponting, C. Webber, and S. E.
Devine. Natural genetic variation caused by small insertions and deletions in the
human genome. Genome Research, 21(6):830–839, June 2011.

[74] A. E. Minoche, J. C. Dohm, and H. Himmelbauer. Evaluation of genomic
high-throughput sequencing data generated on illumina HiSeq and genome
analyzer systems. Genome Biology, 12(11):R112, 8 Nov. 2011.

[75] E. W. Myers. The fragment assembly string graph. Bioinformatics, 21 Suppl 2:
ii79–85, 1 Sept. 2005.

[76] F. A. Nothaft, M. Massie, T. Danford, Z. Zhang, U. Laserson, C. Yeksigian,
J. Kottalam, A. Ahuja, J. Hammerbacher, M. Linderman, et al. Rethinking
data-intensive science using scalable analytics systems. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pages
631–646. ACM, 2015.

[77] A. M. Novak, Y. Rosen, D. Haussler, and B. Paten. Canonical, stable, general
mapping using context schemes. Bioinformatics, page btv435, 2015.

[78] A. M. Novak, E. Garrison, and B. Paten. A graph extension of the positional
Burrows-Wheeler transform and its applications. In M. Frith and C. N.
Storm Pedersen, editors, Algorithms in Bioinformatics, pages 246–256, Cham,
2016. Springer International Publishing.

[79] A. M. Novak, G. Hickey, E. Garrison, S. Blum, A. Connelly, A. Dilthey,
J. Eizenga, M. S. Elmohamed, S. Guthrie, A. Kahles, et al. Genome graphs.
bioRxiv, 2017. doi: 10.1101/101378. URL
http://biorxiv.org/content/early/2017/01/18/101378.

[80] S. Ortiz. The problem with cloud-computing standardization. Computer, 44(7):
13–16, 2011.

[81] B. Paten, M. Diekhans, D. Earl, J. S. John, J. Ma, B. Suh, and D. Haussler.
Cactus graphs for genome comparisons. Journal of Computational Biology, 18
(3):469–481, 2011.

[82] B. Paten, D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, and D. Haussler.
Cactus: Algorithms for genome multiple sequence alignment. Genome Research,
21(9):1512–1528, 2011.

[83] B. Paten, A. Novak, and D. Haussler. Mapping to a reference genome structure.
arXiv preprint arXiv:1404.5010, 2014.

[84] B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison. Genome graphs and the
evolution of genome inference. Genome Research, 27(5):665, 2017.

150

http://biorxiv.org/content/early/2017/01/18/101378

[85] B. Paten, A. M. Novak, E. Garrison, and G. Hickey. Superbubbles, ultrabubbles
and cacti. bioRxiv, 2017. doi: 10.1101/101493. URL
http://biorxiv.org/content/early/2017/01/18/101493.

[86] B. Pei, C. Sisu, A. Frankish, C. Howald, L. Habegger, X. J. Mu, R. Harte,
S. Balasubramanian, A. Tanzer, M. Diekhans, A. Reymond, T. J. Hubbard,
J. Harrow, and M. B. Gerstein. The GENCODE pseudogene resource. Genome
Biology, 13(9):R51, 26 Sept. 2012.

[87] P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences of the
United States of America, 98(17):9748–9753, 14 Aug. 2001.

[88] T. M. Powledge. Human genome project completed. Genome Biology, 4(1):
spotlight–20030415, 2003.

[89] K. Prüfer, K. Munch, I. Hellmann, K. Akagi, J. R. Miller, B. Walenz, S. Koren,
G. Sutton, C. Kodira, R. Winer, et al. The bonobo genome compared with the
chimpanzee and human genomes. Nature, 486(7404):527–531, 2012.

[90] M. A. Quail, M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor,
A. Bertoni, H. P. Swerdlow, and Y. Gu. A tale of three next generation
sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and
Illumina MiSeq sequencers. BMC Genomics, 13(1):341, 2012.

[91] A. Rimmer, H. Phan, I. Mathieson, Z. Iqbal, S. R. F. Twigg, WGS500
Consortium, A. O. M. Wilkie, G. McVean, and G. Lunter. Integrating mapping-,
assembly- and haplotype-based approaches for calling variants in clinical
sequencing applications. Nature Genetics, 46(8):912–918, Aug. 2014.

[92] C. Saunders. About gVCF, 2013. URL
https://sites.google.com/site/gvcftools/home/about-gvcf.

[93] V. Schneider. GRC contract email UM-2040. Private communication, 2015.

[94] V. Schneider and D. Church. Genome reference consortium. In The NCBI
Handbook [Internet]. National Center for Biotechnology Information (US),
Bethesda, MD, 2 edition, 2013. URL
http://www.ncbi.nlm.nih.gov/books/NBK153600/.

[95] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski,
and K. Sirotkin. dbSNP: the NCBI database of genetic variation. Nucleic Acids
Research, 29(1):308–311, 2001.

[96] Simons Foundation. Simons genome diversity project, 2014. URL https://www.

simonsfoundation.org/life-sciences/simons-human-diversity-project/.

151

http://biorxiv.org/content/early/2017/01/18/101493
https://sites.google.com/site/gvcftools/home/about-gvcf
http://www.ncbi.nlm.nih.gov/books/NBK153600/
https://www.simonsfoundation.org/life-sciences/simons-human-diversity-project/
https://www.simonsfoundation.org/life-sciences/simons-human-diversity-project/

[97] Simons Foundation. Simons genome diversity project dataset, 2017. URL
https://www.simonsfoundation.org/life-sciences/simons-genome-diver

sity-project-dataset/.

[98] J. T. Simpson and R. Durbin. Efficient construction of an assembly string graph
using the FM-index. Bioinformatics, 26(12):i367–73, 15 June 2010.

[99] J. T. Simpson and R. Durbin. Efficient de novo assembly of large genomes using
compressed data structures. Genome Research, 22(3):549–556, 2012.

[100] J. Sirén. Indexing variation graphs. In 2017 Proceedings of the Ninteenth
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 13–27.
SIAM, 2017.

[101] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In String
Processing and Information Retrieval, pages 164–175. Springer, 2009.

[102] J. Sirén, N. Valimaki, and V. Makinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 11(2):375–388, 2014.

[103] K. M. Steinberg, V. A. Schneider, T. A. Graves-Lindsay, R. S. Fulton, A. Richa,
H. John, S. A. Shiryev, M. Aleksandr, S. Urvashi, W. C. Warren, D. M. Church,
E. E. Eichler, and R. K. Wilson. Single haplotype assembly of the human
genome from a hydatidiform mole. Genome Research, 24(12):2066–2076, 2014.

[104] P. H. Sudmant, T. Rausch, E. J. Gardner, R. E. Handsaker, A. Abyzov,
J. Huddleston, Y. Zhang, K. Ye, G. Jun, M. H.-Y. Fritz, et al. An integrated
map of structural variation in 2,504 human genomes. Nature, 526(7571):75–81,
2015.

[105] J. Talton. The economics of 7.5 billion people on one planet. The Seattle Times,
17 May 2017. URL http://www.seattletimes.com/business/economy/the-e

conomics-of-7-5-billion-people-on-one-planet/.

[106] A. Tan, G. R. Abecasis, and H. M. Kang. Unified representation of genetic
variants. Bioinformatics, 31(13):2202–2204, 1 July 2015.

[107] vg contributors. vg. URL https://github.com/vgteam/vg.

[108] The ENCODE Project Consortium. An integrated encyclopedia of DNA
elements in the human genome. Nature, 489(7414):57–74, 6 Sept. 2012.

[109] The FASTG Format Specification Working Group. The FASTG format
specification (v1.00), 12 Dec. 2012. URL
http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf.

152

https://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project-dataset/
https://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project-dataset/
http://www.seattletimes.com/business/economy/the-economics-of-7-5-billion-people-on-one-planet/
http://www.seattletimes.com/business/economy/the-economics-of-7-5-billion-people-on-one-planet/
https://github.com/vgteam/vg
http://fastg.sourceforge.net/FASTG_Spec_v1.00.pdf

[110] The MHC Sequencing Consortium. Complete sequence and gene map of a
human major histocompatibility complex. Nature, 401(6756):921–923, 1999.

[111] K. Varda. Protocol buffers: Google’s data interchange format, 2008. URL
https://opensource.googleblog.com/2008/07/protocol-buffers-googles

-data.html.

[112] J. Vivian, A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong, A. Novak,
J. Pfeil, J. Narkizian, A. D. Deran, A. Musselman-Brown, et al. Toil enables
reproducible, open source, big biomedical data analyses. Nature Biotechnology,
35(4):314–316, 2017.

[113] A. M. Weiner. An abundant cytoplasmic 7S RNA is complementary to the
dominant interspersed middle repetitive DNA sequence family in the human
genome. Cell, 22(1):209–218, 1980.

[114] J. H. Wildschutte, A. Baron, N. M. Diroff, and J. M. Kidd. Discovery and
characterization of Alu repeat sequences via precise local read assembly. Nucleic
Acids Research, page gkv1089, 2015.

[115] J. M. Zook, B. Chapman, J. Wang, D. Mittelman, O. Hofmann, W. Hide, and
M. Salit. Integrating human sequence data sets provides a resource of benchmark
SNP and indel genotype calls. Nature Biotechnology, 32(3):246–251, Mar. 2014.

153

https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html
https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html

	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Dedication
	Acknowledgments
	How to Read This Document
	Introduction and Background
	Introduction
	Background
	How Genomics Works
	The Release of GRCh38
	The Genome Reference Consortium Assembly Model
	Modeling Human Genomic Variants with VCF
	The 1000 Genomes Project
	Substring Search with the Suffix Array
	String Compression with the Burrows-Wheeler Transform
	Searching in BWTs with the FM-index
	Bidirectional DNA Search with the FMD-Index
	Sequence Graphs
	Graph Substring indexes
	Data Models with Protobuf
	vg, the Variation Graph Toolkit
	Copy-Number-Variable Alignments with Cactus
	Finding Variable Sites in Graphs
	Reliable, Portable Cloud Computing with Toil

	Research Program Overview

	Canonical, Stable, General Mapping Using Context Schemes
	Abstract
	Motivation:
	Results:
	Availability and Implementation:
	Supplementary Information:

	Introduction
	Methods
	Mapping
	Contexts
	Context-Driven Mapping
	The Natural Context-Driven Mapping Scheme
	The –Natural Context-Driven Mapping Scheme
	Credit

	Results
	Mapping MHC Alt Loci
	Mapping Simulated Short Reads

	Discussion

	A Graph Extension of the Positional Burrows-Wheeler Transform and its Applications
	Abstract
	Introduction
	Definitions
	Extracting Threads
	Succinct Storage
	Embedding Threads
	Batch Embedding Threads
	Counting Occurrences of Subthreads
	Results
	Random Walks
	Scaling Characteristics

	Discussion
	List of Abbreviations
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and material

	Competing interests
	Funding

	Author's contributions
	Acknowledgements

	Genome Graphs
	Abstract
	Introduction
	Results
	Graph Read Mapping
	Graph Variant Calling
	Short Path Accuracy
	Graph Character

	Discussion
	Online Methods
	Source Data
	Graph Format
	Alignment Target Quality
	Platinum Genomes Variant Calling Evaluation
	Reference-Free Evaluation
	Assessing Graph Completeness
	URLs
	Software Versions and Commit Hashes
	Acknowledgments
	Author Contributions

	Towards a Human Genome Variation Map
	Introduction
	Methods
	Graph Construction
	Variant Calling Techniques
	Assembly Realignment Evaluation
	Structural Variant Evaluation
	Software and Hardware

	Results
	Graph Construction
	Assembly Realignment Evaluation
	Structural Variant Evaluation

	Conclusion
	Availability of Materials
	Acknowledgements

	Bibliography

