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Abstract
Purpose This study aims to determine whether comparable target regions of interest (ROIs) and cut-offs can be used across
[18F]flortaucipir, [18F]RO948, and [18F]MK6240 tau positron emission tomography (PET) tracers for differential diagnosis of
Alzheimer’s disease (AD) dementia vs either cognitively unimpaired (CU) individuals or non-AD neurodegenerative diseases.
Methods A total of 1755 participants underwent tau PET using either [18F]flortaucipir (n = 975), [18F]RO948 (n = 493), or
[18F]MK6240 (n = 287). SUVR values were calculated across four theory-driven ROIs and several tracer-specific data-driven
(hierarchical clustering) regions of interest (ROIs). Diagnostic performance and cut-offs for ROIs were determined using receiver
operating characteristic analyses and the Youden index, respectively.
Results Comparable diagnostic performance (area under the receiver operating characteristic curve [AUC]) was observed be-
tween theory- and data-driven ROIs. The theory-defined temporal meta-ROI generally performed very well for all three tracers
(AUCs: 0.926–0.996). An SUVR value of approximately 1.35 was a common threshold when using this ROI.
Conclusion The temporal meta-ROI can be used for differential diagnosis of dementia patients with [18F]flortaucipir,
[18F]RO948, and [18F]MK6240 tau PET with high accuracy, and that using very similar cut-offs of around 1.35 SUVR. This
ROI/SUVR cut-off can also be applied across tracers to define tau positivity.
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Introduction

In addition to neuritic plaques composed of amyloid-β (Aβ),
Alzheimer’s disease (AD) is characterized by tau pathology,
largely in the form of paired helical filaments (PHFs) compris-
ing a mixture of three/four-repeat tau isoforms [1]. While tau
aggregates are also present in various non-AD neurodegener-
ative disorders, including certain variants of frontotemporal
lobar degeneration and progressive supranuclear palsy
(PSP), these are structurally distinct from those observed in
AD [2, 3].

The development of radiotracers selective for tau aggre-
gates for use with positron emission tomography (PET) has
allowed for their visualization and quantification in vivo [4].
The most widely used tau tracer to date, [18F]flortaucipir [5],
has been shown to primarily detect AD-type tau aggregates [6,
7]; as such, tau PET may be most valuable for differentiating
AD from non-AD tauopathies and other neurodegenerative
disorders. Though tau PET is a relatively recent technique,
several novel tracers characterized by improved specificity
and dynamic range have recently entered the field, including
[18F]RO948 [8] and [18F]MK6240 [9, 10]. While character-
ized by improved specificity and dynamic range, these tracers
also show greater meningeal uptake.

Several approaches have been proposed to quantify region-
al tau pathology. While some have applied theory-driven re-
gions of interest (ROIs) based on post-mortem findings (i.e.,
approximating the Braak staging scheme [11–13] for tau pa-
thology), others have used approaches that are driven solely
by the spatial patterns contained in tau PET images (i.e., data
driven) [14–17]. As post-mortem and in vivo PET studies
have shown that tau deposition patterns can deviate signifi-
cantly from the Braak staging scheme [13, 18–23], data-
driven approaches may provide a more accurate measure of
tau burden. It is unclear, however, which of the two ap-
proaches (i.e., theory- or data-driven) is optimal for diagnostic
purposes.

With an increasing number of available tau tracers, there
will also be greater variability in quantitative outcome mea-
sures. This variability is due to the distinct properties of each
tau tracer, and to different acquisition procedures across sites,
analytical methods, and ROI selection. In contrast to amyloid
PET, however, where outcome measures from different
tracers or methods can be standardized to a common scale
[24], tau PET findings cannot currently be directly compara-
ble. A common scale for tau imaging would facilitate direct
comparison of outcome measures and tracer characteristics,
and help establish uniform cut-offs for early tau pathology
and the range of tau positivity characteristic of AD.

Using [18F]flortaucipir, [18F]RO948, and [18F]MK6240,
the objectives of the present study were to compare the diag-
nostic performance (i.e., separating AD dementia from cogni-
tively unimpaired (CU) individuals and non-AD disorders) of
theory- and data-driven ROIs in order to examine whether a
common target ROI (and cut-off to define tau PET positivity)
can be used across tracers for differential diagnosis. In addi-
tion, at a broader level, comparison of findings across these
three tracers can serve as a proof of concept with respect to the
eventual standardization of tau PET imaging measures.

Materials and methods

Participants

A total of 1755 participants were included from seven differ-
ent cohorts. [18F]Flortaucipir data was drawn from a conve-
nience sample of participants recruited from the Memory
Disorder Clinic of Gangnam Severance Hospital (Seoul,
South Korea), the Swedish BioFINDER study (clinical trial
no. NCT01208675) at Lund University (Lund, Sweden), and
the University of California San Francisco Alzheimer Disease
Research Center (UCSF, USA). Additional [18F]flortaucipir
scans were collected from the Avid Radiopharmaceuticals
Study A05e (NCT 02016560) and the placebo arm of the
Expedition-3 study. For [18F]RO948, subjects were drawn
from the prospective and longitudinal Swedish BioFINDER-
2 study (clinical trial no. NCT03174938). [18F]MK6240 PET
data was obtained from the prospective and longitudinal
TRIAD (Translational Biomarkers in Aging and Dementia)
cohort at McGill University (Montreal, Canada). Groups were
established without the use of biomarkers. We included only
patients with Aβ-positive AD dementia in accordance with
the National Institute on Aging-Alzheimer Association re-
search framework [25]. Additional details on included cohorts
and on the definition of study groups are included in
Supplementary Tables 1–4. Informed consent was obtained
from all participants, with studies approved by local institu-
tional review boards.

Image acquisition and processing

Complete details on the acquisition and processing of tau PET
data have been described elsewhere [9, 11, 26–28]. Briefly,
[18F]flortaucipir PET data was acquired over the post-
injection interval of 80–100 min; [18F]RO948 and
[18F]MK6240 data were acquired 70–90 and 90–110min after
injection, respectively. All participants also had an anatomical
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3D T1-weighted magnetic resonance imaging (MRI) scan.
[18F]Flortaucipir and [18F]RO948 images were centrally proc-
essed at Lund University while [18F]MK6240 data was proc-
essed at McGill University using a similar analytical pipeline.
For all three tracers, images were first motion corrected, time-
averaged, and rigidly coregistered to their corresponding
skull-str ipped T1-weighted structural MRI scan.
Standardized uptake value ratio (SUVR) images were created
using the inferior cerebellar cortex as reference region for all
tracers. FreeSurfer (v.6.0)-based parcellations of T1-weighted
MRI scans were applied to the tau PET scans transformed to
participants’ native T1-space to extract mean regional SUVR
values for each participant. For voxelwise analyses, SUVR
PET images were spatially transformed into a common
MNI152 space using the transformation derived from MRI
normalization step.

Region-of-interest definition

Data-driven ROIs

Ranked feature importance of ROIs was obtained for
[18F]flortaucipir, [18F]RO948, and [18F]MK6240 through a
machine learning algorithm called Extra Trees (ETs) [29]. In
short, ETs are similar to the better-known Random Forest. As
ETs fit each tree on all data without bagging, calculations were
evaluated in 10-fold cross-validation loops yielding mean fea-
ture importance and standard deviations. Subjects of two sub-
groups (first AD dementia and CU, followed by AD dementia
and non-AD) and their feature vectors (mean SUVR values in
FreeSurfer ROIs) were used to train the ETs to predict group
membership by decision tree majority vote and output the
feature importance scores extracted from the ensemble. The
highest ranked features from each resulting group were then
extracted from the resulting dendrogram, first out of a single
group (all features) and subsequently from the highest ranked
groups in an iterative fashion. This allowed us to assess the
relationship between accuracy and the number of group rep-
resentatives added, providing a truly minimalist representation
of group differentiating ROIs. The dendrograms resulting
from this approach are provided for each tracer and contrast
in Supplementary Fig. 1–6.

Theory-driven ROIs

In order to include brain areas affected by NFT pathology
across the course of AD (i.e., from early to later affected
areas), we created four FreeSurfer-based composite ROIs
using an approach developed using [18F]flortaucipir [11] and
based on the Braak staging scheme for tau pathology [30].
These ROIs have been used previously [31, 32] and include
the entorhinal cortex (stage I/II), a temporal meta-ROI (ento-
rhinal cortex, amygdala, inferior/middle temporal gyri,

fusiform gyrus, and parahippocampal gyrus, approximating
Braak I/IV) [33, 34], and a neocortical meta-ROI (widespread
neocortical areas, approximating Braak V/VI). In addition, we
included an Early tau ROI comprising regions shown to accu-
mulate tau early on in the course of AD (entorhinal cortex,
i n f e r i o r t empo ra l co r t ex , f u s i f o rm gy rus , and
parahippocampal gyrus) [35]. Despite substantial anatomical
overlap with the temporal meta-ROI, the inclusion of this
Early tau ROI was motivated by findings showing that tau
PET signals in these different temporal regions follow differ-
ent dynamics when it comes to tau accumulation, indicating
that small differences in ROI composition may affect sensitiv-
ity [36].

Statistical analyses

All analyses were performed in R, v.4.0.2 (R Foundation for
Statistical Computing, https:/d/www.R-project.org/), with
significance set at P < 0.05, two-tailed. Demographics and
tau PET SUVR values at the ROI level were compared
across cohorts and diagnostic groups using analysis of
variance and post hoc t-tests (continuous variables) or
Fisher’s exact tests (binary variables). Cut-offs for tau PET
imaging ROIs were determined for each tracer using the
Youden index (sensivity+specificity-1; AD dementia vs Aβ-
negative CU). The diagnostic performance of tau PET (AD
dementia vs CU and non-AD) was assessed for each ROI by
testing for significant differences between area under the re-
ceiver operating characteristic curve (AUC) values for ROIs
using DeLong statistics [37].

Results

Participant characteristics

For [18F]flortaucipir, we included 975 subjects, including 638
CU individuals, 178 non-AD disorders (15 corticobasal syn-
drome (CBS), 18 dementia with Lewy bodies (DLB), three
multiple system atrophy (MSA), 65 Parkinson’s disease with
or without cognitive impairment (PD/PDD), 14 progressive
non-fluent aphasia (PNFA), six with semantic dementia
(SD), 26 with behavioral variant frontotemporal dementia
(bvFTD), four with vascular dementia (VaD), and 27 progres-
sive supranuclear palsy (PSP)), and 159 patients with AD
dementia. For [18F]RO948, we included a total of 493 subjects
(208 CU, 143 non-AD (three CBS, 30 DLB, 23 FTD, 13
MSA, 47 PD/PDD, three PNFA, and 24 PSP), and 142 AD
dementia) while for [18F]MK6240 we included a total of
287 subjects (218 CU, 19 non-AD (one CBS, 14 FTD, one
PPA, and three PSP), and 50 AD dementia). Participant char-
acteristics are summarized in Table 1 with average tau PET
images across diagnostic groups and tracers shown in Fig. 1.
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SUVR values across tracers and diagnostic groups are
shown for theory-driven ROIs in Fig. 2. For all three tracers,
SUVR values across apriori ROIs were significantly higher in
AD patients as compared to CU individuals and non-AD dis-
orders (P < 0.001). For [18F]flortaucipir, SUVR values in the
non-AD group were significantly higher than those for CU
individuals in the entorhinal cortex (P < 0.001), in the Early
tau ROI (P < 0.05) and in the neocortical meta-ROI
(P < 0.001). For [18F]MK6240, SUVR values were signifi-
cantly higher in CU individuals compared to non-AD in the
Early tau and temporal meta-ROIs (Table 1).

Deriving data-driven ROIs

Extra-tree-based data-driven ROIs are shown by tau tracer in
Fig. 3. For separating AD dementia from CU individuals (A),
data-driven ROIs encompassed the following regions: for
[18F]flortaucipir, the inferior temporal cortex and
parahippocampal gyrus (AUC 0.966, 95% CI 0.949–0.983);
for [18F]RO948, the entorhinal cortex and the amygdala
(AUC 0.969 95% CI 0.953–0.984); for [18F]MK6240, the
inferior temporal cortex, the fusiform gyrus, and the middle
temporal cortex (AUC 0.988, 95% CI 0.974–1). For separat-
ing AD dementia from non-AD disorders (B), data-driven
ROIs encompassed the entorhinal cortex, the amygdala, the
parahippocampus, and the inferior temporal cortex for
[18F]flortaucipir (AUC 0.926, 95% CI 0.895–0.956); the en-
torhinal cortex, parahippocampus, amygdala, fusiform gyrus,
and inferior temporal cortex for [18F]RO948 (AUC 0.956,
95% CI 0.931–0.981); and the entorhinal cortex, amygdala,
the inferior temporal cortex, the banks of the superior tempo-
ral sulcus, and the fusiform gyrus for [18F]MK6240 (AUC
0.997, 95% CI 0.991–1).

Establishing cut-offs for data- and theory-driven ROIs

Cut-offs for SUVR values within tau PET imaging ROIs (da-
ta- and theory-driven) were determined across tracers and are
presented in Table 2. For the separation of AD dementia from
non-AD disorders, the temporal meta-ROI showed the highest
AUC for all three tracers; moreover, cut-off values appeared
to converge around an SUVR of 1.35 (average value;
[18F]flortaucipir, 1.36 (95% CI, 1.31, 1.46); [18F]RO948,
1.34 (95% CI, 1.27, 1.43); [18F]MK6240, 1.34 (95% CI,
1.15, 1.42)).

Diagnostic performance using theory- and data-
driven ROIs

AUC findings—along with sensitivity and specificity
estimates—for theory- and data-driven ROIs are summarized
in Table 2. When using theory-driven ROIs (i.e., entorhinal
cortex, Early tau, temporal, and neocortical meta-ROIs) forTa
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the separation of AD dementia from CU individuals, the en-
torhinal cortex ranked highest in terms of AUC for
[18F]flortaucipir (AUC 0.959, 95% CI 0.941–0.977) while
for [18F]RO948 and [18F]MK6240, the temporal meta-ROI
performed best (AUC 0.982, 95% CI 0.969–0.994; 0.989,

95% CI 0.979–1, respectively). For the separation of AD de-
mentia from non-AD disorders, the temporal meta-ROI per-
formed best across all three tracers: [18F]flortaucipir (AUC
0.926, 95% CI 0.896–0.956); [18F]RO948 (AUC 0.982,
95% CI 0.969–0.994); [18F]MK6240 (AUC 0.995, 95% CI

Fig. 1 Mean [18F]flortaucipir (A), [18F]RO948 (B), and [18F]MK6240 (C) standardized uptake values ratios (SUVRs) across all participants within
diagnostic groups
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0.987–1). For both contrasts (i.e., AD dementia vs CU indi-
viduals and AD dementia vs non-AD), DeLong statistics
showed that there were no significant differences between
the AUC values from best performing theory-driven ROIs
and those derived from the data-driven ROIs. Similar findings
were obtained for AD dementia vs non-AD when excluding
PD patients without dementia (Supplementary Table 5) and
when excluding PD/PDD and DLB cases that were Aβ-

positive ([18F]flortaucipir, n = 26; [18F]RO948, n = 31)
(Supplementary Table 6).

Discussion

In this multicentric study, we compared the cross-sectional
diagnostic performance of [18F]flortaucipir, [18F]RO948, and

Fig. 2 Distribution of SUVR values for [18F]flortaucipir, [18F]RO948,
and [18F]MK6240 across theory-driven ROIs. (A) Entorhinal cortex;
(B) Early tau; (C) temporal meta-ROI; (D) neocortical meta-ROI. In each
panel, the upper left figure is a representation of the ROI used (i.e.,

individual FreeSurfer-based regions, displayed on left and right hemi-
spheres); the remaining plots show SUVR values for each tracer across
diagnostic groups. The notch in the box-and-whisker plots indicates the
95% confidence interval for the median

2300 Eur J Nucl Med Mol Imaging (2021) 48:2295–2305



[18F]MK6240 tau PET for the separation of AD dementia
from both CU individuals and non-AD disorders, using
SUVR values drawn from both theory-driven (apriori) and
data-driven ROIs. For these comparisons, no significant dif-
ferences in AUC values were seen between the best
performing theory-driven ROIs and those determined using
the data-driven approach. Moreover, an SUVR value of ap-
proximately 1.35 appeared to be a common threshold across
tracers for the temporal meta-ROI (corresponding to Braak
I/IV).

Ongoing work applying a functional connectivity-based
approaches to define ROIs for tau PET suggests that data-
driven approaches may better capture tau pathology cross-
sectionally and can provide patient-tailored ROIs that predict
longitudinal tau accumulation with greater sensitivity than
Braak-based stages [38]. Our findings suggest, however, that
the temporal meta-ROI (approximating Braak stage I/IV) is
suitable for achieving high diagnostic accuracy across tau PET
tracers in differentiating AD dementia from CU individuals
and non-AD dementia disorders. The ranking of the temporal
meta-ROI as the best performing among apriori ROI is con-
sistent with earlier studies using both [18F]flortaucipir [31]
and [18F]RO948 [32]. Recent work using [18F]flortaucipir
has also highlighted the likely need for quantification as an
adjunct to visual assessment if tau PET is to be used clinically
[39]. In that study, physicians visually assessed
[18F]flortaucipir PET images as consistent or not consistent
with AD. These ratings were then compared to tau immuno-
histochemistry and levels of AD neuropathologic change

based on Aβ plaque burden [39]. Prespecified levels of sen-
sitivity and specificity were not met by 2 of 5 readers, how-
ever, largely due to false-positive reads based on the misinter-
pretation of temporal lobe findings. Despite differences in
study design, the present findings suggest that automated
quantification of tau PET retention in the temporal meta-
ROI could prove a suitable measure to support visual reads
in clinical practice.

For the data-driven ROIs, overlap in the regions compris-
ing the composite ROIs for both contrasts (i.e., AD dementia
vs CU and non-AD) was high but imperfect across tracers.
This finding reflects a combination of cohort effects (e.g.,
the amount and distribution of tau pathology across diagnostic
groups within each cohort) and the use of different tracers.
Wh i l e p o s t -mo r t em s t u d i e s h a v e s hown t h a t
[18F]flortaucipir, [18F]RO948, and [18F]MK6240 all bind to
AD-type tau tangles [5, 40, 41], these tracers may differ in
their sensitivity to other forms of tau pathology such as
neuropil threads and dystrophic neurites. Future work using
head-to-head study designs will be required to address this.

By applying a linear scaling operation to amyloid PET
data, outcome data can be expressed in a common 100-point
scale (unit termed “Centiloids”) [24], with zero representing
the average value seen in high-certainty Aβ-negative subjects
and 100 the average in typical AD patient with mild-to-
moderate dementia. Recent work applying this method to
multicenter amyloid PET data [42] has shown the Centiloid
approach to be feasible and robust; further, by incorporating
comparisons with post-mortem measures of Aβ pathology,

Fig. 3 Distribution of SUVR values for [18F]flortaucipir, [18F]RO948,
and [18F]MK6240 across data-driven ROIs. The notch in the box-and-
whisker plots indicates the 95% confidence interval for the median. (A)
The regions that best separated AD dementia from CU individuals
(parahippocampus and inferior temporal cortex) and those diagnosed
with non-AD neurodegenerative disorders (entorhinal cortex, amygdala,
parahippocampus, and inferior temporal cortex) using [18F]flortaucipir
PET. (B) The regions that best separated AD dementia from CU

individuals (entorhinal cortex and amygdala) and those diagnosed with
non-AD neurodegenerative disorders (entorhinal cortex, amygdala,
parahippocampus, fusiform gyrus, and inferior temporal cortex) using
[18F]RO948. (C) The regions that best separated AD dementia from
CU individuals (fusiform gyrus, inferior temporal cortex, middle tempo-
ral gyrus) and those diagnosed with non-AD neurodegenerative disorders
(entorhinal cortex, amygdala, the inferior temporal cortex, the banks of
the superior temporal sulcus, and the fusiform gyrus) using [18F]MK6240
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the authors reported a neuropathology-based Centiloid cut-off
for amyloid PET positivity. The present study, while explor-
atory in nature, provides preliminary support for the develop-
ment of a Centiloid-like methodology to facilitate

comparisons across tau PET tracers. In the interim, our find-
ings indicate that multicohort studies combining different tau
tracers are possible if simply classifying particiapnts as tau
positive (i.e., temporal meta-ROI > 1.35 SUVR) or negative.

Table 2 Summary of diagnostic performance and cut-offs for [18F]flortaucipir, [18F]RO948, and [18F]MK6240. AUC, area under the receiver
operating curve value; 95% CI, 95% confidence interval

AUC (95% CI) Cut-point (95% CI) Sensitivity (95% CI) Specificity (95% CI)

[18F]Flortaucipir

AD vs CU

Entorhinal cortex 0.959 (0.941–0.977) 1.30 (1.18, 1.35) 92.30 (88.10–96.20) 87.80 (85.10–90.30)

Early tau 0.941 (0.917–0.965) 1.35 (1.28, 1.42) 86.20 (80.10–91.20) 94.40 (92.30–95.90)

Temporal meta-ROI 0.942 (0.917–0.965) 1.36 (1.34, 1.40) 86.20 (79.90–90.60) 95.10 (93.40–96.70)

Neocortical meta-ROI 0.901 (0.871–0.938) 1.17 (1.13, 1.21) 59.10 (50.90–66.70) 99.20 (98.60–99.80)

Data-driven1 0.958 (0.942–0.983) 1.33 (1.25, 1.41) 89.30 (84.30–93.70) 92.00 (89.90–94.10)

AD vs non-AD

Entorhinal cortex 0.919 (0.889–0.949) 1.36 (1.29, 1.45) 87.40 (82.40–92.30) 85.40 (80.30–90.50)

Early tau 0.925 (0.895–0.955) 1.31 (1.21, 1.36) 88.10 (83.00–92.50) 89.90 (85.40–94.40)

Temporal meta-ROI 0.926 (0.896–0.956) 1.36 (1.31, 1.46) 84.90 (79.30–90.60) 93.30 (89.30–96.60)

Neocortical meta-ROI 0.859 (0.816–0.901) 1.19 (1.09, 1.23) 78.70 (72.30–84.90) 84.30 (78.90–89.30)

Data-driven2 0.925 (0.895–0.955) 1.27 (1.20, 1.29) 88.70 (83.70–93.10) 89.30 (84.80–93.40)

[18F]RO948

AD vs CU

Entorhinal cortex 0.972 (0.956–0.987) 1.44 (1.34, 1.52) 94.40 (90.10–97.90) 87.90 (83.70–92.30)

Early tau 0.981 (0.969–0.994) 1.38 (1.33, 1.43) 90.10 (84.50–95.10) 94.70 (91.40–97.60)

Temporal meta-ROI 0.982 (0.969–0.994) 1.34 (1.24, 1.39) 92.30 (88.00–96.50) 91.80 (87.90–95.20)

Neocortical meta-ROI 0.942 (0.917–0.967) 1.13 (1.08, 1.16) 88.00 (82.40–92.90) 76.00 (70.20–81.70)

Data-driven3 0.980 (0.967–0.993) 1.39 (1.33, 1.48) 89.40 (83.80–94.40) 94.70 (91.40–97.60)

AD vs non-AD

Entorhinal cortex 0.954 (0.929–0.979) 1.37 (1.18, 1.45) 97.90 (95.10–100) 83.90 (77.60–89.50)

Early tau 0.955 (0.932–0.978) 1.36 (1.29, 1.45) 91.60 (86.60–95.80) 88.10 (82.50–93.00)

Temporal meta-ROI 0.955 (0.933–0.978) 1.34 (1.27, 1.43) 89.40 (84.50–94.40) 88.80 (83.20–93.70)

Neocortical meta-ROI 0.893 (0.855–0.931) 1.13 (1.07, 1.18) 85.20 (78.90–90.90) 81.80 (77.50–87.40)

Data-driven4 0.956 (0.933–0.980) 1.30 (1.18, 1.38) 95.70 (92.30–98.90) 86.70 (81.10–92.30)

[18F]MK6240

AD vs CU

Entorhinal cortex 0.969 (0.944–0.994) 1.58 (1.14, 2.10) 80.30 (73.20–86.60) 93.70 (89.50–97.20)

Early tau 0.985 (0.970–1) 1.39 (1.29, 1.54) 87.30 (81.70–92.90) 90.90 (86.00–95.10)

Temporal meta-ROI 0.989 (0.979–1) 1.36 (1.16, 1.49) 90.10 (84.50–94.40) 88.80 (83.20–93.70)

Neocortical meta-ROI 0.980 (0.957–1) 1.25 (1.17, 1.30) 68.30 (61.30–76.10) 93.00 (88.80–96.50)

Data-driven5 0.986 (0.967–1) 1.53 (1.46, 1.58) 83.80 (77.50–89.40) 90.20 (85.30–90.20)

AD vs non-AD

Entorhinal cortex 0.987 (0.969–1) 1.61 (1.31, 2.29) 80.30 (73.90–86.60) 93.70 (89.50–97.20)

Early tau 0.995 (0.988–1) 1.31 (1.14, 1.37) 93.70 (89.40–97.20) 83.20 (76.90–88.80)

Temporal meta-ROI 0.996 (0.987–1) 1.34 (1.15, 1.42) 92.90 (88.70–96.50) 86.70 (81.10–92.30)

Neocortical meta-ROI 0.992 (0.978–1) 1.26 (1.16, 1.36) 66.20 (58.50–73.90) 93.00 (88.10–96.50)

Data-driven6 0.997 (0.991–1) 1.23 (1.09, 1.32) 97.90 (95.10–100) 75.50 (68.50–82.30)

1 Inferior temporal cortex and parahippocampal gyrus; 2 entorhinal cortex, amygdala, parahippocampus, and inferior temporal cortex; 3 entorhinal cortex
and amygdala; 4 entorhinal cortex, parahippocampus, amygdala, fusiform gyrus, and inferior temporal cortex; 5 inferior temporal cortex, fusiform gyrus,
and middle temporal cortex; 6 entorhinal cortex, amygdala, the inferior temporal cortex, the banks of the superior temporal sulcus, and the fusiform gyrus
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This study has limitations. First, the non-AD groups varied
in size and composition. In the TRIAD cohort, for instance,
there were no patients with DLB or svPPA. As both diagnoses
have been associated with elevated tau PET signal [31, 32,
43–46], this imbalance may explain the somewhat higher
AUC values for [18F]MK6240 when separating AD dementia
from non-AD disorders, in comparison to results using
[18F]flortaucipir and [18F]RO948. The same can be said about
the CU individuals scanned with [18F]MK6240 as they were
on average younger than those for [18F]flortaucipir and
[18F]RO948; this may explain the larger group separation seen
with this [18F]MK6240. Further studies with [18F]MK6240
covering the spectrum around the proposed cut-off are re-
quired. The absence of Aβ-positivity in the non-AD group
using [18F]MK6240 may also explain the finding that SUVR
values in the Early tau and temporal meta-ROIs were some-
what higher in the CU group, where 22% were amyloid PET
positive [47]. Second, we here focused on differential diagno-
sis at the dementia stage. Subsequent studies using longitudi-
nal data will be required to examine the role of tau PET in
identifying CU and MCI individuals who subsequently prog-
ress to AD dementia. Though cohort differences precluded
cross-cohort evaluations, the present study was not intended
as a head-to-head comparison of the three tracers for diagnos-
tic purposes. Third, these results may not generalize to other
new tau PET tracers currently entering the field such as
[18F]PI-2620, [18F]GTP1, or [18F]JNJ-067 [4]. Lastly, though
not the aim of the present study, these findings cannot be
extrapolated with respect to what ROI(s)/cut-off(s) may prove
best for longitudinal applications (e.g., predicting cognitive
decline or tau accumulation). In addition to the large sample
size, strengths of this study include the incorporation of both
CU and non-AD subjects as diagnostic groups and the use of
three different tau PET tracers.

Conclusion

A common-ROI encompassing parts of the temporal lobe (i.e.,
Braak I/IV) can be used for differential diagnosis of dementia
pat ients with [18F]f lortaucipir , [18F]RO948, and
[18F]MK6240 tau PET, and that using very similar cut-offs
of around 1.35 SUVR. These findings support the concept of a
common scale for tau PET.
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