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Abstract—Fruit flies become one of the most worrisome insect
species to fruit yields. AlertTrap proposes and tests the
constituent components to construct an efficient autonomous trap
which sends notification to farmers when the number of flies
exceeds a predefined threshold. The trap is powered with solar
panels, equipped with a Lynfield-inspired sticky trap that is
optimized to be attractive to fruit flies and controlled by an
Arduino Board to collect data and circulate the energy through
the system. The fruit flies are then counted on a Raspberry Pi
Board by YOLOv4-tiny and SSD-MobileNet object detection
algorithms with over 95% average precision at IoU threshold of
0.5 and an alert signal is sent to the farmers based on the number
of fruit flies in the trap.

Keywords—Lynfield sticky trap, Arduino, Raspberry Pi,
YOLOv4-tiny, SSD-MobileNet, fruit flies

I. INTRODUCTION

Agriculture is crucial for economic growth, and increasing
agricultural output is a major priority in Vietnam [1]. On the
one hand, insect insecticides can disrupt agricultural metabolic
processes, reducing crop production and quality [2]. Fruit
flies, on the other hand, are known to cause 50 to 100 percent
crop loss if prompt treatments are not performed. Only a few
fruit fly species have been identified, including Bactrocera
dorsalis, B. correcta, B. cucurbitae, B. tau, B. latifrons, B.
zonata, B. tuberculata, B. moroides, and B. albistriga, with
others remaining unknown. The fruit fly species that are
damaging to fruits include the common fruit fly species, B.
cucurbitae and B. tau [3].

To maximize crop yields, agricultural personnel often
utilize a pesticide scheduler rather than considering the
possibility of insect infestation in the crop [4]. As a result, not
only are there a lot of pesticide residues in agricultural goods,
but there's also a lot of strain on the environment [5].
Pesticides are overused in part because information on pest
species and densities cannot be supplied in a timely and
accurate manner. Conversely, if the information is supplied in
a timely manner, it may be feasible to implement appropriate
pest control methods, including the judicious use of pesticides
[6, 7].

Historically, information about the environment and pest
species has been obtained mostly by hand-crafted feature

extraction [6], in which employees utilize sensors to manually
assess a pest's shape, color, structure, and other features with
explanation from subject matter experts. Moreover, counting is
time-consuming, labor-intensive, and error-prone [8].
Consequently, it is critical to create an autonomous and
accurate pest identification system. In the agricultural research
area, there is a rising trend toward using machine vision
techniques to tackle these challenges with promising results.

Unlike similar applications in the domain, this research
concentrates on the use of different kinds of real-time object
detection algorithms on emerging edge computing
technologies to boost system performance in terms of
accuracy rate, lower power consumption, and response time
reduction with the goal of detecting alive fruit flies rather than
dead ones on the trap. In summary, our contributions are as
follows: (1) We built modules for an end-to-end
camera-equipped trap called AlertTrap, including a
Lynfield-inspired adhesive trap to catch fruit flies quickly and
a photovoltaic powering system controlled by a dedicated
Arduino Board. A secondary Raspberry Pi Board is in charge
of doing vision-based machine learning to detect and count
flies, measuring environmental factors as well as delivering
notifications to farmers. (2) We tested with several
Lynfield-inspired trap setups to find the most appealing one to
the fruit flies. (3) Finally, we put three distinct small and quick
object identification deep learning models to the test:
SSD-MobileNetV1, SSD-MobileNetV2, and the
YOLOv4-tiny. With the results, we compare not only their
capacity to identify and localize the fruit flies that we had
trained them to anticipate, but also the improvement in
processing speed and the power saving factor.

II. RELATED WORKS

Advances in electronic traps (e-traps) have lately made it
possible to build a decentralized system that monitors fruit
flies. In previous research [9–14], a widespread and effective
system design was implemented by combining a large number
of e-traps with computer vision and wireless communication.
Such an e-trap comprises mostly of two parts: a trap
mechanism and an embedded computing device. The trap, in
general, is in charge of luring and trapping insects. In most
cases, the trap contains an implanted device that includes a



camera, meteorological sensors, and a wireless
communication module. It is in charge of collecting pictures of
flies caught in traps as well as meteorological data and
transferring them to a distant server. By placing e-traps at
various places, area-wide field data on fruit fly pests may be
obtained for statistical analysis [10,14].

An efficient and practical trap is required for observing
fruit flies since the amount and species of caught flies on
e-traps carry important information on their populations and
distribution. There are two types of traps that are widely
selected: the McPhail trap [12,15] and the yellow sticky paper
[9,16]. The McPhail trap is a plastic and cylindrical piece of
equipment that carries liquid attractants. Flies are trapped in
the solution, and pictures of the liquid's top are sampled in
order to detect them. Yellow sticky paper is often created by
smoothly spreading some adhesive materials over a particular
type of yellow paper that has attractants integrated into the
paper or sticky materials. Fruit flies are placed on adhesive
paper, and the pictures of the paper are sampled immediately
to monitor the fruit flies. Prior literature has shown that when
certain attractants are used, the two types of traps may
efficiently capture fruit flies [9,10,12–16]. In addition to
McPhail trap, Lynfield trap takes the same structural
construction with the replacement of protein food lure with
cuelure. Lynfield trap is analyzed to trap more male fruit flies
than McPhail one [17]. Both traps are traditionally
liquid-based, but we utilize a camera to photograph the inside
of the trap, and condensation occurs on the camera lens. The
lens seems foggy most of the time, and this effect is especially
noticeable in the morning. Thus, the yellow sticky paper is
preferred to avoid blurry images and Lynfield is implemented
by choice.

Aside from efficiently acquiring high-quality e-trap photos,
finding insects in e-trap images and distinguishing their
species are the keys to pest statistics. The detection goal would
be on finding and sectioning the insects from the e-trap
images. In principle, insect detectors are divided into two
types: hand-crafted [12,18] and feature-learning-based
[8,11,14,19–20]. To recognize the B. dorsalis in a hand-crafted
way, for example, a mixture of template matching and Kalman
filters in the HSV color space was devised [18]. Generally, the
detection method relies on image processing, as reported in
[10,14,24-25]. While image-processing algorithms are simpler
than deep learning approaches, their accuracy is reasonable
(70-80 percent) and the system is linked to the lighting
environment.

Kaya et al. [26] developed a machine-learning-based
classifier that can distinguish between 14 butterfly species.
The researchers extract the texture and color qualities. The
collected features are processed using a three-layer neural
network. The obtained classification accuracy is 92.85
percent.

Zhong et al. [21] developed a deep-learning-based
multi-class classifier that can classify and count six distinct
species of flying insects. For detection and coarse counting,
the You Only Look Once (YOLO) algorithm [24] is employed.
The researchers regarded the six kinds of flying insects as a

single class in order to enhance the number of training photos
required by the YOLO deep learning model. To increase the
size of the data set, the authors use translation, rotation,
flipping, scaling, noise addition, and contrast modification on
the pictures. On an insect dataset, they also used a pre-trained
YOLO to fine-tune its parameters. Kalamatianos et al. [27]
developed the Dacus Image Recognition Toolkit (DIRT). The
toolkit contains Matlab code examples for quick testing as
well as a library of annotated olive fruit fly images collected
using McPhail traps. The authors evaluated several variants of
the pre-trained Faster Region Convolutional Neural Networks
(Faster-RCNN) deep learning detection approach using the
DIRT dataset. RCNNs are convolutional neural networks that
incorporate region proposals that indicate the regions of
objects prior to categorization. The mAP of faster-RCNN was
91.52 percent, where mAP is the mean average precision for
varied recall thresholds. ​​Xia et al. detect 24 different types of
insects in agricultural areas using an end-to-end deep learning
neural network [23]. To extract the features, a pre-trained
VGG-19 network is used. The position of the bug is then
established using the Region Proposal Network (RPN). The
proposed model's mAP was 89.22 percent.

Not only is the performance of an insect detection model
prioritized, but so is the processing time. As a result of their
performance, deep learning models are of interest to us.
However, two-stage object identification models such as
RCNNs are not considered since they are computationally
expensive and hence unsuitable for use on edge devices.
Instead, single-stage models such as YOLOv4-tiny,
SSD-MobileNetv1 and SSD-MobileNetv2 are developed and
evaluated across various types of computer hardware to
determine the most likely method for the AlertTrap system.

The remainder is organized as follows: Section III provides
an overview of the trap system, describing in detail the system
elements; Section IV depicts experiments and system analysis;
and Section V ends the research and outlines the prognosis
after successfully deploying the AlertTrap.

III. SYSTEM OVERVIEW

AlertTrap is made up of two major components: hardware
and a software framework. The following subsections go into
further detail on each component of the system.

A. Hardware
Overall, the hardware, which is illustrated in Fig. 1,

consists of five components: a power supply, a Lynfield trap,
controllers, actuators and a container frame of the system.

1) Power supply: Photon energy is converted into direct
current by the photovoltaic powering system, which powers
the entire trap. The module is made up of a solar panel and a
battery, which are responsible for generating direct current and
storing it, respectively. There is also a specialized controller to
manage the output from the solar panel to be stable at 9V, so
that it does not cause the battery to overflow.

2) Lynfield’s trap: Fruit flies are attracted and trapped
by the mechanical trap created in the shape of a Lynfield trap.



The trap is made up of three major parts: a clear cylindrical
container with four entry holes equally placed around the
container's wall, a top lid that is generally color-coded to the
type of attractant used, and a string used as a hanger for the
attractant.

Fig. 1. Overview of the trap system consisting of a) the solar panel
system, b) the actuator system, c) the controller system, d) the modified
Lynfield trap and e) the system frame

3) Controllers: The microcontroller-controlled operation
system determines when and how to activate the sensory and
object detecting systems. Furthermore, it prevents Raspberry
Pi from continuing to take electricity from the solar system
after it has been turned off. It also regulates the voltages for
running the Raspberry Pi board and camera distinctively.

4) Actuators: consist of a sensory module and an object
detection module. The sensor system is in charge of sensing
three critical factors: temperature, humidity, and light. It also
keeps track of the current generated by the solar system and
the voltage battery. These two criteria assist the
microcontroller in determining whether or not to enable the
object detection module. The object detection acquires images
and uses a neural image detector to identify the fruit fly.
Furthermore, it receives data from the sensor system and
delivers it to the notification system then notify or warn
farmers to environmental data and the amount of fruit flies.

5) System frame: All of the modules listed above are
installed on an overall system frame, illustrated in Fig. 2, that
ensures mobility and compactness.

B. Software framework
The software framework is in charge of gathering data,

detecting fruit flies, and sending out alarms. The data
collection and alert notification functions are only available
when there is an internet connection. Otherwise, the cloud
storage capability for photos and data is disabled, and
notifications are provided through SMS texts. The object

detection module is built around a neural object detection
method. In this study, three object detection models are
examined to see which one best fits the configuration of our
trap: SSD-MobileNetv1, SSD-MobileNetv2 and
YOLOv4-tiny.

Fig. 2. The system frame

1) SSD-MobileNetv1: Variants of the Single-Shot
Multibox Detector (SSD) are utilized to address the real-time
object detection problem in the yellow fly detection challenge.
Wei Liu et al. introduced the SSD approach in [28] as a
one-stage object identification method that omits the region
proposal and pixel/feature resampling phases utilized in region
proposal-based techniques such as Faster-RCNN.
Furthermore, the network's early layers are built on a
conventional image classification without classification layers,
which is referred to as the base network [28]. MobileNetv1
and MobileNetv2 are utilized as foundation networks for the
SSD detection models in this work. A. Howard et al. originally
suggested the technique in [29]. It is based on depthwise
separable convolution, which includes a depthwise
convolution layer that applies a single filter per input channel
and a pointwise convolution layer that generates a linear
combination of the depthwise layer's output. Furthermore, to
make the model more computationally efficient, a width
multiplier, which is used to thin the network uniformly at each
layer, and a resolution multiplier, which is applied to input
images and the internal representation of each layer, were
introduced as hyperparameters to tune and choose the size of
the model.

2) SSD-MobileNetv2: M. Sandler et al. originally
proposed the MobileNetv2 method in [30]. Because the
technique is based on MobileNetv1, it also employs the
depthwise separable convolution architecture, which consists
of a depthwise convolution layer and a 1x1 pointwise
convolution layer. Furthermore, in order to improve the neural
architecture, the technique employs linear bottleneck layers in
convolutional blocks [30]. Furthermore, inverted residual



design is utilized in the model to provide shortcuts between
bottlenecks in order to improve gradient propagation
throughout the multiplier layers. Nonetheless, the inverted
design execution resulted in greater speed and considerably
higher memory efficiency in the work [30].

3) YOLOv4-tiny: YOLOv4 is an object detection
method that evolved from the YOLOv3 model [31]. Alexey
Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao
[32] invented the YOLOv4 technique. With equivalent
performance, it is twice as quick as EfficientDet. Furthermore,
AP (Average Precision) and FPS (Frames Per Second) in
YOLOv4 have risen by 10% and 12%, respectively, when
compared to YOLOv3. The architecture of YOLOv4 is made
up of a CSPDarknet53 backbone, a spatial pyramid pooling
extra module, a PANet path-aggregation neck, and a YOLOv3
head. The compressed version of YOLOv4 is YOLOv4-tiny. It
is suggested based on YOLOv4 to simplify the network
topology and minimize parameters so that it may be developed
on mobile and embedded devices. YOLOv4-tiny may be used
for quicker training and detection. It contains just two YOLO
heads as opposed to three in YOLOv4, and it was trained
using 29 pre-trained convolutional layers as opposed to 137 in
YOLOv4.

IV. EXPERIMENTS AND EVALUATIONS

A. Hardware
Experiments for AlertTrap hardware include testing the

most likely Lynfield-inspired trap design that can attract the
greatest number of fruit flies with varying trap colors, sizes
and attractants.

1) Trap color: The purpose of this section is to assess
the effectiveness of various colored traps meant to catch fruit
flies. All traps are the same size and kind (Lynfield trap), and
each trap has 1ml of attractant. According to the result in Fig.
3, the yellow trap attracts the most flies on the third day, as
predicted; flies move forward to yellow material. However, on
the 12th day, the same amount of flies were detected on each
trap with a different color. They have almost all surpassed
their maximum capacity of attracting insects. Hence, yellow
paint is utilized to attract fruit flies outside the trap.

2) Trap size: The purpose of this trap is to test the
impact of different trap sizes on catching. The study used two
Lynfield traps: A standard-size trap that was issued by the
Food and Agriculture Organization of the United Nations,
International Atomic Energy Agency, Vienna, 2018 [33], with
a height of 10 cm and a diameter of 7 cm, while a larger trap is
twice the size of the above one. Regarding the result in Fig. 4,
on the 12th day, the twice-sized Lynfield trap outperforms the
conventional trap by nearly double. The size of the trap has an
influence on its ability to attract fruit flies. Consequently, the
larger one is employed in this investigation to catch flies.

3) Trap attractants: Water is the conventional method
for trapping flies in a Lynfield trap. In this example, though,
we employ a camera to photograph the inside of the trap, and

condensation develops on the camera lens. Most of the time,
the lens seems foggy, as shown in Fig. 5, and this effect is
especially noticeable in the morning. Therefore, instead of
using water, or wet traps, yellow sticky paper is used to
capture insects for dry traps. Hence, all training and testing in
the project are done with images from dry trap setup.

Fig. 3. Number of flies inside the white, green and yellow Lynfield trap

Fig. 4. Number of flies inside the standard- and double-sized Lynfield trap

Fig. 5. The conversion from a liquid trap to a dry trap: a) the liquid trap
and b) the dry trap. Images from the dry trap are used for models’
training and testing. An detection example is also shown in b)

B. Software framework
Initially, the system and its detecting function were built

using YOLOv3 on a Raspberry Pi 3 model B computer.
Despite the fact that the system detected target fireflies in the
field test using the YOLOv3 model, it took 25 seconds to
complete the detection for a video frame (0.04 FPS). This
creates a problem for the system's real-time application. As a
result, lighter models are examined, trained, and tested in
simulated settings using CPU, GPU, and TPU devices. Tesla
V100-SXM2-16GB, TPU V2, and Intel(R) Xeon(R) CPU @
2.30GHz devices are utilized for GPU, TPU, and CPU testing,
respectively, with Google Colab Pro service. The models are
trained and evaluated using a dataset of 248 pictures of yellow
flies where 198 of them are utilized for training, while the



remaining 50 are used for testing. The project's potential
models are SSD-MobileNetv1, SSD-MobileNetv2, and
YOLOv4-tiny. In addition, SSD-MobileNetv1 and
SSD-MobileNetv2 are also tested on the edge device,
Raspberry Pi 3, to measure their processing time.

1) Evaluation metrics: We assess the candidate models
in this experiment based on their accuracy, recall, F1 score,
mean IoU, and AP at IoU thresholds of 0.25, 0.5, and 0.75.
Furthermore, processing time is examined to determine the
viability of real-time implementation. The research calculates
accuracy, recall, and f1-score metrics by counting the amount
of true positives (TP), false negatives (FN), and false positives
(FP). While accuracy is defined as the ratio of true detections
to total detections, recall is defined as the ratio of true
detections to total ground-truths. The F1-score, on the other
hand, is used to assess the overall performance of the models.
Furthermore, AP is the average precision of the models with
varying confidence score criteria. MeanIoU is a measure that
may be used to compare the detection results' localisation to
the ground-truth bounding boxes. The average processing time
across all test sets is utilized for real-time feasibility
inspection.

2) Model Evaluations and Discussion: TABLE I,
TABLE II, and TABLE III demonstrate the evaluation of the
candidate models based on precision, recall, F1-score, AP, and
meanIoU at IoU thresholds of 0.25, 0.5, and 0.75, respectively.
TABLE IV shows the results of evaluating and measuring the
processing time of the candidate models.

TABLE I: PERFORMANCE OF THE SSD-MOBILENETV1,
SSD-MOBILENETV2, AND YOLOV4-TINY AT IOU THRESHOLD 0.25
ON THE TEST DATASET.

Models Precision Recall F1
Score

Mean
IoU

AP

SSD
MobileNet v1

1.0 0.924 0.960 0.702 0.983

SSD
MobileNet v2

1.0 0.941 0.969 0.811 1.0

YOLOv4-tiny 1.0 1.0 1.0 0.834 1.0

In terms of performance, the YOLOv4-tiny outperforms the
SSD version models in terms of recall, accuracy, F1-score, AP,
and meanIoU. While the YOLOv4-tiny model outperforms
SSD-MobileNetv1 with the extreme IoU threshold 0.75, due
to having the different backbone, SSD-MobileNetv2 still has
comparable performance to YOLOv4-tiny. Furthermore, SSD
models are significantly quicker than the YOLOv4-tiny
model, particularly on the GPU device run, where SSD models
are 20 times faster than the YOLOv4-tiny model. Because
YOLOv4-tiny is faster than YOLOv3, SSD-MobileNetv2
implementation is a viable paradigm for real-time
implementation with both high processing time and accuracy.

V. CONCLUSION AND OUTLOOK

Hardware-wise, we establish through practical tests that
moving from a liquid-based Lynfield trap to a dry one is a key
renovation of the current technique for further statistical
investigation in the software framework. Software-wise, the
YOLOv4-tiny model is faster than the YOLOv3 model and
has the best performance in terms of accuracy, recall,
F1-score, AP, and meanIoU. However, even with an extreme
localization limitation imposed by the IoU threshold, SSD
MobileNetv2 still provides comparable performance.
Furthermore, in terms of processing time, SSD models
outperform the YOLOv4-tiny on all CPU, TPU, and notably
TPU. Because of these features, SSD MobileNetv2 is the most
promising choice among the three evaluated models for
real-time implementation of the fruit fly detection system with
high processing speed and detection accuracy.

TABLE II: PERFORMANCE OF THE SSD-MOBILENETV1,
SSD-MOBILENETV2, AND YOLOV4-TINY AT IOU THRESHOLD 0.5
ON THE TEST DATASET.

Models Precision Recall F1
Score

Mean
IoU

AP

SSD
MobileNet v1

0.982 0.907 0.943 0.707 0.957

SSD
MobileNet v2

1.0 0.941 0.969 0.811 1.0

YOLOv4-tiny 1.0 1.0 1.0 0.834 1.0

TABLE III: PERFORMANCE OF THE SSD-MOBILENETV1,
SSD-MOBLENEITV2, AND YOLOV4-TINY AT IOU THRESHOLD 0.75
ON THE TEST DATASET.

Models Precision Recall F1
Score

Mean
IoU

AP

SSD
MobileNet v1

0.266 0.246 0.256 0.800 0.082

SSD
MobileNet v2

0.774 0.729 0.751 0.847 0.690

YOLOv4-tiny 0.847 0.847 0.847 0.857 0.802

In the short to medium term, it may be worthwhile to
experiment with the TFLITE format of SSD models, which is
more compatible with TPU devices than inference graphs.
Converting the models to the TFLITE format would be a
potential way to build even quicker detectors for real-time
applications on edge devices like the Raspberry Pi and Google
Coral Dev board. In order to completely automate AlertTrap,
an automated yellow-sticky-paper replacement system would
be designed to trigger anytime overlapping flies are spotted.
This may assist to reduce overall fly counting mistakes.



TABLE IV: THE PROCESSING SPEED (FPS) OF THE CANDIDATE
DETECTORS ON CPU, GPU, AND TPU HARDWARE.

Models CPU GPU TPU

YOLOv4-tiny 1.282 1.207 0.5445

SSD MobileNet v1 3.141 29.155 1.025

SSD MobileNet v2 3.484 21 1.024

SSD MobileNet v1 (on
Raspberry Pi 3)

0.1689 - -

SSD MobileNet v2 (on
Raspberry Pi 3)

0.1874 - -

REFERENCES

[1] Unnevehr, L. J. (2007). Causes of and constraints to agricultural and
economic development: Discussion. American Journal of Agricultural
Economics, 89(5), 1168-1169.

[2] Muralidharan, K., & Pasalu, I. C. (2006). Assessments of crop losses in
rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae).
Crop protection, 25(5), 409-417.

[3] Nguyen, N. T. (1998). Fruit fly problem in South Vietnam (No.
IAEA-CN--71).

[4] Hazarika, L. K., Bhuyan, M., & Hazarika, B. N. (2009). Insect pests of
tea and their management. Annual review of entomology, 54, 267-284.

[5] Miller, G. T., & Spoolman, S. (2014). Sustaining the earth. Cengage
Learning.

[6] Cho, J., Choi, J., Qiao, M., Ji, C. W., Kim, H. Y., Uhm, K. B., & Chon,
T. S. (2007). Automatic identification of whiteflies, aphids and thrips in
the greenhouse based on image analysis. Red, 346(246), 244..

[7] Zhang, W., & Swinton, S. M. (2009). Incorporating natural enemies in
an economic threshold for dynamically optimal pest management.
Ecological Modelling, 220(9-10), 1315-1324.

[8] Ding, W., & Taylor, G. (2016). Automatic moth detection from trap
images for pest management. Computers and Electronics in Agriculture,
123, 17-28.

[9] Shaked, B.; Amore, A.; Ioannou, C.; Valdes, F.; Alorda, B.;
Papanastasiou, S.; Goldshtein, E.; Shenderey, C.; Leza, M.; Pontikakos,
C.; et al. Electronic traps for detection and population monitoring of
adult fruit flies (Diptera: Tephritidae). J. Appl. Entomol. 2017, 142,
43–51.

[10] Doitsidis, L.; Fouskitakis, G.N.; Varikou, K.N.; Rigakis, I.I.;
Chatzichristofis, S.A.; Papafilippaki, A.K.; Birouraki, A.E. Remote
monitoring of the Bactrocera oleae (Gmelin) (Diptera: Tephritidae)
population using an automated McPhail trap. Comput. Electron. Agric.
2017, 137, 69–78.

[11] Hong, S.J.; Kim, S.Y.; Kim, E.; Lee, C.H.; Lee, J.S.; Lee, D.S.; Kim, G.
Moth Detection from Pheromone Trap Images Using Deep Learning
Object Detectors. Agriculture 2020, 10, 170.

[12] Wang, J.; Chen, X.; Hou, X.; Zhou, L.; Zhu, C.; Ji, L. Construction,
implementation and testing of an image identification system using
computer vision methods for fruit flies with economic importance
(Diptera: Tephritidae). J. Appl. Entomol. 2016, 73, 1511–1528.

[13] Alorda, B.; Valdes, F.; Mas, B.; Leza, M.; Almenar, L.; Feliu, J.; Ruiz,
M.; Miranda, M.; Design of an energy efficient and low cost trap for
Olive fly monitoring using a ZigBee based Wireless Sensor Network. In
Proceedings of the 10th European Conference on Precision Agriculture
(ECPA), Rishon LeTsiyon, Israel, 12–16 July 2015; pp. 1–23.

[14] Philimis, P.; Psimolophitis, E.; Hadjiyiannis, S.; Giusti, A.; Perello, J.;
Serrat, A.; Avila,P. A centralised remote data collection system using
automated traps for managing and controlling the population of the
Mediterranean (Ceratitis capitata) and olive (Dacus oleae) fruit flies. In
Proceedings of the International Conference on Remote Sensing and
Geoinformation of the Environment (RSGY), Paphos, Coral Bay
Cyprus, 5 August 2013; pp. 8–16.

[15] George, S.C. History and use of the McPhail trap. Florida Entomol.
1977, 60, 11–16. 11.

[16] Hall, D.G. An assessment of yellow sticky card traps as indicators of the
abundance of adult Diaphorina citri (Hemiptera:Psyllidae) in citrus. J.
Econ. Entomol. 2009, 10, 446–452.

[17] Dominiak, B. C., & Nicol, H. I. (2010). Field performance of Lynfield
and McPhail traps for monitoring male and female sterile Bactrocera
tryoni (Froggatt) and wild Dacus newmani (Perkins). Pest management
science, 66(7), 741-744.

[18] Xiao, D.; Yang, Q.; Fu, J.; Deng, X.; Feng, J.; Ye, Y.; Lu, Y. A
multi-target trapping and tracking algorithm for Bactrocera Dorsalis
based on cost model. Comput. Electron. Argic. 2016, 123, 224–231.

[19] Kalamatianos, R.; Karydis, I.; Doukakis, D.; Avlonitis, M. DIRT: The
Dacus Image Recognition Toolkit. J. Imaging 2018, 4, 129.

[20] Sun, Y.; Liu, X.; Yuan, M.; Ren, L.; Wang, J.; Chen, Z. Automatic
in-trap pest detection using deep learning for pheromone-based
Dendroctonus valens monitoring. Biosyst. Eng. 2018, 176, 140–150.

[21] Y. Zhong, J. Gao, Q. Lei and Y. Zhou, "A vision-based counting and
recognition system for flying insects in intelligent agriculture", Sensors,
vol. 18, no. 5, pp. 1489, May 2018.

[22] R. Kalamatianos, I. Karydis, D. Doukakis and M. Avlonitis, "DIRT: The
dacus image recognition toolkit", J. Imag., vol. 4, no. 11, pp. 129, Oct.
2018.

[23] D. Xia, P. Chen, B. Wang, J. Zhang and C. Xie, "Insect detection and
classification based on an improved convolutional neural network",
Sensors, vol. 18, no. 12, pp. 4169, Nov. 2018.

[24] P. Tirelli, N. A. Borghese, F. Pedersini, G. Galassi and R. Oberti,
"Automatic monitoring of pest insects traps by Zigbee-based wireless
networking of image sensors", Proc. IEEE Int. Instrum. Meas. Technol.
Conf., pp. 1-5, May 2011.

[25] C. Sun, P. Flemons, Y. Gao, D. Wang, N. Fisher and J. La Salle,
"Automated image analysis on insect soups", Proc. Int. Conf. Digit.
Image Comput. Techn. Appl. (DICTA), pp. 1-6, Nov. 2016.

[26] Y. Kaya and L. Kayci, "Application of artificial neural network for
automatic detection of butterfly species using color and texture
features", Vis. Comput., vol. 30, no. 1, pp. 71-79, Jan. 2014.

[27] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look
once: Unified real-time object detection", Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), pp. 779-788, Jun. 2016.

[28] W. Liu et al., "SSD: Single Shot MultiBox Detector", Computer Vision –
ECCV 2016, pp. 21-37, 2016. Available: 10.1007/978-3-319-46448-0_2.

[29] A. Howard et al., "MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications", arXiv.org, 2017. [Online].
Available: https://arxiv.org/abs/1704.04861.

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen,
"MobileNetV2: Inverted Residuals and Linear Bottlenecks," 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510-4520, doi: 10.1109/CVPR.2018.00474.

[31] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.

[32] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4:
Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934.

[33] (IAEA) International Atomic Energy Agency. (2003). Trapping
guidelines for area-wide fruit fly programmes. International Atomic
Energy Agency, Vienna, Austria, 47.




