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ABSTRACT OF THE DISSERTATION

Cosmological Implications of Axion-Matter Couplings and Light Fields during Inflation from
BOSS and Future Galaxy Surveys

by

Yi Guo

Doctor of Philosophy in Physics

University of California San Diego, 2024

Professor Daniel Green, Chair

In this dissertation, we explore two aspects of the dark matter using cosmology. In

Chapter 2, we study the interaction between axion, a famous dark matter candidate, and ordinary

matter, through their trace left in the thermal history of the universe. We show that the axion-

matter coupling can be constrained by the effective number of relativistic species, Neff, with

next-generation CMB experiments. In Chapter 3, we study the distribution of matter before

inflation, by conducting massive galaxy surveys of the large-scale structure of the universe.

We show that the measurement of the primordial non-gaussianity of matter distribution can be

significantly optimized by various techniques and strategies for ongoing and futuristic surveys.
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Chapter 1

Introduction

The universe, a vast expanse of space, time, and matter, has intrigued humans for

centuries. From ancient astronomers observing the stars to modern physicists unraveling the

mysteries of subatomic particles, the quest to understand our universe has been a cornerstone of

human curiosity. Cosmology stands at the crossroads of various physics disciplines. It merges the

knowledge of elementary particles, the forces that act upon them, and the large-scale properties

of the universe. This field has provided us with insights into the early moments after the Big

Bang and has led to groundbreaking theories about the nature of space and time.

One of the most perplexing discoveries in cosmology is the existence of dark matter.

Unlike ordinary matter, dark matter hardly emits, absorbs, or reflects light, making it invisible

and detectable only through its gravitational effects so far. Understanding dark matter is crucial

for a complete picture of the universe’s composition and evolution. In the journey to understand

dark matter, axions emerge as a promising candidate. Originally proposed to solve a theoretical

problem in quantum chromodynamics, they have gained attention in the search for dark matter.

Their potential interaction with standard model fermions, the particles that make up matter as we

know it, is the topic of chapter 2.

The study of primordial non-Gaussianity involves examining the very early universe’s

density fluctuations. These fluctuations, imprinted in the cosmic microwave background radiation

and the large-scale structure of the universe, hold clues about the universe’s infancy and its

1



subsequent evolution. In chapter 3, we explore the sensitivity of current and future large-scale

structure surveys to detecting primordial non-Gaussianity.

The research into axions, standard model fermions, and primordial non-Gaussianity is

not just a pursuit of academic interest. It has profound implications for our understanding of

the universe. It could answer fundamental questions about the nature of dark matter, the early

moments of the universe, and the forces that have shaped its evolution.

2



Chapter 2

Cosmological Implications of
Axion-Matter Couplings

2.1 Synopsis

Axions and other light particles appear ubiquitously in physics beyond the Standard

Model, with a variety of possible couplings to ordinary matter. Cosmology offers a unique probe

of these particles as they can thermalize in the hot environment of the early universe for any

such coupling. For sub-MeV particles, their entropy must leave a measurable cosmological

signal, usually via the effective number of relativistic particles, Neff. In this paper, we will revisit

the cosmological constraints on the couplings of axions and other pseudo-Nambu-Goldstone

bosons to Standard Model fermions from thermalization below the electroweak scale, where

these couplings are marginal and give contributions to the radiation density of ∆Neff > 0.027.

We update the calculation of the production rates to eliminate unnecessary approximations and

find that the cosmological bounds on these interactions are complementary to astrophysical

constraints, e.g. from supernova SN 1987A. We additionally provide quantitative explanations

for these bounds and their relationship.

2.1.1 Contribution of the author

The author has contributed in developing the main formalism and in writing the paper. He

has performed the numerical calculations and the analysis under the direction of the supervisor.
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2.2 Introduction

Light particles with very weak couplings to the Standard Model are highly-motivated

experimental targets from a number of perspectives. Axions and axion-like particles have been

proposed as solutions to fine-tuning problems like the strong CP problem [1, 2, 3] and the

hierarchy problem [4]. Furthermore, a cold component of the axion may form a viable dark

matter candidate [5, 6, 7]. Alternatively, light particles may take the form of Goldstone or

pseudo-Goldstone modes that arise as a consequence of symmetry breaking, including in models

of flavor [8, 9, 10, 11] (familons), neutrino masses [12, 13] (majorons) and supersymmetry (grav-

itino). More broadly, top-down models suggest that there could be a number of additional sectors

with very weak or gravitational couplings to the Standard Model [14, 15, 16, 17, 18, 19]. The

plethora of possibilities for light particles [20, 21] is mirrored in the variety of dark matter

candidates and dark sectors that are being actively explored [22].

Cosmology plays a vital role in our investigations of this vast landscape. While the list

of possible couplings to the Standard Model (SM) are enormous, if any of them is sufficient to

thermalize one of these particles, its relic energy density is detectable through its gravitational

influence [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Thermalized particles with masses m ≪ 1eV

are relativistic during the radiation era and the cosmological constraints can be inferred from the

effective number of relativistic species Neff. Heavier particles with m< 100eV will contribute

to the sum of neutrino masses and are also constrained by the evolution of the universe at low

redshifts. Most importantly, when its mass is sub-MeV, the entropy carried by a new particle

cannot be eliminated by its decay or annihilation and, therefore, always leaves a cosmological

signal in some combination of relic abundances (big bang nucleosynthesis/BBN) [33, 34, 35],

cosmic microwave background (CMB) [36, 37, 38, 39, 40, 41, 42] and/or large-scale structure [43,

44, 45, 46] observables.

The majority of couplings of light particles to the Standard Model are irrelevant. The

combination of symmetries needed to protect the mass of the particle combined with the limited
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set of gauge-invariant operators in the Standard Model usually ensures that they are dimension

five or larger [20, 21, 29]. As a result, thermalization usually occurs at high temperatures

where all the particles involved are relativistic. As a result, the strongest constraints on these

couplings will arise from thermalization well above the electroweak scale. This implies that

their contributions to Neff are diluted to their minimum value, ∆Neff = 0.027gs, where gs is the

number of degrees of freedom of the light relic (see e.g. [47, 48, 49] for reviews).

Couplings of axions (familons) to matter are an exception to this general pattern.1 Starting

from a manifestly shift-symmetric form, a scalar field φ can be coupled to the SM fermions ψi

via

Lφψ =−∂µφ

Λψ

ψ̄iγ
µ

(
gi j

V +gi j
A γ

5
)

ψ j

→ φ

Λψ

(
iHψ̄L,i

[(
λi −λ j

)
gi j

V +
(
λi +λ j

)
gi j

A

]
ψR, j +h.c.

)
+O

(
φ

2) , (2.1)

where we integrated by parts and used the equations of motion with the Higgs doublet H, the

left-/right-handed spinors ψL,R ≡ 1
2

(
1∓ γ5)ψ , the Yukawa couplings λi ≡

√
2mi/v and the

Higgs vacuum expectation value v = 246GeV.2 Importantly, we see on the second line that this

interaction is effectively dimension four in the presence of a non-zero Higgs vacuum expectation

value. By dimensional analysis, the production rate of φ is proportional to temperature (since the

effective coupling is dimensionless) and, therefore, exceeds the Hubble rate at low temperatures,

which scales as temperature squared during radiation domination. However, this argument

is only true above the mass of the SM fermion since the production rate will again become

negligibly small once the number density of the fermion is sufficiently Boltzmann suppressed.

This possibility is particularly intriguing because the decoupling temperature is effectively

below the mass of the associated fermion and, therefore, results in a larger contribution to Neff

1For simplicity, we will refer to all scalar particles interacting with matter as axions, whether we assume specific
models or independent couplings, despite the fact that the latter might be more naturally referred to as familons in
most of our cases or, more generally, pseudo-Nambu-Goldstone bosons (pNGBs).

2For simplicity, we suppressed the SU(2)L and SU(3)c structures which take the same form as for the SM Yukawa
couplings [50].
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which is more easily constrained or detected with near-term CMB experiments, such as Simons

Observatory (SO) and CMB-S4 [51, 52].

For the above reasons, cosmological constraints on axion-matter couplings have received

significant attention in the literature [29, 32, 53, 54, 55, 56, 57, 58]. Yet, while the origin of the

constraints is straightforward to estimate qualitatively, precise numerical bounds depend on a

number of details that have only been partially explored in the literature. Most essentially, the

thermal production rate and/or decoupling calculations are often approximated in various ways.

In some cases, the estimated bounds are substantially stronger than the true bounds [32].

The result of our analysis is a more precise calculation of ∆Neff for interactions with

charged leptons and heavy quarks, namely the electron, muon and tau lepton, and the charm,

bottom and top quarks, as a function of each of their coupling strengths. In addition, we

provide an intuitive (semi-)analytic explanation for the form of each of these curves. From

these results, it is possible to straightforwardly derive the constraints on axion-matter couplings

from a given measurement of Neff. Moreover, we compare current and future cosmological

constraints to existing bounds in the literature. Of particular interest is the relation to constraints

from SN 1987A which have recently been inferred for couplings to muons [59, 60, 61]. As both

the cosmological and astrophysical bounds are derived from thermal production of the axion, we

explore the precise relationship between these bounds in that context.

This paper is organized as follows: In Section 2.3, we summarize the cosmology and

particle physics of axions, or more generally pNGBs, and their coupling to SM fermions studied

in this work. This includes a qualitative explanation of the freeze-in (low-temperature re-

thermalization and decoupling) and freeze-out (high-temperature decoupling) scenarios that

are possible below and above the electroweak symmetry breaking scale, and how they allow

measurements of Neff to be translated into bounds on these interactions. In Section 2.4, we

present the calculation of the axion production rates and the coupling constraints. Moreover,

we infer the bounds from current and future measurements of Neff, and describe the physics
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underlying these cosmological constraints in detail. In Section 2.5, we explore the relation

between these bounds and those from astrophysical measurements, in particular the cooling rate

of SN 1987A, and quantitatively compare our Neff-based constraints to those and other existing

bounds. In Section 2.6, we present our conclusions. A set of appendices contains technical

details on the calculation of the axion production rate (Appendix A.1), and the implications of

quantum statistics and the presence of the QCD phase transition on our results (Appendix A.2).

2.3 Review of Axions and Axion Cosmology

Axion-like particles and other pseudo-Nambu-Goldstone bosons arise in a variety of

forms, depending on the ultraviolet completion. String theory famously contains a plenitude of

axions. Alternatively, the strong CP problem suggests the need for an axion φ with a coupling

φ G̃µνGµν , where Gµν is the gluon field strength tensor and G̃µν its dual. The key feature of the

coupling of such particles is that they preserve a shift symmetry, φ → φ + c, with constant c,

such that they can be naturally light.

While the coupling of axions to gauge bosons is often what distinguishes axions from

other naturally light scalars, the coupling to matter can and will arise for all such particles. In

some cases, the particles are given alternate names such as familons. Nevertheless, given the

shift symmetry, the leading interactions with the SM fermions are given by3

Lφψ =−∂µφ

Λψ

(
gi j

V Ji j
V +gi j

A Ji j
A

)
=−∂µφ

Λψ

ψ̄iγ
µ

(
gi j

V +gi j
A γ

5
)

ψ j , (2.2)

where the couplings to the vector and axial-vector currents JV,A are denoted by the subscripts V

and A, respectively. The diagonal vector couplings, i = j, vanish due to vector current conserva-

tion, i.e. diagonal couplings are only present for the axial part. This can also be seen explicitly

3In this paper, we follow the notation of [32] and parameterize the dimensionful axion couplings in terms of
the effective mass scale Λi j ≡ Λψ/[(g

i j
V )

2 +(gi j
A )

2]1/2. This parametrization can be straightforwardly converted to
other commonly employed notations, such as the inverse scale g̃i j = 1/Λi j, the dimensionless coupling constant
ε̃i = 2mi/Λii or the decay constant fa = Λψ .
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after integrating by parts and using the equations of motion, as performed in the second line

of (2.1). While a linear combination of the axial couplings is equivalent to the coupling of axions

to gauge bosons due to the chiral anomaly, we only consider the effects of the couplings to matter

with no contribution from anomalies in this paper.

In the cosmological context, the impact of an axion-matter interaction is qualitatively

different before and after the electroweak phase transition. Prior to the electroweak phase

transition, these couplings are described by dimension-5 operators and the axion interaction

rate with SM particles therefore scales as Γφ ∼ T 3/Λ2
ψ . Meanwhile, the expansion rate of the

universe scales as H ∼ T 2/Mpl at those early times. This implies that the axion may be in

thermal equilibrium with the rest of the SM for T > TF , where freeze out at temperature TF is

defined by H(TF)≃ Γφ (TF) (assuming TF is above the electroweak scale). For T < TF , axion

production becomes inefficient and the axions decouple from the Standard Model. Note that a

population of hot axions may exist whether or not axions form the dark matter and are therefore

complementary to many of the direct detection strategies [22].

This description of decoupling is applicable to any particle coupled to the Standard

Model through an irrelevant operator. This is the common origin of most (light) thermal relics in

the early universe and leads to the standard contribution to the energy density in free-streaming

radiation as parameterized by

Neff =
8
7

(
11
4

)4/3
ρν +ρφ

ργ

→ ∆Neff =
8
7

(
11
4

)4/3
ρφ

ργ

, (2.3)

where ρν and ρφ are the energy density in neutrinos and axions (or any other light thermal relic

beyond the Standard Model), respectively. Given their sub-eV masses, both are relativistic prior

to recombination, which means that Neff does not distinguish between axions, neutrinos or any

other decoupling relativistic species. While Neff = 3.044 in the Standard Model due to the three

neutrinos [62, 63, 64], a thermalized axion or other pNGB will contribute ∆Neff ≥ 0.027, with

this bound being saturated for decoupling above all SM mass thresholds. For general TF and
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Figure 2.1. Contribution to ∆Neff from a light particle that decoupled from the Standard Model
at a freeze-out temperature TF . The blue line indicates the contribution for a single real degree
of freedom, such as an axion or Goldstone boson. The green and red lines show ∆Neff(TF)
for the case of two scalar degrees of freedom, either with the same decoupling temperature,
TF ≡ TF,1 = TF,2, or two different decoupling temperatures, TF ≡ TF,1 ≲ 103 GeV < TF,2. The
dashed lines indicate the current bound on ∆Neff at 95% c.l. from Planck 2018 and BAO data [41],
and the forecasted constraints from the Simons Observatory (SO) [51] and CMB-S4 [52]. The
gray band illustrates the future sensitivity that might potentially be achieved with a combina-
tion of cosmological surveys of the CMB and large-scale structure, such as CMB-HD [65],
MegaMapper [66] and PUMA [67], cf. [44, 68]. We refer to [48, 49] for additional details.

gs internal degrees of freedom, the contribution is given by4

∆Neff = gs

(
43/4

g∗(TF)

)4/3

, (2.4)

where g∗(T ) is the effective number of SM degrees of freedom at temperature T . The effect

of lower TF is to increase ∆Neff by reducing the amount of entropy converted to photons after

decoupling of the axion. This increase is shown in Fig. 2.1 since the SM particles become

massive, annihilate and deposit their energy (and entropy) in the remaining thermal SM bath.

This therefore provides a natural observational target (see also [48, 49], for instance).

4We make the assumption that there are no large sources of entropy beyond the Standard Model particles at or
below the freeze-out temperature TF . See e.g. [48] for a more detailed discussion.
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The absence of a detection with an exclusion of ∆Neff = 0.027 using future cosmological

data would put strong constraints on the coupling strength Λi j [32] since this would exclude the

presence of any thermalized relics above the electroweak scale. In this case, no additional light

particles could have been in thermal equilibrium with the SM at any point in the history of the

universe (including axions), back to the era of reheating at temperature TR. Since this requires

the would-be freeze-out temperature to be above the reheating temperature, TF(Λψ) > TR, a

significant exclusion of ∆Neff = 0.027 would imply very strong constraints on the axion couplings.

If we define Λ
(ψ)
F (T ) as the coupling Λψ such that Γ(T ) = H(T ) at temperature T , then our

approximate bound would be Λψ ≳ Λ
(ψ)
F (TR).5 For the scales in (2.1), this constraint would

imply [32]6

Λ
I
i j >


1.0×1011 GeV

mi ∓m j

mτ

(
TR

1010 GeV

)1/2

i, j = leptons,

1.8×1013 GeV
mi ∓m j

mt

(
TR

1010 GeV

)1/2

i, j = quarks,

(2.5)

where mi are the SM fermion masses, with mτ ≈ 1.8GeV and mt ≈ 173GeV. We refer to [32]

for additional details, including a comparison of the current experimental and the prospective

cosmological constraints which will likely be stronger by orders of magnitude except for most

interactions involving electrons.

However, after the electroweak phase transition, there exists a second scenario which is

unique to the couplings of SM fermions to axions (and other pNGBs). The out-of-equilibrium

axions may re-equilibrate and thermalize with the Standard Model after the Higgs acquired its

5This also assumes no dramatic increase in the number of degrees of freedom in the Standard Model or
non-equilibrium evolution that could further dilute ∆Neff < 0.027 (see [48] for more details and discussion).

6We directly use the results of [32] and do not include any improved calculations of the axion production rate
here because the sensitivity to the (unknown) reheating temperature limits the need for a more precise calculation at
this point.

10



non-zero vacuum expectation value. In this case, the Lagrangian (2.1) becomes

Lφψ = i
φ

Λψ

ψ̄i

[
(mi −m j)g

i j
V +(mi +m j)g

i j
A γ

5
]

ψ j , (2.6)

which is effectively a dimension-four interaction. This implies that the interaction rate now

scales as Γφ ∼ m2
ψ T/Λ2

ψ , which is a weaker temperature dependence than that of the expansion

rate, H ∼ T 2. Depending on the interaction strength, the axions will eventually thermalize

and decouple again at later times leaving a much larger contribution to the radiation density

as displayed in Fig. 2.1. Such a contribution to ∆Neff may already be ruled out with current

cosmological datasets or ruled out in the (near) future. Preventing this re-thermalization of

the axion to lead to a large axion density and violation of existing (or near-future) constraints

on ∆Neff requires the re-equilibration temperature to be smaller than the mass of the respective

fermion(s) since the interaction rate Γ becomes Boltzmann suppressed in this regime. This in

turn suggests that we can put limits on the axion couplings by effectively trading the reheating

temperature TR with the fermion mass mψ , Λψ ≳ Λ
(ψ)
F (mψ) [32].

The resulting bounds are typically weaker than those derived from freeze-out above

the electroweak scale, as the higher temperatures ultimately lead to more efficient production.

Nevertheless, high-temperature freeze-out is more7 sensitive to assumptions on the reheating

temperature and particle content of the universe. Moreover, these bounds will be easier (and

therefore earlier) to achieve since the larger contributions to ∆Neff that are generated by the

freeze-in process can be more easily measured (or excluded) by a realistic cosmological sur-

vey. While order-of-magnitude estimates of the resulting bounds were provided in [32], the

contributions to ∆Neff are at the threshold of current and future CMB experiments and, therefore,

demand a more careful treatment. Given the highly nonlinear relationship between ∆Neff and

the fundamental parameters of the model, even seemingly small effects can translate into large

7The freeze-in scenario (re-thermalization and decoupling) only assumes that the reheating temperature is larger
than the fermion mass(es), TR > mψ .
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differences in the inference of the axion-matter couplings (see e.g. §2.4.3 and Appendix A.2).

2.4 Production Rates and Cosmological Constraints

Relating Neff measurements to specific models is dependent on a reliable calculation of

the production rate. The existence of a constraint usually follows from dimensional analysis,

but we also have to put the cosmological constraints into the broader context of experimental

probes of axions and other pNGBs. Calculating the axion production rate accurately is difficult

as some approximations are unreliable when T ≈ mψ [32].8 In this section, we will therefore

recalculate these rates for the couplings of axions to SM matter particles without these approxi-

mations (§2.4.1). We will then derive predictions of ∆Neff and observational bounds on these

interactions, focusing on the diagonal couplings, Λi ≡ Λψ/gii
A, for simplicity (§2.4.2). Moreover,

we will provide a detailed discussion of the physics underlying these constraints (§2.4.3).

2.4.1 Computation of Production Rates

In the following, we summarize the calculation of the interaction rate of axions and other

pseudo-Nambu-Goldstone bosons with SM fermions. While we will put an emphasis here on

the conceptual steps and relevant physical processes, we refer to Appendix A.1 for the technical

details.

The leading processes producing axions in the early universe with diagonal interactions

described by (2.6) after electroweak symmetry breaking are shown in Fig. 2.2: (a) Compton-like

scattering, ψi+{γ,g}→ ψi+φ , and (b) fermion-antifermion annihilation, ψi+ ψ̄i → φ +{γ,g},

where we denoted the photon and gluon by γ and g, respectively. The scattering amplitudes of

these production channels are given by [32]

∑ |M |2(a) = 16π Aψ |ε̃i|2
t2

(s−m2
i )(m

2
i −u)

, (2.7)

8Prior calculations of the axion production rate have assumed relativistic particles and a high-temperature
limit [32] or used Boltzmann statistics ignoring Bose enhancement and Pauli blocking [54], for instance.
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Figure 2.2. Feynman diagrams for the dominant production channels of axions and other pseudo-
Nambu-Goldstone bosons via the coupling to charged fermions below the electroweak scale:
(a) Compton-like scattering and (b) fermion annihilation. For quarks, the coupling to photons
is replaced by that to gluons. In addition to the displayed s- and t-channel diagrams, there are
u-channel diagrams which are not shown.

∑ |M |2(b) = 16π Aψ |ε̃i|2
s2

(m2
i − t)(m2

i −u)
, (2.8)

with ε̃i ≡ 2mi/Λi, the Mandelstam variables s, t and u, and

Aψ ≡


α ψ = lepton,

4αs ψ = quark.
(2.9)

We will neglect the weak temperature dependence of the running fine-structure constant α and

approximate it by its low-energy value of α ≈ 1/137. On the other hand, the running strong

coupling constant αs(T ) significantly depends on temperature. We include this temperature

dependence by employing the five-loop corrections of the QCD beta function implemented in

RunDec [69] for all temperatures with αs < 1. In the following, we will (conservatively) stop our

calculation at a temperature of T = 1GeV when αs ≈ 0.5 to avoid the strongly-coupled regime.

We refer to Appendix A.2 for additional details, a discussion of the implications of this choice

and a less conservative calculation.
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In general, the production rate for the relevant two-to-two processes is

Γφ =
1

neq
φ

4

∏
i=1

∫ d3 pi

(2π)32Ei
f1(p1) f2(p2) [1± f3(p3)] [1± f4(p4)] (2.10)

× (2π)3
δ
(3)(p1 + p2 − p3 − p4)(2π)δ (E1 +E2 −E3 −E4) ∑ |M |2 ,

where neq
φ
(T ) = ζ (3)T 3/π2 is the equilibrium number density of a relativistic scalar at tempera-

ture T , the momenta and energies of the incoming (outgoing) particles are denoted by pi and Ei

with i = 1,2 (3,4), the Bose-Einstein and Fermi-Dirac distribution functions for bosons and

fermions are

f b(p) =
1

eE(p)/T −1
, f f (p) =

1
eE(p)/T +1

, (2.11)

and ‘±’ indicates either Bose enhancement (‘+’) or Pauli blocking (‘−’) of the outgoing bosons

and fermions, respectively. The total scattering amplitude is given by ∑ |M |2 = 2∑ |M |2(a)+

∑ |M |2(b) to account for fermions and antifermions in the Compton-like process. We show in

Appendix A.1 that the rate (2.10) can be rewritten as the following five-dimensional integral:

Γφ =
1

neq
φ

∫
∞

Emin

dE
∫ pmax

0
dp
∫ pmax

1

pmin
1

dp1

∫ pmax
3

pmin
3

dp3
p1 p3

512π6E1E3
f1(p1) f2(p2) (2.12)

× [1± f3(p3)] [1± f4(p4)]
∫ 2π

0
dφ ∑ |M |2 ,

where E and p are the total energy and momentum, p1 and p3 are one of the incoming and

outgoing momenta each, and φ is the polar angle difference between these two momenta in the

plane orthogonal to p. We implicitly impose energy-momentum conservation to fix pi+1 = p− pi

for i = 1,3 and provide the integration limits in Appendix A.1.

For the specific amplitudes of Compton-like scattering (2.7) and fermion annihila-

tion (2.8) that are of interest in this work, the integral over the angle φ can be conducted

analytically. This means that we are left with a four-dimensional integral which we evaluate

numerically using multi-dimensional adaptive quadrature. To facilitate its numerical calculation,
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Figure 2.3. Dimensionless rescaling of the interaction rate Γφ as a function of mψ/T . We
compare the results of our full calculation using the Bose-Einstein and Fermi-Dirac distribu-
tion functions (‘quantum statistics’) with the approximate result of employing the Boltzmann
distribution without Bose enhancement and Pauli blocking (‘classical statistics’). The vertical
dashed line indicates T = m which is approximately the temperature where decoupling occurs
for moderate coupling strengths.

it is useful to consider the rescaling neq
φ

A−1
ψ |ε̃ψ |−2T−4 Γφ as a function of mψ/T since it is dimen-

sionless and independent of both the axion-fermion coupling and the SM fermion masses. While

we take these masses mψ to be non-zero, we assume massless axions, mφ = 0, which is a good

approximation for large parts of parameter space relevant for measurements of the relativistic

energy density as parameterized by Neff. The result is shown in Fig. 2.3 for the full quantum

distribution functions of (2.11) with Bose enhancement and Pauli blocking, and the commonly

employed classical approximation of Boltzmann statistics, f b(p) = f f (p) = exp{−E(p)/T},

without Bose enhancement or Pauli blocking. As expected, the curves agree in the Boltzmann-

suppressed regime of low temperatures, T ≲ mψ within 20%, but differ at large temperatures

T ≫ mψ (e.g. about 50% for T = 103 mψ ). Since the difference in the range mψ/T ∈ [1,10],

which is most relevant for equilibrium physics, roughly varies between 15% and 20%, we expect

shifts of less than about 10% in our final predictions for the contribution to Neff, except in their

tails at small couplings where the differences may be considerably larger.
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2.4.2 Computation of Constraints

Having calculated the production rate as a function of temperature T , we now compute

the number density nφ of axions and other pNGBs, and the associated contribution to ∆Neff as a

function of the coupling Λi. This subsequently allows us to provide bounds on axion-fermion

interactions from current and future cosmological measurements of ∆Neff.

Instead of assuming instantaneous annihilation of the SM fermions at T = mψ to estimate

the relevant axion abundance, we solve the Boltzmann equation for the axion number density nφ ,

dnφ

dt
+3H(T )nφ = Γφ (T )

(
neq

φ
(T )−nφ

)
, (2.13)

with the Hubble parameter H(T ) during radiation domination. While our calculation of the

production rate Γφ (T ) is general, including Bose enhancement and Pauli blocking, this equation

assumes that this quantity is determined by the rate in equilibrium and is therefore independent

of nφ . We only expect a minor impact of these assumptions for coupling strengths Λi for which

the axion reaches equilibrium at temperatures T ≳ mψ , i.e. when the expected number density

of axions is near its equilibrium value. On the other hand, if the axion-fermion coupling is

so small that the axion is never close to reaching equilibrium, our calculation of Γφ (T ) leads

to a slight overestimate of this rate because it includes the equilibrium Bose enhancement

from using neq(T ) in the final state.9 In consequence, our calculations may overestimate

the contribution to the radiation density as a function of the coupling strength, ∆Neff(Λi), by

about 30% around ∆Neff = 0.02 or, alternatively, the bound on the interaction strength given a

∆Neff measurement, Λi(∆Neff), by roughly 10% (with the latter being the quantity that we are

more interested in).

We follow the common procedure (see e.g. [54, 53, 55]) of numerically solving this

differential equation after changing variables to the dimensionless inverse temperature x = mψ/T

9We could have alternatively solved the Boltzmann equation for the distribution function fφ (p,T ), which is an
integro-differential equation, instead of the respective equation (2.13) for the number density nφ (T ) to capture this
effect.
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Figure 2.4. Left: Contribution to the radiation density as parameterized by ∆Neff as a function
of the axion-fermion coupling strength Λi for different SM fermions ψi. The displayed values
for the bottom and charm couplings are conservative and may be (significantly) larger, with
details of these uncertainties being discussed in Appendix A.2. Right: Contribution to ∆Neff
for a single thermalized (equilibrium) degree of freedom which decoupled from the Standard
Model at a temperature TF (i.e. the same as Fig. 2.1). The horizontal lines between the panels
indicate the contribution to ∆Neff expected for TF = mψ on the right with the appropriate value
of Λi on the left. For larger values of Λi, the particle fails to reach equilibrium and, therefore, the
abundance decreases rapidly.

and the dimensionless comoving number density Yφ = nφ/s, where s = 2π2g∗s T 3/45 is the

entropy density. We adopt the effective number of degrees of freedom in entropy g∗s(T ) as

numerically computed by [70], which is based on the lattice QCD calculation of [71] in the non-

perturbative regime,10 and an initial condition with no axions, Yφ ,0 ≡Yφ ,t=0 = 0. Having obtained

the final value for the comoving number density, Yφ ,∞, as a function of the SM fermion ψi and

the axion-fermion interaction strength Λi, we can convert it to a prediction for the contribution to

the radiation density according to ∆Neff ≈ 74.84Y 4/3
φ ,∞ . (We refer to Appendix A.1 for additional

details.)

The results of this calculation are presented in Fig. 2.4, which shows the contribution

10If we used the results of [71] over the entire temperature range, our predictions for ∆Neff would be within ≲ 10%
of the presented results.
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to ∆Neff for each of the axion couplings to SM fermions.11 Given the current constraint from

Planck, ∆Neff < 0.30 (95%) [41], we can constrain the axion coupling to electrons, muons and

tau leptons:12

Λe > 2.5×106 GeV = 106.4 GeV , (2.16)

Λµ > 1.1×107 GeV = 107.1 GeV , (2.17)

Λτ > 1.7×103 GeV = 103.2 GeV . (2.18)

Upcoming (near-term) CMB experiments will continue to improve the measurement of Neff which

will also increase the sensitivity to these interactions. Given that the Simons Observatory [51]

and CMB-S4 [52] are forecasted to reach ∆Neff < 0.14 and 0.060 at 95% c.l., respectively, we

project that SO can exclude

Λe > 3.7×106 GeV = 106.6 GeV , (2.19)

Λµ > 2.2×107 GeV = 107.3 GeV , (2.20)

Λτ > 1.0×105 GeV = 105.0 GeV , (2.21)

11The differences between our results obtained using full quantum statistics and calculations based on approximate
classical statistics is about 5% in the plateaus, but increases when the predicted values of ∆Neff drop for larger values
of Λi, reaching or even exceeding 20% at ∆Neff = 0.02. This is because the axions decouple at higher temperatures
where the difference between the classical and quantum production rate becomes more pronounced, cf. Fig. 2.3.

12Apart from bounds on ∆Neff from the CMB, we can also employ its BBN constraints (see e.g. [33, 34, 35])
which lead to

Λe > 1.8×106 GeV = 106.2 GeV , (2.14)

Λµ > 1.4×106 GeV = 106.1 GeV , (2.15)

where we conservatively assumed ∆Neff < 0.5 following [56]. While the electron bound is similar due to the
functional dependence of ∆Neff on Λe in the Boltzmann-suppressed regime, the muon constraint is weaker by
one order of magnitude. On the other hand, these BBN bounds are not limited to sub-eV axions, but extend to
masses mφ ≲ 1MeV (cf. [56]).
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while CMB-S4 will just fall short of the heavy quark targets,13 but will constrain

Λe > 5.4×106 GeV = 106.7 GeV , (2.22)

Λµ > 3.3×107 GeV = 107.5 GeV , (2.23)

Λτ > 5.5×106 GeV = 106.7 GeV . (2.24)

We in particular note the improvement in Λτ by nearly two orders of magnitude when going from

Planck to SO and from SO to CMB-S4, respectively. While the physical origins of these bounds

will be discussed in §2.4.3, we clearly see that there is a highly nonlinear relationship between

improvements in the measurement of Neff and the parameters of models that produce ∆Neff > 0.

These bounds hold for axions with masses m ≲ 1eV. At higher masses, the axions behave

like matter (and not free-streaming radiation) during the recombination era and may also be

constrained from their contribution to the effective mass of neutrinos. As we increase the axion

mass, we expect that the constraints on these couplings will become more stringent due to their

impact on structure formation and, eventually, over-closure of the universe. However, as we

increase the mass, it is increasingly possible that the axions decay prior to recombination through

a coupling to photons or neutrinos. We will therefore leave the discussion of larger masses to

future work (see also [74, 75, 76]).

2.4.3 Physics of Constraints

In the previous subsection, we calculated ∆Neff for axions and other pNGBs coupled

to individual SM fermions. The shapes of the curves displayed in Fig. 2.4 vary significantly

depending on the fermion. In the following, we provide qualitative explanations and describe

the physics underlying this functional dependence of ∆Neff(Λi). In addition, we might hope to

13We note the relatively large uncertainty in our predictions for the coupling to the charm and bottom quarks
due to the strong-coupling regime of the QCD phase transition (see Appendix A.2 for a more detailed discussion).
Dedicated QCD lattice calculations may reveal that CMB-S4 and potentially even SO are sensitive to these
interactions. An alternative approach is to match across the QCD phase transition using calculations for ∆Neff before
and after, similar to the calculation of [72, 73] for the QCD axion.
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understand the approximate size of the constraints on the interaction strengths from dimensional

analysis.

As described in detail in the previous subsection, cosmological production of axions

is described by the Boltzmann equation (2.13). While the total production of axions can be

determined exactly using this equation, the origin of the constraint follows from the qualitative

requirement that the production becomes efficient at some temperature. Specifically, we will

produce a large number density of axions if the production rate exceeds the rate of dilution due

to the expansion of the universe, namely

Γ(T )> H(T ) =

√
π2

90
g∗(T )

T 2

Mpl
, (2.25)

for some temperature T achieved in the early universe, with the reduced Planck mass Mpl. When

this condition is met, the axion will thermalize, i.e. the number density of axions will approach the

number density of photons at that temperature which can therefore yield a potentially detectable

contribution to Neff.

At any temperature above the mass of the fermion, we can always make the coupling

sufficiently large to meet our condition in (2.25) which implies that the axions will thermalize.

This is sufficient to ensure that the axions remain in thermal equilibrium with the rest of the

Standard Model as the universe cools to lower temperatures (but that are still larger than the

mass, T > mi). However, due to the Boltzmann suppression of the fermion when T ≪ mi, the

axions always decouple from the SM bath at sufficiently low temperatures, regardless of the

coupling strength. Figure 2.5 compares the Hubble rate H(T ) to the production rate Γ(T ) for a

range of interaction strengths to muons and illustrates both of these features. We notice that all

production rates become much smaller than the Hubble rate, Γφ (T )≪ H(T ), by T ≈ mµ/10.

As a consequence, we should expect that the left-most part of Fig. 2.4 should asymptote to ∆Neff

as determined by a decoupling at TF ≈ mi/10 based on Fig. 2.1. This implies that the asymptotic

contributions to ∆Neff for large couplings to different fermions should be ordered inversely
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Figure 2.5. Production rate of axions and other pNGBs, Γφ , as a function of temperature T for
different values of the muon coupling Λµ . The solid gray line shows the Hubble rate H(T ), i.e.
Γφ (T )> H(T ) indicates efficient cosmological production of axions at that temperature. The
dashed line shows the production rate for the current bound on the interaction strength from
Neff measurements of Planck. For small values of Λµ , we see efficient production over many
decades of T > mµ , but the axion usually decouples by T ≲ mµ/10 because the production
becomes exponentially suppressed. As Λµ increases, efficient production is increasingly possible
only around T ≈ mµ . When Λµ ≫ 107 GeV, there is no temperature where axions are efficiently
produced from this interaction with muons. While the most natural units of the production
rate and temperature for cosmological axion production are GeV (left) and the dimensionless
ratio T/mµ (top), production rates in s−1 (right) and temperatures in GeV (bottom) are useful
for comparison with astrophysical axion production.
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proportional to their mass, i.e. smaller masses mi correspond to larger ∆Neff because TF ≈ mi/10

is smaller. We see that this ordering is true for all the heavy fermions except for the ordering

of the charm and tau lepton. This is a result of cutting off the axion production rate during the

QCD phase transition when coupling to the charm because the strong coupling constant is no

longer perturbative. This uncertainty due to QCD strong coupling is discussed in Appendix A.2

and implies that the charm and bottom curves are likely underestimated at larger couplings.

As we decrease the coupling, or increase the scale Λi, we see that the shape of the curves

in Fig. 2.4 depends significantly on the specific fermion. Increasing the coupling changes the

precise temperature at which the axion decouples and, therefore, the part of the g∗(T ) curve

responsible for diluting the number of axions. Specifically, as the coupling decreases, the

temperature where the axion production is significant becomes increasingly restricted to T ≈ mi.

As a consequence, the decoupling temperature effectively increases from TF ≈ mi/10 to TF ≈ mi

as we move from stronger to weaker coupling (smaller to larger Λi). This implies that the

contribution to ∆Neff from coupling to a given fermion is sensitive to the g∗(T ) curve in the

vicinity of its mass mi. We note that the contribution of the fermion itself is included in this

change to g∗(T ) which means that there are more fermion-antifermion pairs present in the

thermal bath when the axions decouple at higher temperatures. In all cases, we see a knee in the

shape of the curve that is in good agreement with the equilibrium result for TF = mi, which is

the approximate decoupling temperature when the axions just barely reach equilibrium.

Finally, as we decrease the coupling further (again, equivalent to increasing Λi), the

production rate will eventually not reach H(T ) for any temperature T . Without coming into

equilibrium, the number of axions is no longer tied to the number of photons and we see that

the contribution to ∆Neff falls rapidly. Since the effective coupling is ε̃i = 2mi/Λi, this happens

at smaller values of Λi for lighter fermions. As a consequence, the exponential falloff of the

∆Neff curves in Fig. 2.4 occurs in the order of increasing mass, i.e. lighter fermions lead to

negligible ∆Neff at smaller Λi. The fact that the ∆Neff curves cross is another manifestation of

the same physics.
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We can gain further insights by comparing the shape of the curves relating ∆Neff and

the axion-fermion coupling strengths (left panel of Fig. 2.4) to the standard TF -∆Neff curve of

Fig. 2.1. This comparison is provided by the right panel of Fig. 2.4. Taking TF = mi, which is

denoted by the triangles in the right panel, we see that the contributions to ∆Neff are near, but

slightly below the asymptotic values at strong couplings for most fermions. While this is in

line with our expectations, it does not fully address how to translate the approximate inequality

in (2.25) into a map between Λi and ∆Neff. This is particularly noticeable for the coupling to

muons, where the ∆Neff curve begins to drop around Λµ = 106 GeV, but crosses ∆Neff(TF = mµ)

only around Λµ = 107 GeV. More generally, the limitation of our qualitative estimates is that

they do not entirely explain the shapes of the ∆Neff curves.

The complication in relating the scales Λi to values of ∆Neff is that these curves are

really a combination of the axion production rate from the fermion involved in the coupling and

the effective number of relativistic degrees of freedom from all the particles in the Standard

Model, g∗(T ). We can separate these effects by removing the dependence on g∗(T ), as is

shown in Fig. 2.6. The green curve shows the contribution to ∆Neff if g∗(T ) was a constant

over the relevant range of temperatures so that ∆Neff would be a constant for any coupling

reaching equilibrium. We see in Fig. 2.5 that Γ(T ) < H(T ) for all temperatures T if Λµ >

1.5×107 GeV ≈ 107.2 GeV, which is in good agreement with the value of Λµ at which the curve

bends, indicating that the axions are never coming into equilibrium.

In contrast, even when we add the contribution to g∗(T ) from the muon (displayed

by the red curve in Fig. 2.6), which changes between T ≫ mµ and T ≪ mµ , the contribution

to ∆Neff begins to decrease around Λµ ≈ 106 GeV when the axion is still reaching equilibrium.

We can understand this in terms of our simple estimate as follows: at large coupling strengths,

TF ≈ mµ/10 means the muons are mostly annhilated at decoupling and do not contribute

to g∗(TF). As we decrease the coupling, TF → mµ so that the axions are diluted somewhat by

the muon annihilation even though the axions come into thermal equilibrium.

23



105 106 107 108

Λµ [GeV]

0.02

0.05

0.1

0.2

0.5

1

∆
N

e
ff

Standard Model
Muons & lighter
Electrons & lighter

0.01 0.1 1

T [GeV]

10

20

50

g ∗
(T

)

mµ

Figure 2.6. Left: Breakdown of the contribution to ∆Neff from the coupling to muons. The full
Standard Model result is shown in blue, the red curve displays the predictions for a universe
without the SM fermions that are heavier than the muon, i.e. a universe with photons, neutrinos,
electrons and muons, and the green curve additionally removes the contribution to g∗(T ) from
the muon. We see that the large change in g∗(T ) in the vicinity of T = mµ due to the QCD phase
transition has a significant impact on the resulting contribution to ∆Neff. Right: The g∗(T ) curves
underlying the calculation of ∆Neff(Λµ) displayed in the left panel, matched by color.

Finally, when all the degrees of freedom of the Standard Model are included in g∗(T )

(blue curve in Fig. 2.6), we see a considerably larger suppression even when Λµ > 107 GeV

because the muon mass lies on the boundary of the QCD phase transition during which the

number of degrees of freedom is changing rapidly with temperature. This dependence on g∗(T )

depends significantly on the fermion mass and leads to the variety of shapes seen in Fig. 2.4.

This is best illustrated by the coupling to the tau lepton, which has a mass that is close to the

QCD phase transition which means that the ∆Neff curve effectively transitions from decoupling

after the QCD phase transition to decoupling before the QCD phase transition as we increase Λτ .

2.5 Comparison with Other Probes

Cosmological constraints on axions and other pNGBs are particularly compelling as they

are both easy to calculate and robust to much of the details of the model. This is largely due to

thermal equilibrium which tells us the number of axions produced at a given temperature for any

sufficiently large coupling. Yet, there are a wide variety of other probes of axions, both terrestrial
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and astrophysical, that have different strengths and weaknesses compared to cosmological probes.

In this section, we will compare our results, especially our constraint on Λµ from Planck, to

other probes of the same couplings. Of particular interest will be astrophysical constraints, such

as from cooling of supernova SN 1987A, which are also the result of thermal axion production.

2.5.1 Stellar Cooling and SN 1987A

Astrophysical constraints on axion couplings [77, 78, 79] offer a useful foil for cosmolog-

ical bounds. Stars also provide a controlled high-temperature environment in which the thermal

production of a new light particle would be detectable. In this sense, astrophysical constraints are

probing essentially the same physics as constraints from bounds on Neff. It is therefore instructive

to understand where differences arise and what the relative strengths of each probe are.

At a qualitative level, both probes are sensitive to large changes in the number of axions.

In the case of astrophysical environments, the production of these particles is governed by

dnφ

dt
= Γ

(⋆)
φ
(T⋆)

(
neq

φ
(T⋆)−nφ

)
, (2.26)

where T⋆ is a temperature that is (mostly) fixed by the specific probe. This equation should

be compared to the cosmological Boltzmann equation (2.13). In general, the cosmological

interaction rate Γφ (T ) and the astrophysical rate Γ
(⋆)
φ
(T ) are related, but they can differ even at

the same temperature due to the large chemical potentials present in astrophysical environments.

This is particularly important for protons, neutrons and electrons. In contrast, muons (and the

other heavier particles) are unstable and their abundance is primarily due to thermal production.

As a result, we can treat Γφ (T )≈ Γ
(⋆)
φ
(T ) for our purposes.

At very weak coupling, the axions will escape the star after production, thus providing a

new mechanism for energy to leave the system. If the number of axions produced in the timescale
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of observation tobs is comparable to the number of photons,

Γ
(⋆)
φ
(T⋆)neq

φ
(T⋆) tobs ≳ nγ(T⋆) , (2.27)

then the energy loss due to axions is significant and would lead to detectable changes in the

dynamics of the astrophysical system.

We are particularly interested in the constraints from SN 1987A because the high tem-

peratures of the supernova can produce a large number of muons. The timescale relevant to

axion cooling of the proto-neutron star is tobs ≈ 1s.14 Of course, the temperature of the star

depends both on the radius and time which therefore means that our estimate is necessarily ap-

proximate. Nevertheless, both the axion production and the total energy of the star are dominated

by the hottest regions which therefore makes this local approximation a useful starting point.

Furthermore, since neq
φ
(T⋆)≈ nγ(T⋆) for light axions, forbidding significant cooling implies a

constraint

Γ
(⋆)
φ
(T⋆)< t−1

obs = 10−24.2 GeV = 7×10−25 GeV . (2.28)

For a system in equilibrium at temperature T , we can easily determine this constraint from Fig. 2.7.

We however notice that the production rate is very sensitive to the precise temperature. In partic-

ular, if we require that Γ
(⋆)
φ

= 1s−1, then our bound is in the range of Λµ > 107.7−8.5 GeV for a

temperature range of 25−45MeV. This is, of course, a reflection of the Boltzmann suppression

of muons inside the supernova and, therefore, explains our exponential sensitivity to the tempera-

ture. These results are in agreement with the bounds found by a more detailed analysis presented

in [59, 60]. Using results from a simulation with a mass-weighted, radially-averaged core tem-

perature of 25MeV, they find Λµ > 107.5 GeV. However, these bounds still depend sensitively

on the specific simulation. Concretely, they find Λµ > 108.0 GeV in another simulation with

14A common description of supernovae suggests the cooling of the proto-neutron star lasts approximately ten
seconds. We will conservatively take the relevant timescale to be tobs ≈ 1s because approximating supernovae as
constant temperature systems will break down as tobs → 10s.
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Figure 2.7. Production rate of axions and other pNGBs, Γφ , as a function of temperature T
for different choices of the coupling to muons, Λµ . As in Fig. 2.5, which presents a larger
range of temperatures, the solid gray line shows the Hubble rate H(T ) to indicate the region
Γφ (T ) > H(T ) of efficient cosmological production and the dashed gray line indicates the
interaction rate for the current Planck Neff bound on the axion-muon coupling Λµ . This figure
allows us to easily compare our cosmological bounds to astrophysical constraints which arise
for an order one change in the number of photons during the observable timescale, namely
Γ
(⋆)
φ
(T ) tobs > 1. As SN 1987A is associated with tobs ≈ 1s, the inferred constraint arises

approximately from the intersection of Γφ ≈ Γ
(⋆)
φ

= 1s−1 with the temperature in the core of
the supernova. As an estimate of this temperature, the black horizontal line indicates the range
of mass-weighted, radially-averaged temperatures in spherically-symmetric, one-dimensional
simulations of approximately 25−45MeV [59].
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mass-weighted, radially-averaged core temperature of 45MeV. Importantly, the temperatures

reached inside the supernova vary significantly both with position inside the core and between

the simulations. As a result, we expect that the derived bounds will be exponentially sensitive to

the details of the specific simulation used (see also [61] for more discussion).

From Figure 2.7, we can also compare the sensitivity of the cosmological constraint

to the bound from SN 1987A. Comparing the production rate as a function of temperature T

to the Hubble rate (shown by the solid gray line), we see that Λµ = 107.2 GeV is the smallest

value for which the cosmological production never becomes efficient, Γφ (T )> H(T ). This is

our approximate cosmological bound that essentially reproduces the exact bound from current

Planck measurements of ∆Neff of Λµ > 107.1 GeV. To compare this constraint to SN 1987A,

we follow the dashed gray curve to Γφ = 1s−1 where it corresponds to the production in the

supernova at T = 18MeV. In addition, we see that the temperature where Γφ = 1s−1 is nearly

unchanged for the slightly smaller value of Λµ = 107 GeV, but with the major difference that

axions are efficiently produced in the early universe over many decades in temperature. In

consequence, it is more useful to treat cosmological and supernova bounds of axions and

other pNGBs as complementary rather than redundant. While the constraint Λµ > 107.5 GeV

from SN 1987A is somewhat stronger, the current cosmological limit of Λµ > 107.1 GeV (or the

future CMB-S4 limit of Λµ > 107.5 GeV) can be mostly understood from equilibrium physics

and is therefore quite robust. In contrast, the temperatures and dynamics inside a supernova are

complex and the origin of the constraints are more uncertain (see also [80] for other potential

limitations and uncertainties of the supernova-based constraints). For related reasons, the bounds

in [59, 60] are theoretical constraints and not 95% c.l. limits, in contrast to the cosmological

constraints derived from Neff measurements.

2.5.2 Experimental Limits

We discussed the axion-muon coupling constraints from stellar cooling and SN 1987A in

detail in the previous section. In the following, we provide a more general overview of existing
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bounds on couplings of axions and other pNGBs to matter and compare them to the limits that

we derived in §2.4.2. We will keep our focus on the diagonal couplings and will not discuss

the extensive list of existing bounds on off-diagonal couplings, in particular from SM particle

decays (cf. e.g. [11, 81, 82, 83]).

Axion-Lepton Couplings

First, we will consider the couplings of axions to leptons. We focus on the axion-muon

and axion-tau couplings since the ∆Neff-based bounds are competitive in those cases, but will also

briefly discuss the axion-electron interaction. Moreover, we are not considering model-dependent

constraints that convert a bound on the coupling to electrons or photons to a limit on the other

lepton couplings, e.g. by assuming these interactions to be universal or determined by a model

such as DFSZ. Such bounds are generally stronger due to the tight bounds on Λe, but we prefer

to consider the various axion couplings to be independent. This results in conservative and

model-independent estimates applicable to any pNGB-fermion interaction, as mentioned above.

Coupling to Electrons.

The limit on the axion-electron interaction strength from white dwarf cooling is Λe >

1.2×1010 GeV [84] (see also [85, 86, 87, 88, 89] for similar limits from stellar cooling and

related discussions), which is considerably stronger than any limit that may be derived from

upcoming cosmological ∆Neff measurements. The reheating temperature-dependent freeze-out

constraint from excluding ∆Neff = 0.027 is Λe ≳ 6×107 GeV
√

TR/1010 GeV [32], while the

current freeze-in constraint is given by Λe > 2.5×106 GeV which will improve to 5.4×106 GeV

with CMB-S4, cf. (2.16) and (2.22).15 Having said that, the cosmological ∆Neff-based bounds

on Λe are less sensitive than astrophysical constraints to the physical environment where axions

are produced. In addition, the environment in the early universe is quite different to the interiors

of stars which means that cosmological probes can be an important complementary test [90].

15We note that BBN-based ∆Neff measurements have been able to essentially close a small window in parameter
space for mφ ∈ [0.1,1]MeV [56].
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Figure 2.8. Comparison of existing and future constraints on the coupling between axions
and muons (left) and tau leptons (right), respectively, as a function of the axion mass mφ ≤
1eV, which is the mass range relevant for CMB (and large-scale structure) measurements
of ∆Neff. Left: The existing model-independent constraints for the coupling to muons come from
measurements of the anomalous magnetic moment of the muon (gµ −2), which would receive
axion contributions at the loop level, and from the observed cooling rate of SN 1987A. For the
latter, the dark (light) regions indicate the conservative (optimistic) bounds inferred by [59, 60]
and, therefore, indicate the level of uncertainty in these constraints. The limits derived in this
work from ∆Neff measurements of BBN (cf. [56]), and current and future CMB experiments
are complementary in nature. Right: The strongest, model-independent bound on the axion-
tau interaction strength comes from the loop-induced coupling to electrons which is strongly
constrained from stellar cooling of white dwarfs. The CMB-based limits will improve by two
orders of magnitude each from Planck to the Simons Observatory and CMB-S4.

Coupling to Muons.

The main constraints on potential interactions of sub-MeV axions and muons have

been derived from the cooling rate of supernova SN 1987A and from measurements of the

anomalous magnetic moment of the muon, gµ − 2. While we discussed the former in detail

in §2.5.1 (cf. [59, 60]), the latter allows to put laboratory bounds on the coupling strength

since pNGBs contribute to gµ − 2 at the loop level. Following [91] and using the current

difference between the measured and theoretically-predicted value of aµ ≡ (gµ −2)/2, ∆aµ =

[251±59]×10−11 [92, 93], at the lower 5σ limit (since the pNGB-induced contribution to the

anomalous moment is negative), ∆aµ ≥−44×10−11, we conservatively derive Λµ > 102.6.16

In the left panel of Fig. 2.8, we compare these existing bounds to the current and future

16We note that the difference between the experimental value and the implied value from recent lattice calculations
of the hadronic contribution to gµ −2 is significantly smaller [94] and leads to a bound which is weaker by a factor
of approximately two.
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bounds studied in this work, see (2.15), (2.17), (2.20) and (2.23). For the supernova bound, we

display a conservative and an optimistic estimate as derived in [59, 60] which differ in their model

assumptions of the mass of the remnant neutron star in SN 1987A, with additional uncertainties

possible from uncertainties in the equation of state at supernuclear densities. We clearly see the

complementary nature of the displayed constraints, with current and future ∆Neff-based bounds

exploring the same parameter space and an exclusion of ∆Neff > 0.067 corresponding to the

conservative bound from SN 1987A.

Coupling to Tau Leptons.

In contrast to the interactions with electrons and muons, there do not appear to be

model-independent, tree-level bounds on the diagonal coupling to tau leptons. However, such a

coupling would induce an interaction with electrons at the loop level, i.e. the bounds on Λe can

generally be translated into constraints on the couplings to the other leptons (and quarks) [11].

The strong bounds on the electron-axion coupling and the large masses of the third generation of

SM fermions partly compensate the loop suppression which results in interesting constraints.

Following [11], we infer Λτ ≳ 8×104 GeV from the previously mentioned white dwarf cooling

bound on Λe of [84] if the axion contribution to the induced coupling is dominantly proportional

to m2
τ . We compare this limit to our freeze-in constraints in the right panel of Fig. 2.8. While the

current Planck bound is weaker than the loop-induced bound based on the Λe limit, near-term

CMB experiments will strengthen this constraint, with the sensitivity of SO corresponding to this

stellar bound and CMB-S4 being projected to improve upon it by about two orders of magnitude.

Overall, we notice that the cosmological constraints have the opposite strengths and

weaknesses of the astrophysical bounds on axion couplings to leptons. Due to the maximum

temperatures found in astrophysical settings, the implied sensitivities are much weaker for

heavier leptons. In contrast, under plausible assumptions, our cosmological history reaches

temperatures well above the masses of these leptons and, therefore, is also sensitive to the heavy

leptons. In fact, cosmological observations can reach larger values of Λi for the heavier fermions
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because the effective coupling is proportional to their mass.

Axion-Quark Couplings

We now turn to the interaction between axions and the heavy quarks. Since current and

near-term cosmological experiments are not sensitive enough to constrain these couplings,17 we

will instead estimate the required sensitivity to ∆Neff to match the existing constraints. As for

the lepton couplings, we will again focus on model-independent and diagonal couplings, but

note that it is less clear in this case because the distinction between diagonal and off-diagonal

constraints is only valid at leading order since quark flavors necessarily mix.

Coupling to Top Quarks.

The best model-independent constraints on the diagonal axion-top coupling arise from

the loop-induced constraint based on the Λe limit, cf. [11]. Assuming that this loop contribution

is dominated by m2
t , e.g. when only coupling the axion to the right-handed top, we deduce

Λt ≳ 4×109 GeV. This corresponds to a contribution of ∆Neff ≈ 0.005 which is much smaller

than the high-temperature thermal freeze-out contribution of 0.027 or near-term cosmological

bounds on ∆Neff.

Coupling to Bottom Quarks.

In the case of an independent axion-bottom interaction, we again follow [11] and compute

the same loop-induced constraint as described for the interactions with tau leptons and top quarks:

Λb ≳ 2.0×106 GeV. Here, we assumed that the axion contribution to the electron coupling is

dominated by m2
b, which is the case if the axion only couples to the right-handed bottom, for

instance. Given our conservative estimate of ∆Neff(Λb), we require a cosmological measurement

that excludes ∆Neff ≳ 0.048 to improve upon this bound, but we refer to Appendix A.2 for a

discussion on the uncertainties of this estimate and potential implications for SO and CMB-S4.

17Note however our discussion in Appendix A.2 of the uncertainties in our calculation for the interactions with
the charm and bottom quarks which still leave the possibility for such constraints.
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Coupling to Charm Quarks.

For diagonal couplings to charm quarks, we follow the same argument while assuming

that the loop contribution is dominated by m2
c , e.g. by only coupling to the right-handed charm. In

this way, we infer Λc ≳ 1.4×105 GeV. When comparing this bound to the predictions based on

our conservative estimate of ∆Neff(Λc), an improvement of this bound requires the exclusion of

∆Neff ≳ 0.048. However, lattice QCD calculations may reveal that weaker bounds on ∆Neff lead to

the same bounds on the interaction strength with charm quarks, with some constraining power not

only accessible for CMB-S4, but potentially even for the Simons Observatory (cf. Appendix A.2).

2.6 Conclusions

The high temperatures and densities of the early universe provide an ideal environment to

test fundamental physics. Even for extremely weak couplings, new particles could be efficiently

produced, potentially leaving a lasting imprint on cosmological observables. Axions and other

pseudo-Nambu-Goldstone bosons provide a particularly compelling target as they are naturally

light and would therefore leave a measurable imprint on cosmological observables via the

effective number of relativistic species, Neff.

In this paper, we calculated the predicted contributions to Neff from axions and other

pNGBs that are coupled to Standard Model fermions. We focused on the effectively marginal

interactions that arise after electroweak symmetry breaking which can thermalize these particles

beyond the Standard Model at low temperature. The axions eventually decouple when the

temperature drops below the mass of the associated fermion. Since this happens below the

electroweak scale, they contribute ∆Neff > 0.027 to the radiation density in the early universe

which makes them compelling targets for near-term surveys. Our main result is shown in Fig. 2.9,

which provides a direct link between the measurement of Neff and limits on the coupling to

SM fermions.

This work includes an improved calculation of the thermal axion production rates. The
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Figure 2.9. Contribution to the radiation density as parameterized by ∆Neff as a function of
axion coupling strength Λi for different Standard Model fermions ψi (cf. Fig. 2.4). From this
figure, we can translate current and future constraints on Neff (cf. Fig. 2.1) into the equivalent
bounds on Λi for any couplings to matter.

described method for calculating the thermal averages including the full quantum statistics is also

relevant to other production rate calculations, including axion production at high temperatures.

In addition, the same production rates calculated in this paper also appear in astrophysical

constraints on axions. We are therefore able to use the common origin of axion production to

compare the strengths and weaknesses of the cosmological and astrophysical bounds on axion

couplings to matter, and saw that the cosmological production of axions is essentially determined

by dimensional analysis as are the associated bounds.

Our results are particularly important in the context of ongoing cosmic surveys improving

the measurement of Neff, which are on the precipice of measuring the energy density of a single

scalar field decoupling prior to the QCD phase transition. Concretely, CMB-S4 is expecting to

exclude ∆Neff > 0.060 at 95% c.l. [52] and could be improved in combination with a number of

large-scale structure surveys [44]. The axion couplings to matter discussed in this paper illustrate

that this is a particularly compelling level of sensitivity. As several Standard Model fermions have

masses around 1 GeV, the coupling of axions to these fermions naturally contributes to ∆Neff
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at this level. Furthermore, the decoupling temperature depends both on the interaction strength

and the mass of the fermion, resulting in a range of ∆Neff, even when the axion reaches thermal

equilibrium. As a result, there are both numerous thresholds of ∆Neff at this sensitivity and

opportunities to continuously improve our understanding of Standard Model couplings of axions

and other pseudo-Nambu-Goldstone bosons with the depth of these surveys.
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Chapter 3

Light Fields during Inflation from BOSS
and Future Galaxy Surveys

3.1 Synopsis

Primordial non-Gaussianity generated by additional fields present during inflation offers

a compelling observational target for galaxy surveys. These fields are of significant theoretical

interest since they offer a window into particle physics in the inflaton sector. They also violate

the single-field consistency conditions and induce a scale-dependent bias in the galaxy power

spectrum. In this paper, we explore this particular signal for light scalar fields and study the

prospects for measuring it with galaxy surveys. We find that the sensitivities of current and future

surveys are remarkably stable for different configurations, including between spectroscopic

and photometric redshift measurements. This is even the case at non-zero masses where the

signal is not obviously localized on large scales. For realistic galaxy number densities, we

demonstrate that the redshift range and galaxy bias of the sample have the largest impact on

the sensitivity in the power spectrum. These results additionally motivated us to explore the

potentially enhanced sensitivity of Vera Rubin Observatory’s LSST through multi-tracer analyses.

Finally, we apply this understanding to current data from the last data release of the Baryon

Oscillation Spectroscopic Survey (BOSS DR12) and place new constraints on light fields coupled

to the inflaton.
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3.1.1 Contribution of the author

The author has contributed in developing the main formalism and in writing the paper.

He has performed the numerical calculations and the analysis together with Jiashu Han.

3.2 Introduction

The statistics of the primordial density perturbations offer a window into the dynamics

of the very early universe [101, 102, 103], in particular the inflationary epoch [104, 105].

While current maps of the universe are consistent with purely Gaussian fluctuations [106],

non-Gaussian correlation functions encode the particles and interactions relevant to the origin

of structure [107, 108, 105]. Inflation predicts a lower bound on the amount of primordial

non-Gaussianity (PNG) due to gravity alone that is approximately two orders of magnitude

below current constraints [109]. On the other hand, signals that are large enough to be detected

in the next generation of surveys arise in many models, including examples with only Planck-

suppressed interactions [110].

Due to the limited number of modes remaining to be measured to the cosmic variance

limit in the cosmic microwave background (CMB), surveys of the large-scale structure (LSS)

of the universe present the best opportunity to improve our understanding of the primordial

statistics [105, 111, 112, 113, 102]. With the benefit of three-dimensional information, even

current surveys have the raw statistical power to compete with the CMB [114]. Unfortunately,

for generic non-Gaussian correlation functions, late-time nonlinearities make many modes

inaccessible and present a serious obstacle to our progress [115, 116, 117, 118]. In some

circumstances, however, the manifestation of the primordial signal is robust to nonlinear physics

and can be measured reliably [101].

The fluctuations of extra fields beyond the inflaton present such an opportunity. In the

absence of these fields, correlation functions of matter and galaxies are subject to the constraints

of the single-field consistency conditions [119, 120, 121]. In practice, these conditions are similar
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Figure 3.1. Illustration of the effect of the scale-dependent bias b∆
NG from a non-zero non-

Gaussian amplitude f ∆
NL on the linear galaxy power spectrum. We see that the enhancement of

power shifts from large to small scales as we increase the exponent ∆ (see §3.3.2 for its definition
and details). The horizontal dashed lines indicate the effective shot noise level for BOSS, DESI
and SPHEREx after scaling them to the displayed redshift z = 0 and linear bias b1 = 1.6. The
gray-shaded regions on large scales indicate the wavenumbers below the minimum wavenumber
of these surveys, k < kmin, computed based on their entire spherical volume. The gray-shaded
regions for large wavenumbers indicate the regimes where the scales exceed the nonlinear scale,
k > kNL, for the maximum redshift of BOSS and DESI, respectively.

to the equivalence principle [122] and ensure that correlations are determined by the curvature of

spacetime (i.e. derivatives of the metric fluctuations). Light fields break these conditions and

can lead to enhanced long-distance correlations [123, 124, 125, 126, 127, 128]. These apparent

violations of the equivalence principle cannot arise from nonlinear gravity, and can therefore be

distinguished from astrophysical and gravitational sources of non-Gaussianity.

From the perspective of both data analysis and survey design, the unique advantage of

these non-Gaussian signals is that they can be observed in the two-point statistics of galaxies.

Violations of the single-field consistency conditions introduce couplings between long- and short-

wavelength modes. The short-wavelength modes control the number density of galaxies, which

are then non-trivially correlated on large scales in the presence of this type of non-Gaussianity.

The resulting (non-local) change to the shape of the galaxy power spectrum, shown in Figure 3.1,

is known as scale-dependent bias [129] and has been searched for in many existing datasets (see

38



e.g. [130, 131, 132, 133, 134, 135, 136, 137, 138, 139]).

The case of local primordial non-Gaussianity [140], for which the Gaussian and non-

Gaussian Newtonian potentials ϕ and Φ are related by

Φ(⃗x) = ϕ (⃗x)− f loc
NLϕ

2(⃗x)+ . . . , (3.1)

has been very well studied in the literature, both theoretically and observationally. Local PNG

arises in the presence of multiple massless fields, such that ϕ is an isocurvature mode during

inflation, but is converted to an adiabatic mode at later times [123, 124, 125]. Future measure-

ments are expected to reach particularly interesting thresholds for the physics of multi-field

inflation [115, 141, 142, 105].

The contribution to primordial non-Gaussianity from massive particles is much less

studied observationally. It is however a classic signature of quasi-single-field inflation [126, 127,

128], which is also known as cosmological collider physics [143]. Importantly, these models are

compelling targets for current and future surveys. In spite of this, little has been known about the

optimal survey strategy to search for these relics from inflation up to now.

In this paper, we will examine how future surveys can best constrain these non-Gaussian

signals using galaxy power spectra. For local PNG (massless fields), the signal is dominated by

the largest scales and most observational strategies are designed accordingly [144, 145]. On the

other hand, the signals of massive fields may arise at large or small scales (see Fig. 3.1), which

means that the characteristics which best constrain these models are less clear a priori [146, 147,

148]. We therefore study this signal in detail, and investigate how redshift coverage, biasing,

multi-tracer techniques and target selection impact forecasts over the full range of scaling laws

induced by these particles.

We find that target selection, specifically finding highly biased objects, is the largest factor

in driving current and future measurements of this effect when assuming a fixed universality

relation. While large volumes help to increase the number of modes, especially in spectroscopic

39



surveys, we observe that the benefits of going to higher redshifts are more driven by the large

biases of high-redshift objects and only secondarily by the increased volume. In photometric

surveys, the larger number density of galaxies also enables a significant increase in sensitivity

through sample-variance cancellation. This requires splitting the sample according to the bias,

which we explore in the context of Vera Rubin Observatory’s Legacy Survey of Space and

Time (LSST).

Using these insights, we explore current constraints on the scale-dependent bias of galax-

ies using the BOSS DR12 dataset [149] for the full range of scaling behaviors of light inflationary

fields. We measure the contributions to the power spectrum for one scaling exponent (PNG shape)

at a time and compute a correlation matrix to extrapolate between the discrete choices of scaling

dimensions (masses). While our inferred constraints are less sensitive to the PNG amplitude

than those from Planck, the CMB constraints for non-zero masses are driven by bispectra in

equilateral configurations rather than the scaling behavior in the squeezed limit probed by the

galaxy power spectrum. The only previous constraint from LSS data in this regime was made

in [150]. At the same time, we forecast that galaxy power spectrum measurements in future

surveys will exceed the sensitivity of Planck to these light fields for a sizable range of their

masses.

This paper is organized as follows: In Section 3.3, we review the relevant theoretical

background for our non-Gaussian signal. In Section 3.4, we present forecasts for a wide range

of model parameters and experimental configurations. Our goal is to identify the choices

that most directly impact the sensitivity to PNG beyond the local type. In Section 3.5, we

apply our understanding of the signal to BOSS DR12 galaxy clustering data and present new

constraints on non-Gaussianity from light fields. In Section 3.6, we discuss the role of multi-

tracer analyses and astrophysical effects on the forecasts. We conclude in Section 3.7. A set

of appendices contains technical details on the modeling of the galaxy power spectrum and the

survey specifications (Appendix B.1), and a discussion on our ability to measure the scaling
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behavior of the non-Gaussian signature from the galaxy power spectrum (Appendix B.2).

3.3 Light Fields and Galaxies

Our goal in this paper is to explore the signal of additional fields that manifest themselves

in the galaxy power spectrum via the scale-dependent bias. This section reviews the necessary

background to understand the signal. Readers who are familiar with the scale-dependent bias

due to general forms of primordial non-Gaussianity (i.e. beyond the local type) may proceed

to Section 3.4.

3.3.1 Galaxy Power Spectrum

The formation of structure in the universe is driven by the growth of density fluctuations

in the dark matter [151]. The evolution of the density contrast Fourier mode in redshift space,

δm(⃗k,z)≡ δρm(⃗k,z)/ρ̄m(z), can be solved at linear order to give

δm(⃗k,z) =
2k2T (k)D(z)

3ΩmH2
0

Φ(⃗k)≡ k2T (k,z)Φ(⃗k) , (3.2)

where k = |⃗k|, T (k) is the transfer function defined such that T (k → 0)→ 1, and D(z) is the

linear growth factor normalized as D(z) = 1/(1+ z) during matter domination. The primordial

Newtonian potential Φ(⃗k) encodes the primordial density fluctuations generated during inflation

which are concretely of the form

⟨Φ(⃗k)Φ(⃗k′)⟩= 9
25

As

k3 kns−1(2π)3
δD(⃗k+ k⃗′) , (3.3)

where δD is the Dirac delta function and we used Φ =−3
5ζ , with curvature fluctuation ζ , for

modes that re-entered the horizon during matter domination. The linear matter power spectrum
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is therefore given by

Plin(k) = k4T (k,z)2 As

k3−(ns−1)
=

4
25

AsD(z)2

Ω2
mH4

0
T (k)2kns . (3.4)

The nonlinear matter power spectrum Pm(k) follows the linear power spectrum on large scales,

Pm(k)≈ Plin(k) for k ≪ kNL, for some scale kNL ≈ 0.1hMpc−1 at z = 0. Gravitational evolution

corrects this behavior on smaller scales, k ≳ kNL.

We will generally work with galaxies in the regime k < kNL. The nonlinear effects that

are relevant in this regime can be described solely in terms of the bias expansion [152, 153]. In

its most general form, the bias expansion is simply the assumption that galaxy formation is a

local process:1

δg(⃗x) = ∑
i

bOiOi(⃗x) , (3.5)

where the operators Oi(⃗x) are any locally measurable quantities. Since we typically assume that

the matter controls the formation of galaxies, these are usually local products of δm(⃗x) or the

tidal tensor [154], si j =
(

∇i∇ j
∇2 − 1

3δi j

)
δm(⃗x),

O ∈ {δm,∇
2
δm,δ

2
m,s

2
i j,δ

3
m,δ s2

i j,Tr[(Π[1])3]|(3),Tr[Π[1]
Π

[2]]|(3), · · ·} , (3.6)

where the tensors Π
[n]
i j are defined in [152].2 In principle, there are an infinite number of operators

to consider. At any fixed accuracy, we however understand this as an expansion in powers of the

small density contrast, δ n
m ≪ 1, and gradients R2∇2 ≪ 1, for some fixed scale R. To model the

galaxy power spectrum at one-loop order, we consider the following set of operators (up to third

1Technically, biasing is best understood as a local process in Lagrangian space. The non-locality in Eulerian
space is captured by the Zel’dovich approximation [153].

2The superscript (3) indicates that the operator includes only terms up to third order in perturbation theory.
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order in δm) in the bias expansion:

δg(⃗x) = b1δm(⃗x)+b∇2R2
∇

2
δm(⃗x)+bδ 2(δ 2

m(⃗x)−σ
2)+bs2(s2(⃗x)−⟨s2⟩)

+b
ΠΠ[2]Tr[Π[1]

Π
[2]]|(3)(⃗x)+ · · · , (3.7)

with σ2 = ⟨δ 2
m⟩. The coefficients bOi = b1,b∇2,bδ 2,bs2 ,bΠΠ[2], · · · , which we refer to as bias

parameters, are constants that are determined by the details of galaxy formation and evolution.

Put differently, we parameterize the complex physics of galaxies by these coefficients.

On large scales and for initial conditions set by single-field inflation, this is the complete

list of operators for practical purposes on large scales. Because the fluctuations are necessarily

adiabatic throughout cosmic history, the evolution of the universe is controlled by a single

statistical quantity, which we have chosen to represent in terms of Φ and δm. On smaller scales,

the evolution of different components of the universe can however lead to some new types of

biasing terms.

The redshift evolution of the bias parameters, particularly b1(z), are important for pro-

jecting the sensitivity of future surveys. If (proto-)galaxies form at a high redshift and primarily

evolve with the expansion of the universe, then we expect that the large-scale comoving galaxy

power spectrum remains constant, Pgg(k,z)≈ Pgg(k,z′). In other words, the power spectrum is

due to the inhomogeneities in the density field at the time they are formed, as one would find in

Lagrangian biasing. This holds if

b1(z) = D(z)−1 b1(z = 0) , (3.8)

which is a common simplifying assumption in many forecasts. Changes to the galaxy sample

through mergers, for example, can however lead to behavior that differs significantly from

Lagrangian biasing. When possible, we will therefore use the biases for surveys that were

defined by target selection, but the assumption of this type of time evolution is also important in
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the context of multi-tracer analyses discussed in Section 3.6.

Given the bias expansion for the galaxy overdensity, we can write down our model for

the galaxy power spectrum after including a few additional effects. First, we work in Fourier

space by transforming from real-space coordinates x⃗ to (k,µ), where µ is the cosine between

the wavevector k⃗ and the line-of-sight direction. (Note that the composite operators Oi(⃗x)

are simply related to Õi(k,µ) by a single Fourier integral.) Second, there are redshift-space

distortions which arise from the peculiar velocities of galaxies. We account for the Kaiser

effect by adding ∆b(µ,z) = f (z)µ2, with the linear growth rate f ≡ dlogD/da, to the linear

bias b1 [155]. Collecting all terms in the bias expansion at linear order in δm(⃗k) therefore results

in

b(k,µ,z) = b1(z)+ f (z)µ2 + ∑
n>0

bk2n(kR∗)2n , (3.9)

where the last term is the gradient biases in Fourier space with the comoving Lagrangian

radius R∗ of the halos of interest. Third, we describe gravitational nonlinearities in the very

mildly nonlinear regime via the one-loop terms P22 and P13 in standard Eulerian perturbation

theory. Finally, the leading-order stochastic contribution is given by Pε0 . Putting it all together,

we therefore model the theoretical anisotropic power spectrum for two galaxy samples A and B

as follows:

Pth
AB(k,µ,z) = bA(k)bB(k)[Plin(k)+P22(k)+P13(k)]+Pε0δAB

+
[
bA(k)bB

δ 2 +bA
δ 2bB(k)

]
Pδ 2(k)+

[
bA(k)bB

s2 +bA
s2bB(k)

]
Ps2(k)

+bA
δ 2bB

δ 2

(
Pδ 2δ 2(k)−2σ

4)+(bA
δ 2bB

s2 +bA
s2bB

δ 2

)(
Pδ 2s2(k)− 4

3σ
4) (3.10)

+bA
s2bB

s2

(
Ps2s2(k)− 8

9σ
4)+ 3

2

[
bA(k)bB

ΠΠ[2] +bA
ΠΠ[2]b

B(k)
]
P

ΠΠ[2](k) ,

where we have suppressed the dependence on µ and z on the right-hand side, explicitly define all

loop and bias contributions in Appendix B.1, and δAB is the Kronecker delta. To illustrate these
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Figure 3.2. Contributions to the galaxy power spectrum P(i)
gg (k) at z = 0 from the nonlinear, bias

and non-Gaussian terms. The linear bias is chosen to be b1 = 1.6 and the gradient biases bk2n (with
n ≤ 2) are taken to be unity. The bias parameters bs2 and b

ΠΠ[2] are calculated in the Lagrangian
local-in-matter-density model [152], and bδ 2 is calculated using the halo simulation fit of [156].
For comparison, we already include the scale-dependent bias from general PNG, which we
introduce in §3.3.2. The non-Gaussian parameter f ∆

NL is set to unity for both cases of ∆ = 0 and
∆ = 2. The dashed lines indicate negative contributions.

terms, we display the individual contributions in Fig. 3.2.

In practice, we compute the linear matter power spectrum Plin(k), which underlies

all contributions of the theoretical galaxy power spectrum Pth(k), with the Boltzmann solver

CAMB [157] using a fiducial ΛCDM cosmological model based on the Planck 2018 TT, TE, EE

+ lowE + lensing + BAO best-fit cosmology [41]. In Table 3.1, we list the fiducial values of the

ΛCDM, non-Gaussian and bias parameters. We set the fiducial values of the three loop biases bδ 2 ,

bs2 and b
ΠΠ[2] to 0 instead of using the Lagrangian local-in-matter-density model [152] and fit

results from halo simulations [156], as we did in Fig. 3.2, since we cover a larger redshift range

than the fitted bias relations were derived from. This choice should have minimal impact on the

results of this paper because the forecasted constraints on the loop biases are large enough for

both choices of fiducial values to be consistent with each other.

Finally, to relate the theoretical galaxy power spectrum Pth
AB(k,µ,z) to the observed galaxy

power spectrum Pobs
AB (k,µ,z), we account for two observational effects that are present in any
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Table 3.1. Parameters of the fiducial ΛCDM model, based on the Planck 2018 best-fit cosmol-
ogy [41], with the sum of neutrino masses ∑mν = 0.06eV, and the biasing model employed
in our forecasts. Except for the optical depth, we vary these parameters in our forecasts unless
stated otherwise.

Parameter Description Fiducial value

ωb Physical density of baryons ωb ≡ Ωbh2 0.02242
ωc Physical density of cold dark matter ωc ≡ Ωch2 0.11933
100θs Angular size of the sound horizon at recombination 1.04119
τ Optical depth due to reionization 0.0561
ln(1010As) Logarithm of the primordial scalar amplitude 3.047
ns Scalar spectral index 0.9665

f ∆
NL Non-Gaussian amplitude 0

b1 Linear bias b1(z)
bk2n Gradient biases (n ≤ 2) 0
bδ 2 Quadratic bias 0
bs2 Tidal bias 0
b

ΠΠ[2] Evolution bias 0

real survey: redshift errors and the Alcock-Paczynski effect. Redshift errors are observational un-

certainties in the measurement of galaxy redshifts, σz0(1+ z), which we model as an exponential

suppression of the power spectrum along the line of sight,

f A
σz
(k,µ,z) = exp

{
−k2

µ
2[σA

z0(1+ z)]2/H2(z)
}
, (3.11)

where σA
z0 is the root-mean-square redshift error of sample A at z = 0 [158, 159]. (We neglect this

effect for spectroscopic surveys by setting σA
z0 ≡ 0, i.e. f A

σz
= 1.) The Alcock-Paczynski effect

arises when the true cosmology differs from the fiducial cosmology that is used to convert the

measured angular positions and redshifts of the galaxies to comoving wavenumbers in Fourier

space. The effect of this mapping on the density contrast is captured by [160],

fAP(z) =
Dfid

A (z)2

DA(z)2
H(z)

Hfid(z)
, (3.12)

where DA(z) is the angular diameter distance to redshift z. To summarize, our model for the
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observed galaxy power spectrum in redshift space therefore is

Pobs
AB (k,µ,z) = fAP(z)

√
f A
σz
(k,µ,z) f B

σz
(k,µ,z)Pth

AB(k,µ,z) , (3.13)

where Pth
AB(k,µ,z) is given by (3.10).

3.3.2 Scale-Dependent Bias

The conventional description of biasing applies when the initial conditions are Gaussian.

Gaussian initial conditions do not correlate modes of different scales, i.e. the collapse of small-

scale density fluctuations to form halos in different regions is determined by locally observable

quantities, such as the matter density, that vary over cosmological distances due to the long-

wavelength fluctuations. On the other hand, mode coupling in the initial conditions due to

primordial non-Gaussianity can introduce long-range correlations that are purely related to the

statistics of the small-scale fluctuations themselves. When interpreted through the bias expansion,

this mode coupling may appear to be non-local (scale-dependent) bias [129, 161, 162, 163]

and/or long-range stochastic bias [164]. We will focus on the former since the latter is typically

a subdominant contribution to the signal.

The coupling of long and short modes is described by the squeezed or collapsed limits of

a non-Gaussian correlation function. In single-field inflation, the bispectrum is constrained by the

single-field consistency conditions to take the following form in the squeezed limit [165, 119]:

lim
k⃗1→0

〈
ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)

〉
=−

[
(ns −1)+O(k2

1/k2
3)
]

Pζ (k1)Pζ (k3)(2π)3
δD

(
∑i k⃗i

)
. (3.14)

Furthermore, the leading term, which corresponds to f loc
NL =− 5

12(ns−1), is unphysical [166, 167].

The leading physical term is suppressed by O(k2
1/k2

3) and is due to the coupling of the short

modes at horizon crossing to the curvature of the universe due to long-wavelength modes [168],

which is typically proportional to the amplitude of equilateral non-Gaussianity, f eq
NL.

47



In the presence of additional fields, the short-scale power can depend on the long-

wavelength values of these fields and not just derivatives of the metric fluctuations [169]. For an

additional massless field, the late-time Newtonian potential Φ may be nonlinearly related to a

light (isocurvature) field χ during inflation, Φ(⃗x) = χ (⃗x)− f loc
NLχ2(⃗x). For a massive field, we

have in the superhorizon limit

lim
k⃗1→0

χ (⃗k1, t)≈ c
H

k3/2
1

(
k1

aH

)∆

, (3.15)

with a constant c. If χ alters the power spectrum of the short modes at horizon crossing, k2 = aH,

then we have a contribution to the bispectrum of the form

lim
k⃗1→0

〈
ζ (⃗k1)ζ (⃗k2)ζ (⃗k3)

〉′
= f ∆

NL

(
k1

k2

)∆

P(k1)P(k2) , (3.16)

where we defined ⟨. . .⟩= (2π)3δD(∑i⃗ ki)⟨. . .⟩′. To have such a contribution to the bispectrum,

we also need χ to mix with ζ . Even without a mixing term, this same effect however appears

in the collapsed limit of the trispectrum. For light fields, ∆ = 3/2−
√

9/4−m2/H2 such

that m = 0 leads to local PNG (∆ = 0) as expected. For m/H > 3/2, ∆ = 3
2 ± iν , with ν =√

m2/H2 −9/4, is complex in which case the complex conjugate3 also contributes which results

in the bispectrum being real valued, as required. More generally, it is possible to construct

models with a wider range of real and complex values of ∆ than those generated by a single

massive field [170, 171, 172, 173].

In single-field inflation, physical mode coupling must involve derivatives of the metric

fluctuations [166], whose leading behavior in the soft limit corresponds to ∆ = 2 [174]. One

might naturally be surprised to find that the m2 → ∞ limit of ∆ for a massive field does not

yield this value of single-field inflation. It was nicely explained in [143] that ∆ ≈ 3/2+ im/H

3For heavy fields, there are two solutions of the long-wavelength behavior which scale as ∆ and its complex
conjugate ∆⋆. We note that there is also a second solution ∆′ = (3−∆) for light fields which is however suppressed
relative to ∆.
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is precisely what is expected from the single-particle wavefunction of a massive particle in an

expanding universe in the high-mass limit. This contribution to the squeezed limit arises from

the physical production of these particles. This particle production is Boltzmann suppressed in

some simple models [175], f ∆
NL ∝ e−πm/H , but can be enhanced depending on the nature of the

interaction [176]. In addition, very massive fields will also produce a sub-leading contribution to

the squeezed limit with ∆ = 2. This contribution arises from the virtual exchange of a massive

field and is equivalent to a purely local interaction (i.e. to integrating out the massive field). It

may be surprising that a local term will produce non-local scale-dependent bias. When T (k)→ 1,

∆ = 2 is indeed a local term and it was long thought that f eq
NL could not be measured via scale-

dependent bias for this reason (see e.g. [163]). However, because of the evolution of matter

after horizon entry (T (k) ̸= 1), local interactions during inflation are distinguishable from local

processes in structure formation at late-times [148], i.e. equilateral PNG can be measured in the

power spectrum via scale-dependent bias.

In the conventional picture of galaxy biasing (see §3.3.1), the density contrast of galaxies

is determined by a long list of composite operators in the initial density field. The origin of the

unique signal of PNG in galaxies is that the behavior of these composite operators becomes a

proxy for the light fields during inflation. For example, consider the impact of structure formation

from the local amplitudes of fluctuations on a scale R,

σR(⃗x) =
∫

d3k e−i⃗k·⃗x
∫ d3 p
(2π)3 ζ (p⃗)ζ (⃗k− p⃗)F(pR) , (3.17)

for some filter function F(x). This is the local variance of the primordial fluctuations which

varies from place to place. Importantly, this variance is correlated with the long-wavelength

metric perturbations as follows:

⟨σR(⃗k)ζ (⃗k′)⟩′ ∝ f ∆
NL(kR)∆Pζ (k) ⇒ ⟨σ (⃗k)δm(⃗k′)⟩′ ∝ f ∆

NL
(kR)∆

k2T (k)
Pm(k) . (3.18)
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Since the number density of galaxies at a location x⃗ is related to σR(⃗x), this introduces a long-

distance correlation between δg(⃗x) and δm that is non-local. The resulting non-local modification

of the bias (3.9) is given by [164]4

b(k,µ,z) = b1(z)+ f (z)µ2 + ∑
n>0

bk2n(kR∗)2n +A fNL
bφ (z)

k2T (k,z)
(kR∗)∆ , (3.19)

where bφ is the non-Gaussian bias parameter and we took R = R∗. The constant A normalizes

the non-Gaussian parameter f ∆
NL in the conventional way for PNG in the squeezed limit of the

bispectrum,5 so that the last term in (3.19) is [162, 177, 178, 179, 180]

bloc
NG(k,z) = f loc

NL
bφ (z)

k2T (k,z)
(local), (3.20)

beq
NG(k,z) = 3 f eq

NL
bφ (z)

k2T (k,z)
(kR∗)2 (equilateral), (3.21)

b∆
NG(k,z) = 3 f ∆

NL
bφ (z)

k2T (k,z)
(kR∗)∆ (general exponent ∆ ∈ [0,2]). (3.22)

Note that we do not include the physical orthogonal shape, as it is produced in single-field

inflation and, therefore, has the same squeezed limit as the equilateral shape, i.e. corresponds

to ∆ = 2. Previous work on the scale-dependent bias used an orthogonal template which has

∆ = 1 (e.g. [147]), which is however unphysical and has not been used in recent LSS analyses.

Without any additional theoretical input, bφ (z) and f ∆
NL are both unknown quantities and

are completely degenerate. If that was the case, we could only measure the combination f ∆
NLbφ (z)

in each redshift bin which would make it challenging to infer limits on f ∆
NL alone. More

optimistically, we can fix bφ (z) in terms of the linear bias b1(z) using the universality relations

4It is important to note that, in principle, the scale-dependent bias is distinguishable from the expansion in (kR⋆)
even for ∆ = 2n for any positive integer n. At k ≪ keq, T (k)→ const and the scale-dependent bias scales as k2n−2

which is degenerate with b1 and bk2(n−1) . However, since keqR⋆ ≪ 1, the transfer function introduces a non-trivial
scale dependence in the regime keq ≲ k ≪ R−1

⋆ which is not captured in the local bias expansion.
5Note that for the special bispectrum configurations, when expressed in terms of the general exponent ∆, the

equivalent f ∆
NL definitions are related by f loc

NL = 3 f ∆=0
NL and f eq

NL = f ∆=2
NL .
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found in phenomenological models [152],

bφ (z) = 2δc(b1(z)− p) , (3.23)

where δc = 1.686 is the critical overdensity for spherical collapse and p = 1 if we assume a

universal halo mass function. We will adopt this relation in our forecasts, but refer to e.g. [181,

182, 183, 184] for a recent discussion of the validity and risks of this choice.

To conclude, we note that we incorporate the general scale-dependent bias (3.19) in the

galaxy power spectrum as described in (3.10) and (3.13), i.e. bA = bA
∆
(k,µ,z). In the rest of the

paper, we follow [148] in assuming a minimum halo mass of 1013M⊙, which corresponds to

R∗ ≈ 2.66h−1 Mpc, and truncating the non-local gradient bias expansion at n = 2. We illustrate

the effect of b∆
NG on the linear galaxy power spectrum in Fig. 3.1 and compare these non-Gaussian

contributions to the nonlinear galaxy power spectrum in Fig. 3.2 at redshift z = 0 for linear bias

b1 = 1.6. We see from the latter figure that the ∆ = 0 contribution does not mimic the behavior

of any other bias or nonlinear terms at low k. On the other hand, the ∆ = 2 contribution is both

much smaller at k < kNL and similar in behavior to those Gaussian contributions.

3.4 Information Content of the Galaxy Power Spectrum

Our goal in this section is to understand how to design a galaxy survey to best measure f ∆
NL

for ∆ ∈ [0,2]. To do so, we will explore the Fisher forecasts for f ∆
NL as a function of ∆ for a

variety of survey configurations and biasing models.6 We will compare these results with analytic

estimates to understand what aspects of the surveys drive major improvements in sensitivity.

While our forecasts will be rooted in specific survey configurations, our goal is to isolate the

features of these surveys that impact the forecasted constraining power the most.

6In Appendix B.2, we also discuss our ability to measure the scaling behavior of the non-Gaussian bias, where
we also include ∆ as an additional free parameter in the Fisher matrix.

51



3.4.1 Fisher Information Matrix

In the following, we describe the well-known Fisher matrix forecasting techniques for

the galaxy power spectrum that we use. We review the basics here and refer to Appendix B.1 for

the experimental specifications of the surveys.

The Fisher matrix for a set of galaxy samples, labeled by {A,B, . . .}, is defined by

Fαβ = ∑
zi

V (zi)
∫ 1

−1

dµ

2

∫ kmax

kmin

dk k2

2π2
1
2

Tr
[
C,αC−1C,β C−1] , (3.24)

where θα,β are the model parameters, the trace is over the samples and we defined C,α ≡ ∂ C/∂θα .

The integrals are discretized, with the integration over wavenumbers k being limited by the

minimum wavenumber kmin and the maximum wavenumber kmax, and bins of width ∆k = kmin.

We note that we vary all parameters listed in Table 3.1 throughout this paper, unless specified

otherwise. The elements of the matrix C are given by

CAB(k,µ,z)≡ Pobs
AB (k,µ,z)+δABNA(k,µ,z) , (3.25)

with the shot noise term NA(k,µ,z) = n̄A(z)−1, where n̄A(z) is the average comoving number

density of tracers at redshift z. Shot noise arises because we observe a finite number of discrete

objects in galaxy surveys. (Note that we absorbed the stochastic term Pε0 of (3.10) into NA.) We

treat the redshift bins as spherical shells so that the volume of the i-th redshift bin is

V (zi) =
4π

3
fsky
[
dc(zi +∆zi/2)3 −dc(zi −∆zi/2)3] , (3.26)

where fsky is the sky fraction observed by the survey, dc(z) is the comoving distance to redshift z

and ∆zi is the width of the ith redshift bin.

To ensure that only modes under perturbative control in Eulerian perturbation theory

and the bias expansion enter our Fisher matrix calculation, and to exclude long-wavelength
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modes inaccessible to a given survey due to its finite volume, we restrict the integral in (3.24)

to a maximum wavenumber kmax and a minimum wavenumber kmin, respectively. We make

a conservative choice for kmax by taking the smaller of the two scales indicating the range

of validity of perturbation theory and the bias expansion. To be precise, we take it to be the

minimum of the nonlinear scale7 kNL and the wavenumber khalo ≈ 0.19hMpc−1 associated with

the Lagrangian scale corresponding to the minimum halo mass of the surveyed population which

we assume to be R∗ ≈ 2.66h−1 Mpc (cf. §3.3.2), i.e. kmax(z) = min{kNL(z),khalo}. For kmin, we

assume a spherical survey geometry per redshift bin which results in a conservative minimum

wavenumber kmin,i = 2π [3V (zi)/(4π)]1/3.

For most of the forecasts in Sections 3.4 and 3.6, we use a futuristic spectroscopic survey

with a billion objects divided into 10 redshift bins with z ≤ 5, which we will hereafter refer to as

the billion-object survey. We split the galaxy sample of this survey into two populations based

on their linear bias at z = 0, chosen as b(1)1 (z = 0) = 2.0 and b(2)1 (z = 0) = 1.2. We model their

redshift evolution according to (3.8) as previously discussed in §3.3.1. In addition, we assume a

constant number density across all redshift bins and both galaxy samples, n̄(1)g (z) = n̄(2)g (z) =

const. The details of this and other surveys used in our forecasts, i.e. the Baryon Oscillation

Spectroscopic Survey (BOSS) [149], the Dark Energy Spectroscopic Instrument (DESI) [185],

Euclid [186, 187], Vera Rubin Observatory’s LSST [188], the Spectro-Photometer for the History

of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) [141], MegaMapper [189,

112] and the billion-object survey are provided in Appendix B.1. Except for SPHEREx and the

billion-object survey, we treat all surveys as single-tracer surveys by combining different groups

of tracers (if available) into a single effective number density and bias. The impact of this should

not significantly impact our forecasts as we explain in Appendix B.1.

Unless mentioned otherwise, we marginalize over all bias parameters and include CMB in-

formation on the ΛCDM parameters (but not on PNG) from Planck throughout the paper.8 We

7We use kNL = π

2RNL
, with the radius RNL at which the variance of linear fluctuations is σR = 1/2 at a given z.

8When marginalizing over the full biasing model for the billion-object survey, for instance, the difference
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achieve this by computing the ΛCDM Fisher matrix directly following the Fisher methodology

and the experimental specifications of [44] (see also [191] for the latter), marginalized over the

optical depth τ . We then combine this marginalized Planck Fisher matrix with the respective

LSS Fisher matrix for the five ΛCDM parameters, the non-Gaussian parameter f ∆
NL and the

galaxy bias parameters bOi . We treat each redshift bin with mean redshift z̄i as an independent

survey and independently marginalize over the biases within each redshift bin.

3.4.2 Information and Survey Design

Using Fisher forecasts, our aim is to understand the possible strategies for optimizing

the measurement of f ∆
NL for shapes including but not limited to local PNG. The parameters

that we most directly control in the design of a survey are the sky fraction ( fsky), the redshift

range (z ∈ [zmin,zmax]) and the number density of tracers [n̄g(z)]. However, the actual statistical

power of the survey is controlled by the smallest (kmin) and largest (kmax) wavenumbers that can

be reliably measured, the linear bias of the sample [b1(z)], etc. These factors are influenced by

the details of the survey, but can also be affected by systematics and astrophysics.

We show the overall landscape of future power spectrum measurements of f ∆
NL for

∆ ∈ [0,2] in Fig. 3.3. Qualitatively, the forecasts show the overall behavior that we might

expect: (i) constraints at ∆ = 0 are generally much stronger than at ∆ = 2, (ii) higher-order

biasing affects larger ∆ more than smaller ∆, (iii) larger surveys have more constraining power,

and (iv) future LSS surveys will be able to improve over Planck bispectrum constraints from

the galaxy power spectrum for ∆ = 0, but not for ∆ = 2 without additional information on

bias parameters. In detail, the forecasts however have elements that are harder to understand

without further investigation. First, the forecasts show clear features at values of ∆ ∼ 1.4 that

depend on the marginalization over biasing parameters (see also Fig. 3.6 below). This suggests

a qualitative change in where the constraining power is coming from as we vary ∆. Second,

between using the ΛCDM covariance from Planck or CMB-S4 [52, 190] for ∆ ≲ 1.5 is less than two percent. In
fact, this CMB information decreases σ( f ∆

NL) only by a few percent for ∆ ≲ 1.3, and by a maximum of 20% (15%)
with Planck (CMB-S4) at ∆ = 2.
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Figure 3.3. Forecasted constraints on f ∆
NL for general scaling ∆ ∈ [0,2] of the scale-dependent

bias, for current and future surveys, compared to the Planck bispectrum constraints for local
and equilateral non-Gaussianity. We also marginalize over the five ΛCDM parameters, use
Planck results as priors for the ΛCDM parameters, and either fix the bias parameters (left) or
marginalize over them (right). Note that the SPHEREx forecast uses the five-tracer sample and
the billion-object survey forecast uses the double-tracer sample as provided in Appendix B.1.
For all the other surveys, we use their combined single-tracer sample.

we see that SPHEREx and LSST produce very similar forecasts despite having very different

strengths and weaknesses. Furthermore, both significantly exceed the constraining power of

Euclid and DESI which have the advantage of being three-dimensional (spectroscopic) surveys.

In order to make sense of these forecasts, we will break them down according to the number

density (noise), scales (kmin/kmax), the fiducial bias [b1(z)], the survey geometry ( fsky, zmax) and

redshift errors (σz0) in the following.

Dependence on Number Density

The most basic parameter in any experiment is the signal to noise. In a galaxy survey,

shot noise is the dominant (irreducible) noise source. At fixed volume, increasing the number of

objects increases the range of wavenumbers k where Pgg(k) is measured with at least signal to

noise of order one, Pgg(k)/N(k)≳ O(1).

For most cosmological parameters, sample variance presents an additional irreducible

source of noise. However, for scale-dependent bias, the parameter f ∆
NL can, in principle, be

measured without sample variance when the signal to noise is large for multiple tracers [192].
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Figure 3.4. Dependence of σ( f ∆
NL) on the shot noise, i.e. the inverse survey number density n̄−1

g ,
for the billion-object survey for four representative values of ∆. The solid lines show the single-
tracer forecasts and the dashed lines display the double-tracer results. The different colors
indicate which bias parameters are marginalized when calculating σ( f ∆

NL). The vertical lines
mark the averaged shot noise of various surveys which are calculated by taking the average of
the number densities of the middle 50% of redshift bins of each survey, i.e. they should be taken
as an approximate illustration of the noise level in these surveys.

Concretely, the relationship between δg(⃗k) and δm(⃗k) in (3.7) is completely deterministic and

is therefore not limited by sample variance. However, this only works if we can measure the

same Fourier mode with high signal to noise for tracers with different values of bφ . The noise

introduced by sample variance is proportional to P(k), while shot noise is independent of k.

As a result, sample-variance cancellation dramatically alters how different scales contribute to

the measurement of f ∆
NL and, therefore, the qualitative understanding of our forecasts. This is

why it is important to distinguish from the outset to what degree multi-tracer sample-variance

cancellation is relevant in our forecasts.

The impact of shot noise in both single- and multi-tracer scenarios is illustrated in Fig. 3.4.
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Two points should be very clear from these curves: (1) sample-variance cancellation has the

potential to dramatically improve the sensitivity to f ∆
NL for all values of ∆, and (2) realistic current

and future surveys are very far from being in the regime where sample-variance cancellation has

a large impact. In fact, most near future surveys are, at best, at the boundary between single

and multiple tracers.9 As a result, sample-variance cancellation is important for highly accurate

forecasts, but the qualitative behavior is consistent with single-tracer forecasts. We therefore use

a single-tracer emphasis for the rest of this section. We will revisit the advantages offered by

multi-tracer techniques and how astrophysics affects the constraints on f ∆
NL in Section 3.6.

Dependence on Scales

The defining feature of scale-dependent bias is that it is enhanced at small wavenum-

bers/large distances. For ∆ < 2 and f ∆
NL ̸= 0, we have Pgg(k)≫ b2

1Pm(k) as k → 0. Since the

noise is also a function of k, it is however not a given that the information resides at small k

for all ∆< 2. We now investigate this analytically in the Fisher matrix and numerically in our

forecasts.

For a single-tracer analysis where we know the bias parameters exactly, i.e. bOi are held

fixed, the Fisher information for a fiducial f ∆
NL = 0 is given by

Ff ∆
NL f ∆

NL
= ∑

zi

V (zi)
∫ d3k
(2π)3

[6b1bφ (zi)(kR∗)∆]2Pm(k,µ,zi)
2

2k4T (k,zi)2 [b2
1Pm(k,µ,zi)+N(k,µ,zi)]2

. (3.27)

In the high signal-to-noise regime, b2
1Pm(k)≫ N, this becomes

Ff ∆
NL f ∆

NL
≈ 9

π2 ∑
zi

b2
φ
(zi)

b2
1(zi)

R2∆
∗ V (zi)

∫
dk

k2∆−2

T (k,zi)2 . (3.28)

For 2∆< 1, the integral over k is dominated by kmin and the Fisher information arises from the

9Note that the curves in Fig. 3.4 are computed using the spectroscopic billion-object survey (cf. Table B.6). This
means that the photometric LSST is not a direct comparison and the line labeled as LSST only actually indicates a
spectroscopic follow-up of LSST. The potential sensitivity in a multi-tracer analysis of LSST itself will be discussed
in §3.6.2.
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Figure 3.5. The information density with respect to logkmin in the billion-object survey, with
fixed ΛCDM cosmology, and the same kmin, ∆k = 0.003hMpc−1 and kmax = 0.2hMpc−1 in
each redshift bin. The different colors indicate which bias parameters are marginalized when
calculating σ( f ∆

NL) using the double-tracer version of the survey. A negative (positive) slope of
the curves indicates that there is more (less) information on smaller wavenumbers k. We observe
that the information density is dominated by small (large) wavenumbers for small (large) scaling
exponents.

smallest scales. However, due to the limits placed by noise and volume, realistic surveys are

far from the asymptotic k → 0 regime. For modes with the largest signal to noise, k ≈ keq ≈

10−2 hMpc−1, the matter power spectrum is flat, Pm(k ∼ keq)∝ k0 and, therefore, T (k,z)2 ∼ k−1.

In this regime, repeating our analysis of (3.28) shows that the integral is dominated by large k for

∆ ≳ 0. In this regard, we expect that the transition from low to high k is gradual as we change ∆.

This behavior is seen in forecasts by varying kmin as illustrated in Fig. 3.5. Since in-

creasing the minimum wavenumber kmin removes information, the constraints σ( f ∆
NL) always

decrease. We therefore show dσ−2( f ∆
NL)/dlogkmin because this quantity provides a more quan-
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titative illustration of how much information is being lost as we change kmin.10 For ∆ = 0, the

largest impact is for the smallest values of kmin, indicating that the lowest wavenumber has the

most information. As we increase ∆> 0, we see that this trend changes: the curves are mostly

flat at small kmin for ∆ ≲ 0.5. This is a reflection of the fact that there is no sharp transition in ∆

due to the impact of T (k,z) in (3.28).

As we move from large to small scales (or small to large k), we are increasingly sensitive

to the marginalization over the bias parameters. The information density in Fig. 3.5 at large

wavenumbers becomes highly suppressed as we marginalize so that the true constraining power

remains at small wavenumbers. The oscillatory behavior in these figures highlights that the

baryon acoustic oscillations contained in the transfer function are imprinted in the non-Gaussian

signal and are not absorbed into the bias expansion.

At the same time, this short-distance information remains however crucial for breaking

degeneracies between bias and cosmological parameters. This is shown in Fig. 3.6, which

illustrates how the maximum wavenumber kmax impacts the constraining power. We see that the

constraint on f ∆
NL improves by roughly a factor of five to six (depending on the biasing model)

for ∆ = 2 when we choose the less conservative kmax = kNL. This improvement is consistent

with the number of additional modes available between khalo and kNL, and the fact that our signal

depends on wavenumbers. This difference becomes even more pronounced at higher redshifts

since kNL(z) increases significantly, while khalo is independent of redshifts. For all of our other

forecasts, we however use the more conservative choice of kmax(z) = min{khalo,kNL(z)} as noted

in §3.4.1.

When marginalizing over b1, we notice a feature around ∆ ≈ 1 in Fig. 3.6 and not around

∆ = 0.5 as we might expect from (3.28). This is a consequence of the information on f ∆
NL

moving to larger k where T (k) ̸= 1. Specifically, if we assume Pm(k) ∝ kn for large k, then

10We consider the logarithmic derivative in order to numerically extract the relevant scaling that we analytically
discussed in the previous paragraph. We additionally note that logkmin is implicitly normalized by 1 hMpc−1.
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Figure 3.6. Dependence of σ( f ∆
NL) on the maximum wavenumber where we take kmax =

khalo and kmax = kNL(z), with the latter being less conservative at higher redshifts. Here, we
combine the middle two redshift bins (2 ≤ z ≤ 3) of the double-tracer billion-object survey into
a single comoving box with a total of about 1.3×108 objects. We show this dependence of
the constraining power for four biasing models. The choice of kmax barely impacts σ( f ∆

NL) at
small ∆, but becomes significant for large ∆. We explain the origin of the feature around ∆ = 1
in the main text.
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k2T (k) ∝ kn/2+3/2, which implies

Pgg(k)≈
(

b1 +2bφ f ∆
NLC(kR∗)∆− n

2− 3
2 + . . .

)2
Pm(k) , (3.29)

for some constant C. Using n ≈−1 for k ∼ 0.1hMpc−1 [193], we notice that ∆− 3
2 − n

2 ≈ ∆−1.

At large wavenumbers, the “scale-dependent bias” for ∆ ≈ 1 is therefore degenerate with the

linear bias b1, resulting in the observed feature.

Dependence on Fiducial Biases

All else being equal, a single-tracer survey with the largest possible (absolute) value

of bφ ∝ (b1 − 1) will yield the most sensitive measurement of fNL. It may therefore seem

self-evident that selecting highly biased targets is a central tool in the search for PNG. Having

said that, in practice, target selection involves numerous factors which lie beyond the scope of

these simple forecasts. Yet, when it comes to understanding the performance of a given survey,

the biases of the objects in their sample will strongly influence the overall sensitivity. As a result,

it is important to separately understand the role that the fiducial biases play from the aspects of

the survey that we can control more directly.

For a single-tracer analysis, we only measure bφ f ∆
NL. At fixed redshift and assuming

bφ ∝ (b1 −1) from (3.23), we therefore have

σ( f ∆
NL)

fixed-z
single ∝

1
b1 −1

. (3.30)

As a result, we can expect a large improvement in a single-tracer analysis from choosing a sample

with b1 ≳ 2. Figure 3.7 shows how the value of b1(z = 0) influences the overall constraining

power of our billion-object survey in both single- and multi-tracer analyses. We see that σ( fNL)

increases sharply when the bias approaches one. It does not diverge because of the redshift

dependence of b1(z) which ensures that some of the redshift bins have bφ ̸= 0. On the other
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Figure 3.7. Dependence of σ( f ∆
NL) on the fiducial value of the linear bias for both the single-

tracer (solid) and double-tracer (dashed) versions of the billion-object survey for ∆ = 0 (left)
and ∆ = 1 (right). We show this dependence as a function of the linear bias b1(z = 0) of the
single-tracer survey in which case we see the improvement in the constraining power of the
survey for larger b1. In the double-tracer scenario, for which the galaxy sample is split into
two populations of equal number density with b(A,B)1 (z = 0) = b1(z = 0)± 0.4, the effects of
sample-variance cancellation can be observed. (Note that the y-axis is on a linear and not on a
logarithmic scale like in the previous figures.)

hand, sample-variance cancellation in the multi-tracer configuration results in a much weaker

dependence of σ( f ∆
NL) on the linear bias and, in fact, benefits from having one of the tracers

with bB
1 (z = 0) < 1. At the same time, we however see that taking larger values of b1(z) in a

single-tracer analysis closes the gap to the double-tracer case for b1(z = 0)≳ 3.

Technically speaking, we cannot choose the linear bias b1(z) and the number densi-

ties n̄g(z) independently, in particular since more highly biased objects are more rare. In practice,

traditional spectroscopic surveys are typically limited by the number of spectra that can be

measured and not the number of objects in the universe. However, other types of surveying

techniques, such as line intensity mapping (see e.g. [194, 195, 196, 197, 67, 198] in the context

of PNG), may get closer to these fundamental limits. We refer to [148] for a discussion of the

sensitivities of surveys in the regime where the galaxy power spectrum analysis is limited by the

number of available objects.
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Dependence on the Volume and Redshift

Given a single redshift bin with volume V and a fixed choice of targets, it is easy to see

the impact of this choice on kmin and kmax. However, when we design a survey, the choice of

redshift range, volume and targets is not fixed, but is part of the survey design. The redshift range

and volume affect kmin and kmax, but they also change the biases of the targets and the number

densities of objects in each redshift bin. For the purpose of designing a survey, we therefore

want to understand the optimal choices for the sky fraction fsky and the redshift range as given

by zmax.

It is important to compare survey strategies assuming “constant effort”. In practice, it is

the time for acquiring spectra that limits the sensitivity of a spectroscopic survey. This is why

we vary fsky for a given redshift range while holding the total number of objects fixed. As a

result, there is a trade-off between increasing the volume and increasing the shot noise, which

needs to be optimized. When it comes to varying the redshift range, the time required to observe

each object changes with redshift which means that the total number of objects in the sample

decreases with larger zmax. To hold the observational effort fixed, we use a simplified model

where it takes twice the amount of time to obtain spectra for galaxies at z> 3 than for galaxies

at z < 3 (cf. [111]). We further assume that it is desirable to maintain a constant level of shot

noise over the survey volume or that we obtain spectra evenly across the sky and along the radial

direction.

Higher-redshifts objects are generally expected to yield larger values of b1(z) [see the

discussion around (3.8)]. Since bφ (z) ∝ (b1(z)− 1) from the universality relation (3.23), the

signal can be enhanced by a large amount by extending the survey to redshifts where b1(z)> 2

instead of b1(z) ≈ 1. Assuming the bias evolution model of (3.8), we see in Fig. 3.8 that we

maximize our sensitivity to f ∆
NL even at constant effort by maximizing zmax. While we only

show the results for ∆ = 1, the qualitative features in the figure are independent of the scaling

exponent ∆. This implies that increasing the redshift range at fixed observational effort increases
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Figure 3.8. Dependence of σ( f ∆=1
NL ) on the sky fraction fsky and the maximum redshift zmax

at fixed observational effort for the double-tracer billion-object survey. The left panel shows
the fiducial case, b1(z) ∝ D(z)−1 [cf. (3.8)] and the right panel displays the constant bias case,
b1(z) = const. While we only show the results for ∆ = 1, the displayed trends are similar for all
scaling exponents ∆.

the constraining power for the entire range of ∆.

Increasing the redshift range also increases the number of modes. If we however hold

b1(z) = b1 fixed and increase zmax, we see in the right panel of Fig. 3.8 that there is a more

complex relationship between zmax and the sensitivity to f ∆
NL. For instance, keeping zmax = 3 and

increasing fsky also increases the number of modes without the added observing time per object

needed at high redshifts. Having said that, the benefit of a large sky fraction is much weaker than

the impact of larger b1 at high z which can be seen by the lower overall sensitivity to f ∆
NL in the

right panel.

By comparing the two panels in Fig. 3.8, we can see that the optimal configuration is

still at the largest maximum redshift and sky fraction, zmax = 5 and fsky = 0.7, for either biasing

model. For smaller fsky, the large advantage offered by larger zmax however disappears when

going from evolving to fixed bias due to the lower overall number density of galaxies at higher

redshifts. In this case, more emphasis is placed on high-redshift targets without the corresponding

boost in the signal. (The drop-off in σ( fNL) between zmax = 3.0 and 3.5 is the result of our

simplified choice of dividing the observational effort at z = 3.)
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To summarize, at fixed observational effort, increasing the redshift range via a larger zmax

has the largest influence on the sensitivity of a survey. The reason is that zmax increases both the

size of the signal and the number of modes. The former is particularly important since it offsets

the increased noise associated with a large-volume survey. We however note that this conclusion

does depend on the redshift dependence of the bias and the observing time needed for acquiring

spectra of these high-redshift objects.

Photometric versus Spectroscopic Surveys

The benefit of a three-dimensional survey can simply be estimated by counting modes

for many cosmological parameters, including fNL from the bispectrum. The number of modes in

a three-dimensional survey scales as k3
max, while it scales as k2

max for a two-dimensional survey.

The benefits of a three-dimensional survey are however less clear for scale-dependent bias since

the information for this signal manifests itself at low k, in particular for ∆ ≲ 0.5. In reality, the

trade-off is of course not between a two- and a three-dimensional survey, but between surveys

which measure redshifts spectroscopically and photometrically. While photometric redshifts are

less precise, they may be good enough to provide three-dimensional information on the scales

needed for scale-dependent bias for a significant range of ∆ which we investigate now.11

The impact of redshift errors on the constraining power of the billion-object survey is

shown in Fig. 3.9. We see, somewhat surprisingly, that spectroscopic surveys do not provide a

significant improvement to the power spectrum measurement of f ∆
NL for ∆≲ 1−1.3. (The specific

value of this transition in ∆ depends on the employed biasing model.) In practice, photometric

redshifts therefore appear to be good enough to access a lot of the available information about the

scale-dependent bias. This conclusion is supported by the similarity of the forecasts for SPHEREx

and LSST. While the two surveys pursue very different strategies for obtaining redshifts, the

resulting forecasts are quite similar. At first sight, this similarity is still surprising because it does

11Spectroscopic surveys will have additional benefits for controlling systematics, such as projecting out large-scale
effects, but typically at the cost of larger shot noise. Quantifying the importance of spectra in this context is a
delicate issue which is beyond the scope of this work.
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Figure 3.9. Comparison of σ( f ∆
NL) for a range of photometric redshift errors σz0 ∈ [0.001,0.2]

for the billion-object survey. We observe that photometric redshift errors only mildly degrade
the constraining power of a survey for ∆ ≲ 1.3. Photometric surveys therefore seem to be able
to access most of the information about the scale-dependent bias with the additional benefit of
generally lower noise levels in the galaxy power spectrum.

not reflect the impact of the difference in number density shown in Fig. 3.4. The reason for this,

however, is just that multi-tracer analyses are not implemented in conventional LSST forecasts.

This naturally raises the question whether a multi-tracer analysis would lead to an advantage

of LSST over some spectroscopic surveys given its very high number density (cf. Fig. 3.3). We

will explore this in detail in Section 3.6.

Importantly, we have not discussed the impact of systematic effects [199] on photometric

and spectroscopic surveys. Given that the signals are the largest on large angular scales (especially

for ∆ ≲ 0.5), a variety of atmospheric, detector and astrophysical effects can contaminate our

signal. Having said that, we expect that many of the conclusions drawn from these forecasts will

be robust over a large parameter range since the scales on which the signals dominate vary with

the scaling exponent ∆.
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3.5 Constraints and Data Analysis for General Scaling
Exponents

In the previous section, we focused on forecasting current and future constraints on f ∆
NL,

and on how to optimize a survey to measure PNG from the galaxy power spectrum for ∆ ∈ [0,2].

In this section, we will apply this knowledge to constrain f ∆
NL over this same range of scaling

exponents ∆ using the BOSS DR12 galaxy power spectra. We will first derive and propose an

effective and convenient search strategy. We will then perform this measurement and compare it

to a direct analysis.

3.5.1 Search Strategy

The scaling exponent ∆ is fixed in some inflationary models, while it is a free parameter

in others. For the standard local and equilateral shapes, the value of ∆ are fixed by their templates

to ∆ = 0 and ∆ = 2, respectively. The physics of these cases is clear since they arise from multi-

and single-field dynamics. In quasi-single-field inflation, we have ∆ = 3/2−
√

9/4−m2/H2

which implies that it is natural to scan over values of ∆ ∈ [0,3/2] in an analysis of those models.

The natural question we face in a practical analysis of current data therefore is whether it is

prudent to vary f ∆
NL and ∆ ∈ [0,2] as free parameters, or whether we should hold the scaling

exponent fixed to some value as suggested by a given model, ∆ = ∆′, and only vary f ∆′
NL.

The strategy we will follow is to hold ∆ fixed to a few discrete values, e.g. ∆ = 0,2 or

∆ = 0.0,0.1, . . . ,1.9,2.0, and infer the associated constraints on f ∆
NL at each respective ∆. The

reason why we prefer this strategy over scanning over both parameters simultaneously is that

small changes to ∆ have no impact on the signal to noise and, therefore, represent a degenerate

direction in the analysis. This becomes evident in the Fisher matrix formalism, where we have

for a fiducial value of f ∆
NL = 0:

∂

∂∆
Pgg(k)

∣∣∣∣
f ∆
NL=0

= 6 f ∆
NLbφ (k)k−2T (k)−1 log(kR⋆)(kR⋆)∆ b(k)Plin(k)

∣∣∣
f ∆
NL=0

= 0 . (3.31)
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We therefore have no reason to expect marginalizing over ∆ would lead to more accurate results

until our data are comfortably excluding f ∆
NL = 0.

We can quantify to what degree the data can distinguish two values of the scaling

exponent, ∆1 and ∆2, through the “cosine” between the signals,

cos( f ∆1
NL, f ∆2

NL) =
F

f ∆1
NL f ∆2

NL√
F

f ∆1
NL f ∆1

NL
F

f ∆2
NL f ∆2

NL

≡ F12√
F11F22

, (3.32)

where we defined Fi j ≡ F
f ∆i
NL, f

∆ j
NL

. This is precisely the same definition of the cosine used to define

the PNG shapes in a bispectrum analysis [200]. We can also generalize this to the Fisher matrix

after marginalizing over the bias parameters by inverting the Fisher matrix, truncating to f ∆1
NL and

f ∆2
NL, and inverting the truncated matrix to get the effective Fisher matrix for these two parameters.

We therefore take Fi j to be the marginalized, two-dimensional Fisher matrix for the parameters

f ∆1
NL and f ∆2

NL from now on.

The correlation (3.32) between the measurements of f ∆1
NL and f ∆2

NL is shown in Fig. 3.10

using the experimental specifications for the BOSS survey of Table B.1 which have yielded

forecasted results consistent with performed data analyses in the past (see e.g. [114]).12 The

cosine computed for other surveys is similar (see Appendix B.2). The key take-away from

this correlation is that we can effectively constrain almost the entire range ∆ ∈ [0,2] using

measurements only at ∆ = 0 and 2. Specifically, using the Cauchy-Schwarz inequality and the

Cramér-Rao (CR) bound, we have

(F22)
−1 ≤ F11

F2
12

≤ σ2( f ∆1
NL)

cos2( f ∆1
NL, f ∆2

NL)

F11

F22
, (3.33)

12Note that for the calculation of the correlation matrix for BOSS, we assumed fiducial values of bs2 and b
ΠΠ[2]

based on the Lagrangian local-in-matter-density biasing model [152] and bδ 2 based on halo simulation fit in [156].
This choice (rather than setting them to 0 as in most other cases in this paper) leads to minimal differences in the
correlation coefficient. In addition, we impose the same Gaussian priors on the loop biases as quoted in [201] which
barely affect the forecasted constraints for small ∆ and up to a factor of four at large ∆, as expected. Finally, we
employ a slightly larger minimum wavenumber kmin = 0.01hMpc−1. All these choices are guided by the data
analysis performed in §3.5.2.
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Figure 3.10. Correlation matrix for measurements of galaxy power spectra with different values
of the non-Gaussian exponent ∆ as defined in (3.32). This was computed for BOSS with fiducial
values of f ∆i

NL = 0, fixed ΛCDM parameters and marginalized over all biases. The orange arrows
indicate the coverage of the local (∆ = 0) and equilateral (∆ = 2) templates with a correlation
coefficient of larger than 0.9.
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where σ2( f ∆1
NL) is the variance of the measurement of f ∆1

NL while holding f ∆2
NL fixed. The best

possible constraint we could place on f ∆2
NL, σ2( f ∆2

NL)CR = F−1
22 , is therefore bounded by the

measurement of f ∆1
NL via

σ
2( f ∆2

NL)CR ≤ σ2( f ∆1
NL)

cos2( f ∆1
NL, f ∆2

NL)

F11

F22
. (3.34)

As a result, we can place an approximate constraint on f ∆2
NL by rescaling the measurement of f ∆1

NL

using the elements of the marginalized Fisher matrix Fi j.

It is important to highlight that this strategy is only effective if our parameter inference is

consistent with f ∆
NL = 0. To be more precise, all values of ∆ look similar at low signal to noise

for f ∆
NL. On the other hand, the data is no longer independent of ∆ if one or more of your f ∆

NL

measurements at specific ∆ show significant evidence for f ∆
NL ̸= 0. In that case, a measurement

at a different value ∆′ could produce a much larger or much smaller signal to noise. We refer to

Appendix B.2 for more details on this scenario.

3.5.2 BOSS DR12 Analysis

Based on the strategy laid out above, we inferred constraints on f ∆
NL from the BOSS DR12

dataset following the general setup of the analysis for local, orthogonal and equilateral PNG

performed in [202, 136] (see also [135]) with a few different (generally more conservative)

choices. In the following, we provide a brief overview of our data analysis, describe these

differences and report the limits on PNG that we inferred directly and via the correlation

matrix (3.32).

We analyzed the power spectrum from galaxy clustering data of the twelfth and final

release of BOSS, referred to as DR12 [149]. This dataset contains the positions of about

1.2×106 galaxies between redshifts 0.2 and 0.75 in a cosmic volume of roughly 5.8h−3 Gpc3

divided into four subsets: the Northern and Southern galactic caps of the two non-overlapping

redshift bins [0.2,0.5] and [0.5,0.75] with effective mean redshifts z= 0.38 and 0.61. We employ

the galaxy power spectrum multipoles P(ℓ)
gg (k), with ℓ = 0,2,4, measured using a quadratic
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window-function-free estimator [203]. The corresponding covariance matrices were computed

from MultiDark-Patchy mock catalogs [204]. This follows the analyses in [202, 136] restricted

to the power spectrum multipoles. We model the nonlinear galaxy power spectrum in redshift

space as implemented in CLASS-PT [205] (based on CLASS [206]) which follows the analyses

of [207, 208] based on the effective field theory of large-scale structure (EFTofLSS) [209, 210,

211, 212] (see [117, 213] for recent reviews) and galaxy bias expansion [152], including the

Alcock-Paczynski effect. We additionally include the non-Gaussian contributions from the

scale-dependent bias (3.22) due to f ∆
NL ̸= 0 similar to the analyses in [202, 136].13

We performed a Markov chain Monte Carlo (MCMC) analysis of the data using the

Metropolis-Hastings sampler of MontePython [214, 215], varying the theoretical galaxy power

spectrum multipoles in each step. We fix the ΛCDM parameters to the Planck 2018 best-fit

values [41] (with the sum of neutrino masses ∑mν = 0.06eV) instead of including Planck

information on ΛCDM since we saw essentially no change in the forecasted constraints on f ∆
NL

of Section 3.4 when marginalizing over all of our galaxy bias parameters. Per redshift bin and

galactic cap, we however separately vary the bias parameters b(i)1 , b(i)2 and b(i)G2
as defined in [216,

217],14 and analytically marginalize over the other eight biases and EFTofLSS counterterms

which appear linearly in the theoretical galaxy power spectrum [218]. We impose flat priors

on the linear biases b(i)1 ∈ [1,4] and the non-Gaussian amplitude f ∆
NL (infinitely wide), and

Gaussian priors on the other nuisance parameters as described in [201]. Following [202], we

also marginalize over the non-Gaussian bias bφ → Nbφ
bφ separately for each data subset and

impose a wide Gaussian prior on its normalization, Nbφ
∼ N (1,5), which is motivated by the

peak-background split model [177].15 On the other hand, the non-Gaussian parameter f ∆
NL is

13In this paper, we have not considered the imprints of light inflationary fields in the bispectrum, but focused on
the scale-dependent bias in the power spectrum. To remain model agnostic, we also did not include the contribution
of a non-zero primordial bispectrum to the galaxy power spectrum.

14The bias expansions used in our forecasts and data analysis are equivalent.
15It might appear surprising that we marginalize over bφ with a Gaussian prior given the degeneracy with f ∆

NL.
Note that the mean value of the Gaussian is still set by the universality relation (3.23) with p = 1, but its variance
is very wide. In addition, we marginalize over bφ in each of the four data subsets separately, as we do with the
Gaussian bias parameters. This procedure alleviates degeneracies between f ∆

NL and b1 which can be severe if we
assume that the universality relation is exact, especially for ∆ ∼ 1. This procedure is an imperfect solution to address
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commonly varied for all four data subsets at fixed exponent ∆. We (more) conservatively limit

the range of wavenumbers to k ∈ [0.01,0.13]hMpc−1 and [0.01,0.16]hMpc−1 for the low- and

high-redshift bin, respectively, after initial tests. We therefore employ a smaller maximum

wavenumber than in [136, 202], who tested the validity of the analysis for ∆ = 0 and 2 on mock

catalogs, and a slightly higher (same) minimum (maximum) wavenumber than the forecasts

shown in Fig. 3.3. Since ∆k = 0.005hMpc−1, this choice implies that we employ 24 and 30 k-

bins for the respective redshift bins, each power spectrum multipole and both galactic caps. All

chains converged with a Gelman-Rubin criterion of R− 1 < 0.01 (usually much smaller) for

each parameter.

The results of our separate MCMC data analyses for 21 fixed values of the non-Gaussian

exponent ∆ are shown in Fig. 3.11. Since the posterior distributions for f ∆
NL are slightly non-

Gaussian, we display the mean values in gray pentagons, and the upper and lower 2σ con-

straints in filled and unfilled black diamonds, respectively. We do not find any evidence for any

PNG shape with ∆ ∈ [0,2] and observe the same characteristic functional dependence of 2σ( f ∆
NL)

on ∆ as we forecasted in Fig. 3.3.16 We note that the difference in forecasted constraining power

of Fig. 3.3 and the data analysis of Fig. 3.11 can be mainly attributed to the use of Gaussian

priors on the higher-order galaxy bias parameters in Section 3.5. In fact, we find reasonable

consistency if we include the priors on the Gaussian biases in our Fisher matrices as discussed

in §3.5.1. Comparing to [202, 136, 135], our constraints are weaker, as expected due to our more

conservative approach and use of less data, but consistent. This is particularly evident for the

case of the equilateral shape (∆ = 2) that dramatically benefits from bispectrum information

in various ways which is absent in our analysis of the power spectrum alone. On the other

hand, our limits on f ∆
NL are comparable to the constraints on f eq

NL when including bispectrum

the uncertainty in bφ which we plan to address as part of [219].
16The non-Gaussian amplitude f ∆

NL is defined relative to the scalar amplitude, A1/2
s ≈ 5×10−5 [41], such that

weak PNG corresponds to fNLA1/2
s ≪ 1. This means that our bounds 2σ( f ∆

NL)∼ 104 are approaching the limits of
the range of validity of our implicit expansion in linear order in f ∆

NL. This concern is however alleviated even with a
very conservative inclusion of bispectrum data [202, 135].
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Figure 3.11. Comparison of the measured (diamonds) and derived (lines) values for twice
the standard deviation of f ∆

NL, 2σ( f ∆
NL), for the BOSS DR12 dataset. The light (dark) blue

lines show the approximate value of 2σ( f ∆
NL) derived from the data with ∆ = 2 (0), i.e. the

equilateral (local) PNG templates using (3.35), with the minimum of these being shown in
blue. The diamonds indicate the constraints directly inferred from BOSS DR12 for fixed values
of ∆, while the gray pentagons are the corresponding mean values. Filled (unfilled) symbols
and solid (dotted) lines represent positive or upper (negative or lower) values. We do not find
evidence for f ∆

NL ̸= 0 for any ∆ ∈ [0,2], and generally good agreement between the measured
and derived limits on general PNG. This demonstrates that our proposed search strategy works
on data.
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information [202] for ∆ ≲ 0.75. While the bispectrum will always add information, we might

however imagine there is a more limited gain in this regime.

We can also compare our bounds on f ∆
NL to those obtained in previous analyses of

CMB and LSS data. As already anticipated and explained in Section 3.4, the CMB limits on

local and equilateral PNG from the Planck 2018 bispectra are significantly better [106]. This is

also the case for the constraints for ∆ ∈ [0,3/2] derived from Planck 2013 data [220], | f ∆
NL|≲ 50,

which is dominated by the equilateral bispectrum while our bounds arise from the squeezed limit

of the quasi-single-field shapes. The only previous analysis constraining f ∆
NL from LSS data was

performed in [150] on SDSS-III DR8 data with more limited modeling and range of scales. It is

therefore unsurprising that our bounds are considerably more constraining.

In addition to directly inferring constraints on f ∆
NL from the data, there exists a second

path to inferring the bounds at a given value of ∆ based on the correlation of different values of ∆

in the marginalized galaxy power spectrum as discussed in §3.5.1. We take ∆ = ∆1 = 0 and 2 as

the fiducial values for this inference since these scaling exponents correspond to the signal from

local and equilateral PNG, respectively, which are usually considered in data analyses. Based

on (3.34), we obtain these derived bounds as follows:

[
2σ( f ∆

NL)
]

MCMC
=

[
1

cos( f ∆
NL, f ∆=0,2

NL )

σ( f ∆
NL)

σ( f ∆=0,2
NL )

]
Fisher

[
2σ( f ∆=0,2

NL )
]

MCMC
, (3.35)

where the subscript ‘Fisher’ (‘MCMC’) indicates that these quantities are calculated based

on the Fisher matrix (from the MCMC analysis). The correlation term cos( f ∆
NL, f ∆=0,2

NL ) is

displayed in Fig. 3.10, while the standard deviations σ( f ∆
NL) are computed from the marginalized

one-dimensional Fisher matrix as in Section 3.4, but including the same Gaussian priors as

in the correlation term and the data analysis. The constraints derived from the measurement

at ∆ = 0 and 2 are displayed in Fig. 3.11 as the dark and light blue curves. We see that the

constraint derived from 2σ( f ∆=0
NL ) dominates for ∆ ≲ 1.1, while the constraint derived from

2σ( f ∆=2
NL ) dominates for larger ∆, which is consistent with our expectations from Fig. 3.10.
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Overall, we find generally reasonable agreement between the directly inferred limits

on f ∆
NL, and those jointly derived from the local and equilateral measurements. This is especially

true for those values of ∆ with large correlation and negligible mean values. This implies that

we can use (3.35), with the correlation term calculated in a Fisher matrix approach for a given

survey, to derive 2σ( f ∆ ̸=0,2
NL ) in the absence of a detection of f loc

NL, f eq
NL ̸= 0. In other words, we

have demonstrated that the search strategy that we proposed in §3.5.1 works on BOSS data

and allows to dramatically reduce the number of analyses needed to constrain general forms of

primordial non-Gaussianity and light inflationary fields as parametrized by ∆ from measurements

of local and equilateral non-Gaussianity. The agreement between our analysis and forecasts,

together with the consistency with prior analyses, is an additional sign that searches for light

fields with the galaxy power spectrum will be competitive with the CMB for near-term galaxy

surveys.

3.6 Multiple Tracers and the Dependence on Astrophysics

Sample-variance cancellation plays an important part in improving the measurement of

primordial non-Gaussianity from the galaxy power spectrum. Applying this technique however

requires knowledge of the details of the specific galaxy samples used in the multi-tracer forecast

or analysis. In this section, we will first investigate how an optimal survey design can maximize

the scientific return of multiple tracers in spectroscopic surveys. Then, we will consider the

untapped potential of a multi-tracer configuration of LSST and compare it with to SPHEREx.

3.6.1 Optimizing Spectroscopic Multi-Tracer Analyses

We now explore the potential of multi-tracer analyses and how astrophysical details of

the galaxy samples affect the constraints on f ∆
NL. Given our biasing model (3.7) with (3.19), this

comes down to the description of the non-Gaussian bias parameter bφ (z), which depends on three

parameters when using the universality relation (3.23): δc, b1(z) and p. Since the parameter δc

is completely degenerate with f ∆
NL, we will focus on exploring what combination of b1(z) and p
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leads to the biggest improvement on σ( f ∆
NL).

For galaxy power spectrum forecasts to recover all the information in the primordial

statistics, we need to apply the multi-tracer technique and its ability for sample-variance can-

cellation at very high number density. For example, we know the information in the primordial

bispectrum for ∆ > 0 is dominated by k ∼ kmax [200]. On the other hand, the non-Gaussian

information in the single-tracer power-spectrum forecasts are limited by sample variance at small

wavenumbers for ∆ ≲ 0.5. Sample-variance cancellation eliminates this artificial dependence

on the noise at low k, limiting a measurement instead by the shot noise associated with galaxy

formation [221], which corresponds to modes at kmax ∼ khalo.

Realistic spectroscopic surveys are unfortunately far from being in the fully multi-tracer

regime as we have seen in Fig. 3.4. As a result, it is harder to get reliable intuition for how to

optimize the measurement of f ∆
NL. We have previously explored how to maximize the science of

a spectroscopic survey by changing the experimental configuration in terms of fsky, zmax, etc.

Here, we will assume a fixed survey geometry and investigate what additional information can

be extracted by taking advantage of sample-variance cancellation.

In the fully multi-tracer regime, the inverse variance depends on the linear bias b(i)1 and

non-Gaussian bias b(i)
φ

as [222]

σ( f ∆
NL)

−2
∝

∣∣∣b(1)1 b(2)
φ

−b(2)1 b(1)
φ

∣∣∣ . (3.36)

On the other hand, we simply maximize b1bφ in the single-tracer regime. The question therefore

is how we can choose the samples to minimize σ( f ∆
NL) in realistic surveys. In Figure 3.12,17

we show the relative comparison of σ( f ∆
NL) between a double- and single-tracer forecast of the

17Figure 3.12 only shows the forecasted constraints and improvements for the scaling exponent ∆ = 0, i.e.
local PNG. When we marginalize over all biases, the scaling behavior of the scale-dependent bias however has little
effect on the improvement factor and the marginalized biasing model only changes the overall constraining power as
indicated by the color bar in the upper panels. In other words, the overall qualitative behavior conveyed in Fig. 3.12
remains intact for different biasing models and scaling exponents.
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Figure 3.12. Double-tracer forecast for σ( f ∆
NL) with ∆ = 0 for the billion-object survey (top) and

relative comparison to a single-tracer forecast, σ( f ∆
NL)double/σ( f ∆

NL)single (bottom), with fixed

ΛCDM parameters. In the left column, we vary the linear biases b(i)1 of the two samples at fixed
p(i) = 1, i.e. similar to our forecasts in Section 3.4. In the right column, we use the fiducial biases
of the samples [cf. (3.8)], with b̄(1)1 (z = 0) = 2.0> 1.2 = b̄(2)1 (z = 0), and vary the parameter p(i)

in the universality relation for b(i)
φ

[cf. (3.23)]. While we only show these results for ∆ = 0, the
qualitative features of these panels remain the same for other values of the scaling exponent.
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billion-object survey while holding the ΛCDM parameters fixed.18 We show this for ∆ = 0 (see

also e.g. [223]) since we expect this case to benefit the most from a multi-tracer analysis, but

explicitly verified that the forecasts with ∆> 0 show at most comparable levels of improvement.

We vary the linear biases of the two subsamples of the survey in the left column of

Fig. 3.12, while fixing p = 1, as in all of our forecasts in Section 3.4. Note that we only vary the

bias at z = 0, as labeled in the figure, with the biases of the actual galaxy samples then being

calculated based on the bias evolution model of (3.8). The values along the diagonal b(1)1 = b(2)1

correspond to a single-tracer forecast, in which σ( f ∆
NL) simply decreases with increasing b(i)1 .

We observe that the multi-tracer improvement is most pronounced here when the difference

between b(1)1 and b(2)1 is maximized. We additionally see that the improvement of the double-

over the single-tracer approach is limited to about 30%.

So far, we have assumed a universal halo mass function which corresponds to p = 1 in

the universality relation (3.23). Even though this has been widely adopted in the literature, this

assumption is not a perfect description of halos in simulations and will likely not be generally

true for actual galaxy samples, cf. e.g. [224, 225, 226, 227, 228, 229, 230, 231, 232, 233]. We

therefore now explore the possibility of improving the constraints on f ∆
NL by selecting tracers

within the parametrization of bφ through p (assuming such knowledge is already reliably known

from simulation results).

We therefore vary the parameters p(i) of the two galaxy samples while using their fiducial

biases in the right column of Fig. 3.12. Note that the fact that the linear biases for the two tracers

are different, with b(1)1 (z = 0) = 2.0 and b(2)1 (z = 0) = 1.2, is the reason for the asymmetry of

these panels. We observe the largest improvement for small p(1) and large p(2) which is exactly

when the combination shown in (3.36) is maximized. In this case, the double-tracer approach

can improve the constraints by as much as a factor of two over a single-tracer analysis which

18When marginalizing over the biases, the difference between the forecasts for fixed and marginalized ΛCDM pa-
rameters (with a Planck prior) is at most a few percent. We therefore fix the ΛCDM parameters to their fiducial
values for all forecasts in this section.
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Figure 3.13. Forecasted constraints on f ∆
NL for different values of the parameter p(i) in the

universality relation (3.23) of bφ for the double-tracer configuration of the billion-object survey

and fixed ΛCDM parameters. We observe that σ( f ∆
NL) improves for all ∆ when |b(1)1 b(2)

φ
−

b(2)1 b(1)
φ
| increases which is the direction indicated by the arrow.

is much larger than what we saw for fixed p(i) and varying b(i)1 in the left panels. Figure 3.13

displays the constraining power as a function of the scaling exponent ∆ for a few pairs of tracers

characterized by different values of p(i).19 This is further confirmation of our findings and we

explicitly see that maximizing the combination of biases given in (3.36) leads to the same relative

improvement in σ( f ∆
NL) for all ∆.

The results shown in the previous figures suggest that it may be possible to improve

σ( f ∆
NL) by more than a factor of two if we had knowledge about the parameter p(i) of the

tracers. As previously discussed, however, most forecasts for current or near-future galaxy

surveys assume the scale-dependent bias takes the form predicted by a universal halo mass

function. In particular, these surveys do not select targets based on the value of p (or bφ ) which

implies that there is some level of uncertainty in the actual value of p for the employed galaxy

samples. Since the parameter p is degenerate with f ∆
NL, this uncertainty in p could complicate

the measurement of f ∆
NL. While complete ignorance of p (i.e. marginalizing over it as a free

19We also tested the possibility of using galaxy samples for which the parameter p(i) is redshift dependent. The
results shown here are robust to these changes.
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Figure 3.14. Forecast for σ( f ∆
NL) for different Gaussian priors σ(p) on the parameter p in

the universality relation (3.23) for the billion-object survey (at fixed ΛCDM parameters and
with fiducial value f̄ ∆

NL = 1 so that p can be independently varied). While marginalizing over p
with wide priors significantly impacts the constraints for small ∆ in the case of fixed bias
parameters (left), the realistic case of marginalizing over the biases (right) shows a relatively
small degradation even for very wide priors on p.

parameter in each redshift bin) would make constraining f ∆
NL impossible, it would be helpful to

know the required level of precision so that the universality assumption does not significantly

affect the inference of f ∆
NL.

We investigate this question by imposing different Gaussian priors on the parameter p

for a fiducial value of p = 1. Figure 3.14 shows that an uncertainty in p mostly affects ∆ ≲ 0.5

when marginalization over the biases. In addition, the degradation in the constraining power

on f ∆
NL is limited to within a factor of less than three (two) for an extremely conservative prior

with width σ(p) = 10 (5). This implies that a lack of knowledge of the precise value of p

for the given galaxy samples does not significantly affect the forecasts. On the other hand, a

careful consideration of the values of p in target selection could potentially lead to important

improvements in σ( f ∆
NL).

3.6.2 Multi-Tracer LSST and Comparison to SPHEREx

So far, we have seen that the multi-tracer forecasts offer somewhat limited potential

for improvements in the context of both current and future, realistic spectroscopic surveys.

Acquiring spectra takes more observational time than imaging alone which makes it harder
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for spectroscopic surveys to reach the high number densities needed for sample-variance can-

cellation to be most effective. In principle, photometric surveys, such as LSST, are therefore

not limited in the same way, as indicated in Fig. 3.4, and have the potential to benefit signifi-

cantly from a multi-tracer analysis. Following the LSST science book [188], our LSST fore-

casts however use a single tracer as shown in Table B.7 and, consequently, do not capture

the full potential of this survey which we will now investigate.

In order to explore the potential for an LSST multi-tracer analysis, we consider a simpli-

fied case in which we split the LSST sample of Table B.7 into two subsamples of equal number

density but different linear biases b(i)1 .20 In Figure 3.15, we compare the constraints σ( f ∆
NL) from

single- and double-tracer configurations of LSST and the billion-object survey. As for all of our

spectroscopic surveys with their given number densities, there is a relatively small change in the

constraining power for the billion-object survey.21 On the other hand, LSST shows a remarkable

improvement which is consistent with the factor of roughly three seen in Fig. 3.4.

In this regard, LSST has much more potential for testing inflationary physics than

is typically seen in forecasts. Of course, spectroscopic information may prove essential in

eliminating systematics or reliably splitting the LSST sample. The improvements that we see in

Fig. 3.15 however strongly encourage a future investigation that accounts for systematic effects.

In addition, we have not included the information from cosmic-shear observations, which are

sensitive to primordial non-Gaussianity in their own right (see e.g. [235]) and may be useful

in conjunction with the galaxy power spectra considered here. Cross-correlations with other

observables, such as CMB lensing and the kinetic Sunyaev-Zel’dovich effect, would additionally

provide complementary constraining power [236, 237, 238].

20For simplicity, we split the LSST sample in the same way as the sample for the billion-object survey, i.e. we take
b(1,2)1 (z = 0) = bsingle

1 (z = 0)±0.4 with equal number densities, n̄(1)g = n̄(2)g , to retain the single-tracer LSST sample
when combined. We refer to [234] for similar forecasts for an LSST sample split into “blue” and “red” galaxies.

21In this context, it is important to remember the large maximum redshift for this survey (zmax = 5) which results
in a number density more or less comparable to DESI/Euclid for many redshift bins. The same number of objects in
a smaller volume, as would for example be the case for a spectroscopic follow-up survey to LSST with zmax = 3,
would not have the same limitation, but its effectiveness for most other science targets would be reduced [102].
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Figure 3.15. Comparison of the constraining power of single- and double-tracer versions of LSST
and the billion-object survey (with fixed ΛCDM parameters) for ∆ = 0 (left) and ∆ = 2 (right).
We can clearly see the significant improvement that a double-tracer analysis of LSST could
provide due to its large number density for the entire range of scaling exponents ∆.

Given the potential of LSST as a multi-tracer survey, we should also revisit how it

compares to other near-term surveys. We noted in §3.4.2 that LSST and SPHEREx result in

similar forecasts despite having different strengths and weaknesses in their designs. SPHEREx is

a spectro-photometric survey with a larger sky coverage, while LSST is a photometric survey

with a larger number density. The comparison in §3.4.2 is additionally complicated by the fact

that we treated LSST as a single-tracer survey following [188] while multi-tracer forecasts would

maximize the benefit of the higher number density.

We might have naively imagined that the slight advantage of SPHEREx was due to the

smaller photometric redshift error of most of its samples. (Specifically, the redshift uncertainty

of LSST is assumed to be σz0 = 0.05, while the SPHEREx samples are binned with maximum

errors of σz0 = {0.003,0.01,0.03,0.1,0.2}.) This is however not what is found in our forecasts.

In Figure 3.9, we see that the potential impact of photometric redshift errors on f ∆
NL for ∆ ≲ 1.2

is at most 50%. At the same time, we observed in Fig. 3.15 that the potential improvements

in LSST from splitting the single sample into two is potentially a factor of three or more. This

suggests that the number density is a larger effect than the quality of the photometric redshifts.22

At the same time, there are however many other factors that differ between these surveys and

22While the observed volume of SPHEREx is in principle more than twice as large (see Appendix B.1), its number
densities are much smaller, especially at high redshifts, which results in an effective volume that is smaller by a
factor of almost four compared to LSST.
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we would like to identify the most important individual design factors that set the two surveys

apart (at least for the purpose of constraining f ∆
NL from the scale-dependent bias in the power

spectrum).

In order to isolate the differences and control the individual factors in survey design, we

compare LSST and SPHEREx by their biases and number densities in Fig. 3.16, while ignoring

the photometric redshift errors for both surveys, σz0 = 0. To be precise, we take SPHEREx

as the fiducial survey and substitute either the linear biases or the number densities from a

survey equivalent to LSST (see Appendix B.1 for details). When we keep the number densities

of SPHEREx and use the LSST-like biases, i.e. the same biases as in our earlier LSST forecasts

just over the larger redshift range of SPHEREx with the same scaling proportional to D(z)−1,

SPHEREx still significantly outperforms. In this sense, SPHEREx has a built-in advantage from

the biases used in our forecasts. If we instead keep the biases of SPHEREx and use the number

densities of LSST, i.e. we include objects with LSST-like number densities according to (B.13)

beyond its zmax, the latter becomes more sensitive. In fact, this advantage is quite substantial

when we additionally allow for a double-tracer configuration of LSST, which takes full advantage
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of the difference in number densities. As a result, we should understand that the slightly better

sensitivity of SPHEREx indicated in Fig. 3.3 is primarily due to the single-tracer nature of the

LSST forecast and the larger biases of the SPHEREx samples.

Before concluding, we have to however state that the largest challenge for both LSST

and SPHEREx will of course be identifying and mitigating the impact of large-angle (and other

potential) systematics. In this regard, the survey which will be most sensitive to f ∆
NL cannot

be easily anticipated ahead of time. Either way, both surveys have the potential to in principle

place constraints on general PNG from the galaxy power spectrum alone (i.e. without the galaxy

bispectrum) that exceed those inferred from the Planck bispectrum for ∆ ≲ 1.

3.7 Conclusions and Outlook

Primordial non-Gaussianity from scale-dependent bias offers one of the best avenues

to test the physics of inflation in the coming decade and beyond. The signal imprinted by

light particles coupled to the inflaton is localized on relatively large scales where analyses are

less influenced by gravitational nonlinearities, baryonic physics and modeling errors. Equally

importantly, the scaling behavior of this signal encodes the mass of these light particles, offering

a unique window into the spectrum and interactions of particles during the inflationary epoch.

Pragmatically, the scale-dependent bias offers a method to test for new physics within the

power spectra measured in large-scale structure. One might expect that the best measurements of

primordial physics should ultimately come from higher-N-point statistics or even from analyses

performed directly at the level of the observed maps.23 Technical obstacles have however slowed

down progress and obscured the ultimate sensitivity of LSS surveys. In fact, analyses of the

bispectrum only recently became possible for single-field inflation (equilateral PNG) and remain

far from the demonstrated sensitivity of the CMB. The established theoretical and observational

23In some cases, it has already been shown that the signals of extra fields are best understood as map-level
features [239, 240, 241, 242, 243, 244] that may carry more signal to noise than low-order statistics.
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control of LSS power spectra therefore offer a reliable approach for near-term surveys to impact

our understanding of inflation.

Previous work has largely focused on local PNG for which the signal to noise is dominated

by only the largest angular scales accessible in a given survey. These measurements are exciting

since they have the potential to exceed the sensitivity of the CMB and explore the interesting

theoretical threshold of f loc
NL ∼ O(1). The much richer phenomenology of inflation however

raises the question if optimizing a survey for f loc
NL is the same as optimizing for understanding

inflation more broadly. For example, degeneracies [245, 246, 247] and large-angle (systematic)

effects [199, 248, 249, 250, 251, 252] that limit the local PNG measurement may not impact

other changes to the statistics. Similarly, some variations in the observational strategy or target

selection may not significantly affect the constraining power on f loc
NL , but could yield a vast

increase in the insights that we can gain on other inflationary observables.

In order to extend the reach of current and future surveys to these compelling inflationary

targets, we studied primordial non-Gaussianity associated with light fields during inflation over a

wide range of their masses. We found that surveys optimized for f loc
NL tend to perform equally

well over a broader mass range beyond the massless (local) limit. Furthermore, we placed new

constraints on these types of PNG by analyzing the BOSS DR12 dataset in two different and

consistent ways. These results are consistent with previous analyses in the case of massless fields.

In addition, they extend to heavier fields and other types of non-Gaussianity. They also show that

bounds on these general non-Gaussian shapes can be simply inferred from scale-dependent bias

measurements of f loc
NL and f eq

NL if they are consistent with zero. Our measured constraints from

BOSS data are also consistent with our BOSS forecasts which suggests that our understanding

of the constraining power of these surveys, which we described in detail, is reflected in real data.

These insights are likely relevant to the analysis strategies for current or near-term observations

and the design of future surveys. For instance, we demonstrated the significant improvements in

sensitivity that may be available from a multi-tracer analysis of LSST data.
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More broadly speaking, additional fields present during inflation are interesting in their

own right, far beyond their potential impact on the galaxy power spectrum. While we focused

on models leading to power-law corrections to the power spectrum, oscillatory contributions

to inflationary spectra can arise from (more) massive fields [175, 143, 253] or chemical poten-

tials [254, 255], for instance. This vast range of phenomenology therefore indicates that there are

many opportunities in the analysis of galaxy surveys [256, 234] that remain under-explored and,

as we also show in this paper, minor additional work could result in much broader and deeper

insights into the primordial universe.
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Appendix A

Appendix for Chapter 2

A.1 Computational Details

In this appendix, we provide details underlying our derivation of the axion production

rate (2.12) from (2.10). While the final integral (2.12) is eventually evaluated numerically, the

analytic reduction of the integral described in Appendix A.1.1 is important for making the

numerical evaluation tractable. In Appendix A.1.2, we present additional information on our

subsequent calculation of the contributions to ∆Neff using the Boltzmann equation.

A.1.1 Production Rate Calculation

We want to directly compute the production rate of axions via Compton-like scattering

and fermion annihilation using the quantum distribution functions (2.11) for the incoming and

outgoing particles which we label by 1,2 and 3,4, respectively. The general interaction rate via

such two-to-two processes is given by (2.10):

Γφ =
1

neq
φ

∫
dΓ̃ f1(p1) f2(p2) [1± f3(p3)] [1± f4(p4)] ∑ |M |2 , (A.1)

where we introduced the measure

dΓ̃ =
4

∏
i=1

d3 pi

(2π)32Ei
(2π)4

δ
(3)(p⃗1 + p⃗2 − p⃗3 − p⃗4)δ (E1 +E2 −E3 −E4) . (A.2)
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In the following, we will change the variables of this 12-dimensional integral, rewrite the

integration measure and scattering amplitudes (2.7) and (2.8), and finally reduce the respective

production rates to four-dimensional integrals that we will solve numerically.

Parametrization

While there are 12 degrees of freedom in the integration variables p⃗i, i = 1, . . . ,4, the

four-dimensional energy-momentum conservation enforced by the Dirac delta functions reduces

the number of independent degrees of freedom to eight. To parametrize these, we employ the

following variables: the absolute values of the total energy, total momentum, one incoming

momentum and one outgoing momentum,

E = E1 +E2 , p = |p⃗|= |p⃗1 + p⃗2| , p1 = |p⃗1| , p3 = |p⃗3| , (A.3)

the polar angle φ1 of p⃗1, the polar angle φ3 of p⃗3, and the remaining two directions of p⃗. Due

to symmetry, we can set p⃗ ≡ p ẑ, φ1 ≡ 0 and φ3 ≡ φ . Given this parametrization, we have

p2 = |p⃗2|= |p⃗− p⃗1| and p4 = |p⃗4|= |p⃗− p⃗3|.

It is useful to define the angle between p⃗ and p⃗i, θi = ∠(p⃗, p⃗i), to transform the three-

momenta of the particles from Cartesian to spherical coordinates:

p⃗1 = p1 (sinθ1,0,cosθ1) , p⃗2 = p2 (−sinθ2,0,cosθ2) ,

p⃗3 = p3 (sinθ3 cosφ ,sinθ3 sinφ ,cosθ3) , p⃗4 = p4(−sinθ4 cosφ ,−sinθ4 sinφ ,cosθ4) .

(A.4)

We can express these angles in terms of the absolute values of the momenta for i = 1,3 and

j = 2,4 as follows:

cosθi =
p2 + p2

i − p2
i+1

2ppi
, sinθi =

g(p, pi, pi+1)

2ppi
,
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cosθ j =
p2 + p2

j − p2
j−1

2pp j
, sinθ j =

g(p, p j−1, p j)

2pp j
,

where we introduced g(p, pi, p j) =
√

(p+ pi + p j)(p+ pi − p j)(p− pi + p j)(−p+ pi + p j).

Finally, it is also helpful to introduce the angles θ13 =∠(p⃗1, p⃗3) and θ14 =∠(p⃗1, p⃗4), which can

be parametrized as

cosθ13 = sinθ1 sinθ3 cosφ + cosθ1 cosθ3 ≡ acosφ +b ,

cosθ14 =−sinθ1 sinθ4 cosφ + cosθ1 cosθ4 ≡−ccosφ +d ,
(A.5)

where we defined a short-hand notation in terms of a, b, c and d in the last equalities, respectively.

Integral Measure

We now turn to the measure of the production rate integral introduced in (A.2) and

express it in terms of the new coordinates. By inserting 1 =
∫

d3 pδ (3)(p⃗− p⃗1 − p⃗2), we get

∫
dΓ̃ =

∫
d3 p1

∫
d3 p2

∫
d3 p3

∫
d3 p4

δ (3)(p⃗1 + p⃗2 − p⃗3 − p⃗4)δ (E1 +E2 −E3 −E4)

(2π)816E1E2E3E4

=
∫

d3 p1

∫
d3 p2

[∫
d3 pδ

(3)(p⃗− p⃗1 − p⃗2)

]
×
∫

d3 p3

∫
d3 p4

δ (3)(p⃗1 + p⃗2 − p⃗3 − p⃗4)δ (E1 +E2 −E3 −E4)

(2π)816E1E2E3E4
(A.6)

=
∫

d3 p
∫

d3 p1

∫
d3 p3

δ (E1 +E2 −E3 −E4)

(2π)816E1E2E3E4

∣∣∣∣
p⃗2=p⃗−p⃗1, p⃗4=p⃗−p⃗3

,

where we introduced a short-hand notation for imposing p⃗ j = p⃗− p⃗ j−1 in the last line which we

will further abbreviate below. As previously mentioned, we have the freedom to take p⃗ = p ẑ for

fixed p since the direction of p⃗ does not affect the production rate. Similarly, we can rotate all

the particle momenta p⃗i around the total momentum p⃗ because only their relative angle matters.

This motivates choosing the polar angle between the planes spanned by (p⃗1, p⃗2) and (p⃗3, p⃗4),

φ = φ3−φ1, as an integration variable (which is equivalent to the choice mentioned above). With
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these choices, the measure becomes

∫
dΓ̃ =

∫
dp p2

∫
dp1 p2

1 dφ1 dcosθ1

∫
dp3 p2

3 dφ3 dcosθ3
δ (E1 +E2 −E3 −E4)

(2π)78E1E2E3E4

∣∣∣∣
p⃗2, p⃗4

(A.7)

=
∫

dE
∫

dp p2
∫

dφ

[
∏

i=1,3

∫
dpi p2

i

∫
dcosθi δ (E −Ei −Ei+1)

]
1

512π6E1E2E3E4

∣∣∣∣∣
p⃗2, p⃗4

,

where we inserted 1 =
∫

dE δ (E −E1 −E2) to introduce the total energy E. To evaluate the inte-

grals over the azimuthal angles θi, we use Ei+1 = E −Ei = (m2
i+1+ p2+ p2

i −2ppi cosθi)
1/2 and

δ (g(p)) = ∑k δ (p− p̄k)/|g′(p̄k)|, with the simple zeros p̄k of the function g(p), to reparametrize

the Dirac delta functions:

∫ 1

−1
dcosθi δ (E −Ei −Ei+1) =

Ei+1

ppi

∫ 1

−1
dcosθi δ

(
cosθi −

m2
i+1 + p2 + p2

i −E2
i+1

2ppi

)
, (A.8)

which we can directly evaluate subject to the finite integration limits.

Finally, we have to appropriately treat the integration limits which we have neglected so

far. The integral in (A.8) is non-vanishing only if

(
m2

i+1 + p2 + p2
i −E2

i+1

2ppi

)2

≤ 1 . (A.9)

After defining A = s+m2
i −m2

i+1 and B = A2+4E2m2
i , and introducing the Mandelstam variable

s = E2 − p2, we can expand this inequality to

16s2(p2
i
)2
+
(
8sB−16E2A2) p2

i +B2 −16E2A2m2
i ≤ 0 , (A.10)

which determines the integration limits. To satisfy this quadratic inequality in p2
i , its determinant

must be positive, which requires s ≥ (mi +mi+1)
2. Since the total momentum p is positive, this
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implies for the total momentum and energy:

p ≤
√

E2 − (mi +mi+1)2 , E ≥ mi +mi+1 . (A.11)

Because these requirements have to be simultaneously satisfied for i = 1,3, we get

Emin = max
i=1,3

{mi +mi+1} , pmax = min
i=1,3

{√
E2 − (mi +mi+1)2

}
, (A.12)

which can also be directly inferred from kinematic considerations. The two solutions to the

quadratic inequality (A.10) for p2
i then imply the integration limits for pi, i = 1,3, to be

pmin,max
i =

1
2s

∣∣∣∣E√[s− (mi −mi+1)2][s− (mi +mi+1)2]∓ (s+m2
i −m2

i+1)p
∣∣∣∣ , (A.13)

with the minus (plus) sign being associated with the lower (upper) limit. To put it all together,

we therefore arrive at the following result for the measure:

∫
dΓ̃ =

∫
∞

Emin

dE
∫ pmax

0
dp
∫ pmax

1

pmin
1

dp1

∫ pmax
3

pmin
3

dp3

∫ 2π

0
dφ

p1 p3

512π6E1E3

∣∣∣∣
p⃗2, p⃗4

, (A.14)

with the integration limits given by (A.12) and (A.13).

Scattering Amplitudes

Before turning to the entire production rate calculation, we first rewrite the amplitudes of

Compton-like scattering and fermion annihilation, which we provided in (2.7) and (2.8), as a

function of the invariant Mandelstam variables s, t and u. In terms of our integration variables,
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these invariants are given by

s = (E1 +E2)
2 − (p⃗1 + p⃗2)

2 = E2 − p2 ,

t = (E1 −E3)
2 − (p⃗1 − p⃗3)

2 = m2
1 +m2

3 −2E1E3 +2p1 p3 cosθ13 , (A.15)

u = (E1 −E4)
2 − (p⃗1 − p⃗4)

2 = m2
1 +m2

4 −2E1E4 +2p1 p4 cosθ14 .

This implies that the scattering amplitude of the Compton-like process can be rewritten as

∑ |M |2(a) = 16π Aψ |ε̃ψ |2
2p1 p2

3(1− cosθ13)
2

(E2 − p2 −m2
ψ)(E4 − p4 cosθ14)

, (A.16)

while the scattering amplitude of the annihilation process in these coordinates is

∑ |M |2(b) = 16π Aψ |ε̃ψ |2
(E2 − p2)2

4p3 p4(E1 − p1 cosθ13)(E1 − p1 cosθ14)
. (A.17)

We will now separately insert these expressions into the integral (A.1) to obtain the final expres-

sions for the respective production rates.

Compton-Like Scattering Rate

For Compton-like scattering, {γ,g}+ψ → φ +ψ , we take the momenta of the massless

bosons to be p1 and p3, while the fermion ψ has incoming momentum p2, outgoing momen-

tum p4 and mass mψ . This means that the energies and momenta can be expressed as

E1 = p1 , E3 = p3 , E j = E − p j−1 , p j =
√
(E − p j−1)2 −m2

ψ ,

for j = 2,4, while the integration limits for i = 1,3 are

Emin = mψ , pmax =
√

E2 −m2
ψ , pmin

i =
E2 −m2

ψ − p2

2(E + p)
, pmax

i =
E2 −m2

ψ − p2

2(E − p)
.
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The production rate associated with the scattering process therefore is

Γ(a) =
1

512π6 neq
φ

∫
dE
∫

dp
∫

dp1

∫
dp3

∫
dφ f1(E1) f2(E2) [1+ f3(E3)] [1− f4(E4)]) ∑ |M |2

=
Aψ |ε̃ψ |2
16π5 neq

φ

∫
dE
∫

dp
∫

dp1

∫
dp3

1(
e

p1
T −1

)(
e

E−p1
T +1

)(
1− e−

p3
T

)(
1+ e−

E−p3
T

)
× p1 p2

3
E2 − p2 −m2

ψ

∫ 2π

0
dφ

(1− cosθ13)
2

E4 − p4 cosθ14
.

We can further simplify this expression by analytically performing the angular integral,

1
2π

∫ 2π

0
dφ

p4(1− cosθ13)
2

E4 − p4 cosθ14
=

c2(1−b)2 +[a2 f +2ac(1−b)]( f −
√

f 2 − c2)

c2
√

f 2 − c2
,

where we employed the short-hand notation introduced in (A.5), with

cosθi =
m2

ψ −E2 + p2 +2E pi

2ppi
, cosθ4 =

E2 −m2
ψ + p2 −2E p3

2p
√

(E − p3)2 −m2
ψ

, f =
E − p3√

(E − p3)2 −m2
ψ

−d,

for i = 1,3. Finally, we can use a/c = p4/p3 to arrive at the final expression for the Compton-like

production rate,

Γ(a) =
Aψ |ε̃ψ |2
8π4 neq

φ

∫
∞

mψ

dE
∫ pmax

0
dp
∫ pmax

1

pmin
1

dp1

∫ pmax
3

pmin
3

dp3
1(

e
p1
T −1

)(
e

E−p1
T +1

) p1

E2 − p2 −m2
ψ

× 1(
1− e−

p3
T

)(
1+ e−

E−p3
T

) p2
3(1−b)2 +

[
p2

4 f +2p3 p4(1−b)
](

f −
√

f 2 − c2
)

p4
√

f 2 − c2
,

with p2
4 ( f 2 − c2) = (E4 cosθ1 − p4 cosθ4)

2 +m2
ψ sin2

θ1.

Fermion Annihilation Rate

For fermion-antifermion annihilation, ψ + ψ̄ → {γ,g}+ φ , we assign the incoming

momenta p1 and p2 to the fermion and antifermion with mass mψ , and the outgoing momenta p3
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and p4 to the massless vector boson and axion, respectively. In consequence, the energies and

momenta associated with this process are

E1 =
√

p2
1 +m2

ψ , E3 = p3 , E j = E − p j−1 , p2 =
√
(E −E1)2 −m2

ψ , p4 = E − p3 ,

for j = 2,4, while the integration limits are given by

Emin = 2mψ , pmax =
√

E2 −4m2
ψ , pmin,max

1 =
1
2

∣∣∣∣ E√
s

√
s−4m2

ψ ∓ p
∣∣∣∣ , pmin,max

3 =
E ∓ p

2
,

where the minus (plus) signs are associated with the minimum (maximum) particle momenta.

We can therefore write the interaction rate for the annihilation process as

Γ(b) =
1

512π6 neq
φ

∫
dE
∫

dp
∫

dp1

∫
dp3

∫
dφ

p1

E1
f1(E1) f2(E2)[1+ f3(E3)][1+ f4(E4)])

×∑ |M |2

=
Aψ |ε̃ψ |2

128π5 neq
φ

∫
dE
∫

dp
∫

dp1

∫
dp3

1(
e

E1
T +1

)(
e

E−E1
T +1

)(
1− e−

p3
T

)(
1− e−

E−p3
T

)
× (E2 − p2)2

E1 p3 p4

∫ 2π

0
dφ

p1

(E1 − p1 cosθ13)(E1 − p1 cosθ14)
.

As for the Compton-like process, we can again compute the angular integral analytically and

express it in terms of the short-hand notation introduced in (A.5),

1
2π

∫ 2π

0
dφ

p2
1

(E1 − p1 cosθ13)(E1 − p1 cosθ14)
=

a√
( f−b)2−a2

+ c√
( f−d)2−c2

a( f −d)+ c( f −b)
,

with f = E1/p1 and the following underlying expressions:

cosθ1 =
m2

ψ − (E −E1)
2 + p2 + p2

1

2pp1
, cosθ3 =

−E2 + p2 +2E p3

2pp3
, cosθ4 =

E2 + p2 −2E p3

2p(E − p3)
.
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After rewriting the result of the angular integral, the final expression for the production rate via

fermion annihilation that we implemented numerically is given by

Γ(b) =
Aψ |ε̃ψ |2
32π4 neq

φ

∫
∞

2mψ

dE
∫ pmax

0
dp
∫ pmax

1

pmin
1

dp1

∫ pmax
3

pmin
3

dp3
1(

e
E1
T +1

)(
e

E−E1
T +1

) (E2 − p2)p1

E1

× 1(
1− e−

p3
T

)(
1− e−

E−p3
T

) ( 1
p3 h(θ3)

+
1

p4 h(θ4)

)
,

where we defined h(θk) =
√

m2
ψ sin2

θ1 +(E1 cosθ1 − p1 cosθk)2.

A.1.2 Boltzmann Equation and ∆Neff

Having obtained the total production rate Γ = 2Γ(a)+Γ(b) by numerically computing the

four-dimensional integrals stated above, we computed the resulting contribution to the radiation

density in the early universe as parameterized by Neff. In the following, we provide additional

details of the underlying computational steps.

First, we solve the Boltzmann equation (2.13) to calculate the axion number density nφ (t).

Instead of directly solving (2.13), we however adopt the conventional change of variables to

the dimensionless time variable x = m/T and the dimensionless comoving number density

Yφ = nφ/s, with the entropy density s = 2π2 g∗sT 3/45. Conservation of entropy in the early

universe, a3s = const, implies ṡ/s =−3 ȧ/a =−3H, where the overdot denotes a derivative with

respect to time t, and allows to express (2.13) as

Ẏφ = Γφ

(
Y eq

φ
−Yφ

)
. (A.18)

Rewriting the derivative with respect to t in terms of x leads to

Hx
dYφ

dx
=

(
1− 1

3
dlogg∗s

dlogx

)
Γφ

(
Y eq

φ
−Yφ

)
, (A.19)
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where we used the definition of the entropy density s.

We numerically solve this equation for Yφ from an initial condition of no axions,

Yφ (T0) = 0, to the final late-time value of Yφ ,∞ = Yφ (T∞). We take the initial temperature

to be the temperature of the electroweak crossover, T0 = TEW = 159.5GeV [258], since the

Lagrangian (2.6) and, therefore, the computed production rates are only valid after electroweak

symmetry breaking. Due to Boltzmann suppression for T ≪ mψ , it is sufficient to compute the

number density for T∞ = mψ/100.

Finally, we have to convert the computed value of Yφ ,∞ to a contribution to ∆Neff as

defined in (2.3). At late times, the axion energy and number densities, the photon density and

the entropy density are given by

ρφ =
π2

30
T 4

φ , nφ =
ζ (3)
π2 T 3

φ , ργ =
π2

15
T 4

γ , s =
2π2

45
g∗s,∞T 3

γ , (A.20)

with the effective number of relativistic degrees of freedom in entropy only counting photons and

neutrinos, g∗s,∞ = 43/11. We therefore arrive at the following expression for the contribution to

the effective number of relativistic degrees of freedom:

∆Neff =
4
7

(
11π4

90ζ (3)
g∗s,∞Yφ ,∞

)4/3

=
4
7

(
43π4

90ζ (3)
Yφ ,∞

)4/3

, (A.21)

which approximately evaluates to ∆Neff ≈ 74.84Y 4/3
φ ,∞ .
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A.2 Production Rate Comparisons and Uncertainties

In this appendix, we examine a few aspects of the computed production rate of axions

and other pNGBs. We first consider the differences between employing the full quantum

distribution functions f i(p), i = f ,b, instead of the classical Boltzmann distribution function

and the relative importance of the Compton-like and fermion-antifermion annihilation processes

in the production (Appendix A.2.1). Then, we describe the uncertainties associated with our

calculations involving the axion coupling to the bottom and charm quarks due to the QCD phase

transition and their potential impact on our predictions for ∆Neff as a function of the coupling

constants Λ{b,c} (Appendix A.2.2).

A.2.1 Quantum Statistics and Production Rates

Commonly, the distribution functions in the production rate are approximated by Boltz-

mann distributions and the Bose enhancement and Pauli blocking are neglected. We went beyond

these approximations and consistently included the quantum nature using the Bose-Einstein

and Fermi-Dirac distribution functions, including the effects of Bose enhancement and Pauli

blocking.

When neglecting the quantum statistics, it is convenient to performe an integration

over the momentum in the center-of-mass frame to obtain the cross section. Since the Bose-

enhancement and Pauli-blocking terms depend on the energy of the outgoing particles, they

however render the cross-section integral more complicated. In this case, some previously

employed approximation schemes break down because the approximate integrand peaks in

unphysical regimes. Unlike for freeze-out calculations above the electroweak scale, this is

particularly noticeable for axion couplings to matter at lower temperatures, as considered in

this work. While the calculation of [32] included Bose enhancement and Pauli blocking in a

simplified fashion as
[
1± f3

][
1± f4

]
→ 1

2

(
[1± f3(p1)][1± f4(p2)]+{p1 ↔ p2}

)
, this meant

that the outgoing momenta were approximated by the incoming momenta. In the case of an
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Figure A.1. Dimensionless rescaling of the total interaction rate Γφ as a function of mψ/T
together with its contributions from fermion-antifermion annihilation and Compton-like scatter-
ing (for both fermions and antifermions). We compare the results of our full calculation with
the approximate result neglecting the Bose-Einstein and Fermi-Dirac statistics as well as Bose
enhancement and Pauli blocking (see Fig. 2.3). The vertical dashed line indicates T = mψ which
is approximately the temperature where decoupling occurs. We see that the annihilation rate
is larger than the Compton-like scattering rate at all temperatures. We also observe that the
difference between using the Boltzmann approximation instead of the full quantum statistics is
most pronounced for the annihilation rate at large temperatures T ≫ mψ .

incoming and outgoing boson, e.g. in the Compton-like process, the integrand however diverges

at low momenta,

lim
p1→0

d3 p1

2E1
f b
1 (p1)

[
1+ f b

3 (p1)
]
∼ dp1

p1
. (A.22)

We remedied these shortcomings by going beyond any of these approximations and incorporating

the full quantum statistics in our analytic and numerical computation of the production rate as

described in Appendix A.1. At the same time, this allows us to compare our full calculation to the

results based on the commonly-employed Boltzmann approximation without Bose enhancement

and Pauli blocking.

We present the results of this comparison of quantum and classical statistics in Fig. A.1

for the processes relevant to the axion production calculated in this work.1 We see that the

1We note that we assumed production to occur after electroweak symmetry breaking in our calculation of the
underlying scattering amplitudes, i.e. these results should not be extrapolated to arbitrarily large energies.
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difference between the quantum and classical production rates is fairly substantial when T ≫ m.

This considerable difference justifies the concern that the employed statistics can non-trivially

impact production rates and, therefore, the bounds on the couplings from ∆Neff measurements.

Having said that, the impact on the production rate relevant to these bounds is actually somewhat

small since the dominant source of axions will be produced when T ≈ m, and the effects of Bose

enhancement and Pauli blocking are reduced when the number densities are suppressed at low

temperatures.

In addition, we separately break down the impact on the annihilation and Compton-like

processes. We can observe that the production rate receives approximately equal contribu-

tions from Compton-like scattering and fermion-antifermion annihilation at high temperatures,

T ≫ mψ , but is dominated by the former and latter process for T ≪ mψ and around T = mψ ,

respectively. In addition, we see that both processes show the same difference between their

classical and quantum evaluation for T ≳mψ/10, with the quantum annihilation rate approaching

its classical counterpart for low temperatures whereas the quantum Compton-like scattering rate

remains elevated compared to its classical treatment. While this is not directly related to the

failure of the approximation scheme for the Compton-like process in (A.22), both effects are tied

to the correct implementation of the Bose enhancement.

A.2.2 Uncertainties in the Axion-Quark Calculation

The masses of the bottom and charm quarks are close to the energy scale of the QCD phase

transition. As a result, we expect that decoupling of the axion occurs during the QCD phase

transition for its couplings to these quarks because this happens at temperatures T ≈ mi/10 for

large interaction strengths. Since the production rates involve external gluons, this would in

principle require a non-perturbative calculation, such as with lattice QCD, to determine the exact

contribution to ∆Neff. This is a particularly critical issue as the number of degrees of freedom

changes rapidly with temperature during the transition, which implies that the predictions

of ∆Neff(Λ{b,c}) are extremely sensitive to the temperature of decoupling.
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Figure A.2. Contributions to ∆Neff from coupling to the charm (orange) and bottom (red) quarks.
For comparison, the gray line indicates the prediction for axion-tau interactions (cf. Figures 2.4
and 2.9). The solid line indicates the conservative assumption made in the main text where axion
decoupling is imposed by hand at T∞ = 1GeV. The dashed line indicates our less-conservative
estimate where we allow the axions to remain in equilibrium through the QCD phase transition,
with αs = 1, and force decoupling at T∞ = 120MeV. We see that the predictions depend
sensitively on non-perturbative physics during the QCD phase transition.

In the absence of a non-perturbative calculation of the axion production rate,2 we report

our results in terms of conservative and less-conservative estimates for the processes involving the

bottom and charm quarks. In the main text, we only presented the conservative estimates which

were computed by cutting off the Boltzmann evolution at a final temperature of T∞ = 1GeV

when the strong coupling constant αs ≈ 0.5. In essence, we force the axion decoupling by hand

at the onset of the QCD phase transition when perturbation theory starts to break down. This

likely underestimates the contributions to ∆Neff at larger couplings (smaller Λi) for which the

axion is surely still in equilibrium for T < 1GeV.

In Figure A.2, we included a less conservative calculation (dashed lines), that stops at the

lower end of the QCD phase transition, T∞ = 120MeV, assuming that the strong coupling αs

is fixed to unity in the regime where the naive coupling would exceed one. We note that the

results of [53] show the same qualitative behavior. This figure illustrates that there is little

2Alternatively, one could also attempt to match across the QCD phase transition, along the lines of [72, 73].
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difference between the two estimates for weak couplings (large Λi) because the axion is no

longer in equilibrium during the QCD phase transition. The difference becomes large at stronger

interaction strengths (smaller Λi) since the axion remains in equilibrium at T < 1GeV in the

less-conservative scenario. Larger couplings keep the axion in equilibrium to progressively

lower temperatures and the contribution to ∆Neff climbs accordingly. The less conservative

estimate suggests that the coupling to the bottom and charm quarks may lie within the sensitivity

of CMB-S4 and potentially even the Simons Observatory. This motivates a non-perturbative

computation of axion production from bottom and charm couplings during the QCD phase

transition.
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Appendix B

Appendix for Chapter 3

B.1 Forecasting Details

In this appendix, we collect additional information on our LSS Fisher forecasts. We first

provide the full set of definitions underlying our model for the galaxy power spectrum and then

describe the experimental specifications of all galaxy surveys employed in the main text.

B.1.1 Galaxy Power Spectrum Model

We model the galaxy power spectrum at one-loop order in standard Eulerian perturbation

theory and in the bias expansion where the galaxy overdensity δg is a function of terms up to

third order in the linear matter density contrast δm [cf. (3.7)]. The theoretical galaxy power

spectrum for two biased tracers A and B is then given by (3.10). The various loop contributions
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in that equation are defined as follows:

σ
4 =

∫
q⃗

P2
lin(q) , (B.1)

P22(k) = 2
∫

q⃗

[
F(s)

2 (⃗q,⃗k− q⃗)
]2

Plin(q)Plin(|⃗k− q⃗|) , (B.2)

P13(k) = 6Plin(k)
∫

q⃗
F(s)

3 (⃗k, q⃗,−q⃗)Plin(q) , (B.3)

Pδ 2(k) = 2
∫

q⃗
F(s)

2 (⃗q,⃗k− q⃗)Plin(q)Plin(|⃗k− q⃗|) , (B.4)

Ps2(k) = 2
∫

q⃗
F(s)

2 (⃗q,⃗k− q⃗)
(
µ

2
−− 1

3

)
Plin(q)Plin(|⃗k− q⃗|) , (B.5)

Pδ 2δ 2(k) = 2
∫

q⃗
Plin(q)Plin(|⃗k− q⃗|) , (B.6)

Pδ 2s2(k) = 2
∫

q⃗

(
µ

2
−− 1

3

)
Plin(q)Plin(|⃗k− q⃗|) , (B.7)

Ps2s2(k) = 2
∫

q⃗

(
µ

2
−− 1

3

)2
Plin(q)Plin(|⃗k− q⃗|) , (B.8)

P
ΠΠ[2](k) = 2Plin(k)

∫
q⃗

2
7

( k⃗ · q⃗
kq

)2

−1

 2
3

µ
2
−+

8
63

Plin(q) , (B.9)

with
∫⃗

q ≡
∫ dq3

(2π)3 and µ− ≡ q⃗·(⃗k−q⃗)
q|⃗k−q⃗| . The functions F(s)

2 (⃗k1,⃗k2) and F(s)
3 (⃗k1 ,⃗k2 ,⃗k3) are the sym-

metric, second- and third-order kernels of δm in standard perturbation theory [151],

F(s)
2 (⃗k1,⃗k2) =

5
7
+

2
7

(
k⃗1 ·⃗ k2

k1k2

)2

+
1
2

k⃗1 ·⃗ k2

k1k2

(
k1

k2
+

k2

k1

)
, (B.10)

F(s)
3 (⃗k1,⃗k2 ,⃗k3) =

k2

27

[⃗
k1 · (⃗k2 + k⃗3)

k2
1 (⃗k2 + k⃗3)2

G(s)
2 (⃗k2,⃗k3)+2 cyclic

]

+
7

54
k⃗ ·
[

k⃗1 + k⃗2

(⃗k1 + k⃗2)2
G(s)

2 (⃗k1,⃗k2)+2 cyclic

]
(B.11)

+
7

54
k⃗ ·
[⃗

k1

k2
1

F(s)
2 (⃗k2 ,⃗k3)+2 cyclic

]
,
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where k⃗ ≡ k⃗1 + k⃗2 + k⃗3 and G(s)
2 (⃗k1,⃗k2) is the symmetric, second-order kernel of the velocity

divergence θm,

G(2)
2 (⃗k1,⃗k2) =

3
7
+

4
7

(
k⃗1 ·⃗ k2

k1k2

)2

+
1
2

k⃗1 ·⃗ k2

k1k2

(
k1

k2
+

k2

k1

)
. (B.12)

B.1.2 Survey Specifications

In the following, we provide detailed information about the spectroscopic and photo-

metric redshift surveys that we employ in our Fisher forecasts, including the assumed redshift

distribution in bias and number density.

Spectroscopic Surveys

The experimental specifications of the spectroscopic redshift surveys BOSS, DESI,

Euclid, SPHEREx, MegaMapper and the billion-object survey are provided in Tables B.1 to B.6.

We provide the linear bias b1 and number density n̄g for each sample and redshift bin with mean

redshift z̄ and spherical volume V . For DESI, different types of tracers were combined into

one galaxy sample with a single effective number density and bias following [44, 114]. Since

the number density of DESI is not in the regime where sample-variance cancellation is most

effective (see Fig. 3.4), our results should be relatively insensitive to this choice. For all surveys,

we treat each redshift bin as being independent so that the Fisher matrix for the entire survey is

the sum of the Fisher matrices associated with each separate redshift bin.

Photometric Surveys

To forecast Vera Rubin Observatory’s LSST, which is a photometric redshift survey, we

use the “gold” sample defined in their science book [188], which includes more than four billion

galaxies over 20000 deg2. The number of objects in each redshift bin is calculated according to

Ng(zmin,zmax) =
NtotΩsky

2z2
0

(
2z2

0 +2z0z+ z2)e−z/z0

∣∣∣∣z=zmax

z=zmin

, (B.13)
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where Ntot = 0.55arcmin−2, Ωsky = 20000deg2 and z0 = 0.3. The bias is taken to be b1(z) =

0.95/D(z) and we assume a photometric redshift error of σz0 = 0.05. Table B.7 explicitly

provides the derived experimental specifications for this survey with zmax = 3 and twelve redshift

bins with width ∆z = 0.25.
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Table B.1. Basic specifications for a BOSS-like survey [114] (inspired by [259] as detailed
in [44]), covering a sky area of 10252 deg2 with a total of about 1.2×106 objects in a volume of
roughly 6.3 h−3 Gpc3.

z̄ 0.35 0.625

b1 1.634 1.877
103n̄g [h3 Mpc−3] 0.275 0.142
V [h−3 Gpc3] 2.18 4.15

Table B.2. Basic specifications for DESI [114] (derived from [185] as explained in [44]),
covering a sky area of 14000 deg2 with a total of about 2.7×107 objects in a volume of
roughly 58 h−3 Gpc3.

z̄ 0.05 0.15 0.25 0.35 0.45 0.65

b1 1.40 1.48 1.55 1.61 1.67 2.05
103n̄g [h3 Mpc−3] 38.8 15.7 3.96 0.883 0.0992 0.591
V [h−3 Gpc3] 0.0356 0.229 0.560 0.979 1.44 2.39

z̄ 0.75 0.85 0.95 1.05 1.15 1.25

b1 1.71 1.71 1.53 1.45 1.48 1.47
103n̄g [h3 Mpc−3] 1.31 0.920 0.779 0.466 0.398 0.387
V [h−3 Gpc3] 2.83 3.24 3.61 3.94 4.24 4.49

z̄ 1.35 1.45 1.55 1.65 1.75 1.85

b1 1.47 1.69 1.68 2.27 2.45 2.47
103n̄g [h3 Mpc−3] 0.180 0.133 0.110 0.0387 0.0197 0.0208
V [h−3 Gpc3] 4.71 4.90 5.05 5.18 5.29 5.37

Table B.3. Basic specifications for the Euclid survey [44] (derived from [260]), covering a sky
area of 15000 deg2 with a total of about 4.9×107 objects in a volume of roughly 71 h−3 Gpc3.

z̄ 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35

b1 1.06 1.11 1.16 1.21 1.27 1.33 1.38 1.44
103n̄g [h3 Mpc−3] 0.637 1.46 1.63 1.50 1.33 1.14 1.00 0.837
V [h−3 Gpc3] 2.56 3.03 3.47 3.87 4.23 4.54 4.81 5.05

z̄ 1.45 1.55 1.65 1.75 1.85 1.95 2.05

b1 1.51 1.54 1.63 1.70 1.85 1.90 1.26
103n̄g [h3 Mpc−3] 0.652 0.512 0.357 0.246 0.149 0.0904 0.0721
V [h−3 Gpc3] 5.25 5.41 5.55 5.67 5.76 5.83 5.88
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Table B.4. Basic specifications for SPHEREx [261], covering a sky fraction fsky = 0.75 with a
total of about 7.0×108 objects in a volume of roughly 450 h−3 Gpc3. SPHEREx is a spectro-
photometric survey and the observed objects are divided into five samples based on their photo-
metric redshift uncertainty bin, with respective maximum error σz0 = {0.003,0.01,0.03,0.1,0.2}.
The volume V and the galaxy number density n̄g are given in units of h−3 Gpc3 and h3 Mpc−3,
respectively.

z̄ 0.1 0.3 0.5 0.7 0.9 1.3 1.9 2.5 3.1 3.7 4.3

V 0.584 3.40 7.43 11.5 15.1 60.4 71.4 73.6 71.8 68.3 64.2

b(1)1 1.3 1.5 1.8 2.3 2.1 2.7 3.6 2.3 3.2 2.7 3.8
105n̄(1)g 997 411 50.1 7.05 3.16 1.64 0.359 0.0807 0.184 0.150 0.113

b(2)1 1.2 1.4 1.6 1.9 2.3 2.6 3.4 4.2 4.3 3.7 4.6
105n̄(2)g 1230 856 282 93.7 43.0 5.00 0.803 0.383 0.328 0.107 0.0679

b(3)1 1.0 1.3 1.5 1.7 1.9 2.6 3.0 3.2 3.5 4.1 5.0
105n̄(3)g 1340 857 362 294 204 21.2 0.697 0.202 0.143 0.193 0.0679

b(4)1 0.98 1.3 1.4 1.5 1.7 2.2 3.6 3.7 2.7 2.9 5.0
105n̄(4)g 2290 1290 535 495 415 79.6 7.75 0.787 0.246 0.193 0.136

b(5)1 0.83 1.2 1.3 1.4 1.6 2.1 3.2 4.2 4.1 4.5 5.0
105n̄(5)g 1490 752 327 250 183 73.4 25.3 5.41 2.99 0.941 0.204

Table B.5. Basic specifications for MegaMapper [189], covering a sky area of 14000 deg2 with
a total of about 6.6×107 objects in a volume of roughly 200 h−3 Gpc3.

z̄ 2.0 3.0 4.0 5.0

b1 2.5 4.0 3.5 5.5
103n̄g [h3 Mpc−3] 0.98 0.12 0.10 0.040
V [h−3 Gpc3] 54.0 54.4 50.0 44.8
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Table B.6. Basic specifications for our (futuristic) spectroscopic billion-object survey, covering
a sky fraction fsky = 0.5 with a total of 109 objects in a volume of roughly 330 h−3 Gpc3. The
observed objects are divided into two samples based on their linear bias, b1(z = 0) = 2.0 and 1.2.

z̄ 0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75

V [h−3 Gpc3] 4.78 20.6 32.8 38.8 40.8 40.7 39.4 37.7 35.9 34.0

b(1)1 2.28 2.94 3.66 4.41 5.17 5.94 6.72 7.51 8.29 9.07
103n̄(1)g [h3 Mpc−3] 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54

b(2)1 1.37 1.76 2.19 2.64 3.10 3.57 4.03 4.50 4.97 5.45
103n̄(2)g [h3 Mpc−3] 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54

Table B.7. Basic specifications for Vera Rubin Observatory’s LSST [188], covering a sky area
of 20000 deg2 with a total of about 4×109 objects in a volume of roughly 170 h−3 Gpc3. The
photometric redshift error is σz0 = 0.05.

z̄ 0.125 0.375 0.625 0.875 1.125 1.375

b1 1.01 1.16 1.31 1.48 1.65 1.82
103n̄g [h3 Mpc−3] 292 183 108 63.6 36.8 21.0
V [h−3 Gpc3] 0.709 3.93 8.10 11.9 14.9 17.0

z̄ 1.625 1.875 2.125 2.375 2.625 2.875

b1 2.00 2.18 2.36 2.54 2.73 2.91
103n̄g [h3 Mpc−3] 11.9 6.46 3.55 1.94 0.969 0.646
V [h−3 Gpc3] 18.4 19.2 19.7 19.9 19.8 19.6
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B.2 Measuring the Scaling Behavior

We have assumed for all forecasts throughout the paper that the fiducial value of the non-

Gaussian amplitude f ∆
NL vanishes. This is of course motivated by the fact that we have only been

placing observational bounds on PNG that are consistent with f ∆
NL = 0, including in Section 3.5.

We additionally always considered the scaling exponent ∆ to be fixed. In this appendix, we

will consider nonzero fiducial PNG amplitudes and clarify to what degree measurements of the

galaxy power spectrum are sensitive to the precise value of ∆.

We defined the correlation between the non-Gaussian signals of two different values of ∆

in (3.32) in terms of the respective Fisher matrix elements (after marginalization) for a fiducial

value of f̄ ∆1,2
NL = 0. For BOSS, we can observe in Fig 3.10 that this correlation is close to unity,

even for widely separated values of ∆. We see in Fig. B.1 that this statement still holds for the

billion-object survey. In fact, the range of ∆ which are highly correlated with the local shape

further expanded. Naively, this suggests there is little information about the shape of the signal,

described by ∆, encoded in these observables.

To first approximation, the fiducial value of f̄ ∆
NL = 0 is the reason why we see little ability

to distinguish different values of ∆. Since there is no signal to measure, it is not surprising that

the precise shape is not very important. If we were instead to detect f ∆
NL, we would expect that

the signal to noise would be a fairly sensitive function of ∆ and we could therefore measure

the true value of ∆ precisely. This is exactly what is found in Fig. B.2, in which we show the

forecasted constraints for measuring ∆, σ(∆), assuming that f ∆
NL is detected at a significance

of 5σ in the billion-object survey. The key result is that if we detect f ∆
NL while holding ∆ fixed,

we expect to have enough sensitivity to measure the scaling exponent with σ(∆)∼ 0.05−0.5.

In this sense, the strategy of searching for f ∆
NL at fixed ∆ is a reliable strategy to search for

new physics, but would yield additional information about the origin of the signal even at the

threshold of a detection. When we instead marginalize over ∆, we require a significantly larger

non-Gaussian amplitude f ∆
NL to be detected. In this case, the corresponding uncertainties on ∆
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Figure B.1. Correlation matrix for measurements of galaxy power spectra with different values
of the non-Gaussian scaling exponent ∆ as defined in (3.32) for the billion-object survey and four
biasing models. The lower right panel is equivalent to Fig. 3.10, which shows the correlations
for BOSS. As in that figure, we hold the ΛCDM parameters fixed, take the fiducial non-Gaussian
amplitudes to be zero, f̄ ∆i

NL = 0, and indicate the coverage of the local and equilateral templates
with a correlation coefficient of at least 0.9 by the orange lines. We can clearly observe the
impact of the biasing model and the different experimental specifications compared to BOSS.
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Figure B.2. Forecasts for σ( f ∆
NL) (top) and σ(∆) (bottom) as a function of ∆ if the scaling

exponent is either fixed (left) or varied (right) for the billion-object survey. To compute the
constraint on ∆, we take the fiducial value of the non-Gaussian amplitude, f̄ ∆

NL, to be the value
necessary to achieve a 5σ detection in the respective forecast. We fix the ΛCDM parameters and
marginalize over four different biasing models.
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would however be generally smaller, with σ(∆)< 0.1.

At first sight, it might seem surprising that the curves of σ(∆) in Fig. B.2 have minima at

the values of ∆ where the curves of σ( f ∆
NL) have maxima or downward bends. By comparing

the curves for different biasing models, we can however see that these features are the result

of marginalizing over the bias parameters. For example, we noted in the main text that the

maximum in σ( f ∆
NL) near ∆ = 1 when marginalizing over b1 arises because the linear bias b1

and f ∆=1
NL are degenerate at high k. The fact that the measurement of f ∆

NL is less constraining at

this point then also implies that we are very sensitive to the exact value of the scaling exponent ∆.

When we hold f ∆
NL/σ( f ∆

NL) fixed, we should therefore expect that σ(∆) is smaller in regions

of ∆ where f ∆
NL is degenerate with bias parameters.

Let us finally return to the correlation coefficients between scale-dependent biases with

different scaling exponent ∆. In order to be consistent, the impact of marginalization over the bias

parameters must also appear in cos( f ∆1
NL, f ∆2

NL). Specifically, the impact of the marginalization

has a large impact on σ( f ∆
NL) for larger values of ∆. For the inferred constraints to be consistent

with our forecasts, this has to imply that the correlation between large and small ∆ decreases by

a similar factor. If this was not the case, our constraints inferred from f loc
NL at large ∆ would be

stronger than directly measuring f ∆
NL.

This expectation is precisely what occurs, as shown in Fig. B.1. The correlation coef-

ficients for larger ∆ are affected by the number of bias parameters that are marginalized over.

With more marginalized bias parameters, the range over which ∆< 2 and ∆ = 2 are degenerate

decreases significantly. This is expected since the (equilateral) signal for ∆ = 2 gets most of its

information from large wavenumbers, where the biases play a significant role (cf. §3.4.2). In

contrast, the increase of the range of strong overlap with ∆ = 0 is likely due to the increasing

difficulty to distinguish similar shapes of ∆ with the inclusion of more bias parameters. Finally,

it is also worth noticing that the non-Gaussian signal with ∆ = 0 (local PNG) appears to be

anti-correlated with the scale-dependent bias signal for ∆ ∼ 2 in the last three panels of Fig. B.1
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in which we marginalize over the biasing model.
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Squeezed Limit: Consistency Relations at Order q2,” JCAP 11 (2013) 015,
arXiv:1307.0503 [astro-ph.CO].

[169] A. Testa and M. Wise, “Impact of Transforming to Conformal Fermi Coordinates on
Quasi-Single-Field Non-Gaussianity,” Phys. Rev. D 102 (2020) 023533,
arXiv:2004.06126 [astro-ph.CO].

125

http://dx.doi.org/10.1088/1475-7516/2016/02/018
http://arxiv.org/abs/1511.01096
http://arxiv.org/abs/1511.01096
http://dx.doi.org/10.1086/309179
http://arxiv.org/abs/astro-ph/9911177
http://dx.doi.org/10.1086/379122
http://arxiv.org/abs/astro-ph/0307460
http://dx.doi.org/10.1086/503622
http://arxiv.org/abs/astro-ph/0509260
http://dx.doi.org/10.1038/281358a0
http://dx.doi.org/10.1088/1475-7516/2008/04/014
http://arxiv.org/abs/0711.4126
http://arxiv.org/abs/0711.4126
http://dx.doi.org/10.1086/587840
http://arxiv.org/abs/0801.4826
http://dx.doi.org/10.1088/1475-7516/2015/12/043
http://arxiv.org/abs/1510.03723
http://dx.doi.org/10.1088/1475-7516/2013/05/001
http://arxiv.org/abs/1209.2173
http://dx.doi.org/10.1088/1126-6708/2003/05/013
http://arxiv.org/abs/astro-ph/0210603
http://dx.doi.org/10.1103/PhysRevD.88.083502
http://arxiv.org/abs/1305.0824
http://dx.doi.org/10.1088/1475-7516/2015/10/024
http://arxiv.org/abs/1504.05935
http://dx.doi.org/10.1088/1475-7516/2013/11/015
http://arxiv.org/abs/1307.0503
http://dx.doi.org/10.1103/PhysRevD.102.023533
http://arxiv.org/abs/2004.06126


[170] D. Green, M. Lewandowski, L. Senatore, E. Silverstein, and M. Zaldarriaga, “Anomalous
Dimensions and Non-Gaussianity,” JHEP 10 (2013) 171, arXiv:1301.2630 [hep-th].

[171] H. An, M. Wise, and Z. Zhang, “De Sitter Quantum Loops as the Origin of Primordial
Non-Gaussianities,” Phys. Rev. D 99 (2019) 056007, arXiv:1806.05194 [hep-ph].

[172] M. McAneny and A. Ridgway, “New Shapes of Primordial Non-Gaussianity from
Quasi-Single-Field Inflation with Multiple Isocurvatons,” Phys. Rev. D 100 (2019)
043534, arXiv:1903.11607 [astro-ph.CO].

[173] D. Green, Y. Huang, C.-H. Shen, and D. Baumann, “Positivity from Cosmological
Correlators,” arXiv:2310.02490 [hep-th].

[174] P. Creminelli, J. Noreña, and M. Simonović, “Conformal Consistency Relations for
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[207] M. Ivanov, M. Simonović, and M. Zaldarriaga, “Cosmological Parameters from the
BOSS Galaxy Power Spectrum,” JCAP 05 (2020) 042, arXiv:1909.05277
[astro-ph.CO].

[208] G. D’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang, F. Beutler, and
H. Gil-Marı́n, “The Cosmological Analysis of the SDSS/BOSS Data from the Effective
Field Theory of Large-Scale Structure,” JCAP 05 (2020) 005, arXiv:1909.05271
[astro-ph.CO].

[209] D. Baumann, A. Nicolis, L. Senatore, and M. Zaldarriaga, “Cosmological Nonlinearities
as an Effective Fluid,” JCAP 07 (2012) 051, arXiv:1004.2488 [astro-ph.CO].

128

http://dx.doi.org/10.1016/j.dark.2021.100821
http://arxiv.org/abs/2010.07034
http://dx.doi.org/10.1086/671189
http://arxiv.org/abs/1212.4500
http://dx.doi.org/10.1088/1475-7516/2004/08/009
http://dx.doi.org/10.1088/1475-7516/2004/08/009
http://arxiv.org/abs/astro-ph/0405356
http://dx.doi.org/10.1103/PhysRevD.105.043517
http://dx.doi.org/10.1103/PhysRevD.105.043517
http://arxiv.org/abs/2112.04515
http://dx.doi.org/10.1103/PhysRevLett.129.021301
http://dx.doi.org/10.1103/PhysRevLett.129.021301
http://arxiv.org/abs/2201.07238
http://dx.doi.org/10.1103/PhysRevD.103.103504
http://arxiv.org/abs/2012.09389
http://arxiv.org/abs/2012.09389
http://dx.doi.org/10.1093/mnras/stv2826
http://dx.doi.org/10.1093/mnras/stv2826
http://arxiv.org/abs/1509.06400
http://dx.doi.org/10.1103/PhysRevD.102.063533
http://arxiv.org/abs/2004.10607
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://arxiv.org/abs/1104.2933
http://arxiv.org/abs/1104.2933
http://dx.doi.org/10.1088/1475-7516/2020/05/042
http://arxiv.org/abs/1909.05277
http://arxiv.org/abs/1909.05277
http://dx.doi.org/10.1088/1475-7516/2020/05/005
http://arxiv.org/abs/1909.05271
http://arxiv.org/abs/1909.05271
http://dx.doi.org/10.1088/1475-7516/2012/07/051
http://arxiv.org/abs/1004.2488


[210] J. J. Carrasco, M. Hertzberg, and L. Senatore, “The Effective Field Theory of
Cosmological Large-Scale Structure,” JHEP 09 (2012) 082, arXiv:1206.2926
[astro-ph.CO].

[211] E. Pajer and M. Zaldarriaga, “On the Renormalization of the Effective Field Theory of
Large-Scale Structure,” JCAP 08 (2013) 037, arXiv:1301.7182 [astro-ph.CO].

[212] J. J. Carrasco, S. Foreman, D. Green, and L. Senatore, “The Effective Field Theory of
Large-Scale Structure at Two Loops,” JCAP 07 (2014) 057, arXiv:1310.0464
[astro-ph.CO].

[213] M. Ivanov, “Effective Field Theory for Large-Scale Structure,” arXiv:2212.08488
[astro-ph.CO].

[214] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, “Conservative Constraints on
Early Cosmology: An Illustration of the MontePython Cosmological Parameter Inference
Code,” JCAP 02 (2013) 001, arXiv:1210.7183 [astro-ph.CO].

[215] T. Brinckmann and J. Lesgourgues, “MontePython 3: Boosted MCMC Sampler and Other
Features,” Phys. Dark Univ. 24 (2019) 100260, arXiv:1804.07261 [astro-ph.CO].

[216] V. Assassi, D. Baumann, D. Green, and M. Zaldarriaga, “Renormalized Halo Bias,” JCAP
08 (2014) 056, arXiv:1402.5916 [astro-ph.CO].

[217] L. Senatore, “Bias in the Effective Field Theory of Large-Scale Structure,” JCAP 11
(2015) 007, arXiv:1406.7843 [astro-ph.CO].

[218] O. Philcox, M. Ivanov, M. Zaldarriaga, M. Simonović, and M. Schmittfull, “Fewer Mocks
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