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Phase shifts for s-wave ππ scattering in both the I ¼ 0 and I ¼ 2 channels are determined from a lattice
QCD calculation performed on 741 gauge configurations obeying G-parity boundary conditions with a
physical pion mass and lattice size of 323 × 64. These results support our recent 2021 study of direct CP
violation in K → ππ decay, improving our earlier 2015 calculation. The phase shifts are determined for
both stationary and moving ππ systems, at three (I ¼ 0) and four (I ¼ 2) different total momenta. We
implement several ππ interpolating operators including a scalar bilinear “σ” operator and paired single-pion
bilinear operators with the constituent pions carrying various relative momenta. Several techniques,
including correlated fitting and a bootstrap determination of p-values have been used to refine the results
and a comparison with the generalized eigenvalue problem method is given. A detailed systematic error
analysis is performed which allows phase shift results to be presented at a fixed energy.

DOI: 10.1103/PhysRevD.104.114506

I. INTRODUCTION

The scattering of two pions is one of the simplest
hadronic processes in QCD. Since the only meson
involved, the pion, is the lightest hadron in the standard
model and originates from the vacuum breaking of almost
exact SUð2ÞL × SUð2ÞR chiral symmetry, the behavior of
this process at low energy can be well described by chiral
perturbation theory (ChPT) [1]. Although this scattering is
not directly measurable by experiment, information can be
inferred indirectly from K → ππeν̄e (Ke4) decay [2] and

πN → ππN scattering [3]. Unfortunately from these experi-
ments alone, it is difficult to obtain accurate ππ scattering
phase shifts for a broad range of ππ energies, because, for
example, of the limited energy available in Ke4 decays.
In addition to its intrinsic interest, ππ scattering is also an

important ingredient in our recent calculation of the two-
pion decay of the kaon [4] and the parameter ε0, a highly
sensitive measure of direct CP violation, which is a key
component in the search for an explanation of the domi-
nance of matter over antimatter in the present Universe. By
comparing this lattice QCD result with the experimentally
measured value we can gain a better understanding of CP
violation in the standard model, with possible insights into
the physics beyond it. While this result for ε0 is reported in
Ref. [4], essential components of this calculation are
presented in two companion papers, an extensive study
of G-parity boundary conditions [5] and the discussion of
ππ scattering presented in this paper.
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Because of the nonperturbative nature of QCD inter-
actions, lattice QCD provides a unique, first-principles
method with controlled systematic errors to determine the
properties of low-energy QCD. With lattice QCD and the
finite-volume Lüscher technique [6], we can calculate
the ππ scattering phase shifts within the energy region
from 2mπ to approximately 4mπ

1 while the interaction
energies near the 2mπ threshold can be used to determine
the scattering lengths [9]. Such calculations complement
the existing determinations of the scattering lengths
obtained using chiral perturbation theory [10] and the
dispersive calculations [11–14] of the energy dependence
of the phase shift based on the Roy equations [15] and
experimental input. For a recent review discussing exper-
imental and theoretical results see also Ref. [16]. The
dispersive technique might also be applied to extrapolate
the lattice determination of the energy dependence of the
phase shifts above the 4mπ threshold.
Lattice QCD calculations of the ππ scattering phase

shifts have been performed by a number of groups, but with
pion masses heavier than the physical one so that a chiral
extrapolation is required to obtain physical results, see e.g.,
Refs. [17–25]. (The exceptions to this statement are our
previous physical pion mass calculations of the I ¼ 2

and I ¼ 0 s-wave phase shifts at a single energy close
to the kaon mass, which enter the calculation of ΔI ¼ 3=2
[26,27] and ΔI ¼ 1=2 K → ππ decays [4,28] and a
calculation of the I ¼ 2 scattering length [29] at the
physical pion mass.) This extrapolation is most likely valid
for a scattering length calculation, but may become less
trustworthy at higher energies where the accuracy of chiral
perturbation theory becomes less certain. In this paper, we
report the first lattice QCD calculation of both I ¼ 0 and
I ¼ 2 s-wave ππ phase shifts performed over a range of
two-pion energies with a physical pion mass so that a chiral
extrapolation is no longer necessary.
As explained above, a central motivation for this study of

ππ scattering is its importance for the calculation of the
two-pion decay of the kaon [4] where it enters in three
different ways. 1) The lattice calculation of the K → ππ
decay matrix elements is performed in a finite volumewhile
the matrix elements of interest are defined in infinite
volume. The Lellouch-Lüscher (LL) factor which corrects
for this difference is determined by the ππ interaction or, to
be more specific, the derivative of the ππ scattering phase
shift with respect to energy. 2) In order to determine the
K → ππ decay matrix elements we need to know the
amplitude with which the two-pion interpolating operators
create the normalized finite-volume ππ states. The

determination of these amplitudes is made difficult by
excited state contamination as discussed in Sec. VII. 3). We
need to know the finite-volume ππ state energies and the
ground state energy should be close to but will not be
exactly the same as the kaon mass. As is the case for the
K → ππ calculation, this work is performed on a lattice
with G-parity boundary conditions (GPBC) [5]. This
choice is different from the periodic boundary conditions
used in most lattice QCD calculations and we will
discuss the advantages and drawbacks of this choice
in Sec. II.
Our first calculation of I ¼ 0 ππ scattering and K → ππ

decay with physical kinematics [28] was published in
2015 and used the same 323 × 64 lattice volume,
Möbius domain wall fermions and G-parity boundary
conditions as the current calculation. In the earlier calcu-
lation we used a single I ¼ 0 ππ interpolating operator to
compute the scattering phase shift at an energy near the
kaon mass using 216 configurations. The resulting I ¼ 0
s-wave phase shift, δ0 ¼ 23.8ð4.9Þð1.2Þ° at center of mass
energy Eππ ¼ 498ð11Þ MeV, was significantly lower
than the dispersive prediction of approximately 39° at
the kaon mass. (Here and later in this paper when two
errors are given, the first is statistical and the second
systematic.)
Following our 2015 calculation and in light of the

discrepancy between our results and the dispersive pre-
diction, we devoted considerable effort to increasing our
statistical precision. We found that with 1400 configura-
tions and the same four-quark ππ interpolating operator, a
single-state fit to our data continued to be accurate but gave
an even lower phase shift of 19.1ð2.5Þ°, increasing the
disagreement with the dispersive result [30]. As was the
case with the original 216 configurations, performing a
two-state fit to the two-point Green’s function obtained
from this single operator gave a ground state ππ energy and
resulting ππ phase shift consistent with what was found
from the single state fit. In addition to increasing the
statistics we also experimented with adding a second,
scalar bilinear ππ interpolating operator that we refer to
as the σ operator and describe in more detail in Sec. III A.
Performing a two-state fit to the 2 × 2 matrix of two-point
Green’s functions obtained by including this operator
revealed the presence of a previously unrecognized, nearby
excited state, leading to a substantially smaller ground state
energy and larger I ¼ 0 phase shift [30].
Our present calculation builds upon this initial effort with

increased statistics, additional ππ interpolating operators and
a more accurate measure of the quality of the agreement
between our data and our theoretical fitting formula. We also
extend our calculation beyond a single ππ energy by
computing ππ two-point correlation functions with the
two pions carrying several values of the total momentum,
allowing for an exploration of the scattering phase shifts at
center-of-mass energies between approximately 2mπ up to

1For a recent example of an alternative method to extract
scattering amplitudes from Euclidean correlators at energies
above 4mπ see Refs. [7,8].

T. BLUM et al. PHYS. REV. D 104, 114506 (2021)

114506-2



the kaon mass. Recognizing the importance of multiple
operators we further increase the number of independent
interpolating operators for both the stationary and moving
frame calculations of the I ¼ 0 and 2 phase shifts. Here we
present results from 741 configurations using three operators
in the moving frame calculation and three (for I ¼ 0) and
two (for I ¼ 2) operators in the stationary frame calculation.
With these additional operators we obtain a significant
improvement in statistical precision. We are also better able
to demonstrate control over the contamination from
neglected excited states and to more reliably estimate their
effects. We also applied a second approach to the analysis of
our multioperator, multistate data, the generalized eigenvalue
problem (GEVP) method. This new method gave results
consistent with those of our traditional fitting approach with
similar statistical errors.
The moving frame calculation allows us to directly

calculate the LL factor from our lattice QCD data, the
results of which are presented in Sec. VI D and utilized in
Ref. [4]. As described in Sec. VII our final result from 741
configurations and a two-state fit to the 3 × 3matrix of two-
point Green’s function coming from three ππ interpolating
operators gives δ0ð471 MeVÞ ¼ 32.3ð1.0Þð1.4Þ°, which is
in much better agreement with the dispersive prediction of
35.9°, a number obtained by evaluating Eqs. (17.1)–(17.3)
of Ref. [12]. This value was obtained in Ref. [12] using
Mπ ¼ 139.6 MeV. However, elsewhere in the present
paper, we treat the neutral pion mass of Mπ ¼ 135 MeV
as the “physical” pion mass, following our previous papers
on K → ππ decay and the conventions of the RBC and
UKQCD Collaborations. We therefore make a correction
for the difference between the pion mass used in our lattice
calculation, mπ ¼ 142.3ð0.7Þ MeV, and this physical
135 MeV pion mass. We will discuss how we deal with
the differences between these several different pion masses
in greater detail in Sec. VI. Also note that here we have
corrected our result to transfer the uncertainty in the energy
at which the phase shift is determined onto the phase shift
itself as described in Sec. VII and have correspondingly
evaluated the dispersive prediction at this energy rather than
at the kaon mass.
In the next section we describe the properties of the

ensemble of gauge configurations that are used for both
the calculation of ππ scattering presented here and our
companion calculation of K → ππ decay and ε0 [28],
together with a brief discussion about the G-parity boun-
dary conditions adopted in these calculations. In Sec. III we
present the operators we used, the matrix of two-point
Green’s function we measured and the statistical methods
we used. In Secs. IV and V we present in detail our fitting
procedures and results for single pion and ππ energies and
two-point function amplitudes, together with a brief com-
parison with another data analysis method, the generalized
eigenvalue problem. With these results, in Sec. VI we
describe how we obtain the phase shift results at various

center-of-mass energies using a generalized form of
Lüscher’s formula. In Sec. VII we explain our new approach
to determining the systematic uncertainties, estimate the
largest systematic errors and present the resulting error
budget. Finally in Sec. VIII we present our conclusions.

II. DESCRIPTION OF THE GAUGE ENSEMBLE

We employ a single 323 × 64 lattice with 2þ 1 flavors
of Möbius domain wall fermions with Ls ¼ 12 and Möbius
parameters bþ c ¼ 32=12 and b − c ¼ 1 and the
Iwasakiþ DSDR gauge action with β ¼ 1.75, correspond-
ing to an inverse lattice spacing of a−1 ¼ 1.3784ð68Þ GeV
[31]. Here the dislocation suppressing determinant ratio
(DSDR) reduces the dislocations, or tears in the gauge field
that enhance chiral symmetry breaking at coarse lattice
spacings [32–35]. Its use enables us to work with a large,
ð4.6 fmÞ3 spatial volume and therefore have good control
over finite-volume systematic errors, without a dramatic
increase in computational cost, albeit at the cost of
increased discretization errors. We use G-parity boundary
conditions (GPBC) in three spatial directions in order to
obtain physical kinematics for the K → ππ decay.
The lattice parameters are equal to those of the 32ID

ensemble documented in Refs. [31,36], with the addition of
GPBC and a slightly lower pion mass of 142MeV versus the
172 MeVused previously. This enables us to take advantage
of existing results such as the value of the lattice spacing and
also to compute the nonperturbative renormalization factors
for the K → ππ matrix elements, in an environment free of
the complexities associated with GPBC.
Below we first discuss the generation of these ensembles

and measured properties including the plaquette, chiral
condensate and autocorrelation times. We then discuss
GPBC and how they differ from the usual periodic boundary
condition (PBC). A detailed discussion on GPBC can be
found in Ref. [5].

A. Ensemble generation

The ensemble used for our 2015 calculation comprised
864 gauge configurations (after thermalization), with
measurements performed on every fourth configuration
giving 216 in total. Following our publication an error was
discovered [37] in the generation of the random numbers
used to set the conjugate momentum at the start of each
Monte Carlo trajectory that introduced small correlations
between widely separated lattice sites. While the effects
were found to be 2-to-3 orders of magnitude smaller than
our statistical errors, we nevertheless do not include these
configurations in our new calculation.
In order to rapidly improve the statistical precision of our

calculation we generated configurations via seven inde-
pendent Markov chains, each originating from widely
separated configurations in our original thermalized
ensemble. To compensate for any residual effects of the
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random number error we discarded the first 20 configura-
tions of each stream, which is approximately 5 times the
integrated autocorrelation time (see below). These con-
figurations were generated using the hybrid Monte Carlo
technique for which the Hamiltonian can be decomposed as

H ¼ T þ SG þ SlQð0.0001; 1Þ þ ShQð0.045; 1Þ þ SDSDR;

ð1Þ

where T is the kinetic term and “lQ” and “hQ” denote the
light and heavy quarks, respectively. The fermion actions
comprise ratios of determinants,

SXða; bÞ ¼ − ln

�
det

�
M†ðaÞMðaÞ
M†ðbÞMðbÞ

�
nX=4
�
; ð2Þ

where MðmÞ is the Dirac matrix with mass m, nX is the
number of quark species of type X and for b ¼ 1 the
denominator represents the Pauli-Villars term required
by the domain wall formalism. The determinants of the
squared matrix are used such that the matrices which
are inverted when approximating the determinant are
Hermitian and positive-definite and thus suitable for the
conjugate gradient (CG) algorithm and can be obtained
from a convergent pseudofermion integration. Here the
fractional power is required by the fact that for G-parity
boundary conditions, the determinant of the squared matrix
represents the contribution of four quark flavors [5],
hence a square-root is required for the two light flavors
and a fourth-root for the strange quark in order to perform a
2þ 1 flavor simulation. (Note that for periodic boundary
conditions, the squared-matrix determinant represents the
action of two quark flavors, hence for a 2þ 1 flavor
simulation only the square root of the strange-quark
determinant is typically required.) The fractional power
is achieved using the rational hybrid Monte Carlo (RHMC)
algorithm. The light-quark action is further decomposed
into two pieces using the Hasenbusch mass splitting
technique [38] as follows:

SlQð0.0001;1Þ→SlQð0.0001;0.007ÞþSlQð0.007;1Þ: ð3Þ

We use an integration scheme comprising four levels of
nested Omelyan integrator with Omelyan parameter
λ ¼ 0.22, using the layout detailed in Table I. Over
2200 configurations were generated in these seven streams.
The use of RHMC for the light quark determinant

introduces a significant cost overhead, primarily because
the various mixed-precision techniques that have been
developed to improve the efficiency of the standard CG
algorithm are not generally applicable to the underlying
multishift CG algorithm, which requires all the starting
vectors to lie within the same Krylov space thus precluding
the use of restarted methods. In addition we found that
tighter stopping conditions on the inversion than are typical

when applied to heavy quarks were required to ensure good
acceptance and that more poles [20 in this case versus the
Oð10Þ required for a typical heavy quark calculation] were
required to span the measured eigenvalue range. With some
effort we were able to achieve a 70% performance increase,
as measured on the IBM BlueGene/Q machines upon
which a majority of our ensemble generation was per-
formed, by combining a “reliable update” step with a
subsequent loop over each pole with a conventional mixed-
precision restarted CG [39].
A more significant improvement in the configuration

generation was obtained by implementing the “exact one-
flavor algorithm” (EOFA) [40,41] formulated by the
TWQCD Collaboration, in which a Hermitian positive-
definite action for a single species of domain wall fermion
is derived. The use of the EOFA allows us to circumvent
the use of RHMC in the light quark sector, opening the door
for various optimizations. We determined [42] that with a
suitable preconditioning, the EOFA can be reformulated in
a way that is not only more efficient but also allows for the
reuse of the majority of our existing high-performance code
for regular domain wall fermions. Coupled with algorithm
and integrator tuning we achieved a 4.2× reduction in the
time to generate a gauge configuration on the same
hardware [42]. Utilizing this algorithm we extended three
of our seven streams by a total of nearly 3000 additional
gauge configurations.
For this calculation we have measured on a subset of 741

configurations with consecutive measurements separated
by four molecular dynamics time units (MDTU), which
amounts to roughly 60% of the available configurations
given this measurement separation.

B. Ensemble properties

In Fig. 1 we plot the evolution of the chiral condensate
and pseudoscalar density as well as the plaquette. We
remind the reader that the chains were each generated from
already-thermalized and well-separated configurations of
our original ensemble, and hence we expect to observe no
thermalization effects in these plots. The expectation values

TABLE I. The decomposition of the action onto the four levels
of the nested integrator. The top-most integrator (i ¼ 1) is
integrated over 16 steps of step-size 1=16 for a trajectory length
of 1 MD time unit. Each update step of the action-integrator Si of
size τ is divided into nSi equal-sized steps, with nSi given in the
third column. For a detailed discussion of the nested integrator
technique we refer the reader to Appendix A of Ref. [36].

Level (i) Si nSi

1 SlQð0.0001; 0.007Þ 1
2 SlQð0.007; 1Þ þ ShQð0.045; 1Þ 2
3 SDSDR 2
4 SG 1
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of these quantities for each of the ensembles are listed in
Table II. In Fig. 2 we plot the integrated autocorrelation
time,

τintðΔcutÞ ¼
1

2
þ
XΔcut

Δ¼1

CðΔÞ; ð4Þ

where CðΔÞ is the autocorrelation function,

CðΔÞ ¼ 1

N − Δ

XN−Δ

i¼1

C̃ði;ΔÞ; ð5Þ

with

C̃ði;ΔÞ ¼ ðvi − v̄ÞðviþΔ − v̄Þ
σ2v

: ð6Þ

Here N is the number of samples vi of some quantity with
mean v̄ and standard deviation σv. The standard errors on
τint shown in the figure are estimated using a bootstrap

FIG. 1. Evolution of the chiral condensate (upper-left), pseudoscalar density (upper-right) and plaquette (lower). The different colors
and vertical dotted lines indicate the boundaries of the ten independent Markov chains. Note that measurements of the chiral condensate
and pseudoscalar density were performed only on the subset of configurations corresponding to the first three chains of the lower figure.
The last three ensembles in the lower figure were generated using the EOFA technique.

TABLE II. Expectation values of the plaquette, chiral conden-
sate and pseudoscalar density. The ensembles are given in the
same order as in the plot shown in Fig. 1. The chiral condensate
and pseudoscalar density were measured only on the first three
ensembles. The last three ensembles, separated by a horizontal
line, were generated using the EOFA technique. The error bars
were obtained using the jackknife technique applied to data that
had been binned over blocks of size 12 MDTU.

Ensemble hPi hψ̄ψi hψ̄γ5ψi
1 0.5122174(95) 0.0010920(45) 6ð15Þ × 10−6

2 0.5122277(65) 0.0010915(39) 1.7ð9.7Þ × 10−6

3 0.5122022(66) 0.0010891(34) −4.7ð8.4Þ × 10−6

4 0.512231(14) � � � � � �
5 0.512224(22) � � � � � �
6 0.512214(27) � � � � � �
7 0.512195(70) � � � � � �
8 0.5122326(57) � � � � � �
9 0.5122254(69) � � � � � �
10 0.5122256(57) � � � � � �
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resampling procedure applied to the quantities C̃ði;ΔÞ prior
to performing the average in Eq. (5), and described in
Refs. [31,43].
Because this is a nonstandard application of resampling

we provide here a detailed description and justification
of the method. Since the functions C̃ði;ΔÞ from which the
integrated autocorrelation time τintðΔcutÞ is computed,
depend on samples taken at different points in the
Markov chain of gauge configurations, we do not attempt
to obtain our error estimate by selecting samples from
this Markov chain. Instead for each i we view the set of
Δmax values, fC̃ði;ΔÞg1≤Δ≤Δmax

as a stochastic sample and
deduce the statistical errors in our result for τintðΔcutÞ from
the fluctuations among these samples. This is analogous to
the usual treatment of a two-operator correlation function
MkðtÞ computed on a configuration k for a range of time
separations t between the two operators. Here Δmax is the
largest value of Δ that we include in our analysis. In this
analysis we use Δmax ¼ 40. Thus, the number of samples is
N − Δmax with 1 ≤ i ≤ N − Δmax.
Consider the quantities C̃ði;ΔÞ and C̃ðj;ΔÞ for j ≥ i,

which containmeasurements from the pairs of configurations

ði; iþ ΔÞ and ðj; jþ ΔÞ, respectively. Due to the autocorre-
lations in the underlying data these values are correlated,
with the corresponding correlation function peaking when j
coincides with i or with iþ Δ, and falling off exponentially
in the time separation j − i away from these points. The
secondary peak occurring when j is close to iþ Δ is smaller
than the primary peak at j ¼ i because only one of the two
configurations involved in each pair coincide. Furthermore it
is straightforward to show that the secondary peak vanishes
entirely for Δ sufficiently large that the configurations i and
iþ Δ become effectively independent.
Thus, while the correlations between C̃ði;ΔÞ with

different values of i have an unusual form, a standard
binning procedure,

Ĉðα;ΔÞ ¼ 1

B

XBðαþ1Þ

i¼Bαþ1

C̃ði;ΔÞ ð7Þ

is sufficient to generate values Ĉðα;ΔÞ that, for a large
enough bin size B, are statistically independent in α and
that are therefore amenable to bootstrap (or jackknife)
resampling.

FIG. 2. The integrated autocorrelation time τintðΔcutÞ as a function of Δcut for the chiral condensate (upper-left), pseudoscalar density
(upper-right) and plaquette (lower) superimposed for the different streams. The two very short streams are not included in this analysis.
The chiral condensate and pseudoscalar density were measured on only three of the ensembles.
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The full procedure is then:
(1) Truncate the collection of data to be analyzed to

C̃ði;ΔÞ for 1 ≤ i ≤ N − Δmax and 1 ≤ Δ ≤ Δmax.
(2) Bin this collection of data according to Eq. (7)

producing Nbin samples fĈðαÞg1≤α≤Nbin
where each

sample ĈðαÞ represents the Δmax quantities
fĈðα;ΔÞg1≤Δ≤Δmax

with Nbin ¼ bðN − ΔmaxÞ=Bc.
(3) Bootstrap resample fĈðαÞg1≤α≤Nbin

in α producing
Nboot bootstrap ensembles fĈbðαÞg1≤α≤Nbin

, each
comprising Nbin elements where b is the bootstrap
ensemble index. For this analysis we use
Nboot ¼ 500.

(4) Compute the autocorrelation function under the
bootstrap,

CbðΔÞ ¼
1

Nbin

XNbin

α¼1

Ĉbðα;ΔÞ;

for each Δ ≤ Δmax.
(5) Compute the integrated autocorrelation function,

τint;bðΔcutÞ ¼
1

2
þ
XΔcut

Δ¼1

CbðΔÞ;

for Δcut ≤ Δmax.
The standard deviation of the bootstrap distribution of
τint;bðΔcutÞ over b provides an estimate of the standard error
on τintðΔcutÞ. The appropriate bin size can be found, as
usual, by increasing B until the error estimates stabilize; for
the present analysis a bin size B ¼ 15 was found to be
sufficient. From Fig. 2 we estimate an integrated auto-
correlation time of τint ∼ 3–4 MDTU, which is close to the
separation of 4 MDTU between our measurements. We
therefore expect minimal autocorrelation effects on our
measurements, but to be certain of our error estimates we
will account for any residual effects using the nonoverlap-
ping block bootstrap procedure, as we will detail in Sec. III.

C. G-parity boundary conditions

The most significant difference between our calculation
and those of other groups is the boundary conditions: in this
work we use G-parity boundary conditions in all three
spatial directions. G-parity is a symmetry of the QCD
Lagrangian under charge conjugation coupled with a
180 deg isospin rotation about the y-axis. Applied as a
spatial boundary condition on the quark fields this trans-
forms a quark flavor doublet (u,d) into ð−Cd̄T; CūTÞ as it
passes through the boundary, where C is the 4 × 4 charge
conjugation matrix.
As with all boundary condition variants the introduction

of GPBC modifies the finite-volume spectrum. As described
below, we take advantage of this change to improve the
accuracy of our K → ππ calculation. With GPBC applied to

the up and down quarks and after introducing a fictional
doublet partner s0 to the strange quark to which GPBC are
also applied (with the additional species suitably weighted
out of the path integral, cf. Ref. [4]), a kaon state can be
identified which satisfies periodic boundary condition while
the pion states must satisfy antiperiodic boundary conditions
(APBC). Recall that all three pions are odd under G-parity.
This means that we can introduce a kaon ground state which
is at rest, while the ππ ground state will be composed of two
moving pions, with momenta close to �π=L in each
direction (the deviations from �π=L being due to the ππ
interactions we seek to measure).We can then tune the lattice
parameters so that the initial kaon and the final ππ ground
state have the same energy. This makes the K → ππ
calculation much easier since we can focus on the dominant
ground state contribution to the K → ππ matrix element. In
contrast, on a lattice with PBC the ππ ground state will be
composed with two nearly stationary pions, and we must
tune the lattice spacing so that the energy of an excited ππ
state matches the kaon mass. The matrix element of interest
in this case will be a subdominant contribution to the three-
point Green’s function and obtaining a precise result
becomes much more challenging. For more details on
performing lattice simulations with G-parity boundary con-
ditions including further discussion of the lattice symmetries
and the treatment of the strange quark, we refer the reader to
Ref. [5]. For the remainder of this subsection we will focus
specifically on how these boundary conditions affect the
measurement of the two-pion system.
Including GPBC introduces some significant differences

from a calculation with PBC. Three significant differences
might be identified. First, the ππ states that can be studied
with these two types of boundary condition will be
different. When noninteracting pions satisfy APBC in all
three directions their allowed momenta become ð2n1 þ 1;
2n2 þ 1; 2n3 þ 1Þ π

L, where ni are integers. These are differ-
ent from those on a volume with PBC, where the allowed
momenta are ð2n1; 2n2; 2n3Þ π

L. However, if we take advan-
tage of moving frames, there is still a correspondence
between the states that we can construct on a PBC volume
and those present for a volume obeying GPBC. For example,
if we wish to work with a ππ state comprising two pions at
rest, for a volume with PBC we can do the calculation in the
stationary frame, where the two component pion operators
are constructed with zero momentum. However, for a GPBC
volume the calculation can be performed in a moving
frame where both pions have the same momentum, e.g.,
ðπ=L; π=L; π=LÞ. With this choice, in the center-of-mass
frame these two pions are at rest.
Since a moving frame calculation relies on a distorted

volume which does not have cubic symmetry, there will be
lower angular momentum partial waves whose phase shifts
will enter the quantization condition that determines the
s-wave phase shift, e.g., d-waves. In the stationary frame
the lowest partial waves that enter beyond the s-wave are
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those with l ¼ 4. Fortunately in this work the interaction
energies involved in our moving frame calculations are
relatively small (around the kaon mass), and those higher
partial waves that enter will have a negligible effect on the
s-wave phase shift.
A second troublesome aspect of G-parity is the breaking

of cubic symmetry at the quark level even for a lattice with
cubic symmetry. As discussed in Ref. [5] there is a sign
convention that can be chosen when G-parity is imposed in
one direction that can be changed by changing the relative
sign of the up and down quark fields. However, the choice
of this sign in the remaining two directions is not conven-
tional and breaks cubic symmetry by identifying one of the
four diagonals connecting two corners of the cubic lattice
and passing through its center. For a cubic volume in a
stationary frame, the symmetry group is broken down from
Oh to D3d [44].
There are two effects of this breaking of Oh symmetry

that we need to consider: first, its effect on the two-pion
eigenstates of the QCD transfer matrix and second its effect
on the rotational properties of the quark-level interpolating
operators used to create those pions. Because of confine-
ment the relevant degrees of freedom affected by the
G-parity boundary conditions are the pions. Since G-parity
boundary conditions are translationally invariant, for the
Oh-breaking properties of the quarks which make up the
pion to have an effect, a single isolated quark must
propagate across the lattice and through the boundary, a
phenomenon that should be highly suppressed by effects of
quark confinement. While this argument suggests that the
two-pion eigenstates of the transfer matrix should fall into
representations of the Oh group, it is possible that the four-
quark interpolating operators used to create these states
will couple to more than one irreducible Oh representation
and care must be taken when constructing translationally
covariant operators to suppress the creation of finite-
volume states belonging to unwanted representations of
the cubic symmetry group Oh. This will be discussed when
we write out the explicit form of these operators in Sec. III
and the remaining cubic-symmetry breaking effects are
discussed in Sec. VII.
Finally around-the-world effects in a moving frame will

be different in a volume with GPBC compared to one with
PBC. When we are performing a moving frame calculation
in a volume with GPBC with one of the three smallest
allowed total momenta [those with Ptot ¼ ð�2; 0; 0Þ,
ð�2;�2; 0Þ or ð�2;�2;�2Þ in units of π=L], the first-
order around-the-world contribution will come from a
single pion propagating from one ππ interpolating operator
to the second (leg A) and a second single pion propagating
from the second, through the time boundary to the first
(leg B). This behavior is shown schematically as part of a
later more detailed discussion in Fig. 7.
For GPBC the momentum injected by each ππ inter-

polating operator can change the direction but not the

magnitude of the momentum carried by the pion as it
moves from leg A to leg B. Thus, for GPBC this around-
the-world pion can carry the same energy on each leg and
so that its contribution behaves as a constant when the
time separation between the two operators is changed. We
refer to this case where the pions in both legs carry
momenta of minimum magnitude as the “first-order”
around-the-world effect. The case in which the pion
propagating in one of the legs carries momentum greater
than the minimum is termed “second-order.” Both cases
are considered when performing the fits described in
Sec. V B 1. In contrast, for the three smallest nonzero
total momenta in a calculation with periodic boundary
conditions all of the around-the-world terms will be time-
dependent since the pions in the two legs will have
different energies.

III. OVERVIEW OF THE MEASUREMENTS

In this section we describe the details of the inter-
polating operators used in this calculation, the two-
point functions that we study and the specific contractions
that are evaluated. In the final subsection we outline
the fitting methods employed and the methods used to
determine a statistical error and assign a p-value to
those fits.

A. Interpolating operators

Here we discuss the structure of the interpolating
operators used in this work. There are two different types
of two-pion interpolating operators. The first type are
denoted as “ππð…Þ” operators and are constructed as
the product of two single-pion interpolating operators
and for which the parentheses and the quantity contained
within are used both to specify the pion momenta and to
distinguish these labels from the general set of ππ inter-
polating operators which can produce two pions when
acting on the vacuum, the set in which all of our operators
reside. The second type has the form of a quark-bilinear
scalar sigma operator which shares the same quantum
number as I ¼ 0 ππ state. We start by constructing the
single pion and sigma interpolating operators with momen-
tum P⃗ ¼ p⃗þ q⃗, where p⃗ and q⃗ are the momenta of the
individual quarks,

πþðt; P⃗Þ ¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þhðjx⃗ − y⃗jÞΨTðx⃗; tÞ 1
2
ð1 − einpπσ2Þ

×
i
2
γ5Cσ1ð1þ einqπσ2ÞΨðy⃗; tÞ ð8Þ

π−ðt; P⃗Þ ¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þhðjx⃗ − y⃗jÞΨ̄ðx⃗; tÞ 1
2
ð1 − einpπσ2Þ

×
−i
2
γ5Cσ1ð1þ einqπσ2ÞΨ̄Tðy⃗; tÞ ð9Þ
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π0ðt; P⃗Þ ¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þhðjx⃗ − y⃗jÞΨ̄ðx⃗; tÞ

×
1

2
ð1 − einpπσ2Þ

−iffiffiffi
2

p γ5σ3ð1þ einqπσ2ÞΨðy⃗; tÞ

ð10Þ

σðt; P⃗Þ ¼
X
x⃗;y⃗

e−iðp⃗·x⃗þq⃗·y⃗Þhðjx⃗ − y⃗jÞΨ̄ðx⃗; tÞ

×
1

2
ð1 − einpπσ2Þ

1ffiffiffi
2

p ð1þ einqπσ2ÞΨðy⃗; tÞ; ð11Þ

where, using the notation of Ref. [5],Ψ and Ψ̄ are the quark
and antiquark isospin doublets defined as

Ψ ¼
�

d

CūT

�
and Ψ̄ ¼ ðd̄; uTCÞ: ð12Þ

As explained in Ref. [5] the 2 × 2 flavor projection matrix
(1þ einqπσ2) ensures that the quark field

P
x⃗ð1þ

einqπσ2Þe−iq⃗·x⃗ΨðxÞ transforms as an eigenstate under trans-
lations (including positions which translate through the
boundaries) if the integer nq ¼ Lqi=π − 1=2 for all three
components fqig1≤i≤3 of the momentum vector q⃗. HereC is
the 4 × 4 charge conjugation matrix and hðjx⃗jÞ is the
meson smearing function. In this work, we choose all
the smearing functions to be the 1s hydrogen wave function
hðxÞ ¼ e−x=r, with a radius r ¼ 2 for both the pion and
sigma operators. This smearing function is introduced to
increase the overlap between the pion and sigma interpo-
lating operators and the lattice pion and ππ ground states
while at the same time reducing the overlap of the I ¼ 0 ππ
operator with the vacuum state. In earlier studies this
smearing was found to give a twofold reduction in
statistical errors [45].
With the operators constructed above, we use the all-to-

all (A2A) propagator technique [46] to perform the
measurements. The A2A technique divides the quark
propagator into an exact low mode contribution which
we can calculate using the Lanczos algorithm and a high
mode contribution which can be accessed using stochastic
approximation. In our calculation, we choose the number
of low mode eigenvectors to be 900. For the high mode
contribution, we perform spin, color, flavor and time
dilution (i.e., we perform a separate inversion for each
of the 24 colors, spins and flavors for each time slice). We
use the same spatial field of random numbers for these 24
inversions but a different such field for each time slice [45].
We choose the number of random hits to be 1 (i.e., we use
only a single random field on each time slice) since
increasing it does not reduce the uncertainty [45].
We will work with two groups of pion operators.

The first is labeled as πð111Þ with eight different
operators. These operators create pions carrying momenta

(�π=L, �π=L, �π=L). The second group is labeled as
πð311Þ and contains 24 different operators. For this group
one of the momentum components is replaced by �3π=L.
We then combine two of these single-pion interpolating

operators to construct ππðp⃗; q⃗Þ operators with momenta
P⃗ ¼ p⃗þ q⃗, where now p⃗ and q⃗ are the momenta of the
individual pions,

Oα;β
ππ ðt; p⃗; q⃗Þ ¼ παðtþ 4; p⃗Þπβðt; q⃗Þ; ð13Þ

where α and β are isospin indices. As suggested by this
equation, when we construct the ππðp⃗; q⃗Þ operators, we
separate the two single-pion operators in the time direction
by four units. This suppresses the statistical error from the
disconnected diagrams (the V diagram below) by a factor
of 2 in the I ¼ 0 channel [47]. For consistency, when we
construct the I ¼ 2 ππð…Þ operators, we also separate the
two pion operators by four units in the time direction.

1. Momentum decomposition

The cubic symmetry breaking mentioned in Sec. II
manifests as differences in the overlap factors between
interpolating operators and finite-volume states whose
momenta are related by cubic rotations (the energies
themselves are not affected). In order to obtain ππ inter-
polating operators that respect the cubic symmetry and that
can therefore be related to the continuum s-wave states, it is
vital that we control this symmetry breaking. In Ref. [5] it
was demonstrated that the cubic symmetry breaking in the
pion states can be heavily suppressed by averaging over
pairs of pion interpolating operators of the same total
momenta but with different assignments of quark momenta.
We apply this technique for the present work and extend it
to include the sigma operator. The two quark and antiquark
momentum pairs for each pion momentum are listed in the
Appendix A. In Sec. VII we carefully analyze our data in
order to account for any residual cubic symmetry breaking
effects as a systematic error.
In evaluating the Wick contractions it is often convenient

to utilize the γ5-Hermiticity of the quark propagator G,

γ5½Gðx; yÞ�†γ5 ¼ Gðy; xÞ; ð14Þ

where the dagger (†) indicates the Hermitian conjugate
of the matrix in its spin, color and flavor indices, in order
to exchange the source and sink for a particular quark
propagator. It is worth mentioning here that γ5-Hermiticity
is not an exact symmetry between the A2A approxima-
tions to the quark propagators used here because of the
asymmetric treatment of the source and sink in the
A2A approach. A further implication of our use of
γ5-Hermiticity to combine related contractions arises from
the effective exchange of the q̄ and q operators appearing in
a meson field when γ5-Hermiticity is used on both the
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propagator leaving q̄ and that arriving at q. By symme-
trizing over the assignments of momenta to the q̄ and q
factors in each meson field, we insure that this use of
γ5-Hermiticity does not result in a different amplitude. This
determines the final pion interpolating operator we use: for
each pion momentum we average over a total of four quark
and antiquark momentum assignments. For the sigma
operator, since it satisfies PBC and has zero momentum
we average over the eight different quark momentum
assignments that are listed in Appendix A to suppress
cubic symmetry breaking. (Note: this symmetrical treat-
ment of the quark and antiquark components of the meson
field implies that the contractions presented in Refs. [4,45]
for the case of a local pion interpolating operator can be
unambiguously extended to the case of a nonlocal
meson field.)

2. Total momentum

We perform both a stationary-frame calculation where the
total two-pion momentum is zero and moving-frame calcu-
lations for which the total momentum is nonzero. In the
stationary-frame calculation we include the scalar σ operator
for the I ¼ 0 channel and for both isospin channels two
classes of bilinear pair “ππð…Þ” operators: one class has
both pions in the group πð111Þ but with opposite momenta,
which we label ππð111; 111Þ. The second class is made up
of pions in the group πð311Þ, again with opposite momenta
and are labeled ππð311; 311Þ.
In the moving frame calculation we can also construct

a ππð111; 311Þ operator for which the constituent pion
operators belong to the two different groups described
above. For the present work we did not collect data using a
sigma operator with nonzero momentum; however the
analysis presented in the following sections suggests the
inclusion of this operator may be beneficial in future work.
In summary, we therefore have three different classes of
operators in the moving-frame calculation for each isospin
channel, as well as in the stationary frame I ¼ 0 channel
and only two classes of operators in the stationary-frame,
I ¼ 2 calculation. (Note: our notation distinguishing the
two-pion interpolating operators does not specify the total
momentum that they carry which must be determined from
the context.)

3. Angular momentum

After identifying numerous ππ operators with different
total momenta, the next step is to project those ππ operators
onto angular momentum eigenstates. In this work we are
interested in only the s-wave phase shift but we will also
use d-wave states to estimate the size of cubic symmetry
breaking in Sec. VII. The angular momentum l indexes the
irreducible representations of the infinite volume SO(3) Lie
group, but the finite-volume lattice (assuming we have
successfully overcome the cubic symmetry breaking) is
symmetric under only a discrete subgroup of SO(3): either

the cubic group for the stationary frame or a smaller, related
group in the case of the moving frame for which relativistic
length contraction alters the shape of the finite volume
when viewed from the perspective of the center of mass
frame. In order to generate angular momentum eigenstates
on the lattice we must therefore establish a mapping from
the irreducible representations Γ of the discrete lattice
symmetry group G to those of SO(3), from which, given a
desired value of l, we can determine an appropriate choice
of irreducible representation of G in which to construct our
lattice operators. In general this mapping is one-to-many
such that to each representation Γ of G there corresponds
a set SðG;ΓÞ of values of l to which it corresponds in the
SO(3) group. As such there are usually several representa-
tions which satisfy this condition, and we want to choose
the one that is the simplest and which couples to the fewest
other values of l, i.e., for which the set SðG;ΓÞ is the
smallest. For example, we can always use the maximally
symmetric representation (A1) to obtain the s-wave phase
shift. For d-wave states in the stationary frame, we can use
the T2 representation [44]. The discrete symmetry groups
and representations used when constructing the two-pion
interpolating operator for our various choices of center-of-
mass momenta are listed in Table III.
The second step is to construct an operator in the

representation Γ by combining the operators in one of
the classes described above using the characters of Γ. The
detailed procedure is as follows:

Oαβ
ππ;Γ;iðP⃗;tÞ¼

X
T̂∈G

χΓðT̂ÞOαβ
ππ;i

�
tþ4;t;

P⃗
2
þ T̂½p⃗�;P⃗

2
− T̂½p⃗�

�
:

ð15Þ

Here T̂½p⃗� means we apply symmetry operation T̂ on
momentum p⃗. We sum over all elements T̂ of the finite-
volume symmetry group G, P⃗ is the total momentum, and
χðT̂Þ is the character of each group element T̂ in the
representation Γ. We choose p⃗ so that all the ππ operators
appearing in the sum belong to the ith class. After
projection, for each total momentum P⃗, instead of having
three or two classes of ππ operators, we will only have three
or two ππ operators, each transforming under a specific

TABLE III. Symmetry group and the corresponding representa-
tion we used in this work for each of the different total momenta.

Total
momentum

Symmetry
group

Angular
momentum Representation

ð0; 0; 0Þ π
L Oh l ¼ 0 A1

ð0; 0; 0Þ π
L Oh l ¼ 2 T2

ð2; 0; 0Þ π
L C4v l ¼ 0 A1

ð2; 2; 0Þ π
L C2v l ¼ 0 A1

ð2; 2; 2Þ π
L C3v l ¼ 0 A1
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representation of G and constructed from the operators
within that class. Henceforth we will use the labels
ππð111; 111Þ, ππð111; 311Þ, ππð311; 311Þ to refer to those
projected operators rather than to the classes from which
they were constructed.
In the moving-frame calculations reported here, due to

the limited number of classes (two) of single pion oper-
ators, we are only able to focus on the three sets of nonzero
total momenta P⃗ with the smallest individual components:
P⃗ ¼ ð�2; 0; 0Þ π

L ; ð�2;�2; 0Þ π
L and ð�2;�2;�2Þ π

L, so that
the number of different classes of ππ operators we construct
on the lattice is more than one (three in this work).

B. Matrix of two-point correlation functions

We begin a discussion of the correlation functions using
a single operator constrained to a single time slice (recall
our ππð…Þ operators have the pion bilinears on separate
time slices). For isospin I the two-point ππ correlation
function is determined by the Euclidean Green’s function,

CIðtsnk; tsrcÞ ¼ hOI†
ππðtsnkÞOI

ππðtsrcÞi; ð16Þ
where h…i indicates the expectation value from a
Euclidean-space Feynman path integral, performed in a
finite spatial volume of side L and time extent T, obeying
periodic boundary conditions for the gauge field but
antiperiodic boundary conditions for the fermion fields
in the time direction and G-parity boundary conditions in
the three spatial directions.
Here and in our two earlier papers [4,5] the Hermitian

conjugate which appears on the left-hand operator in Green’s
functions such as shown in Eq. (16) requires some explan-
ation. For the case that the operator involves Euclidean fields
evaluated at a single time, the Hermitian conjugate represents
a combination of path integral field variables which corre-
sponds to theHermitian conjugate of the indicated operator in
the time-independent Schrödinger picture which is sub-
sequently transformed to the time-dependent Heisenberg
picture operator whose expectation values are described by
a Euclidean path integral. For the case that the operatorOI

ππ is
itself the product of two such operators evaluated at different
times, each operator is to be interpreted in this fashion. In this
case the two operators appearing in this pair are always
symmetrized to insure that the resulting two-point functions
are positive as this notation suggests in spite of the fact that
their order is not exchanged by this prescription.
By inserting two complete sets of intermediate states, we

can rewrite this two-point function as

CIðtsnk; tsrcÞ ¼ hπjOI†
ππjπihπjOI

ππjπie−tEπ;ine−ðT−tÞEπ;out

þ h0jOI†
ππjππihππjOI

ππj0ie−tEππ

þ hππjOI†
ππj0ih0jOI

ππjππie−ðT−tÞEππ

þ h0jOI†
ππj0ih0jOI

ππj0iδI;0; ð17Þ

in the limit where both t≡ tsnk − tsrc and T − t are large so
that we can neglect the contribution from excited inter-
mediate states. Notice the first term describes the “around-
the-world effect,” which is exponentially suppressed
in T. Here Eπ;in and Eπ;out are the energies of the pions
propagating from the source along the positive and negative
time directions, respectively. These two energies should be
the same in a stationary frame calculation but they may be
different for a moving frame. The second and third terms,
which can be combined together into a cosh function of the
time separation t, describe the ground state ππ scattering,
one for the forward propagating ππ along the time direction
and the other for the backward propagating case. The last
term, which describes the contribution of the vacuum
intermediate state, appears only in the I ¼ 0 channel and
does not describe the physics of ππ scattering. This term is
the largest source of statistical error because it is time-
independent and therefore results in a decreasing signal-to-
noise ratio as we increase the time separation t to suppress
excited state contamination.
In practice, due to the rapid reduction in signal-to-noise

ratio and the finite temporal extent of the lattice it is necessary
to include data in the regionwhere t or T − t is not very large.
By including data from smaller time separations our results
will be affected by contamination from excited-states. One
way to suppress these errors is to expand the sum over
intermediate states in Eq. (17) to include not only the ground
state but also one or more excited states and then to fit using
this more complicated expression. However, even if we only
include one more state, performing such a multistate fit may
be difficult using a single interpolating operator since we are
attempting to determine an increasing number of parameters
purely from the time dependence of datawith a rapidly falling
single-to-noise.
While increasing statistics will ultimately allow the

various states to be isolated, a far more powerful technique
is to introduce additional interpolating operators which
all share the same quantum numbers and therefore project
onto the same set of states, albeit with different coefficients.
While naively equivalent to increasing statistics, the addi-
tional operators actually introduce a wealth of new infor-
mation that helps constrain the fit. This additional
information can also be exploited more directly using
the GEVP technique (described in more detail in
Sec. V) whereby the energies of N states can be obtained
from Green’s functions comprising N operators using only
three timeslices. A simpler method which allows for the
detection of the presence of excited states using data from
only a single time slice by looking at the “normalized
determinant” will be discussed in Sec. V.
In order to perform a stable fit where both ground and

excited states are included, we introduce additional inter-
polating operators which all share the same quantum
numbers so that the number of operators can be larger
than or equal to the number of states included in the fit.
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Thus, we consider the matrix of two-point correlation
functions,

CI
ijðtsnk; tsrcÞ ¼ hOI†

i ðtsnkÞOI
jðtsrcÞi; ð18Þ

where indices i and j distinguish the operators. We can then
expand Eq. (18) to include excited-state contributions,

CI
ijðtsnk; tsrcÞ ¼ hπjOI†

i jπihπjOI
jjπie−tEπ;ine−ðT−tÞEπ;out

þ
Xm
n¼0

fh0jOI†
i jnihnjOI

jj0ie−tEn

þ hnjOI†
i j0ih0jOI

jjnie−ðT−tÞEng
þ h0jOI†

ππj0ih0jOI
ππj0iδI;0: ð19Þ

Now the excited state contamination error has been reduced
since the lightest state that we neglect is the one with energy
Emþ1, which is higher than E1, the energy of the first state
that we neglected in Eq. (17). For simplicity in the
discussion above we have identified a single time tsnk=src
that is associated with each two-pion operator. However,
these operators are constructed from two, single-pion
operators evaluated at the times tsnk=src þ 4 and tsnk=src
as shown in Eq. (15). In the remainder of this paper we will
use the variable t ¼ tsnk − tsrc − 4 to describe the separa-
tion between the two operators which indicates a minimum
distance of propagation needed to connect the two, two-
pion operators.
Assuming that the fit is able to reliably obtain the

parameters then clearly the larger number of states that
are included in the fit, the smaller the resulting excited state
contamination. However, given the added computational
cost and resulting fit complexity, we should be careful to
include only operators which help to distinguish the relevant

excited states. An important criterion, discussed later, is the
degree to which the operators introduced overlap with the
state being studied or a common set of excited states.

C. Contraction diagrams

We are interested in the scattering process for specific
isospin channels. The I ¼ 0 and I ¼ 2 ππ state with Iz ¼ 2

can be constructed from πþ, π−, π0 states as below,

jI ¼ 2; Iz ¼ 2i ¼ jπþijπþi ð20Þ

jI ¼ 0; Iz ¼ 0i ¼ 1ffiffiffi
3

p fjπþijπ−i − jπ0ijπ0i þ jπ−ijπþig:

ð21Þ
The matrix of two-point correlation functions for the ππ

and σ operators can be obtained from a linear combination
of eight different diagrams, labeled as C, D, R, V, Cσππ ,
Vσππ, Cσσ and Vσσ, each corresponding to a particular Wick
contraction that is identified in Fig. 3. Their definition in
terms of quark propagator is given in Appendix C. They
can be combined to obtain the two-point correlation
functions as follows:

hππðtÞππð0ÞiI¼2 ¼ 2D − 2C

hππðtÞππð0ÞiI¼0 ¼ 2Dþ C − 6Rþ 3V ð22Þ

hσðtÞσð0Þi ¼ 1

2
Vσσ −

1

2
Cσσ

hσðtÞππð0Þi ¼
ffiffiffi
6

p

4
Vσππ −

ffiffiffi
6

p

2
Cσππ: ð23Þ

If we were to perform the contractions for each of the
different total momenta by substituting Eq. (15) into

FIG. 3. Diagrams showing the contractions which contribute to the two-point functions involving the ππð…Þ and σ operators. The
solid dots indicate the positions of the pion two-quark operators and the dotted vertical lines passing through these points indicate the
separate three-dimensional time slices on which these operators are placed, with the nearby pairs of lines separated by four time units as
described in Eq. (15). Identical diagrams appear for the σ operator only with a single vertical line at the source and/or sink, with the dots
now representing the scalar bilinear. The top four diagrams are labeled by C, D, R and V diagrams from left to right, and the lower four
diagrams are labeled by Cσππ, Vσππ , Cσσ and Vσσ from left to right.

T. BLUM et al. PHYS. REV. D 104, 114506 (2021)

114506-12



Eqs. (22) and (23), the number of different contractions to
be evaluated for each gauge configuration would be 7848,
which is unnecessarily large. The technique which we
employ to reduce the number of momentum combinations
takes advantage of three kinds of symmetry in ππ scatter-
ing: parity symmetry, which corresponds to changing
each momentum from p⃗ to −p⃗, axis permutation sym-
metry, which permutes the three coordinate axes and an
“auxiliary-diagram” symmetry, which relies on the com-
bination of γ5 hermiticity and the “around-the-world”
contraction to show that two diagrams whose source and
sink momenta satisfy a special relation are identical (For
more details about the “auxiliary-diagram” symmetry, we
refer readers to Ref. [48]). Using a subset of the gauge
configurations in this study, we have found that excluding
all but one of the momentum combinations that are related
by these three symmetries does not increase the statistical
error for the measured ππ energy. This strategy substan-
tially reduces the number of momentum combinations
from 7848 to 1037 [48].

D. Estimating statistical errors and goodness of fit

In this paper we use multistate correlated fits to deter-
mine the energies of each state and the overlap amplitudes
between the different states and operators. The fitting
procedure is flexible, e.g., we can perform a fit where
the number of operators and states are different, and we can
perform a “frozen fit” where some of the parameters are
held fixed during the fit, which is useful in the excited-state
error analysis. An important benefit of our fitting procedure
is our ability to calculate a p-value, which is a measure of
how well our data matches with our theoretical expectation
for the time dependence of the two-point function being
analyzed.
However, the determination of statistical errors and the

calculation of a p-value are not straightforward. Not only
are we performing a correlated fit where the covariance
matrix is itself determined by the data and therefore has its
own, often substantial uncertainties, but there are autocor-
relations between configurations, since the sampling inter-
val between neighboring configurations used in our
analysis is comparable to or smaller than the autocorrela-
tion time which separates truly independent samples. While
our number of samples, 741, is relatively large compared to
many lattice calculations, if we group these samples into
bins of two or four and thereby reduce the autocorrelations
between these binned samples, the resulting decrease in the
effective number of samples loses significant information
about the fluctuations which is required for adequate
control of the covariance matrix upon which our correlated
fits are based.
Fortunately, we have developed methods to solve both of

these issues. These methods are based on a combination of
the jackknife and the nonoverlapping blocked-bootstrap
resampling techniques [49]. The bootstrap technique uses

uncorrelated, nonoverlapping blocks of data for its samples
and gives statistical errors unaffected by the autocorrelation
between our 741 samples. However, the inner jackknife
resampling introduced to calculate the covariance matrix
for each outer bootstrap sample is applied to the unbinned
data obtained as a union of all of the blocks in a given
jackknife sample. In this paper the block size is chosen to
be eight to suppress the effects of autocorrelation. Finally
the distribution of bootstrap means about the mean for the
entire sample, determines the proper χ2 distribution that can
be used to correctly determine the p-value for the fit.
(Recall that the usual standard χ2 distribution is not
accurate when χ2 is determined using an uncertain covari-
ance matrix in the presence of autocorrelations.) More
details of this method can be found in Ref. [49].

IV. SINGLE PION ENERGIES AND MASS

In order to determine the pion energy and mass, we
calculate a two-point function using the neutral pion
operator,

Cðp⃗; tsnk; tsrcÞ ¼ hπ0ðtsnk;−p⃗Þπ0ðtsrc; p⃗Þi; ð24Þ

for all possible values of tsrc and tsnk, and then we average
over tsrc while keeping t ¼ tsnk − tsrc fixed. We have in
total 32 different pion momenta, 8 from the πð111Þ group
of operators and the other 24 from the πð311Þ group. Up to
the effects of the cubic symmetry breaking induced by the
boundary conditions, which are heavily suppressed by the
procedure discussed in Sec. III and the residual effects
shown to be negligible in Sec. VII, the two point functions
within each group are related by cubic rotations hence
we average the two-point functions within each group.
This leaves us with two correlation functions, Ci

πðtÞ, where
i ∈ fð111Þ; ð311Þg represents the momentum of the pion
without specifying its direction.
We then perform correlated fits of each correlation

function to the form,

Ci
πðtÞ ¼ Ai

πðe−Ei
π t þ e−E

i
πðT−tÞÞ; ð25Þ

using various fit ranges, all of which share the same upper
limit tmax ¼ 29. Here Ai

π is related to the normalization of
the operator Oi

π while Ei
π is the energy of a moving pion

state with momentum ð1; 1; 1Þ π
L or ð3; 1; 1Þ π

L. The fitted
results for Ei

π plotted as a function of tmin are shown in
Fig. 4. From both plots we can see a clear plateau starting
from tmin ¼ 14. The result for Eπ is insensitive to tmax so we
make the same choice of tmax ¼ 29 as was made in
Ref. [28]. For those reasons we choose the fit range to
be 14–29, and the fit results for that choice are listed in
Table IV. The good p-values for both fits suggest that our
data are well described by this single-state model.
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Knowledge of the mass of the pion is required for the
determination of the ππ phase shifts via the Lüscher
procedure. Unfortunately, with GPBC we are unable to
measure this mass directly and must instead infer it from
the energy of a moving state with a suitable choice of
dispersion relation. In Table IV we give the results of
applying the continuum dispersion relation to the (111) and
(311) moving pion energies, which are labeled as mπ;CD.
We can see that the resulting masses are inconsistent, which
we interpret as the result of discretization effects on the
dispersion relation. We also calculate the pion mass using
the dispersion relation obeyed by a free particle on our
discrete lattice,

coshðEπÞ ¼ coshðmπÞ þ
X3
i¼1

ð1 − cosðpiÞÞ; ð26Þ

where the pion mass is identified as the energy of a pion
with zero-momentum. The results are listed in Table IV as
mπ;LD and are consistent between the two momenta.
The large discrepancy between the two pion masses

calculated using different dispersion relations suggests that
when we calculate the pion mass using the larger-momenta
πð311Þ operators the result has not only a statistical error
that is 3 times larger than that from the πð111Þ operators,
but also a large systematic error. For the remainder of this

paper, we will use mπ;CD ¼ 142.3ð0.7Þ MeV calculated
from the πð111Þ operators using the continuum dispersion
relation as the pion mass. This 142.3(0.7) MeV value
differs from the physical pion mass of 135 MeV by 7 MeV.
This introduces an “unphysical pion mass” error into our
results which will be discussed in Secs. VI and VII. We will
neglect the discretization error that remains in our deter-
mination of the pion mass since the 1 MeV discrepancy
between themπ;CD andmπ;LD in Table IV is small compared
to the 7 MeV “unphysical pion mass” error identi-
fied above.

V. FINITE-VOLUME ππ ENERGIES

In this section we describe our multistate, multioperator
fitting strategies and the resulting fit parameters for both the
stationary frame and the moving frame calculations and for
both the I ¼ 0 and I ¼ 2 channels. Since these four
situations are different, we will discuss them separately.
At the end of this section we briefly discuss results obtained
from another data analysis technique, the GEVP. This both
provides alternative results for these quantities and an
opportunity to compare these two methods. Because the
primary focus of this paper is on the properties of the ππ
ground state, this discussion of the GEVP method is limited
to the ground state energies which it determines.

FIG. 4. The tmin dependence of the fitted energy Eπ for the πð111Þ(left) and πð311Þ(right) cases. Here Eπ is shown in lattice units with
tmax fixed to be 29.

TABLE IV. Results for the fitted energies for the pion states with momenta in the groups (111) and (311). The rightmost two columns
show the pion masses calculated from those energies using the continuum (mπ;CD) and free-particle lattice (mπ;LD) dispersion relations.
We have converted to units of MeV by using the inverse lattice spacing for this ensemble, 1=a ¼ 1.3784ð68Þ GeV, where the error on a
also has been propagated into the errors on the energies given here.

State Fit range Aπ Eπ p-value mπ;CDðMeVÞ mπ;LDðMeVÞ
πð111Þ 14–29 6.194ð11Þ × 106 0.19893(13) 0.99 142.3(0.7) 143.3(0.7)
πð311Þ 14–29 3.138ð18Þ × 106 0.33948(47) 0.64 132.4(2.4) 144.3(2.3)
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A. Stationary frame

1. I = 2 channel

In the stationary I ¼ 2 channel, we have two classes
of operators, ππð111; 111Þ and ππð311; 311Þ. We project
them onto the trivial A1 representation of the cubic
symmetry group, which is the approximate symmetry
group of a finite-volume lattice. (A discussion of possible
cubic symmetry breaking effects resulting from our
G-parity boundary conditions will be presented in Sec, VII.)
This projection results in two different ππ operators, Oa ¼
ππA1

ð111; 111Þ and Ob ¼ ππA1
ð311; 311Þ. We then calcu-

late the matrix of two-point functions constructed from these
two operators by measuring

Cijðtsnk; t ¼ tsnk − tsrc − ΔÞ ¼ hO†
i ðtsnkÞOjðtsrcÞi; ð27Þ

where Δ ¼ 4 is the time-separation between two pion fields
used to construct each ππ operator. We average over all
values of tsrc while fixing t and then average the data at t
with that at t ¼ T − t − 2Δ to improve the statistics. (The
individual single-pion operators at the times tsnk=src þ Δ and
tsnk=src that make up each two-pion operator are constructed
to be identical so when taking this second average we are
combining equivalent physical quantities.) We then try two
different fitting strategies,
(1) Fit the single two-point function CaaðtÞ assuming a

single intermediate state and an around-the-world
constant using the form,

CaaðtÞ ¼ Aðe−Eππ t þ e−EππðT−t−2ΔÞÞ þ B; ð28Þ

where A describes the normalization of the operator,
Eππ is the energy of the finite-volume ππ ground
state and B is the around-the-world constant. Thus, a
total of three fit parameters are required. We neglect
all data related to the second operator Ob so this is a
one-operator, one-state fit.

(2) Fit the upper triangular component of the 2 × 2
matrix of two-point functions Cab using two inter-
mediate states and three different around-the-world
constants using the form,

CijðtÞ ¼
X2
x¼1

AixAjxðe−Ext þ e−ExðT−t−2ΔÞÞ þ Bij;

ð29Þ

where Aix is the overlap between the ith operator and
the xth state; Ex is the energy of the xth state and Bij

is the around-the-world constant constructed from
operators Oi and Oj for a total of nine real fit
parameters. Note that, as the lower triangular com-
ponent of the matrix is related to the upper triangular
component by the time-translational symmetry, we
did not measure these terms in order to reduce the
computational cost.

For each case, we perform correlated fits with various
choices for tmin and set tmax ¼ 25. We plot the resulting
ground state energy as a function of tmin in the left panel of
Fig. 5. As we can see from the plot, the introduction of the
second operator does not noticeably improve the fit result,
as the ground state energies given by both fitting strategies
are statistically consistent for all tmin and the statistical

FIG. 5. The tmin dependence of fitted ground state energy for the stationary ππI¼2 channel (left) with tmax ¼ 25 and the stationary
ππI¼0 channel (right) with tmax ¼ 15. Left: The circles represent the two-operator, two-state fit and downward pointing triangles the one-
operator, one-state fit. Right: The pentagons represent the one-operator, one-state fit. The stars and downward pointing triangles
show the results from the two two-operator, two-state fits. Finally the circles show the three-operator, three-state fit for tmin ¼ 3 and 4
while the diamonds show the three-operator, two-state fit for tmin ¼ 5–8. For the I ¼ 0 channel, including additional operators
(especially the σ) substantially improves the determination of the ground state energy.
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errors are also consistent. As we increase tmin, the ground
state energy first decreases, which suggests a non-negli-
gible excited state contamination for small tmin and then
reaches a plateau for tmin ≈ 10. We adopt the two-operator,
two-state fit with the fitting range of 10–25 for our final
result. In Table V we list the p-values and the final
parameters obtained from that approach. We observe an
excellent p-value indicating a strong consistency between
the data and our model.
The fact that Baa is 60σ resolved from zero suggests the

importance of including these around-the-world constants
in our fits. This conclusion can also be reached by
performing a similar fit in which the only change is that
these constants are excluded. These fits give p-values that
are consistent with zero, suggesting that these constants are
required.
We also observe that the matrix of overlap amplitudes

Aix is nearly diagonal, where the operator Oa predomi-
nantly couples to the ground state and the operator Ob
couples almost exclusively with the first excited state. The
overlap factors between the operators and excited states is
essential to exploiting the power of the multioperator
technique; without it one is merely performing several
independent fits simultaneously. The fact that the amplitude
matrix is near diagonal therefore likely explains the lack of
improvement of the fit to the ground state energy when the
second operator is introduced. The reason why this matrix
is so diagonal can be intuitively explained by the weak

strength of the ππ interaction potential in the I ¼ 2 channel
as indicated by the small phase shifts. Such an interaction is
required for the pions to exchange momentum and thus
transform into other ππ states.

2. I = 0 channel

In the stationary I ¼ 0 channel, we have three classes of
interpolating operator, two of which are constructed from
two-pion interpolating operators, and the other is the sta-
tionary σ operator. After projecting the ππ operators onto the
A1 representation, we obtain three different operators:
Oa ¼ ππA1

ð111; 111Þ, Ob ¼ ππA1
ð311; 311Þ and Oc ¼ σ

and calculate the matrix of two-point functions,

Cijðtsnk; t ¼ tsnk − tsrc − ΔjÞ
¼ hO†

i ðtsnkÞOjðtsrcÞi − h0jOiðtsnkÞj0ih0jOjðtsrcÞj0i;
ð30Þ

where the second term represents the vacuum subtraction
which removes the disconnected piece in Eq. (17), since it
does not contribute to ππ scattering. We then average over
all tsrc while fixing t ¼ tsnk − tsrc and average the data
at t with that at t ¼ T − t − Δi − Δj. Here Δa ¼ Δb ¼ 4

while Δc ¼ 0. We then explore three different fitting
strategies:

TABLE V. Final fitting results for the I ¼ 2, ππ channel. The rightmost column lists the parameters obtained from a two-operator, two-
state fit to the ππ − ππ correlation function in the case of total momentum (0,0,0) that is discussed in this subsection. The next three
columns from the right show the parameters obtained from three-operator, three-state fits for three nonzero values of the total
momentum.

I ¼ 2 channel (2,2,2) (2,2,0) (2,0,0) (0,0,0)
Fit range 10–25 12–25 11–25 10–25
Fit strategy 3op-3state 3op-3state 3op-3state 2op-2state
Aa0 0.3941(6) 0.2770(5) 0.1933(3) 0.4214(9)
Aa1 0.004684(565) 0.007011(548) 0.009301(455) 0.012(10)
Aa2 0.001209(1890) 0.005350(1812) 0.005249(1482) � � �
Ab0 −2665ð31Þ × 10−6 −4632ð27Þ × 10−6 −0.007711ð43Þ −0.01164ð10Þ
Ab1 0.08800(29) 0.07457(39) 0.07485(34) 0.0696(60)
Ab2 0.003506(901) 0.001437(1382) 0.0050(13) � � �
Ac0 −9626ð124Þ × 10−7 −1522ð11Þ × 10−6 −2327ð14Þ × 10−6 � � �
Ac1 −3319ð114Þ × 10−6 −3914ð162Þ × 10−6 −4637ð145Þ × 10−6 � � �
Ac2 0.04690(66) 0.04592(111) 0.03940(103) � � �
E0 0.3984(3) 0.4001(3) 0.4045(3) 0.41535(45)
E1 0.5453(7) 0.5480(10) 0.5514(9) 0.713(17)
E2 0.6902(28) 0.6874(40) 0.6916(48) � � �
Baa 8097ð68Þ × 10−9 4034ð35Þ × 10−9 1979ð19Þ × 10−9 940ð16Þ × 10−8

Bab −5748ð3888Þ × 10−12 −1388ð169Þ × 10−11 −1865ð157Þ × 10−11 134ð350Þ × 10−11

Bac −1025ð178Þ × 10−11 −8835ð934Þ × 10−12 −9792ð986Þ × 10−12 � � �
Bbb 1136ð154Þ × 10−11 9200ð1074Þ × 10−12 9798ð1111Þ × 10−12 −101ð16Þ × 10−9

Bbc −2642ð4459Þ × 10−13 206ð3020Þ × 10−13 −2617ð3372Þ × 10−13 � � �
Bcc 2967ð3749Þ × 10−13 1084ð2540Þ × 10−13 2153ð2980Þ × 10−13 � � �
p-value 0.477 0.641 0.293 0.159
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(1) Fit CaaðtÞ using a single state and the equation,

CaaðtÞ ¼ Aðe−Eππ t þ e−EππðT−t−2ΔaÞÞ; ð31Þ

where A and E have the same physical meaning as in
the stationary I ¼ 2 fit. This is a one-operator, one-
state fit, and we have only two fit parameters in total.
In contrast with the stationary I ¼ 2 fit, here we
neglect the around-the-world constant since an esti-
mate of the size of the dominant contribution resulting
from a single pion propagating through the temporal
boundary gives a value which is approximately 10
times smaller than the statistical error on these noisier
I ¼ 0 channel data. Note, if fit as a free parameter, the
result for this around-the-world constant is consistent
with zero and gives a ground-state energy consistent
with the result obtained when this constant is ex-
cluded, but with a statistical error that is 50% larger.

(2) Fit the upper triangular components of the 2 × 2
submatrix spanned by Oa and one of the other two
operators using two states and the equation,

CijðtÞ ¼
XN
x¼1

AixAjxðe−Ext þ e−ExðT−t−Δi−ΔjÞÞ; ð32Þ

where N ¼ 2, Aix is the overlap amplitude between
the ith operator and the xth state, Ex is the energy of
the xth finite-volume state and ði; jÞ takes values
from either fa; bg or fa; cg. Thus, this is a six-
parameter fit. An analysis similar to that mentioned
in 1) above shows that the three around-the-world
constants should be excluded.

(3) Fit the upper triangular component of the entire
3 × 3 matrix of two-point functions using two or
three states and the fitting form given in Eq. (32)
where N ¼ 2 or 3 is the number of states we include
in the fit. We neglect the around-the-world constants
for the same reasons as above, resulting in 12
(N ¼ 3) or 8 (N ¼ 2) fit parameters in total.

For each fitting strategy, we perform correlated fits with
various values of tmin and set tmax ¼ 15. We do not extend
tmax to 25 as we did for the I ¼ 2 channel since the data for
t > 15 have larger statistical errors than in the I ¼ 2 case,
so including them will not benefit our fit. However, adding
more fit points will destabilize the correlation matrix
inversion procedure because of its increased dimension.
We also risk introducing data for which the neglected
around-the-world contribution may be a dominant compo-
nent of the large-time data that has been introduced. This
behavior is suggested because although the around-the-
world constants remain statistically consistent with zero the
p-value does fall as tmax is increased. Note that we do not
observe any corresponding statistically significant effects
on the amplitudes and energies as tmax is increased
suggesting that our fits remain robust even in the presence

of around-the-world contributions. A similar issue is
encountered for the moving frame I ¼ 0 fits and is
discussed in greater detail in Sec. V B 2.
We plot the ground state energies from these fits as a

function of tmin in the right panel of Fig. 5. For the three-
operator case, we perform the three-state fit for tmin ≤ 4
while for tmin ≥ 5 we use the two-state fit as we observed
that the three-state fits with tmin ≥ 5 were unstable and did
not converge for many bootstrap samples, indicating that
the third state can no longer be reliably resolved in the data.
As we increase the number of operators, the ground state
energy at fixed tmin becomes significantly lower and the
plateau region becomes more clear and begins earlier.
We conclude that in contrast with the I ¼ 2 channel, the
introduction of the two extra operators, especially the σ
interpolating operator, substantially reduces not only the
statistical error but also the systematic error resulting from
excited state contamination.
Since the plateau region for the three-operator fit starts at

t ¼ 6, we choose the three-operator, two-state fit with a
fitting range of 6–15 to determine our final results. In the
right-hand column of Table VI we list the p-value and final
parameters for that fit. We can see that especially for the
ππð111; 111Þ (a) and σ (c) the overlap amplitudes between
a given operator and the two states are of comparable size,
which explains the effectiveness of the multiple operators
that we included. This large overlap factors between
operators and states is consistent with the fact that the
phase shift and hence the ππ interaction strength, is
considerably larger than in the I ¼ 2 case. Hence the
exchange of momentum between the two pions required
for the mixing between states is enhanced. For I ¼ 2 the
two ππ operators assign momenta with different magni-
tudes to the pions and would each couple to a different ππ
energy eigenstate if the pions were noninteracting.
The fact that the overlap between operator Oa and the

first excited state is about half of the overlap of that operator
with the ground state also provides a strong indication
that there is likely to be non-negligible excited-state
contamination in a single-operator, single-state fit. This
explains the substantial discrepancy between the phase shift
at an energy near the kaon mass that we published in
Ref. [28] and both the results presented here and those from
the earlier dispersive prediction [12]. This can also be seen
in the right panel of Fig. 5, where the single-operator fit
reaches an apparent plateau at around t ¼ 6 or 7 with an
energy that is consistent with our previously published
value but which is substantially larger than the ground-state
revealed by the introduction of the additional operators.

B. Moving frame

1. I = 2 channel

In the moving I ¼ 2 channel, we have three classes of
operators, ππð111; 111Þ, ππð111; 311Þ and ππð311; 311Þ.
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We project them onto the trivial representation of the little
group of the cubic symmetry group which leaves the total
momentum unchanged. These little groups are C4v for
P⃗tot ¼ ð�2; 0; 0Þ π

L, C2v for P⃗tot ¼ ð�2;�2; 0Þ π
L and C3v

for P⃗tot ¼ ð�2;�2;�2Þ π
L. For each choice of P⃗tot, this

gives us three different operators, Oa ¼ ππA1
ð111; 111Þ,

Ob ¼ ππA1
ð111; 311Þ and Oc ¼ ππA1

ð311; 311Þ. We cal-
culate the matrix of two-point functions constructed
from these three operators, Cijðtsnk; tsrcÞ and combine
the various values of tsrc and tsnk in the same way as
was done for the stationary I ¼ 2 calculation, except
for an extra step where for each value of jP⃗totj, we also
average over all of the possible total momentum directions.
This leaves us with three correlation matrices, one for
each jP⃗totj. We then try three different fitting strategies for
each jP⃗totj:
(1) Fit Caa alone with a single state and an around-the-

world constant, as we did in the stationary I ¼ 2
calculation.

(2) Fit the upper triangular component of the 2 × 2
submatrix spanned by Oa and one of the other two
operators using two states and three different
around-the-world constants using the equation,

CijðtÞ ¼
XN
x¼1

AixAjxðe−Ext þ e−ExðT−t−2ΔÞÞ þ Bij;

ð33Þ

where the definitions of Aix, Ex and Bij are the same
as the stationary frame, N ¼ 2 and ði; jÞ takes value
from either fa; bg or fa; cg, giving nine fit para-
meters for either fit.

(3) Fit the upper triangular component of the entire
3×3 matrix of two-point functions using three states,
six around-the-world constants and Eq. (33) with
N ¼ 3. In this case there are a total of 18 fit
parameters.

For each value of jP⃗totj and fitting strategy, we perform
correlated fits with tmax ¼ 25, vary the value of tmin and
plot the fitted ground state energy as a function of tmin in
Fig. 6, as in the stationary I ¼ 2 calculation.
Similar to the stationary I ¼ 2 calculation, for all three

values of jP⃗totj, the introduction of the two extra operators
has little impact on the ground state energy. As we increase
tmin, the ground state energy first decreases, suggesting a
non-negligible excited state error for small tmin and then
reaches the plateau region. This plateau starts at tmin ¼ 11
for Ptot ¼ ð�2; 0; 0Þ π

L, tmin ¼ 12 for Ptot ¼ ð�2;�2; 0Þ π
L

and tmin ¼ 10 for Ptot ¼ ð�2;�2;�2Þ π
L. We choose the

three-operator, three-state fit with tmax ¼ 25 and tmin
fixed to the start of the plateau region identified above.
In Table V we list the p-value and the final parameters

for each choice of Ptot. With the chosen fit ranges we
observe excellent p-values for all values of the total
momentum. The fact that for each Ptot, Baa is 100σ
resolved from zero suggests the importance of including
these around-the-world constants in the fitting. The overlap
matrices are all nearly diagonal as in the stationary I ¼ 2
calculation so that each operator is dominated by a different
one of the three states. Thus, as was the case for the
stationary frame I ¼ 2 calculation, this explains why the
introduction of these two additional operators does not
improve the determination of the ground state energy.
It is also worth mentioning that the constant terms we

include in the fit only describe the lowest-order around-the-
world (ATW) effect mentioned in Sec. II C, where both the

TABLE VI. Table giving our final fitting results for I ¼ 0, ππ channel. The rightmost column lists the parameters
obtained from a three-operator, two-state fit to the ππ − ππ correlation function in the case of total momentum
(0,0,0) that is discussed in this subsection. The next three columns from the right show the parameters obtained from
three-operator, three-state fits for three nonzero values of the total momentum.

I ¼ 0 channel (2,2,2) (2,2,0) (2,0,0) (0,0,0)
Fit range 6–10 8–15 7–15 6–15
Fit strategy 3op-3state 3op-3state 3op-3state 3op-2state
Aa0 0.3873(7) 0.2626(31) 0.1772(26) 0.3682(31)
Aa1 −0.02647ð391Þ −0.05371ð1262Þ −0.05431ð776Þ −0.1712ð91Þ
Aa2 −0.01354ð312Þ −0.03438ð559Þ −0.02450ð274Þ � � �
Ab0 −1298ð439Þ × 10−6 0.002231(1392) 0.005861(1306) 0.0038(3)
Ab1 0.08361(100) 0.06894(318) 0.06781(261) 0.0513(27)
Ab2 −0.01121ð395Þ −0.01277ð940Þ −0.02008ð636Þ � � �
Ac0 −8172ð1223Þ × 10−7 −1920ð3981Þ × 10−7 4871ð4239Þ × 10−7 −0.000431ð4Þ
Ac1 0.000837(1050) 0.001713(2049) 0.003439(1464) −0.000314ð17Þ
Ac2 0.04786(126) 0.04602(456) 0.03735(263) � � �
E0 0.3972(4) 0.3895(17) 0.3774(23) 0.3479(11)
E1 0.5264(37) 0.5129(100) 0.5032(75) 0.569(13)
E2 0.6881(93) 0.6758(243) 0.6514(183) � � �
p-value 0.094 0.016 0.635 0.314
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pions on leg A (direct propagation between the two
single-pion operators) and leg B (propagation through
the temporal boundary) carry a minimum momenta with
components �π=L. Here we refer to segments of an
around-the-world propagation path identified in Fig. 7.
In contrast to the stationary case, the higher-order ATW

terms in the moving frame need not be described by a
constant term in the Green’s function. For example, one of
the pions on leg A or leg B could be replaced by a pion
one of whose components has the larger �3π=L value.
This possibility still conserves momentum and will show an
exponential time dependence.

FIG. 6. The tmin dependence of the fitted ground state energy for the moving ππI¼2 channel (left) and moving ππI¼0 channel (right)
with tmax ¼ 25 (I ¼ 2) and 15 (I ¼ 0). The upper, middle and lower panels are for total momenta ð2; 2; 2Þ π

L, ð2; 2; 0Þ π
L and ð2; 0; 0Þ π

L,
respectively. Our final results were obtained from three-operator, three-state fits. Reading from top to bottom the values of tmin for these
results were for I ¼ 2 tmin ¼ 10, 12, 11 and for I ¼ 0 tmin ¼ 6, 8 and 7.
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When compared with the first-order ATW effect, this
second-order ATWeffect is exponentially suppressed by the
energy difference between a pion with three �π=L momen-
tum components and a pion with one component increased
to �3π=L. However, in our calculation, due to the time
separation Δ between the two single-pion operators that
make up our ππ operator, this second-order effect can be
enhanced in some cases. For example, we can look at the
Green’s function constructed from two Ob operators. We
define the state that propagates between the two temporally
separated pion operators in our ππ operator as the “internal
state.”Notice we have two internal states here, since we have
two ππ operators. For the first-order case, the two internal
states cannot both be the vacuum while conserving momen-
tum, but for the second-order effect they can. This is
illustrated in Fig. 7. Thus, in this example the second-order
effect is enhanced at least by a factor of eEΔ ¼ 4.2, where E
is the lowest energy of the internal state which we approxi-
mate by the I ¼ 0 ππ energy.
In order to investigate the size of the higher-order ATW

terms we perform a fit to the I ¼ 2 data. It can be easily
shown that third- and higher-order ATW effects are always
exponentially suppressed when compared with the first-
order and second-order effects. This means we can perform
a fit which includes some extra parameters which represent

the second-order ATWeffect and neglect third- and higher-
order effects. Here we fit the matrix of correlation functions
with the following fit function:

CijðtÞ ¼
XN
x¼1

AixAjxðe−Ext þ e−ExðT−t−2ΔÞÞ þ Bij

þDijðe−ðEπ
1
−Eπ

0
Þt þ e−ðE

π
1
−Eπ

0
ÞðT−t−2ΔÞÞ: ð34Þ

Compared with Eq. (33), the extra term with coefficient
Dij describes the second order ATW effect. Here Eπ

0 and
Eπ
1 are the energies of moving pions with momenta

ð1; 1; 1Þπ=L and ð3; 1; 1Þπ=L, respectively. Their values
can be obtained from Table IV. The fitting results for the
ground state ππ energy and the sample-by-sample differ-
ence between the results with and without the second order
ATW effect are shown in Table VII. Since the difference is
negligible and statistically consistent with zero, we con-
clude that we need not include the second- or higher-order
ATW effects in our fits.

2. I = 0 channel

As in the case of the moving I ¼ 2 channel, we have
three classes of operators, defined asOa ¼ ππA1

ð111; 111Þ,
Ob ¼ ππA1

ð111; 311Þ and Oc ¼ ππA1
ð311; 311Þ which are

projected onto the trivial representation of the correspond-
ing little group. We calculate the 3 × 3 matrix of two-point
functions constructed from these operators for each of the
three values of jP⃗totj in the same way as was done for the
I ¼ 2 case. We fit the data using three fitting strategies that
are similar to the three used for the moving I ¼ 2 case,
except that we exclude the around-the-world constants
from all the fits. The effect of these constants will be
discussed below. We then perform correlated fits with
tmax ¼ 15, vary tmin and plot the ground state energy as
a function of tmin in Fig. 6.
Figure 6 suggests that the introduction of the two extra

operators does improve the fit result, since the ground state
energy from the one-operator, one-state fit is always 2σ
higher than its value from the three-operator, three-state fit,
suggestive of remnant excited state contamination in the
one state fit. The consistency of the ground state energy
between the two-operator (Oa, Ob), two-state fit and the
three-operator, three-state fit in the plateau region suggests

FIG. 7. A typical diagram for the decomposition of the ATW
effect when the Green’s function is constructed from two Ob
operators. For the first-order ATWeffect, both legs are pions with
momentum ð1; 1; 1Þπ=L, which means if one of the internal states
is the vacuum, e.g., internal state 1, then the other internal state
cannot be the vacuum. For the second order ATW effect, we can
choose leg A to be ð1; 1; 1Þπ=L and leg B to be ð3; 1; 1Þπ=L,
while keeping both internal states to be the vacuum state.

TABLE VII. Fit results used for estimating the size of the second-order ATW effect in the I ¼ 2 results given in
Sec. V B 1. Here EATW;2nd is the ground state energy when the second order ATW term is included in the fit, and δE
is the energy difference between EATW;2nd and E0 given in Table V, which is significantly smaller that the statistical
error on E0 given in Table V, in all three cases.

I ¼ 2 channel (2,2,2) (2,2,0) (2,0,0)
Fit range 10–25 12–25 11–25
EATW;2nd 0.3985(3) 0.4002(3) 0.4045(3)
δE 411ð1167Þ × 10−7 867ð1981Þ × 10−7 −731ð1700Þ × 10−7
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that operator Oc may not be very useful. This is similar to
the stationary I ¼ 0 calculation, where the operator con-
structed from the two πð311Þ operators plays little role in
controlling the excited state error.
Another interesting feature is seen in the errors of the

fitted parameters when we perform a single-operator,
single-state fit using only the ππð111; 111Þ operator.
Consider how the sizes of either the relative error of the
amplitude, or the absolute error of the ground state energy
change as we decrease the total momentum from ð2; 2; 2Þ 2πL
to ð0; 0; 0Þ π

L, when the fit range is fixed (e.g., 6–15). The
pattern is that these errors increase as the total momentum
decreases, as can be seen in Table VIII. This behavior
conflicts with the expectation that these errors would be
approximately the same based on the Lepage argument
[50]. For our kinematics, the nonzero total momentum is
created by reversing some of the momentum components of
one of the pions. Thus, if the modest ππ interactions are
ignored, the four-pion states with zero total momentum
which can contribute to the error will have approximately
the same energy as the states which contribute to the signal.
This unexpected phenomenon can be understood by

comparing the contributions to the central values of E0 and
A0 and the corresponding errors obtained from the I ¼ 0
Green’s functions. From Eq. (22), there are four types
of diagram that contribute to the I ¼ 0 scattering. Withffiffiffi
s

p
≤ mK , the interaction between the pions is small, and

the Green’s function is dominated by the D-type diagrams
when t ≤ 10 because in the noninteracting limit, the D-type
diagrams represent products of two separate single-pion
Green’s functions. The V-type diagrams contain, in the
stationary case, a vacuum contribution that is explicitly
subtracted and for all four choices of Ptot contributions in
which gluons propagate between the disconnected compo-
nents. The error on these diagrams does not decrease with
increasing operator separation and becomes dominant
when t ≥ 4. Given that the V-type diagrams are by far
the dominant contribution to the error within our fit ranges,
the size of the error on our fit results will depend primarily
on the relative size of the V-diagram contribution to the
overall Green’s function, which, due to the dominance of

the D-diagrams in the signal, is closely related to the
relative size of the V and D-diagram contributions.
Assuming that the errors on the amplitudes and the energies
are uncorrelated, the pattern of these ratios as the total
momentum varies (our four cases) should then be reflected
in the errors on the fitted energies and amplitudes.
Notice that according to Eq. (15), the ππ operator with

definite momentum P⃗ will contain one, two, four and eight
terms for the four cases above with total momentum
containing three, two, one or zero nonzero components,
respectively. Since the number of two-point function
contractions that we must evaluate grows like the product
of the numbers of terms in its constituent operators, there
will be 1, 4, 16 and 64 different contractions needed for
each type with total momentum ð2; 2; 2Þ π

L, ð2; 2; 0Þ π
L,

ð2; 0; 0Þ π
L and ð0; 0; 0Þ π

L, respectively. All these terms
contribute V-type diagrams and hence to the error of the
Green’s function, with each of approximately the same size.
However, not all of these terms contribute D-type

diagrams (and hence to the central value of the Green’s
function), because of a mismatch between the momenta.
This can be understood by looking at the noninteracting
limit in which a D-type diagram will only be nonzero when
the two independent single-pion Green’s functions are
nonzero. This happens only when each of the two pions
in the source ππ operator has the opposite momentum to
that carried by one of the pions in the sink ππ operator,
which we call momentum matching. Counting these terms
gives the numbers of momentum-matched D-type diagrams
for these four possible total momenta: 2, 4, 8 and 16,
respectively. After dropping a common factor of 2 in this
counting of D-type diagrams, these estimates suggest that
the proportions between the relative errors for these four
total momenta become 1

1
∶ 4
2
∶ 16

4
∶ 64

8
¼ 1∶2∶4∶8. For a cosh

fit, if the error of the amplitude and the error of the energy
are uncorrelated, we can see that the relative error of the
amplitude and the absolute error of the energy should be
proportional to the relative error of the Green’s function,
which partially explains how the size of the errors on the
ground state energy and amplitudes shown in Table VI
changes as we decrease the total momentum. A similar
analysis can be applied to the I ¼ 2 channel, which
suggests that these relative errors should be approximately
the same, independent of the total momentum, which is
consistent with what is shown in Table V.
Similar to the moving I ¼ 2 channel, as we increase tmin,

the ground state energy first decreases, which suggests a
non-negligible excited-state contamination for small tmin.
The ground state energy then reaches a plateau region
which starts with tmin ¼ 7 for Ptot ¼ ð�2; 0; 0Þ π

L, tmin ¼ 8

for Ptot ¼ ð�2;�2; 0Þ π
L and tmin ¼ 6 for Ptot ¼ ð�2;�2;

�2Þ π
L. For our final result we choose the three-operator,

three-state fit with tmin equal to the beginning of the plateau
region identified above. The choice of tmax is more subtle
and will be discussed together with the effect of the

TABLE VIII. Single operator (Oa) single state fit result with fit
range 6–15 for the I ¼ 0 channel. The absolute error of the ground
state energy and relative error of the amplitude are approximately
the same when Ptot ¼ ð2; 2; 2Þ π

L and ð2; 2; 0Þ π
L and increase as we

further decrease the total momentum. This effect can be partially
understood by comparing the number of momentum matched
D-type diagrams that dominate the central value of the Green’s
function to the total number of D-type diagrams.

Ptot (2,2,2) (2,2,0) (2,0,0) (0,0,0)
E0 0.39852(36) 0.39439(44) 0.38553(85) 0.36917(364)
A0 0.15152(50) 0.07300(23) 0.03454(15) 0.01611(26)
δA0

Ā0

0.0033 0.0032 0.0044 0.016
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neglected around-the-world constants below. In Table VI
we list for each Ptot the fit range, fit procedure, as well as
the resulting p-value and final parameters. We also observe
in this table a trend towards smaller overlap factor between
the operators and states, i.e., a more diagonal amplitude
matrix Aix, as we increase the total momentum and thus
decrease the center-of-mass energy. This is again consistent
with our understanding of the relation between this overlap
factor and the strength of the ππ interaction, which also
decreases as the center-of-mass energy is decreased. This
also explains why the additional operators appear to have
the largest impact on the ground-state energy for the
moving frame, Ptot ¼ ð2; 0; 0Þπ=L fits in Fig. 6.
Next we discuss our treatment of the around-the-world

constants in the fit. There are two potential sources of
systematic error in our results that must be treated carefully:
the excited state contamination and the around-the-world
contributions. The first error is expected to be much more
significant and is discussed in Sec. VII. To leading
exponential order in the time extent of the lattice volume,
the around-the-world contributions are time-independent
constants even in this moving frame calculation because of
our G-parity boundary conditions. We observe that fitting
with these around-the-world constants as free parameters
results in good p-values for tmin ≥ 6 but gives results for
the constants that are either statistically consistent with 0
(Ptot ¼ ð2; 2; 2Þ and (2,0,0)), or which have an unphysical,
negative sign [Ptot ¼ ð2; 2; 0Þ]. For all three cases either
their errors when the constants are unresolved or the
nonzero fitted values when these constants can be resolved
are ten times larger than the expected size, that of the I ¼ 2
around-the-world constant.
For the case of Ptot ¼ ð2; 2; 2Þ or (2,0,0), we can neglect

these constants in the fit since there is no statistical
inconsistency between the fitted energy with and without
these constants, and we expect that the effects of the true
around-the-world constants will be approximately 10 times
smaller than these substatistical effects. Note that excluding
theses constants from the fit gives us an improvement in the
statistical error of the ground state energy by a factor of
1.2–1.5. For the second Ptot ¼ ð2; 2; 0Þ case, the most
likely explanation is that the constants are acting as
“nuisance parameters” that help to partially account for
the excited state contamination but do not reflect true
around-the-world behavior. Rather than leaving the con-
stants as free parameters and using an unphysical model to
describe our data we choose to fix the constants to zero and
to account for the systematic, excited-state contamination
errors separately.
The model with zero around-the-world contributions

should be a good description of the data in the window
½tmin; tmax� for which tmin is large enough that excited state
effects are small and tmax small enough that the contribution
of these constants is small relative to the size of the data.
For tmax ¼ 15we observe very poor p-values even for large

tmin ≤ 10. Reducing tmax from 15 to 10 we observe a
significant improvement in the goodness-of-fit, finding
acceptable p-values for tmin ≥ 6. This behavior is consis-
tent with the effects of around-the-world contributions,
although the excited state contributions may also play a
role. Note however that, despite the dramatic improvement
in p-value observed when reducing tmax from 15 to 10, we
observe consistency in the ground-state fit parameters and
no loss of precision, suggesting that the around-the-world
systematic error is negligible and that the fits are under
good control. In Fig. 6 we use tmax ¼ 15 to show that
reasonable behavior is seen when the around-the-world
constants are omitted even for this large value of tmax.
Further evidence that supports the argument that for
Ptot ¼ ð2; 2; 0Þ these constants are “nuisance parameters”
can be found by including them in the fit, fixing tmax and
increasing tmin. The resulting around-the-world constants
monotonically decrease with increasing tmin, which sug-
gests that they likely result from excited state contamina-
tion, which is expected to decrease as tmin is increased,
rather than representing the effects of single-pion around-
the-world propagation. For uniformity, in Table VI we
choose to list the results for the three smallest total
momenta with the same value of tmax ¼ 15. This results
in the small p-value of 0.016 for the (2,2,0) case. However,
had we used tmax ¼ 12 we would have obtained equivalent
results with a p-value of 0.205.

C. Normalized determinant

It is important to emphasize that the introduction of these
additional ππð…Þ operators (in all cases) and σ operators
(in the stationary I ¼ 0 case) offers something more than a
simple statistical improvement but gives new information
about the underlying energy eigenstates. The two-point
Green’s functionsCxy for x ≠ a and/or y ≠ a typically have
larger statistical uncertainties than Caa at the same t,
suggesting that including these additional operators may
lead to only a small reduction in the statistical errors of the
fitting parameters. However, in some cases including these
operators significantly improves the statistical error of the
ground state energy, (e.g., the stationary I ¼ 0 case shown
in Fig. 5). We also observe in several cases a significant
reduction in the energy of the apparent plateau as well as an
earlier onset of the plateau region, suggesting that the extra
operators are dramatically improving our ability to resolve
nearby excited states which may be very difficult to
distinguish from the ground state when we have only a
single operator, even with large statistics.
Some insight into how this improvement comes about

can be gained by considering the “normalized determinant”
of the N × N matrix of Green’s functions,N ðtÞ, defined as

N ðtÞ ¼ DetðCðtÞÞQ
N
i¼1 CiiðtÞ

; ð35Þ
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where CðtÞ is the matrix of Green’s functions. We normal-
ize the determinant using the product of the diagonal
elements of the matrix so that this quantity does not depend
on the scale of the interpolating operators. In fact, it can be
shown that 0 ≤ jN ðtÞj ≤ 1. If the number of intermediate
states that contribute to CðtÞ, N0, is smaller than N then
N ðtÞ ¼ 0 (since the N0, N-component vectors constructed
from the matrix elements of the N operators between these
N0 states and the vacuum, which determine the N × N
matrix Cij do not span the entire N dimensional space on
which Cij acts). Thus, if at a given time twe findN ðtÞ ≠ 0,
then we can be certain that at least N distinct states are
contributing to CðtÞ. However, if we find N ðtÞ ¼ 0 we
cannot conclude that there are fewer than N states in the
Hilbert space that contribute to the correlation matrix CðtÞ.
Thus, we cannot useN ðtÞ to tell us if a sufficient number of
operators has been used to distinguish all of the states that
contribute to CðtÞ. When N ðtÞ ≈ 1, it suggests that these
operators create states from the vacuum which are orthogo-
nal to each other.
In Fig. 8 we plot N as a function of t for both the 2 × 2

matrix of stationary I ¼ 0 two-point functions comprising
ππð111; 111Þ and σ operators and the 3 × 3 matrix of
Green’s functions constructed from all three operators. For
the two-dimensional matrix case we find at t ¼ tmin ¼ 6,
N ðtÞ ¼ 0.31ð7Þ giving unambiguous proof that more than
one state must be present, while for the three-dimensional
matrix case, N ðtÞ is relatively suppressed and takes value
of 0.14(13) at t ¼ 5 and consistent with zero at t ≥ 6. The
observation that the third state can no longer be distin-
guished from the noise for t ≥ 5 explains why we were
unable to perform reliable three-operator, three-state fits
to the I ¼ 0 stationary two-point functions with tmin ≥ 5
earlier in this section. This is closely related to the

discussion of the size of the excited state systematic error,
as will be explained in Sec. VII. We emphasize that the
determinant is computed from two-point function mea-
surements at a single time separation and provides infor-
mation beyond that which can be obtained from the time
dependence of a single operator. The slow decrease ofN ðtÞ
as a function of t throughout our fitting range suggests
that there are states with similar energies, which can be
distinguished even at a single time separation by the
multiple operators in our fitting procedure. Note, according
to Table VI for the I ¼ 0 channel these three nearby
energies expressed in units of MeV are E0 ¼ 547.5ð6Þ,
E1 ¼ 725ð5Þ and E2 ¼ 948ð13Þ. While the differences
between these energies are sufficient to easily see the time
dependence of shown in Fig. 8, they are insufficient to be
resolved in a single-operator fit, even with the statistical
precision achieved with 741 configurations.

D. Comparison of multioperator multistate fits
with the GEVP method

Multiparameter fitting is a straightforward method to
analyze the correlation functions between pairs of inter-
polating operators to determine the energies of finite-
volume states which these operators create and the overlap
amplitudes between these operators and states. A second
approach to analyze such data is the generalized eigenvalue
problem (GEVP) approach [51,52]. The GEVP can be
viewed as a generalization of the concept of effective mass,
from single-operator to multiple-operator Green’s func-
tions. In principle, this approach has good control over the
systematic error resulting from the excited states that are
not included in the analysis. Following the notation of
Ref. [52], the N-dimension GEVP can be defined as

CðtÞvnðt; t0Þ ¼ λnðt; t0ÞCðt0Þvnðt; t0Þ 1 ≤ n ≤ N; t0 ≤ t;

ð36Þ

where CðtÞ is the N-dimensional matrix of two-point
functions, vn, 1 ≤ n ≤ N are the eigenvectors and
λnðt; t0Þ are the corresponding generalized eigenvalues.
[In this section only, we follow the conventions of
Ref. [52], and construct the correlation function CijðtÞ
from the productOiðtÞOjð0Þ†.] In the limit where the lattice
temporal extent, T, is large, the energy of the nth state is
related to λn by

En ¼ lim
t→∞

Eeff
n ðt; t0Þ

Eeff
n ðt; t0Þ ¼ logðλnðt; t0ÞÞ − logðλnðtþ 1; t0ÞÞ: ð37Þ

The GEVP approach can also be used to construct an
operator A†

n which creates the normalized lattice energy
eigenstate,

FIG. 8. The t dependence of N ðtÞ, defined in Eq. (35) for the
three-dimensional (black, which include all operators) and two-
dimensional (red, only include Oa and Oc operator) matrix of
Green’s functions for the stationary I ¼ 0 case.
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Anðt; t0Þ ¼ e−HtQnðt; t0Þ

Qnðt; t0Þ ¼ Rnðt; t0Þ
XN
i¼1

Oivn�i ðt; t0Þ

Rnðt; t0Þ ¼
�XN

i;j¼1

vn�i ðt; t0ÞCijðtÞvnj ðt; t0Þ
�−0.5

×
λnðt0 þ t=2; t0Þ
λðt0 þ t; t0Þ

: ð38Þ

It has been shown that in the region where t0 > t=2, the
systematic error in the energy of the ith state resulting from
states omitted from the analysis is constrained by [52]

ΔE ¼ Oðe−ðENþ1−EiÞtÞ: ð39Þ

If T is not sufficiently large, we need to consider two
complications to the GEVP procedures described above.
The first is around-the-world propagation, which introdu-
ces time-independent constants into the correlation func-
tions for both isospin channels for each of our four values
of total momentum. One way to eliminate this effect is to
introduce a “subtracted matrix of two-point functions”DðtÞ
defined as DðtÞ ¼ CðtÞ − Cðtþ δtÞ and use this D matrix
in the GEVP calculation [19]. Notice that this step will not
affect the formula for the energy, but a modification is
needed for the operator An which is now given by

Anðt; t0Þ ¼ e−HtQnðt; t0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−Enδt

p
: ð40Þ

The second complication comes from backward propa-
gating states. One way to accommodate this effect is to
modify the relation between the eigenvalue and the
corresponding energy. For more detail, see Ref. [53]. We
will not use this method here but instead work with a
smaller time range where the effect of backward propa-
gating states can be neglected.
In this paper we will compare only the ground state

energies obtained in our fitting and GEVP analyses.
Specifically we compare the energies obtained from our
multioperator simultaneous fits to the GEVP effective
energy defined in Eq. (37). Our comparison of the fitting
and GEVP approaches begins by comparing the fitting
results with those obtained from the GEVP at a fixed time t
chosen to be the same as the value of tmin used in the fit
while the value of the GEVP quantity t0 is chosen as ⌈ t

2
⌉.

We find that the GEVP energy is statistically consistent
with the fit result but its statistical error is about 5 times
larger. Actually the result of this direct comparison should
not be surprising, since much information is lost when the
GEVP method is applied to a single ðt; t0Þ pair.
An improvement to the GEVP method proposed in

Ref. [19] is to fit the set of generalized eigenvalues
λ0ðt; t0Þ, as a function of t with t0 fixed and to include

in that fit possible correction terms from omitted excited
states. This addresses the statistical noise problem identi-
fied above by including more of the correlation function
data in the GEVP analysis. We adopt a simple version of
this fitting approach and perform a correlated fit to the
GEVP eigenvalues of the form,

λ0ðt; t0Þ ¼ e−E0ðt−t0Þ; ð41Þ

fitting all of the data from t ¼ t0 þ 1 to a largest value tmax.
As shown in Ref. [52], this functional form for λ0ðt; t0Þ will
contain errors from neglected higher energy states which
are bounded by

ΔE ¼ Oðe−ðENþ1−E0Þt0Þ: ð42Þ

By choosing the smallest value of t used in this GEVP
fit to be one time unit above t0 we are minimizing the
statistical error in our result for E0 for a given choice of t0.
We then treat t0 in the same spirit as tmin in our previous
multiparameter fitting of the matrix of Green’s functions
(which we will call the “usual fit” in the remainder of this
section). Thus, we vary t0 searching for a plateau region for
sufficient large t0 and then adopt as the result of this GEVP
fitting that value obtained for E0 from the smallest value of
t0 within that plateau region.
While this procedure is similar to what is used in our

usual fit, we have not carried out the detailed discussion of
the residual systematic errors coming from excited state
contamination that is attempted in Sec. VII for our usual fit.
Thus, we are unable to say if choosing a larger value of t
than t0 þ 1 would have resulted in a sufficiently reduced
systematic error to give a reduction in the total error,
overcoming the increase in statistical error that would result
from increasing t − t0 above one.
In addition to examining the dependence of the GEVP

result for E0 on t0, we must also make sure that our choice
of tmax is appropriate: if tmax is too large, then neglecting the
backward propagating state will introduce an error; if tmax is
too small, then we will have a small number of input data
points which makes our fit less reliable. Wewill choose tmax
to be no larger than that used in our usual fit, so that we can
use those earlier results to determine how we should treat
the around-the-world effects. Thus, based on the results
obtained from our usual fit, we neglect the around the world
effects for the I ¼ 0 channel and work directly with the
correlation matrix CðtÞ of two-point functions. For I ¼ 2
these effects were found to be important so in that case
we analyze the subtracted matrix DðtÞ defined above,
using δt ¼ 1. For the I ¼ 2 channel, where we perform
this matrix subtraction process, tmax is taken to be 20,
smaller than the tmax ¼ 25 in the usual fit, due to the
increased noise resulting from the construction of the
subtracted matrix of two-point functions DðtÞ. The value
of tmax in the I ¼ 0 channel is chosen to be 15, the largest
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used in the usual fit. We can then plot the ground state
energy from this GEVP fitting as a function of t0 and look
for the beginning of the plateau region and also the p-value
in order to determine t0.
Plots that include both the GEVP fit and the usual fit

results are shown in Fig. 9. Notice the x-axis represents tmin
for the usual fit, and t0 for the GEVP method. This choice
for plotting was made to best align both the central values
and statistical errors from the two methods. For all but the
stationary I ¼ 0 case, both the usual fit and the GEVP fit
are performed with all operators and the number of states
the same as the number of operators. For the stationary
I ¼ 0 case, the usual fit includes all the operators, and the
number of states is 3 when tmin < 5 and 2 when tmin ≥ 5.
For the GEVP fit, the statistical error blows up when
tmin > 5 if we include all operators, so we have used only
two operators, Oa and Oc, when tmin > 5. It can be seen
that for the I ¼ 2 channel, the two results are not only
consistent with each other, but also show similar time-
dependence. For the I ¼ 0 channel, the two results are not
consistent, but this inconsistency may come from the
excited-state error, which will be discussed below.
The final results and the choices of fitting setup are

shown in Table IX. The p-values shown suggest that the
quality of all the GEVP fits are relatively good. From the
table we can see that for the I ¼ 0 channel the GEVP fit
results are approximately 2σ larger than the results from the
usual fit if we only include the statistical error. However,
the two are consistent if the systematic errors arising from
excited state contamination in the usual fit are included.
These excited-state error estimates were obtained by
independent methods as described in Sec. VII and are also
listed in Table XVI and match surprisingly well the
differences between the results obtained from our usual
and GEVP fits.
For the I ¼ 2 channel the two results are consistent with

each other with comparable statistical errors which are
much smaller than in the I ¼ 0 case. Also notice that in all
cases, the GEVP method gives statistical errors that are no
larger than the usual fit method, which suggests that the
GEVP fitting method is a useful tool for analyzing the
matrix of Green’s functions for the scattering considered
here. We also expect that the usual fits may be less
successful than the GEVP method when we increase the
number of operators in the fit due to instabilities that will
likely result from the larger number of fit parameters. As
used here, the GEVP fit is far simpler, being a correlated fit
to a single one-parameter function of the time. The multi-
operator fits will further suffer from the quadratic increase
in the number of elements in the covariance matrix, the
inversion of which may become unstable once it becomes
too large. In the GEVP case, the size of the covariance
matrix depends only on the size of the fit window.
Nevertheless, for the problem at hand, fitting the matrix

of two-point functions is more direct than fitting the GEVP

eigenvalues and, as we will show in Sec. VII, allows
considerable flexibility in estimating the size of the
systematic error arising from omitted excited states. In
the traditional GEVP method [52] the number of operators
must be larger than or equal to the number of states, while
in the multiparameter fitting approach more states than
operators can be easily accommodated. Currently, this is a
crucial step in estimating the excited state error as will be
seen in Sec. VII and in identifying a plateau in the
stationary I ¼ 0 case as can be seen from the lower right
panel of Fig. 9. However, for the case studied here we have
not attempted to make similar estimates of the systematic
errors in our GEVP results, and effective methods for
estimating such errors may well be possible there.

VI. DETERMINATION OF THE PHASE SHIFT

In this section we discuss in detail how we determine
the ππ phase shifts from the finite-volume ππ energies.
We begin with Lüscher’s formula generalized to the case
of antiperiodic boundary conditions2 with a general total
momentum. Next we discuss the strategy of working with
energy differences to reduce discretization errors, espe-
cially for the moving frame calculations. We then calculate
the ππ scattering phase shifts at various center-of-mass
energies for both isospin channels using this technique. We
also describe our method for specifying the energy at which
these phase shifts have been determined in order to reduce
the effects of the slightly unphysical pion mass used in our
lattice calculation. Finally we calculate the Lellouch-
Lüscher factor [54] that is needed to interpret the finite-
volume K → ππ calculation [4].

A. Lüscher’s quantization condition for nonzero total
momentum and antiperiodic boundary conditions

Euclidean-space lattice QCD calculations determine
finite-volume ππ energies from which the infinite-volume
scattering phase shifts can be obtained using an approach
developed by Lüscher [6]. While initially derived for the
case of a stationary frame and periodic boundary con-
ditions, this approach was later generalized to nonzero
total momentum [55–57] and later this moving frame result
was generalized to the case with general twisted boundary
conditions [58]. In this section, we will write down this
result for our GPBC lattice where pions satisfy the
antiperiodic boundary conditions. In particular, the s-wave
phase shift, δðsÞ can be determined from the relation:

δðsÞ þ ϕd⃗;γðsÞ ¼ nπ where n is an integer and typically
allows for more than one solution to this quantization
condition, resulting in a series of energy eigenstates in a

single volume. The function ϕd⃗;γðsÞ is defined by

2In this section we will focus on the case of antiperiodic
boundary conditions obeyed by the pions, which result from the
G-parity boundary conditions obeyed by the quarks.
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FIG. 9. The tmin or t0 dependence of the fitted ground state energy from the GEVP and the usual fit for the ππI¼2 (left) and ππI¼0

(right) channel with tmax ¼ 20 (I ¼ 2) and 15 (I ¼ 0). The total momenta from the top down are ð2; 2; 2Þ π
L, ð2; 2; 0Þ π

L, ð2; 0; 0Þ π
L and 0.

Here the x-axis represents tmin for the usual fit, and t0 for the GEVP fit. In the legend of the lower right panel, 2D and 3D indicate a 2 × 2
and 3 × 3 GEVP matrix.
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tanðϕd⃗;γðsÞÞ ¼ γπ3=2q

Zd⃗;γ
00 ð1; q2Þ

: ð43Þ

Here s is the square of the invariant mass of the two-pion
system, γ is the Lorentz factor which boosts the laboratory
frame to the CM frame and q is related to the magnitude of
the momentum k carried by either pion in their center-of-
mass frame. Each of these quantities can be determined
from the finite-volume ππ energy, Eππ obtained from the
lattice calculation,

s¼E2
ππ− P⃗2

tot; γ¼Eππffiffiffi
s

p ; k2¼ s
4
−m2

π; q¼k
L
2π

: ð44Þ

The vector of integers, d⃗, is related to the total momen-
tum P⃗tot by

d⃗ ¼ L
2π

P⃗tot; ð45Þ

and Zd⃗;γ
00 ðŝ; q2Þ is the generalized Lüscher’s zeta function,

which is defined as

Zd⃗;γ
00 ðŝ; q2Þ ¼

1ffiffiffiffiffiffi
4π

p
X

r⃗∈N d⃗;γ

ðr⃗2 − q2Þ−ŝ; ð46Þ

where the conventional argument s of the zeta function is
replaced here by ŝ to remove the possible confusion with

the square of the center-of-mass energy and the set N d⃗;γ is
defined as

N d⃗;γ ¼ fr⃗jr⃗ ¼ γ̂−1ðn⃗þ d⃗=2þ l⃗=2Þ; n⃗ ∈ Z3g: ð47Þ

Here the vector l⃗ represents the effect of the boundary
conditions. If the particle satisfies periodic boundary

conditions in the ith direction then li ¼ 0, while with
antiperiodic boundary conditions we have li ¼ 1. The
quantity γ̂−1 is a linear transformation on three-vectors
defined as

γ̂−1ðn⃗Þ ¼ 1

γ
n⃗k þ n⃗⊥; ð48Þ

using the notation of Ref. [59].
As defined in Eq. (46) the generalized zeta function

diverges at ŝ ¼ 1 and needs to be expressed differently to
be evaluated at ŝ ¼ 1. We use a simple generalization of a
formula given in Ref. [59] to do this. Combining all of these
formulas we can obtain the ππ scattering phase shift at the
energy

ffiffiffi
s

p
from the finite-volume energy eigenvalue Eππ

determined from our lattice calculation. Note that in
obtaining Eq (43) we are implicitly neglecting the con-
tributions to the scattering of partial waves with l ≥ 1. In
the stationary frame, assuming the ππ operators are con-
structed in the trivial representation of the cubic group,
cubic symmetry prevents states with 1 ≤ l < 4 from
contributing [6]. The interaction strength in the l ≥ 4
channels is known to be small, and these interactions
can be safely neglected [6].
However in the moving frame the relativistic length

contraction naturally breaks the cubic symmetry down to
a smaller group, the trivial representation of which also
allows for contributions from d-wave (l ¼ 2) interactions.
Previous calculations [30] have shown that the phase shifts
in the l ¼ 2 channel are small around the kaon mass, which
will be further suppressed in the moving frame calculation
where

ffiffiffi
s

p
is smaller than mK so we can therefore continue

to assume s-wave dominance. As described above, the
G-parity boundary conditions also break the cubic sym-
metry but the effects can be suppressed with a careful
choice of ππ operator. Any systematic errors arising from
this source are discussed further in Sec. VII A.

TABLE IX. Comparison between the ground state energy E0 obtained from the GEVP fit (GEVP) and the direct
matrix of two-point functions fit (usual fit) given in Tables Vand VI, repeated here for convenience. The t0 used for
the GEVP fit is obtained from Fig. 9 by recognizing the beginning of the plateau region and the resulting tmin ¼
t0 þ 1 is shown in the fitting range above. In the “sub” column we indicate whether (y) or not (n) we are using the
subtracted matrix of two-point functions DðtÞ to perform the GEVP calculation, removing the around-the-world
effects. The statistical error for both fits are shown in parenthesis while the systematic errors from excited state
contamination for the I ¼ 0 channel, estimated in Sec. VII, are shown in square brackets.

Ptot;I sub t0 Fitting range E0 (GEVP) E0 (usual fit) p-value

ð222ÞI¼2 y 10 11–20 0.39854(27) 0.39842(26) 0.385
ð220ÞI¼2 y 11 12–20 0.40021(29) 0.40010(32) 0.306
ð200ÞI¼2 y 11 12–20 0.40447(31) 0.40454(30) 0.294
ð000ÞI¼2 y 11 12–20 0.41528(46) 0.41535(45) 0.665
ð222ÞI¼0 n 6 7–15 0.3986(4) 0.3973(4)[17] 0.28
ð220ÞI¼0 n 8 9–15 0.3907(13) 0.3895(17)[19] 0.622
ð200ÞI¼0 n 6 7–15 0.3823(18) 0.3774(23)[52] 0.983
ð000ÞI¼0 n 5 6–15 0.3489(11) 0.3479(11)[10] 0.142
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B. Calculation technique

As shown above, the ππ scattering phase shift is related
to the energy of a finite-volume ππ state, or more
specifically to the “pion momentum” k carried by either
pion outside the range of the strong force. However, on a
discretized lattice with antiperiodic boundary conditions
(i.e., a case where the single-pion ground-state has nonzero
momentum), the determination of k from the measured ππ
energy must be performed carefully. If the ππ interaction
is relatively weak then k, which is a measure of that
interaction, will be close to its free field value, and we must
take precautions that the potentially small difference
between k and its free field value is nevertheless large
when compared with the discretization errors associated
with the spatial momenta of the pions in our calculation.
However, as can be seen in Eq. (44), k is determined from
differences of larger quantities and care must be taken to
insure that the quantities being subtracted have, to the
degree possible, common finite lattice spacing errors so
that these errors will largely cancel in the difference.
Specifically the quantities being subtracted should be
chosen so that their difference will vanish in the limit that
the ππ interactions vanish, even when computed at finite
lattice spacing.
This cancellation of finite lattice spacing errors can be

accomplished by working with two related quantities
determined from our calculation: ΔE ¼ Eππ − 2Eπ, which
measures the ππ interaction strength, and Eπ , the lowest
energy of a moving pion. UsingΔE for example, the effects
of the finite lattice spacing upon the pion dispersion
relation that enter both Eππ and 2Eπ will largely cancel,
leaving only the subtler effects of the discretization upon
the two-pion interaction itself. Even for the case of non-
zero total momentum P⃗tot, we will exploit our choice of
antiperiodic boundary conditions in all three directions and
use for Eπ the ground-state, single-pion energy. Each of the
three nonzero total momenta that we study can be formed
from two pions carrying the minimum allowed momenta
p⃗ ¼ ð�1;�1;�1Þπ=L so that 2Eπ will be the minimum
energy of two interacting pions in the limit in which that
interaction vanishes.
Thus, the quantities ΔE and Eπ will be computed on the

lattice, and systematic errors estimated to account for the
residual effects of the finite lattice spacing. The results are
finite-volume predictions for ΔE and Eπ in the continuum
limit, albeit with an unphysical pion mass, and in Sec. VII
wewill estimate and propagate the systematic discretization
errors on these quantities. (While it would be better to
determine ΔE and Eπ by performing calculations at
multiple lattice spacings and taking the continuum limit,
this is at present beyond our available resources.) Adopting
this strategy to account for the discretization effects, we can
then apply the generalization of Lüscher’s finite-volume
quantization condition without ambiguity using the con-
tinuum dispersion relation,

k2 ¼ ðΔEþ 2EπÞ2=4 − E2
π þ 3

�
π

L

�
2

−
1

4
P⃗2
tot

¼ ΔE2

4
þ ΔEEπ þ 3

�
π

L

�
2

−
1

4
P⃗2
tot; ð49Þ

where we have continued to assume antiperiodic boundary
conditions in three directions and note that the last two
terms on the right-hand side of Eq. (49) are exactly known.
The second line in Eq. (49) demonstrates the purpose of

this rearrangement: our result for k is proportional to the
small quantity ΔE (a measure of the ππ interaction
strength) plus other kinematic quantities that are deter-
mined without finite lattice spacing error. This guarantees
that at finite lattice spacing the phase shift determined in
this way from the quantization condition will vanish when
ΔE → 0 so that the fractional finite lattice spacing errors
expected in ΔE can be directly propagated to determine the
corresponding error in δðsÞ.
We thereby obtain a value for the phase shift at an

unphysical pion mass, from which a prediction for the
physical phase shift can be obtained by assigning suitable
systematic errors for discretization effects and the un-
physical pion mass as will be discussed in Sec. VII.

C. Phase shift results (statistical error only)

In this section we tabulate our results for the ππ
scattering phase shifts including their statistical errors,
computed according to the method described above. For
each result we must specify the energy at which the phase
shift takes the quoted value, and we choose to assign the
appropriate

ffiffiffi
s

p
in such a way as to minimize the error

introduced by the unphysical pion mass, 143MeV, at which
our calculation is performed, a value 6% larger than the
135 MeV which we adopt as the physical pion mass in this
paper. For values of

ffiffiffi
s

p
on the order of the kaon mass, the

error associated with this unphysical 8 MeV shift in the
pion mass is small and is estimated using chiral perturba-
tion theory in Sec. VII. However, since the I ¼ 0 and 2
phase shifts vanish when

ffiffiffi
s

p ¼ 2mπ , this unphysical
pion mass error can become large as

ffiffiffi
s

p
approaches

2mπ;unphy > 2mπ;phy. This effect can be easily eliminated
if we view our computed phase shifts as functions of the
pion momentum k rather than

ffiffiffi
s

p
, since a calculation of

the phase shifts will give results which vanish at k ¼ 0
independent of the pion mass.
Thus, for each computed value of the phase shift we use

the measured lattice ππ energy and lattice pion mass to
obtain the relative momentum k, and then when presenting
our results for the phase shifts assign an energy determined
by combining this momentum in the continuum limit with
the physical pion mass by applying the dispersion relation,

s ¼ 4ðk2 þm2
π;phyÞ: ð50Þ
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The effect of the unphysical pion mass on the actual
strength of the interaction (i.e., upon the phase shift itself)
is small and is treated as a systematic error that we estimate
using chiral perturbation theory, as discussed in Sec. VII.
In Table X we list the phase shifts calculated from 4(3)

different momenta of the center of mass for the I ¼ 2ð0Þ
channel and calculate the corresponding

ffiffiffi
s

p
using Eq. (50).

Here we only include the statistical error. The full error
budget will be discussed in Sec. VII. We do not provide a
result for the phase shift of the I ¼ 0 channel in the case
where Ptot ¼ ð2; 2; 2Þ π

L. At this lowest value of
ffiffiffi
s

p
the

attractive interaction between two pions results in a center-
of-mass ππ energy that lies below 2mπ.
Instead, we calculate the scattering length for both

isospin channels with the moving frame where Ptot ¼
ð2; 2; 2Þ π

L. For the I ¼ 2 channel, we start with the
following expansion of the phase shift as a function of
the relative momentum k:

k cotðδ0Þ ¼ −
1

a0
þ 1

2
reffk2 þOðk3Þ; ð51Þ

where a0 is the scattering length and reff is the effective
range. Since k is very small where Ptot ¼ ð2; 2; 2Þ π

L, we can
keep only the leading term,

a0 ¼ −
δ0
k
: ð52Þ

The result is listed in Table X. For the I ¼ 0 channel, we
generalize Eq. (1.3) in Ref. [9] to a moving frame and keep
only the leading term while neglecting all terms with higher
power of a0=L.
This approximation is reasonable since the contribution

from these higher-order terms is of O(10) smaller than
the statistical error and the systematic error discussed later.
The result is also shown in Table X. We point out that the

scattering length for I ¼ 0 channel given in that Table is
inconsistent with the experimental value at 3σ level if only
the statistical error is considered. This inconsistency mostly
comes from the excited state systematic error, as will be
discussed in Sec. VII.

D. Lellouch-Lüscher factor

In our companion calculation of the I ¼ 0 K → ππ
matrix elements [4], an important ingredient is the
Lellouch-Lüscher factor [54], which removes both the
difference in normalization between states defined in finite
and infinite volume and the leading power-law finite-
volume corrections to the finite-volume matrix element.
This factor is defined as

F2 ¼ 4πmKE2
ππ

k3

�
k
∂δI
∂k þ q

∂ϕd⃗;γ

∂q
�
; ð53Þ

where δI is the isospin I, s-wave ππ phase shift an ϕd⃗;γ is
defined in Eq. (43). This formula should be evaluated
at Eππ ¼ mK .
The moving frame calculation enables us to determine

the phase shifts at various energies, which allows us to
perform an ab initio measurement of ∂δ0∂k using a finite-
difference approximation. We now focus on the I ¼ 0 case
since our calculation has been tuned to give s close to m2

K
for the I ¼ 0, ππ ground state. We approximate the factor F
using two different methods. In the first we subtract the
values of δ0 at Ptot ¼ ð0; 0; 0Þ π

L and Ptot ¼ ð2; 0; 0Þ π
L,

which gives

∂δ0
∂k ¼ 0.372ð153Þ; ð54Þ

and in the second method we replace the second total
momentum with Ptot ¼ ð2; 2; 0Þ π

L, and obtain

TABLE X. The phase shifts with statistical errors only for 4(3) different total momenta for the I ¼ 2ð0Þ channel
and the corresponding

ffiffiffi
s

p
, together with the I ¼ 2ð0Þ scattering length calculated from moving frame calculation

with total momentum ð2; 2; 2Þ π
L. Here the statistical error of each phase shift is obtained not by simply propagating

the statistical error of Eππ , but a more elaborate method discussed in Sec. VII G which removes the uncertainty of the
energy at which we quote the phase shift.

Ptot I aEππ k(MeV)
ffiffiffi
s

p ðMeVÞ δ mπa0

ð0; 0; 0Þ π
L 2 0.4153(4) 248.4(3) 565.4(5) −11.0ð2Þ° � � �

ð2; 0; 0Þ π
L 2 0.4045(3) 197.9(2) 479.1(3) −7.96ð23Þ° � � �

ð2; 2; 0Þ π
L 2 0.4001(3) 138.4(3) 386.7(4) −4.48ð40Þ° � � �

ð2; 2; 2Þ π
L 2 0.3984(3) 14.4(2.1) 271.5(4) −0.32ð20Þ° −0.055ð15Þ

ð0; 0; 0Þ π
L 0 0.3479(11) 193.0(9) 471.0(1.5) 32.3(1.0)° � � �

ð2; 0; 0Þ π
L 0 0.3774(23) 170.6(2.4) 435.1(3.8) 24.0(3.4)° � � �

ð2; 2; 0Þ π
L 0 0.3895(17) 123.2(2.6) 365.6(3.4) 18.0(4.5)° � � �

ð2; 2; 2Þ π
L 0 0.3972(4) � � � � � � � � � 0.072(38)
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∂δ0
∂k ¼ 0.205ð63Þ: ð55Þ

Both results are consistent with

∂δ0
∂k ¼ 0.276ð1Þ; ð56Þ

which is calculated from the dispersive analysis [4,12].
Note we have not attempted to account for systematic
effects arising from the finite-difference approximation or
other effects here. Nevertheless we find good agreement
between our lattice results and the dispersive prediction,
albeit with large statistical errors. These results are also
presented in Ref. [4] where the dispersive result was used
for the final analysis. Note that these values differ slightly
(within errors) due to different choices of fit range and the
finite-difference approximation being applied there to the
phase shift is a function of energy rather than a function
of k.

VII. SYSTEMATIC ERROR ANALYSIS

There are several sources of systematic error which affect
our results: the breaking of cubic symmetry by our G-parity
boundary conditions, the nonzero lattice spacing of our
single gauge ensemble, the unphysical value of our pion
mass and contamination of our multioperator, multistate
fits due to the presence of additional excited states, not
included in our fit. In this section, we describe our
procedure for estimating the size of these errors. The full
error budget for the phase shifts we obtain is given at the
end of this section, and a comparison is made with the
dispersive predictions [12].

A. Cubic symmetry breaking

One distinguishing feature of our calculation is our
choice of boundary conditions: we use G-parity instead
of the standard periodic boundary conditions commonly
used in other ππ scattering calculations. As discussed in
Sec. II and in Ref. [5], G-parity boundary terms in the quark
action break the usual cubic symmetry of our lattice action
and cubic volume. We will distinguish two possible effects
of this breaking of cubic symmetry by the boundary
conditions: the effects on the finite-volume eigenstates of
the transfer matrix and the limitations on the symmetry
properties of interpolating operators constructed from the
quark fields.
Since the physical states in our finite volume are pions

which obey cubically antiperiodic boundary conditions, we
expect that the effects of this quark-level cubic asymmetry
will be suppressed exponentially in the linear size of our
spatial volume. Local phenomena will not be affected by
these boundary terms but only phenomena which span the
entire volume. This consideration should apply to the size
of the corrections to the standard ππ finite-volume

quantization condition, reducing these G-parity cubic
symmetry breaking effects to the size of other finite-volume
corrections.
Of greater concern is our inability to confidently use

cubic symmetry when interpreting the rotational quantum
numbers of the states produced by our interpolating
operators. The G-parity breaking of cubic symmetry limits
the selection of quark momenta that can be introduced
when constructing interpolating operators resulting in
operators which contain a mixture of representations of
the cubic group. The only solution to this problem which
we have found is an empirical one: we must carefully
construct pion interpolating operators to reduce the mixing
of different cubic symmetry representations below the level
that we are able to observe.
As described in Ref. [5], a numerical investigation on

single-pion correlation functions has been performed on a
smaller lattice, which suggests that if we construct these
pion interpolating operators with a single choice of quark
momentum assignment chosen from the set of allowed
quark momenta (for example choice 1 of Appendix A of the
present paper), then we observe a clear cubic symmetry
breaking effect in the overall normalization of the corre-
sponding two-point functions. In that Appendix we also
introduce a second choice with the same total momentum
but with different assignments of quark momentum. We
observe that if we construct our pion interpolating operators
by averaging the two momentum choices, then the resulting
cubic symmetry breaking becomes substatistical. Since this
cubic symmetry breaking is purely due to the boundary
condition, it will be further suppressed by the larger volume
used in the current study and is therefore negligible in this
work. While the normalization of the two single pion
operators carrying momenta which are related by cubic
symmetry show small differences, the pion energies are
always the same providing evidence for the assertion in the
preceding paragraph that the spectrum of the transfer
matrix shows only exponentially small cubic asymmetry.
We can also calculate the size of the cubic symmetry

breaking in our ππ interpolating operators directly by
studying the overlap between interpolating operators
belonging to different representations of the cubic group.
We will focus on the stationary frame since in the moving
frame calculation the s and d-waves are coupled to
each other even if we have exact cubic symmetry. If we
have exact cubic symmetry, we can project all three groups
of ππ interpolating operators [they are ππð111; 111Þ,
ππð311; 311Þ and σ] onto the A1 and T2 representations,
which primarily map onto the l ¼ 0 and l ¼ 2 representa-
tions of the continuum rotation group, respectively, and for
each group of operators these two representations will be
orthogonal. However, if the symmetry group is reduced to
the D3d group, the T2 representation of Oh group will no
longer be irreducible and will contain the A1 representation
ofD3d group, making a nonzero overlap between operators
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constructed according to the A1 and T2 representations of
the Oh group possible. The size of this overlap can then
serve as a measure of the cubic symmetry breaking.
We start by considering the two projections of the

ππð111; 111Þ operators and define their overlap as the
average,

CI;T2;A1
a;a ðtÞ

¼ 1

T

X
tsrc

hOI;T2

ππð111;111ÞðtþΔþ tsrcÞ†OI;A1

ππð111;111ÞðtsrcÞi; ð57Þ

where Δ ¼ 4, as introduced earlier in Eq. (27). Here and
below we follow a convention similar to that introduced
in Sec. V in which the labels a, b and c correspond to
ππð111; 111Þ, ππð311; 311Þ and σ respectively. If the cubic
symmetry breaking effects are negligible, then CI;T2;A1

a;a ðtÞ
will be consistent with 0.
Since we are interested in the size of these cubic

symmetry breaking effects relative to the correlation
functions from which we obtain our results, we will present
the normalized correlator,

RI;T2;A1
a;a ðtÞ ¼ CI;T2;A1

a;a ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CI;T2
a;a ðtÞCI;A1

a;a ðtÞ
q ; ð58Þ

where CI;T2
a;a ðtÞ and CI;A1

a;a ðtÞ are defined by

CI;R
a;a ðtÞ¼ 1

T

X
tsrc

hOI;R
ππð111;111ÞðtþΔþ tsrcÞ†OI;R

ππð111;111ÞðtsrcÞi;

ð59Þ

where R ¼ A1 or T2. The ratio RI;T2;A1
a;a ðtÞ in Eq. (58)

provides an estimate of the fractional contamination in the
correlation functions which we study that results from

cubic symmetry breaking. While we cannot be sure of the
quantum numbers of the dominant state which propagates
in the mixed correlator given in Eq. (57), the ratio given in
Eq. (58) divides by the time dependence implied by the
arithmetic mean of what we expect to be the lowest masses
in the A1 and T2 channels.
The results are shown in Fig. 10, where the left panel

shows the normalized overlap amplitude for the I ¼ 0
channel, and the right panel shows that for the I ¼ 2
channel. Here and in the later graphs shown in Fig. 11
we choose the time ranges to best present our results. We
exclude large times because the statistical errors become
very large and would require a highly compressed scale to
display. However, in each case sufficiently large times are
shown that the signal from the states which we study should
be an important contributor to the correlation function, so
the small size of RI;T2;A1

aa ðtÞ for those later times implies at
most a fractional percent contamination of our results from
cubic symmetry breaking. Of special interest is the size of
RI;T2;A1
a;a ðtÞ for t ¼ 0 and 1 where the statistical errors are

very small and cubic symmetry breaking is not visible at the
tenth of a percent scale.
Having verified the approximate cubic symmetry of the

ππð111; 111Þ operator, we next calculate the overlap
amplitude between the ππð111; 111Þ operator in the T2

representation and the other (311,311) and σ operators in
the A1 representation by evaluating,

CI;A1;T2

b=c;a ðtÞ
¼
X
tsrc

hOI;A1

ππð311;311Þ=σðtþΔþ tsrcÞ†OI;T2

ππð111;111ÞðtsrcÞi: ð60Þ

The results are most easily interpreted if we again examine
the normalized ratio,

FIG. 10. The overlap amplitudes between the ππA1ð111; 111Þ and ππT2ð111; 111Þ operators in the isospin I ¼ 2 (left) and I ¼ 0 (right)
channels. The overlaps amplitudes are consistent with zero at all time separations which implies negligible cubic symmetry breaking for
the ππð111; 111Þ interpolating operators.
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RI;A1;T2

b=c;a ðtÞ ¼ CI;A1;T2

b=c;a ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CI;A1

b=c;b=cðtÞCI;T2
a;a ðtÞ

q : ð61Þ

The results are shown in Fig. 11, where the upper
panel shows the overlap between the ππA1ð311; 311Þ and
ππT2ð111; 111Þ interpolating operators in the I ¼ 0 and
I ¼ 2 channels, and the lower panel shows the overlap
between the I ¼ 0, σ and ππT2ð111; 111Þ interpolating
operators. Similar to Fig. 10, all three overlap amplitudes
are consistent with 0 at the fractional percent level, which
suggests both the ππð311; 311Þ and the σ operators obey
approximate cubic symmetry.
Based on the above results, we conclude that if

we construct the pion interpolating operators by
averaging the two sets of quark momentum assignments
as described in the Appendix, we can achieve
accurate cubic symmetry at the meson level, despite the
symmetry breaking at the quark level. We therefore do not
assign any systematic error arising from cubic symmetry
breaking.

B. Finite lattice spacing

Fundamental to the connection between the scattering
phase shifts and the two-particle finite-volume energies is
the recognition that it is the interaction between the
particles, described by a nonzero scattering phase shift,
that causes the two-particle energy in finite volume to be
shifted away from the simple spectrum of noninteracting
particles in a box. When adopting formulae to determine
the scattering phase shifts from the two-particle finite-
volume energies in Sec. VI we were careful to preserve this
connection for nonzero lattice spacing.
Specifically Eq. (49) determines the relative center of

mass momentum k between the two pions in the finite-
volume ππ ground state that enters Lüscher’s quantization
condition as a function of the energy difference ΔE
between the finite volume ππ energy and that of two
noninteracting pions. This difference would vanish in
the absence of interactions, even at nonzero lattice
spacing. We then assign a relative systematic error to this
measured energy difference that is of the same size as is
found for other similar quantities computed on this

FIG. 11. Upper: the overlap amplitudes between the normalized ππT2ð111; 111Þ operator and the normalized ππA1ð311; 311Þ operator
in the isospin I ¼ 2 (left) and I ¼ 0 (right) channels. Lower: the overlap amplitude between the normalized σ operator and the
normalized ππT2ð111; 111Þ operator. All overlap amplitudes are consistent with zero with errors more than two orders of magnitude
smaller than 1 which implies a negligible cubic symmetry breaking for these ππð311; 311Þ and σ interpolating operators.
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ensemble for which a continuum limit has been evaluated.
Thus, we use

ErrorðΔEÞ
ΔE

¼ ca2; ð62Þ

where c is chosen from the finite lattice spacing errors
reported in Ref. [31]. In detail we use the average ChPTFV
value of the magnitudes of cIDf , cID

fðKÞ , c
ID
w0;a and c

IDffiffiffi
t0

p
;a, given

in Table XVII in that paper which are the four coefficients
which describe the a2 finite lattice spacing errors for these
four different physical quantities computed with the same
lattice action and gauge coupling as used here. This gives a
relative error of 1.6% for ΔE which we round up to 2%.
Note this relative error is usually a small quantity, and

therefore a small absolute error when compared with Eπ

and Eππ since we are calculating the ππ scattering phase
shift at relatively low energies (near the kaon mass). The
error determined from Eq. (62) is then propagated in the
standard way to obtain the Oða2Þ error for the scattering
phase shift which we use for each of our four values of total
momentum.

C. Finite volume

Finite volume affects the energy of ππ states in twoways.
The first effect results in the quantized finite-volume
energies is described by the Lüscher quantization condition
and can be viewed for large L as a power law effect. The
second effect falls exponentially with the system size and is
caused by the interaction radius being a finite fraction of the
system size or, equivalently, the effect of off shell singu-
larities when the Poisson summation formula is used to
estimate finite-volume effects. This second effect is usually
much smaller than the first and is the source of the
systematic error considered here. This exponentially sup-
pressed correction for the I ¼ 2 channel for periodic
boundary conditions can be formulated as [60]

ðk cot δðsÞÞL ¼ ðk cot δðsÞÞ∞ þ ΔFV; ð63Þ
where

ΔFV ¼ −
mπffiffiffiffiffiffi
2π

p
X

n⃗;jn⃗j≠0

e−jn⃗jmπLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijn⃗jmπL
p �

1 −
227

24

1

jn⃗jmπL
þ � � �

�
;

ð64Þ

for the case of near-zero relative momentum. According to
Fig. 2 from Ref. [60], this correction introduces an
approximate 1% relative error in the scattering length for
a volume with periodic boundary conditions but the same
size and physical parameters as the volume with G-parity
boundary conditions studied here.
For our G-parity boundary condition lattice, since the

pion satisfies antiperiodic boundary conditions, the formula
for ΔFV has to be modified as follows:

ΔFV ¼ −
mπffiffiffiffiffiffi
2π

p
X

n⃗;jn⃗j≠0

ð−1Þnxþnyþnze−jn⃗jmπLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijn⃗jmπL
p

×

�
1 −

227

24

1

jn⃗jmπL
þ � � �

�
: ð65Þ

This leads to a relative error of approximately 0.6%. We
round this number up to 1% and adopt it as an estimate of
the finite volume effects for our more general case which
includes the I ¼ 0 channel, nonzero ππ relative momentum
and nonzero total momentum.

D. Unphysical kinematics

The pion mass which we measured on this ensemble is
142.3 MeV, which is 5% larger than our choice for the
physical pion mass (135 MeV) at which we wish to
determine the scattering phase shifts. We deal with this
pion-mass mismatch in two steps. In the first step we shift
the ππ energy at which we quote the phase shift, as has been
discussed in Sec. VI, by expressing the phase shift as a
function of the two-pion relative momentum k in the center-
of-mass system and then identifying this value of k with a
ππ energy using the physical pion mass. We view this
correction, which will be large for energies near the ππ
threshold, as the most important effect of this pion-mass
mismatch. In the second step we account for the remaining
effects of this pion mass mismatch as a systematic error in
our result for the phase shift.
We estimate the remaining pion-mass-mismatch error by

using ChPT to calculate the difference between the scatter-
ing phase shift evaluated at these two different pion masses
but at the same value for k. The NLO ChPT prediction
for the scattering amplitude of both the I ¼ 0 and I ¼ 2
channels for small relative momenta are listed in
Appendix B, and the predicted phase shift difference as
a function of

ffiffiffi
s

p
is plotted in Fig. 12.

There is a remaining uncertainty in this approach that
must be resolved. The ChPT calculation is only valid for
small k, a condition not valid for our stationary calculation,
which results in the rapid rise of the phase shift difference
in the I ¼ 0 channel when

ffiffiffi
s

p
> 380 MeV. Similar behav-

ior is seen also in the I ¼ 2 channel, although the break-
down appears to occur more slowly as a function of

ffiffiffi
s

p
,

suggesting the ChPT result for this channel can be
considered sufficiently reliable for energies in our range
of interest. We modify our systematic error determination
for

ffiffiffi
s

p
≈mK to resolve this issue. Notice that the dispersive

prediction, whose range of validity is expected to extend
above that of ChPT, shows a relation between the phase
shift and

ffiffiffi
s

p
that is close to linear for a broad range of ππ

energy, up to and including the kaon mass [12]. This
suggests that the relation between the

ffiffiffi
s

p
-dependence of

the difference between the two phase shifts with different
pion masses will also be linear. Thus, we can use ChPT to
determine the phase shift difference at relatively small ππ
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energy and then linearly extrapolate to higher energies.
Here we perform a linear fit to the ChPT prediction in the
range 290 MeV ≤

ffiffiffi
s

p
≤ 360 MeV. For the I ¼ 2 channel

the ChPT result remains linear over the range of our data so
we simply use the ChPT value to determine this I ¼ 2
systematic error. Our assignments of these unphysical-
pion-mass errors are listed in Table XI.

E. Higher partial wave correction

In Sec. VI A where we derive Lüscher’s quantization
condition, we assume that the contributions to the s-wave
phase shift from higher partial waves are negligible. For
the stationary frame calculation where the leading order
correction comes from the partial wave with l ¼ 4, this
contribution should be highly suppressed because of the
large angular momentum. For moving frame calculations,
the leading order correction comes from D-wave where the

neglected phase shift may be larger. For completeness, we
should estimate the contribution to the systematic error
from neglecting this D-wave phase shift.3

According to Eq. 105 from Ref. [55], under the condition
where the D-wave phase shift is small, the correction to the
s-wave phase shift after including the D-wave phase shift is

Δ0ðpÞ ¼ −
m2

20

m2
00 þ 1

δ2ðpÞ; ð66Þ

where

m00 ¼
1

π3=2γq
Zd⃗;γ
00 ð1; q2Þ; ð67Þ

and

m20 ¼ −
1

π3=2γq3
Zd⃗;γ
20 ð1; q2Þ: ð68Þ

Here we generalize the numerical recipes for evaluating
Lüscher’s zeta function given in Ref. [59] to the general

cases where l ≠ 0 to evaluate Zd⃗;γ
20 ð1; q2Þ in Eq. (68). The

D-wave phase shift, δ2ðpÞ, can be evaluated by assuming
that the energy in the center of mass frame is small in our
moving frame calculation so that we can approximate the
D-wave phase shift by using the D-wave scattering length,

TABLE XI. The assigned values for the systematic error
resulting from our unphysical pion mass and the methods used
to determine them.

Ptot I
ffiffiffi
s

p
δϕunphy Method

ð0; 0; 0Þ π
L 0 471.0(1.5) 0.833° Linear extrapolation

ð2; 0; 0Þ π
L 0 435.1(3.8) 0.708° Linear extrapolation

ð2; 2; 0Þ π
L 0 365.6(3.4) 0.474° ChPT

ð0; 0; 0Þ π
L 2 565.4(5) 0.181° ChPT

ð2; 0; 0Þ π
L 2 479.1(3) 0.025° ChPT

ð2; 2; 0Þ π
L 2 386.7(4) 0.057° ChPT

ð2; 2; 2Þ π
L 2 271.5(4) 0.020° ChPT

FIG. 12. A ChPT calculation of the difference between the scattering phase shift evaluated at the physical pion mass and the pion
mass calculated for our ensemble, δIðmπ ¼ 142 MeVÞ − δIðmπ ¼ 135 MeVÞ, as a function of

ffiffiffi
s

p
defined in Eq. (50) and shown in

degrees. For the I ¼ 0 channel, at large
ffiffiffi
s

p
, the ChPT calculation begins to break down while at lower

ffiffiffi
s

p
, the relation is

approximately linear, which is consistent with the dispersive prediction. The straight line is a linear fit to the ChPT result in the
region 290 MeV ≤

ffiffiffi
s

p
≤ 360 MeV.

3We thank the referee for suggesting that we include an
estimate of this source of systematic error.
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δI2ðpÞ ¼
�
p2

m2
π

�
2 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
π

p aI2; ð69Þ

where aI2 is the D-wave scattering length for isospin-I. The
values we used are listed in Table XII, which were obtained
from Ref. [61], Table VI-4.
We can then calculate the s-wave phase shift correction,

Δ0ðpÞ, and the results are listed in Table XIII.

F. Excited state contamination

In Sec. V we tried different fit ranges to find a balance
between minimizing the excited state contamination error
and the statistical error. For the preferred fit ranges shown
in Tables V and VI, there is no obvious evidence that the
neglected excited states give a significant contribution to
the fitting result, as can be seen in the energy plots in Fig. 5
and Fig. 6. As discussed in Ref. [30], the presence of an
apparent plateau in the fitted energy as a function of the
lower limit of the fitting range does not imply that we can
neglect excited state contamination since the noisy data
may make it difficult to find the “true” plateau before
the effects of an omitted excited state are obscured by the
noise. An important example is our previous result for the
ground state I ¼ 0 ππ energy obtained from a portion of
the current ensemble [28] where we significantly under-
estimated this error.
A potentially more robust approach to estimating the

error from omitted excited states than examining the
dependence of the fitted results on tmin is to explicitly
include an extra excited state in the fit and to determine the
size of the systematic shift in the resulting ground-state
energy, an approach we call performing an extra-state fit.
Of course, in most cases such an extra-state fit will require

some additional assumptions since if this fit could have
been easily performed we would have included this extra
state in our preferred fit. However, while such extra
assumptions may have been inappropriate for the determi-
nation of the preferred central value, their introduction may
be a reasonable approach to estimate an excited-state
systematic error.
The difficulty associated with an extra state fit can be

illustrated by the single-operator analysis used in Ref. [28]
to determine the energy of the stationary I ¼ 0, ground
state. Table XIV lists the results from extra-state fits to the
single-operator data presented in that earlier paper. In this
case our preferred single-state fit gave a ground state energy
E0 ¼ 0.3606ð74Þ using the fitting range 6–25. We can see
that for tmin < 6 adding the extra state does not give a
ground state energy that can be resolved from the result of
the preferred single-state fit. In addition the overlap factors
between the operator and the first excited state are con-
sistent with 0. We cannot perform the extra-state fit within
the same fit range as the one we chose for the preferred
single-state fit (6–25) since the fitting procedure does not
converge. We conclude that such (unconstrained) extra-
state fits can be misleading for data containing multiple
nearby states with limited statistics and/or a rapid loss of
signal to noise as a function of time where the available
fitting range is insufficiently long to adequately distinguish
the energy separations among the multiple nearby states.
One strategy to resolve this problem is to fix one or more

of the parameters in the extra-state fit. The first parameter
we might fix is the energy of the extra state.
A prediction of this finite-volume energy can be obtained

by finding the intersects between Lüscher’s formula and a
phenomenological model, or a fit to our lattice results, for
the scattering phase shift as a function of energy. For
simplicity we chose to compute this estimate using the
dispersive predictions of Ref. [12]. Unfortunately we found
that fixing this extra-state energy alone typically does not
solve the problem: sometimes the fitting procedure con-
tinues to fail while in those cases where the fit converges, it

TABLE XII. The D-wave scattering length for isospin 0 and 2
channel.

mπaI¼0
2 17 × 10−4

mπaI¼2
2 1.3 × 10−4

TABLE XIII. The s-wave phase shift correction from including
a nonzero D-wave phase shift. The D-wave phase shift is
approximated using D-wave scattering length. Note the D-wave
phase shift does not contribute for the (2,2,2) case because of
symmetry.

Ptot I
ffiffiffi
s

p
δ0 Δ0ðpÞ

ð2; 0; 0Þ π
L 0 435.1 24.0° −0.05°

ð2; 2; 0Þ π
L 0 365.6 18.0° −0.27°

ð2; 0; 0Þ π
L 2 479.1 −7.96° −0.01°

ð2; 2; 0Þ π
L 2 386.7 −4.48° −0.02°

ð2; 2; 2Þ π
L 2 271.5 −0.32° 0°

TABLE XIV. Single-operator two-state fit results with fit
ranges tmin − 25 for the stationary, I ¼ 0 case. The amplitudes
A0 and A1 are the overlap factors between the operator and the
ground and first excited state, E0 and E1 are their energies while
B is the around-the-world constant introduced in an analogous
fashion as in Eqs. (28) and (29). The fit procedure fails when
tmin ≥ 6. The single-state fit with fit range 6–25 gives E0 ¼
0.3606ð74Þ which is consistent with the ground state energy in all
three extra-state fits.

tmin 3 4 5

A0 0.1589(107) 0.1555(133) 0.1538(48)
A1 0.05974(7064) 0.02679(2305) 7822ð6959Þ × 103

E0 0.3666(124) 0.3643(133) 0.3606(75)
E1 1.207(725) 0.8429(4071) 4.835(173)
B −753ð2366Þ × 10−7 −784ð2362Þ × 10−7 −793ð2223Þ × 10−7
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gives a ground-state energy whose statistical error is several
times larger than the statistical error on the result from the
preferred fit, which suggests that such an approach may
overestimate the excited state error, conflating it with the
statistical error.
Thus, further assumptions are needed to obtain a

statistically meaningful estimate of this excited-state con-
tamination error. Because of the very different pattern of
operator-eigenstate overlaps we will adopt two different
strategies, one for the I ¼ 0 stationary ππ state and the
second for the remaining seven cases: the three I ¼ 0
calculations with nonzero total momenta and all four I ¼ 2
calculations. The method applied for the latter we will refer
to as “method A,” and that applied in the special I ¼ 0
stationary case as “method B.”
For the three moving-frame I ¼ 0 and all the I ¼ 2

calculations, the operator-eigenstate overlap matrix is close
to diagonal and the two-point function of a given operator
with itself is well described by one exponential coming from
a single energy eigenstate. We call the operator which
couples primarily to the ground state the “ground-state
operator,” and the operator whose two-point function is
dominated by the nth excited state the “nth excited operator.”
We can then make the reasonable assumption, that because
of the small value of the overlap factors between the ground-
state operator and those excited states that we include in the
preferred fit, the extra-state contribution to these small
overlap factors can be neglected. That means that we can
focus on the Green’s function constructed from the ground-
state operator only where the most important effect of an
omitted extra state is to change the two parameters (overlap
factor and energy) associated with the ground state.

The argument above suggests that we can perform a fit to
the two-point function constructed from the ground-state
operator in which the number of states included is one more
than the number in the preferred fit, and that we can fix the
overlap factors between the ground-state operator and the
excited states in that fit to those already determined by
the preferred fit. Since these overlap factors are small, we can
also fix the energies of those excited states to their values from
the preferred fit. To summarize, if our preferred fit involved n
operators and m states, we will fit the single ground-state
operator two-point function to an expression which includes
mþ 1 states: them stateswhich appear in our preferred fit and
the new extra state. The choice of whether or not to include an
around-the-world constant is the same as the choice made for
the preferred fit. In this new fit,we fix the extra-state energy to
that given by the dispersive prediction and the parameters that
are associated with the first m − 1 excited state energies and
their overlap amplitudes with the ground state to those values
determined by the preferred fit.
It should be noticed that since the preferred fit and this

extra-state fit are performed on data constructed using the
same resampling method, these parameters should be fixed
sample-by-sample. Thus, for each bootstrap/jackknife sam-
ple, the fixed parameters we used will vary: they are the
ones obtained from exactly the same sample used when we
perform the preferred fit. That leaves us with three (or four)
free parameters to be determined in this extra-state fit: the
overlap between the ground-state operator and the ground
state, the ground-state energy, the overlap between the
ground-state operator and the mth excited state (the extra
state) and possibly an around-the-world constant. The
results are shown in Table XV and Table XVI.

TABLE XV. Results from the fits used to determine the excited state error for the ground-state energies in the
I ¼ 2 channel. We use method A described in the text to estimate the error for all four total momenta. As described
in the text, these results are obtained in two stages. First all of the quantities in bold font except for the extra-state
amplitudes (Aa3 in columns 2–4 and Aa2 in column 5) are held fixed for the first stage fits. The results from the first
stage fits for these four amplitudes are shown in this table. For the second stage fits these four amplitudes are also
held fixed at their central values and at their central values plus and minus the statistical error shown. The largest
difference between the resulting ground-state energy and the ground-state energy obtained in the preferred fit is
shown in the final row and is our estimate of the excited state error.

I ¼ 2 channel Ptot ¼ ð2; 2; 2Þ π
L Ptot ¼ ð2; 2; 0Þ π

L Ptot ¼ ð2; 0; 0Þ π
L Ptot ¼ ð0; 0; 0Þ π

L

Fit range 10–25 12–25 11–25 10–25
Fit strategy 1op-4state 1op-4state 1op-4state 1op-3state
Aa0 0.3935(10) 0.2768(8) 0.1934(3) 0.4206(13)
Aa1 0.004684ð565Þ 0.007011ð548Þ 0.009301ð455Þ 0.01240ð1021Þ
Aa2 .001209ð1890Þ 0.005350ð1812Þ 0.005249ð1482Þ 0.1641ð1176Þ
Aa3 −0.07301(3318) 0.03847ð3424Þ −0.00001(3132) � � �
E0 0.3981(4) 0.4000(4) 0.4045(3) 0.4152(6)
E1 0.5453ð7Þ 0.5480ð10Þ 0.5514ð9Þ 0.7128ð170Þ
E2 0.6902ð28Þ 0.6874ð40Þ 0.6916ð48Þ 0.9169ð0.0000Þ
E3 0.6923ð0.0000Þ 0.6934ð0.0000Þ 0.8047ð0.0000Þ � � �
Baa 8118ð71Þ × 10−9 4036ð35Þ × 10−9 1981ð16Þ × 10−9 9380ð152Þ × 10−9

p-value 0.078 0.157 0.268 0.683
δEexc 0.0007 0.0004 0.0002 0.0006
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Unfortunately, as described this method gives us a
statistical error on the ground-state energy that is still much
larger than that given by the preferred fit. This may be the
understandable consequence of trying to obtain information
about two states from a single operator Green’s function, a
case where the number of states exceeds the number of
operators. Some improvement must be made. One possibil-
ity is to fix not only the energy of the extra state, but also its
overlap factor with the ground-state operator. In contrast to
the energy of the excited state, we do not have external
information that could give us a reasonable theoretical value
for this overlap amplitude. However, we can argue that the
result from the above fit gives us a reasonable estimate for
the size of this overlap factor.
Thus, in the notation introduced in Eq. (29) we view

½Aam − δAam
; Aam þ δAam

� as a reasonable interval for the
overlap amplitude between the operator Oa (using a to
label the ground-state operator) and the mth excited state
(our extra state). Here δAam

is the statistical error on the
quantity Aam found in the fit described above. We then
perform three fits, where the only difference between them
and the one above is that we fix the overlap factor between
the ground-state operator and the mth excited state
using Aam, Aam − δAam

and Aam þ δAam
(Notice that for

each bootstrap/jackknife sample, this overlap factor will

NOT vary). We then calculate the difference between
these three ground-state energies and the ground-state
energy obtained from the preferred fit. The largest differ-
ence gives our estimate of the excited-state error. The
results are shown in Table XV for the I ¼ 2 channel and
Table XVI for the I ¼ 0 channel. As mentioned above, we
refer to this method of estimating the excited-state
systematic error, based on the near-diagonal character
of the matrix of operator-eigenstate overlap amplitudes,
as “method A.”
While this method gives a statistically precise result for

the excited-state contamination error for the three moving-
frame I ¼ 0 calculations and all four I ¼ 2 calculations,
the diagonal pattern of the operator-eigenstate overlap
matrix upon which it is based is not found for the
stationary I ¼ 0 channel, where the overlap factors
between the various normalized operators and eigenstates
have similar sizes. Consequently, we cannot apply the
method A above in this case. We therefore adopt a
different approach, referred to as “method B.” While
we are unable to perform a convergent extra-state fit
(three-operator-three-state fit) with the fit range that we
chose for the preferred fit (6–15), we can perform that fit
using a fit range with a smaller tmin, provided the extra-
state energy is fixed. For convenience, we again give the

TABLE XVI. Results used to determine the excited state error for the ground-state energies in the I ¼ 0 channel.
We use method A for the three moving-frame results given in columns 2–4, as described for the I ¼ 2 states in the
text, so the explanation in the caption to Table XV applies. Method B is used for the stationary frame calculation
whose results are shown in column 5. In the first stage of this procedure, only the extra-state energy E2 is held fixed
and the other three overlap amplitudes (Aa2, Ab2 and Ac2), all four shown in bold font, are determined to have the
values shown, using the fit range 4–15. In the second stage, these four quanties are fixed to the values shown in the
table and the preferred three-operator-two-state fit carried out with the data effectively shifted by the fixed extra-state
contribution. The difference between the ground-state energies determined from this extra-state fit and the preferred
fit gives the excited-state error listed in the final row, as described in the text.

I ¼ 0 channel Ptot ¼ ð2; 2; 2Þ π
L Ptot ¼ ð2; 2; 0Þ π

L Ptot ¼ ð2; 0; 0Þ π
L Ptot ¼ ð0; 0; 0Þ π

L

Fit range 6–12 8–15 7–15 6–15
Fit strategy 1op-4state 1op-4state 1op-4state 3op-3state
Aa0 0.3861(25) 0.2633(36) 0.1760(37) 0.3638(50)
Aa1 −0.02647ð391Þ −0.04909ð1123Þ −0.05431ð776Þ −0.1958ð120Þ
Aa2 −0.01354ð312Þ −0.03005ð552Þ −0.02450ð274Þ 0.01537ð2140Þ
Aa3 −0.06485ð3778Þ −0.03121ð4065Þ −0.04877ð3298Þ � � �
Ab0 � � � � � � � � � 0.003244(368)
Ab1 � � � � � � � � � 0.03248(709)
Ab2 � � � � � � � � � 0.05802ð618Þ
Ac0 � � � � � � � � � −4396ð72Þ × 10−7

Ac1 � � � � � � � � � −3644ð264Þ × 10−7

Ac2 � � � � � � � � � 9394(5883) × 10−8

E0 0.3972(12) 0.3898(22) 0.3769(39) 0.3474(13)
E1 0.5264ð37Þ 0.5148ð91Þ 0.5032ð75Þ 0.5484(208)
E2 0.6881ð93Þ 0.6788ð252Þ 0.6514ð183Þ 0.6623ð0.0000Þ
E3 0.6649ð0.0000Þ 0.6610ð0.0000Þ 0.6851ð0.0000Þ � � �
p-value 0.212 0.545 0.953 0.082
δEexc 0.0017 0.0019 0.0052 0.0010
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extra-state energy the value predicted by the dispersive
result for the I ¼ 0 phase shift. This fit gives us values for
the overlap amplitudes for the extra state and each of the
three operators being studied. We then perform a three-
operator-three-state fit with the same fit range as the
preferred fit (6–15), while fixing all the information about
the extra excited state to that obtained from the fit with the
decreased value of tmin. Note that in this case we did not
observe a significant increase in the error on the ground-
state energy after applying this procedure; hence it was
not necessary to perform a second step holding these
overlap factors fixed to the extrema of their error bars as
was the case for method A above.
To summarize, the eight parameters that are allowed to

vary in this final fit are the six overlap amplitudes
between the three operators and the ground and first
excited states, and the energies of these two states. We
then calculate the energy difference (for present purposes
labeled as ΔE) between the ground-state energy obtained
from this extra-state fit and the preferred fit and the
statistical error on this difference (δΔE). We then use
δEexc ¼ ΔEþ δΔE as our estimate of the systematic error
on the ground-state energy resulting from excited-state
contamination. The results are listed in the right-most
column of Table XVI. This small estimate for the excited
state error for the I ¼ 0 stationary case is supported by the
determinant test result in Sec. V where the normalized
determinant of the three-dimensional matrix of the
Green’s function is consistent with zero, suggesting that
the third state is difficult to resolve with a fit range where
tmin is larger than 5.

G. Error budget

We will now combine all of the errors detailed in the
earlier sections to provide values for the seven ππ phase
shifts that we have computed at specific energies and their
corresponding errors. We divide these errors into two
categories. The first are the measurement errors associated
with our lattice calculation of the finite-volume ππ ener-
gies, which includes the statistical error and the excited
state contamination error. As is discussed below, this
category of error requires special attention since when
we use Lüscher’s finite volume formalism to determine the
scattering phase shift, errors in this category lead to
correlated errors in both the value for the phase shift
and the energy at which the phase shift is determined.
We refer to the second category of errors as tuning errors.

These include the finite volume error, finite lattice spacing
error, the unphysical kinematics error, and the higher partial
wave correction error. We assign these errors directly to the
seven phase shifts. They represent discrepancies between
our physical results as presented and those we actually
obtain. For example, we describe our results as phase
shifts in the continuum limit, but in reality the number we
obtain contains finite lattice spacing errors. Similarly we

intend our phase shift results to be for the case where
mπ ¼ 135 MeV. In reality, our calculation was done for a
different pion mass and we have made a small correction to
the energy at which the phase shift is quoted to compensate
for the shifted ππ threshold arising from our incorrect mass
and, as was discussed in Sec. VII D, the remaining errors
were estimated using ChPT.
Our first category of errors, the measurement errors,

requires special treatment if we are to account for the tight
correlation between the way the errors on the measured
finite-volume energy shift affect both the implied value of
the phase shift and the energy at which that phase shift is
quoted. The issue is that we do not know the exact value of
the finite volume ππ energy EFV, only that it lies with a
certain confidence within the range ĒFV � ΔEFV, where
ĒFV is the central value of the energy and ΔEFV is the
error. As a result, naively propagating the error through
the evaluation of the Lüscher function would produce a
result for which uncertainties exists on both the phase shift
and the energy at which it is evaluated, and for which the
errors are completely correlated (through the Lüscher
function). This unsatisfactory situation can be remedied
by transforming the result such that the phase shift is
quoted at a fixed value of the energy and the uncertainty
exists only on the phase shift. To achieve this we note that
the allowed finite-volume energies EFV mark the inter-
sections of the curve δðEÞ, which describes the energy
dependence of the phase shift, and the Lüscher curve
WðEÞ relating the energy to the phase shift at a fixed
lattice size,

δðEFVÞ ¼ WðEFVÞ: ð70Þ

FIG. 13. A graph of our results for the seven phase shifts for
I ¼ 0 and I ¼ 2 as a function of energy. Shown also on the plot
are the corresponding dispersive results [12]. Note: the errors are
not shown for the dispersive results.
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We imagine that the true intersect occurs at some energy
E that is close to our measured central value ĒFV and
perform a first-order Taylor expansion in E of both sides of
Eq. (70) about this central value,

δðĒFVÞ þ
dδðEÞ
dE

				
ĒFV

ðE − ĒFVÞ

≈WðĒFVÞ þ
dWðEÞ
dE

				
ĒFV

ðE − ĒFVÞ: ð71Þ

Rearranging the above we obtain an expression for the
phase shift evaluated at our measured finite-volume energy
ĒFV,

δðĒFVÞ ¼ WðĒFVÞ þ
�
dWðEÞ
dE

−
dδðEÞ
dE

�
ĒFV

ðE − ĒFVÞ:

ð72Þ

This approach requires an estimate of the derivative of
the phase shift δðEÞ with respect to its energy. While this
could be obtained from a fit to our data, we find it simplest
to use the result from the dispersive analysis [12] which
agrees well with our data as can be seen from the
comparisons shown in Figs. 13 and 14.
Thus, the statistical and excited state contamination

errors on the measured finite-volume energies are each
converted to errors on the phase shift at the fixed energy
E ¼ ĒFV using the following relations:

Δδstat=exc ¼
				 dWðEÞ

dE
−
dδðEÞ
dE

				
ĒFV

ΔEstat=exc; ð73Þ

where ΔEstat and ΔEexc are the statistical and excited state
contamination errors that are assigned to the measured
finite-volume energy. The three tuning errors Δδdis, ΔδFV,
Δδunphy coming from nonzero lattice spacing, finite volume
and unphysical pion mass are assigned directly to the phase
shifts. All of these errors are listed in Table XVII, where the
total systematic error is the combination in quadrature of
the systematic errors shown in columns 5 through 9.
Another topic that we should discuss is the systematic

error on the scattering length of both I ¼ 0 and I ¼ 2
channels. Similar to the discussion above, the systematic
error is dominated by the excited state error, so we neglect
all other sources of systematic error. The results are
summarized in Table XVIII. It can be shown that, despite
the fact that the scattering length of I ¼ 0 channel is
inconsistent with the experimental value if we only

FIG. 14. The results for the I ¼ 2 phase shifts together with the
corresponding dispersive results [12] that are shown in Fig. 13,
but here with an expanded scale.

TABLE XVII. The final error budget for each of the seven ππ scattering phase shifts determined in this paper. Here each of the energies
(
ffiffiffi
s

p
) is the center-of-mass energy at which the phase shift δ has been determined, adjusted to correct for the unphysical pion mass

according to the procedure described in Sec. VI. The right-most five columns are explained in the text. All of the angles appearing in this
table are expressed in degrees. Two errors are shown with the phase shift results in the fourth column. The first is statistical and is given
in Table X. The second is systematic and is the average in quadrature of the individual errors shown in columns 5–8.

Ptot I
ffiffiffi
s

p ðMeVÞ δ Δδdis ΔδFV Δδunphy Δδexc Δδl¼2

ð0; 0; 0Þ π
L 0 471.0 32.3(1.0)(1.4) 0.64 0.32 0.83 0.90 0.0

ð2; 0; 0Þ π
L 0 435.1 24.0(3.4)(7.6) 0.46 0.23 0.71 7.6 0.05

ð2; 2; 0Þ π
L 0 365.6 18.0(4.5)(4.9) 0.36 0.18 0.47 4.9 0.27

ð0; 0; 0Þ π
L 2 565.4 −10.98ð22Þð44Þ 0.20 0.10 0.18 0.34 0

ð2; 0; 0Þ π
L 2 479.1 −7.96ð23Þð29Þ 0.16 0.08 0.03 0.23 0.01

ð2; 2; 0Þ π
L 2 386.7 −4.48ð40Þð77Þ 0.09 0.04 0.06 0.76 0.02

ð2; 2; 2Þ π
L 2 271.5 −0.32ð20Þð63Þ 0.01 0.00 0.02 0.63 0.0

TABLE XVIII. The final results for the ππ scattering length
determined in this paper. Here mπa0ðexpÞ is the experimental
value of the scattering length quoted from Ref. [10].

I mπa0ðlatÞ mπa0ðexpÞ
0 0.072(38)(210) 0.220(5)
2 −0.055ð15Þð68Þ −0.0444ð10Þ
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consider the statistical error, as we show in Sec. VI C, the
final systematic error for I ¼ 0 channel is 3 times larger
than the central value, and by including this error, the lattice
results are consistent with the experimental value. Our large
excited state error in moving frame calculation, and the
resulting large relative error on the energy difference
between Eππ and 2mπ , leads to such a large error.

VIII. CONCLUSIONS

In this paper we have presented in detail a lattice
calculation of the ππ scattering phase shift for both the
I ¼ 0 and I ¼ 2 channels. Our final results are presented
in Table XVII and illustrated in Figs. 13 and 14. This
calculation is performed using a physical pion mass with
G-parity boundary conditions in all three spatial directions.
This results in a single-pion, finite-volume ground state
with nonzero momentum, which is crucial for the closely
related calculation presented in Ref. [4] for the I ¼ 0
K → ππ decay amplitude and ϵ0.
Compared with our 2015 calculation [28] of the same

quantities, the current calculation is based on a 3.4 times
larger number of configurations and incorporates two
additional ππ interpolating operators, one of which is a
four-quark operator constructed from two pion interpolat-
ing operators which each carry larger-than-minimum
momenta, while the other is a scalar two-quark operator
(the sigma operator). With these improvements we obtain
an I ¼ 0 ππ scattering phase shift at 471 MeV of
32.3°ð1.0Þð1.4Þ.4 Comparing this result with the one
presented five years ago [28], we have the following
improvements: (i) the statistical error is improved by a
factor of 5. (ii) We are able to provide a more reliable and
detailed systematic error analysis. (iii) We have been able
to resolve the 3σ discrepancy between our earlier result
for this phase shift and that predicted by a dispersive
analysis [12] so that our current results agree well with the
dispersive prediction (cf. Fig. 13). The discrepancy is now
understood to have resulted from excited ππ state con-
tamination, which was underestimated in Ref. [28] and is
now under much greater control.
More specifically, we have employed a concrete pro-

cedure for estimating the error resulting from a nearby
excited state that was not included in our fit. As discussed
in Sec. VII, we introduce one additional state into our fit but
with an energy fixed to that given by the dispersive
calculation [12] and with overlap factors to our operators
carefully estimated, so as to avoid introducing instability in
the fits or inflating the statistical error. The resulting shift in

the ground-state energy then provides a meaningful indi-
cator of the size of the corresponding systematic error.
In addition to computing the I ¼ 0 phase shift for two

pions with zero total momentum, we also perform a moving-
frame calculation with three different total momenta. The
observation [49] that three types of lattice symmetry can be
used to significantly reduce the number of contractions was
exploited to reduce the contraction time by a factor of 7. The
resulting values of the ππ phase shifts at lower energies not
only allow us to perform a comparison with dispersive and
chiral perturbation theory predictions but also give us an
independent evaluation of the Lellouch-Lüscher correction
needed to obtain the K → ππ decay amplitude from a finite-
volume lattice QCD calculation. Because of the critical role
played by the sigma interpolating operator in the stationary
frame calculation, we will include a sigma operator with
nonzero total momentum in future work. This operator might
be expected to strongly couple to more states in the fit, in
contrast to the ππð311; 311Þ operator, and may significantly
reduce the errors as it did for the stationary case. An
additional future goal is to extrapolate the result to the
continuum limit, since in this work, the calculation is
performed on a single 323 lattice. We are now preparing
such a scaling calculation using two lattice volumes with
spatial extents of 483 and 643.
In this paper, we have used a combination of bootstrap

and jackknife methods [48] together with correlated fits to
determine the ground-state energies, the operator-state
overlap amplitudes and the analysis of the excited-state
error. This method allows us to estimate the goodness-of-
fit, which provides guidance as to which model and fitting
range we should choose (see Sec. V). We also compared
our multistate fitting with the GEVP method and found that
our fitting procedure gave consistent statistical errors for
the I ¼ 0 case than did our implementation of the GEVP
method. We did not attempt to estimate the systematic
errors resulting from the GEVP approach. The GEVP
method may well excel when more states and operators
are included.
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APPENDIX A: QUARK LEVEL
MOMENTUM DISTRIBUTION

1. Pion operator

In Sec. III A, Eqs. (8)–(10) we detail the interpolating
operators for the charged and neutral pions. The pion

momentum, P⃗ ¼ p⃗þ q⃗ is the sum of the momenta p⃗
and q⃗ assigned to the quark and antiquark, respectively.
Given a pion momentum, there are multiple ways of
distribute momentum between quark and antiquark
component.
As shown in Ref. [5] the allowed quark momenta (for

G-parity BCs in three directions) are

� π

2L
ð1; 1; 1Þ þ 2π

L
n⃗; ðA1Þ

where n⃗ is a vector of integers. While any combination of p⃗
and q⃗ satisfying this condition result in valid pion inter-
polating operators, we observed in Ref. [5] that the cubic
symmetry breaking manifest in the operator amplitudes
between pion states of total momentum related by cubic
rotations is dramatically suppressed by averaging over pairs
of bilinear operators with the same total momentum but
with different assignments of quark momenta. The specific
criteria for selecting those momenta are discussed in more
detail in that paper; here in Table XIX we list only the two
choices for each of the 32 total momenta. The momentum
distribution is listed below for all 32 pions we use (in units
of π=2L):

TABLE XIX. The quark/antiquark momenta choices for all 32 pion total momenta. For each total momenta, two
momentum choices are given to suppress the cubic symmetry given. All momenta are given in units of π=2L.

Pion momentum Quark momentum, choice 1 Quark momentum, choice 2

(2, 2, 2) ð1; 1; 1Þ þ ð1; 1; 1Þ ð−1;−1;−1Þ þ ð3; 3; 3Þ
(−2;−2;−2) ð−1;−1;−1Þ þ ð−1;−1;−1Þ ð1; 1; 1Þ þ ð−3;−3;−3Þ
(2, 2, −2) ð1; 1; 1Þ þ ð1; 1;−3Þ ð−1;−1;−1Þ þ ð3; 3;−1Þ
(2, −2, 2) ð1; 1; 1Þ þ ð1;−3; 1Þ ð−1;−1;−1Þ þ ð3;−1; 3Þ
(−2, 2, 2) ð1; 1; 1Þ þ ð−3; 1; 1Þ ð−1;−1;−1Þ þ ð−1; 3; 3Þ
(−2, −2, 2) ð−1;−1;−1Þ þ ð−1;−1; 3Þ ð1; 1; 1Þ þ ð−3;−3; 1Þ
(−2, 2, −2) ð−1;−1;−1Þ þ ð−1; 3;−1Þ ð1; 1; 1Þ þ ð−3; 1;−3Þ
(2, −2, −2) ð−1;−1;−1Þ þ ð3;−1;−1Þ ð1; 1; 1Þ þ ð1;−3;−3Þ
(2, 2, 6) ð1; 1; 1Þ þ ð1; 1; 5Þ ð−1;−1;−1Þ þ ð3; 3; 7Þ
(2, 6, 2) ð1; 1; 1Þ þ ð1; 5; 1Þ ð−1;−1;−1Þ þ ð3; 7; 3Þ
(6, 2, 2) ð1; 1; 1Þ þ ð5; 1; 1Þ ð−1;−1;−1Þ þ ð7; 3; 3Þ
(−2, −2, −6) ð−1;−1;−1Þ þ ð−1;−1;−5Þ ð1; 1; 1Þ þ ð−3;−3;−7Þ
(−2, −6, −2) ð−1;−1;−1Þ þ ð−1;−5;−1Þ ð1; 1; 1Þ þ ð−3;−7;−3Þ
(−6, −2, −2) ð−1;−1;−1Þ þ ð−5;−1;−1Þ ð1; 1; 1Þ þ ð−7;−3;−3Þ
(2, 2, −6) ð1; 1; 1Þ þ ð1; 1;−7Þ ð−1;−1;−1Þ þ ð3; 3;−5Þ
(2, −6, 2) ð1; 1; 1Þ þ ð1;−7; 1Þ ð−1;−1;−1Þ þ ð3;−5; 3Þ
(−6, 2, 2) ð1; 1; 1Þ þ ð−7; 1; 1Þ ð−1;−1;−1Þ þ ð−5; 3; 3Þ
(−2, −2, 6) ð−1;−1;−1Þ þ ð−1;−1; 7Þ ð1; 1; 1Þ þ ð−3;−3; 5Þ
(−2, 6,−2) ð−1;−1;−1Þ þ ð−1; 7;−1Þ ð1; 1; 1Þ þ ð−3; 5;−3Þ
(6, −2, −2Þ ð−1;−1;−1Þ þ ð7;−1;−1Þ ð1; 1; 1Þ þ ð5;−3;−3Þ
(−2, 2, 6) ð1; 1; 1Þ þ ð−3; 1; 5Þ ð−1;−1;−1Þ þ ð−1; 3; 7Þ
(2, 6, −2) ð1; 1; 1Þ þ ð1; 5;−3Þ ð−1;−1;−1Þ þ ð3; 7;−1Þ
(6, −2, 2) ð1; 1; 1Þ þ ð5;−3; 1Þ ð−1;−1;−1Þ þ ð7;−1; 3Þ
(2, −2, −6) ð−1;−1;−1Þ þ ð3;−1;−5Þ ð1; 1; 1Þ þ ð1;−3;−7Þ
(−2, −6, 2) ð−1;−1;−1Þ þ ð−1;−5; 3Þ ð1; 1; 1Þ þ ð−3;−7; 1Þ
(−6, 2, −2) ð−1;−1;−1Þ þ ð−5; 3;−1Þ ð1; 1; 1Þ þ ð−7; 1;−3Þ

(Table continued)
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Recall that in addition to the above, we also symmetrize
the momentum between the quark and antiquark by
averaging the assignments ðp⃗; q⃗Þ and ðq⃗; p⃗Þ. Thus in
practice our pion interpolating operators comprise an
average over a total of four quark field bilinears.

2. σ operator

In this work we use the σ operator only in the case of zero
total momentum, and as a result the momenta assigned to
the quark and antiquark fields must be equal and opposite.
We construct an operator that is symmetric under cubic
rotations by averaging over eight orientations of the quark
momentum. The list of momenta assigned to the quark
operator are given in Table XX.

APPENDIX B: ChPT PREDICTION FOR PHASE SHIFT

In this Appendix we present the partial wave amplitude tIl¼0 results from the next-to-leading-order (NLO) ChPT. These
amplitudes are connected with the scattering phase shift by

tIl¼0 ¼
�
s − 4

s

�
1=2

eiδ
I
l¼0

ðsÞ sin½δIl¼0ðsÞ� ðB1Þ
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TABLE XIX. (Continued)

Pion momentum Quark momentum, choice 1 Quark momentum, choice 2

(2, −2, 6) ð1; 1; 1Þ þ ð1;−3; 5Þ ð−1;−1;−1Þ þ ð3;−1; 7Þ
(−2, 6, 2) ð1; 1; 1Þ þ ð−3; 5; 1Þ ð−1;−1;−1Þ þ ð−1; 7; 3Þ
(6, 2, −2) ð1; 1; 1Þ þ ð5; 1;−3Þ ð−1;−1;−1Þ þ ð7; 3;−1Þ
(−2, 2,−6) ð−1;−1;−1Þ þ ð−1; 3;−5Þ ð1; 1; 1Þ þ ð−3; 1;−7Þ
(2, −6, −2) ð−1;−1;−1Þ þ ð3;−5;−1Þ ð1; 1; 1Þ þ ð1;−7;−3Þ
(−6, −2, 2) ð−1;−1;−1Þ þ ð−5;−1; 3Þ ð1; 1; 1Þ þ ð−7;−3; 1Þ

TABLE XX. The eight orientations of quark momentum we
average to get the σ operator with zero total momentum. The
antiquark momentum in each case is the reverse of the quark
momentum. All momenta are given in units of π=2L.

Index Quark momentum

1 (1, 1, 1)
2 (−1, −1, −1)
3 (−3, 1, 1)
4 (3, −1, −1)
5 (1, −3, 1)
6 (−1, 3, −1)
7 (1, 1, −3)
8 (−1, −1, 3)
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The parameters b1 − b4 are linear combinations of low
energy constants defined in Ref. [66], and we took their
values from Ref. [12]. In this work, these expressions are
used to estimate the unphysical pion mass error. The two
pion masses we use are the lattice pion mass mlat

π ¼
142.3 MeV and physical pion mass mphy

π ¼ 135 MeV.

APPENDIX C: CONTRACTIONS FOR ππ
AND σ OPERATORS

In this Appendix we list the contraction formula for each
diagram introduced in Sec. III. The first four diagrams are
associated with the product of two ππ interpolating
operators, where the four time slices are the time coor-
dinates of the four single-pion interpolating operators,
which are tsrc − 4, tsrc, tsnk and tsnk þ 4, respectively.
The final four expressions correspond to the cases where
at least one of the source or sink operators is a σ operator.
The quantity Pta;tb is the G-parity quark propagator from

ta to tb while the flavor-spin matrix S1 is defined as
S1 ¼ σ3γ5. These eight amplitudes are obtained from the
following contractions:

C ¼ 1

2
TrfPt1;t3S1Pt3;t2S1Pt2;t4S1Pt4;t1S1g ðC1Þ

D ¼ 1

2

��
1

2
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�

·

�
1

2
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�
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�
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R ¼ 1

2

�
1

2
TrfPt1;t2S1Pt2;t3S1Pt3;t4S1Pt4;t1S1g þ ðt3 ↔ t4Þ

�
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V ¼
�
1
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TrfPt1;t2S1Pt2;t1S1g

�
·

�
1

2
TrfPt3;t4S1Pt4;t3S1g

�
ðC4Þ
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Cσσ ¼ TrfPt1;t2Pt2;t1g ðC5Þ

Vσσ ¼ ðTrfPt1;t1gÞ · ðTrfPt2;t2gÞ ðC6Þ

Cσππ ¼ i · TrfPt1;t0Pt0;t2S1Pt2;t1S1g ðC7Þ

Vσππ ¼ i · TrfPt0;t0g · TrfPt1;t2S1Pt2;t1S1g: ðC8Þ
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