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A clausal form of logic of belief

— A logic programming model

Y. J. Jiang

Computer Science Department,
University of Essex,
Wivenhoe Park,
Colchester, C04 35Q

Abstract

In this paper, we present a clausal logic of
belief which formalizes beliefs in an ertended
clausal form of logic. Our aims are to solve the
representational problem of quantified beliefs
and to allow an efficient resolution-like proof
procedure with controlled granularity to be de-
veloped. A levelled intensional scheme that en-
ables the clausalization of beliefs is proposed.
An inferential power bounded resolution rule
of beliefs for the formalism is introduced. The
formal semantics of the formalism is defined.
A general circumscriptive non-monotonic rea-
soning system for belief revision is described.
Finally, a scheme for handling the consistency
of beliefs under Tarski’s truth definition theo-
rem is developed.

Keywords: logic programming, computa-
tional models of belief, intension, imputation,
non-monotonic reasoning and semantic para-
doxes.

1 Introduction

There are currently three approaches to for-
malization of beliefs. In the semantic approach
(eg. [Moore 85), [Halpern&Moses 85]), beliefs

are characterized by accessibility relations be-
tween possible worlds. In the partition ap-
proach (eg. [Kobsa 85]), beliefs are identi-
fied with the presence of representation struc-
tures in specific nested belief spaces reserved
for the respective agent. In the syntactic ap-
proach (eg. [Konolige 85]), belief of an agent
is equated with derivability of a first order the-
ory of the agent. Despite the fundamental dif-
ferences of the three approaches, one common
characteristic is that they all assume the use of
arbitrary forms of logic in their representation

of beliefs.

Although the form of representation can
play a part in the meaning of a sentence from a
strict cognitive sense (for example, represent-
ing the belief ‘there does not exist a person
who does not like Mary’ as ‘Everybody likes
Mary’ could be misleading because an agent
of the belief may not know that these two sen-
tences are equivalent), however several prob-
lems can arise from the use of arbitrary forms
of logic. One problem is the difficulty of de-
veloping an efficient proof procedure for rea-
soning about beliefs. The solution is usually
based on a natural deduction approach which
does not seem to have much success in Al ap-
plications.

Another problem is the difficulty of for-
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malizing the intensionality of arbitrary quan-
tifications. (In fact, many schemes, in par-
ticular the semantic ones such as [Levelsque
84] and [Halpern&Moses 85) are careful to
avoid this problem by sticking with propo-
sitional beliefs.) For example, it is easy to
see Konolige's [85] semantics of the statement
BEL(Jim,3zUnicorn(z)) as: 3rUnicorn(z) is
in the belief space of Jim; however it is difficult
to see how the semantics of the guantifying-
in belief 3zBEL(Jim,Unicorn(z)) can be for-
malized in a similar way because the quantifi-
cation is outside the scope of BEL predicate.
Konolige’s solution is to treat the second sen-
tence in a similar way as 3z P(r) where P is any
ordinary predicate. However this seems to ob-
scure the semantics of the BEL predicate. For
example, given the following universally qual-

ified belief

VzBEL(Jim,Unicorn(x) — Likes(Jim,z)).

and the following quantifying-in belief,
3zBEL(Jim,Unicorn(z)), following Konolige's
semantics, it is difficult to see how we can de-
rive:

3zBEL(Jim, Likes(Jim, 1))

which we should do. The problem of
intensional quantification gets more serious
when we try to represent nested beliefs, eg.
BEL(Jim,3zBEL(Tom,Unicorn(z)) in which
Jim believes that there is a particular individ-
nal in Tom’'s mind whom Tom believes to be a
unicorn although Jim has no idea himself who
this individual could be.

A third problem is the granularity of implied
beliefs of an agent as discussed in [Levelsque
84]. In the possible world approach, beliefs
of an agent are represented by a set of possi-
ble worlds that are compatible with what the
agent believes. A recuring problem in this ap-
proach is logical omintscience, ie. the set of
beliefs is closed under logical implication. This
means that anyone who can be persuaded of
the truth of Peano's postulates knows every-
thing about number theory that anyone else
knows. In addition, every valid sentence must

be believed by every agent and contradictory
beliefs of an agent imply that the agent be-
lieves anything. The possible world approach
is thus too coarse-grained in the sense that it
cannot distinguish same logical sets of beliefs.
The syntactic and partition approaches on the
other hand are too-fine grained in the sense
that it distinguishes too much on same logi-
cal sets of beliefs. For example, in these ap-
proaches, an agent may believe A and B but
not AA B. To avoid these spurious syntac-
tic distinctions, the obvious axioms must be
present which could complicate the proof the-
ory of belief.

Thus we propose an alternative approach
which formalizes beliefs in a quantifier-free
canonical form of logic. As argued in [Moore
& Hendrix 79|, beliefs should be represented
in an internal language from a computational
perspective rather than an external language
of thought although different external lan-
guages of the same content may not have the
same meaning. Here we further argue that be-
liefs should be represented in a canonical form
of an internal language from a logic program-
ming perspective although different forms of
the language of the same content may not have
the same meaning. We have chosen an ex-
tended clausal form of logic as such a canon-
ical form for three reasons. The first is that
a clausal form of logic is quantifier-free. This
would simplify the task of formalizing the se-
mantics of quantified beliefs. The second is
that clausal forms of logic form the basic foun-
dation of current logic programming systems
and Japanese Fifth Generation Computer Ker-
nel Languages([Kowalski 83]). In other words,
there are well-developed and efficient proof
procedures for clausal forms of logic. The
third reason is that it seems easier to control
the granularity of implied beliefs in a clausal
form of logic. However it should be understood
that clausal forms of logic are by no means the
only forms used in logic programming. In fact,
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the concept of logic programming can be ap-
plied to any forms of logic. The reason we call
our approach a “logic programming model”,
is simply because the current most promising
logic programming approach is to operate on
a clausal form of logic.

It is worth noting that a recent attempt has
been made by [Cerro 86] to allow modal rea-
soning in Prolog [Clocksin&Mellish 81]. How-
ever no concern is given to the problem of
formulating clausal forms of logic of abitrar-
ily quantified beliefs. In particular, the prob-
lem of intensionality of terms is not addressed.
In addition, the semantics of the scheme is
based on the possible world approach, hence
also suffers the granularity problem of possible
world approach. However, Cerro's approach
does have many practical applications, espe-
cially those involving knowledge base systems
for which the granularity problem of modal ap-
proach is less serious.

The paper is organized as follows. Section
2 introduces the basic preliminaries. Section 3
describes the problem and solution of clausal-
izing beliefs. Section 4 discusses the inference
mechanism and the formal semantics of the
proposed formalism. Section 5 presents an ex-
plicit circumscriptive non-monotonic reason-
ing scheme for handling belief revision. Sec-
tion 6 proposes a scheme to allow a modified
Tarski's truth definition theorem to be consis-
tent with our formalism.

2 Clausal form of Logic,
Skolemization and Reso-
lution

Every standard first order formula can be
transformed into a prenex-normal form which
is logically equivalent. A Prenex-normal form

can be written as QM, where Q consists of
all the quantifiers in the formula (3 and V),

while M is a quantifier-free well-formed for-
mula (wff)!.

By introducing Skolem functions, one can
eliminate existential quantifiers, and hence the
universal quantifiers since they are then im-
plied, i.e. indicated by leaving variables free.
Skolemization is achieved by replacing each
of the existentially quantified variables by a
skolem function { whose arguments are all of
those universally quantified variables that pre-
cede the existential variable. For example, the
formula Yzr3yLikes(z, y) can be skolemized into
Likes(z, f(z)) where f is a skolem function. If
there is no universal quantifier preceding an
existential quantifier, a skolem function with
no arguments called a skolem constant will be
produced.

Every prenex-normal formula can be trans-
formed into a quantifier-free clausal form of
logic which is logically equivalent. To do this,
a prenex-normal formula must be skolemized
if it contains any existential quantifiers. A
clausal form of logic can be one of the following
two equivalent forms:

e Implication form

PLA AP, = Q,V..VQnm

e Disjunctive form

=P, VMV'\P..VQ1 V..V@Qn

where P, and Q; are (positive) literals. When
m=1, the clause is called a Horn clause. We
will mix the use of these two forms throughout
this paper.

The resolution principle [Robinson 65] is a
rule of inference that can be applied to clausal
forms of logic. The principle can be defined as
follows.

Given two clauses,
Sl v pl \' S;

1 This section is mainly extracted from [Chang & Lee
73).
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Sy V-p2V S,

where S denotes disjunctive literal
set and pla=p2a (ie. pl and p2
are unifiable where “a” is a substitu-
tion called the Most General Unifier

we can deduce the following resol-
vent,

S1,2,3,40

Resolution is the only rule of inference that
is necessary in order to find proofs to all
theorems. Although resolution is complete
[Robinson 65), unlimited applications of res-
olution may cause many irrelevant and redun-
dant clauses to be generated. Thus many re-
stricted forms of resolutions have been devel-
oped. One such an example is the linear res-
olution strategy in which one of the two re-
solved clauses is always the most recent re-
solvent. A more restricted linear resolution
strategy called linear input resolution on Horn-
clauses in which linear resolution is begun with
the input goal is used in Prolog.

3 Clausalizing Beliefs

Standard first order logic is concerned with
ertensional objects or things that exist. How-
ever in a belief logic, namely, a logic supple-
mented with a BEL (or B) predicate, we are
additionally concerned with intensional ob-
jects or concepts which may not have exten-
sions (eg. unicorns). Thus unlike predicates of
standard first order logic, a B predicate intro-
duces intensional scopes that quantifiers can-
not be moved outside. This can be illustrated
by the following two sentences:

1. 3zB(Simon,Unicorn(z))

2. B(Simon,3zUnicorn(zx)).

In the first sentence, there is a particular
individual in Simon’s mind whom Simon be-
lieves to be a unicorn; while in the second sen-
tence, Simon does not know which individual

is a unicorn but he believes a unicorn exists.
This means that we cannot have a prenex-
normal form, hence a clausal form of logic to
represent quantified beliefs.

To solve this problem, we propose a levelled
intensional scheme that allows an extended
clausalization to be achieved. In this scheme,
each logical term is associated with a number
denoting the level (or depth or nestness) of
intensional scope it is meant to be in (the de-
fault level is 0). This is represented by using
a built-in predicate structure called LEVEL
so that LEVEL(z,i) denotes a i levelled in-
tensional term x. For clarity reason, we write
LEVEL(z,i) in a subscript notation: z;. To
unify two terms, we additionally require the
levels of the two terms to be unifiable.

Because quantified terms of different inten-
sional scopes are distinguished/levelled, the
intensional scheme allows quantifiers to be
moved outside the scope of BEL predicates so
as to produce prenex-normal forms which can
then be skolemized (if there is any existential

quantifier) into clauses. For example, the for-
mula

VzB(Simon .3yB(John,likes(z,y)))

after introducing levels of intension can be
transformed into the following prenex-normal
form

Vzo3y, B(Simon, B(John, Likes(zo,y1)))

which can then be skolemized into the follow-
ing clause

B(Simon, B(John, Likes(zo, f(zo)1)))

where { is a skolem function.

We elaborate more on the levelled in-
tensional scheme with the representation of
the four intensional interpretation of the
statement ‘Jim believes every unicorn likes
something’ (omitting the logical form before
clausalization):
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1. ‘There is a particular thing Jim believes

every unicorn likes'

B(Jim,Unicorn(z1) — Likes(z1,clo))

2. ‘Jim believes every unicorn likes a partic-
ular type of thing’

B(Jim,Unicorn(z1) — Likes(zy,¢c21))

3. ‘Jim believes every unicorn likes some-
thing of his own type’

B(Jim,Unicorn(z1) — Likes(z1, f(z1 1))

4. ‘Jim believes every unicorn likes his own
particular thing ’
B(Jim,Unicorn(z:1) — Likes(z1, g(z1)o))

where cl, c2 are skolem constants and f{, g are
skolem functions.

We adopt the following notations in our for-
malism:

e A built-predicate is denoted by an upper-
case string, eg. BEL/B.

¢ A non-skolem term is denoted by a lower-
case string preceded with a upper-case let-
ter.

e A skolem constant is denoted by a low-
case string preceded with a letter of the

set {a,b,c,d,e}.

e A skolem function is denoted by a lower-
case string preceded with a letter of the

set {f,g,h}.

e A variable is denoted by - lower-case
string preceded with a letter of the set

{x,y,2}.

To demonstrate the expressiveness of our
formalism, we describe its representations of
some more examples.

The following sentence attributed to Russel
is discussed by McCarthy [79]: “I thought that

your yacht was longer than it is.” It can be
expressed in the clausal approach as (omitting
tense and pronouns):

Len(Yt, cly).

B(I,Len(Yt,c2,)).

B(I,c2, > clp).
where c1 and c2 are skolem constants. Here B
is better understood as Believed rather than
Believe.

From the example, it can be seen that
conjunctive beliefs are modelled as separate
clauses in our formalism, eg. the formula
B(I,A A B) is represented as two clauses
B(I,A) and B(I,B). Such modelling helps
to remove the spurious syntactic distinction
problem that often persist in the syntatic for-
malization of beliefs.

To express “Your yacht is longer than Peter
thinks it is”, we have the following formulae:

Len(Yt, clp).

B(Peter, Len(Yt,c2,)).

clp > ¢2;.
where c1 and c2 are all skolem constants.

Quine [56] discusses an example in which
Ralph sees a person skulking about and con-
cludes that he is a spy, and also sees him on
the beach, but doesn’t recognize him as the
same person. The facts can be expressed in
our formalism as:

See(Ralph, Sk(b)).

B(Ralph, Spy(h))-

See(Ralph, onbeach(cy ).

B(Ralph, Spy(c1)).

b=c.
where b and ¢ are skolem constants.

Note that a non-skolem constant can also
have a level of intension other than zero. This
can be illustrated by the following two sen-
tences:

1. B(Simon, Loves(Marso, Venusg))

2. B(Simon,Loves(Mars,,Venus)).

In the first sentence, Mars and Venus are ex-
tensional objects of the real world; while they

are intensional concepts of Simon which may
not have extensions in the second sentence.
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To see how nested beliefs can be modelled
with levels of intension, we illustrate with the
following example:

1. 3zB(Simon, B(John,Unicorn(z)))

2. B(Simon,3zB(John,Unicorn(r)))

3. B(Simon,B(John,3zUnicorn(r))).

The intensional differences of these sen-
tences can be explained as follows. In the first
sentence, Simon has a particular individual in
his mind whom he thinks John believes to be
a unicorn. In the second sentence, Simon be-
lieves there is a particular individual in John's
mind (though Simon may not know which one
it is) whom he thinks John believes to be a
unicorn. In the third sentence, Simon believes
that John believes that there exists a unicorn
though Simon has no idea himself or no idea
about John's idea about who the unicorn is.

These sentences can be represented in our
formalism as follows:

1. B(Simon,B(John,Unicorn(clo)))

2. B(Simon,B(John,Unicorn(c21)))

3. B(Simon,B(John,Unicorn(c33)))

where c1, c2 and ¢3 are all skolem constants.

We have so far only shown that beliefs can
be represented in an extended clausal form of
logic. Our formalism also allows beliefs to be
nested within clauses. This can be illustrated
with the following example: “Every Person
(P) believes that every ET (E) believes that
Unicorns (U) exist”. One intensional represen-

tation of the statement in an arbitrary form of
logic could be:

Vz(P(z) — B(z,Vy(E(y) — B(y,3zU(z)))))
This can be represented in our formalism as:

P(zo) — B(zo, E(y1) — B(y1,U(f(z0,%1)3))).

From the above examples, it can be seen
that unlike McCarthy [79] which appears to
have only two levels of intension, our approach

allows theoretically an infinite level of inten-
sion depending on the nestness of beliefs. Thus
instead of using terms like “de-dicto” and ‘de-
re”’ to describe intensions and extensions, we
talk about levels of intension in our formalism.
In addition, McCarthy uses different notations
to express intensions and extensions of same
concepts which could complicate the first or-
der deductive calculus, we use same notations
for them whose intensions are distinguished by
the levels of intensional scope they are in.

Barnden [1986] has criticized the existing
models of beliefs including the modal approach
(eg. [Helpern&Moses 85 ]), the quotation
scheme (eg. [Perlis 85]) and the concept for-
mation scheme (eg. [Creary 79]), for introduc-
ing unwarranted inferences which he call the
imputation problem. In these models, the be-
lief of Jim “Sue is smart” would be represented
in the same way as the nested belief of Tom
“Jim believes that Sue is smart”., They in-
troduce the unwarranted inference (or “opac-
ity violation”) in that Jim's mental state of
smartness of Sue is the same as Tom’s or as
anyone else's. Undesirable imputations of a
similar sort arise in the belief models described
in Barwise&Perry [83], if they are extended in
the natural way to deal with nested beliefs.
The extension causes imputations, to ordinary
agents, of beliefs about their models' “situa-
tion types'.

Barnden then proposed an alternative
scheme based on Creary's concept formation
scheme [Creary 79]. In Barnden’s scheme, the
mental state of each agent is ezplicitly denoted
as a concept formation. For example, one in-
tensional interpretation of the nested belief of
Tom “Jim believes that Sue is smart” in Barn-
den’'s scheme is:

B(Tom, sTcm(B(sTomJim, STomsJim(S(SUB)))))

where $5,.x¢ denotes the mental state of the

agent. Although Barnden's scheme may be
theoretically sound, it does not seem to be
computationally viable.
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It is felt that the cause of imputation of ex-
isting models of belief lies on their basis of
only two levels of intension. Thus in con-
trast with Barnden's scheme, the intensional
scheme in our formalism can distinguish the
mental states of nested agents implicitly by
their intensionally levelled terms, eg.:

B(Tom, B(Jimy, S(Suea)s))

This approach is more viable computation-
ally than Barden's explicit scheme since in-
tensional structures can be regarded as func-
tional structures — a similar analogy to a Pro-
log structure [Clocksin & Mellish 81].

It should be noted that our intensional
scheme and clausalization mechanism can be
generalized to intensional predicates other
than BEL such as WANTS, SEEKS, AWARE
etc. This can be illustrated by the following
example discussed in [Hobbs etal 77): “Every-
one seeks a frog”. We can have the follow-
ing four interpretations of the statement rep-
resented in our clausal forms as shown below.

e “There is a particular frog everyone
seeks”

Person(z) - SEEKS(z,clp).

e “Everyone seeks a particular type of frog”

Person(z) = SEEKS(z,c2)).
e “Everyone seeks his own particular frog”

Person(z) —» SEEKS(z,f(z)).

o “Everyone seeks his own particular type
of frog”

Person(z) = SEEKS(z,g(z)h).

where cl, c2 are skolem constants and f,g are
skolem functions.

4 Inference and Semantics

In this section, we discuss the inference mech-
anism, semantics, soundness, completeness,
consistency and recursiveness of our formal-
ism.

4.1 Inference

In the previous section, we have described the
syntactic logical form of our formalization of
beliefs, namely, an extended clausal form of
logic supplemented with a BEL/B predicate.
However it is pointless to talk about beliefs
outside the context of a world in which the
beliefs may be true or false. This means that
we need rules of inference to reason about be-
liefs of an agent to obtain his implied beliefs.

The only inference rule in our approach
is a linear resolution-like principle (such as
Linear Input Resolution or , SL resolution
[Hayes&Kowalski 79]) for all agents of beliefs.
Exactly what this principle is, is not the con-
cern of this paper.

To distinguish the different reasoning capa-
bility of different agents of beliefs, we assign an
Inferential Power (IP) to each agent. We could
have designed a more clever and complicated
measurement (such as deduction, learning and
memory abilities of an agent plus resource-
bound factors) as the inferential power of an
agent, for simplicity and illustration reason
however, we have chosen the maximum infer-
ential depth of resolutions allowed to an agent
as the inferential power of the agent. So given
IP(Simon,3), Simon can only invoke at most,
a depth of three resolution inferences in a de-
ductive process. By inferential depth of resolu-
tion, it means the depth of a AND/OR-search
tree of a linear resolution proof.

For example, given the following beliefs of
Simon and ID(Simon,3),

P—Q

Qe+~ R
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R—S

]
we can infer that Simon also believes S, Q, R
but not P.

To answer a query about an agent's be-
lief, we negate the belief and prove refuta-
tionally that the negated belief is inconsistent
with the belief space of the agent. For ex-
ample, to prove BEL(Simon,p), is to show
BEL(Simon,-~P) to be inconsistent with Si-
mon’s beliefs. This means that in addition to
the normal resolution rule, we need to define
the following resolution rule regarding beliefs.

Given
51V B(agent, S2 VPV S§3)V S,
Ss V B(agent, 5S¢ VQV S7)V 5,

where Pa = Qa (where a is the MGU
between the two literals) and S de-
notes disjunctive literal set.

we can obtain the following resolvent
(within the inferential power of the
agent),

(S1,5 V B(agent, S26,3,7)V Si0)a.

Our inference mechanism can be compared
and contrasted with Konolige's approach [85]
which uses multiple rules of inference for arbi-
trary forms of a first order logic supplemented
with a B predicate. In his approach, the in-
ferential power of each agent is determined by
the set of rules of inference (or sequents) he
has. As argued in the introduction, multiple
rules of inference for arbitrary forms of logic
may not be supported efficiently.

In addition, unlike the too-coarse-grained
possible-world approach, our formalism repre-
sents beliefs as syntactic clausal structures to
be manipulated and the consequential closure
of an agent’s beliefs is controlled by his in-
ferential power. However unlike other systac-
tic schemes (eg. [Konolige 85]) which suffers
the problem of too-fine granularity, we use a

canonical clausal form which helps to remove
many spurious syntactic distinctions. In this
sense, our formalism can be seen as a balance
between the fine-grained syntactic approach
and the coarse-grained semantic approach.
Finally, it may be noted that our inference
mechanism does not have any axioms. How-
ever certain axioms may be useful. Two such
ones are the positive introspection B(a,p) —
B(a, B(a,p)) and the negative introspection
-B(a,p) — B(a,~B(a,p)). Belief introspection
[Konolige 85a] is useful because it allows an
agent to reflect upon the workings of his own
cognitive function. This can be done in our
formalism by issuing recursive queries to the
inference system with perhaps reduced infer-
ential power for each agent. However this dis-
cussion is outside the scope of this paper.

4.2 Semantics

The basic syntax of our belief logic is a first
order clausal form of logic supplemented with
a BEL/B predicate which can take a clause
as argument in the form of B(agent,clause)
where clause can be a variable or a clause in-
stance. In addition to the normal semantics
of a standard first order clausal form of logic
which we will not describe, the B predicate
presents an additional semantics which allows
B(agent, clause) to be logically implied by a set
of clauses believed by the agent. It is this type
of semantics we will describe in this paper.

Because our intensional mechanism have re-
placed all the quantifiers by intensionally lev-
elled variables and skolem functions, the se-
mantics of our formalism can uniformly be de-
fined as follows:

B(agent, clause) is true iff the clause
is a member of the belief space of the
agent.

A clause ¢ is a member of the belief space of
an agent a iff it is a IP-controlled consequence
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of the members of the belief space of a. This
effectively determines the soundness and com-
pleteness results of the formalism which can
be stated as follows.

The soundness result of the formalism is:

if a clause ¢ follows from the IP-
controlled inference of an agent a,
then B(a,c) is true.

The completeness result of the formalism is:

if B(a, ¢) is true, then the clause ¢ fol-
lows from the IP-controlled inference
of the agent a.

Because the belief space of an agent is
consequentially-closed under the inferential
power of the agent, the consistency of a be-
lief space need to be defined differently from
that of a standard first order logic. In particu-
lar, we can have contradictory beliefs without
causing an agent to believe anything (as is the
case in the possible world approach). In our
formalism, a belief space of an agent (closed
under the inferential power of the agent) is
consistent iff it does not contain two literals
pl and —p2 such that pl and p2 are unifiable.
This means that an inconsistent set of clauses
in a standard first order logic, can be consis-
tent in a belief space of an agent provided the
agent's inferential power will not allow contra-
dictions to be deduced. For example, a person
may believe the following statements “Every
Professsor has a PhD"”, “Every MD does not
have a PhD” and “John is a Professor and
has a MD" without realizing that they are in-
consistent because he has a limited inferential
power or he may have chosen relevant theories
for the statements in such a way that he will
not establish inconsistent beliefs. The latter
will be discussed in the next section.

All the above results can be similarly ap-
plied to recursive/nested beliefs. To do this,
each belief space of an agent is organized hier-
archically with each sub-space of a space de-

noting the next level of agents in a nested be-
lief. Thus B(al, B(a2, c)) is true iff ¢ is a mem-
ber of the belief space a2 which is a sub-space
of al. However the inferential power of all the
sub-agents in a nested belief is determined by
the outmost agent. A more detailed descrip-
tion of nested beliefs can be found in [Jiang
86).

It may be noted that the basic semantics
of our formalism is similar to the semantics
of Konolige's [85] deductive model of belief
except that we use a canonical clausal form
of logic and a single rule of inference as the
computational structures of an agent. From
a logic programming perspective, our formal-
ism may be treated as a more-viable compu-
tational model of belief than Konolige's.

5 Circumscriptive  Non-
monotonic Reasoning

Unlike a piece of knowledge, a belief may not
be true in the real world. This means that
with new beliefs in hand, an agent can retract
his old beliefs. This form of reasoning is some-
times called belief revision. One possible ap-
proach of revising beliefs is to build inference
paths of beliefs so that a retracted belief can be
traced back from such inference paths. Its pur-
pose is to detect contradictions, identify their
causes and try to resolve the contradictions
by revising beliefs. Two examples of this ap-
proach are London’s dependency networks [78]
and Doyle’s truth maintenance system [79].
Another possible approach of revising beliefs
is the explicit non-monotonic reasoning. Its
purpose is not to detect the cause of incon-
sistency but to ensure that the belief system
is always consistent. In this approach, non-
monotonic beliefs are ezplicitly represented as
non-monotonic rules and can only be derived
if they are consistent within a certain belief
space. Although it is felt that inference paths
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in linear resolution systems on clausal forms
of logic are easier to find than arbitrary forms
of logic, in this paper however, we are only
concerned with the problems addressed in the
latter approach.

There are currently two important types of
non-monotonic reasoning. One is McCarthy's
circumscription rule [80]. Another is Reiter’s
default rule [Reiter 80]?. Both can be specified
in the following meta-axiom:

zAC(y) =y

where C(y) is true if =y cannot be proved.

The difference between these two ap-
proaches lies in the area of consistency check-
ing. In McCarthy's approach, it is the whole
belief space including all the non-monotonic
rules; while it is only the area of the belief
space that excludes default rules in Reiter’s
approach.

The problem with McCarthy's approach is
that it is too fine-grained in the sense that it
tends to fail to conclude anything. This can
be seen from the following two default beliefs:

1. if x is a professor and there is no proof
that x is a Mr then we may infer that x is
a Dr (Ph.D):
Dr(z) « Prof(z)
A C(-Mr(z))

2. if x has a MD and there is no proof that
x is a Dr then we may infer x is a Mr:

Mr(z) ~ MD(z)
A  C(~Dr(z))

In addition, we assume the belief that no
one can both be a Dr and a Mr:

3. — Dr(z) A Mr(z).

?Moore [85a) may argue that this is best called auto-
epistemic reasoning.

If we assume that John has MD, and is a
professor, then in proving Dr(John), we need
to prove C(~Mr(John)) or Mr(John) which
lands us in the proving of C(~Dr(John)), or
Dr(John); hence back to the original goal, ie.
looping.

Reiter's approach on the other hand is too
coarse-grained in the sense that it tends to
conclude everything. For instance, though it
does not loop for the above example, Reiter's
approach would give us both Dr(John) and
Mr(John), ie. a contradiction (to belief (3)).

To solve these problems, we propose a neu-
tral approach (based on [Bowen&Kowalski
82]) that covers a range or varing granularities
of non-monotonic reasoning systems. Instead
of being restricted in one single predefined the-
ory/area of belief space, an agent can perform
consistency checking within an explicitly de-
fined theory. This means that in our formal-
ism, a belief space can be divided into various
overlapping areas/theories. Allowing various
explicit specification of theories is cognitively
feasible because an agent may only use a sub-
set of his beliefs which he thinks is relevant to
achieve a certain process of reasoning (eg. to
establish the proof that John is guilty) and use
another subset of his beliefs (maybe overlap-
ping with the former set) to achieve another
process of reasoning. This relevance of beliefs
to an agent is sometimes called ecircumserip-
tive relevance [Konolige 85]. For this reason,
we call our belief revision approach circum-
scriptive non-monotonic reasoning.

To define the explicit theory of a clause, we
further extend the syntax of our basic logic
of belief by allowing each clause to have a
distinguishing label or number. The idea of
attaching a distinguishing number to a wif
was initiated by Godel [Enderton 72|, thus
born the name of godelization of a wiff. Godel
showed that the godelizations of wffs are rep-
resentable. This means that we can use a num-
ber to denote a wif. In other words, by making
assertions on godelizations of wifs, we can in-
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directly express assertions about other asser-
tions. Thus based on the idea of godelization,
we can express the explicit theory of a clause
by qualifying the godelization of the clause
with the theory. For example, if the clause
c is in the theory f1, we can represent this as:

THEORY (#¢,11)

where #c is the godelization of clause c.

However unlike [Bowen& Kowalski 82], these
theories are organized in hierarchical struc-
tures in our formalism so that a clause at a
higher-level theory can be inherited by a lower-
level theory unless it is false there. Making the
theories explicit has the advantage that subtle
differences in meanings can be expressed by
appropriate organization of theories.

Thus to solve the above looping and contra-
diction problems, we can represent the theory
hierarchies in such a way that T2 is one level
below T1 and T2 has belief #2 but T1 does
not. This effectively assigns a higher priority
to belief #1 over #2. This can be shown in
our formalism as follows:

#1: Dr(z) — Prof(z) A C(~Mr(z),T1).

#2: Mr(z) — MD(z) A C(~Dr(z),T2).

SUB - THEORY (T2,T1).

THEORY (#2,T?).

~THEORY (#2,T1).

— Dr(z) A Mr(z)

Finally, it should be noted that our explicit
control over the area of belief space for han-
dling belief revision can be generalized to ordi-
nary proofs in the spirit of relevance logics [An-
derson&Belnap 75]. In this case, every proof
must be associated with an area of a belief
space. To achieve this, we introduce another
meta-predicate PROVE so that PROV E(p, t)
stands for “p can be proved in the theory
1", Relevance proofs are useful in knowledge
representation. For example, it distinguishes
Guilty(z) from PROV E(Guilty(z),t) as we
should do because we may believe a person to
be guilty, but we may not think we can prove

it given the evidences we think are relevant to
the case.

6 The consistency of self-
referential paradoxes

Another expressive feature of our formalism
is its ability in representing self-referential be-
liefs, eg. “John believes that his belief is false”
and mutual-referential beliefs, eg. “Simon be-
lieves that Tom’s belief is true and Tom be-
lieves that Simon’s belief is false”. For exam-
ple, the above example of mutual belief can
be represented in our godelized clausal form
of belief logic as follows:

B(Simon, #2 . TRUE(#3))

B(Tom, #3 : ~TRU E(#2))

As argued before, it is pointless to talk
about people's beliefs outside the context of a
world in which the beliefs may be true or false.
However this could introduce inconsistencies
to belief spaces. This is shown by Tarski [36] in
his No Truth Definition Theorem, which states
that

TRUE(#a) — a
is inconsistent. This can be seen from the ex-
ample if we assume Simon’'s belief to be true
and Simon's inferential power is capable of
making the following inferences:

TRUE(#?2) — TRUE(TRUE(#3))
— TRUE(#3)
— TRUE(~-TRUE(#2))
— =TRUE(#2)

ie. a paradox inconsistency has arisen.
Tarksi's solution is attaching numerical sub-
scripts or levels to ‘true’. In Tarksi's approach,
a truth true,, is restricted to apply to sen-
tences containing no predicate true,,n > m.
This requirement effectively blocks the deriva-
tion of contradiction. However Tarski's ap-
proach suffers the problems of inefficiency due
to different operations at different levels [War-
ren 81], and limited expressiveness in repre-
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senting beliefs [Perlis 85] such as “I have a false
belief”.

Kripke's solution [75] thus introduces truth
gaps to account for paradoxes. However the
solution incurs the invalidity of the excluded-
middle principle, ie. (pV-p). This could make
the design of an efficient proving system diffi-
cult. Thus we take an alternative approach in

the spirit of Perlis [85].
In our approach, the Tarski's Truth Defini-
tion Theorem is modified so that the axiom

TRUE(p) — p

(called the positive aziom) holds for all posi-
tive p but may not be true for negative p. For
the negative p, we adopt Gilmore's reduction
rule (74] in our approach in such a way that
the axiom

TRUE(~TRUE(p)) — TRUE(-p)

(called the negative reduction ariom) holds
for all p. To allow further reductions, we in-
troduce another axiom (called the restricted
negative aziom):

TRUE(~p) — ~TRUE(p)

which holds if the dereference of p involves
no TRUE predicate. By dereference of p, we
mean that if p is a label, then the dereference
of pis the wif named by p; otherwise, the deref-
erence of p is p itsell. The restricted negative
axiom allows us to deduce ~TRUE(EQ(1,2))
from TRUE(-EQ(1,2)) because the derefer-
ence of EQ(1,2) contains no TRUE predicate;
while from TRU E(#3) in the above example,
we cannot deduce ~TRUE(#2) because the
dereference of #3, ie. ~TRUE(#?2), contains
a TRUE predicate. Note that for the above
axioms to work correctly, we need to repre-
sent a clause in the disjunctive clausal form
mentioned in Section 2.

Using the restricted negative ariom, we can
preserve the excluded-middle principle

TRUE(p) V ~TRUE(p)

but not
TRUE(p) V TRU E(~p).

In other words, we cannot have both
TRUE(p) and ~TRUE(p) in a consistent be-
lief space, but we can have both TRU E(-p)
and TRUE(p) in a consistent belief space.
The fact that TRU E(p) A TRU E(~p) holds,
helps to reveal a paradox without letting this
create an inconsistency to our formalism. The
price is simply that we stick literally with what
the statements express, and this inconvenience
will be as rare as are these sentences in typ-
ical discourse situations. A consistency proof
of the modified truth definition theorem can
be found in [Jiang 86].

To see how we have solved the paradox in-
consistency, we use the earlier example as an
illustration.

Suppose we assume that Simon is right, then
we have the following inference chain,

TRUE(#2) — TRUE(TRUE(#3))
— TRUE(#3)
— TRUE(-TRUE(#2))
— TRUE(~#2)
which is consistent.
Suppose we assume that Tom is right, then
we have the following inference chain,
TRUE(#3) — TRUE(-TRUE(#2))
— TRUE(~#2)
— TRUE(~TRUE(#3))
— TRUE(~#3)

which is still consistent.

In both cases, paradoxes are revealed and at
the same time consistencies are preserved.

7 Conclusions

In this paper, we have presented a scheme
from a logic programming perspective which
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formalizes beliefs in an ertended clausal form
of logic. We have shown that our formalism
is free-from the quantification problem that
often persists in existing formalisms. In par-
ticular, we have indicated that our formalism
allows an efficient resolution-like proof proce-
dure to be developed. A levelled intensional
scheme which enables the clausalization of be-
liefs has been proposed. It has been argued
that the intensional scheme is free from the im-
putation problem. An inferential power bound
resolution rule of belief has been introduced.
A general circumscriptive non-monotonic rea-
soning system for handling belief revision has
been described. The concept of godelization
which increases the expressiveness of our for-
malism has been introduced. In particular,
a modified Tarski’s Truth Theorem has been
shown to be consistent with our formalism.

There are issues such as common beliefs and
implied beliefs of a group of agents which have
not beed discussed in this paper due to the
space limit. In addition, we have neither ad-
dressed belief introspection nor implieit belief
revision. These problems will be shjected to
further research.

As regards to implementation of our formal-
ism, it is felt that it can be done quite easily in
Prolog. In particular, an intensionally-levelled
term can be represented as a structure of the
form (term,level); and a godelized clause can
be represented as a structure of the form (la-
bel,clause). However this discussion is outside
the scope of this paper.
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