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ABSTRACT

Recent work on Euclidean self-dual gravitational fields is
reviewed. We discuss various solutions to the Einstein equations and
treat asymptotically locally Euclidean self-dual metries in detail.
These latter solutions have vaﬁishing classical action and nontriviél

topological invariants, and so may play a role in quantum éravity

resembling that of the Yang-Mills instantons.
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I. INTRODUCTION

The discovery of self;dﬁal iﬁstanton solutions iﬁ Euclidean
Yang-Mills theory‘ [1] has recently stimulated a great deal of
interest in self-dual solutions to Einstein's theory of éravﬁtation.
Ong would expect that the relevant instanton-like metrics would be
those'whoée gfavitational fields are self-dual, 1oéalized.in Euclidean
spacetime and free of singularities. In fact, solutions have 5éen
found which have the additional interesting property that the mefric
approaches a flat metric at infinity. These solutions are called
"asymptotically locally Euclidean" metries because, in spite of their
asymptotically flat local character, their global topology at infinity
differs from that of ordinary Euclidean space. Since the Yang-Mills
instanton potential approaches a pure gauge at infinity, this class
of Einstein solutions closely resembles the.Yang-Mills case.

The first examples of asymptotically locally Euclidean metrics
were the self-dual solutions given by the authors in ref.. [2].
Belinskii, Gibbons, Page and Pope [3] then studied the general class
of self-dual Euclidean Bianchi type IX metries and showed that only
metric II of ref. [2] could describe a nonsingular manifold. Gibbons
and Hawking [4] have now exhibited an entire series of such métrics.
In fact, very general classes of nmn;folds which could admit self-
dual asymptotically locally Euclidean metrics have recently been
identified by Hitchinv [ 5].

Asymptotically locally Euclidean self-dual metrics have a
number of spgcial properties. For one thing, they have zero action

and so must be quite important in the path integral. Secondly, since
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the metrics become flat and the gravitational interactions are
switched off at infinity, standard asymptotic-state methods can be
applied to analyze the quantum effects of such metrics.

For completeness, let us summarize various stages of the search
for gravitational instantons which took place before the discovery of
asymptotically locally Euclidean metrics. The first step was the
identification of the Euler characteristic and Hirzebruch signature
qf a manifold as the appropriate gravitational analogs of the Yang-
Mills topological invariants [6] |7]. A number of standard Riemannian
manifolds were of course considered as logical candidates for
gravitational instantons. The most remarkable of these, the X3
surface, is the only compact regular four-dimensional manifold without
boundary which admits a métric with self-dual curvature [8];. this
metric would therefore satisfy_Einstein's equations with vanishing
cosmological constant. Unfortunately, the explicit form of the K3
metric has so far eluded discovery.

The first known metrics which come to mind are the standard
solutions of black hole physics. While all black hole solutions
arise in Minkowski spacetime, they can be continued also to the
Euclidean regime to produce positive-definite singularity-free
metries [9] [10). These continued metrics are periodic in the new
time variable, which is associated with the thermodynamic temperature,
and decay only in the three spatial directions. One example of such
a metric is the self-dual Euclidean Taub-NUT solution examined by
Hawking [10] . In this case Einstein's equations are satisfied with

zero cosmological constant, and the manifold is ﬁ4 with a boundary

By A

which is a twisted +three-sphere 53 possessing a(distorted
metric. The metric is not asymptotically flat because it does not
fall off in all four asymptotic spacetime directions.

Another interesting case is the Fubini-Study metric on PZ(C),
two-dimensional complex projective space, studied by Eguchi and
Freund {7 [24). This manifold is compact without boundary and has
constant>sca1ar curvature.  The metric has self-dual Weyl tensor
rather than self-dual éurvature, and so solves Einstein's equations
with nonzero cosmological term. One drawback is that P2(G) does not
admit well-defined Dirac spinors. Nevertheless, one can construct a
more general type of acceptable spin structure on PZ(G) by adding
a Maxwell field to the theory [11].

A1l of the metrics just déscribed are in some sense self-dual,
are regular and have finite action, but are not asymptotically flat.
The gravitational fieldsof such metrics persist throughout spacetime
and make it difficult to define the asymptotic plane-wave states
necessary for ordinary scattering theory. Although these metrics are
very interesting, they do not quite coincide with our intuitive
picture of instantons as localized excitgtions in Euclidean spacetime
which approach the vacuum at infinity. In contrast, the asymptotica;ly
locally Euclidean metrics seem t§ be very naturally identifiable as
gravitational instantons.

The remainder of the paper is organized as follows: Section
II contains a complete explanation of the derivation of the regular

asymptotically flat self-dual solution presented in ref. {2].
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. II. AN ASYMPTOTICALLY FLAT SELF-DUAL

In Section IIT, we examine the properties of various other metrics
SOLUTION -OF EUCLIDEAN GRAVITY

which have instanton-like properties. Section IV is devoted to :

-self-dual multicenter metrics and Section V contains coneluding N We now derive the simplest regular asymptotically flat self-

remarks. ) dual solution of Fuclidean gravity, which was Iabeled as metric II in

ref. [2]. Let us begin by reviewing a procedufe by which one can

solve the Yang-Mills equations to obtain the instanton solution [ 1]

and noting possible gravitational parallels. To obtain the

instanton, we do the following:

(1) Observe that the Yang-Mills equations
3 F * [A,F ] = 0,

where Fuv': BUAV - BvAu +IAM,Av] , are solved at once

due to the Bianchi identities if

- = 1
Fu\)—i’]\s‘uv- * 5 € o0aFag -
(2) Choose the Ansatz
: -1
= 9
A o(r) g L&

for the SU(2) gauge potential, where r2 =17+ x,
g=(t- iT + x)/r, and {T} . are the Pauli matrices.

{3) Solve the first-order differential equation
' 2
p(r)+zp(p-1) = 0O

obtgined by setfing Fuv = %uv; we find

o = r2/r® + a°)
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In this way, we find a Euclidean SU(2) Yang-Mills solution with
finite action, self-dual F, = localized at r =0 and falling like
l/r4 at infinity, and AU asymptotically a pure gauge at infinity.

We wish to find a Euclidean gravity solution with finite
action, self-dual curvature localized inside the manifold and falling
rapidly at infinity, and with the metric asymptotically locally
Fuclidean at infinity. We might therefore search for such a solution
by undertaking the following gravitational analogs of the Yang-Mills
procedure: !

(1) Observe that if the spin connection 1-form wab is

0 1 J ),

self-dual (i.e., w, = #* 5 €15

i the curvature

a
2-form R b

satisfied at once due to the cyclic identities.

is self-dual, so Einstein's equations are

(2) Choose an Ansatz for guv(x) which differs from a flat
Euclidean metric by functions of r2 = t2 + ;2 alone.
(3) Solve the first-order differential equations in the

metric obtained by requiring wab to be self-dual.

A. Preliminaries.
First we establish some useful notation and explain more fully
the essential concepts appearing in the procedure just outlined. We
let the four Euclidean coordinates be xu = (t,x,¥,2) so that the

flat metric is given by

d82 = dt2 + dx2 + dy2 + d22 . : (2.1)

-8-

We next change to four-dimensional polar coordinates with r2 =

2
17+ x2 + y2 + z2 and define

o, = ;%-(xdt - tdx + ydz - zdy) = % (sin Ydd - sin 6 cos Yd¢)
r
oy = ;%-(ydt - tdy + zdx - xdz) = % (-cos Pd8 - sin O sin Pd9)
T
. ‘ 1
o, = (zdt - tdz + xdy - ydx) = 5 (dy + cos 8d¢).

T
(2.2)
The variables 8, ¢, ¥ are Euler angles on the three-sphere s3

with ranges

0L6<m

In-
in

0<% <an

0y <4m (2.3)
and are related to the Cartesian coordinates by
(v + ¢)

x+1iy = 1 cos exp

N @
ST

(v - ¢).

Do

exp

138 Ko ]

z + it = r sin

- (2.4)

The differential 1-forms (2.2) are closely related to the Cartan-
Maurer forms for SU(2) and cbey the following structure equations

under exterior differentiation:

do = 2cry/\ o,, cyelic. ) (2.5)



The flat metric can now be written in polar coordinates as
ds2 = dr2 + r2(02 + P 4 ). (2.6)
X y Z

Next we write an arbitrary metric in terms of the local

orthonormal vierbein frame eau(x),

: 3
v . .
s® = e gy(ax’ = L (2P, (2.7)
a=0 :
a._. a .U . s a .
where e = e dx . The spin comnection w is- then a one-form

u b

determined uniquely by the structure equations [12]

a a : _
de” + w p e = 0
a _ b _ a .\ : y
Wy -, ) budx . (2.8)

Greek indices are raised and lowered with guv’ while Latin indices
are raised and lowered by the flat metric Gab. Vierbeins and inverse
vierbeins interconvert Latin and Greek indices.

The curvature is now defined as the two-form

a _ a a c
Ry = dwy +uw " b (2.9)
where
a _ 1 pa u v _ 1,8 c 4
R b 5 R UV dx” ~ dx §-R bed © e .

R? = 0. (2.10)

-10-

We now define the "dual" of the two-form Rab in its free indices as

ﬁab = %eabcdRcd“ (2.11)
Then it is easy to show that Einstein's equations

Racbc ] ﬁ“veaueb\" = 0,. (2.12a)
. where éfuv‘ is the Ricci tensor, are equivalent to

¥ o~ = 0. (2.12b)

(One must take appropriate sums and differences of various components

a

to prove the equivalence.) Therefore if R b is (anti) self-dual,

Rab = i%(ab, (2.13)

the cyclic identity (2;10) implies that the Einstein equations
(2.12) are satisfied. This is the analog for gravitation of the fact
that self-dual Yang-Mills fields automatically satisfy the equations
of motion. However, Eq. (2.13) is still a second-order differential

equation in the vierbeins eau(x). It is remarkable that we can

‘now go one step further and deduce the Einstein equations from

a first-order differential equation in the fundsmental variables, just
as in the Yang-Mills case. We simply observe that Eq. (2.9) can be

written
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R23 = dw23 + wgo ~ w03 + wzl ~ w13 , cyelic,
(2.14)
ROl = dupl + w02 ~ w21 + w03 ~ w31 , cyclic.
Thus if
o 1 B
w, = ¢ 3 €15 @y (2.15)

is obeyed, then Eq. (2.13) is immediately satisfied. Defining

g 1 c
w

b = Z Cabed” @’ (2.16)
we see that the first-order condition on eau,
n
wab =+ wab , {2.17)

is a sufficient condition for the self-duality of Rab, and hence

for solving the Einstein equationms.

a
b

in the following sense: if Eq. (2.13) is satisfied, one can always

In fact, Eq. (2.17) is also necessary for a self-dual R

transform wab by an O(4) gauge transformation into the form

(2.17). To see this, we examine the change in wab when the ortho-
normal frame specified by e? 1is rotated by an x-dependent orthogonal

transformation Aab(x):

e'a = (A—l)a e . (2.18)
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A simple calculation using the structure equation (2.8) shows that
the form of the structure equation is preserved if we identify the
new spin connection as

'a _ -l,a ¢ d -1l,a c
w oy = (A ) g A bt (A ) R d A b (2.19)

Thus wab transforms exactly like an 0(4) Yang-Mills gauge potential.

Furthermore, the curvature behaves as

R'a - (A—l)a RS Ad

b e Bghye (2.20)

The conclusion of our argument is as follows: Suppose Rab
is self-dual, but wab is not. Then split wab into self—dual
and anti-self-dual parts; one can explicitly construct a Aab which
will gauge transform away the anti-self-dual part. Since self-duality
of Rab is preserved under the orthogonal transformation (2.20),
we find that any self-dual curvature comes from a self-dual
connection if 2 '"self-dual gauge" is chosen.

In Table 1, we present a éummary of these results and compare
them with the analogous properties of Yang-Mills theories in differen-
tial-form notation. The point is that although the Euler equations
of the Einstein and Yang-Mills theories are quite different, they
both are automatically solved when the spin connections or field
strengths obey the appropriate self-duality conditions. In gravity,

the self-duality condition (2.17) is a first-order differential

equation in the vierbein eau(x), while in Yang-Mills the self-duality
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N
condition Fuv = % FUV is first-order in the potentials Aﬁ(x).

We remark that the difference.between Yang-Mills theory and Einstein's
theory in the orthonormal frame basis is that the gravity 0(4) con-

a
b

obeys the cyclic identity. No.such additional restriction cccurs in

nections wab follow'from the Metric and thus guarantee that R

general in an 0(4) Yang-Mills theory since the group indices and

* the spacetime indices are uncorrelated.

B. ' The Metriec Ansatz

We now continue to follow the pattern observed in Yang-Mills
* theories by choosing a metric Ansatz differing from the flat metric
by functions of the radius alone. - We -choose to examine the axially

symmetric Ansatz
ds2 = f2(r)dr2 + r2(ox? + Gy? + g2(r)0;2). “(2.21)

(This was Ansatz II of ref. [2].) More general Ansitze will be
examined in the next Section.

If we decompose the metric (2.21) into the orthonormal vierbein

e = (f(r)ar, o, foy, rg(r)s,), -(2.22)'

we find that the structure equations (2.8) give the spin connections

14~

1 _ 1 1 2 _g 1
®o f © Wy =7 ¢

2 _ 1 2 3 _ g 2
Wo-T 71 € wy T we

3 1 ' 3 S 1 2 2

- g ’ Lo - g 3

w’y [?F + ?E] e W, = e”. (2.23)

With our choice of orientation, we are led to impose anti-self-duality

on the o leading to the differential equations

b’

"
-

fg

(2 - g°). (2.24)

'
g +rg

These equations are integrable, with the . result

) = ) = 1 () (2.25)

where a 1s the integration constant.

Hence we find a new metric [2]

) L . .
as® = 1 - (a/r)4] Lar?+ rz(ox2 + oyz) + r2[1 - (a/r)4]022

- (2.26)
which satisfies the Euclidean empty space Einstein equations.. The

spin connections are
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mlo = w23 = [1- (a/r)4]%JX = [1 —_(a/T)A]%el/r
oy = W = [1-(a/'r)4112‘oy = [1- (a/e)PBe?e (2.27)
W= W, = 11+ (am)fo, = 11+ (a/e) 1PNt - (a/r)4 0.

We easily compute the curvature components to be

4
1 2 288 1.0, .2..3

o
o
[]
f=v)
W
[}
I
|
o]
4
>
[
+
[0}
>
[0

(2.28)

It is straightforward to construct also a combined solution

of the Maxwell-Einstein equations in the presence of the metric

(2.26). Choosing the potentiall
A= o (2.29)
2z . )
T
one finds the field strength

). (2.30)

Since F 1is anti-self-dual, it is harmonic and has vanishing
(Euclidean) energy-momentum tensor. Thus Einstein's equations retain

their empiy-space form and the Maxwell-Einstein equations are'

-16-

automatically satisfied. As we will demonstrate shortly, the
coordinate system "origin" occurs at r = & and the manifold is
regular there, so F 1is regular and finite everywhere. (The

other two anti-self-dual Maxwell fields that naturally present them-

ez . 2 44 . .2 4 4
selves, with A1 r ox/(r - a') and A2 = r Uy/(r -a )?
are Fl = -2(r4 - az')fl(e1 A eo + e2 ~ e3) and F2 = 2(r4 - al*)_1
(e2 - eo + e3 ~ el) and are thus singular.) Suggestively, the

l/r4 asymptotic behavior of the Maxwell field (2.30) is the same

as that of the Yaﬁg-Nﬁlls instanton.

C. Properties of the Manifold

We now need to determine whether there are any true singular-

ities in the new metric (2.26) and whether it describes a geodesically

complete manifold [3]. We begin by writing the metric in several

alternative forms. First, let

ot = vt - ek (2.31)
then
a? = 11+ (a7 {w? s 0%
Ml (a/p)z’]%{pzox2 + ozcyz} . (2.32)

These coordinates are well-adapted to converting the metric into

complex form using
z, = x+ iy z, = 2+ it

pTF B2 ¥ 252, .
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One then finds two equivalent ways of writing the metric in terms of

a Kahler form [5] 131 on ¢ - {0}:

2 4 _
1) K = ——P  (dz.d7. + dz.d7. ) + —r=>2 332n(0°)
: (% + 431 292 T AL At
(2.33a)
; 2 4, ik
2) K =3 ftnd, ¢ = 92 exp ip *43%] . (2.3%)
a® + [p" + a"]

The 93 In 92 term in these forms causes problems at 0 = 0 (i. e.
at v = a). However, this apparent singularity can be removed if

" one identifies opposite points of the manifold,

(zl,zz)' v (-2y5-2,)
or _ (2.34)
(Xv) v (xy).

We next give a more elementary explanation of this fact.

First, let us change radial variables once again by defining

W = 2A1 - (ar)i. (2.35)

Then the metric can be written

2, 262402,

as? = au’/[1 + (a/r)M2 + u?cz ety

(2.36)

-18-

Very near to the apparent singularity at r = a, or, equivalently,

u = 0, we have

) 2
s ~ %—du2 + %pz(dlb + cos é)dib)2 + % (d@2 + sin26d¢2).
(2737)
For fixed © and ¢, we obtain
ds2 ~ %(du'2 + u2dlb2). (2.38)

A short exerciée tells us whether or not the singularity at
u'=0 is real or is a removable polar coordinate singularity. We

simply note that the apparent r = 0 singularity in the )R2 metric

d52 = dx2 + dy2 = dr2 + r2d<I>2 (2.39)

is removable provided that

0 <& < 2m. : (2.40)

We therefore conclude that if the range 0 < Y < 4w given by

Eq. (2.5) 1is changed to

0 <y <2m, (2.41)

we can remove the apparent singularity at r = a and obtain a geo-
desically complete manifold.
The global topology of our menifold is now the following:

Near r = a, the manifold has the topology H2 x 82 indicated by-
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Equation (2.37).  To be precise, at each point of the itwo-sphere
parametrized by (8,¢), there is attached an m2 which shrinks
to a point as r »a (u > 0). The manifold is thus homotopic to ‘SZ
and has the same Euler characteristic as 82, X =2,

For 1large r, the metric approaches a flat metric. However,
because of the altered range (2.41) of ¥, the constant-r hyper-
surfaces are not three-spheres, but three-spheres with opposite
points identified. The boundary aS r + «® is thus the familiar group
manifold of SO(3) = Py(R), for which s? = sU(2) is the double
covering. This is an explicit example of a metric whose topology
is asymptotically locally Euclidean (PBGR) = 83/22), but not
globally Euclidean (i. e. not s2).

It can be shown [5] that the entire manifold M we have
just described is in fact the cotangent bundle of the complex plane,

Pl(c) = Sz, and so we may write

M o= TPy (6))
(2.42)

oM

it

PBGR) .

In Figure 1, we present a description of the topology of the
manifold which we have deduced from the metric (2.26) and the

- regularity requirements.

-20-

D. Action and Topclogical Invariants

Using the comnections and curvatures (2:27) and‘(2.28) for
the metric (2.26) with the']w—range (2.41), we now calculate the
various integrals characterizing the solution. Since our manifold has
a non-empty boundary surface, we will repeatedly need the.second

fundamental form,
_ .a a
0%, = wy - (e)%s (2.43)

to compute boundary corrections. If we choose the radial direction
)2

as the direction everywhere normal to the boundary, ( b is

%o

the connection of the product metric for fixed Ty

2

as® =11~ (a/ro)l']_l dr2 + r02(0x2

+ 0y2 +[1 - (a/ro)4lcz%.

(2.44)

Since our scalar curvature is identically zero, the entire

action comes from the surface term [9]. Defining Kij by [13

eoi = —Kijej, we calculate the surface action at large r to be
1 . 4
T 8n / Kli a, = %IBrZ - -3—2- - 31 - (a/r)l’)%l
M(r) _ *
" El-' (2.45)
16 R .

Since the surface term falls like 1/r2 as r »> o, we find

vanishing action for the metric (2.26),

sfgl = 0. (2.46)
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We have already stated the topological arguments giving our

manifold the same Euler characteristic, y =2, as 32,

We confirm this fact using Chern's formula [14}]15]

y = 1 2 g% - a ¢
XM = g feabcde..Rd f Eabcd(zeb“Rd
M
OM(=)
b g8 .aC . g®
-4 ~0° o d)
= 2 iy = 2 ' (2.47)
2 2 _

Had we allowed Y to range over all of 83 instead of PB(IR),
we would have found twice this answer, X = 4. The apparent
disragreement between the topology and the Chern-Gauss-Bomnet theorem
for thé wrong 'w range shows that for 0 < ¥ < 4m, the manifold
would have "cone-tip" singularities af; r = a; this implies the
neceésity of cone~tip corrections (such as effective delta-functions
in the curvature at r = a) in order to adjust the Euler character-
istic to its correct:topological value. This does not seem to be a
very satisfactory physical situation, so that the proper range of
Y must indeed be 0 < ¢ < 2m,

To compute the signature T of our manifold M, we first com-

pute the integral of the first Pontrjagin class,

P.IM = /p = - 1 /TI‘(R ~ R)
1 1 2
X L (2.48)

= _3.

—2o- . e

The Chern-Simons boundary correction [16] vanishes,

-l = él_z '/Tr(e_i'\'R) = o. (2.49)
1 .

oM

The signature n-invariant .ng for the canonical metric on PB()'R)

has been computed by Atiyah, Patodi and Singer [17] to vanish also:

ny(PyR) = Fcot® (3)= o. (2.50)
Thus the signature of M is
M = L -q)-n, = 1 (2.51)
3 1 1 s * *

By the Atiyah-Patodi-Singer extension [17] of the Hirzebruch signature
theorem, there is exactly one anti-self-dual harmonic 2-form with
the .appropriate boundary conditions. ‘

The index Ié of the spin % Dirac operator in the

presence of the metric (2.26) is given by [17 [1%).,
I, = -2 (p[M -QfaM) -%(n, +n,) (2.52)
3 24 1 1 2 3 3 :

Atiyah [18] has extended the computation of ref. [17] +to the Dirac

case, with the result 1

3 4 sin % 4
hé = 0. (2.53)
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Thus

1, 1,1,y
Ié = —z(-3—0)—§(z) = 0, (2.54)

and there is no asymmetry between the right and ieft chirality
zero-frequency modes of the Dirac operator.

For the spin 3/2 Rarita-Schwinger éperator, the index is
given by

ot h3/2) ,

.2 by 1
I, = 5 (PIM -qBM) - 5(n,,

(2.55)

where we have'corrééted the result of ref. [19] +to include
boundary terms in the obvious way. Hanson and Romer [20] have
calculated the expression involving the Atiyah-Patodi-Singer

n-invariant with the result

(2.:56)

B NEN

N3/2 * Py/n.

There are thus two excess negative chirality spin 3/2 fields

obeying the Atiyah—Patodi-Singef boundary conditions,

. 2 1.5y -
I = 5 (=30 -3(-7 = -2 (2.57)

3/2

This is in agreement with the explicit construction of Hawking

and Pope [21], who build two spin 3/2 wave functions out of two

covariant constant spinors and the single anti-self-dual Maxwell

~24-

field whose existence is required by Eq. (2.51) for the signature.
The indicated spin 3/2 solutions may in fact follow directly from
an appropriate supersymmetry transformation.

While the spin. 2 index characterizing the number of anti-
self-dual perturbations about the metric (2.26) has not been
calculated at this time, there is at least one zero-frequency mode,

corresponding to adilatation, which is not a gauge transformation [22].

- - -2
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IIT. PROPERTIES OF MORE GENERAL METRICS

A. General Bianchi IX Ansatz

One might naturally ask what happens if the Ansatz (2.21) is

replaced by the most general-Ansatz giving a Bianehi IX metric [3],

is® = f'z(r)dr'2 + a2(f)ox2 + 1)'2(1')%,2 + _02(1'-)022.

(3.1)
For the-case

ar) = b = o), (32)

we find that self-duality implies a vanishing curvature and hence

“a flat metric. The case
a(r) = »(r) = 1, c(r) = glr) (3.3)

was our choice II of ref. [2], which we studied in the previous

seétion; the choice
a(r) = b(r) = g(r), efr) = 1 (3.4)

was case I of ref. [2]. While self-dual solutions of (3.3)
describe the regular manifold of Fig. 1, the self-dual solutions
of (3.4) . in fact have a singularity at finite proper distance and

are therefore unacceptable. .
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A general solution of .the self;duality equations for the
AMnsatz (3.1) has been given by Belinskii, Gibbons, Page and Pope

[3] . They find

fz(r)--= F_%(r) :.'r6a-2(r)b-2(r)c-2(r)

a2(r) = ‘rzFé(r)/(l -_(al/r)4)

' (3.5)
v(r) = PR - (ayr)h)

Ar) = PP - (aye)h)

where

Rr) = (1= (a/m))1 - (ayn)*)L = (ay)%)  (3.6)

and aj,8y,8; are constants. They find (see. also ref. [13] ) that
for general parameters as, these metriecs a}l have singularities at
finite proper distance and so describe physically ﬁnacceptable
manifolds. Only the particular degenerate case (3.3) described

in Section II allows a mechanism for "shielding" the naked singu-
larity inside the 82 at r = a so that geodesies cannot get

to it. (This is of course analogous to what happens in the

Fuclidean continuation of the Schwarzschild and Taub-NUT metries.)

B. Nuts and Bolts

Given a metric, cne of the most important things one must
know is whether or not its apparent singularities are removable.

The two known types of removable singularities have been christened
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"nuts" and "bolts" by Gibbons and Hawking [23] . A "Mut" is a
four;dimensional EA polar coordinate Singﬁlarity in a metric whiph
is flat at the origin, like the self-dual Euclidean Taub-MUT metric.
A "bolt" is a two-dimensional )R2 polar coordinate singularity in
a metric looking like 1R2 X Sz"near the origin, like (2.26). Nuts
carry one unit of Euler characteristic, while bolts carry two
units.’ v

- A precise formulation of the concepts of muts and bolts is as

follows [13] [23]: Consider the metric

ds2 = dT2 + az(r)ox2 + b2(T)0y2 + 02(1)022 , (3.5)

where a variable change has been made on (3.1) to convert the
coofdinate radius r into the proper distance (or propef time) T.
In general, one wouid require that a,b,c be finite and nonsingular
for finite T to get a regular manifold. (For infinite 71, this
restriction can be relaxed if the manifold has a suitable boundary at
T = ©.) However, the manifold can be regular even in the presence
of apparent singularities.

Let us for simplicity consider singularities occurring at

T = 0. A metric has a removable nut singularity provided that

near T =0, a“ =b" = ¢ = 1%, (3.6)

In this case at T = 0 we have simply a coordinate singularity in

4

the flat polar coordinate system on an R’ centered at T = 0. The

singularity is removed by changing to a local Cartesian coordinate

~-28~-

system near T = 0 and adding the point T = 0 to the manifold.
Near T = 0, the manifold is topologically HT4.

A metric has a removable bolt singularity if

a =1b° = finite
mear T =0, { ‘ (3.7)

c2 = n2T2, n = integer.

' , . 2
Here a2 = b2 multiplies the canonical 82 metric % (de2 + s1n26d¢ ),

while at constant (6,4), the (d'r2 + 02(1)022) piece of (3.5) looks

like

at° + n° 12%’- agl . (3.8)

Provided the range of n y/2 1is adjusted to O > 2w, the apparent
singularity at T =0 is nothing but a coordinate singularity in

the flat polar coordinate system on iRZ. Again, this singularity can
be removed by using Cartesian coordinates. The topology of the mani-
2

fold is locally ®° x 8 with the R shrinking to & point on g2

as - T >0,

C. The Fundamental Triplet of Self-Dual Metrics

The prototype of a metric with a single bolt is the metric
(2.26) introduced in ref. [2]. The removal of this singularity
was discussed in detail in Section II. The prototype of a metric

with a single nut is the self-dual Euclidean Taub-NUT metric [20]

ds? = % IAm oy % (r2 - m2)(d62 + éin29d¢2)

r-m

(3.9)

. m2 r-m
T+ m

(ap + cos 6d¢)°.
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To remove the apparent singularity at r = m, we first change to the

proper distance coordinate

a2 = %(: hd m) dr? (3.10)

and consider only the region r =m + €, € << m. Then

me

. + p\2
T = / %(H) ar ~ (2me)k (3.11)

m
The metric near € = 0 is thus

ds2 i d'r2 + -}: 2(dﬁ2 + sin® © dd>2)_ + % Tz(dlb + cos 6 dd>)2

2. 2 2 2 2 (3.12)
~ dt +r(ox+0y+dz)

end the condition (3.7) for a nut is met.

Both the bolt metrie (2.26) and the nut metric (3.9) ar;e
nonc¢ompact with boundary at «. A very instructive compact case
is the Fubini-Study metric on PZ(G:), which has both a nut and a
bolt. To see this, we first write the P2((D) metric in the form

[24]
5 dr2 + rzcz‘2 r2( o *to
ds ™ = + J

(1+ Ar°/6)° 1 + Ar°/6 ) (3.13)

Here A is the cosmological constantih Einstein's equations for this metriec.

As r » 0, we recover the flat metric and thus learn that r =0 is
a remévable nut singularity. The other interesting region is r = =,

" which we examine by changing variables to

._30_
u = % (3.14)
so that A - P
a8 = (v + 06) A(du® %F‘z(d“’ + cos 0d9)%)

. (3.15)°
N .1. (02 + s1n%6 a9°)/(u° + A/6) .

N N . . s 2 . 2 2
As u >0 (or r+®), the coefficient of (& + sin“ 0 d¢~)
stays finite while that of (ay + cos 6 dct))2 vanishes, so the bolt

criterion (3.7) is satisfied. At fixed (6,¢), we have for u -+ 0

as® ~ (6 A @l + 3o ). y (3.16)

Thus the singularity at u = 0 1is removable if

0 <Y< 4w, . (3.17)

and the constent-r manifolds in the P2(¢) metric are complete
SB'S, unlike those of the metric (2.26), which had P3($R)'s.
Modulo this difference, we are now led to group together the
P2(®) metric (3.13) or (3.15), the Taub-NUT metric (3.9) and our
"holt" metric (2.26) as a "fundamental triplet." We note that
both (3.9) and (2.26) have self-dual Riemann curvature tensors and
so satisfy Einstein's equations without a cosmological constant. The
P2(¢D) metric, in contrast, has a self-dual Weyl tensor w;vhich is
as close as one can get to having self-dual Riemann tensor if there

is a nonzero cosmological constant. The Taub-NUT metric and the
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PZ( c) netric both havg nuts at the origin, but Taub-NUT opens up at
infinity while PZ(G) compactifies. On the other hénd, our metric
(2.26) at the origin looks like ‘the Pz(w) metric at infinity -

both have bolts at these locations; fuithermore, the flat infinity

of (2.26) strongly resembles the flat (but compact) origin of

P2(G). Figure 2 gives a schematic representation of the relationships

among the manifolds described by these three metrics.

We next make the remark that all three of the metrics just
discussed are derivable from a more geﬁeral three-parameter Euclidean-
Taub-NUT-de Sitter metric, although some hindsight is necessary to
notice the existence of the appropriate singular limits. If we
write the general Taub-NUT-de Sitter metric as

2 2

2 ~ I 2 . 1R
ds” = L‘"ZL_ o™+ (D»2-L2)(ox2+02)+—-———-—gLA2 ozz,
4
. p -L
(3.18)
where
A= o ap 1 2 e 2% -3, (3.19)
then the choice
A= 0, M = L (3.20)

immediately gives the self-dual Taub-NUT metric (3.9). If we set

1

M= M1 3

) (3.21a)

and take the limit [24]
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L >

with (3.21b)
p2 - L2 = r2/(1 + % Ar2) fixed,

we recover the Fubini-Study PZ(G) metric in the coordinate system

(3.13)." Finally, our metric (2.26) -can be reproduced by setting

4 2
M = L<l+a—4+ AL) s (3.22)
8L 3

putting A = 0 and taking the limit
with (3.23)

This is a rather peculiar 1limit which has previously escaped attention.
If we keep A # 0, we find a new metric resembling (2.26) except that
it satisfies Einstein's equations with nonzero cosmological term,

2

2 - dr 2 2 2
ds< = : + r(o +07)
1- (a/r)l’ - %_ x ¥
] )'z, s o 2 | : (3.24)
r - a/r —T Z 3. 4

By taking an appropriate limit of this metric, we can eliminate the

singularity and obtain a metric on 82 X S2with a twist.
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Another amusing comparison which we may make among these
three metrics involves their natural self-dual Maxwell fields. For
P2(C), Trautman [11] observed. that the metric possessed a
natural (anti) self-dual Maxwell field given by the PZ(E) Kahler

form,
F = 2(eo/\ 3 - el ~e?d s (3.25)

where €2 = [dr(l ¢ 1e?/6)7, ro (1 + Mm2s6yE, ro (1 + Ar?/6)72,

roz(l + Ar2/6)_1}. Since {anti) self-dual Maxwell fields have
vanishing energy-momentum tensor, the Binstein equations are undis-
turbed and we have an automatic solution of the Einstein-Maxwell
equations (see also ref. [24]). For the Taub-NUT metric, it is also

easy to find the Maxwell field

A = I-m
r+m 2z )
(3.26)
F = 1 S e - e3 el A e2)
(r + m)
where .
a r+m)d 2 243 2 23 r - nf
e” = (r — m) dr, Ar" - n") O 2(r" - m) Oy, 2 (r < m)

o)
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The Maxwell field for our metric (2.26) was presented earlier in

Eq. (2.30). We note for comparison that the Taub-NUT Maxwell field

while (2.30) has the'l/r4 behavior of the Yang;Mills instanton.
The PZ(G) field (3.25), on the other hand, is constant everywhere.

- Finally, we give a brief summary of the topological invariants
of the fundamental triplet of metrics. Pz(w) is the easiest, since
it is a compact manifold without boundary. Because Pz(m) has a bolt
and a nut, its Euler characteristic is yx =.2 + 1 = 3, while the
signature is 1 = 1. If P2(¢) were a spin manifold, the spin %

index would be

I |
I% = g g (3.27)
Since I§ must be an integer for a manifold admitting well-defined

spinor structure, we confirm the fact that PZ(G) has no spin
structure. For the Taub-NUT ﬁetric, X =1 and the spin 4 index
with boundary corrections vanishes [15]. For the metric (2.26),

the topological invariants were previously given in Egs. (2.47-54).

A tabulation of the properties of the fundamental triplet is presented
in Table 2 alongside the properties of the K3 manifold mentioned in

the Introduction.
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As before, we need the periodicity (4.5) for a regular manifold,

but now one finds
(s =0, n= 1) = flat space metric. (4.11)

The boundary at « for n =1 "is just the Euclidean space boundary
s3.

For n = 2, one finds a two-nut metric with nonzero Riemann
tensor. In this case the boundary at « 1is the same lens space
83/Z2 = P3 (R) found for our metric (2.26) and also the curvature

invariants are the same; +thus it seems certain that

(e = 0,n = 2) = the metric (2.26) (4.12)

up to a singular change of frame. For higher values of n,
the boundary at « consists of 83 with points identified under
the action of the cyciic group of order n.

We -conclude that in general the»multicentef metric _(4.1-4.4)
with € = O strongly parallels the Jackiw-Nohl-Rebbl multi-instanton
solution [25]. In particular, there are (n +-1) positions appearing

in the description of the "n-instanton" solution.

The topological invariants for the e = 0 metric are [21]

X = n
T = % (n-1)
- (4.13)
11/2 = 0
13/2 = 2t =%2(n-1),

18-

There is in fact a general .theorem showing that the spin 1£2 index
vanishes for asymptotically flat self-dual metries [13]. We are

led to conclqde that for gravity, a spin»3/2 axial anomaly féplaées'v
the spin 1/2 axial apomaly induéed»by Yang-Mills iﬁséantons.: Thué,.
the roles of gravitational and Yang-Mﬁlls instaﬁtbns in symmetry

breaking may be summarized as follows:

[l
<3

Yang-Mills solution), Chern class k =+ Dirac index

1

Einstein solution, signature T + Rarita-Schwinger index = 2T.

(4.14)

We conclude with the remark that we can write down natural
self-dual Maxwell fields for the multicenter metrics just as we did

for the metries in previous Sections. One such field is

A

]

vi(ay + » + dx)
i

‘= _2 ° ~ 3’. j
F aa = vV 8iV(e e tse e

(4.15)

C. More General Metrics

We have now seen the natural appearance of higher order 1éns
spaces of $3 in the multicenter self-dual Einstein metries (4.1).
Hitchin [5] has examined the known complete classification of spheri-
esl forms of s3 and has found regular coﬁplex algebraic manifolds with
boundaries corresponding to each spherical form. ItAis conjectured that
a unique self-dual metric can be obtained for each of these manifolds
using the Penrose twistor construction [27l. Although this subject

is not completely understood at this time, let us at least list the
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spherical forms of 83 corresponding to each possible asymptotically
locally Euclidean self-dual metric. The spherical forms areclassified

according to their associated discrete groups as follows [28]:

Series Ak : czélic group of order k
(= lens spaces "L(k + 1,1))
Series Dk : dihedral group of order k

T : tetrahedral group
0 ¢ octahedral group = cubic group
I. : icosahedral group = dodecahedral group .

We note that our metric (2.26) corresponds to Al" while the general
n-cehiter metric (4.1) corresponds to Ah;l'
If we could derive self-dual metries for the manifolds having
each of these spherical forms as boundaries, the problem of finding
zero-action solutions of the Euclidean Einstein equations-would be

essentially solved. We would theﬁ have a better uﬁderstanding of the

structure of the vacuum in quantum grayity.
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-V CONCLUSIONS

The.discovery of the self-dual instanton solutions to Euclidean
Yang~-Mills theory suggested the possibility that analogous solutions
to the Euclidean Einstein equations might bé impértant in'quantum
gravity. nge we have discussed a number of self-dual solutions to
Euclidean grévity and indicated their properties. We have con-
centrated particularly on the asymptotically locally Euclidean metrics,
of which the authors' solution (2.26) is the simplest nontrivial
example. These gravity solutions‘have properties which are
strikingly similar to those of the Yang-Mills instanton solutions:

(1) They describe gravitational excitations which are local-
ized in Euclidean spacetime.

(2) Their metrics approach an asymptotically locally
Euclidean vacuum metric at infinity.

(3) They have nontrivial topological quantum numbers.
However, there are also some important distinctions between the two
sets of solutions: _

(1) The gravity solutions contribute only to the spin 3/2
axial anomaly, while the Yang-Mills solutions contribute
to the spin 1/2 axial anomaly.

(2) The gravity solutions have zero action, while the‘
Yang-Mills solutions have finite action.

The pairing of thé Yang-Mills field with the spin 1/2 anomaly

and the pairing of gravity with the spin 3/2 anomaly are very likely
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due to the existence of supersymmetry. It would be interesting to see
whether supersymmetry gives any further insight into the structure of
these systems.

As is well—kﬁown,'the'finite Yang-Mills instanton action
impiies the suppression of tﬁe transition amplitude between topologi-
cally inequivalent sectors of the.theory. On the other hand, in
gravity there appears to be no such suppression. The vanishing
action of asymptétically locally Euclidean self-dual metrics implies
that in the path integral they have the same weight as the flat
vacuum metric. Thus these solutions ﬁill presumably be of central

importance in understanding quantum gravity.
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FIGURE CAPTIONS.

Fig. 1: The manifold T*(Pl( (L'”)) described by the metric (2.26).
For fixed S? coordinates (6,9), the manifold has local
topology fR2 x 82. Constant radius hypersurfaces have the
topology of PBOR)' At =, the metric on the boundary is
the canonical P3(yR) metric. As u~> 0 [Eq. (2.36)] or
equivalently, as r + a [Eq. (2:26)], the manifold shrinks
to 5% =P (o).

Fig. 2: Relations among the manifolds of our metric (2.26), the
self-dual Taub-NUT metric ( 3.9) énd the Fubini-Study metriec

(3.13) or (3.15) on P(C).



TABLE I:

equations.

Property

Metric
Structure equation

Connection
Curvature

Dual Curvature or

Connection:

Bianchi identity

Cyclic identity

Euler egquation

Automatic solution

First order

automatic solution

Basic function
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Yang-Mi 1ls
a
_ e T H
A=d x&

=2 u\)z—ldx/‘dx
%a _ 1 a
Fiv™ 7 SuvopTos

a
1Mt M
%—2%;\)21(1}{ dx

Comparison of the Euclidean Yang-Mills and Einstein

Einstein
3
d82= 2 (ea)2
a=0 S p
O=dea+wab/\e
a _ b _ a u
wb—-wa mbudx.
a _ a a c
Rb—dwb\*uuc b
_1pa e,
=rRyqene
"
R? -1l¢ €
bed 2 abefRfcd
a _ 1% a
ﬁb—ﬁkbme e
’\'a_]_ ¢
wb_Zeabcdwd

Rab"eb=0
e -
+€abcdecd 0

Yva , b
Rb e =0

a -

i Rbc‘b 0
Va

a = %
‘Rb _Rb
a v
wb—-iwb

e® (x)
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Table II: Properties of the fundamental tfiplet of self-dual
metrics compared with the self-dual metric of the
K3 manifold.
ref. [2] Taub-NUT Fubini-Study K3
Metric [Eq. (2.26) “Eq. (3.9) Eq. (3.13) explicit
form
unknown
Cosmological A= o K= 0 A#£O A=0
Constant
R * 4

Manifold T (Pl((t) R P2(G) K3

- Origin s%(Bolt) . Point (Nut) - Point(Nut) -

- Infinity P3(1R) distorted 83 SZ( Bolt) -
- Boundary PB(tR) distorted 83 none none
Euler

Characteristic 2 1 3 24
Hirzebruch
Signature -1 0 1 -16
Dirac Spin-3
Index o} 0 (no spinors) 2
Maxwell Field 4 >
Strength ~v1/r ~v1/r 1 ?
Rarita- - .
Schwinger Spimr -2 ? (no spinors) ~42
3/2 Index
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