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ABSTRACT 

Recent work on Euclidean self-dual gravitational fields is 

reviewed. We discuss various solutions to the Einstein equations and 

treat asymptoticallY locally Euclidean self-dual rnetrics in detail. 

These latter solutions have vanishing classical action and nontrivial 

topological invariants, and so may play a role in quantum gravity 

resembling that of the Yang-Mills instantons. 
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1. INTRODUCTION 

The discoverY of self~dual instanton solutions in Euclidean 

Yang-Mills theory [1] has recently stimulated a great deal of 

interest in self-dual solutions to Einstein's theory of gravitation. 

One would expect that the relevant instant on-like metrics would be 

those.whose gravitational fields are self-dual, localized in Euclidean 

spacetime and free of singularities. In fact, solutions have been 

found which have the additional interesting property that the metric 

approaches a flat metric at infinity. These solutions are called 

"asymptotically locally Euclidean" metrics because, in spite of their 

asymptotically flat local character, their global topology at infinity 

differs from that of ordinary Euclidean space. Since the Yang-Mills 

instanton potential approaches a pure gauge at infinity, this class 

of Einstein solutions closely resembles the Yang-Mills case. 

The first examples of asymptoticallY locally Euclidean metrics 

were the self-dual solutions given by the authors in ref. [~. 

Belinskii, Gibbons, Page and Pope [J] then studied the general class 

of self-dual Euclidean Bianchi type IX rnetrics and showed that only 

metric II of ref. [2] could describe a nonsingular manifold. Gibbons 

and Hawking [4] have now exhibited an entire series of such rnetrics. 

In fact, very general classes of manifolds which could admit self-

dual asymptotically locally Euclidean rnetrics have recently been 

identified by Hitchin [51-. 

Asymptotically locally Euclidean self-dual metrics have a 

number of special properties. For one thing, they have zero action 

and so must be quite important in the path integral. Secondly, since 
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the metrics become flat and the gravitational interactions are 

switched off at infinity, standard asymptotic-state methods can be 

applied to analyze the quantum effects of such metrics. 

For completeness, let us summariz~ various stages of the search 

for gravitational instantons which took place before the discovery of 

asymptotically locally Euclidean metrics. The first step was the 

identification of the Euler characteristic and Hirzebruch signature 

of a manifold as the appropriate gravitational analogs of the Yang­

Mills topological invariants [6] 17]. A number of standard Riemannian 

manifolds were of course considered as logical candidates for 

gravitational instantons. The most remarkable of these, the K3 

surface, is the only compact regular four-dimensional manifold without 

boundary which admits a metric with self-dual curvature [m; this 

metric would therefore satisfy Einstein's equations -.'lith vanishing 

cosmological constant. Unfortunately, the explicit form of the K3 

metric has so far eluded discovery. 

The first known riletrics which come to mind are the standard 

solutions of black hole physics. While all black hole solutions 

arise in Minkowski spacetime, they can be continued also to the 

Euclidean regime to produce positive-definite singularity-free 

metrics [9] [10]. These continued metrics are periodic in the new 

time variable, which is associated with the thermodynamic temperature, 

and decay only in the three spatial directions. One example of such 

a metric is the self-dual Euclidean Taub-NUT solution examined by 

Hawking [10]. In this case Einstein'S equations are satisfied with 

zero cosmological constant, and the manifold is ~4 with a boundary 
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which is a twisted three-sphere S3 possessing a distorted 

metric. The metric is not asymptotically flat because it does not 

falloff in all four asymptotic spacetime directions. 

Another interesting case is the Fubini-Study metric on P2(~)' 

two-dimensional complex projective space, studied by Eguchi and 

Freund [7] [2/,! •. This manifold is compact without boundary and has 

constant scalar curvature. The metric has self-dual Weyl tensor 

rather than self-dual curvature, and so solves Einstein'S equations 

with nonzero cosmological term. One drawback is that P2(a) does not 

admit well-defined Dirac spinors. Nevertheless, one can construct a 

more general type of acceptable spin structure on P2(~) by adding 

a Maxwell field to the theory [11]. 

All of the metrics just described are in some sense self-dual, 

are regular and have finite action, but are not asymptotically flat. 

The gravitational fieldsof such metrics persist throughout spacetime 

and make it difficult to define the asymptotic plane-wave states 

necessary for ordinary scattering theory. Although these metrics are 

very interesting, they do not quite coincide with our intuitive 

picture of instantons as localized excitations in Euclidean spacetime 

which approach the vacuum at infinity. In contrast, the asymptoticallY 

locally Euclidean metrics seem to be very naturally identifiable as 

gravitational instantons. 

The remainder of the paper is organized as follows: Section 

II contains a complete explanation of the derivation of the regular 

asymptotically flat self-dual solution presented in ref. f2]. 

r: " 
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In Section III, we examine the properties of various other metrics 

which have instant on-like properties. Section IV is devoted to 

self-dual multicentermetricsand Section V contains concluding 

remarks. 
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II. AN ASYMPTOTICAlLY FLAT SELF-DUAL 

SOLUTION OF EUCLIDEAN GRAVITY 

We now derive the simplest regular asymptotically flat self-

dual solution of Euclidean gravity, which was labeled as metric II in 

ref. [2]. Let us begin by reviewing a procedure by which one can 

solve the Yang-Mills equations to obtain the instanton solution [1] 

and noting possible gravitational parallels. To obtain the 

instanton, we do the following: 

(l) Observe that the Yang-Mills equations 

a F + [A ,F 1 0, ]J ]JV ]J]JV 

where F a A a A + [A ,A ], are solved at once ]JV ]J v v ]J ]J -~ 

due to the Bianchi identities if 

F 
]JV ± 't ]JV 

(2) Choose the Ansatz 

+ 1 F 
- '2 £]JvClB as 

A]J per} g-la]Jg 

for the Sue 2} gauge potential, where 2 
r 

2 .... 2 
t + x , 

.... .... .... 
g = (t - iT • x)/r, and {T} are the Pauli matrices. 

(3) Solve the first-order differential equation 

, 2 
p(r)+-p(p-l} 

r 

obtained by setting F = 't ; ].IV ]JV 

p 
222 r/(r +a} 

o 

we find 



-7-

In this way, we find a Euclidean SU(2) Yang-Mills solution with 

finite action, self-dual F~v localized at r = 0 and falling like 

1/r4 at infinity, and A asymptotically a pure gauge at infinity. 
~ . 

We wish to find a Euclidean gravity solution with finite 

action, self-dual curvature localized inside the manifold and falling 

rapidly at infinity, and with the metri~ asymptotically locally 

Euclidean at infinity. We might therefore search for such a solution 

by undertaking the following gravitational analogs of the Yang-Mills 

procedure: 

(1) Observe that if the spin connection I-form w
a b is 

self-dual (i. e., o 
W i 

+ 1 j ) 
- 2" E:ijkW k ' the curvature 

2-form Ra
b is self-dual, so Einstein's equations are 

satisfied at once due to the cyclic identities. 

(2) Choose an Ansatz for g (x) which differs from a nat 
~v 

Euclidean metric by functions of r2 = t 2 +;? alone. 

(J) Solve the first-order differential equations in the 

metric obtained by requiring wa
b to be self-dual. 

A. Preliminaries. 

First we establish some useful notation and explain more fully 

the essential concepts appearing in the procedure just outlined. We 

let the four Euclidean coordinates be x~ (t,x,y,z) so that the 

flat metric is given by 

2 2 222 ds dt + dx + dy + dz . (2.1 ) 
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We next change to four-dimensional polar coordinates with r2 

2 2 2 2 . t + x + y + Z and def1ne 

o 
x ~ (xdt - tdx + ydz - zdy) 

r 
~ (sin Wd6 - sin 6 cos Wd~) 

o y 
1 2 (ydt - tdy + zdx - xdz) 

r 
~ (-cos Wd6 - sin 6 sin Wd$) 

o z 
1 2 (zdt - tdz + xdy - ydx) 

r 
~ (dW + cos 6dcj». 

(2.2 ) 

The variables 6,~, ware Euler angles on the three-sphere SJ 

with ranges 

O~6~TT 

o ~ </> ~ 2TT 

O~W~4TT (2.J) 

and are related to the Cartesian coordinates by 

x + iy 
6 . 

r cos 2" exp ~ (W + ~) 

z + it r sin ~ exp ~ (W - ~). 

( 2.4) 

The differential I-forms (2.2) are closely related to the Cartan-

Maurer forms for SU(2) and obey the following structure equations 

under exterior differentiation: 

do x 20 1\ 0, cyclic. y z (2.5) 

I 
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The flat metric can now be written in polar coordinates as 

2 222 ;> ;> ds dr +r(o +0- +0-). 
X Y z 

(2.6 ) 

Next we write an arbitrary metric in terms of the local 

orthonormal vierbein frame e a ( x), 
~ 

3 
2 ~ v 

ds = dx ~v(X)dx 1: (ea )2 , 
a=O 

(2.7) 

where e a :;; ea~dx~. The spin connection wab is then a one-form 

determined uniquely by the structure equations [121 

a a b 
de +wb"e 

a 
w b -wb 

a 

o 

a ~ 
w b~dx . ( 2.S) 

Greek indices are raised and lowered with g~v' while Latin indices 

are raised and lowered. by the flat metric 0ab. Vierbeins and inverse 

vierbeins interconvert Latin and Greek indices. 

where 

The curvature is now defined as the two-form 

Ra 
b 

Ra 
b 

a a c 
dWb+wc""wb 

1 a 2" R b~v dx~ A dxV 1 a c d 
2' R bcd e A e • 

(2.9 ) 

By exterior differentiation of (2.S), we find the cyclic identity, 

Ra 
b 

b 
A e o + E

ebcd 
Ra

bCd o. (2.10 ) 
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We now define the "dual" of the two-form R\ in its free indices as 

? 
b 

1 c 
2' EabcdR d· 

Then it is easy to show that Einstein's equations 

Rac 
bc 

~~ a v 
FI.." ve ~eb 0, 

,where ~~v' is the Ricci tensor, are equivalent to 

'l..a b 
!1. b A. e O. 

(2.11) 

(2.12a) 

(2.l2b) 

(One must take appropriate sums and differences of various components 

to prove the equivalence.) 

Ra 
b 

Therefore if R\ 

±1l.\, 

is (anti) self-dual, 

(2.13 ) 

the cyclic identity (2.10) implies that the Einstein equations 

(2.12) are satisfied. This is the analog for gravitation of the fact 

that self-dual Yang-Mills fields automatically satisfy the equations 

of motion. However, Eq. (2.13) is still a second-order differential 

equation in the vierbeins ea~(x). It is remarkable that we can 

now go one step further and deduce the Einstein equations from 

a first-order differential equation in the fundamental variables, just 

as in the Yang-Mills case. We simply observe that Eq. (2;9) can be 

written 



R2 
3 

RO 
1 

Thus if 

o 
W i 
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2 + 2 A 0 + 2 1 
dw 3 Wo W 3 W 1 A W 3 

d 0 0 A 2 + 0 A 3 
W 1 + W 2 W 1 W 3 . W 1 

+ 1 j 
- '2 £ijk W k 

cyclic, 

( 2.14) 

cyclic. 

(2.15 ) 

is obeyed, then Eq. (2.13) is immediately satisfied. Defining 

"'a 
wb 

1. c 
'2 £abcdw d' 

we see that the first-order condition on 

a + "'a 
W b - W b 

a 
e ll' 

is a sufficient condition for the. self-duality of 

for solving the Einstein equations. 

(2.16 ) 

( 2.17) 

a 
R b' and hence 

In fact, Eq. (2.17) is also necessary for a self-dual Ra
b 

in the following sense: if Eq. (2.13) is satisfied, one can always 

transform wab by an 0(4) gauge transformation into the form 

(2.17). To see this, we examine the change in wab when the ortho­

normal frame specified by ea is rotated by an x-dependent orthogonal 

transformation A\(x): 

fa 
e (A-l)a b 

b e (2.18 ) 
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A simple calculation using the structure equation (2.8) shows that 

the form of the structure equation is preserved if we identify the 

new spin connection as 

fa 
W b (A-l)acwc

d 
Ad

b 
+ (A-1)a

c 
d A\. (2.19) 

Thus W\ transforms exactly like an O( 4) Yang-Mills gauge potential. 

Furthermore, the curvature behaves as 

fa 
R b (A-l)a

c 
RC

d 
Ad

b
• ( 2.20) 

The conclusion of our argument is as follows: Suppose R
a
b 

is self-dual, but wab is not. Then split wab into self-dual 

and anti-self-dual parts; one can explicitly construct a Aa
b which 

will gauge transform away the anti-self-dual.part. Since self-duality 

a 
of R b is preserved under the orthogonal transformation (2.20), 

we find that any self-dual curvature comes from a self-dual 

connection if a "self-dual gauge" is chosen. 

In Table 1, we present a summary of these results and compare 

them with the analogous properties of' Yang-Mills theories in differen­

tial-form notation. The point is that although the Euler equations 

of the Einstein and Yang-Mills theories are quite different, they 

both are automaticallY solved when the spin connections or field 

strengths obey the appropriate self-duality conditions. In gravity, 

the self-duality condition (2.17) is a first-order differential 

equation in the vierbein ea (x), while in Yang-Mills the self-duality 
II 
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\.1\1 

± ~ 
\.1\1 
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is first-order in the potentials A
a

( x). 
\.1 

We remark that the difference ,between Yang-Miils theory and Einstein's 

theory in the orthonormal frame basis is that the gravity 0(4) 

nections wa
b follow from the metric and thus guarantee that 

con-

Ra 
b 

obeys the cyclic identity. No such additional restriction occurs in 

general in an 0(4) Yang~Mills theory since the group indices and 

the spacetime indices are uncorrelated. 

B. The Metric Ansatz 

We now continue to follow the pattern observed in Yang-Mills 

theories by choosing a metric Ansatz differing from the flat metric 

by functions of the ,radius alone. We choose to examine the axially 

symmetric Ansatz 

dS
2 2 .2 2 2 2 2 2 f (r)ar + r (0 + 0 + g (r)o ). 

x y , ,z 
(2.2l) 

(This was Ansatz II of ref. [2].) More general Ansatze will be 

examined in the next Section. 

If we decompose the metric (2.21) into the orthonormal vierbein 

basis 

a 
e (f(r)dr, ro , ro , rg(r)o ), 

x y z 
(2.22 ) 

we find that the structure equations (2.8) give the spin connections 

1 
w 0 

2 
W 0' 

3 
w 0 

1 1 
rf e 

1 2 -e rf 

, 
[ ..!. + LJ e3 
rf fg 

-14-

2 
W 3 

W3 
1 

1 
w 2 

g 1 
r e 

[ e 2 
r 

2 - g2 e3. (2.2]) 
rg 

With our choice of orientation, we are, led to impose anti-self-duality 

on the a 
w b' leading to the differential equations 

fg 

g + rg 

1 

2 f(2-g). 

These equations are integrable, with the result 

2 g (r) f-2( r) 1 - (aIr )4; 

where ~ is the integration constant. 

Hence we find a new metric [ 2] 

(2.24 ) 

(2.25 ) 

ds2 [1 - (a/r)4]-1 dr2 + r2(0 2 + 0 2) + r2[l _ (a/r)4]0 2 
x y , z 

(2.26 ) 

which satisfies the Euclidean empty space Einstein equations. The 

spin cOnnections are 
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wl w2 [1 - (a/r )4]ia [1 - (a/r hiel/r 0 3 " 
w2 w3 [1 - (alrhiay 41.. 2 (2.27 ) 0 1 [1 - (a/I') ]2e II' 

w3 . 1 [1 + (a/r )4] a . [1 + (a/r)4]e31(r[1 _ (a/r)4]i). 
0 w 2 . Z 

We easily compute the curvature components to be 

Rl R2 2a4 
el ~ e 0 2 ~ e3 ) 

0 3 -6 + e 
I' 

R2 R3 2a4 
e2 ~ eO + e 3 ~ el ) 

0 1 -6 
I' (2.28 ) 

R3 Rl + 4a4 3 0 1 2 
0 2 6 (e ~ e + e ~ e ) 

I' 

It is straightforward to construct also a combined solution 

of the Maxwell-Einstein equations in the presence of the metric 

(2.26). Choosing the potential 

A 1 a 
2" Z I' 

one finds the field strength 

F dA 
2 3 0 1 2 /; (e ~ e + e ~ e ). 

I' 

(2.29 ) 

(2.]0) 

Since F is anti-self-dual, it is harmonic and has vaniShing 

(Euclidean) energy-momentum tensor. Thus Einstein's equations retain 

their emp~-space form and the Maxwell-Einstein equations are 
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automatically satisfied. As we will demonstrate shortly, the 

coordinate system "origin" occurs at I' = a and the manifold is 

regular there, so F is regUlar and finite everywhere. (The 

other two anti-self-dual Maxwell fields that naturally present them-

selVes,·with ~ = r
2
a/(r4 - a4 ) and A2 r 2a l(r4 _ a4 ) y , 

.. 4 4 -1 1 0 2 3 are F 1 = 2( I' - a ). (e ~ e + e ~ e ) and F = 2( 4 4)-1 2 I' - a 
2 0 3 1 . 

(e ~ e + e ~ e ) and are thus singular.) Suggestively, the 

l/r4 asymptotic behavior of the Maxwell field (2.30) is the same 

as that of the Yang-Mills instanton. 

c. Properties of the Manifold 

We now need to determine whether there are any true singular-

ities in the new metric (2.26) and whether it describes a geodesically 

complete manifold [3]. We begin by writing the metric in several 

alternative forms. First, let 

then 

ds 2 

p4 r4 _ a4j 

[1 + (alp )4] -i {dP2 + p2a Z 
2} 

+ [1 + (a/P)4]~{p2a/ + p2a/} . 

(2.31 ) 

(2.32 ) 

These coordinates are well-adapted to converting the metric into 

complex form using 

Zl x + iy Z2 Z + it 

2 + 
P zl zl z2z2 
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One then finds two equivalent ways of writing the metric in terms of 

a Kahler form [5] [13] on 0;2 -{oJ: 

The 

at 

1) K 

2) K 

2 p _ _ 4 

[ 
4 --n (dzl dZi + dz2dz2 ) + a 1 aaRn( p2) 

p + a ] [p4 + a4] 

aa R.n 4>, 4> 
p2 exp [p4 + a4]i 
a2 + [p4 + a4r! 

(2.33a) 

(2.33b) 

aa R.n p2 term in these forms causes problems at P 0 (i. e. 

r = a). However, this apparent singularity can be removed if 

one identifies opposite points of the manifold, 

(Zl,Z2) '" (-Zl,-z2) 

or (2.34) 

(~) '" (-~). 

We next give a more elementary explanation of this fact. 

First, let us change radial variables once again by defining 

2 2· 4 u r [1 - (air) ] . (2.35 ) 

Then the metric can. be written 

2 2 4 2 2 2 222 ds du 1[1 + (air)] + u 0 + r (0 + 0 ). 
Z x y 

(2.]6) 
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Very near to the apparent singularity at r = a, or, equivalently, 

u 0, we have 

2 1 2 1 2 . 2 a2 2 . 2 2 
ds '" 7; du + 7; u (d1jJ + cos e d4> ) + 7; (de + s:m ed4> ). 

(2.37) 

For fixed e and 4>, we obtain 

ds2 "" ~du2 + u2d1jJ2). (2.38) 

A short exercise tells us whether or not the singularity at 

u = 0 is real or is a removable polar coordinate singularity. We 

simply note that the apparent r = 0 singularity in the m2 metric 

dS2 dx2 + dy2 dr2 + r2d~2 ( 2.]9) 

is removable provided that 

o < ~ < 2rr. (2.40 ) 

We therefore conclude that if the range 0 < 1jJ < 4rr given by 

Eq. (2.5) is changed to 

o < 1jJ < 2rr, (2.41) 

we can remove the apparent singularity at r = a and obtain a geo-

desically complete manifold. 

The global topology of our manifold is now the following: 

Near r = a, the manifold has the topology ~2 x S2 indicated by' 
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Equation (2.)7). To be precise, at each point of the two-sphere 

parametrized by (e,CP), there is attached an ffi2 which shrinks 

to a point as r .... a (u .... 0). The manifold is thus homotopic to S2 

and has the same Euler Characteristic as S2, x = 2. 

For large r, the metric approaches a flat metric. However, 

because of the altered range (2.41) of ljI, the constant-r hyper-

surfaces are not three-spheres, but three-spheres with opposite 

points identified. The boundary as r .... 00 is thus the familiar group 

manifold or soC 3) =P 3(rR) , for which S3 = SUe 2) is the double 

covering. This is-an explicit example of a metric whose topology 

is asymptotically locally Euclidean (P
3
(m) = s3/z2 ), but not 

globally Euclidean (i. e. not S3). 

It can be shown [51 that the entire manifold M we have 

just described is in fact the cotangent bundle of the complex plane, 

PI(~) ~ S2, and so we may write 

* M T (Pl(~» 

( 2.42) 

aM ppn. 

In Figure 1, we present a description of the topology of the 

manifold which we have deduced from the metric (2.26) and the 

regularity requirements. 
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D. Action and Topological Invariants 

Using the connections and curvatures (2.27) and (2.28) for 

the metric (2.26) with the ,ljI-range (2.41), we now calculate the 

various integrals Characterizing the solution. Since our manifold has 

a non-empty boundary surface, we willrepe~tedlY need the, second 

fundamental form, 

sa 
b w\ - (wo)\' ( 2.43) 

to compute boundary corrections. If we choose the radial direction 

as the direction everywhere normal to the boundary, (wO)a
b 

is 

the connection of the product metric for fixed r O' 

di [1'- (a/ro )41-l dr2 
+ ro2(a/ + 0/ + [1 - (a/ro)~laz~. 

(2.44 ) 

Since our scalar curvature is identically zero, the entire 

action comes from the surface term [9] . Defining Ki. 
J 

by [ 13] 
o .. 

S i = -rjeJ , we calculate the surface action at large r to be 

-8~f Ki. 
1. 

dI: TI [ 2 a 4 2 4 i '8 3r - 2" - 3r (1 - (a/r) ) ] 

aM(r) 

TI a4 
'V 16 2" 

r 

r 

(2.45 ) 

Since the surface term falls'like l/r2 as r .... 00, we find 

vanishing action for the metric (2.26), 

S[ g] o. (2.46 ) 
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We have already stated the topological arguments giving our 

manifold the same Euler characteristic, X = 2, as S~ 

We confirm this fact using Chern r s formula 114] I 15] 

x(M) 1 (I __ e: Ra c 
32n2 abcd bAR d -

M-

3 1 2 - (-2) 2. 

1 e:abcd~S\ A R
C

d 

aM( co) 

_ i sa ABc A.Be )\, 
3 b . e d'l 

(2.47) 

Had we allowed 1/1 to range over all of S3 instead of P 3(1R) , 

we would have found twice this answer, X 4. The apparent 

disagreement between the topology and the Chern-Gauss-Bonnet theorem 

for the wrong 1/1 range shows that for 0 < 1/1 < 4n, the manifold 

would have "cone-tip" singularities at r a; this implies the 

necessity of cone-tip corrections (such as effective delta-functions 

in the curvature at r = a) in order to adjust the Euler character-

istic to its correct topological value. This does not seem to be a 

very satisfactorY physical situation, so that the proper range of 

1/1 must indeed be 0 < 1/1 < 2n. 

To compute the signature T of our manifold M, we first com-

pute the integral of the first Pontrjagin class, 

PIIM] jPl 
M 

-3. 

1 

8n2 
j Tr(R '" R) 

M 
( 2.48) 
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The Chern-Simons boundary correction 116] vanishes, 

- ~I aM] 8~2 jTr(SAR) 

aM 

o. (2.49 ) 

The signature n-invariant ns for the canonical metric on P 3(rR) 

has been computed by Atiyah, Patodi and Singer 117J to vanish also: 

ns(P}/R» 
1 2 n) 4' cot (2' 

Thus the signature of M is 

'riM] 1. (P - Q ) - n 3 lIs 

o. (2.50) 

-1 • (2.51 ) 

By the Atiyah-Patodi-Singer extension 117] of the Hirzebruch signature 

theorem, there is exactly one anti-self-dual harmonic 2-form with 

the appropriate boundary conditions. 

The index It of the spin t Dirac operator in the 

presence of the metric (2.26) is given by I 17] 115]., 

It - 2
1
4 (PIIMl - Qll aMI) - - ~ (nt + h t ). (2.52 ) 

Atiyah I 18] has extended the computation of ref. 117] to the Dirac 

case, with the result 

1 1 1 nt 4' --:--2if 4' sm 2 

h
t 

o. ( 2.53) 
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Thus 

I~ - 1:.. (-J-O) - ~ (k.) 
24 2 4 

o , (2.54 ) 

and there is no asymmetry between the right and left chirality 

zero-frequency modes of the Dirac operator. 

For the spin 3/2 Rarita-Schwinger operator, the index is 

given by 

I3/2 
1 . ) ~Z (P1[M] -Ql[aMl) - 2(n3/ 2 + h3/2 ' 

( 2.55 ) 

where we have corrected the result of ref. [19] to include 

boundary terms in the obvious way. Hanson and Romer [ 20] have 

calculated the expression involving the Atiyah-Patodi-Singer 

n-invariant with the result 

n3/2 + h3/ 2. 
5 

-I; (2.56) 

There are thus two excess negative chirality spin 3/2 fields 

obeying the Atiyah-Patodi-Singer boundary conditions, 

I 21 3/2 24 (-3-0 ) 
1 5 - 2" (- 1;) -2. (2.57) 

This is in agreement with the explicit construction of Hawking 

and Pope [21], who build two spin 3/2 wave functions out of two 

covariant constant spinors and the single anti-se1f-dua1 Maxwell 
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field whose existence is required by Eq. (2.51) for the signature. 

The indicated spin 3/2 solutions may in fact follow directly from 

an appropriate supersymmetry transformation. 

While the spin 2 index' characterizing the number of anti-

self-dual perturbations about the metric (2.26) has not been 

calculated at this time, there is at least one zero-frequency mode, 

corresponding to a dilatation, which is not a gauge transformation [22] • 

_<I: 
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III. PROPERTIES OF MORE GENERAL METRICS 

A. General Bianchi IX Jlnsatz 

One might naturally ask what happens if the Ansatz (2.21) is 

replaced by the most general' Jlnsatz giving a Bianchi IX metric [3], 

2 2 22' 2 2 2, 2. 2 ds f (r )dr + a (r) (J + b (r) Q_ + C (r}(J . x y' z 

( 3.1) 

For the'case 

a( r) b(r) c( r), ( 3.2) 

we find that self-duality implies a vanishing curvature and hence 

a flat metric. The case 

a( r) b(r) 1, c(r) ; g(r) (3.3) 

was our choice II of ref. [2], which we studied in the previous 

section; the choice 

a( r) b( r) ;; g( r) , c( r) 1 ( 3.4) 

was case I of ref. [2]. While self-dual solutions of (3.3) 

describe the regular manifold of Fig. 1, ·the self-dual solutions 

of (3.4). in fact have a singularity at finite proper distance and 

are therefore unacceptable •. 
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A general solution of the self~duality equations for the 

Jlnsatz (3.1) has been given by Belinskii, Gibbons, 'Page and Pope 

[ 3]. They find 

f2( r) 

2 a (r) 

b 2(r) 

2 c (r) 

where 

F( r) 

-t 6 -2 ) -2( ) -2( ) F (r) =.·r a (r b . r c r 

'r2Fi (r)/(1 -.(al /r)4) 

r 2Ft (r)/(1 - (a2/r)4) 

r 2Fi (r)/(1 - (a
3
/r)4) 

(1 - (~/r)4)(l- (a/r)4)(1 ..; (alr)4) 

(3.5) 

(3.6) 

and al ,a2,a
3 

are constants. They find (see. also ref. [13] ) that 

for general parameters ai' these metrics all have singularities at 

finite proper distance and so describe physically unacceptable 

manifolds. Only the particular degenerate case (3.3) described 

in Section II allows a mechanism for "shielding" the naked singu-

larity inside the S2 at r a so that geodesics cannot get 

to it. (This is of course analogous to what happens in the 

Euclidean continuation of the Schwarzschild and Taub-NUT metrics.) 

B. ·Nuts and Bolts 

Given a metric, one of the most important things one must 

know is whether or not its apparent singularities are removable. 

The two known types of removable singularities have been christened 
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"nuts" and "bolts" by Gibbons and Hawking [2J].' A "nut" is a 

four-dimensional ~4 polar coordinate singularity in a metric which 

is flat at the origin, like the" self-dual Euclidean Taub-NUT metric. 

A "bolt" is a two-dimensional ~2 polar coordinate singularity in 

a metric looking likern2 
x S2 "near the origin, like (2.26). Nuts 

carry one unit of Euler characteristic, while bolts carry two 

units. 

A precise formulation of the concepts of nuts and bolts is as 

follows [13] [23]: Consider the metric 

ds2 d,2 + a2(,)0 2 + b2(,)0 2 + c2(,)0 2 , 
x y z (J.5) 

where a variable change has been made on (3.1) to convert the 

coordinate radius r into the proper distance (or proper time) ,. 

In general, one would require that a,b,c be finite and nonsingular 

for finite , to get a regular manifold. (For infinite " this 

restriction can be relaxed if the manifold has a suitable boundary at 

, 00.) However, the manifold can be regular even in the presence 

of apparent singularities. 

Let us for simplicity consider singularities occurring at 

, O. A metric has a removable nut singularity provided that 

near , 0, a
2 = b 2 2 2 c ,. (3.6 ) 

In this case at ,= 0 we have simply a coordinate singularity in 

the flat polar coordinate system on an ffi4 centered at ,= O. The 

singularity is removed by changing to a local Cartesian coordinate 
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system near ,= 0 " and adding the point ,= 0 to the manifold. 

Near ,= 0, the manifold is topologically ~4. 

Here 

A metric has a removable b6ltsinglilarity if 

= b2 finite 
near, 0; (J.7) I :: 2 2 n , , n integer. 

a2 b2 multiplies the canonical S2 metric !. (de2 
+ sin2ed</>2), 

4 
while at constant (e,</», the ( 2 2,) 2) d, + C \' 0 

Z 
piece of (3.5) looks 

like 

eli + n2 ,21. d1/l2 
4 

( 3.8) 

Provided the range of n 1/1/2 is adjusted to 0 + 2n, the apparent 

singularity at ,= 0 is nothing but a coordinate singularity in 

the flat polar coordinate system on ffi2 Again, this singularity can 

be removed by using Cartesian coordiilates. The topology .of the mani­

fold is locally m2 x S2 with the m2 shrinking to a point on S2 

as T + O. 

C. The Fundamental Triplet of Self-Dual Metrics 

The prototype of a metric with a single belt is the metric 

(2.26) introduced in ref. [2]. The removal of this singularity 

was discussed in detail in Section II. The prototype of a metric 

with a single nut is the self-dual Euclidean Taub-NUT metric [10] 

ds 2 !. ~ dr2 + ! (r2 _ m2 )( de2 + sin2e1</>2) 
4 r - m 4 

2 r - m )2 + m r+m (d1/l + cos ed</> . 
(J.9) 
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To remove the apparent singularity at r = m, we. first change to the 

proper distance coordinate 

d,2 ·};./r + m) dr2 4V - m 

and consider only the region r = m + £, £ «m. Then 

, j m+£ .! (~)i 
2 r - m 

m 

The metric near £ = 0 is thus 

dr '" (2m£ )i. 

(3.10) 

( 3.11) 

ds 2 '" d,2 + ~ T2(d£l2 + sin2 6 d$2) + t ,2(d1/l + cos 6 d$)2 

'" dT2 + ,2(0 2 + 0 2 + 0 2) 
x Y z 

( 3.12) 

and the condition (3.7) for a nut is met. 

Both the bolt metric (2.26) and the nut metric (3.9) are 

noriciompact with boundary at 00. A very instructive compact case 

is the Fubini-Study metric on P2(~)' which has both a nut and a 

bolt. To see this, we first write the P2(~) metric in the form 

[ 24] 

ds 2 
dr2 + r 2a 2 r2(a 2 + 0 2) 
__ --,,.,....:;z~ + x Y 

(1 + Ar2/6)2 1 + Ar2/6 (3.13) 

Here A is the cosmologi cal constant in Einstein's equations for this metric . 

As r -+- 0, we recover the flat metric and thus learn that r = 0 is 

a removable nut singularity. The other interesting region is r = 00, 

which we examine by changing variables to 

so that 

ds2 
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u 
1 
r 

2 -2 . 2 1 2 2 ( u + A/6) (du + 4' u (d1/l + cos 6 d$) ) 

+ ~ (ct)2 + sin26 d$2)/(u2 + A/6). 

(3.14) 

(3.15)' 

As u-+-O (or 1--+- 00 ), the coefficient of (cE 2 + sin2 6d$2) 

stays rini te while that of (d1/l + cos 6 d$)2 vanishes, so the bolt 

criterion (3.7) is satisfied. At fixed (6,$), we have for u -+- 0 

di '" (A/6)-2(du2+~u2d1/l2). ( 3.16) 

Thus the singulari~y at u = 0 is removable if 

o < 1/1 < 4rr , ( 3.17) 

and the constant-r manifolds in the P 2( ~ ) metric are complete 

S3,s, unlike those of the metric (2.26), which had PPR)'s. 

Modulo this difference, we are now led to group together the 

P2(~) metric (3.13) or (3.15), the Taub-NUT metric (3.9) and our 

"bolt" metric (2.26) as a "fundamental triplet." We note that 

both (3.9) and (2.26) have self -dual Riemann curvature tensors and 

so satisfy Einstein's equations without a cosmological constant. The 

P2(~) metric, in contrast, has a self-dualWeyl tensor which is 

as close as one can get to having self-dual Riemann tensor if there 

is a nonzero cosmological constant. The Taub-NUT metric and the 
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P2(f-) .n:etric both have nuts at the origin, but Taub-NUT opens up at 

infinity while Pi ¢) compactifies. On the other hand, our metric 

( 2.26) at the origin looks like the Pi f-) metri c at infinity -

both have bolts at these locations; furthermore, the flat infinity 

of (2.26) strongly resembles the flat (but compact) origin of 

P2(f-). Figure 2 gives a schematic representation of the relationships 

among the manifolds described by these three .n:etrics. 

We next make the remark that all three of the metrics just 

discussed are derivable from a more general three-parameter Euclidean 

Taub-NUT-de Sitter metric, although some hindsight is necessary to 

notice the existence of the appropriate singular limits. If we 

write the general Taub-NUT-de Sitter metric as 

2 2 _ L2 2 2 2 2 2 
ds P dp + (p - L )( ° + ° ) + 

46 x Y 
4L26 2 
2 2 °z' 

P - L 
( 3.18) 

where 

6 p2 _ 2Mp +- L2 + !:.. (L4 + 2L2p2 _ !. p4), 
4 3 

( 3.19) 

then the choice 

A 0, M L (3.20) 

immediately gives the self-dual Taub-NUT metric (3.9). If we set 

M L(l + !. flL2) 
3 

( 3.21a) 

and take the limi t [ 241 

{ 

L-+oo 

with 

2 L2 P -
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(3.21b) 

r2/(1 + ~ Ar2) fixed, 

we recover the Fubini-Study Pia:) metric in the coordinate system 

(3.13). Finally, our .n:etric (2.26) can be reproduced by setting 

M = L(l +..f.... + flL2) 
8L4 3 

putting A = ° and taking the limit 

f 
L -+ 00, 

with 

r2 = p2 _ L2 fixed. 

( 3.22) 

( 3.23) 

This is a rather peculiar limit which has previously escaped attention. 

If we keep A to, we find a new metric resembling (2.26) except that 

it satisfies Einstein'S equations with nonzero cosmological term, 

2 2 2 2 
2 dr z- + r (0 + ° ) ds = )4 Ar x y 

1 - (air - ~ 

[ 
4 Ar2} 2 

+ r2 1 - (air) -""6" 0z (3.24 ) 

By taking an appropriate limit of this metric, we can eliminate the 

singulari ty and obtain a metric on S2 x S2 wi th a twist. 
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Another amusing comparison which we may make among these 

three metrics involves their natural self-dual Maxwell fields. For 

P2(~)' Trautman [11] observed. that the metric possessed a 

natural (anti) self-dual Maxwell field given by the P2(~) Kahler 

form, 

where a 
e 

F 2(eOA e3 _ el 
A e ~ ( 3.25) 

rdr(l + Ar2/6)-1, ra (1 + Ar2/6)-i, ra (1 + Ar2/6)-t, 
~ x y 

raz(l + Ar2/6)-lJ. Since (anti) ~elf-dual Maxwell fields have 

vanishing energy-momentum tensor, the Einstein equations are undis-

turbed and we have an automatic solution of the Einstein-Maxwell 

equations (see also ref. [24]). For the Taub-NUT metric, it is also 

easy to find the Maxwell field 

where 

ea 

A 

F 

r - m ---a r + m z 

1 ° 312 --2 (e ~ e. - e A e ) 
(r + m) 

( 3.26) 

[(~)idr, qr2_m2)i a , 2(r2 _m2)i a , 2m(r+-m)ia]. 
r-m x y r m z 
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The Maxwell field for our metric (2.26) was presented earlier in 

Eq. (2.30). We note for comparison that the Taub-NUT Maxwell field 

has the characteristic 1/r2 behavior of amagrtetic monoPole,' 

while (2.30) has the 1/r4 behavior of the Yartg.:.Mills instanton. 

The P2(~) field (3.25), on the other hand, is constant everywhere. 

Finally, we give a brief summary of the topological invariants 

of the fundamental triplet of metrics. P2(~) is the easiest, since 

it is a compact manifold without boundary. Because P2(~) has a bolt 

and a nut, its Euler characteristic is X 2 + 1 3, while the 

signature is T 1. If P2(~) were a spin manifold, the spin ! 

index would be 

It 
T 

- '8 
1 

-'8 ( 3.27) 

Since It must be an integer for a manifold admitting well-defined 

spinor structure, we confirm the fact that P2(~) has no spin 

structure. For the Taub-NUT metric, X = 1 and the spin! index 

with boundary corrections vanishes [15]. For the metric (2.26), 

the topological invariants were previously given in Eqs. (2.47-54). 

A tabulation of the properties of the fundamentai triplet is presented 

in Table 2 alongside the properties of the K3 manifold mentioned in 

the Introduction. 
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As before, we need the periodicity (4.5) for a regular manifold, 

but now one finds 

(£ 0, n 1) flat space metric. (4.11) 

The boundary at 00 for n 1 is just the Euclidean space boundary 

S3. For n = 2, one finds a two-nut metric with nonzero Riemann 

tensor. In this case the boundary at 00 is the same lens space 

S3/Z 
2 

P
3 

(m) found for our metric (2.26) and also the curvature 

invariants are the same; thus it seems certain that 

(£ 0, n 2) = the metric (2.26) (4.12 ) 

up to a singular change of frame. For higher values of n, 

the boundary at 00 consists of S3 with points identified under 

the action of the cyclic group of order n. 

We conclude that in general the ·multicenter metric (4.1-4.4) 

with £ ° strongly parallels the Jackiw-Nohl-Rebbi multi-instanton 

solution [251. In particular, there are (n + 1) positions appearing 

in the description of the "n-instanton" solution. 

The topological invariants for the £ = 0 metric are [211 

X n 

T ± (n - 1) 

11/2 = ° 
(4.13 ) 

13/2 = 2, = ± 2(n - 1) • 
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There is in fact a general.theorem showing that the spin lL2 index 

vanishes for asymptotically flat. self-dual metrics [131. We are 

led to conclude that for gravity, a spin 3/2 axial anomaly replaces 

the spin 1/2 axial anomaly induced by Yang-Mills instantons. Thus, 

the roles of gravitational and Yang-Mills instantons in symmetry 

breaking may be summarized as follows: 

Yang-Mills solution:, Chern class k + Dirac index k 

Einstein solution, signature, + Rarita-Schwinger index 2,. 

(4.14 ) 

We conclude with the remark that we can write down natural 

self-dual Maxwell fields for the multicenter metrics just as we did 

for the metricsin previous Sections. One such field is. 

A 

F 

V-led'!' 
+ 

+ W • d~) 

dA .- V-2 " V( 0" i + !. j " k) - o. e e - 2 £. 'k e e. 
l lJ 

C. More General Metrics 

(4.15) 

We have now seen the natural appearance of higher order lens 

spaces of S3 in the multicenter self-dual Einstein metrics (4.1). 

Hi tchin [51 has examined the known complete classification of spheri­

cal forms of S3 and has found regular complex algebraic manifolds with 

boundaries corresponding to each spherical form. It is conjectured that 

a unique self-dual metric can be obtained for each of these manifolds 

using the Penrose twistor construction [271. Although this subject 

is not completely understood at this time, let us at least list the 
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sprerical forms of S3 corresponding to each possible asymptotically 

locally Euclidean self-dual metric. The spherical forms are classified 

according to their associated discrete groups as follows [28]: 

Series ~ 

Series Dk 

T 

0 

I 

cyclic group of order k 

(= lens spaces 'L(k + 1,1» 

dihedral group of order k 

tetrahedral group 

octahedral ~ "" cubic group 

icosahedral group "" dodecahedral group 

We note that our, metric (2.26) corresponds to ~, while the general 

n-center metric (4.1) correspond; to A 1. 
n-

If we could derive self-dual metrics for the manifolds having 

each of these spherical forms as boundaries, the problem of finding 

zero-action solutions of the Euclidean Einstein equations would be 

essentially solved. We would then have a better understanding of the 

structure of the vacuum in quantum gravity. 
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V'.) CONCLUSIONS 

The discovery of the self-dual instanton solutions to Euclidean 

Yang-Mills theory suggested the possibility that analogous solutions 

to the Euclidean Einstein equations might be important in quantum 

gravity. Here we have discussed a number of self-dual solutions to 

Euc,lidean gravity and. indicated their properties. We have con-

centrated particularly on the asymptotically locally Euclidean metrics, 

of which the authors' solution (2.26) ,is the simplest nontrivial 

example. These gravity solutions have properties which are 

strikingly similar to those of the Yang-Mills instanton solutions: 

(1) They describe gravitational excitations which are local-

ized in Euclidean spacetime. 

(2) Their metrics approach an asymptotically locally 

Euclidean vacuum metric at ,infinity. 

(3) They ,have nontrivial topological quantum numbers. 

However, there are also some important distinctions between the two 

sets of solutions: 

(1) The gravity solutions contribute only to the spin 3/2 

axial anomaly, while the yang-Mi1is solutions contribute 

to the spin 1/2 axial anomaly. 

(2) The gravity solutions have zero action, while the 

Yang-Mills solutions have finite action. 

The pairing of the Yang-MillS field with the spin 1/2 anomaly 

and the pairing of gravity with the spin 3/2 anomaly are very likely 
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due to the existence of supersymmetry. It would be interesting to see 

whether supersymmetry gives any further insight into the structure of 

these systems. 

As is well-knovm, the finite Yang-Mills instanton action 

implies the suppression of the transition amplitude between topologi­

cally inequivalent sectors of the theory. On the other hand, in 

gravity there appears to be no such suppression. The vanishing 

action of asymptotically locally Euclidean self-dual metrics implies 

that in the path integral they have the same weight as the flat 

vacuum metric. Thus these solutions will presumably be of central 

importance in understanding quantum gravity. 
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Fig. 1: 

FIGURE CAPTIONS 

* The manifold T (Pl(a:» described by the metric (2.26). 

For fixed S2 coordinates (8, ¢ ), the manifold has local 

topology )R2 x S2. Constant radius hypersurfaces have the 

topology of P 3(JR). At CD, the metric on the boundary is 

the canonical P
3
(ffi) metric. As u + 0 [Eq. (2.36)] or 

equivalently, as r + a [Eq. (2~26)], the manifold shrinks 

2 
to S ~ Pl(a:). 

Fig. 2: Relations among the manifolds of our metric (2.26), the 

self-dual Taub-NUT metric (3.9) and the Fubini-Study metric 

(3.13) or (3.15) on P
2
(a:). 
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TABLE I: Comparison of the Euclidean Yang-Mills and Einstein 

equations. 

Property 

Metric 

Structure equation 

Connection 

Curvature 

Dual Curvature or 

Connection: 

Bianchi identity 

Cyclic identity 

Euler equation 

Automatic solution 

First order 

automatic solution 

Basic function 

Yang-Mills 

a 
A = Aa ~ d jJ jJ 2i x 

F=dA+AAA 

1 a Ta jJ v = - F -- dx A dx 2 jJV 2i 

'1d=~£ Fa 
jJv 2 jJ\XlS as 

a . 
F' = ~ F'a ~ dXjJA dxv 

2 jJ\! 21 

dF+AAF-FAA=O 

'11 'V 'V 
dF + A A F - F A A = 0 

F ± '# 

F = ± F' 

Aa)l(X) 

ds 2 

o 
a 

wb 

Ra 
b 

Einstein 

3 
L (e

a
/ 

aa=O a b 
de + W b A e 

_wb = wa dxjJ. 
a bjJ 

dWa
b + wac A wC

b 
= ~ Ra eCA ed 

2 bcd 

Ra = ~ £ e 
bcd 2 abe? fcd 

{

'1-a 1 '1Ia c d 
H b = 2 H bcd e A e 

'Va 1 c 
w b = 2 £abcd w d 

dR+wAR-RAW 0 

Ra 
A eb 

= 0 
b 

->- £abcd
Re 

bcd 0 

I'f A eb 
= 0 

b 

->- Ra = 0 
bcb 

Ra 
b 

+ fia - b 

a + ;:;a W b - b 

a 
e jJ( x) 
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Table II: Properties of the· fundamen~al triplet of self-dual 

metrics compared with the self-dual metric of the 

K3 manifold. 

ref. [21 Taub-NUT Fubini-Stuciy II K3 

Metric Itq. (2.26) Eq. (3.9) Eq. (3.1]) II explicit 
form 
unlmown 

Cosmological A = 0 A 0 AiO II A = 0 
Constant 

Manifold T*(Pl(a:) jR4 P 2( a;) II K3 

- Origin IIS
2
(BOlt ) Point (Nut) Point(Nut) 

- Infinity PPR) distorted S3 S2( Bolt) 

- Boundary IIPilR) distorted S3 none II none 

Euler 
Characteristic 2 1 3 24 

Hirzebruch 
Signature -1 0 1 -16 

Dirac Spin-t 
(no spinors) Index 0 0 II 2 

Maxwell Field 
'Vl/r4 'Vl/r2 Strength 1 II ? 

Rarita-
S","inge' Spill -2 ? (no spinors) II -42 
3/2 Index 



P3 (IR) = Boundary at u = <X) 

\ 
( e,$) 

\ 
P3 (lR) = Boundary at u = <X) 

XBL 7810-6582 

Fig. 1 

"" ..... 
/ 

( 

~, 
\ ........... 

\ 
\ 
\ 
\ 
\ 
\ 

-- - - - --- - - - - - -

Boundary at <X) 

---- ----
\ T~~ ~ ~~~-~:t~i: / 

, 
\ 
) 

// 
...... "/, 

/ 
/ , ,. 

I 
I 

·'···'BOIT~···'" I 
;>':':':'. .... (S~)······· .:/': I 

\ . I 

.... ::: . .: .. .: ....... -: ........ : .... ::.'::. :. , I 

I 
\ / , I 

I 
I 

I 

I , 
I 
/ 
/ 
/ 
/ 
I 
/ 
/ 
1 
I 
I. 
I ,. .... '/ '/ 

I , 
" " 

\ / 

" /\ , \ 
I \ 

\ 
\ 
\ 

\ 
~ 

'{I 

P2(<<;) 

Metric 

! Our Metric· 

\ / 
,< 

I \ 
/ \ 

I \ 
/ \ 

/ \ 
\ 

\ 

\ 
\ 
\ 
\ 
\ 
\ 
\., 
\ 

_--------__ t -- , 
..... I 

P3 OR) Bounda ry at <X) 
'~ 

I 
/ 

"" ------ --------

XBL 7810-6583 

Fig. 2 



r--------- LEGAL NOTICE -------­
This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the Depart­
ment of Energy, nor any of their employees, nor any of their con­
tractors, subcontractors, or their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness or usefulness of any information, appa­
ratus, product or process disclosed, or represents that its use would 
not infringe privately owned rights. 




