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Aberrant hippocampal Ca2+ microwaves 
following synapsin-dependent adeno-
associated viral expression of Ca2+ indicators
Nicola Masala1,2,3†, Manuel Mittag4, Eleonora Ambrad Giovannetti4, 
Darik A O'Neil5, Fabian J Distler1,2, Peter Rupprecht6,7, Fritjof Helmchen6,7, 
Rafael Yuste5, Martin Fuhrmann4, Heinz Beck1,2,8, Michael Wenzel1,2,3*, 
Tony Kelly1,2*

1University of Bonn, Faculty of Medicine, Institute for Experimental Epileptology 
and Cognition Research (IEECR), Bonn, Germany; 2University Hospital Bonn, Bonn, 
Germany; 3Department of Epileptology, University Hospital Bonn, Bonn, Germany; 
4Neuroimmunology and Imaging Group, German Center for Neurodegenerative 
Diseases (DZNE), Bonn, Germany; 5NeuroTechnology Center, Columbia University, 
New York, United States; 6Brain Research Institute, University of Zurich, Zurich, 
Switzerland; 7Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; 
8German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

Abstract Genetically encoded calcium indicators (GECIs) such as GCaMP are invaluable tools in 
neuroscience to monitor neuronal activity using optical imaging. The viral transduction of GECIs is 
commonly used to target expression to specific brain regions, can be conveniently used with any 
mouse strain of interest without the need for prior crossing with a GECI mouse line, and avoids 
potential hazards due to the chronic expression of GECIs during development. A key requirement 
for monitoring neuronal activity with an indicator is that the indicator itself minimally affects activity. 
Here, using common adeno-associated viral (AAV) transduction procedures, we describe spatially 
confined aberrant Ca2+ microwaves slowly travelling through the hippocampus following expression 
of GCaMP6, GCaMP7, or R-CaMP1.07 driven by the synapsin promoter with AAV-dependent gene 
transfer in a titre-dependent fashion. Ca2+ microwaves developed in hippocampal CA1 and CA3, but 
not dentate gyrus nor neocortex, were typically first observed at 4 wk after viral transduction, and 
persisted up to at least 8 wk. The phenomenon was robust and observed across laboratories with 
various experimenters and setups. Our results indicate that aberrant hippocampal Ca2+ microwaves 
depend on the promoter and viral titre of the GECI, density of expression, as well as the targeted 
brain region. We used an alternative viral transduction method of GCaMP which avoids this artefact. 
The results show that commonly used Ca2+-indicator AAV transduction procedures can produce arte-
factual Ca2+ responses. Our aim is to raise awareness in the field of these artefactual transduction-
induced Ca2+ microwaves, and we provide a potential solution.

eLife assessment
This important study provides convincing evidence of artefactual calcium microwaves during 
calcium imaging of populations of neurons in the hippocampus using methods that are common 
in the field. The work raises awareness of these artefacts so that any research labs planning to do 
calcium imaging in the hippocampus can avoid them by using alternative strategies that the authors 
propose.
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Introduction
There has been an explosion in the use of imaging techniques to record neuronal activity over the 
past 30 y, starting with the introduction of organic calcium indicators to measure neuronal population 
activity (Yuste and Katz, 1991) and accelerated by rapid advances in the development of geneti-
cally encoded Ca2+ indicators (GECIs) (Miyawaki et al., 1997). Specific advantages of neuronal Ca2+ 
imaging with GECIs lie in the ability of chronic cellular scale recordings of sizeable, densely labelled 
neuronal or glial populations with subtype specificity, without having to perturb the cell membrane or 
add a synthetic chemical to the brain (Grienberger and Konnerth, 2012; Rose et al., 2014; Semy-
anov et al., 2020).

Commonly used GECIs such as the GCaMP family have been continually improved since their initial 
development (Nakai et al., 2001), offering high signal-to-noise ratio, sensitivity, and response kinetics 
such that they can detect single-action potentials in vivo. This allows the reporting of cellular activity 
as well as the activity of sub-compartments such as the dendritic arbour (Chen et al., 2013; Dana 
et al., 2019; Zhang et al., 2023). Typically, GCaMP is expressed using transgenic animals or adeno-
associated viral (AAV) transduction techniques (Tian et al., 2012; also see Grødem et al., 2023). The 
use of transgenic animals has the advantage of not requiring AAV transduction, thus reducing surgery 
load for animals and likelihood of indicator overexpression. In contrast, AAV GECI transduction is 
straightforward (breeding/crossing not required), can be targeted to virtually any brain region, and 
typically offers enhanced fluorescence (due to higher expression levels). Furthermore, AAV transduc-
tion avoids potential hazards due to chronic GECI expression during development.

While offering unprecedented new insights into cellular-scale neuronal network dynamics, it has 
also been reported that GECI expression in neurons can result in unwanted side effects. Depending 
on the expression approach, neurons have shown reduced dendritic branching and impairment in 
cell health, leading to cytotoxicity and cell death (Gasterstädt et al., 2020; Resendez et al., 2016). 
Furthermore, increased Ca2+ buffering due to the addition of Ca2+ indicators has been associated 
with alterations in intracellular Ca2+ dynamics (Grienberger and Konnerth, 2012; McMahon and 
Jackson, 2018). In addition, chronic expression of GCaMP can lead to accumulation in the nucleus 
and changes in gene expression (Yang et al., 2018). Again, depending on the specific expression 
approach, GCaMP variant, and experimental time course, such changes may alter cellular physiology 
and excitability. For example, increased firing rates have been observed in hippocampal neurons 
expressing GCaMP5G from CaMKIIa-Cre; PC::G5-tdT mice, and epileptiform activity in neocortex in 
some GCaMP6-expressing transgenic mice (Gee et al., 2014; Steinmetz et al., 2017).

Here, we describe microscale Ca2+ waves that are highly confined in space and progress slowly 
through the hippocampus following local GCaMP or R-CaMP viral transduction. Such aberrant hippo-
campal waves were typically first observed 4 wk following injection of commercially available AAVs 
expressing GCaMP6, GCaMP7, or R-CaMP1.07 under the synapsin promoter. The phenomenon 
occurred upon GECI transduction in CA1 and CA3, but not in dentate gyrus (DG) nor neocortex, 
was robustly observed across laboratories with various experimenters and setups, and highlights the 
necessity of careful use of transduction methods and control measures. Reducing the transduction 
titre diminished the likelihood of aberrant hippocampal Ca2+ waves, and an alternative viral transduc-
tion method employing sparser and Cre-dependent GCaMP6s expression in principal cells avoided 
the aberrant Ca2+ waves. Furthermore, in three transgenic GCaMP mouse lines (thy1-GCaMP6s or 6f; 
Vglut1-IRES2-Cre-D × Ai162(TIT2L-GC6s-ICL-tTA2)), aberrant Ca2+ microwaves were never observed. 
The aim of this article is to raise awareness in the field of artefactual transduction-induced Ca2+ waves 
and encourage others to carefully evaluate their Ca2+ indicator expression approach before embarking 
on chronic in vivo calcium imaging of the hippocampus.

Results
Aberrant Ca2+ microwave progression through the hippocampus
Based on published protocols, we injected AAV1 particles (pAAV.Syn.GCaMP6s.WPRE.SV40, 
Addgene #100843, titre 1 × 10¹³ vg/ml) into the hippocampus (total injection volume: 500 nl undi-
luted [1:1] virus solution) of C57BL/6 wildtype animals (6 weeks old) and performed in vivo two-photon 
imaging to record cellular activity at 2, 4, and 6–8 wk post-injection (p.i.) (Figure 1a). Viral transduc-
tion resulted in GCaMP6s expression throughout the hippocampal CA1, CA3, and DG areas under 

https://doi.org/10.7554/eLife.93804
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the imaging window (Figure 1b). As expected, the expression was primarily restricted to the ipsilat-
eral hippocampus, with some labelling of projection pathways also in the contralateral hippocampus. 
There was no evidence of gross transduction-related morphological changes to the hippocampus (see 
Figure 1b), with no changes in CA1 pyramidal cell layer thickness or CA1 thickness (pyramidal layer 
thickness: 49 ± 12.5 µm ipsilateral and 50.3 ± 11.1 µm contralateral, n = 4, Student’s t-test p=0.89; 
CA1 thickness: 553.3 ± 14 µm ipsilateral and 555.8 ± 62 µm contralateral, n = 4, Student’s t-test 
p=0.94; 48 ± 13 wk p.i. at the time of perfusion). At 4 wk after injection, a time point commonly used 
for imaging cellular activity, we observed distinctive aberrant microscale Ca2+ waves that travelled 
through CA1 recruiting neighbouring cells (Figure 1c and d, Video 1, n = 4 mice). Ca2+ microwaves 
were maintained up to 6–8 wk after AAV injections (Figure 1e, n = 4 mice). In wildtype mice, these 
Ca2+ microwaves were not observed at an earlier time point (2 wk p.i.; p<0.05 using Kruskal–Wallis 
H-test for comparison between the three time points).
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Figure 1. Development of Ca2+ microwaves travelling through hippocampus following GCaMP transduction. (a) Experimental protocol to examine 
CA1 neuronal activity using two-photon imaging following adeno-associated viral (AAV) transduction of genetically encoded Ca2+ indicators. (b) 
Immunohistochemical sections following the last imaging session. GCaMP6s (AAV1.syn.GCaMP6s.SV40, Addgene #100843) expression throughout the 
ipsilateral hippocampus and projection pathways in the contralateral hippocampus. (c) Two-photon Ca2+ imaging of field of view (FOV) in CA1 at 4 wk 
post-injection (p.i.) showing aberrant Ca2+ microwaves (see also Video 1). Magnified inset shows three coloured neuronal subgroups (blue, orange, 
magenta) based on their spatial vicinity from a total population of 100 identified neurons (green). Right: time series of two-photon Ca2+ imaging FOVs 
showing two Ca2+ microwaves, the first at 0 s, the second appearing at 6 s (asterisk). The second wave progresses through FOV over dozens of seconds. 
(d) Raster plot of individual neuronal Ca2+ activity (ΔF/F, 1 min moving window, traces max-normalized per neuron) from neighbouring subgroups 
(colours correspond to c). Asterisk (same as in c): a Ca2+ microwave advances through neighbouring neuronal subgroups. (e) Occurrence rate (mean 
± 95% CI) of aberrant Ca2+ microwaves with increasing expression time, following viral transduction of AAV1.syn.GCaMP6s.SV40 in mature C57BL/6 
wildtype animals (n=4). n.d. = none detected. (f) Two-photon Ca2+ imaging FOV in the visual cortex at 6 wk p.i. (left) with normal sparse spontaneous 
Ca2+ activity and no detected Ca2+ microwaves (right; raster plot of ΔF/F, 1 min moving window, traces max-normalized per neuron).

https://doi.org/10.7554/eLife.93804
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The properties of the Ca2+ microwaves 
depended on the hippocampal region and exact 
recording location. For instance, although the 
Ca2+ waves were consistently observed in CA1, 
the spatial dimensions of the Ca2+ microwaves 
were broader in the stratum oriens compared with 
stratum pyramidale of CA1 (Videos 2 [str. pyr.] and 
Video 3 [str. oriens]), which likely reflects concom-
itant neuropil activation. We next examined 
whether the CA1 network is particularly prone to 
the generation of such waves and whether they 
show regional specificity. Upon viral GCaMP6s 
transduction under synapsin, Ca2+ waves were 
observed in both CA1 (n = 4/4; Videos 1–5) and 
CA3 (n = 1/1; Video 6), but interestingly, not in 
the DG (n = 3 mice, 4, 8, and 10 wk p.i., 40 min 
total recording time per mouse). In contrast to 
hippocampus, synapsin-dependent GCaMP6s 
expression restricted to the neocortex (V1 or 
somatosensory cortices) did not result in cortical 
Ca2+ waves in our hands (Figure 1f, n > 20 mice).

Aberrant Ca2+ microwaves in 
disease models
The observed Ca2+ microwaves were distinct from 
local seizure activity (no rhythmicity, no typical 
ictal evolution, no postictal depression) (Masala 
et al., 2023; Muldoon et al., 2015; Wenzel et al., 
2017; Wenzel et al., 2019a) and spreading depo-
larization/depression phenomena (no concen-
tric expansion, no post-wave neural depression). 
However, the occurrence of these artificial events 
may be confused as aberrant activity related to a 
pathology, especially when studying pathologies 
with known cellular and network hyperexcitability. 
For example, we initially found the aberrant 
hippocampal Ca2+ microwaves in the Scn2aA263V 
model of genetic epilepsy; however, these Ca2+ 
waves in CA1 of heterozygous animals (5/5 mice) 
were in general similar to those detected in wild-
type animals at 4 wk p.i. In the Scn2aA263V model, in 
one case (1/5 animals), Ca2+ waves were observed 
even at 2 wk p.i. (Video 4). Furthermore, hippo-
campal transduction of jGCaMP7f under synapsin 
(Addgene #104488, AAV9 particles, original titre 
2.5 × 10¹³ vg/ml, total injection volume 1000 nl 
[1:2 dilution]) in a mouse model of Alzheimer’s 
disease (PV-Cre::APPswe/PS1dE9) also resulted in 
Ca2+ microwaves (n = 3/6 mice). Together, these 
experiments show that common AAV injection 
procedures of GECIs under the synapsin promoter 
lead to artefactual hippocampal Ca2+ microwaves 
in wildtype mice and genetic mouse models of 
disease.

Video 1. GCaMP6s two-photon calcium imaging in 
the hippocampal CA1 region, around 100 µm beneath 
the hippocampal surface (stratum pyramidale), FOV 
~600x600 µm, ~4 wk after transduction of AAV1 
particles containing pAAV.Syn.GCaMP6s.WPRE.SV40 
(Addgene plasmid #100843) in a mature bl6 wildtype 
mouse. Imaging wavelength = 940 nm, acquisition 
speed = 15 frames/s. Movie played at ×5 acquisition 
speed. Imaging was performed at the IEECR/University 
of Bonn.

https://elifesciences.org/articles/93804/figures#video1

Video 2. GCaMP6s two-photon calcium imaging in 
the hippocampal CA1 region, around 100 µm beneath 
the hippocampal surface (stratum pyramidale), FOV 
~450x450 µm, ~7 wk after transduction of AAV1 
particles containing pAAV.Syn.GCaMP6s.WPRE.
SV40 (Addgene plasmid #100843) in an ~3-month-
old transgenic mouse (same as in Video 2; Scn2aA263V 
model of genetic epilepsy). Imaging wave length = 
940 nm, acquisition speed = 15 frames/s. Movie played 
at ×5 acquisition speed. Imaging was performed at the 
IEECR/University of Bonn.

https://elifesciences.org/articles/93804/figures#video2

https://doi.org/10.7554/eLife.93804
https://elifesciences.org/articles/93804/figures#video1
https://elifesciences.org/articles/93804/figures#video2
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Properties and robustness of 
aberrant hippocampal Ca2+ waves
Next, we investigated the robustness of the 
aberrant Ca2+ microwaves across institutes and 
conditions. We chose to compare the incidence 
of aberrant Ca2+ microwaves in the CA1 region 
in four separate institutes in three different 
countries following transduction of GCaMP6s 
(Addgene #100843; IEECR/UoB, CU), GCaMP6m 
or jGCaMP7f (Addgene #100841 or #104488; 
DZNE), or RCaMP1.07 (Viral Vector Facility UZH 
#V224-9; UZH, Video 5; Table 1).

The incidence of aberrant hippocampal 
Ca2+ microwaves was robust, observed at the 
four different institutes each using variations 
of commonly used, published viral transduc-
tion procedures and standard two-photon Ca2+ 
imaging protocols (Table  1; see ‘Materials and 
methods’ for more details). Importantly, aside 
from the targeted region, the viral titre was 
important as halving the original ​AAV1.​syn.​
GCaMP6m viral titre decreased the number of 
animals that developed aberrant Ca2+ microwaves 
from 80% of animals (4/5, original titre, 1 × 10¹³ 
vg/ml) to 43% of animals (3/7, 50% reduced titre, 
0.5 × 1013 vg/ml) (see Table 1). To statistically test 

Video 3. Same animal (Scn2aA263V model of genetic 
epilepsy) and time point of imaging as in Video 4. 
GCaMP6s two-photon calcium imaging in the 
hippocampal CA1 region, around 25 µm beneath the 
hippocampal surface (stratum oriens), FOV ~350x350 
µm, ~7 wk after transduction of AAV1 particles 
containing pAAV.Syn.GCaMP6s.WPRE.SV40 (Addgene 
plasmid #100843). Imaging wavelength = 940 nm, 
acquisition speed = 15 frames/s. Movie played at 
×5 acquisition speed. Imaging was performed at the 
IEECR/University of Bonn.

https://elifesciences.org/articles/93804/figures#video3

Video 4. GCaMP6s two-photon calcium imaging in 
the hippocampal CA1 region, around 100 µm beneath 
the hippocampal surface (stratum pyramidale), FOV 
~450x450 µm, ~2 wk after transduction of AAV1 
particles containing pAAV.Syn.GCaMP6s.WPRE.
SV40 (Addgene plasmid #100843) in an ~2-month-
old transgenic mouse model of genetic epilepsy 
(heterozygous Scn2aA263V mouse). Imaging wavelength 
= 940 nm, acquisition speed = 15 frames/s. Movie 
played at ×5 acquisition speed. Imaging was 
performed at the IEECR/University of Bonn.

https://elifesciences.org/articles/93804/figures#video4

Video 5. R-CaMP1.07 two-photon calcium imaging in 
the hippocampal CA1 region, around 100 µm beneath 
the hippocampal surface (stratum pyramidale), FOV 
~200x200 µm, ~10 wk after transduction of AAV1 
particles containing ssAAV-9/2-hSyn1-chI-RCaMP1.07-
WPRE-SV40p(A) (Viral Vector Core UZH #V224-9) 
in a mature (~5 mo) bl6 wildtype mouse. Imaging 
wavelength = 960 nm, acquisition speed = 30.88 
frames/s. Movie played at ×5 acquisition speed. 
Imaging was performed at the Neuroscience Center 
Zurich (UZH).

https://elifesciences.org/articles/93804/figures#video5

https://doi.org/10.7554/eLife.93804
https://elifesciences.org/articles/93804/figures#video3
https://elifesciences.org/articles/93804/figures#video4
https://elifesciences.org/articles/93804/figures#video5
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the involvement of expression level, we used a 
generalized linear model. For injections into CA1 
in the hippocampus (n = 28), a multivariate logistic 
GLM (Ca2+ wave ~ dilution + p.i. wk) found both 
dilution and p.i. weeks were significantly related 
to Ca2+ wave incidence (model deviation above 
null = 7.5; dilution: z score = 2.18, p<0.05; p.i. wk: 
z score = 2.22, p<0.05).

To examine how robust the Ca2+ microwaves 
properties were, we compared properties across 
the different laboratories following expression of 
GCaMP6m and GCaMP6s variants. The occur-
rence rate of the aberrant Ca2+ microwaves was 
similar across the different institutes (Figure 2a). 
Ca2+ microwaves were spatially confined (diam-
eter range of 200–300  µm), moved across the 
field of view (FOV) with slow progression speeds 
(speed range of 5–25  µm/s) (Figure  2b), and 
displayed no rhythmicity but rather plateau-
like Ca2+ activity. No statistical differences were 
observed in Ca2+ microwave properties between 
the different institutes, suggesting that these 
values provide a reasonable range. In addition, 
the Ca2+ microwaves were not restricted to a 
single GECI variant or version, with Ca2+ waves 
observed following expression of GCaMP6m (n = 
4), GCaMP6s (n = 5), and GCaMP7f (n = 3), as well 
as R-CaMP1.07 (n = 1) (Figure 2c and Table 1).

In summary, upon synapsin-promoter-
dependent AAV Ca2+ indicator expression, depending on the time of expression and viral transduction 
titre, Ca2+ microwaves were specifically observed in the CA1 and CA3 subregions of the hippocampus. 
For CA1, the Ca2+ microwaves were observed across laboratories and countries and animal models 
using common transduction procedures (for an overview, see Table 1).

Alternative transduction method of GCaMP to avoid aberrant Ca2+ 
microwaves
In light of these results, we tested an alternative expression approach to avoid aberrant hippocampal 
Ca2+ microwaves. To this end, we selected an approach to both limit the expression to principal 
cells and label a sparse population of the principal cells using a dual AAV injection approach. Here, 
Cre-dependent expression of GCaMP6s or GCaMP6m was achieved in a sparse population of prin-
cipal cells under the CaMKII promoter (​AAV1.​syn.​Flex.​GCaMP6s.​WPRE.​SV40, Addgene #100845, 
and AAV1.CamKII0.4.Cre.SV40, Addgene #105558; n = 2 or, AAV1.Syn.Flex.GCaMP6m.WPRE.SV40, 
Addgene #100838 and AAV9.CamKII0.4.Cre.SV40, Addgene #105558; n = 3; Figure 2d; see O’Hare 
et al., 2022; Jimenez et al., 2020; Sheffield and Dombeck, 2015), upon which no Ca2+ microwaves 
were observed (0/5 animals, Figure 2d). Furthermore, hippocampal Ca2+ microwaves were neither 
observed in transgenic thy1-GCaMP6s nor 6f mice (JAX strain 025776 or 024276; up to 3  mo of 
chronic imaging in n > 30 mature mice age > p60, cumulative imaging time >200 hr), nor in Vglut1-
IRES2-Cre-D mice crossed with Ai162(TIT2L-GC6s-ICL-tTA2)-D mice (JAX strains 037512, 031562; up 
to 3 mo of chronic imaging in n = 5 mature mice > p60).

Discussion
Here we report titre- and expression-time-dependent aberrant hippocampal Ca2+ microwaves in CA1 
and CA3 regions following viral expression of GCaMP or R-CaMP1.07 under the synapsin promoter. 

Video 6. GCaMP6s two-photon calcium imaging in 
the hippocampal CA3 region, stratum pyramidale, 
FOV ~600x600 µm, ~7 wk after transduction of AAV1 
particles containing pAAV.Syn.GCaMP6s.WPRE.SV40 
(Addgene plasmid #100843) in a mature bl6 wildtype 
mouse. Imaging wavelength = 940 nm, acquisition 
speed = 30.206 frames/s. Movie played at ×5 
acquisition speed. Imaging was performed at Columbia 
University.

https://elifesciences.org/articles/93804/figures#video6

https://doi.org/10.7554/eLife.93804
https://elifesciences.org/articles/93804/figures#video6
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These aberrant Ca2+ microwaves robustly occurred and were observed in four different institutes each 
using a common viral transduction approach and standard two-photon Ca2+ imaging protocols.

Ca2+ microwaves were typically first detected at ~4 wk, rarely also at 2 wk, after injection. Thus, 
there may be a time window when Ca2+ activity could be recorded in the absence of this artefactual 
phenomenon. However, we would still hesitate to use this specific approach for hippocampal imaging 
experiments as, although unknown from our data, more subtle alterations may occur prior to visible 
onset of aberrant activity. Furthermore, at sites more distal to the injection site with lower expression 
levels, Ca2+ microwaves may not be observed; however, it may very well be that Ca2+ microwaves in 
regions with higher expression will affect fine-scaled neuronal population dynamics in primarily unaf-
fected neighbouring regions.

The presence of Ca2+ microwaves was not restricted to a single GCaMP variant or version, and was 
observed using either GCaMP6m, GCaMP6s, or GCaMP7f. The phenomenon was also observed upon 
transduction of R-CaMP1.07, indicating that these aberrant hippocampal waves are not restricted to 
GCaMP indicators, but rather present a general phenomenon following Ca2+-indicator transduction. 
Notably, the viral transduction titre was a key factor as reducing the viral transduction titre from 1 × 
1013 vc/ml (500 nl or 1000 nl of a 1:1 undiluted virus solution) to 5 × 1012 vc/ml (1000 nl 1:2 solution, 
single injection) decreased, albeit did not yet prevent, the occurrence of Ca2+ microwaves. In the liter-
ature, hippocampal GCaMP transduction procedures in mice typically include one to several separate 
nearby injections, with a total volume of transduced undiluted virus ranging from 60 nl to 500 nl (Cai 

Table 1. Viruses used for the expression of genetically encoded calcium indicators (GECIs).
Viral titre is from Addgene documentation and was used at original concentration (dilution of 1:1) or at a dilution of 1:2. Syn.Flex.
GCaMP6s and CamKII0.4.Cre were co-injected and therefore diluted to 1:2. Two-photon Ca2+ imaging was performed from 2 wk 
after injection in the hippocampus (CA1, CA3, or DG) or neocortex (Ctx). Ca2+ microwave incidence was determined from the 
number of animals exhibiting Ca2+ microwaves at the specified time point and region.

AAV Construct

Source
(Addgene 
id)

Original titre
(vg/ml) Dilution

Injection 
volume

Post-injection
(wk) Region

Ca2+-wave 
incidence (%) n

Mouse 
model Institute

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:1 0.5 2 CA1 0 0/4 wt UoB

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:1 0.5 4–6 CA1 100 4/4 wt UoB

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:1 0.5 2 CA1 20 1/5 Scn2a* UoB

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:1 0.5 4–8 CA1 100 5/5 Scn2a* UoB

AAV1 Syn.GCaMP6m 100841 1 × 1013 1:1 1 8 CA1 80 4/5 wt DZNE

AAV1 Syn.GCaMP6m 100841 1 × 1013 1:2 1 6 CA1 43 3/7 wt DZNE

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:2 0.5 4–10 DG 0 0/3 wt UoB

AAV9 Syn.jGCaMP7f 104488 2.5 × 1013 1:2 1 10–14 CA1 50 3/6 APPswe† DZNE

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:1 0.25 3–12 CA3 100 (1 exp.) 1/1 wt CU

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:1 0.25 3–5 CA1 100 (1 exp.) 1/1 wt CU

AAV1 Syn.GCaMP6s 100843 1 × 1013 1:2 0.8 4–5 Ctx 0
0/>20
0/>20

wt CU

AAV1 Syn.GCaMP6f 100837 7 × 1012 1:2 0.75 3–6 Ctx 0 wt CU

AAV9 hSyn1.R-CaMP1.07 V224-9 ‡ 4.3 × 1012 1:1 0.2 8 CA1 100 2/2 wt UZH

AAV1 syn.Flex.GCaMPm 100838 1 × 1013 1:2

0.5 34–38 CA1 0 0/3 wt DZNEAAV9 CamKII0.4.Cre.SV40 105558 1 × 1013 1:2

AAV1 syn.Flex.GCaMP6s 100845 1 × 1013 1:2

0.5 6 CA1 0 0/2 wt UoBAAV1 CamKII0.4.Cre.SV40 105558 1 × 1013 1:2

*In heterozygous Scn2aA263V mice.
†In PV-Cre::APPswe/PS1dE9 mice.
‡Sourced from the Viral Vector Facility University of Zurich (VVF/UZH).

https://doi.org/10.7554/eLife.93804
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et al., 2016; Jimenez et al., 2020; Keinath et al., 2022; Pettit et al., 2022; Radvansky et al., 2021; 
Skocek et al., 2018; Szabo et al., 2022; Weisenburger et al., 2019; Wirtshafter and Disterhoft, 
2022; Zaremba et al., 2017). In other studies, syn-GCaMP virus was diluted prior to injection (up 
to 1:10) (Jimenez et al., 2020; Zong et al., 2022), resulting in varied transduction volumes up to 
1500 nl. In our hands, a reduced viral titre of 5 × 1012 vc/ml in a 1000 nl injection volume still resulted 
in aberrant Ca2+ microwaves. Thus, viral transduction titres per volume well below this number and 
diluted transduction solutions are advisable for syn-GCaMP expression in the hippocampus if AAV 
syn-Ca2+-indicator transduction is desired for a planned in vivo hippocampal imaging experiment.

If possible, alternate viral GCaMP expression approaches should be chosen. As a possible alter-
native, similar to previous reports using dual AAV injections or AAV in Cre-driver mouse lines (Farrell 
et al., 2020; Grosmark et al., 2021; Mineur et al., 2022; Rolotti et al., 2022; Terada et al., 2022), we 
find that Cre-dependent AAV GCaMP expression (IEECR/UoB) in pyramidal neurons does not cause 
aberrant hippocampal Ca2+ microwaves. Moreover, we have not observed this aberrant phenomenon 
in transgenic thy1-GCaMP6s or 6f mice (JAX strain 025776 or 024276) (Masala et al., 2023; Rupprecht 
et al., 2023; Wenzel et al., 2019b), nor in Vglut1-IRES2-Cre-D × Ai162(TIT2L-GC6s-ICL-tTA2)-D mice 
(JAX strains 037512, 031562). It goes beyond the scope and available resources in our laboratories 
to further identify which viral GCaMP transduction approaches avoid the reported phenomenon. It 
seems likely that the underlying mechanisms for this artefact comprise transduction titre and time 
period of GCaMP or R-CaMP1.07 expression, region specificity, and density of expression. Impor-
tantly, although our data suggest some regions and AAV constructs seem more prone to generate 
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Figure 2. Aberrant Ca2+ microwaves are consistent across laboratories and genetically encoded calcium indicator (GECI) variant. (a) Boxplot (median 
± quartiles and range) of the occurrence rate of aberrant Ca2+ microwaves in CA1 at the different institutes at 6–8 wk after injection of GCaMP6s or 
GCaMP6m (number of animals in parenthesis). (b) Boxplots (median ± quartiles and range) of Ca2+ microwave diameters (left) and progression speed 
(right) in CA1 from each animal recorded across institutes. Inset: histogram of fluorescent intensity taken across each Ca2+-wave within an animal. Green 
line is the average, areas outside dashed lines mark 10% lowest fluorescence values, which were excluded from analysis. (c) Boxlot (median ± quartiles 
and range) of the occurrence rate of aberrant Ca2+ microwaves in CA1 following injection with commonly used GECIs (number of animals in parenthesis; 
see Table 1). (d) Two-photon Ca2+ imaging field of view (FOV) (left) in hippocampal CA1 following dual injection approach for conditional GCaMP6s 
expression (6 wk post-injection [p.i.]) with normal sparse spontaneous Ca2+ activity and no detection of Ca2+ microwaves (right; raster plot of ΔF/F, 1 min 
moving window, traces max-normalized per neuron).
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artefactual Ca2+ waves under certain conditions, this does not mean that Ca2+ waves cannot be gener-
ated in other regions or with other constructs or promoters. It remains unclear whether the observed 
phenomenon is restricted to Ca2+ indicator viral expression in mice or whether it extends to different 
animal models as well. In this regard, a previous report did not observe Ca2+-waves in rats following 
synapsin-dependent GCaMP6m expression, although notably, imaging was performed under isoflu-
rane anaesthesia (Sosulina et al., 2021). Furthermore, disentangling the exact cellular mechanisms of 
the phenomenon from technical aspects is difficult as, for example, the mere change in the transduc-
tion procedure will affect GECI expression level. For instance, although Ca2+ waves were not observed 
following conditional expression of GCaMP with CaMKII.Cre, which may suggest a requirement for 
interneuronal expression, it may also simply reflect differences in final GCaMP expression density and 
levels between the two transduction procedures.

In the context of this study, the phenomenon of Ca2+ microwaves is possibly related to the expression 
of exogenous Ca2+ buffer and the resulting effects on Ca2+ dynamics and gene expression (McMahon 
and Jackson, 2018; Rose et al., 2014; Yang et al., 2018), which may be why our findings extended 
across genetically encoded Ca2+ indicators. Beyond clearly being abnormal, the exact nature of the 
observed Ca2+ microwaves remains unclear and may reflect Ca2+ influx during action potential firing or 
possibly Ca2+ release from internal stores. In a limited dataset, we tried to detect the Ca2+ microwaves 
by hippocampal LFP recordings (insulated tungsten wire, diameter ~110 µm). We could not identify a 
specific signature, for example, ictal activity or LFP depression, which may correspond to these Ca2+ 
microwaves. The shortcoming of these LFP recordings is that we could not simultaneously perform 
hippocampal two-photon microscopy, and thus, it is uncertain whether the Ca2+ microwaves indeed 
occurred in proximity to our electrode. We did not evaluate the effect of Ca2+ microwaves on phys-
iological activity. Based on the data presented here, it appears reasonable to hypothesize that such 
waves obscure if not interfere with physiological activity, for example, with hippocampal place cell 
activity. However, the primary purpose of this article was to inform the community about an artefact 
that can be avoided using alternative approaches.

In summary, this report shows that common AAV hippocampal injection procedures of Ca2+ indi-
cators may lead to aberrant Ca2+ microwaves in wildtype mice and genetic mouse models of disease, 
particularly if high-titre virus loads are used. The aim of this article is not to discredit Ca2+ indicators 
expressed under the synapsin promoter, a tool that we greatly appreciate ourselves, but to sensitize 
the field to artefactual transduction-induced aberrant Ca2+ microwaves. The underlying mechanisms, 
some of which we have described above, are likely multifaceted. This article seeks to inform and 
alert others to carefully evaluate their Ca2+ indicator expression approach for in vivo Ca2+ imaging of 
the hippocampus, which is becoming increasingly popular. There is certainly a much greater number 
of safe alternate hippocampal Ca2+ indicator viral expression approaches than has been reported 
here, and we encourage others to report on viral Ca2+ indicator transduction safety profiles. Indeed, 
others have also encountered these artefactual events as recent social media posts attest (Application 
Specialist Team, 2023). With more indicators of brain cell activity becoming available (Ca2+ indicators 
and others including voltage indicators) as well as routes for viral delivery (Grødem et al., 2023), the 
open and timely reporting of transduction safety profiles will reduce unnecessary animal experiments 
and save laboratory resources and time in future investigations into hippocampal function in health 
and disease.

Materials and methods
Animals
All experiments followed the EU animal welfare law (University of Bonn [81-02.04.2019.A139, 
81-02.04.2019.A288], DZNE [84-02.04.2013.A356, 81-02.04.2018.A063]) or institutional guidelines 
of the Animal Care and Use Committee and respective federal office (Columbia University [AC-
AAAV3464, AC-AAAM8851, AC-AAAH1804], University of Zurich [ZH211/2018]). We used wildtype 
C57BL/6J mice, Thy1-GCaMP6 mice (C57BL/6J-Tg(Thy1-GCaMP6s)GP4.12Dkim/J; Jackson Lab stock 
no. 025776, or C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim/J; Jackson Lab stock Nno. 024276 [Dana 
et al., 2019]), Vglut1-IRES2-Cre-D mice (Jackson Lab stock no. 037512) crossed with Ai162(TIT2L-GC6s-
ICL-tTA2)-D mice (Jackson Lab stock no. 031562), PV-Cre::APPswe/PS1dE9 (cross between B6;129P2-
Pvalbtm1(cre)Arbr/J, Jackson Lab stock no. 008069, and B6.Cg-Tg(APPswe,PSEN1dE9)85Dbo/

https://doi.org/10.7554/eLife.93804
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Mmjax, Jackson Lab stock no. 034832) or Scn2aA263V mice (from Schattling et al., 2016). Mice were 
kept under a light schedule of 12 hr on/12 hr off, constant temperature of 22 ± 2°C, and humidity of 
65%. They had ad libitum access to water and standard laboratory food at all times. All efforts were 
made to minimize animal suffering and reduce the number of animals used.

Virus injections
For in vivo two-photon imaging experiments, GECIs were virally transduced using injection of an AAV 
(see Tables 1 and 2). At the time of injection, mice ranged in age from 5 to 79 wk. There was no signif-
icant relationship between the age of the animal and the incidence nor frequency of Ca2+ microwaves 
during this period (linear regression fit to the Ca2+ wave frequency against age was not significant: 
intercept = 1.37, slope = –0.007, p=0.62, n = 14; and generalized linear model relating Ca2+ wave 
incidence ~ age was not significant: z score = 0.19, deviance above null = 0.04, p=0.85, n = 24).

At IEECR/University of Bonn
Mice (~6  wk of age) received ketoprofen (Gabrilen, Mibe; 5  mg/kg body weight [b.w.]; injection 
volume 0.1 ml/10 g b.w., subcutaneously [s.c.]) for analgesia and anti-inflammatory treatment 30 min 
prior to induction of anaesthesia. Then, mice were anaesthetized with 2–3% isoflurane in an oxygen/
air mixture (25/75%) and then placed in a stereotactic frame. Eyes were covered with eye-ointment 
(Bepanthen, Bayer) to prevent drying, and body temperature was maintained at 37°C using a regu-
lated heating plate (TCAT-2LV, Physitemp) and a rectal thermal probe. After hair removal and super-
ficial disinfection, a drop of 10% lidocaine was used to locally anaesthetize the area. After 3–5 min, 
a flap of skin was removed about 1 cm² around the middle of the skull. Residual soft tissue was then 
removed from the skull with a scraper and 3% H2O2/NaCl solution. After complete drying, cranial 
sutures served as landmarks for the determination of injection sites. For virus injection, a burr hole 
was carefully drilled through the skull using a dental drill, avoiding excessive heating and injury to the 
meninges by intermittent cooling with sterile PBS. Coordinates were, for CA1, anterioposterior (AP) 
measured from bregma 1.9 mm, lateral (L) specified from midline 1.6 mm, dorsoventral (DV) from the 
surface of the skull 1.6 mm; for DG, AP 2.4 mm; L 1.6 mm; ×3 injections at DV 2.7, 2.5, and 2.1 mm. 
Virus particles (see Table 1) were slowly injected (20–100 nl/min). To prevent reflux of the injected fluid 
upon cannula retraction, it was left in place until 5 min post-injection and then carefully lifted.

At DZNE
A more detailed procedure was described previously (Fuhrmann et  al., 2015; Poll et  al., 2020). 
Briefly, mice (6–78 wk) were anaesthetized with i.p. injection of ketamine (0.13 mg/g) and xylazine 
(0.01 mg/g), head-fixed using a head holder (MA-6N, Narishige, Tokyo, Japan) and placed into a 
motorized stereotactic frame (Luigs-Neumann, Ratingen, Germany). Body temperature was constantly 
controlled by a self-regulating heating pad (Fine Science Tools, Heidelberg, Germany). After skin 
incision and removal of the pericranium, the position of the injection 34 G cannula was determined 
in relation to bregma. A 0.5 mm hole was drilled through the skull (Ideal Micro Drill, World Precision 

Table 2. Viral constructs used.

Resources table

Genetic reagent (Mus musculus) Recombinant DNA reagent AAV Source ID

Syn.GCaMP6s Syn.GCaMP6s.WPRE.SV40 AAV1 Addgene 100843

Syn.GCaMP6m Syn.GCaMP6m.WPRE.SV40 AAV1 Addgene 100841

Syn.jGCaMP7f Syn-jGCaMP7f-WPRE AAV9 Addgene 104488

Syn.GCaMP6f Syn.GCaMP6f.WPRE.SV40 AAV1 Addgene 100837

hSyn1.R-CaMP1.07 hSyn1-chI-RCaMP1.07-WPRE-SV40p(A) AAV9 VVF/UZH V224-9

syn.Flex.GCaMP6s Syn.Flex.GCaMP6s.WPRE.SV40 AAV1 Addgene 100845

syn.Flex.GCaMP6m Syn.Flex.GCaMP6m.WPRE.SV40 AAV1 Addgene 100838

CamKII0.4.Cre.SV40 CamKII 0.4.Cre.SV40 AAV1 or 9 Addgene 105558

https://doi.org/10.7554/eLife.93804
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Instruments, Berlin, Germany). Stereotactic coordinates were taken from Franklin and Paxinos, 2008 
(The Mouse Brain in Stereotaxic Coordinates, Third Edition, Academic Press). Virus (see Table 1) was 
injected in two loci with the following CA1 coordinates: AP 1.95 mm; L 1.5 mm; DV 1.15 mm at a 
speed of 100 nl/min.

At Columbia University
A more detailed procedure was described previously (Wenzel et al., 2017; Wenzel et al., 2019a). 
Briefly, mice (8–20 wk) were anaesthetized with isoflurane (initial dose 2–3% partial pressure in air, then 
reduction to 1–1.5%). For viral injections, a small cranial aperture was established using a dental drill 
above the somatosensory cortex (coordinates from bregma: AP 2.5 mm, L 0.24 mm, DV 0.2 mm), or 
V1 (coordinates from lambda: AP 2.5 mm, L 0.02 mm, DV 0.2–0.3 mm), or the hippocampus (coordi-
nates from bregma, CA1: –1.9 mm, –1.6 mm, –1.6 mm; CA3: –2.2 mm, –2.3 mm, –2.7 mm). A glass 
capillary pulled to a sharp micropipette was advanced with the stereotaxic instrument, and virus parti-
cles (see Table 1) were injected into putative layer 2/3 of neocortex over a 5 min period at 50 nl/min, 
or hippocampus over 12.5 min using a UMP3 microsyringe pump (World Precision Instruments).

At University of Zurich
A more detailed procedure was described previously (Rupprecht et al., 2023). Briefly, mice (18 wk) 
were anaesthetized using isoflurane (5% in O2 for induction, 1–2% for maintenance during surgery) 
and provided with analgesia (Metacam 5  mg/kg b.w., s.c.). Body temperature was maintained at 
35–37°C using a heating pad. An incision was made into the skin after local application of lidocaine. 
Viral particles (see Table  1) were injected into CA1 (coordinates AP –2.0  mm, ML –1.5  mm from 
bregma, DV –1.3) using a glass pipette with a manually driven syringe at a rate of approximately 50 nl/
min. The injection pipette was left in place for further 5 min before being slowly retracted.

In vivo imaging window implantation procedure
Cranial window surgery was performed to allow imaging from the dorsal hippocampal CA1/CA3 
region or neocortex.

At IEECR, University of Bonn
Thirty  minutes prior to induction of anaesthesia, buprenorphine was administered for analgesia 
(Buprenovet, Bayer; 0.05  mg/kg b.w.; injection volume 0.1 ml/20  g b.w., intraperitoneally [i.p.]). 
Furthermore, dexamethasone (Dexa, Jenapharm; 0.1 mg/20 g b.w.; injection volume 0.1 ml/20 g b.w., 
i.p.), and ketoprofen (Gabrilen, Mibe; 5 mg/kg b.w.; injection volume 0.1 ml/10 g b.w., s.c.) were 
applied to counteract inflammation, swelling, and pain. Mice were anaesthetized with 2–3% isoflu-
rane in an oxygen/air mixture (25/75%) and then placed in a stereotactic frame. Eyes were covered 
with eye-ointment (Bepanthen, Bayer), and body temperature was maintained at 37°C by closed-loop 
regulation through a warming pad (TCAT-2LV, Physitemp) and a rectal thermal probe. Throughout 
the course of the surgical procedure, the isoflurane dose was successively reduced to about 1–1.5% 
at a gas flow rate of ~0.5 ml/min. A circular craniotomy (Ø ~ 3 mm) was established above the right 
hemisphere/hippocampus within the central opening (Ø ~ 7 mm) of the head plate using a dental drill. 
Cortical tissue was carefully aspirated until the alveolar fibres above CA1 could be visually identified. 
A custom-made silicon cone (top Ø 3 mm, bottom Ø 2 mm, depth 1.5 mm, RTV 615, Momentive) 
attached to a cover glass (Ø 5 mm, thickness 0.17 mm) was inserted and fixed with dental cement 
around the edges of the cover glass (see Masala et  al., 2023). Postoperatively, all mice received 
analgetic treatment by administration of buprenorphine twice daily (Buprenovet, Bayer; 0.05  mg/
kg b.w.; injection volume 0.1 ml/20 g b.w., i.p.) and ketoprofen once daily (Gabrilen, Mibe; 5 mg/kg 
b.w.; injection volume 0.1 ml/10 g b.w., s.c.) for three consecutive days post-surgery. Throughout this 
time, animals were carefully monitored twice daily. Animals typically recovered from surgery within 
24–48 hr, showing normal activity and no signs of pain or distress.

At DZNE
Prior to surgery, mice were anaesthetized with an intraperitoneal injection of ketamine/xylazine 
(0.13/0.01 mg per gram of body weight). Additionally, an anti-inflammatory (dexamethasone, 0.2 mg/
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kg) and an analgesic drug (buprenorphine hydrochloride, 0.05 mg/kg; Temgesic, Reckitt Benckiser 
Healthcare) were subcutaneously administered. A cranial window (Ø 3 mm) was implanted above the 
right hippocampus as previously described (Poll et al., 2020).

At Columbia University
For neocortical imaging, directly following virus injection, the craniotomy was covered with a thin 
glass cover slip (3 × 3 mm, No. 0, Warner Instruments), which was fixed in place with a slim meniscus 
of silicon around the edge of the glass cover and finally cemented on the skull using small amounts 
of dental cement around the edge. For hippocampal imaging, a small area of cortex (around 1.5 
× 1.5  mm) above the left CA1 was removed by gentle suction down to the external capsule, as 
described previously (Dombeck et al., 2010; Wenzel et al., 2019b). The site was repeatedly rinsed 
with sterile saline until no further bleeding could be observed. Then, a small UV-sterilized miniature 
glass plug (1.5 × 1.5 mm, BK7 glass, obtained from BMV Optical), glued to the centre of a thin glass 
coverslip (3 × 3 mm, No. 0, Warner Instruments) with UV-sensitive glue, was carefully lowered onto 
the external capsule until the edges of the attached glass cover touched the skull surrounding the 
craniotomy. Finally, the plug was fixed in place with a slim meniscus of silicon around the edge of the 
glass cover and by applying small amounts of dental cement around the edge of the glass cover.

At University of Zurich
A more detailed procedure was described previously (Rupprecht et  al., 2023). Briefly, 2 wk after 
virus injection, the hippocampal window was implanted. Two layers of light-curing adhesive (iBond 
Total Etch, Kulzer) were applied to the exposed skull, followed by a ring of dental cement (Charisma, 
Kulzer). A 3-mm-diameter ring was drilled into the skull, centred at the previous injection site. The 
cortex in the exposed region was carefully aspirated using a vacuum pump until the stripes of the 
corpus callosum became visible. The corpus callosum was left intact. A cylindrical metal cannula 
(diameter 3 mm, height 1.2–1.3 mm) attached with dental cement to a coverslip (diameter 3 mm) was 
carefully inserted into the cavity. The hippocampal window was fixed in place using UV-curable dental 
cement (Tetric EvoFlow, Ivoclar).

Two-photon Ca2+ imaging
A variety of standard commercially available two-photon systems were used at the different institutes 
to record the Ca2+ microwaves.

At IEECR, University of Bonn
A commercially available two-photon microscope was used (A1 MP, Nikon), equipped with a ×16 
water-immersion objective (N.A. = 0.8, WD = 3 mm, CFI75 LWD 16X W, Nikon), and controlled using 
NIS-Elements software (Nikon). GCaMP6s was excited at 940 nm using a Ti:sapphire laser system 
(~60  fs laser pulse width; Chameleon Vision-S, Coherent). Emitted photons were collected using 
gated GaAsP photomultipliers (H11706-40, Hamamatsu). Several individual tif series were recorded 
by resonant scanning at a frame rate of 15 Hz for a total 20–40 min per imaging session.

At DZNE
Recordings of Ca2+-changes were performed with a galvo-resonant scanner (Thorlabs, Newton, USA) 
on a two-photon microscope equipped with a ×16 water immersion objective with a numerical aper-
ture of 0.8 (N16XLWD-PF, Nikon, Düsseldorf, Germany) and a titanium sapphire (Ti:Sa) 80 MHz Came-
leon Ultra II two-photon laser (Coherent, Dieburg, Germany) that was tuned to 920 nm for GCaMP6m 
fluorescence excitation. GCaMP6m fluorescence emission was detected using a band-pass filter 
(525/50 nm, AHF, Tübingen, Germany) and a GaAsP PMT (Thorlabs). ThorImageLS software (Thorlabs, 
version 2.1) was used to control image acquisition. Image series (896 × 480 pixels, 0.715 µm/pixel, or 
640 × 256 pixels) were acquired at 30.3 Hz or 32.3 Hz.

At Columbia University
Neural population activity was recorded using a commercially available two-photon microscope 
(Bruker; Billerica, MA) and a Ti:sapphire laser (Chameleon Ultra II; Coherent) at 940 nm through a ×25 
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objective (Olympus, water immersion, N.A. 1.05). Resonant galvanometer scanning and image acqui-
sition (frame rate 30.206 fps, 512 × 512 pixels) were controlled using Prairie View Imaging software.

At University of Zurich
Neuronal population activity was recorded using a custom-built two-photon microscope (see 
Rupprecht et al., 2023). Briefly light from a femtosecond-pulsed laser (MaiTai, Spectra Physics; tuned 
to 960 nm; power below objective 40–45 mW) was used to scan the sample below a ×16 objective 
(Nikon, water immersion, NA 0.8). Image acquisition and scanning (frame rate 30.88 Hz, 622 × 512 
pixels) were controlled using custom-written software (Chen et al., 2013).

Analysis of aberrant Ca2+ microwaves
To remove motion artefacts, recorded movies were registered using a Lucas–Kanade model (Green-
berg and Kerr, 2009) or the ImageJ plugin moco (available through the Yuste web page or https://​
github.com/NTCColumbia/moco, copy archived by NTCColumbia, 2016; Dubbs et al., 2016), or in 
the case of R-CaMP the NoRMCorre algorithm (Pnevmatikakis and Giovannucci, 2017).

We determined the diameter of the calcium waves in a semi-automated fashion from the raw tif 
series. Using ImageJ software, we first drew an orthogonal line across the largest aspect of each 
calcium wave progressing through the FOV, which resulted in a fluorescent histogram for each wave. 
Using custom code (MATLAB R2020b), we further analysed all histograms for each mouse and imaging 
time point. First, we applied a gentle smoothing, max-normalized each histogram, and max-aligned all 
histograms of a given imaging session. Then, after excluding the 10% lowest fluorescent values, the 
width of each calcium wave and a mean value were calculated for each time point/imaging session. 
Finally, the resulting pixel values were converted to micrometer, based on the respective objective (@ 
512 × 512 pixels and ×1 zoom: Nikon ×16, NA 0.8, 3 mm WD: 1.579 µm/pixel; Olympus ×25, NA 1.05 
2 mm WD: 0.92 µm/pixel). The speed of the Ca2+ microwaves was calculated from the duration and 
path length of the events visually identified and manually tracked in the FOV.

Histochemistry
To verify successful viral transduction and window position, animals were deeply anaesthetized with 
ketamine (80 mg/kg b.w.) and xylazine (15 mg/kg b.w.) at the end of the respective experiment. After 
confirming a sufficient depth of anaesthesia, mice were heart-perfused with cold phosphate-buffered 
saline (PBS) followed by 4% paraformaldehyde (PFA) in PBS. Animals were decapitated and the brain 
removed and stored in 4% PFA in PBS solution for 24 hr. Then, 50–100-µm-thick coronal slices of 
the hippocampus were cut on a vibratome (Leica). For nuclear staining, brain slices were kept for 
10 min in a 1:1000 DAPI solution at room temperature. Brain slices were mounted and the green and 
blue channel successively imaged under an epi-fluorescence or spinning disc microscope (Visitron 
VisiScope).
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Data availability
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animals are available at Zenodo (https://doi.org/10.5281/zenodo.12655766), due to size restrictions 
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Elife, copy archived at Kelly, 2024).
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