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ABSTRACT OF THE DISSERTATION

The 3-dimensional Steady Gradient Ricci Soliton

by

Hongxin Guo

Doctor of Philosophy in Mathematics

University of California San Diego, 2008

Professor Bennett Chow, Chair

In the first three chapters, we study the steady gradient soliton, especially the 3-

dimensional soliton with positive sectional curvatures and which is κ-noncollapsed

on all scales. In Chapter 1, we discuss the background of our project, and introduce

the basic definitions. In Chapter 2, we get some geometric properties of the soliton.

The asymptotic behaviors are studied. In Chapter 3, we introduce another approach

looking at the difference between the two principle curvatures, and prove the soliton

is rotationally symmetric out of a compact set under an additional assumption.

In Chapter 4, we generalize Perelman’s L-length to high dimensions. We define

a new energy in a natural way, and derive the first variation of the energy. When

the dimension is reduced to one, our first variation formula is exactly Perelman’s

L-geodesic equation.

In Chapter 5 we study the mean curvature flow inside the Ricci flow. The inter-

esting result is that in the evolution equation of the second fundamental form, many

bad terms are canceled mysteriously due to the evolution of the ambient manifold.

viii



Chapter 1

Introduction

In 2002 and 2003 Grisha Perelman posted three preprints [18], [19] and [20]

showing how to use the Ricci flow, introduced and studied by Richard Hamilton, to

prove Thurston’s Geometrization conjecture, and consequently the famous Poincaré

conjecture, which is one of the Clay Mathematics Institute’s seven Millennium Prize

Problems.

In 1982 in his seminal paper [9] Hamilton introduced his Ricci flow:

∂g

∂t
= −2 Rc (1.1)

which is now central to our understanding of the geometry and topology of manifolds.

The Ricci flow equation has much in common with the heat equation. It evolves an

initial metric into ever nicer ones.

The Ricci solitons, which are the self-similar solutions evolving only by scalings

and diffeomorphisms, have been extensively studied. These special solutions moti-

vate the general analysis of the Ricci flow through monotonicity formulas and their

applications. In general, the Ricci soliton is defined as:

Definition 1. A solution g(t) of the Ricci flow on Mn is a Ricci soliton if there

exist a positive function σ(t) and a 1-parameter family of diffeomorphisms ϕ(t) :

1
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M→M such that

g(t) = σ(t)ϕ(t)∗g(0).

We say that g(t) is expanding, steady, or shrinking at a time t0 if σ̇(t0) is

> 0, = 0, or < 0 respectively.

In the Ricci flow, the soliton structure can actually be characterized at the initial

time t = 0 by

2Rab +∇aXb +∇bXa + εgab = 0,

where X(p) = d
dt
|t=0(ϕ(t)(p)), and 0 ≤ a, b ≤ n− 1. Note in the above equation, all

the quantities are calculated at time 0. The soliton is expanding, steady or shrinking

when ε > 0, = 0, or < 0 respectively.

If there is a function f (called the potential function) generating the vector

field X, that is to say X = ∇f, we call M a gradient soliton. In this case, the

soliton equation becomes:

Rab +∇a∇bf +
ε

2
gab = 0. (1.2)

Beginning with a complete gradient Ricci soliton structure, we can construct a so-

lution to the Ricci flow, which is a gradient Ricci soliton in canonical form for the

associated time-dependent version. The following is standard and one can find a

detailed discussion in [6].

Proposition 2. If (Mn, g0, f0, ε) is a complete gradient Ricci soliton, then there

exist a solution g(t) of the Ricci flow with g(0) = g0, diffeomorphisms ϕ(t) with

ϕ(0) = idM, function f(t) with f(0) = f0 defined for all t with τ(t) + εt + 1 > 0,

such that the following hold.

1. ϕ(t) : M → M is the 1-parameter family of diffeomorphisms generated by

X(t) + 1
τ
∇0f0; that is

∂

∂t
ϕ(t)(x) =

1

τ
∇0f0(ϕ(t)(x)),
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where we use ∇0 to denote the covariant derivative with respect to the metric

g0.

2. g(t) is the pull-back by ϕ(t) of g0 up to the scale factor τ,

g(t) = τϕ(t)∗g0,

3. f(t) is the pull-back by ϕ(t) of f0 :

f(t) = ϕ(t)∗f0.

Moreover,

Rc(t) +∇t∇tf(t) +
ε

2τ
g(t) = 0, (1.3)

where ∇t is the covariant derivative with respect to the metric g(t). And

∂f

∂t
(t) = |∇tf(t)|2g(t). (1.4)

In the present work, we mainly focus on the gradient steady soliton, in which

ε = 0 :

Rab +∇a∇bf = 0 (1.5)

especially on the case when the dimension is 3 and the sectional curvatures are

positive.

We introduce an important definition:

Definition 3 (κ-noncollapsed). Given ρ ∈ (0,∞] and κ > 0, we say that a Rieman-

nian manifold (Mn, g) is κ-noncollapsed below the scale ρ if for any metric ball

B(x, r) with r < ρ satisfying |Rm | ≤ r−2 for all y ∈ B(x, r), we have

Vol(B(x, r))

rn
≥ κ.

We say (M, g) is κ-noncollapsed on all scales if it is κ-noncollapsed below

the scale ρ for all ρ < ∞.
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There is the following claim of Perelman (see Remark 11.9 on page 32 of his

remarkable paper [18]).

Claim 4. I believe that there is only one (up to scaling) noncompact 3-dimensional

κ-noncollapsed ancient solution with bounded positive curvature – the rotationally

symmetric gradient steady soliton, studied by R. Bryant.

While we are still unable to confirm Perelman’s claim, we get some geometric

properties of the steady soliton, and under one additional assumption we get the

soliton is rotationally symmetric outside of a compact set.



Chapter 2

The scalar curvature R and the

potential function f

2.1 Fundamentals on a steady soliton

In this section we discuss the basic formulas, which are known but for complete-

ness we present our proofs here.

Suppose that (Mn, g, f) satisfies Equation (1.5). From this section,unless stated

otherwise, all the calculations are understood to be on a gradient steady soliton for a

fixed time. Throughout the thesis we use Einstein’s convention that repeated indices

means taking summation with respect to the metric.

Proposition 5. We have the following formulas:

1. R + ∆f = 0,

2. ∇R = 2 Rc (∇f) ,

3. R + |∇f |2 = constant,

4. ∇∇R = 2∇∇f Rc−2 Rc2−2 Rm(·,∇f,∇f, ·).

5
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Proof. 1. Simply taking trace of Equation (1.5) with respect to the metric we get

this formula.

2. Taking once covariant derivative of Equation (1.5) and contract the indices we

get

∇aRab +∇a∇a∇bf = 0.

By the contracted second Bianchi identity we have ∇aRab = 1
2
∇bR, and by the

Bochner formula we get

∇a∇a∇bf = ∇b∆f + Rab∇bf = −1

2
∇aR + Rab∇bf.

Plug in we get −1
2
∇aR + Rab∇bf = 0, or ∇R = 2 Rc(∇f) as a coordinate-free

version.

3. Since

∇(R + |∇f |2) = ∇R + 2〈∇∇f,∇f〉

= 2 Rc(∇f) + 2∇∇f(∇f)

= 0,

we get R + |∇f |2 = constant on M.

4. Taking once more covariant derivative of the second formula, and by the

Bochner formulas we have

∇∇R = 2(∇Rc)(∇f) + 2 Rc(∇∇f)

= 2∇∇f Rc−2 Rm(·,∇f,∇f, ·)− 2 Rc2 .
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2.2 Characterizing R and f sharing a same level

surface

In this section, we discuss the case when the scalar curvature and the potential

function share a same level surface. At a point x where ∇f 6= 0, we let ν + − ∇f
|∇f | .

Then ν is an outward normal vector of the level surface Σ which contains x. The

level surface is defined as follows:

Σ(σ) + {x|f(x) = σ}.

The second fundamental form h of Σ is defined by

h(X, Y ) + 〈∇Xν, Y 〉,

for any X, Y ∈ T (Σ). hij is understood to be h(ei, ej), and the mean curvature

H + hii.

We consider Σ which contains no critical point of f. Plug in the formula for ν we

get

h = −∇∇f

|∇f |
=

Rc

|∇f |
.

Below is a formula which we shall use for a few times in this note. To the best of

the author’s acknowledge it hasn’t shown up in any known literature. The advantage

of this formula is that it shows a connection with the geodesic equation.

Lemma 6. Assume Mn is a gradient steady Ricci soliton. For any vector Y ∈ TxM
we have

Rc(ν,∇Y ν) = Rc(Y,∇νν). (2.1)

Proof. Since both sides are linear in terms of Y, we only need to verify the formula

for an orthonormal basis {ν, ei}. Since ∇ei
ν = hijej, we have

Rc(ν,∇ei
ν) = hijR0j,
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where R0j + Rc(ν, ej).

On the other hand we have

Rc(ei,∇νν) = Rc(ei, 〈∇νν, ej〉ej) = Rij〈∇νν, ej〉.

Furthermore, plugging in the formula for ν we get

∇νν =
1

|∇f |
∇∇f (

∇f

|∇f |
)

=
1

|∇f |2
∇∇f(∇f) +

1

|∇f |
∇f(

1

|∇f |
)∇f.

Since ∇f ⊥ ei and ν = − ∇f
|∇f | we have

〈∇νν, ej〉 =
1

|∇f |2
∇∇f(∇f, ej) = − 1

|∇f |
∇∇f(ν, ej) =

1

|∇f |
R0j.

Finally we get

Rc(ei,∇νν) =
1

|∇f |
RijR0j = hijR0j = Rc(ν,∇ei

ν),

and this completes the proof.

Using this formula, we characterize the scalar curvature and the potential function

sharing a same level surface:

Proposition 7. Suppose Σ is a level surface of f. If Σ is also a level surface of the

scalar curvature R, then we have ∇νν(x) = 0 for any x ∈ Σ.

Proof. For any X ∈ T (Σ) we have 0 = X(R) = 2 Rc(∇f, X) = −2|∇f |Rc(ν,X),

since R is constant on Σ. Furthermore

〈∇νν, X〉 = −〈∇ν(
∇f

|∇f |
), X〉

= − 1

|∇f |
〈∇ν∇f, X〉 − ν(

1

|∇f |
)〈∇f, X〉

=
1

|∇f |
Rc(ν, X)− 0

= 0
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Moreover it’s obvious that 〈∇νν, ν〉 = 0. Hence ∇νν = 0 since its inner product with

any vector is 0.

For the opposite direction of Proposition (7) we have the following:

Proposition 8. Suppose Σ is a level surface of f and on Σ, ∇νν = 0. Furthermore,

assume the second fundamental form h is nondegenerate on Σ. Then Σ is a level

surface of R as well.

Proof. It will be sufficient to show that for any X tangent to Σ, X(R) = 0.

By our assumption on h, there is an Y ∈ T (Σ) such that Y = h−1(X). Since for

any Z ∈ T (Σ),

〈∇Y ν, Z〉 = h(Y, Z) = h(h−1(X), Z) = 〈X,Z〉,

we know that X = ∇Y ν. Now we have

X(R) = 〈∇R,X〉 = 2 Rc(∇f, X) = −2|∇f |Rc(ν,∇Y ν) = −2|∇f |Rc(Y,∇νν).

In the last equality of the above line we used Equation (2.1). Since on Σ, ∇νν is

always 0, we are done.

2.3 R vanishes at spatial infinity

In this section, we focus on a 3-dimensional steady soliton M3 with bounded

positive sectional curvature 0 < sect (g) ≤ C. We also suppose M3 is κ-noncollapsed

on all scales. The κ-noncollapsing assumption guarantees the injectivity radius is

bounded away from 0 for any time. Without loss of generality we assume Rsup = 1

at time t = 0.

We have the following:

Theorem 9 (Scalar curvature tends to zero at spatial infinity). limx→∞R (x) = 0.
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Proof. If the claim is false, then there exists xi → ∞ such that R (xi) ≥ c > 0.

By the injectivity radius estimate for complete noncompact manifolds with bounded

positive sectional curvature and the compactness theorem, there exists a subsequence

such that (M3, g (t) , xi) converges to a complete nonflat eternal solution of the Ricci

flow (M3
∞, g∞ (t) , x∞), t ∈ (−∞,∞), with bounded nonnegative sectional curvature

and which is κ-noncollapsed on all scales. Applying the ‘finite number of curvature

bumps’ theorem to the sequence of closed balls B̄g(0) (xi, 1) in (M3, g (0)) (see §21 of

[11]), we have that for a subsequence,

min
x∈B̄g(0)(xi,1)

sect (g (0)) → 0,

and hence (M3
∞, g∞ (0)) has a zero sectional curvature somewhere in the ball

B̄g∞(0) (x∞, 1). By the strong maximum principle and since we are in dimension 3,

the universal covering solution
(
M̃3

∞, g̃∞ (t)
)
, t ∈ (−∞, 0], splits as the product

of a simply-connected ancient κ-solution (N 2
∞, h∞ (t)) with R. By Chen and Zhu’s

[3] uniqueness result,
(
M̃3

∞, g̃∞ (t)
)

= (N 2
∞, h∞ (t)) × R for all t ∈ (−∞,∞), in

particular, h∞ (t) extends forward in time to an eternal solution. This contradicts

Hamilton’s result that h∞ (t) is isometric to a shrinking round 2-sphere.

Corollary 10. There is a unique point O where both the scalar curvature R and the

potential function f attain their maximums. Moreover,

R(O) = 1, and lim
x→∞

|∇f | = 1.

Proof. By R > 0 and R(x) → 0 as x → ∞, we get R must attain its maximum at

some point O. At O we have ∇R(O) = 0, then we have Rc(∇f,∇f) = 1
2
〈∇R,∇f〉 =

0. By the strictly positivity of Rc, we see ∇f(O) = 0. Combining with ∇∇f < 0 we

see O is a maximum point of f as well. Also since ∇∇f is strictly negative, we see

O is unique.

By the assumption at the beginning of this section, Rsup = 1 we have R(O) = 1.

Since R + |∇f |2 = constant, and evaluate the constant at O we get R + |∇f |2 = 1.

Let x →∞, we get limx→∞ |∇f | = 1.
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Remark 11. Since ∇∇f < 0 everywhere and ∇f(O) = 0, we know M3 is diffeo-

morphic to R3 by Morse theory.

2.4 −f grows linearly

From section (2.3), we know there is a unique point of maximum O for both R

and f. We call O as origin. Without loss of generality, we assume f(O) = 0. For any

x ∈ M3, let r(x) + dist(O, x), and γ(s) denote the shortest geodesic from O to x,

where s is the arclength. An easy observation is that γ(0) = O, and γ (r(x)) = x.

Use the same notation as in section (2.2), Σ(σ) and ν are the level surface and

the outward unit normal vector, respectively. Let β(σ) denote the integral curve of
∇f
|∇f |2 (= − ν

|∇f |). We observe that d
dσ

f(β(σ)) = 〈∇f, β̇〉 = 1. It’s not hard to see that

as x → ∞, σ → −∞. When σ increases, β goes toward the origin and β(0) = O.

Note we can parameterize the curves by their arclength s or level value σ or distance

function r accordingly.

Assume x = γ(r) = β(σ0). We can estimate f(x) along different curves. Along

the minimal geodesic γ, since

f(x) = f(x)− f(O) =

∫ σ0

0

d

dσ
f(γ(σ))dσ =

∫ r

0

d

ds
f(γ(s))ds,

and | d
ds

f(γ(s))| ≤ |∇f | < 1, we get

f(x) > −r.

Now we estimate f(x) along the integral curve β. In this situation we can only

get good estimate when the point x is faraway from the origin. The reason is because

|∇f | → 1, we can compare f(x) and r(x) as x → ∞. Precisely, given any positive

ε, there is a σ̄ such that when σ ≥ σ̄, |∇f(β(σ))| > (1 + ε)−1. Let x̄ + β(σ̄) and
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r̄ + dist(O, x̄), then in β, the length of the portion from x̄ to x can be estimated as∫ σ0

σ̄

|β̇(σ)dσ| =
∫ σ̄

σ0

1

|∇f |
dσ

< (1 + ε)(σ̄ − σ0)

= (1 + ε)(f(x̄)− f(x))

On the other hand, ∫ σ̄

σ0

|β̇(σ)|dσ ≥ dist(x̄, x) = r − r̄.

So we have

(1 + ε)(f(x̄)− f(x)) > r − r̄,

or

f(x) < f(x̄)− (1 + ε)−1(r − r̄).

When r is big enough both f(x̄) and r̄ are relatively small comparing to r, so they

can be absorbed by r(x) by slightly changing the coefficient. We can rewrite the

inequality in the following way:

f(x) < −(1− ε

2
)r.

Briefly, we have derived the following lemma:

Lemma 12. For any ε > 0, there is rε such that when r(x) ≥ rε we have

1− ε <
−f(x)

r
< 1. (2.2)

Now we consider the difference between the geodesic and the integral curve. Let

θ(x) be the angle between γ̇(x) and ν(x), we have:

Corollary 13. θ(x) → 0 as x →∞.
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Proof. Since −f is geodesically convex we see

d

ds
(−f(γ(s))) ≥ −f(x) + f(O)

r
=
−f(x)

r
.

On the other hand,

d

ds
(−f(γ(s))) = 〈γ̇,−∇f〉 =

1

|∇f |
〈γ̇, ν〉 =

1

|∇f |
cos θ.

So we have cos θ ≥ |∇f | · −f(x)
r

. Let x →∞, by Lemma 12 we get

lim
x→∞

cos θ(x) = 1,

and this completes the proof.

On any long stable geodesic, it is well known that
∫

γ
Rc(γ̇, γ̇)ds is bounded. On

the steady soliton, we can indeed get an exact number for the integral. This is the

following:

Corollary 14. For any long geodesic γ(s) starting from O we have∫
γ

Rc(γ̇, γ̇)ds = 1 (2.3)

Notice we integrate from 0 to ∞.

Proof.

d

ds
(|∇f | cos θ) = γ̇〈−∇f, γ̇〉

= −〈∇γ̇∇f, γ̇〉

= Rc(γ̇, γ̇)

Notice that when s →∞, |∇f | → 1, and θ → 0; and at 0, ∇f = 0. Taking integral

from 0 to ∞ along γ we get Equation (2.3).

Remark 15. In the above proof, if we replace |∇f | cos θ by |∇f | we will see that∫
γ

Rc(γ̇, ν)ds = 1.
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2.5 R decays linearly

In this section, all the assumptions on M are the same as in section (2.3). We

have seen from Lemma 12 that −f grows linearly. In this section we will see that the

scalar curvature R decays linearly. Before proceeding to the result, we first introduce

a preliminary lemma proved by Perelman.

Lemma 16 (Canonical neighborhood theorem for ancient κ-solutions). For every

ε > 0 there exists a compact set Kε in M3 such that every point x ∈M−Kε is the

center of an ε-neck. Then for any δ > 0, there exists ε > 0 such that |∆R| ≤ δR2

for x ∈M−Kε.

In the above, in particular we choose δ = 1, then there is a compact set out of

which we have

〈∇R,∇f〉
(

=
∂R

∂t

)
= ∆R + 2 |Rc|2 ≥ |Rc |2 ≥ R2

3
. (2.4)

Theorem 17. For r(x) big enough, there are positive constants C1, C2 such that

C1

r(x)
≤ R(x) ≤ C2

r(x)
. (2.5)

Proof. We prove the two inequalities separately.

step 1. R decays at most linearly.

By Perelman’s derivative estimate we have |∇R| ≤ CR2. Apply this along a

geodesic γ emanating from O. 〈∇R, γ̇〉 ≥ −CR2 so that γ̇
(

1
R

)
≤ C. Thus

1

R (γ (r))
≤ 1

R (γ (0))
+ Cr = 1 + Cr,

so that

R (γ (r)) ≥ 1

1 + Cr
.

For r big enough, by choosing an appropriate constant C1 we can rewrite the above

as

R(x) ≥ C1

r
.
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This shows R decays at most linearly.

step 2. R decays at least linearly.

Now we prove R decays at least linearly. By inequality 2.4, we have out of a

compact set U1

〈∇f,∇R〉 = ∆R + 2|Rc |2 ≥ |Rc |2 ≥ 1

3
R2.

We introduce the integral curve β̄(σ̄) of − ∇f
|∇f |2 . Since |∇f | → 1 we have out of a

compact set U2

dR

dσ̄
= − 1

|∇f |2
〈∇f,∇R〉 ≤ −1

2
〈∇f,∇R〉 ≤ −1

6
R2. (2.6)

From this differential inequality we get get an upper estimate of R(β̄(σ̄)) in terms

of σ̄, of the order of 1/σ̄. Since σ̄ indeed takes the value of −f and is comparable

with the distance r, we can get a same kind of upper bound of R(x) in terms of r.

With this intuition in mind, below we give a rigid argument. The reader may skip

this technical part.

Let S0 be a big sphere out of U + U1∪U2. For any x, there is a maximal integral

curve β̄ passing through x with β̄(σ̄) = x. Let x0 be a point of intersection of β̄ and

S0 and assume β̄(σ̄0) = x0. From Inequality (2.6) we have

1

R(x)
− 1

R(x0)
≥ σ̄ − σ̄0

6
.

Let c0 + max{R(x̄) : x̄ ∈ S0} then

1

R(x)
≥ σ̄ − σ̄0

6
+

1

c0

. (2.7)

Keep in mind that β̄ is an integral curve of − ∇f
|∇f |2 . So that

−f(x)− (−f(x0)) =

∫ σ̄

σ̄0

d

dη
(−f(β̄(η)))dη =

∫ σ̄

σ̄0

1dη = σ̄ − σ̄0.

Let c1 + max{−f(x̄) : x̄ ∈ S0} then

σ̄ − σ̄0 ≥ −f(x)− c1. (2.8)
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Combining Inequalities (2.7) and (2.8) we get

1

R(x)
≥ −f(x)

6
− c1

6
+

1

c0

.

Since −f grows linearly, there exist constants c > 0 and c′ + −c1/6 + 1/c0 so that

1

R(x)
≥ cr(x) + c′.

For r large enough, we can choose an appropriate constant C2 > 0 such that

R(x) ≤ C2

r(x)
.

This shows R decays at least linearly.

As easy consequences, below we see the asymptotic behaviors of ∇R and ∇f.

Corollary 18. For r(x) big enough, there is a constant c such that

|∇R(x)| ≤ c

r2
, (2.9)

and

1− c

r
≤ |∇f | < 1. (2.10)

Proof. Inequality (2.9) is directly from |∇R| ≤ CR2 and Inequality (2.6).

Since R + |∇f |2 = 1, for r(x) big enough we have

|∇f |2 = 1−R ≥ 1− c

r
≥ (1− c

r
)2,

and we get inequalities in (2.10).
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2.6 Round cylinder limit at spatial infinity (I)

In this section, we shall show that by appropriate point picking and rescaling,

there is a round cylinder limit at spatial infinity. We prove this by using the properties

of the scalar curvature R. The results in this section are mainly taken from [6]. Since

they are very important in the understanding of the steady soliton at infinity, and

also they offer a comparison with the next section where we prove the round cylinder

limit by looking at the potential function, we include this section in our thesis.

We first introduce an important definition in the studies of Ricci flow.

Definition 19 (ASCR). The asymptotic scalar curvature ratio of a complete

noncompact Riemannian manifold (Mn, g) is defined by

ASCR(g) + lim sup
d(x,O)→∞

R(x)d(x, O)2, (2.11)

where O ∈ (M) is any choice of origin.

ASCR(g) is well-defined because of the following proposition.

Proposition 20. ASCR(g) is independent the choice of origin O.

Proof. We pick another point p and let

ASCRp(g) = lim sup
d(x,p)→∞

R(x)d(x, p)2.

We shall show that ASCRp(g) = ASCR(g) in 3 cases.

Case 1, ASCR(g) = +∞.

In this case there is a sequence of points xi such that d(xi, O) →∞ and

R(xi)d(xi, O)2 → +∞. When xi is far enough from O we have

d(xi, O)− d(p, O) ≥ d(xi, O)/2 > 1

and

R(xi)d(xi, p)2 ≥ R(xi)(d(xi, O)− d(p, O))2 ≥ R(xi)d(xi, O)2

4
.
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We see ASCRp(g) = +∞ as well.

Case 2, ASCR(g) = −∞.

In this case, for any sequence xi →∞ we have

lim R(xi)d(xi, O)2 = −∞.

For xi far enough we have R(xi) < 0 and

R(xi)d(xi, p)2 ≤ R(xi)(d(xi, O)− d(p, O))2 ≤ R(xi)d(xi, O)2

4
.

Taking limits of both sides we see that ASCRp(g) = −∞.

Case 3, ASCR(g) + C is finite.

In this case, since when x is far enough from both p and O

d(x, O)

2
≤ d(x, p) ≤ 2d(x, O),

we see ASCRp(g) + Cp is finite as well. Assume that {xi} is such a sequence of

points such that R(xi)d(xi, p)2 → Cp. Obviously R(xi)d(xi, p) → 0 and moreover

|R(xi)d(xi, p)2 −R(xi)d(xi, O)2| ≤ |R(xi)(d(xi, p) + d(xi, O)|d(p, O) → 0.

We now see that lim R(xi)d(xi, O)2 = Cp, and consequently C ≥ Cp.

On the other hand, by the same reasoning we can also see that Cp ≥ C. So we

have Cp = C and we are done.

It is known that ASCR is independent of time on a complete noncompact ancient

solution with bounded nonnegative curvature operator(See Theorem 8.32 of [6]). The

following is Theorem 9.44 in [6].

Lemma 21. Let (Mn, g, f) be a complete steady gradient Ricci soliton such that

sect(g) ≥ 0, Rc > 0, and R attains its maximum at some point. If n ≥ 3, then

ASCR(g) = +∞.
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The following is Theorem 9.66 of [6]. We sketch the proof here.

Theorem 22. Let M3 be a steady gradient soliton with bounded positive sectional

curvature. If further M3 is κ-noncollapsed on all scales then there exists a sequence

of points xi → ∞ and a sequence of radii {ri} with r2
i R(xi, 0) → ∞ such that the

pointed sequence of solutions(
Bg(0)(xi, ri), gi (t) , xi

)
, t ∈ (−∞, 0]

converges to a round shrinking cylinder. Here gi (t) + R (xi) g
(
R (xi)

−1 t
)

and R(xi)

is evaluated with respect to the metric g(0).

Proof. We have ASCR (g) = ∞. By point picking, there exists a subsequence xi →
∞, ri ∈ (0,∞), and εi → 0 such that

R (xi) r2
i →∞,

B (xi, ri) are disjoint,

d (xi, O)

ri

→∞,

max
B̄(xi,ri)

R ≤ (1 + εi) R (xi) .

Consider the scaled sequence (
M3, gi (t) , xi

)
,

where gi (t) + R (xi) g
(
R (xi)

−1 t
)
. We have

max
B̄gi(t)(xi,R(xi)

1/2ri)
Rgi(t) ≤ 1 + εi

and R (xi)
1/2 ri →∞. By the curvature bumps theorem of Hamilton, we have

min
B̄g(0)(xi,R(xi)

−1/2)
R (xi)

−1 sect (g (0)) → 0

for a subsequence i → ∞. By the compactness theorem, there is a subsequence of

(M3, gi (t) , xi) converges to (M3
∞, g∞ (t) , x∞) with minB̄g∞(0)(xi,1) sect (g∞ (0)) = 0,

so that M3
∞ is a shrinking round cylinder (for topological reasons, a quotient cannot

occur; also we used the classification of ancient κ-solutions in dimension 2).
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2.7 Round cylinder limit at spatial infinity (II)

In last section, we have seen there exists a sequence going to infinity converges to

a round cylinder by appropriate rescaling. We proved this by investigating the scalar

curvature. In this section, we will see that for any sequence going to infinity, there

is a subsequence converges to a round cylinder by the same rescaling. We prove this

by looking at the properties of the potential function.

Given any sequence {xi} with xi → ∞, we consider (M, gi(t), xi, Fi(x)) , where

gi(t) + R(xi)g(t/R(xi)) and Fi(x) +
√
−f(x)−

√
−fi(x).

First we process a technical point picking. The goal is to get a subsequence

of points, still denoting by {xi}, and a sequence of radii {ri} such that the balls

Bg(0) (xi, ri) keep growing unbounded under the rescaled metric meanwhile we still

have nice control inside the balls. The reader is notified this technical point picking

is not unique, and what we do here is just an option.

We begin with considering the points out of a compact set such that the linear

behaviors hold:

C1

r(x)
≤ R(x) ≤ C2

r(x)
, (1− ε)r(x) ≤ −f(x) ≤ r(x).

Now let ri +
√

r(xi)/ (R(xi))
1
4 , remember by our notation, r(x) + dg(0)(x, O).

Since xi → ∞, we can pick a subsequence such that Bg(0)(xi, ri) are disjoint. (This

requirement is not essential for our purposes but will make the picture cleaner and

clearer.) We notice that Bg(0)(xi, ri) are the same as Bgi(0)(xi,
√

R(xi)ri) and√
R(xi)ri =

√
r(xi) (R(xi))

1
4 ≥ C(r(xi))

1
4 →∞,

which says that under the (smaller) metric gi(t), the radii of the balls Bg(0)(xi, ri) go

to infinity.

For any x ∈ Bg(0)(xi, ri), we have

r(xi)−
√

r(xi)

R(xi)
1
4

≤ r(x) ≤ r(xi) +

√
r(xi)

R(xi)
1
4

,
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or

1− 1√
r(xi)R(xi)

1
4

≤ r(x)

r(xi)
≤ 1 +

1√
r(xi)R(xi)

1
4

.

Since xi →∞ and 1√
r(xi)R(xi)

1
4
→ 0 we may assume xi far enough such that

1

2
≤ r(x)

r(xi)
≤ 3

2
.

Now it’s not hard to see that within the balls Bg(0)(xi, ri) there are positive constants

C1 and C2 which are independent of i such that

C1 ≤
R(x)

R(xi)
≤ C2, C1 ≤

f(x)

f(xi)
≤ C2 (2.12)

and

C1 ≤ R(x) · (−f(xi)) ≤ C2, C1 ≤ R(xi) · (−f(x)) ≤ C2. (2.13)

By now we have finished the point picking and are ready to derive our main

theorem of this section:

Theorem 23. For any sequence {xi} with xi → ∞ there is a subsequence still

denoting by {xi} with associated radii {r̄i} such that the rescaled pointed sequence of

solutions

{
(
Bgi(0)(xi, r̄i), gi(t), xi, Fi(x)

)
}, t ∈ (−∞, 0]

converges in the C∞ pointed Cheeger-Gromov sense to the round cylinder(
S2 × R, g∞(t), x∞, F∞(x)

)
where g∞(t) is the standard Ricci flow solution and F∞ satisfies

|∇∞F∞|g∞(0) = 1, ∇∞∇∞F∞ = 0.

Proof. Consider the ball Bg(0)(xi, ri), where xi and ri are picked as we described

before the theorem. Note the ball is the same as Bgi(0)(xi, r̄i) where r̄i +
√

R(xi)ri →
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∞ as xi →∞. For any x ∈ Bg(0)(xi, ri) by Equation (2.13) and the fact that |∇f | → 1

we have

2
∣∣∇gi(0)Fi(x)

∣∣
gi(0)

= R(xi)
− 1

2 (−f(x))−
1
2 |∇f(x)|g(0) ≥ C > 0.

Note we use C to denote different constants if there is no need to distinguish them.

On the other hand, we also have

2
∣∣∇gi(0)Fi(x)

∣∣
gi(0)

= R(xi)
− 1

2 (−f(x))−
1
2 |∇f(x)|g(0) ≤ C.

Now we calculate the second derivatives

2
∣∣∇gi(0)∇gi(0)Fi(x)

∣∣
gi(0)

= R (xi)
−1

∣∣∣∣−(−f)−1/2∇∇f +
1

2
(−f)−3/2∇f ⊗∇f

∣∣∣∣
g(0)

≤ C
√

r (xi) |Rc|g(0) + Cr (x)−1/2

≤ C
√

r(xi)R(x) + Cr(xi)
− 1

2

≤ C (r(xi))
− 1

2 ,

and now it’s obvious that

lim
xi→∞

∣∣∇gi(0)∇gi(0)Fi(x)
∣∣
gi(0)

= 0.

Furthermore we calculate the third derivatives and we have

2
∣∣∇gi(0)∇gi(0)∇gi(0)Fi(x)

∣∣
gi(0)

= 2 (R(xi))
− 3

2 |∇l∇j∇kFi(x)|g(0)

= (R(xi))
− 3

2

∣∣∣∣∣∇l∇j∇kf√
−f

+
∇j∇kf∇lf +∇l∇kf∇jf +∇l∇jf∇kf

2
(√
−f

)3 +
3

4

∇lf∇jf∇kf(√
−f

)5

∣∣∣∣∣
≤ Cr(xi) |∇∇∇f |+ C|Rc |+ Cr(xi)

−1. (2.14)

By Perelman’s derivative estimate we have

|∇∇∇f | = |∇Rc | ≤ CR
3
2 ≤ Cr(xi)

− 3
2 ,

and now we see all of the three terms in Inequality (2.14) go to 0 as xi →∞.

Summarizing we have proved the following:
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1. C1 ≤
∣∣∇gi(0)Fi(x)

∣∣
gi(0)

≤ C2,

2. limxi→∞
∣∣∇gi(0)∇gi(0)Fi(x)

∣∣
gi(0)

= 0,

3. limxi→∞
∣∣∇gi(0)∇gi(0)∇gi(0)Fi(x)

∣∣
gi(0)

= 0.

By passing to a subsequence, we conclude in the Cheeger-Gromov convergence of(
Bgi(0)(xi, r̄i), gi(t), xi

)
to (M∞, g∞(t), x∞) that the functions Fi converge to a C∞

function F∞ on M∞ with

∇∇F∞ = 0 and |∇F∞| = C.

By rescaling, we can assume C = 1. Since ∇F∞ is a parallel vector field, we get

(M∞, g∞(t)) are cylinders and F∞ is a radial function.

2.8 Characterizing the rotational symmetry by R

and f

The same assumptions as before, M3 is a steady soliton with positive sectional

curvatures and which is κ-noncollapsed on all scales. And adopt all notations from

the previous sections.

Theorem 24. The following conditions are equivalent.

1. |∇f |2 is constant on the level sets of f .

2. R is constant on the level sets of f .

3. The integral curves to ν are geodesics.

4. (M, g) is rotationally symmetric, that is the level surfaces Σ(σ) are round

spheres.
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Proof. (1)⇔(2): this is directly from R +∇f |2 = 1.

(2)⇔(3): except for the origin O, on all level surfaces of f, the second fundamental

form h is strictly positive. Then by Propositions (7) and (8), we get this equivalence.

(1),(2),(3)⇒(4): we are going to show all level surfaces Σ(σ) are round spheres.

We split our proof into several steps so that it is easy to read.

step 1. Rc(ν, ν) is constant on Σ.

For any vector field X which is tangent to Σ, we extend it to a neigborhood so

that it is always tangent to Σ(σ). We have

Rc(X, ν) = − 1

|∇f |
Rc(X,∇f) = − 1

2|∇f |
X(R) = 0,

since R is constant on Σ.

Furthermore,

X(Rc(ν, ν)) = (∇X Rc)(ν, ν) + 2 Rc(∇Xν, ν)

= (∇X Rc)(ν, ν) + 2 Rc(X,∇νν)

= (∇X Rc)(ν, ν),

where in the second equality we used Equation (2.1). And

0 = ν(Rc(X, ν)) = (∇ν Rc)(X, ν) + Rc(∇νX, ν) + Rc(X,∇νν)

= (∇ν Rc)(X, ν)

where in the last equality we used the fact that ∇νν = 0, and because of that,

∇νX ⊥ ν, so Rc(∇νX, ν) = 0.

Since ∇f = −|∇f |ν, we have

(∇X Rc)(ν, ν)− (∇ν Rc)(X, ν) = −Rm(X, ν, ν, ν)|∇f | = 0.

Our conclusion is X(Rc(ν, ν)) = 0, which means Rc(ν, ν) is constant on Σ.

step 2. The mean curvature H depends only on σ.
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This is because

H = hii =
Rii

|∇f |
=

R− Rc(ν, ν)

|∇f |
,

and all the quantities in the last term depends only on σ.

step 3. The norm of the second fundamental form |h|2 is constant.

The level surfaces of f is evolving by the geometric flow

∂X

∂σ
=

∇f

|∇f |2
= − 1

|∇f |
ν.

The evolution equation of the mean curvature is

∂H

∂σ
= ∆̃(

1

|∇f |
) +

1

|∇f |
(|h|2 + Rc(ν, ν)),

where ∆̃ is the Laplace operator on Σ. We have

|h|2 = |∇f | · ∂H

∂σ
− Rc(ν, ν),

and now it’s clear |h|2 depends only on σ because all the terms on the RHS do.

step 4. The Gauss curvature Kσ of Σ is constant.

By the Gauss equation we know

Kσ = sect(e1 ∧ e2) + det(h),

where e1 and e2 are two orthonormal tangent vector fields on Σ, sect(e1 ∧ e2) is the

sectional curvature of the plane spanned by {e1, e2}, and det(h) is the determinant

of the second fundamental form h. We’ll show both of the two terms on the RHS are

constants on Σ.

We have

2 sect(e1 ∧ e2) = 2R1221

= (R0110 + R2112) + (R1221 + R0220)− (R0110 + R0220)

= R11 + R22 −R00

= R− 2 Rc(ν, ν),
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where 0 means along ν direction, for example R0110 + Rm(ν, e1, e1, ν), and R00 +

Rc(ν, ν). It’s now clear that sect(e1 ∧ e2) is constant on Σ.

Furthermore, since

2 det(h) = H2 − |h|2

is also constant on Σ, we see Kσ is constant for each fixed σ. This shows intrinsically

Σ(σ) is a round sphere with constant Gauss curvature Kσ.

(4)⇒(1),(2),(3). If M3 is rotationally symmetric, then by a standard argument,

M must be a Bryant solion. All the conclusions follow.



Chapter 3

The second fundamental form

In this chapter, we investigate another quantity to measure the rotational sym-

metry of the level surfaces. We look at the integral of (λ2 − λ2)
2, where λ1, λ2 are

the principle curvatures of the level surface.

We first derive the evolution equation of det(h) under general geometric flow.

The formula is interesting itself. Then in dimension 3, we get the evolution equation

of the isoperimetric quantity
∫

(λ1 − λ2)
2dµ, which is

∫
H2 − 4 det(h)dµ. Applying

this equation into the situation where the flow is the natural flow of the level surfaces

of the potential function on a steady soliton, we get a nice evolution equation, and

then we get a monotonicity formula out of a compact set. If we assume the quantity

goes to 0 at ∞ we can get λ1 = λ2. Some other applications are also discussed at

the end.

3.1 The evolution equation under general geomet-

ric flows

In this section we derive the evolution equation in general geometric flows. Let

(Mn+1, g) be a complete Riemannian manifold, and Σ(t) be a hypersurface evolving

27
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by the flow equation:
∂X

∂t
= −φν (3.1)

where φ is a smooth function and ν is the outward unit normal vector of Σ(t). We will

further assume as an n-dimensional manifold, Σ has no boundary. This is satisfied

in all of our applications.

The inverse of the second fundamental form h−1 is the usual matrix inverse when

h is nonzero. Whenever h is degenerate at some point, we can still define h−1 by

the following: assume the eigenvalues of h are {λ1, λ2, · · · , λm, 0, · · · , 0}, then we

define h−1 to be {λ−1
1 , λ−1

2 · · · , λ−1
m , 0, · · · , 0}. We will use the notation hij + (h−1)ij

throughout this chapter. Note the upper indices are not lifted by the metric.

There is the Gauss-Codazzi equation, which we shall use later:

(∇̃kh)ij − (∇̃jh)ik = −R0ijk (3.2)

where we use tilde to denote the quantities on Σ and 0 means the direction along

ν. However, we don’t bother to use tilde on the first and second fundamental forms

because they won’t cause any confusion.

The determinant of the second fundamental form is defined to be

det(h) =
det(hij)

det(gij)
,

which is independent of the choice of coordinates.

In this section we derive the following formula:

Theorem 25. If Σ(t) satisfies Equation (3.1), then we have

d

dt

∫
Σ

det(h)dµ =

∫
Σ

det(h)[φhijR0ij0 − ei(φ)hikhljR0lkj]dµ, (3.3)

The rest part of this section is devoted to proving Theorem 25. First we list the

evolution equations which we shall use:

1.
∂gij

∂t
= −2φhij,
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2. ∂
∂t

dµt = −φHdµt,

3.
∂hij

∂t
= ∇̃i∇̃jφ− φgklhikhjl + φR0ij0.

Then we derive several lemmas.

Lemma 26. We have the following evolution equation for det(h) :

∂

∂t
det(h) = det(h) · (hij∇̃i∇̃jφ + φhijR0ij0 + φH) (3.4)

Proof. By direct computations we have

∂

∂t
det(hij) = det(hij)h

ij · ∂hij

∂t

= det(hij)h
ij · (∇̃i∇̃jφ− φgklhikhjl + φR0ij0)

= det(hij)(h
ij∇̃i∇̃jφ− φH + φhijR0ij0)

and
∂

∂t
det(gij) = −2φH det(gij).

Then by the quotient rule in calculus we have

∂

∂t
det(h) =

det(gij) · ∂
∂t

det(hij)− det(hij) · ∂
∂t

det(gij)

(det(gij))2

= det(h) · (hij∇̃i∇̃jφ− φH + φhijR0ij0) + 2 det(h) · φH

= det(h) · (hij∇̃i∇̃jφ + φhijR0ij0 + φH).

Immediately we have

Corollary 27.

d

dt

∫
Σ

det(h)dµ =

∫
Σ

det(h) · (hij∇̃i∇̃jφ + φhijR0ij0)dµ. (3.5)
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Proof.

d

dt

∫
Σ

det(h)dµ =

∫
Σ

∂

∂t
det(h)dµ +

∫
Σ

det(h)
∂

∂t
(dµ)

Combining ∂
∂t

dµt = −φHdµt and Equation (3.4) we get Equation (3.5).

Now we are going to do integration by parts. We will show the first term in the

RHS of Equation (3.5)

det(h) · hij∇̃i∇̃jφ = divΣ[det(h)h−1(∇̃φ)]− det(h)ei(φ)hikhljR0lkj,

where divΣ is the divergence on Σ. Then Equation (3.3) follows immediately from

the divergence theorem. To see that we need a few technical lemmas.

Lemma 28. Under an orthonormal frame {ei}:

divΣ[h−1(∇̃φ)] = (∇̃j(h
−1))ijei(φ) + hij∇̃i∇̃jφ. (3.6)

Proof.

divΣ[h−1(∇̃φ)] = 〈∇̃k[h
ijei(φ)ej], ek〉

= ej(h
ijei(φ)) + hijei(φ)〈∇̃kej, ek〉

= ej(h
ij)ei(φ) + hijejei(φ) + hijei(φ)Γ̃k

kj

= (∇̃j(h
−1))ijei(φ) + h−1(∇̃jei, ej)ei(φ)

+ h−1(∇̃jej, ei)ei(φ) + hijejei(φ) + hijei(φ)Γ̃k
kj

= (∇̃j(h
−1))ijei(φ) + hkjΓ̃k

jiei(φ) + hkiΓ̃k
jjei(φ)

+ hijejei(φ) + hijei(φ)Γ̃k
kj

Since {ei} are orthonormal we have Γ̃k
ij = −Γ̃j

ik, and the last line in the above

calculations becomes

(∇̃j(h
−1))ijei(φ) + hij[ejei(φ)− Γ̃k

jiek(φ)] = (∇̃j(h
−1))ijei(φ) + hij∇̃i∇̃jφ.

This completes the proof of the lemma.
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Remark 29. From the proof we see the formula is true when replacing h−1 by any

general 2-tensor. Indeed the next lemma is also true for general 2-tensors.

It is not hard to see that

Lemma 30.

(∇̃mh−1)ij = −hikhlj(∇̃mh)kl.

Proof. Firstly we know

∇̃m(hij) = −hikhlj∇̃m(hkl),

so we have

(∇̃mh−1)ij = ∇̃m(hij)− h−1(∇̃mei, ej)− h−1(∇̃mej, ei)

= −hikhlj∇̃m(hkl)− Γ̃k
mih

kj − Γ̃k
mjh

ki

= −hikhlj[(∇̃mh)kl + h(∇̃mek, el) + h(∇̃mel, ek)]

− Γ̃k
mih

kj − Γ̃k
mjh

ki

= −hikhlj[(∇̃mh)kl + Γ̃r
mkhrl + Γ̃r

mlhrk]− Γ̃k
mih

kj − Γ̃k
mjh

ki

= −hikhlj(∇̃mh)kl − Γ̃j
mkh

ik − Γ̃i
mlh

lj − Γ̃k
mih

kj − Γ̃k
mjh

ki

Then again by Γ̃k
ij = −Γ̃j

ik, we get our formula as claimed.

Now we are ready to derive our last formula of this section:

Lemma 31.

divΣ[det(h) · h−1(∇̃φ)] = det(h) · [hij∇̃i∇̃jφ + ei(φ)hikhljR0lkj] (3.7)

Proof.

divΣ[det(h) · h−1(∇̃φ)] = det(h) · divΣ[h−1(∇̃φ)] + 〈∇̃ det(h), h−1(∇̃φ)〉

= det(h) · hij∇̃i∇̃jφ + det(h) · (∇̃j(h
−1))ijei(φ)

+ h−1(∇̃ det(h), ∇̃φ).
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It’s not hard to see that

h−1(∇̃ det(h), ∇̃φ) = det(h) · ei(φ)hikhjlek(hjl)

Then we have

det(h) · (∇̃j(h
−1))ijei(φ) + h−1(∇̃ det(h), ∇̃φ)

= − det(h)ei(φ)hikhlj · [(∇̃jh)kl − ek(hjl)]

= − det(h)ei(φ)hikhlj · [(∇̃jh)kl − (∇̃kh)jl − h(∇̃kej, el)− h(∇̃kel, ej)]

= − det(h)ei(φ)hikhlj · [−R0lkj − h(∇̃kej, el)− h(∇̃kel, ej)]

= det(h)ei(φ)hikhljR0lkj

The last equality is because hljh(∇̃kej, el) = Γ̃m
kjhmlh

lj = Γ̃j
kj = 0.

Finally we give a proof of Theorem 25 to finish this section.

Proof.

d

dt

∫
Σ

det(h)dµ =

∫
Σ

det(h) · (hij∇̃i∇̃jφ + φhijR0ij0)dµ

=

∫
Σ

divΣ[det(h)h−1(∇̃φ)]− det(h)ei(φ)hikhljR0lkjdµ

+

∫
Σ

det(h)φhijR0ij0dµ

=

∫
Σ

det(h)(φhijR0ij0 − ei(φ)hikhljR0lkj)dµ.

In the last equality we used the divergence theorem, and the fact Σ has no boundary.

3.2 An isoperimetric quantity in a 3-dimensional

manifold

In this section, we assume n = 2, which means the dimension of the ambient

manifold is 3. In this case, the Riemann curvature can be replaced by the Ricci
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curvature in the following way:

Rabcd = Radgbc + Rbcgad −Racgbd −Rbdgac −
R

2
(gadgbc − gacgbd),

where 0 ≤ a, b, c, d ≤ 2. Let a = 0, b = i, c = j, d = 0 we have

R0ij0 = R00gij + Rij −
R

2
gij

=
R00 − gklRkl

2
gij + Rij

Let a = 0, b = l, c = k, d = j we get

R0lkj = R0jglk −R0kglj.

We have

Lemma 32. When n = 2, assume the principle curvatures of h are λ1, λ2, and the

corresponding eigenvectors are e1, e2 respectively. Under the flow Equation (3.1) We

have

d

dt

∫
Σ

det(h)dµ =

∫
Σ

φHR00

2
− φ(R11 −R22)(λ1 − λ2)

2
+ Rc(ν, ∇̃φ)dµ. (3.8)

Proof. By Equation (3.3) and the formulae of the Riemann curvatures in terms of

the Ricci curvatures in dimension 3, we have

d

dt

∫
Σ

det(h)dµ =

∫
det(h)φhij(

R00 − gklRkl

2
gij + Rij)

− det(h)ei(φ)hikhlj(R0jglk −R0kglj)dµ

The first term of the integrand

det(h)φhij(
R00 − gklRkl

2
gij + Rij) = φH

R00 −R11 −R22

2
+ φ(λ2R11 + λ1R22)

=
φHR00

2
− φ(R11 −R22)(λ1 − λ2)

2
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While the second term

− det(h)ei(φ)hikhlj(R0jglk −R0kglj) = − det(h)ei(φ)hikhljR0jglk

+ det(h)ei(φ)hikhljR0kglj

= −λ2

λ1

e1(φ)R01 −
λ1

λ2

e2(φ)R02

+ H(
1

λ1

e1(φ)R01 +
1

λ2

e2(φ)R02)

= e1(φ)R01 + e2(φ)R02

= Rc(ν, ∇̃φ)

Plug in these two terms we get Equation (32).

We aim to find the evolution equation of
∫

(λ1−λ2)
2dµ. We first have the evolution

equation of the mean curvature:

∂H

∂t
= ∆̃φ + φ(|h|2 + R00). (3.9)

It’s easy to see that:

d

dt

∫
H2dµ =

∫
2H

∂H

∂t
dµ +

∫
H2 ∂

∂t
(dµ)

=

∫
2H∆̃φ + 2φHR00 + φH(2|h|2 −H2)dµ.

Note that

2|h|2 −H2 = 2(λ2
1 + λ2

2)− (λ1 + λ2)
2 = (λ1 − λ2)

2,

we have, by the divergence theorem:

d

dt

∫
H2dµ =

∫
−2〈∇̃H, ∇̃φ〉+ 2φHR00 + φH(λ1 − λ2)

2dµ. (3.10)

Theorem 33. When n = 2 we have the evolution equation

d

dt

∫
(λ1 − λ2)

2dµ =

∫
−2〈∇̃H, ∇̃φ〉 − 4Rc(ν, ∇̃φ)

+ φH(λ1 − λ2)
2 + 2φ(R11 −R22)(λ1 − λ2)dµ (3.11)
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Proof. Notice that (λ1 − λ2)
2 = H2 − 4 det(h) and combining Equations (32) and

(3.10) we get Equation (3.11).

3.3 Rotational symmetry out of a compact set

In this section we discuss the application in a 3-d steady soliton. We now assume

M is a 3-d gradient steady soliton, with soliton equation:

Rab +∇a∇bf = 0, 0 ≤ a, b ≤ 2.

Note now we are working on a soliton at a fixed time. To distinguish with the

real time t, we’ll adopt notation σ for the value of f from last chapter. We let

Σ(σ) = f−1(σ) be the level surfaces. We already knew ν = −∇f/|∇f | is an outward

unit normal vector and the flow

∂X

∂σ
= − 1

|∇f |
ν

evolves the level surfaces into themselves. We have hij = Rij/|∇f |, and

ei(
1

|∇f |
) = − 1

|∇f |3
〈∇i∇f,∇f〉 = − R0i

|∇f |2
.

Theorem 34. On a 3-dimensional steady soliton we have

d

dσ

∫
(λ1 − λ2)

2dµ =

∫
(

H

|∇f |
+ 2)(λ1 − λ2)

2dµ

−
∫

2

|∇f |3
[2λ1R

2
01 + 2λ2R

2
02 + H(R2

01 + R2
02)]dµ (3.12)

Proof. In Equation (3.11),

φ =
1

|∇f |
, ∇̃φ = − 1

|∇f |2
(R01e1 + R02e2), Rii = λi|∇f |.

Taking trace of the Gauss-Codazzi equation we get:

∇̃iH = −R0i + ∇̃jhij



36

Furthermore,

−〈∇̃H, ∇̃φ〉 = −ei(
1

|∇f |
)ei(H)

=
R0i

|∇f |2
(−R0i + ∇̃jhij)

= − 1

|∇f |2
(R2

01 + R2
02) +

1

|∇f |2
R0i∇̃jhij

Since hij = Rij/|∇f |, we have

∇̃jhij =
1

|∇f |
∇̃jRij + ej(

1

|∇f |
)Rij

By ∇̃iej = ∇iej + hijν we get

∇̃jRij = ej(Rij)−Rc(∇̃jei, ej)−Rc(ei, ∇̃jej)

= ej(Rij)−Rc(∇jei + hijν, ej)−Rc(ei,∇jej + Hν)

= ∇jRij − hijR0j −HR0i

=
1

2
∇iR− hijR0j −HR0i

Plug everything into Equation (3.11) we get Equation (3.12).

Corollary 35. For any δ > 0 there is a compact set out of which we have

d

dσ
e−(2+δ)σ

∫
Σ(σ)

(λ1 − λ2)
2 dµ ≤ 0. (3.13)

Proof. Since 0 ≤ H/|∇f | ≤ R/|∇f | → 0 as σ → −∞, there is a compact set

such that out of this set H/|∇f | ≤ δ. Since the Ricci curvature is nonnegative, by

Equation (3.12) we have

d

dσ

∫
(λ1 − λ2)

2dµ ≤ (2 + δ)

∫
(λ1 − λ2)

2dµ

or
d

dσ
e−(2+δ)σ

∫
(λ1 − λ2)

2dµ ≤ 0.
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Now we introduce a definition to describe the shrinking rate of a surface converg-

ing to a sphere.

Definition 36. Assume Σ(t) is evolving by Equation (3.1). We call a surface Σ(t)

converges to a sphere of degree α if α is the biggest nonnegative number such that

there is a constant such that∫
Σ(t)

(λ1 − λ2)
2dµ ≤ Ce−αt, if t →∞

or ∫
Σ(t)

(λ1 − λ2)
2dµ ≤ Ceαt, if t → −∞

Note by our definition, the higher is the degree, the faster the surface shrinks

to a sphere. A family of distance spheres, as we considered in Theorem (39) has a

convergence degree of +∞.

Now we give a nontrivial example: we consider a modified inverse mean curvature

flow:
∂X

∂t
=

β

H
ν

then we have

d

dt

∫
(λ1 − λ2)

2dµ = −
∫

2β|∇̃H|2

H2
+ β(λ1 − λ2)

2dµ.

So we have ∫
(λ1 − λ2)

2dµ ≤ Ce−βt.

That is to say, the surface under the modified inverse mean curvature flow converges

to a sphere of degree no less than β.

Corollary 37. On a 3-d noncompact gradient steady soliton with nonnegative Ricci

curvature, if the level surfaces of f converge to a sphere of degree > 2 when σ → −∞.

Then the level surfaces are indeed spheres out of a compact set, which depends only

on the degree.
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Proof. By the monotonicity formula (3.13) we have

e−(2+δ)σ

∫
(λ1 − λ2)

2dµ ≤ lim
σ→−∞

e−(2+δ)σ

∫
(λ1 − λ2)

2dµ

≤ lim
σ→−∞

Ceδσ = 0

by our decay assumption on the level surfaces, we get
∫

(λ1−λ2)
2dµ ≡ 0, or λ1 ≡ λ2

out of the compact set. This completes the proof.

Remark 38. There is a claim by Perelman (see Remark 11.9 of [18]): Any 3-

dimensional steady gradient Ricci soliton with bounded positive sectional curvature

and which is κ-noncollapsed on all scales must be rotationally symmetric.

People have been trying to prove this conjecture since Perelman stated it in his

seminal paper [18] in 2002. While we are still unable to confirm Perelman’s claim

completely, we get under one additional assumption the soliton is rotationally sym-

metric outside of a compact set.

3.4 Other applications

In this section we discuss a few applications of our formulas.

Example 1. Assume M = R3, and the surface evolves by the inverse mean

curvature flow, meaning that φ = −1/H. We have

d

dt

∫
(λ1 − λ2)

2dµ = −
∫

2|∇̃H|2

H2
+ (λ1 − λ2)

2dµ.

Consequently we have ∫
(λ1 − λ2)

2dµ ≤ Ce−t.

This shows the surface turns to round ”exponentially fast” in the above sense.

Example 2. As an easy application of our Equation (3.3), we consider the

classical case when the manifold is flat, namely when M = Rn. In this case, the

curvature is 0 we get under any flow,
∫

det(h)dµ is a constant. Especially for any star
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shaped domain, on the boundary Σ, we have
∫

Σ
det(h)dµ = Cn, where Cn depends

only on the dimension and is evaluated on a unit sphere, since such a hypersurface

can evolve into a round sphere along certain flow.

Example 3. As another application of the evolution equation for det(h) we give

a proof of the following theorem, which is originally due to Elerath [8].

Theorem 39. Let M be a 3-dimensional noncompact complete manifold with non-

negative sectional curvature, and with a point P at which the sectional curvature is

strictly positive. Then M is not flat out of any compact set.

Proof. By the Soul conjecture, we know the soul of M is a point. Assume Q is the

soul, there is a diffeomorphism TQ(M) → M. Let S(t) denote the distance sphere

centered at Q with radius t, 0 < t < ∞. The distance sphere is convex with hij > 0.

Then S(t) evolves by
∂X

∂t
= ν.

The existence of the diffeomorphism guarantees the solution exists for all time. Ap-

plying φ = −1 in Equation (3.3) we get

d

dt

∫
S(t)

det(h)dµ = −
∫

S(t)

det(h)hijR0ij0dµ ≤ 0.

Let K(p, t) be the sectional curvature of the tangent plane of S(t) at point p, and

K(p, t) be the intrinsic curvature of S(t), then K = K−det(h). By the Gauss-Bonnet

theorem we have ∫
S(t)

Kdµ = 4π −
∫

S(t)

det(h)dµ.

Consequently we have
d

dt

∫
S(t)

Kdµ ≥ 0.

Let t0 denote the distance from P to Q, which can be 0 if these two points are the

same. Since at P all the sectional curvatures are positive, so when t > t0 we have∫
S(t)

Kdµ > 0 by the monotonicity formula. This shows that outside of any compact

set, there must be a point at which the sectional curvature is strictly positive.



Chapter 4

The L-minimal submanifold

4.1 Motivation

In this section we show the background calculations suggesting us how to define

a new energy in the space-time setting. We only work on the 2-dimensional case,

which will be enough to show the ideas.

Assume for every τ ∈ [a, b],

γτ : [c(τ), d(τ)] →Mm

is a curve. Then γτ (θ) is a family of 1-parameter curves. The metric g of M evolves

by the backward Ricci flow: ∂
∂τ

g = 2 Rc .

We define

F : Σ →M× [a, b]

(θ, τ) 7→ (γτ (θ), τ),

where Σ = {(θ, τ) : τ ∈ [a, b], θ ∈ [c(τ), d(τ)]}, and M× [a, b] is endowed with the

metric g̃ = g ⊕ (R + N
2τ

)dτ 2.

40
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The area of F is given by

Ã =

∫ b

a

∫ d(τ)

c(τ)

√
det(F ∗g̃)dθdτ,

where det(F ∗g̃), depending on the choice of θ, is the determinant of F ∗g̃. Notice that

∂F
∂θ

= (∂γ
∂θ

, 0) and ∂F
∂τ

= (∂γ
∂τ

, 1), we get

g̃θθ = |∂γ

∂θ
|2, g̃θτ = 〈∂γ

∂θ
,
∂γ

∂τ
〉, g̃ττ = |∂γ

∂τ
|2 + (R +

N

2τ
),

and

det(F ∗g̃) = |∂γ

∂τ
|2|∂γ

∂θ
|2 + (R +

N

2τ
)|∂γ

∂θ
|2 − 〈∂γ

∂θ
,
∂γ

∂τ
〉2.

So the area is

Ã =

∫∫
Σ

√
|∂γ

∂τ
|2|∂γ

∂θ
|2 − 〈∂γ

∂θ
,
∂γ

∂τ
〉2 + (R +

N

2τ
)|∂γ

∂θ
|2dθdτ.

We expand this expression in powers of N to get:

Ã =
√

N

∫∫
Σ

1√
2τ
|∂γ

∂θ
|dθdτ

+
1√
2N

∫∫
Σ

√
τ(|∂γ

∂τ
|2|∂γ

∂θ
| − 1

|∂γ
∂θ
|
〈∂γ

∂θ
,
∂γ

∂τ
〉2 + R|∂γ

∂θ
|)dθdτ

+O(N−3/2).

We consider the highest order (in N) nontrivial term and define the L − area:

LA =

∫ b

a

∫ d(τ)

c(τ)

√
τ(|∂γ

∂τ
|2|∂γ

∂θ
| − 1

|∂γ
∂θ
|
〈∂γ

∂θ
,
∂γ

∂τ
〉2 + R|∂γ

∂θ
|)dθdτ. (4.1)

Note:The definition is independent of the choice of θ. If we choose θ to be the

arclength, the L − area then can be written as:

LA =

∫ b

a

∫ L(τ)

0

√
τ(|∂γ

∂τ
|2 − 〈∂γ

∂θ
,
∂γ

∂τ
〉2 + R)dθdτ,

where L(τ) =
∫ d(τ)

c(τ)
|∂γ
∂θ
|dθ is the length of γτ . We also note that the perpendicular

projection (∂γ
∂τ

)⊥ of ∂γ
∂τ

is ∂γ
∂τ
− 〈∂γ

∂τ
, ∂γ

∂θ
〉∂γ

∂θ
. The L − area can be written again as:

LA =

∫ b

a

∫ L(τ)

0

√
τ(|(∂γ

∂τ
)⊥|2 + R)dθdτ. (4.2)
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4.2 Definition and the first variation

In general, assume

F : Σn × [0, T ] →Mm

is a smooth map and for any τ ∈ [0, T ] Fτ (·) + F (·, τ) is an embedding. Further

assume {u1, · · · , un} is a coordinate system on Σn. Let Ui + ∂F
∂ui , 1 ≤ i ≤ n. Then

{Ui} is a base of T (Fτ (Σ
n)). For any vector field V ∈ T (M), let

V > + gij〈V, Ui〉Uj,

and

V ⊥ + V − V >.

The metric g(τ) on M satisfies the backward Ricci flow:

∂

∂τ
g = 2 Rc . (4.3)

Definition 40. The L-volume of Σn is defined to be

V +
∫ T

0

∫
Σ

√
τ(|(∂F

∂τ
)⊥|2 + R)dµΣ(τ)dτ, (4.4)

where dµΣ(τ) is the volume element of Fτ (Σ) and we’ll use a short notation dµ without

causing confusion.

Theorem 41. Assume the variation field is W , then the first variation formula of

the L-volume is

δWV = 2

∫
Σ

√
τ〈W, X⊥〉dµ]T0

+ 2

∫ T

0

∫
∂Σ

〈ν∂Σ,
√

τ〈W, X⊥〉X> −
√

τ(|X⊥|2 + R)

2
W>〉dµ∂Σdτ

+

∫ T

0

∫
Σ

〈W,−X⊥
√

τ
− 2

√
τgijRijX

⊥ + 2
√

τ(div X>)X⊥

− 4
√

τ Rc(X⊥, ·)− 2
√

τ∇X⊥X⊥ +
√

τ∇R

−
√

τ∇Σ(|X⊥|2 + R)−
√

τ(|X⊥|2 + R) ~H〉dµdτ, (4.5)
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where X + ∂F
∂τ

, ν∂Σ is the outward normal vector of ∂Σ in Σ, dµ∂Σ is the induced

volume element of ∂Σ, div is the divergence on Fτ (Σ), ∇Σ is the covariant derivative

on Fτ (Σ), and ~H is the mean curvature vector of Fτ (Σ).

Proof. Let

F̃ : Σn × [0, T ]× (−ε, ε) →Mm

(p, τ, s) 7→ F̃s(p, τ)

be a variation of F with F̃0 = F. We have the following notations:

W +
∂F̃

∂s
|s=0, Ũi +

∂F̃

∂ui
, X̃ +

∂F̃

∂τ
,

and dµ̃ denote the volume element of F̃τ,s(Σ).

The L-volume of F̃ is

V(s) =

∫ T

0

∫
Σ

√
τ(|X̃⊥|2 + R̃)dµ̃dτ.

The first variation is

δWV =
d

ds
|s=0V(s) =

∫ T

0

∫
Σ

√
τ(

d

ds
|X̃⊥|2)dµdτ

+

∫ T

0

∫
Σ

√
τ(

d

ds
R̃)dµdτ

+

∫ T

0

∫
Σ

√
τ(|X⊥|2 + R)

d

ds
(dµ̃)dτ

+ A + B + C (4.6)

Now we calculate the three terms A, B and C. We first note that the easiest term

B =

∫ T

0

∫
Σ

√
τ(

d

ds
R̃)dµdτ =

∫ T

0

∫
Σ

〈W,
√

τ∇R〉dµdτ. (4.7)

Now we compute A and C.

step 1. Calculating A.
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Since the integrand of A

d

ds
|X̃⊥|2 = 2〈∇W X̃⊥, X̃⊥〉

= 2〈∇W (X̃ − g̃ij〈X̃, Ũi〉Ũj), X̃
⊥〉

= 2〈∇W X̃, X⊥〉 − 2gij〈X, Ui〉〈∇W Ũj, X
⊥〉

= 2〈∇XW, X⊥〉 − 2gij〈X, Ui〉〈∇Uj
W, X⊥〉

= 2
d

dτ
〈W, X⊥〉 − 4 Rc(W, X⊥)− 2〈W,∇XX⊥〉

− 2X>(〈W, X⊥〉) + 2〈W,∇X>X⊥〉

= 2
d

dτ
〈W, X⊥〉 − 2X>(〈W, X⊥〉)− 4 Rc(W, X⊥)− 2〈W,∇X⊥X⊥〉,

we have

A =

∫ T

0

∫
Σ

2
√

τ
d

dτ
〈W, X⊥〉dµdτ +

∫ T

0

∫
Σ

−2
√

τX>(〈W, X⊥〉)dµdτ

+

∫ T

0

∫
Σ

√
τ(−4 Rc(W, X⊥)− 2〈W,∇X⊥X⊥〉)dµdτ

+ A1 + A2 + A3 (4.8)

Now we do integration by parts to get

A1 =

∫ T

0

∫
Σ

2
√

τ
d

dτ
〈W, X⊥〉dµdτ

= 2

∫ T

0

{ d

dτ
(

∫
Σ

√
τ〈W, X⊥〉dµ)

− 1

2
√

τ

∫
Σ

〈W, X⊥〉dµ−
∫

Σ

√
τ〈W, X⊥〉 d

dτ
(dµ)}dτ

= 2

∫
Σ

√
τ〈W, X⊥〉dµ]T0

− 1√
τ

∫
Σ

〈W, X⊥〉dµ− 2

∫
Σ

√
τ〈W, X⊥〉(gijRij)dµdτ.
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Moreover

A2 =

∫ T

0

∫
Σ

−2
√

τX>(〈W, X⊥〉)dµdτ

=

∫ T

0

(−2
√

τ)

∫
Σ

{div(〈W, X⊥〉X>)− 〈W, X⊥〉 div X>}dµdτ

= 2

∫ T

0

√
τ

∫
∂Σ

〈µ∂Σ, X>〉〈W, X⊥〉dµ∂Σdτ

+ 2

∫ T

0

√
τ

∫
Σ

〈W, div X> ·X⊥〉dµdτ.

Plug A1 and A2 into the expression of A we get

A = 2

∫
Σ

√
τ〈W, X⊥〉dµ]T0 + 2

∫ T

0

∫
∂Σ

〈ν∂Σ,
√

τ〈W, X⊥〉X>〉dµ∂Σdτ

+

∫ T

0

∫
Σ

〈W,−X⊥
√

τ
− 2

√
τgijRijX

⊥ + 2
√

τ div X> ·X⊥

− 4
√

τ Rc(X⊥, ·)− 2
√

τ∇X⊥X⊥〉dµdτ. (4.9)

step 2. Calculating C.

Since
d

ds
(dµ̃) = (div W> − 〈 ~H,W 〉)dµ

we have

C =

∫ T

0

√
τ

∫
Σ

(|X⊥|2 + R)
d

ds
(dµ̃)dτ

=

∫ T

0

√
τ

∫
Σ

(|X⊥|2 + R)(div W> − 〈 ~H,W 〉)dµdτ

=

∫ T

0

√
τ

∫
Σ

div((|X⊥|2 + R)W>)− 〈W>,∇Σ(|X⊥|2 + R)〉

− 〈W, (|X⊥|2 + R) ~H〉dµdτ

= −
∫ T

0

√
τ

∫
∂Σ

〈ν∂Σ, (|X⊥|2 + R)W>〉dµ∂Σdτ

+

∫ T

0

∫
Σ

〈W,−
√

τ∇Σ(|X⊥|2 + R)−
√

τ(|X⊥|2 + R) ~H〉dµdτ. (4.10)

Now, putting Equations (4.7), (4.9) and (4.10) together we get Equation (4.5).
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Corollary 42. If we fix the variation on the boundaries, that is W |∂Σ = 0, W |τ=0 =

W |τ=T = 0. Further assume ∂F
∂τ

is perpendicular to Σ, then the first variation formula

is

δWV =

∫ T

0

∫
Σ

〈W,− X√
τ
− 2

√
τgijRijX − 4

√
τ Rc(X, ·)− 2

√
τ∇XX +

√
τ∇R

−
√

τ∇Σ(|X|2 + R)−
√

τ(|X|2 + R) ~H〉dµdτ (4.11)

Since in most cases we are interested in the case where the flow of Σ is perpen-

dicular to itself, we introduce our definition of L-minimal submanifold as follows:

Definition 43. A pair (Σ, Fτ ) is called an L-minimal submanifold if it satisfies

∇XX+2 Rc(X, ·)+ X

2τ
−1

2
∇R+gijRijX+

1

2
∇Σ(|X|2+R)+

1

2
(|X|2+R) ~H = 0. (4.12)

Remark 44. If we let Σ be a point, our Equation (4.12) is exactly Perelman’s L-

geodesic equation since the last three terms vanish.

4.3 Example

Example 45. If M = Rm then the L-minimal submanifold equation becomes

∇XX +
X

2τ
+

1

2
∇Σ(|X|2) +

1

2
|X|2 ~H = 0. (4.13)

We want to find a rotationally symmetric solution. Let r(τ) be the radius. Then

X = r′
∂

∂r
, ~H =

m− 1

r

∂

∂r
.

Plug into Equation (4.13) we get

2τrr′′ + (m− 1)τr′2 + rr′ = 0,

and we know

r(τ) = τ
1

1+m

is a solution.



Chapter 5

The mean curvature flow inside

the Ricci flow

The mean curvature flow and the Ricci flow are two very important geometric

flows. There is one question may sound crazy at first: what would happen if we

combine them together? In this chapter, we discuss this problem. If a hypersurface

evolves along the mean curvature flow, and meanwhile the ambient manifold evolves

along the Ricci flow, we shall see the evolution equation of the second fundamental

form becomes simpler. Many ”bad” terms are canceled mysteriously due to the

evolution of the ambient space.

Let Mn and N n+1 be two smooth Riemannian manifolds, and

Ft : M ↪→ N

be a one parameter family of smooth immersions. The metric ḡ of N satisfies the

Ricci flow equation:
∂ḡ

∂t
= −2R̄c. (5.1)

If we mean the metric, connection or curvature on N , this will be indicated by a

bar. The metric g of M is the induced metric, g = F ∗ḡ. For any point p ∈ M, any

47
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vectors X, Y ∈ Tp(M), we have F∗X, F∗Y ∈ TF (p)(F (M)) ⊂ TF (p)N . The second

fundamental form ~h : TpM⊗ TpM→ TF (p)N is defined by

~h(X, Y ) + ~h(F∗X, F∗Y ) = (∇̄F∗XF∗Y )⊥,

where ⊥ indicates the component in the normal bundle of TF (p)(F (M)). The mean

curvature ~H is the trace of ~h. The vector field ∂F
∂t

onN is understood by the following:

for any f ∈ C∞(N ),
∂F

∂t
(f) =

d(f ◦ F )

dt
.

The family of the immersions satisfies the mean curvature flow equation:

∂F

∂t
= ~H. (5.2)

In the following Latin indices range from 1 to n, Greek indices range from 0 to n.

Assume {xi} is a local coordinate system of M, then ∂F
∂xi + F∗(

∂
∂xi ) are tangent

to TF (p)(F (M)). Assume the normal vector at F (p) is ν, then {ν, ∂F
∂x1 , · · · , ∂F

∂xn} span

TF (p)N . As usual,

~h(X, Y ) + −h(X,Y )ν,

H + gijhij + gijh(
∂

∂xi
,

∂

∂xj
).

At F (p), we also assign a local coordinate {yα}, such that ∂
∂y0 = ν and ∂

∂yi = ∂F
∂xi .

Lemma 46. The metric g of M satisfies the evolution equation:

∂gij

∂t
= −2R̄ij − 2Hhij. (5.3)

Proof.

∂gij

∂t
=

∂F ∗ḡ
(

∂
∂xi ,

∂
∂xj

)
∂t

=
∂

∂t

(
ḡ

(
∂F

∂xi
,
∂F

∂xj

))
=

∂ḡ

∂t

(
∂F

∂xi
,
∂F

∂xj

)
+ ḡ

(
∇̄ ∂F

∂t

∂F

∂xi
,
∂F

∂xj

)
+ ḡ

(
∂F

∂xi
, ∇̄ ∂F

∂t

∂F

∂xj

)
= −2R̄ij + ḡ

(
∇̄ ∂F

∂xi

∂F

∂t
,
∂F

∂xj

)
+ ḡ

(
∂F

∂xi
, ∇̄ ∂F

∂xj

∂F

∂t

)
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Notice that

ḡ

(
∇̄ ∂F

∂xi

∂F

∂t
,
∂F

∂xj

)
= ḡ

(
∇̄ ∂F

∂xi
(−Hν),

∂F

∂xj

)
= −Hhij,

and the lemma follows.

Lemma 47. The normal vector ν satisfies the evolution equation:

∂ν

∂t
+ ∇̄ ∂F

∂t
ν = ∇H + 2gijR̄0i

∂F

∂xj
+ R̄00ν. (5.4)

Proof.

∇̄ ∂F
∂t

ν = ḡ

(
∇̄ ∂F

∂t
ν,

∂F

∂xi

)
ḡij ∂F

∂xj
+ ḡ

(
∇̄ ∂F

∂t
ν, ν

)
ν

=

(
−∂ḡ

∂t
(ν,

∂F

∂xi
)− ḡ(ν, 5̄ ∂F

∂t

∂F

∂xi
)

)
gij ∂F

∂xj
− 1

2

∂ḡ

∂t
(ν, ν)ν

=

(
2R̄0i +

∂H

∂xi

)
gij ∂F

∂xj
+ R̄00ν.

Before deriving the evolution equation of the second fundamental form, we write

down a formula of the Rieman curvature along the direction of the flow.

Lemma 48.

R̄

(
∂F

∂t
,
∂F

∂xi

)
∂F

∂xj
= ∇̄ ∂F

∂t
∇̄ ∂F

∂xi

∂F

∂xj
− ∇̄ ∂F

∂xi
∇̄ ∂F

∂t

∂F

∂xj
− ∂

∂t

(
∇̄

) (
∂F

∂xi
,
∂F

∂xi

)
. (5.5)

Proof. Notice that ∇̄ depends on time, and we compute at a fixed time t0

∇̄ ∂F
∂t

(
∇̄ ∂F

∂xi

∂F

∂xj

)
= ∇̄ ∂F

∂t
∇̄ ∂F

∂xi

∂F

∂xj
+

∂

∂t

(
∇̄

) (
∂F

∂xi
,
∂F

∂xi

)
.

Moreover we have

R̄

(
∂F

∂t
,
∂F

∂xi

)
∂F

∂xj
= ∇̄ ∂F

∂t
∇̄ ∂F

∂xi

∂F

∂xj
− ∇̄ ∂F

∂xi
∇̄ ∂F

∂t

∂F

∂xj

= ∇̄ ∂F
∂t

(
∇̄ ∂F

∂xi

∂F

∂xj

)
− ∂

∂t

(
∇̄

) (
∂F

∂xi
,
∂F

∂xi

)
− ∇̄ ∂F

∂xi
∇̄ ∂F

∂t

∂F

∂xj
.

Plug the first equation into the second one and we get Equation (5.5).
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Remark 49. The curvature formula differs from the standard one since the ambi-

ent space is evolving along the Ricci flow. We can also prove this formula in local

coordinates. To see this, we assume at F (p),

∇̄ ∂
∂yα

∂

∂yβ
= Γ̄γ

αβ (Ft(p), t)
∂

∂yγ
.

Then we have

∇̄ ∂F
∂t
∇̄ ∂F

∂xi

∂F

∂xj
= ∇̄ ∂F

∂t

(
Γ̄γ

ij (Ft (p) , t)
∂

∂yγ

)
=

(
〈∇̄Γ̄γ

ij,
∂F

∂t
〉+

∂

∂t
(Γ̄γ

ij)

)
∂

∂yγ
+ Γ̄γ

ij∇̄ ∂F
∂t

∂

∂yγ
.

Now we are ready to derive the evolution equation of the second fundamental

form.

Lemma 50.

∂hij

∂t
= ∇i∇jH −Hgklhikhjl + HR0ij0 − R̄00hij + ∇̄iR̄0j + ∇̄jR̄0i − ∇̄0R̄ij (5.6)

Proof.

∂hij

∂t
=

∂

∂t

(
−〈∇̄ ∂F

∂xi

∂F

∂xj
, ν〉

)
= 2 R̄c

(
∇̄ ∂F

∂xi

∂F

∂xj
, ν

)
− 〈∇̄ ∂F

∂t
∇̄ ∂F

∂xi

∂F

∂xj
, ν〉 − 〈∇̄ ∂F

∂xi

∂F

∂xj
, ∇̄ ∂F

∂t
ν〉

+ A−B − C,

where

A = 2Γ̄0
ijR̄00 + 2Γ̄k

ijR̄0k,

B = 〈∇̄ ∂F
∂t
∇̄ ∂F

∂xi

∂F

∂xj
, ν〉

= −HR̄0ij0 + 〈∇̄ ∂F

∂xi
∇̄ ∂F

∂t

∂F

∂xj
, ν〉+ 〈 ∂

∂t

(
∇̄

) (
∂F

∂xi
,
∂F

∂xj

)
, ν〉

= −HR̄0ij0 + 〈∇̄ ∂F

∂xi
∇̄ ∂F

∂xj
(−Hν) , ν〉+ 〈 ∂

∂t

(
∇̄

) (
∂F

∂xi
,
∂F

∂xj

)
, ν〉

= −HR̄0ij0 −
∂2H

∂xi∂xj
+ Hgklhikhjl − ∇̄iR̄0j − ∇̄jR̄0i + ∇̄0R̄ij
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and

C = 〈Γ̄0
ijν + Γ̄k

ij

∂F

∂xk
,∇H + 2gijR̄0i

∂F

∂xj
+ R̄00ν〉

= Γ̄0
ijR̄00 + 2Γ̄k

ijR̄0k + Γ̄k
ij

∂H

∂xk
.

Notice that

Γ̄k
ij = Γk

ij, Γ̄
0
ij = −hij,

∂2H

∂xi∂xj
− Γk

ij

∂H

∂xk
= ∇i∇jH,

and we proved the lemma.

There is Simons’ identity (see [23]):

∆hij = ∇i∇jH + Hgklgikgjl − |h|2hij + HR̄0ij0 − hijR̄00 + gklgrshjlR̄krsi

+ gklgrshilR̄krsj − 2gklgrshkrR̄ilsj + ∇̄iR̄0j + ∇̄jR̄0i − ∇̄0R̄ij + ∇̄0R̄0ij0, (5.7)

where |h|2 + gijgklhikhjl.

Combining the Simon’s identity (5.7) and Equation (5.6) we get

Theorem 51.

∂hij

∂t
= ∆hij − 2Hgklhikhjl + |h|2hij − gklgrshjlR̄krsi

− gklgrshilR̄krsj + 2gklgrshkrR̄ilsj − ∇̄0R̄0ij0. (5.8)

Now let’s compare the the evolution equations between in a fixed ambient mani-

fold and in a manifold evolving along the Ricci flow. First we notice

Proposition 52. In the mean curvature flow in a Riemannian manifold, the evolu-

tion equation is

∂hij

∂t
= ∆hij − 2Hgklhikhjl + |h|2hij − gklgrshjlR̄krsi − gklgrshilR̄krsj

+ 2gklgrshkrR̄ilsj − ∇̄0R̄0ij0 − ∇̄iR̄0j − ∇̄jR̄0i + ∇̄0R̄ij + hijg
klR̄0kl0. (5.9)
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Proof. We carefully copy Huisken’s formula here, which is Theorem (3.4) in [13].

Notice that there is a negative sign on the Rieman curvature between his notation

and ours.

∂hij

∂t
= ∆hij − 2Hgklhikhjl + |h|2hij − gklgrshjlR̄krsi − gklgrshilR̄krsj

+ 2gklgrshkrR̄ilsj − gkl∇̄jR̄0kli + gkl∇̄kR̄0ijl + hijg
klR̄0kl0. (5.10)

We notice that

gkl∇̄jR̄0kli = ∇̄jR̄0i,

and by the second Bianchi identity we get

gkl∇̄kR̄0ijl = −gkl
(
∇̄0R̄ikjl + ∇̄iRk0jl

)
= ∇̄0

(
R̄ij − R̄0ij0

)
− ∇̄iR̄0j

= ∇̄0R̄ij − ∇̄iR̄0j − ∇̄0R̄0ij0

Plug those two terms in Equation (5.10) we get Equation (5.9).

Remark 53. Comparing Equations (5.8) and (5.9), we see that the last four terms

in (5.9) are canceled in (5.8) because of the evolution of the ambient manifold.
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