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Abstract

This paper proposes a hybrid bootstrap approach to approximate the aug-

mented Dickey-Fuller test by perturbing both the residual sequence and the min-

imand of the objective function. Since innovations can be dependent, this allows

the inclusion of conditional heteroscedasticity models. The new bootstrap method

is also applied to least absolute deviation-based unit root test statistics, which are

efficient in handling heavy-tailed time series data. The asymptotic distributions of

resulting bootstrap tests are presented, and Monte Carlo studies demonstrate the

usefulness of the proposed tests.
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1 Introduction

In time series analysis, unit root tests have been widely studied under various scenarios,

see Phillips (1987), Phillips and Perron (1988), and Fuller (1996), among others. Because

the limiting distributions of unit root tests usually involve Brownian motion, it becomes

difficult to calculate the critical values in practice. Hence, Dickey (1976) employed the

Monte Carlo method to construct critical values for the Dickey-Fuller (1979) test. Due

to the introduction of more powerful computing equipment, the bootstrap technique

originally proposed by Efron (1979) has attracted increasing attention in approximating

the null distributions of the Dickey-Fuller (DF) and the augmented DF (ADF) tests, see

Paparoditis and Politis (2005), Palm et al. (2008), Phillips (2010) and references therein.

In the context of bootstrap unit root tests, the sieve bootstrap is one of the most

popular approaches being considered. It employs an autoregressive (AR) model in order

to remove the correlation structure of time series, and then re-samples the resulting

residuals, see Chang and Park (2003) and Paparoditis and Politis (2005). Since the time

order of residuals is destroyed by the resampling operation, it is usually assumed that

the innovations are independently and identically distributed (i.i.d), see Paparoditis and

Politis (2005). To allow weaker assumptions on the innovation structure of the process,

Paparoditis and Politis (2003) proposed a residual-based block (RBB) bootstrap method

for unit root tests in which the blocks of residuals are resampled. However, selecting the

block size is a challenging task; see Palm et al. (2008). Recently, Cavaliere and Taylor

(2009b) applied a wild bootstrap approach to unit root processes with a very general

class of non-stationary heteroscedastic innovations, and Cavaliere and Taylor (2009a)

proposed wild bootstrap implementations for the M unit root tests of Ng and Perron

(2001). In sum, the above bootstrap methods are basically based on residuals.

In contrast to bootstrapping residuals, Jin et al. (2001) proposed an alternative boot-

strap method by perturbing the minimand of the objective function, and later Chatterjee

and Bose (2005) introduced an approach by perturbing the estimating equations. It is

worth noting that the above two bootstrap methods only focused on parameter estima-

tions. Monte Carlo studies in Chatterjee and Bose (2005) show that their technique is

superior to the residual bootstrap and the wild bootstrap for three models: heteroscedas-
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tic time series, generalized linear model, and nonlinear regression. Recently, Chen et al.

(2008) demonstrated that it also works well for testing the linear hypothesis. These

findings motivate us to apply this new approach for the ordinary least squares (OLS)

based unit root tests.

In practice, many financial and economic time series are heavy-tailed, and the least

absolute deviation (LAD) approach is usually used to deal with these types of data (e.g.,

Peng and Yao, 2003; Li and Li, 2008). Herce (1996) studied the LAD-based unit root

tests, and Moreno and Romo (2000) provided a bootstrapping approximation to the

null distribution for i.i.d. innovations. In addition, Li and Li (2009) discussed the LAD

estimation for the unit root process with GARCH innovations. Unlike the case of the

OLS, the asymptotic distributions of the estimated unit roots have a very complicated

form, and some strong conditions such as symmetry are needed, see Li and Li (2009).

This also inspires us to propose a novel bootstrap method for the LAD-based unit root

test, which does not require those strong conditions, see Remark 5 at section 3 for details.

The aim of this paper is to propose a hybrid bootstrap (HB) approach for unit root

tests. Specifically, we combine the perturbation of residuals, as in the wild bootstrap,

with the perturbation of the minimand of the objective function, as in Jin et al. (2001),

to construct easily implemented bootstrap unit root tests for time series with uncorre-

lated but possibly dependent innovations. Accordingly, the HB method is applicable for

the time-varying conditional variance (Engle, 1982; Bollerslev, 1986), which is an impor-

tant feature in financial time series and has been well discussed in unit root tests, see

Seo (1999), Chang and Park (2002) and Ling and Li (2003). It is noteworthy that the

bootstrap method in Jin et al. (2001) itself will not meet the intended purpose by pro-

viding the approximating distribution of the normality instead of the desired functional

of Brownian motion, see Remark 2 at section 2 for details.

The rest of this paper is organized as follows. Section 2 introduces the hybrid boot-

strap unit root test via OLS estimators, while section 3 develops the hybrid bootstrap

unit root test via LAD estimators. Theoretical properties of resulting HB tests are also

obtained. Subsequently, Monte Carlo studies are presented in section 4, and section 5

gives a final conclusion. In this paper, all detailed proofs are relegated to the Appendix.

In addition, ∥·∥ denotes the Euclidean norm of a vector or a matrix, op(1) denotes a series
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of random variables (vectors) converging to zero in probability, Op(1) denotes a series

of random variables (vectors) that are bounded in probability, D = D[0, 1] denotes the

space of functions on [0, 1], which is defined and equipped with the Shorokhod topology

(Billingsley, 1999), and ⇒ denotes weak convergence on D.

2 A hybrid bootstrap unit root test via OLS estima-

tors

Consider the following process,

∆yt = ϕyt−1 + ut, ut = π(L)et, (1)

where ∆yt = yt− yt−1, L is a back-shift operator, π(z) =
∑∞

j=0 πjz
j, and the innovations

{et} are uncorrelated with mean zero and unconditional variance σ2 for t = 1, · · · , n.

To study the theoretical properties of the tests, we assume that the innovation sequence

satisfies the assumptions given below.

Assumption 1. The polynomial π(z) ̸= 0 for all |z| ≤ 1,
∑∞

j=0 j|πj| <∞, the sequence

{et} is strictly stationary and ergodic with E(e4t ) <∞.

Under the above assumption, {ut} is a stationary and invertible general linear process.

In addition, an important special case of {et} is that of conditionally heteroscedastic

innovations, such as the ARCH-type processes (Engle, 1982; Bollerslev, 1986). Moreover,

ϕ = 0 in (1) corresponds to the presence of a unit root, while that of −2 < ϕ < 0 leads

to the stationarity of {yt}. Accordingly, given observations y1, ..., yn from model (1) with

initial value y0 = 0, we consider the following unit root test,

H0 : ϕ = 0 vs H1 : −2 < ϕ < 0.

To implement the ADF test, an AR structure is employed to approximate the first

order dependence of {ut}. As a result, we consider the auxiliary AR model as follows,

∆yt = ϕyt−1 +

p∑
i=1

ψi∆yt−i + et,p, (2)

where p is a function of n, and et,p depends on p. Adopting Said and Dickey’s (1984)

approach, we further assume that the order p satisfies the following assumption.
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Assumption 2. The order p is such that p→ ∞ and n−1/3p→ 0 as n→ ∞.

It is noteworthy that, under Assumption 1, the stochastic process {ut} has the AR

representation of ψ(L)ut = et, where ψ(z) = 1 −
∑∞

j=1 ψjz
j and

∑∞
j=1 j|ψj| < ∞, see

Chang and Park (2002). Furthermore, under the null hypothesis of ϕ = 0, we have

∆yt = ut and ut =
∑p

i=1 ψiut−i + et,p, where et,p = et +
∑∞

i=p+1 ψiut−i.

To construct the test statistic, we obtain OLS estimators given below by fitting the

data with model (2).

(ϕ̂n, ψ̂1, ..., ψ̂p)
′ = argmin

n∑
t=p+2

(∆yt − ϕyt−1 −
p∑

i=1

ψi∆yt−i)
2.

Then, the ADF test statistic is as follows,

Sn = nϕ̂n/(1−
p∑

i=1

ψ̂i).

Under Assumptions 1 and 2, it can be shown that nϕ̂n = Op(1), ∥Ψ̂ − Ψ∥ = op(n
−1/6),

and

Sn ⇒
∫ 1

0
B(τ)dB(τ)∫ 1

0
B2(τ)dτ

, (3)

where Ψ = (ψ1, ..., ψp)
′, Ψ̂ = (ψ̂1, ..., ψ̂p)

′, and B(t) is a standard Brownian motion pro-

cess, see Chang and Park (2002). The asymptotic distribution in (3) is a function of

Brownian motion, and Chang and Park (2003) suggested a sieve bootstrap to approxi-

mate it with {et} being i.i.d. random variables.

For the conditionally heteroscedastic innovations, however, the sieve bootstrap by

using the resampled residuals via the conditionally i.i.d. innovations assumption may

fail to approximate the quantities ϕ̂n and Ψ̂ in the test statistic Sn, see Goncalves and

Kilian (2007). This motivates us to propose a hybrid bootstrap method for unit root tests

via perturbing both the residual sequence and the minimand of the objective function

to approximate the asymptotic distribution in (3). After fitting model (2), denote the

residual sequence by {êt,p, 1 ≤ t ≤ n}, where êt,p = 0 for 1 ≤ t ≤ p + 1. We then

employ the wild bootstrap approach to perturb the residuals by {ωt}, a sequence of i.i.d.

non-negative random variables with mean one, variance one, and E(ω4
t ) <∞. It results

in a new residual sequence {e∗t} with e∗t = (ωt − 1)êt,p for 1 ≤ t ≤ n. Let

y∗t = y∗t−1 +

p∑
i=1

ψ̂i∆y
∗
t−i + e∗t ,
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where 1 ≤ t ≤ n, ∆y∗t = y∗t − y∗t−1 and the initial values of y∗1, ..., y
∗
p+1 can be set to zero.

By Theorem 18.2 of Billingsley (1999) and the Beveridge-Nelson representation, we can

show that, conditional on y1, ..., yn,

1

σ
√
n
y∗[nτ ] = (1−

p∑
i=1

ψ̂i)
−1 · 1

σ
√
n

[nτ ]∑
t=1

e∗t +Rn ⇒ B∗(τ),

in probability, where 0 ≤ τ ≤ 1, [nτ ] is the integral part of nτ , E{|Rn||y1, ..., yn} =

Op(n
−1/2) and B∗(τ) is a standard Brownian motion process. From the proof of Theo-

rem 1, the constructed sequence {y∗t } is only involved in the above asymptotic distribu-

tion. Hence, we may alternatively generate it by y∗t = (1−
∑p

i=1 ψ̂i)
−1
∑t

i=1 e
∗
i , and the

asymptotic result in Theorem 1 still holds.

We next follow Jin et al.’s (2001) approach and obtain two auxiliary estimators by

minimizing their corresponding objective functions,

(ϕ̂∗
1n, Ψ̂

∗′
1n)

′ = argmin
n∑

t=p+2

(∆yt − ϕy∗t−1 −
p∑

i=1

ψi∆yt−i − ϕ̂nyt−1)
2 (4)

and

(ϕ̂∗
2n, Ψ̂

∗′
2n)

′ = argmin
n∑

t=p+2

ωt(∆yt − ϕy∗t−1 −
p∑

i=1

ψi∆yt−i − ϕ̂nyt−1)
2. (5)

Note that ωt’s are all nonnegative, and then equation (5) can be treated as a weighted

OLS estimation with random weights. The hybrid bootstrap approach yields the quantity

S∗
n = n(ϕ̂∗

2n − ϕ̂∗
1n)/(1−

∑p
i=1 ψ̂i); its theoretical property is given below.

Theorem 1. Under H0 or H1, if Assumptions 1 and 2 hold, then, conditional on

y1, ..., yn,

S∗
n =

n(ϕ̂∗
2n − ϕ̂∗

1n)

1−
∑p

i=1 ψ̂i

⇒
∫ 1

0
B∗(τ)dB∗(τ)∫ 1

0
B∗2(τ)dτ

,

in probability, where B∗(t) is a standard Brownian motion process.

The above theorem together with equation (3) allows us to approximate the null

distribution of the test statistic Sn by generating B bootstrap samples of i.i.d. non-

negative random variables {ωt} with mean one and variance one. The detailed procedure

of bootstrapping unit root tests is given as follows:
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(a) Calculate the value of Sn = nϕ̂n/(1 −
∑p

i=1 ψ̂i) by fitting {yt, t = 1, ..., n} with

model (2);

(b) Generate an i.i.d. sequence {ωt, t = 1, ..., n}, and then calculate the value of S∗
n(1) =

n(ϕ̂∗
2n − ϕ̂∗

1n)/(1−
∑p

i=1 ψ̂i);

(c) Repeat step (b), and obtain S∗
n(2), ..., S

∗
n(B);

(d) Compute the empirical α-percentiles of {S∗
n(i), i = 1, ..., B}, denoted by S∗α

B , and

reject the null hypothesis if Sn < S∗α
B , where α is the predetermined significance

level for a one-side test.

To select the order p at equation (2) in practice, we may consider the modified Akaike

information criterion (MAIC) in Ng and Perron (2001),

MAIC(p) = log(σ̂2
p) + 2(p+ 1 + τp)/(n− pmax − 1), (6)

where 0 ≤ p ≤ pmax, σ̂
2
p = (n − pmax − 1)−1

∑n
t=pmax+2 ê

2
p,t, êp,t = ∆yt − ϕ̂nyt−1 −∑p

i=1 ψ̂i∆yt−i, and τp = σ̂−2
p ϕ̂2

n

∑n
t=pmax+2 y

2
t−1. As in Ng and Perron (2001) and Cavaliere

and Taylor (2009b), the maximum lag pmax can be set to [12(n/100)1/4], where [x] is the

integer part of x.

Remark 1. There are two most common types of bootstrapping unit root tests in the

literature: residual-based and difference-based tests, see Paparoditis and Politis (2005)

and Palm et al. (2008). Strictly speaking, S∗
n is neither of them. Since S∗

n involves the

residuals and parameter estimator by fitting model (2) via the OLS approach, we can

view it as a residual-based test. Alternatively, we can construct the bootstrapping test

by removing ϕ̂nyt−1 from (4) and (5), and the same asymptotic distribution is expected

under H0. However, the time series {∆yt} is not invertible under H1. Accordingly, it

may seriously deteriorate the power of test, as described for the difference-based tests in

Paparoditis and Politis (2005).

Remark 2. It seems natural to employ Jin et al.’s (2001) approach to directly approx-

imate the asymptotic distribution of Sn in equation (3). For the sake of illustration,

consider that {ut} in model (1) are i.i.d. random variables with mean zero and variance
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σ2, and assume that p = 0. Then, under H0, we have

Sn = nϕ̂n ⇒
∫ 1

0
B(τ)dB(τ)∫ 1

0
B2(τ)dτ

.

Following Jin et al.’s (2001) approach, we use the quantity n(ϕ̂∗
n − ϕ̂n) to approximate

the distribution of Sn, where

ϕ̂∗
n = argmin

n∑
t=2

ωt(∆yt − ϕyt−1)
2.

However, under H0 and by the proof of Theorem 1, we can show that, conditional on

y1, ..., yn,

n(ϕ̂∗
n − ϕ̂n) =

n−1
∑n

t=2 ωtutyt−1

n−2
∑n

t=2 ωty2t−1

− n−1
∑n

t=2 utyt−1

n−2
∑n

t=2 y
2
t−1

⇒ N(0, σ2)

in probability. As a result, this direct approach does not meet our intended purpose,

which motivates us to propose the hybrid bootstrap approach.

To make the hybrid bootstrap approach more practical, we consider a trend function

in the model, i.e. the observed time series {zt} is generated by zt = µ′
tβ + yt, where {yt}

is defined as in (1), and µt = 1 for the constant trend and µt = (1, t)′ for the linear trend.

As in Elliott et al. (1996), Ng and Perron (2001) and Cavaliere and Taylor (2009a), we

employ the local generalized least squares (GLS) method to de-trend the data, i.e. ẑt =

zt−µ′
tβ̂GLS, where β̂GLS is the OLS estimator for the regression of z̃t = zt− (1− c̄/n)zt−1

on µ̃t = µt − (1 − c̄/n)µt−1 with z0 = 0. For the 5% significance level, the value of c̄

can be set to 7.0 for the constant trend, and 13.5 for the linear trend, see Cavaliere and

Taylor (2009a). We then can calculate the ADF test statistic Sn = nϕ̂n/(1 −
∑p

i=1 ψ̂i)

by replacing {yt} at (2) with {ẑt}. To approximate the distribution of Sn, we first de-

trend the bootstrapped sample {y∗t } via the local GLS method, and denote the resulting

residuals by {ẑ∗t }. The values of ϕ̂∗
1n and ϕ̂∗

2n can be obtained from the two auxiliary

estimations at (4) and (5) with {yt} and {y∗t } replaced respectively by {ẑt} and {ẑ∗t }. Let

S∗
n = n(ϕ̂∗

2n − ϕ̂∗
1n)/(1−

∑p
i=1 ψ̂i), and the mathematical justification is given as follows.

Corollary 1. Suppose that Assumptions 1 and 2 are satisfied. If H0 holds, then Sn ⇒∫ 1

0
BC(τ)dBC(τ)/

∫ 1

0
B2

C(τ)dτ for the constant trend, and Sn ⇒
∫ 1

0
BL(τ)dBL(τ)/

∫ 1

0
B2

L(τ)dτ

for the linear trend, where BC(τ) = B(τ) −
∫ 1

0
B(τ)dτ − c̄−1B(1), BL(τ) = B(τ) −
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ν1(B(τ), c̄)− τν2(B(τ), c̄), B(τ) is a standard Brownian motion process, c̄ is a constant,

ν1(B(τ), c̄) =
6 + 4c̄

c̄2

[
B(1) + c̄

∫ 1

0

B(τ)dτ

]
− 12 + 6c̄

c̄2

[∫ 1

0

τdB(τ) + c̄

∫ 1

0

τB(τ)dτ

]
,

and

ν2(B(τ), c̄) = −6

c̄

[
B(1) + c̄

∫ 1

0

B(τ)dτ

]
+

12

c̄

[∫ 1

0

τdB(τ) + c̄

∫ 1

0

τB(τ)dτ

]
.

Corollary 2. Suppose that Assumptions 1 and 2 are satisfied. If H0 or H1 holds,

then, conditional on y1, ..., yn, S
∗
n ⇒

∫ 1

0
B∗

C(τ)dB
∗
C(τ)/

∫ 1

0
B∗2

C (τ)dτ in probability for

the constant trend, and S∗
n ⇒

∫ 1

0
B∗

L(τ)dB
∗
L(τ)/

∫ 1

0
B∗2

L (τ)dτ in probability for the linear

trend, where B∗
C(τ) = B∗(τ)−

∫ 1

0
B∗(τ)dτ − c̄−1B∗(1), B∗

L(τ) = B∗(τ)− ν1(B
∗(τ), c̄)−

τν2(B
∗(τ), c̄), and B∗(t) is a standard Brownian motion process.

The proofs of the above two corollaries are similar to those of Theorem 3.6 in Chang

and Park (2002) and Theorem 1 in this section, respectively, and we give their details in

a separated supplementary file.

3 A hybrid bootstrap unit root test via LAD esti-

mators

In time series analysis, it is not unusual to encounter heavy-tailed observations. Accord-

ingly, the OLS estimators can be sensitive to outliers and the resulting test statistics

may not be accurate and powerful. This motivates us to extend the hybrid bootstrap

approach from the previous section to LAD-based unit root tests. To this end, we now

consider the AR unit root process,

∆yt = ϕyt−1 +

p∑
i=1

ψi∆yt−i + et, (7)

where p is a known non-negative integer, et = σtεt for 1 ≤ t ≤ n, {εt} are i.i.d. random

variables with mean zero and variance one, and σt > 0 is measurable with respect to

the information set σ(εt−1, εt−2, ...). Note that model (7) is a special case of model (1).

To investigate theoretical properties of LAD-based unit root tests, we introduce the

following assumption.
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Assumption 3. The sequence {σ2
t } is strictly stationary and ergodic with E(σ2

t ) < ∞.

The median of εt is equal to zero, the density function f(x) of εt is continuous at the

origin, and E(ε2t ) <∞.

Remark 4. The unit root process (7) requires the mean of εt to be zero, and the

above assumption further assumes that its median is zero. These conditions restrict the

asymmetry of εt to some extent (Engle and Gonzalez-Rivera, 1991). It is noteworthy

that the LAD approach attempts to estimate the conditional median, and the term mεσt

is involved in the structure of the conditional median when the quantity mε, the median

of εt, is not zero. For example, if σ2
t = 0.5 + 0.6∆y2t−1, then the conditional median of

∆yt is

median(∆yt) = ϕyt−1 +

p∑
i=1

ψi∆yt−i +mε

√
0.5 + 0.6∆y2t−1.

Hence, the restriction here is necessary for a general form of the conditional variance

σ2
t . By contrast, if we assume that σt = c almost surely, for a constant c ( i.e., there

exists only a constant c ·mε involved in the structure of the conditional median), then

we can relax the restriction of both mean and median to zero. In this case, however,

the innovations {et} becomes i.i.d. so that the conditional heteroscedasticity is excluded

from the model setting.

For model (7), the hypotheses of the unit root test are

H0 : ϕ = 0 vs H1 : ϕmin < ϕ < 0,

where ϕmin is the inferior limit of ϕ such that model (7) is stationary, see Paparoditis

and Politis (2005). Let θ = (ϕ, ψ1, ..., ψp)
′, and then we obtain the LAD estimator of θ

as follows,

θ̃n = (ϕ̃n, ψ̃1, ..., ψ̃p)
′ = argmin

n∑
t=p+2

|∆yt − ϕyt−1 −
p∑

i=1

ψi∆yt−i|. (8)

Accordingly, the LAD-based ADF test statistic is

Ln = nϕ̃n/(1−
p∑

i=1

ψ̃i).
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Furthermore, let xt = (∆yt−1, ...,∆yt−p)
′, Σ0 = E(σ−1

t ), Σ1 = E(σ−1
t xt), Σ2 = E(σ−1

t xtx
′
t),

and

Ω =


E(et)

2 E(|et|) E(|et|x′t)

E(|et|) 1 E(x′t)

E(|et|x′t) E(x′t) E[xtx
′
t]

 .

Then, we obtain the asymptotic distribution of Ln given below.

Theorem 2. Under H0, if Assumption 3 holds, then

Ln ⇒ 1

2f(0)
·
∫
W1(τ)dW2(τ)− Σ′

1Σ
−1
2 W3(1)

∫
W1(τ)dτ

Σ0

∫
W 2

1 (τ)dτ − Σ′
1Σ

−1
2 Σ1(

∫
W1(τ)dτ)2

,

where W(τ) = [W1(τ),W2(τ),W
′
3(τ)]

′ is a (p+2)-dimensional Brownian motion process

with covariance matrix τΩ.

Remark 5. Although the above theorem yields a similar result to equation (3) in Li

and Li (2009), the structure of conditional variance σ2
t is not required here. In practice,

the computation of asymptotic distribution in Theorem 2 is very complicated, and the

symmetry of εt is usually assumed (e.g., see Li and Li 2009). Under the symmetry

condition, Σ1 = 0 and

Ln ⇒ 1

2f(0)Σ0

·
∫
W1(τ)dW2(τ)∫
W 2

1 (τ)dτ
.

However, it is known that the asymmetry and the heavy tails are two important features

in financial time series, see Engle and Gonzalez-Rivera (1991). Furthermore, the density

of εt, f(·), is involved in the asymptotic distribution of Ln, and it is difficult to provide a

consistent estimator for the quantity f(0) without assuming a parametric structure for

the conditional variance σ2
t . The above considerations motivate us to employ the hybrid

bootstrap approach to approximate the asymptotic distribution in Theorem 2.

Let {ẽt, 1 ≤ t ≤ n} be the residual sequence from model (7) by the LAD approach,

and y∗t = (1−
∑p

i=1 ψ̃i)
−1
∑t

i=1(ωi−1)ẽi. Employing the same hybrid bootstrap approach

as that in section 2, we obtain

L∗
n =

n(ϕ̃∗
2n − ϕ̃∗

1n)

1−
∑p

i=1 ψ̃i

,
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where

θ̃∗1n = (ϕ̃∗
1n, Ψ̃

∗′
1n)

′ = argmin
n∑

t=p+2

|∆yt − ϕy∗t−1 −
p∑

i=1

ψi∆yt−i − ϕ̃nyt−1|,

θ̃∗2n = (ϕ̃∗
2n, Ψ̃

∗′
2n)

′ = argmin
n∑

t=p+2

ωt|∆yt − ϕy∗t−1 −
p∑

i=1

ψi∆yt−i − ϕ̃nyt−1|,

and ϕ̃n is the LAD estimator from (8). We next obtain the theoretical property of L∗
n.

Theorem 3. Under H0 or H1, if Assumption 3 holds, then, conditional on y1, ..., yn,

L∗
n ⇒ 1

2f(0)
·
∫
W ∗

1 (τ)dW
∗
2 (τ)− Σ′

1Σ
−1
2 W ∗

3 (1)
∫
W ∗

1 (τ)dτ

Σ0

∫
W ∗2

1 (τ)dτ − Σ′
1Σ

−1
2 Σ1(

∫
W ∗

1 (τ)dτ)
2

in probability, where W∗(τ) = [W ∗
1 (τ),W

∗
2 (τ),W

∗′
3 (τ)]′ is a (p+2)-dimensional Brownian

motion process with covariance matrix τΩ.

The asymptotic distribution in the above theorem is the same as that in Theorem

2, although W∗(τ) and W(τ) are two different Brownian motion processes. Hence,

Theorems 2 and 3 allow us to apply a bootstrap procedure similar to that in Section

2 to obtain the LAD-based bootstrap unit root test via L∗
n. Accordingly, we do not

need to calculate the quantities Σ0, Σ1, Σ2, and f(0) in Theorem 2, which mitigates

the complicated computation. To select the order p in model (7), we adapt MAIC

at (6) for the LAD approach by replacing σ̂p and τp respectively by σ̃p and τ̃p, where

σ̃p = (n− pmax − 1)−1
∑n

t=pmax+2 |ẽp,t| and τ̃p = σ̃−2
p (
∑n

t=pmax+2 |ϕ̃nyt−1|)2.

4 Simulation studies

We conduct two Monte Carlo experiments. The first one aims to evaluate the finite

sample performance of the proposed bootstrap approach and the second one aims to

make comparisons with five other bootstrapping unit root tests. In both experiments,

the sample size is set to n = 100, 200 or 300, and the three commonly used significance

levels, 1%, 5% and 10%, are employed. The number of replications is fixed at 1000, and

the number of bootstrapped samples is B = 1000.

12



4.1 Finite sample performance of HB tests

We now conduct Monte Carlo experiments to evaluate the finite sample performance of

the proposed tests, S∗
n and L∗

n. The generating process is given as follows,

∆yt = ϕyt−1 + et, (9)

et = εth
1/2
t , and ht = 0.1 + 0.2e2t−1 + 0.7ht−1, (10)

where {εt} are i.i.d. standard normal random variables. We consider four distributions

for the perturbing sequence {ωt}: (i) the standard exponential distribution, (ii) the

Rademacher distribution, which takes the value 0 or 2, each with probability 0.5, see Li

and Li (2011), (iii) Mammen’s two-point distribution, which takes the value (−
√
5+3)/2

with probability (
√
5+1)/2

√
5 and the value (

√
5+3)/2 with probability 1−(

√
5+1)/2

√
5,

see Mammen (1993), and (iv) a mixture of the distributions in (i) and (ii) with mixing

probability 0.5. The third-order central moments of the distributions in (iii) and (iv) are

equal to one, which may provide a better limiting distribution in Section 3 (e.g., see Liu

1988). For the sake of simplicity, we set the order p in equations (2) and (7) to be zero.

Table 1 presents the rejection rates of the test S∗
n. Under the null hypothesis with

ϕ = 0.0, the rejection rates are all close to the corresponding nominal levels across

all four perturbation distributions, even in the small sample size of n = 100. Under

the alternative hypothesis with ϕ < 0.0, these four perturbation distributions provide

comparable empirical powers, see Mammen (1993) for similar findings. It is not surprising

that the power becomes larger as the sample size increases or ϕ gets smaller. Since the

LAD-based test L∗
n yields similar results, we omitted them. It is worth mentioning

that S∗
n is generally superior to L∗

n. To make further comparisons, we follow the same

model structure, using (9) and (10), to generate sample data. Since the four perturbing

distributions show similar results, we only consider the Mammen’s two-point distribution

for the perturbing sequence {ωt}. In addition, the innovations {εt} are i.i.d. Student’s

t(3) random variables, which have been standardized to have mean zero and variance

one. Table 2 shows that S∗
n is inferior to L∗

n for heavy-tailed innovations, GARCH-t(3).

This suggests that one could consider the LAD-based test rather than the OLS-based

test for heavy-tailed innovations.

13



4.2 Comparison with three unit root tests

We next conduct experiments to examine the performance of the proposed bootstrap

method versus other commonly used unit root tests in the literature: (i) the bootstrap

ADF coefficient test, (ii) the residual-based sieve bootstrap unit root test, S∗
n at Chang

and Park (2003), and (iii) the wild bootstrap unit root test,MZb
α at Cavaliere and Taylor

(2009a). We consider two trends functions, the constant trend and the linear trend, and

the GLS method is employed to de-trend the data in the HB test as well as three other

bootstrapping unit root tests.

The data generating process is

∆yt = ϕyt−1 + ut, ut = et + πet−1,

where π = −0.8, −0.4, 0.0, 0.4, and 0.8 for different magnitudes of serial dependence,

and ϕ = −c∗/n with c∗ = 0 corresponding to the size and c∗ = 3.5 or 7 to the local

power. We consider two types of innovations for {et}: (i) i.i.d. standard normal random

variables, and (ii) GARCH innovations as in (10). Furthermore, the perturbing sequence

{ωt} is generated from the Mammen’s two-point distribution. Moreover, the MAIC at

(6) is employed to select the order p in equation (2).

Table 3 presents the sizes of these four unit root tests for i.i.d. innovations of {et}.

When π = 0.8, the HB test is sensitive while the other three tests are all conservative. For

the case with π = −0.8, the wild bootstrap test is conservative, and the other three are

sensitive. The HB test is able to control the sizes slightly better than the others although

it has a more serious distortion at π = −0.8. In the case of GARCH innovations, Table

4 show similar findings to those in Table 3.

We further investigate the empirical powers of all four unit root tests under two types

of innovations and two local alternatives. Tables 5-8 indicate that the HB test is almost

uniformly superior to the ADF and sieve bootstrap tests. In addition, it is generally

better than (or comparable to) the wild bootstrap test. In sum, HB performs well in the

comparison with the other three tests.
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5 Conclusion

In this paper, we propose the hybrid bootstrap method for unit root tests via the OLS

and LAD estimators. We also obtain asymptotic distributions of the resulting tests,

which are not only simple to use but also more powerful than traditional tests. Our

proposed method could be applied to the unit root tests via the robust M estimators

(see Lucas 1995; Ng and Perron 2001). In addition, it could be considered for testing

cointegration (e.g., see Maddala and Kim 1998). Moreover, another useful extension of

the LAD-based unit root test would involve allowing MA innovations as well as adding

the constant trend or the linear trend into the model. We believe these efforts would

further enhance the usefulness of the hybrid bootstrap unit root tests in data analysis.
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Appendix: Proofs of Theorems 1-3

Proof of Theorem 1. For the sake of simplicity, we assume that yt = 0 and ∆yt = 0 for

t ≤ 0, and the notations E∗, O∗
p(1) and o

∗
p(1) correspond to the bootstrapped probability

space. Let

A1n =
n∑

t=1

y∗t−1e
∗
t,p − (

n∑
t=1

y∗t−1x
′
t,p)(

n∑
t=1

xt,px
′
t,p)

−1(
n∑

t=1

xt,pe
∗
t,p),

A2n =
n∑

t=1

ωty
∗
t−1e

∗
t,p − (

n∑
t=1

ωty
∗
t−1x

′
t,p)(

n∑
t=1

ωtxt,px
′
t,p)

−1(
n∑

t=1

ωtxt,pe
∗
t,p),

B1n =
n∑

t=1

y∗2t−1 − (
n∑

t=1

y∗t−1x
′
t,p)(

n∑
t=1

xt,px
′
t,p)

−1(
n∑

t=1

y∗t−1xt,p),

and

B2n =
n∑

t=1

ωty
∗2
t−1 − (

n∑
t=1

ωty
∗
t−1x

′
t,p)(

n∑
t=1

ωtxt,px
′
t,p)

−1(
n∑

t=1

ωty
∗
t−1xt,p),
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where y∗[nτ ] = (1 −
∑p

i=1 ψ̂i)
−1
∑[nτ ]

i=1(ωi − 1)êi,p + Op(1), e
∗
t,p = et,p − (ϕ̂n − ϕ)yt−1, and

xt,p = (∆yt−1, ...,∆yt−p)
′. As a result, ϕ̂∗

1n = A1n/B1n, and ϕ̂
∗
2n = A2n/B2n.

We first show that, conditional on y1, ..., yn,

∥(n−1

n∑
t=1

xt,px
′
t,p)

−1∥ = O∗
p(1), ∥(n−1

n∑
t=1

ωtxt,px
′
t,p)

−1∥ = O∗
p(1), (11)

∥
n∑

t=1

y∗t−1xt,p∥ = O∗
p(np

1/2), ∥
n∑

t=1

ωty
∗
t−1xt,p∥ = O∗

p(np
1/2), (12)

∥
n∑

t=1

xt,pe
∗
t,p∥ = o∗p(np

−1/2), ∥
n∑

t=1

ωtxt,pe
∗
t,p∥ = o∗p(np

−1/2), (13)

and

n∑
t=1

(ωt − 1)y∗2t−1 = o∗p(n
2), (14)

in probability. By Lemma 3.2 (a) in Chang and Park (2002), we have that

∥( 1
n

n∑
t=1

xt,px
′
t,p)

−1∥ = Op(1). (15)

In addition, for each 1 ≤ i, j ≤ p, it is easy to see that

E∗[
n∑

t=1

(ωt − 1)∆yt−i∆yt−j]
2 =

n∑
t=1

∆y2t−i∆y
2
t−j = Op(n).

This, together with Assumption 2, leads to

E∗∥ 1
n

n∑
t=1

ωtxt,px
′
t,p −

1

n

n∑
t=1

xt,px
′
t,p∥2 = Op(n

−1p2) = op(1). (16)

In addition,∣∣∣∣∣∥( 1n
n∑

t=1

ωtxt,px
′
t,p)

−1∥ − ∥( 1
n

n∑
t=1

xt,px
′
t,p)

−1∥

∣∣∣∣∣ ≤ ∥( 1
n

n∑
t=1

ωtxt,px
′
t,p)

−1−(
1

n

n∑
t=1

xt,px
′
t,p)

−1∥.

By (15)-(16) and using a method similar to Lemma 3 of Berk (1974), we are able to show

that

∥( 1
n

n∑
t=1

ωtxt,px
′
t,p)

−1∥ − ∥( 1
n

n∑
t=1

xt,px
′
t,p)

−1∥ = o∗p(1).

This completes the proof of equation (11).

By Doob’s inequality (see Hall and Heyde 1980) and Lemma 3.3 in Chang and Park

(2002), we obtain that max1≤j≤n |
∑j

t=1∆yt| = Op(n
1/2) and n−1

∑n
t=1 ê

2
t,p = σ2 + op(1),
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respectively. Then, for each 1 ≤ i ≤ p, we are able to show that

E∗(
n∑

t=1

z∗t−1∆yt−i)
2 = E∗

[
n∑

j=1

(ωj − 1)êj,p(
n∑

t=1

∆yt−i −
j∑

t=1

∆yt−i)

]2

≤ 4 max
1≤j≤n

|
j∑

t=1

∆yt|2 ·
n∑

j=1

ê2j,p = Op(n
2)

and

E∗[
n∑

t=1

(ωt−1)z∗t−1∆yt−i]
2 =

n∑
t=1

(∆yt−i)
2E∗(z∗t−1)

2 ≤

[
n∑

t=1

(∆yt−i)
2

]
·

[
n∑

j=1

ê2j,p

]
= Op(n

2),

where z∗t = (1−
∑p

i=1 ψ̂i)y
∗
t =

∑t
i=1(ωi − 1)êi,p. The above results lead to equation (12).

Under H0, max1≤j≤n |yj| = Op(n
1/2) (see Li and Li 2009). As a result, for 1 ≤ i ≤ p,

we have

|(ϕ̂n − ϕ)
n∑

t=1

∆yt−iyt−1| ≤ |ϕ̂n − ϕ| · max
1≤j≤n

|yj| ·
n∑

t=1

|∆yt−i| = Op(n
1/2).

In addition, under H1,

|(ϕ̂n − ϕ)
n∑

t=1

∆yt−iyt−1| ≤ |ϕ̂n − ϕ| ·
n∑

t=1

|∆yt−iyt−1| = Op(n
1/2).

The above results, together with Lemma 3.2 (c) of Chang and Park (2002) and Assump-

tion 2, yields

∥
n∑

t=1

xt,pe
∗
t,p∥ ≤ ∥

n∑
t=1

xt,pet,p∥+ ∥(ϕ̂n − ϕ)
n∑

t=1

xt,pyt−1∥ = o∗p(np
−1/2). (17)

Furthermore, for 1 ≤ i ≤ p, it can be shown that

E∗[
n∑

t=1

(ωt − 1)∆yt−iet,p]
2 =

n∑
t=1

(∆yt−iet,p)
2 = Op(n) (18)

and

E∗[(ϕ̂n − ϕ)
n∑

t=1

(ωt − 1)∆yt−iyt−1]
2 = (ϕ̂n − ϕ)2

n∑
t=1

∆y2t−iy
2
t−1 = Op(1). (19)

where 1 ≤ i ≤ p. By (17)-(19), we complete the proof of equation (13).

By Burkholder’s inequalities (Hall and Heyde, 1980), we obtain that

E∗[
n∑

t=1

(ωt − 1)z∗2t−1]
2 =

n∑
t=1

E∗(z∗t−1)
4 ≤ C1nE

∗[
n∑

j=1

(ωj − 1)2ê2j,p]
2

≤ C1C2n
3(
1

n

n∑
j=1

ê2j,p)
2 = op(n

4),
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where z∗t = (1−
∑p

i=1 ψ̂i)y
∗
t =

∑t
i=1(ωi−1)êi,p, C1 is constant and C2 = E(ωt−1)4 <∞.

Hence, equation (14) holds, and then we finish the proofs of (11)-(14).

By (11)-(14) and Assumption 2, we are able to demonstrate that

1

n2
B1n =

1

n2
B2n + o∗p(1) =

1

n2

n∑
t=1

y∗2t−1 + o∗p(1),

and then

n(ϕ̂∗
2n − ϕ̂∗

1n) =
n−1

∑n
t=1 y

∗
t−1(ωt − 1)e∗t,p

n−2
∑n

t=1 y
∗2
t−1

+ o∗p(1). (20)

It is true that, under H0, ϕ̂n − ϕ = Op(n
−1) and max1≤j≤n |yj| = Op(n

1/2) (see Li and

Li, 2009). In addition, under H1, {yt} is stationary and ϕ̂n − ϕ = Op(n
−1/2). Thus, by

Lemmas 3.3 and 3.4 in Chang and Park (2002),

1

n

n∑
t=1

(êt,p − et,p)
2 ≤ (ϕ̂n − ϕ)2

1

n

n∑
t=1

y2t−1 + ∥Ψ̂−Ψ∥2 · 1
n

n∑
t=1

∥xt,p∥2 = op(1)

and then

E∗[
1

n

n∑
t=1

z∗t−1(ωt − 1)(e∗t,p − êt,p)]
2 =

1

n2

n∑
t=1

t−1∑
i=1

(êt,p)
2(e∗t,p − êt,p)

2

≤ 2

n

n∑
t=1

(êt,p)
2 ·

[
1

n

n∑
t=1

(êt,p − et,p)
2 + (ϕ̂n − ϕ)2

1

n

n∑
t=1

y2t−1

]
= op(1). (21)

where z∗t = (1 −
∑p

i=1 ψ̂i)y
∗
t =

∑t
i=1(ωi − 1)êi,p. It is noteworthy that the quantity

{(ωt − 1)êt,p, t ∈ Z+} is a martingale difference with respect to {F∗
t , t ∈ Z+}, where

F∗
t = σ(ωt, ..., ω1, en, en−1, ...). It holds that, for any τ and ϵ, σ̂

−2
n ·n−1

∑[nτ ]
t=1 ê

2
t,p = τ+op(1)

and n−1
∑[nτ ]

t=1 ê
2
t,pE

∗{(ωt − 1)2I[(ωt − 1)êt,p ≥ n1/2ϵ]} = op(1). Thus, applying Theorem

18.2 of Billingsley (1999), we have that,

1

σ̂n
√
n

[nτ ]∑
t=1

(ωt − 1)êt,p ⇒ B∗(τ)

in probability, where σ̂2
n = n−1

∑n
t=1 ê

2
t,p = σ2+ op(1). This, together with (20) and (21),

completes the proof of Theorem 1.

Proof of Theorem 2. We first demonstrate that

1√
n

[nτ ]∑
t=1

[et, sgn(et), sgn(et)x
′
t]
′ ⇒ [W1(τ),W2(τ),W

′
3(τ)]

′ = W(τ), (22)
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where W(τ) is a (p + 2)-dimensional Brownian motion process with covariance matrix

τΩ, and the matrix Ω is defined in Theorem 2. Let

ζt = λ′[et, sgn(et), sgn(et)x
′
t]
′ and Ti = n−1/2

i∑
t=1

ζt,

where λ is a (p + 2)-dimensional constant vector with λ′λ ̸= 0. It is noteworthy that

{ζt, t ∈ Z} is a martingale difference sequence with respect to the filtration {Ft, t ∈ Z}

and E(ζ2t ) = λ′Ωλ, where Ft = σ(et, et−1, ...). Accordingly, both sequences {ζt} and

{E(ζt2|Ft−1)} are strictly stationary and ergodic, and ETn
2 = λ′Ωλ. Then, it can be

verified that

1

n

n∑
t=1

E(ζt
2|Ft−1)

ETn
2 → 1 (23)

almost surely, and, for any ϵ > 0,

1

n

n∑
t=1

E[ζt
2I(ζt ≥

√
nvar(ζt)ϵ)] → 0, (24)

as n → ∞. The invariance principle for martingales (Hall and Heyde, 1980), together

with (23) and (24), implies that

T[nτ ] =
1√
n

[nτ ]∑
t=1

ζt ⇒W (τ),

whereW (τ) is a Brownian motion with variance τλ′Ωλ. By Cramér’s device, we complete

the proof of (22).

Following the Beveridge-Nelson representation (Chang and Park, 2002, Remark 2.2),

Theorem 2.2 in Kurtz and Protter (1991), and (22), we further have that

1

n

n∑
t=1

σ−1
t xtx

′
t = E[σ−1

t xtx
′
t] + op(1),

1√
n

n∑
t=1

xt sgn(et) ⇒W3(1),

1

n

n∑
t=1

yt−1 sgn(et) = α · 1
n

n∑
t=1

zt−1 sgn(et) + op(1) ⇒ α ·
∫
W1(τ)dW2(τ),

1

n2

n∑
t=1

σ−1
t y2t−1 = α2E(σ−1

t ) · 1

n2

n∑
t=1

z2t−1 + op(1) ⇒ α2E(σ−1
t ) ·

∫
W 2

1 (τ)dτ, (25)

and

1

n
√
n

n∑
t=1

σ−1
t yt−1xt = αE(σ−1

t xt)·
1

n
√
n

n∑
t=1

zt−1+op(1) ⇒ αE(σ−1
t xt)·

∫
W1(τ)dτ, (26)
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where α = (1−
∑p

i=1 ψi)
−1 and zt =

∑t
i=1 ei.

Define the objective function

Qn(θ) =
n∑

t=p+2

|∆yt − ϕyt−1 −
p∑

i=1

ψi∆yt−i|.

Note that

|x− y| − |x| = −y sgn(x) + 2

∫ y

0

I(x ≤ s)− I(x ≤ 0)ds,

for x, y ∈ R and x ̸= 0, where sgn(x) is equal to 1 for x > 0 and −1 for x < 0, see Knight

(1998). Then, for any v = (v1, v
′
2)

′ with v1 ∈ R and v2 ∈ Rp, we have that

Qn(v1/n, ψ0 + v2/
√
n)−Qn(0,Ψ0)

=
n∑

t=p+2

|et −
v1
n
yt−1 −

v′2√
n
xt| −

n∑
t=p+2

|et|

= −v1
n

n∑
t=p+2

yt−1 sgn(et)−
v′2√
n

n∑
t=p+2

xt sgn(et) + ξn, (27)

where θ0 = (0,Ψ′
0)

′ is the true parameter vector, ιn(t) = n−1v1yt−1 + n−1/2v′2xt, and

ξn = 2
n∑

t=p+2

∫ ιn(t)

0

I(et ≤ s)− I(et ≤ 0)ds.

Denote

ξ1n = 2
n∑

t=p+2

∫ ιn(t)

0

F (sσ−1
t )− F (0)ds and ξ2n = 2

n∑
t=p+2

∫ ιn(t)

0

f(0)sσ−1
t ds,

where f(·) and F (·) are, respectively, the density and the cumulative distribution of εt.

We next show that ξn = ξ1n + op(1) and ξ1n = ξ2n + op(1).

Note that the quantity ξn − ξ1n is the summation of a martingale difference sequence

with respect to the filtration {Ft, t ∈ Z}. Then, for any δ > 0,

0.25E(ξn − ξ1n)
2 ≤

n∑
t=p+2

E

{∫ ιn(t)

0

[I(et ≤ s)− I(et ≤ 0)]ds

}2

= an(δ)+ bn(δ), (28)

where

an(δ) =
n∑

t=p+2

E

{∫ ιn(t)

0

[I(εt ≤ sσ−1
t )− I(εt ≤ 0)]dsI(|ιn(t)|σ−1

t ≤ δ)

}2

and

bn(δ) =
n∑

t=p+2

E

{∫ ιn(t)

0

[I(εt ≤ sσ−1
t )− I(εt ≤ 0)]dsI(|ιn(t)|σ−1

t > δ)

}2

.
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By Assumption 3, we obtain that there exists a constant π1 > 0 such that the density

f(·) is continuous on the set [−π1, π1]. Furthermore,∫ y

0

I(x ≤ s)− I(x ≤ 0)ds = (y − x)I(0 < x < y) + (x− y)I(y < x < 0).

Moreover, for δ < π1, we have that

an(δ) =
n∑

t=p+2

E{[ιn(t)− εtσt]
2[I(0 < εt < ιn(t)σ

−1
t ) + I(ιn(t)σ

−1
t < εt < 0]}

≤ δ · C1nE[ιn(t)]
2,

and bn(δ) ≤ nE{[ιn(t)]2I(|ιn(t)|σ−1
t > δ)}, where C1 = sup|x|≤π1

f(x) and

nE[ιn(t)]
2 ≤ 2v21n

−1E(y2t−1) + 2v′2E(xtx
′
t)v2 <∞.

Thus, for a fixed δ, bn(δ) → 0 as n → ∞. Let δ → 0, we further obtain an(δ) → 0.

These results, together with (28), imply that 0.25E(ξn − ξ1n)
2 = o(1). Consequently,

ξn = ξ1n + op(1). Analogously, we can show that ξ1n = ξ2n + op(1); and it is noteworthy

that

ξ2n = f(0)v′

 n−2
∑n

t=p+2 σ
−1
t y2t−1 n−3/2

∑n
t=p+2 σ

−1
t yt−1x

′
t

n−3/2
∑n

t=p+2 σ
−1
t yt−1xt n−1

∑n
t=p+2 σ

−1
t xtx

′
t

 v.

The above results, in conjunction with (25), (26) and (27), lead to

Qn(v1/n, ψ0 + v2/
√
n)−Qn(0,Ψ0)

⇒ −v′
 α

∫
W1(τ)dW2(τ)

W3(1)

+ f(0)v′

 α2Σ0

∫
W 2

1 (τ)dτ αΣ1

∫
W1(τ)dτ

αΣ1

∫
W1(τ)dτ Σ2

 v,

where Qn(v1/n, ψ0 + v2/
√
n) is a convex function with respect to v. Thus, by Knight

(1998), we have that nϕ̃n

√
n(Ψ̃n − ψ0)

⇒ 1

2f(0)

 α2Σ0

∫
W 2

1 (τ)dτ αΣ1

∫
W1(τ)dτ

αΣ1

∫
W1(τ)dτ Σ2

−1 α
∫
W1(τ)dW2(τ)

W3(1)

 ,

where Ψ̃n = (ψ̃1, ..., ψ̃p)
′. After algebraic simplification with the fact that (1−

∑p
i=1 ψ̃i)

−1 =

α + op(1), we complete the proof.
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Proof of Theorem 3. Consider the objective function

Q∗
n(θ) =

n∑
t=p+2

|∆yt − ϕy∗t−1 −
p∑

i=1

ψi∆yt−i − ϕ̃nyt−1|.

Then, for any v = (v1, v
′
2)

′ with v1 ∈ R and v2 ∈ Rp, we have that

Q∗
n(v1/n, ψ0 + v2/

√
n)−Q∗

n(0,Ψ0)

=

(
n∑

t=p+2

|et −
v1
n
y∗t−1 −

v′2√
n
xt − ϕ̃nyt−1| −

n∑
t=p+2

|et|

)

−

(
n∑

t=p+2

|et − ϕ̃nyt−1| −
n∑

t=p+2

|et|

)
. (29)

Applying a method similar to that in the proof of Theorem 2, we obtain that

n∑
t=p+2

|et −
v1
n
y∗t−1 −

v′2√
n
xt − ϕ̃nyt−1| −

n∑
t=p+2

|et|

= −v1
n

n∑
t=p+2

y∗t−1 sgn(et)−
v′2√
n

n∑
t=p+2

xt sgn(et)− ϕ̃n

n∑
t=p+2

yt−1 sgn(et)

+ 2f(0)ϕ̃n
v1
n

n∑
t=p+2

σ−1
t yt−1y

∗
t−1 + 2f(0)ϕ̃n

v′2√
n

n∑
t=p+2

σ−1
t yt−1xt

+ f(0)v′

 n−2
∑n

t=p+2 σ
−1
t y∗2t−1 n−3/2

∑n
t=p+2 σ

−1
t y∗t−1x

′
t

n−3/2
∑n

t=p+2 σ
−1
t y∗t−1xt n−1

∑n
t=p+2 σ

−1
t xtx

′
t

 v

+ f(0)ϕ̃2
n

n∑
t=p+2

σ−1
t y2t−1 + o∗p(1) (30)

and

n∑
t=p+2

|et−ϕ̃nyt−1|−
n∑

t=p+2

|et| = −ϕ̃n

n∑
t=p+2

yt−1 sgn(et)+f(0)ϕ̃
2
n

n∑
t=p+2

σ−1
t y2t−1+o

∗
p(1). (31)

Equations (29) to (31) imply that ϕ̃∗
1n = 0.5f−1(0)Ã1n/B̃1n + o∗p(n

−1), where

Ã1n =
n∑

t=1

y∗t−1e
∗
t − (

n∑
t=1

σ−1
t y∗t−1x

′
t)(

n∑
t=1

σ−1
t xtx

′
t)

−1(
n∑

t=1

xte
∗
t ),

B̃1n =
n∑

t=1

σ−1
t y∗2t−1 − (

n∑
t=1

σ−1
t y∗t−1x

′
t)(

n∑
t=1

σ−1
t xtx

′
t)

−1(
n∑

t=1

σ−1
t y∗t−1xt),

and e∗t = sgn(et) − 2f(0)ϕ̃nσ
−1
t yt−1. Analogously, we can demonstrate that ϕ̃∗

2n =

0.5f−1(0)Ã2n/B̃2n + o∗p(n
−1), where

Ã2n =
n∑

t=1

ωty
∗
t−1e

∗
t − (

n∑
t=1

ωtσ
−1
t y∗t−1x

′
t)(

n∑
t=1

ωtσ
−1
t xtx

′
t)

−1(
n∑

t=1

ωtxte
∗
t ),
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and

B̃2n =
n∑

t=1

ωtσ
−1
t y∗2t−1 − (

n∑
t=1

ωtσ
−1
t y∗t−1x

′
t)(

n∑
t=1

ωtσ
−1
t xtx

′
t)

−1(
n∑

t=1

ωtσ
−1
t y∗t−1xt).

Denote Σ̃0 = n−1
∑n

t=1 σ
−1
t , Σ̃1 =

∑n
t=1 σ

−1
t xt and Σ̃2 =

∑n
t=1 σ

−1
t xtx

′
t. It can be

shown that

1

n

n∑
t=1

ωtσ
−1
t xtx

′
t = Σ̃2 + o∗p(1),

1

n2

n∑
t=1

ωtσ
−1
t y∗2t−1 =

1

n2

n∑
t=1

σ−1
t y∗2t−1 + o∗p(1) = Σ̃0 ·

1

n2

n∑
t=1

y∗2t−1 + o∗p(1)

and

1

n
√
n

n∑
t=1

ωtσ
−1
t y∗t−1xt =

1

n
√
n

n∑
t=1

σ−1
t y∗t−1xt + o∗p(1) = Σ̃1 ·

1

n
√
n

n∑
t=1

y∗t−1 + o∗p(1).

As a result,

1

n2
B̃1n =

1

n2
B̃2n + o∗p(1) = Σ̃0 ·

1

n2

n∑
t=1

y∗2t−1 − Σ̃′
1Σ̃

−1
2 Σ̃1 ·

(
1

n
√
n

n∑
t=1

y∗t−1

)2

+ o∗p(1).

Subsequently, it can be demonstrated that

1

n

n∑
t=1

y∗t−1(ωt − 1)e∗t =
1

n

n∑
t=1

y∗t−1(ωt − 1) sgn(et) + o∗p(1),

and

1

n

n∑
t=1

(ωt − 1)e∗txt =
1

n

n∑
t=1

(ωt − 1) sgn(et)xt + o∗p(1).

Thus,

n(ϕ̃∗
2n − ϕ̃∗

1n) =
1

2f(0)

D̃n

Σ̃0(n−2
∑n

t=1 y
∗2
t−1)− Σ̃′

1Σ̃
−1
2 Σ̃1(n−3/2

∑n
t=1 y

∗
t−1)

2
+ o∗p(1), (32)

where

D̃n = n−1

n∑
t=1

y∗t−1(ωt − 1) sgn(et)− Σ̃′
1Σ̃

−1
2 [n−3/2

n∑
t=1

y∗t−1][n
−1

n∑
t=1

(ωt − 1) sgn(et)xt].

Applying similar techniques to those used in the proof of Theorem 2, we can show

that, conditional on y1, ..., yn,

1√
n

[nτ ]∑
t=1

(ωt − 1)[ẽt, sgn(et), sgn(et)x
′
t]
′ ⇒ [W ∗

1 (τ),W
∗
2 (τ),W

∗′
3 (τ)]′ = W∗(τ)

in probability, where W∗(τ) is a (p + 2)-dimensional Brownian motion process with

covariance matrix τΩ. Note that L∗
n = n(ϕ̃∗

2n − ϕ̃∗
1n)/(1−

∑p
i=1 ψ̂i). This, together with

equation (32) and Theorem 2.2 of Kurtz and Protter (1991), completes the proof.

23



References

Berk, K. N. (1974). Consistent autoregressive spectral estimates. The Annals of Statis-

tics 2, 489–502.

Billingsley, P. (1999). Convergence of Probability Measures (2nd ed.). New York: Wiley.

Bollerslev, T. (1986). Generalized autoregression conditional heteroscedasticity. Journal

of Econometrics 31, 307–327.

Cavaliere, G. and A. M. R. Taylor (2009a). Bootstrap M unit root tests. Econometric

Reviews 28, 393–421.

Cavaliere, G. and A. M. R. Taylor (2009b). Heteroskedastic time series with a unit root.

Econometric Theory 25, 1228–1276.

Chang, Y. and J. Y. Park (2002). On the asymptotic of ADF tests for unit roots.

Econometric Reviews 21, 431–447.

Chang, Y. and J. Y. Park (2003). A sieve bootstrap for the test of a unit root. Journal

of Time Series Analysis 24, 379–400.

Chatterjee, S. and A. Bose (2005). Generalized bootstrap for estimating equations. The

Annals of Statistics 33, 414–436.

Chen, K., Z. Ying, H. Zhang, and L. Zhao (2008). Analysis of least absolute deviation.

Biometrika 95, 107–122.

Dickey, D. A. (1976). Estimation and hypothesis testing in nonstationary time series.

Ph. D. thesis, Iowa State University, Ames, Iowa.

Dickey, D. A. and W. A. Fuller (1979). Distribution of the estimators for autoregressive

time series with a unit root. Journal of the American Statistical Association 74, 427–

431.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of

Statistics 7, 1–26.

24



Elliott, G., T. J. Rothenberg, and J. H. Stock (1996). Efficient tests for an autoregressive

unit root. Econometrica 64, 813–836.

Engle, R. F. (1982). Autoregression conditional heteroscedasticity with estimates of the

variance of U.K. inflation. Econometrica 50, 987–1008.

Engle, R. F. and G. Gonzalez-Rivera (1991). Semiparametric ARCH models. Journal

of Business and Economic Statistics 9, 345–359.

Fuller, W. A. (1996). Introduction to Statistical Time Series (2 ed.). New York: Wiley.

Goncalves, S. and L. Kilian (2007). Asymptotic and bootstrap inference for AR(∞)

processes with conditional heteroscedasticity. Econometric Reviews 26, 609–641.

Hall, P. and C. C. Heyde (1980). Martingale Limit Theory and Its Application. New

York: Academic Press.

Herce, M. A. (1996). Asymptotic theory of LAD estimation in a unit root process with

finite variance errors. Econometric Theory 12, 129–153.

Jin, Z., Z. Ying, and L. J. Wei (2001). A simple resampling method by perturbing the

minimand. Biometrika 88, 381–390.

Knight, K. (1998). Limiting distributions for l1 regression estimators under general

conditions. The Annals of Statistics 26, 755–770.

Kurtz, T. G. and P. Protter (1991). Weak limit theorems to stochastic integrals and

stochastic differential equations. The Annals of Probability 19, 1035–1070.

Li, G. andW. K. Li (2008). Least absolute deviation estimation for fractionally integrated

autoregressive moving average time series models with conditional heteroscedasticity.

Biometrika 95, 399–414.

Li, G. and W. K. Li (2009). Least absolute deviation estimation for unit root processes

with GARCH errors. Econometric Theory 25, 1208–1227.

Li, G. and W. K. Li (2011). Testing a linear time series models against its threshold

extension. Biometrika 98, 243–250.

25



Ling, S. and W. K. Li (2003). Asymptotic inference for unit root processes with

GARCH(1,1) errors. Econometric Theory 19, 541–564.

Liu, R. Y. (1988). Bootstrap procedures under some non-iid models. The Annals of

Statistics 16, 1696–1708.

Lucas, A. (1995). Unit root tests based on M estimators. Econometric Theory 11,

331–346.

Maddala, G. S. and I.-M. Kim (1998). Unit Roots, Cointegration, and Structural Change.

Cambridge: Cambridge University Press.

Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models.

The Annals of Statistics 21, 255–285.

Moreno, M. and J. Romo (2000). Bootstrap tests for unit roots based on lad estimation.

Journal of Statistical Planning and Inference 83, 347–367.

Ng, S. and P. Perron (2001). Lag length selection and the construction of unit root tests

with good size and power. Econometrica 69, 1519–1554.

Palm, F. C., S. Smeekes, and J.-P. Urbain (2008). Bootstrap unit-root tests: comparison

and extensions. Journal of Time Series Analysis 29, 371–401.

Paparoditis, E. and D. N. Politis (2003). Residual-based block bootstrap for unit root

testing. Econometrica 71, 813–855.

Paparoditis, E. and D. N. Politis (2005). Bootstrapping unit root tests for autoregressive

time series. Journal of the American Statistical Association 100, 545–553.

Peng, L. and Q. Yao (2003). Least absolute deviations estimation for ARCH and

GARCH models. Biometrika 90, 967–975.

Phillips, P. C. B. (1987). Time series regression with a unit root. Econometrica 55,

277–301.

Phillips, P. C. B. (2010). Bootstrapping I(1) data. Journal of Econometrics 158, 280–

284.

26



Phillips, P. C. B. and P. Perron (1988). Testing for a unit root in time series regression.

Biometrika 75, 335–346.

Said, E. S. and D. A. Dickey (1984). Testing for unit roots in autoregressive-moving

average models of unknown order. Biometrika 71, 599–607.

Seo, B. (1999). Distribution theory for unit root tests with conditional heteroskedasticity.

Journal of Econometrics 91, 113–144.

27



Table 1: Rejection rates of the test S∗
n under three sample sizes, three significance levels,

four ϕ values, and four perturbing distributions.

n = 100 n = 200 n = 300

ϕ 1% 5% 10% 1% 5% 10% 1% 5% 10%

Exponential distribution

0.0 0.015 0.058 0.110 0.011 0.057 0.111 0.012 0.052 0.107

-0.01 0.025 0.087 0.162 0.038 0.139 0.262 0.050 0.188 0.317

-0.025 0.045 0.159 0.271 0.097 0.337 0.554 0.183 0.539 0.756

-0.05 0.091 0.326 0.525 0.345 0.761 0.912 0.641 0.950 0.991

Rademacher distribution

0.0 0.009 0.047 0.099 0.007 0.050 0.096 0.009 0.050 0.096

-0.01 0.014 0.077 0.147 0.029 0.124 0.238 0.037 0.163 0.302

-0.025 0.030 0.125 0.231 0.074 0.310 0.518 0.155 0.499 0.747

-0.05 0.062 0.277 0.468 0.284 0.722 0.898 0.612 0.935 0.989

Mammen’s distribution

0.0 0.011 0.054 0.101 0.009 0.054 0.102 0.011 0.052 0.102

-0.01 0.021 0.079 0.154 0.033 0.130 0.244 0.046 0.174 0.311

-0.025 0.037 0.139 0.255 0.088 0.311 0.522 0.174 0.512 0.747

-0.05 0.079 0.300 0.501 0.321 0.731 0.904 0.626 0.939 0.989

Mixture distribution

0.0 0.011 0.052 0.100 0.011 0.057 0.103 0.010 0.048 0.095

-0.01 0.017 0.079 0.154 0.033 0.128 0.245 0.041 0.170 0.313

-0.025 0.036 0.140 0.255 0.086 0.317 0.532 0.168 0.511 0.754

-0.05 0.074 0.295 0.500 0.313 0.743 0.903 0.629 0.941 0.990
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Table 2: Rejection rates of the tests S∗
n and L∗

n for GARCH innovations with t(3) inno-

vations.

n = 100 n = 200 n = 300

ϕ 1% 5% 10% 1% 5% 10% 1% 5% 10%

The S∗
n Test

0.0 0.014 0.067 0.109 0.017 0.053 0.105 0.011 0.048 0.107

-0.01 0.019 0.095 0.165 0.046 0.149 0.269 0.036 0.184 0.320

-0.025 0.034 0.151 0.276 0.109 0.345 0.527 0.186 0.528 0.729

-0.05 0.091 0.327 0.526 0.328 0.705 0.879 0.593 0.890 0.970

The L∗
n Test

0.0 0.007 0.040 0.098 0.010 0.049 0.094 0.011 0.044 0.106

-0.01 0.012 0.075 0.160 0.035 0.164 0.321 0.042 0.254 0.491

-0.025 0.020 0.160 0.357 0.102 0.466 0.715 0.283 0.774 0.918

-0.05 0.071 0.407 0.653 0.435 0.874 0.963 0.836 0.988 0.996
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Table 3: Sizes of the HB test S∗
n and three other tests for i.i.d. innovations {et}. The

significance level is 5%, and π = ±0.8, ±0.4 or 0.0.

Constant trend Linear trend

n −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

HB tests

100 0.230 0.074 0.050 0.049 0.051 0.412 0.115 0.044 0.056 0.076

200 0.152 0.062 0.051 0.047 0.052 0.269 0.064 0.043 0.061 0.085

300 0.132 0.055 0.050 0.051 0.058 0.201 0.056 0.051 0.053 0.072

ADF tests

100 0.103 0.042 0.042 0.022 0.013 0.146 0.048 0.028 0.015 0.006

200 0.079 0.042 0.037 0.044 0.024 0.075 0.035 0.024 0.020 0.023

300 0.087 0.044 0.046 0.039 0.036 0.072 0.045 0.035 0.029 0.025

Sieve bootstrap tests

100 0.095 0.034 0.035 0.016 0.013 0.153 0.050 0.024 0.016 0.007

200 0.073 0.040 0.031 0.025 0.025 0.089 0.035 0.025 0.020 0.019

300 0.086 0.049 0.053 0.039 0.028 0.079 0.049 0.033 0.028 0.025

Wild bootstrap tests

100 0.036 0.030 0.039 0.029 0.017 0.035 0.030 0.040 0.028 0.013

200 0.024 0.033 0.046 0.048 0.024 0.024 0.027 0.036 0.035 0.027

300 0.015 0.045 0.052 0.042 0.036 0.019 0.042 0.042 0.044 0.035
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Table 4: Sizes of the HB test S∗
n and three other tests for GARCH innovations {et}. The

significance level is 5%, and π = ±0.8, ±0.4 or 0.0.

Constant trend Linear trend

n −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

HB tests

100 0.228 0.071 0.038 0.041 0.054 0.389 0.123 0.054 0.058 0.079

200 0.155 0.060 0.045 0.048 0.061 0.259 0.065 0.057 0.054 0.065

300 0.141 0.056 0.050 0.052 0.060 0.197 0.053 0.045 0.047 0.059

ADF tests

100 0.081 0.033 0.019 0.011 0.010 0.129 0.032 0.018 0.008 0.010

200 0.072 0.036 0.036 0.028 0.017 0.065 0.029 0.026 0.018 0.007

300 0.073 0.032 0.038 0.031 0.035 0.079 0.031 0.028 0.022 0.021

Sieve bootstrap tests

100 0.090 0.036 0.025 0.013 0.015 0.146 0.038 0.020 0.011 0.013

200 0.076 0.040 0.039 0.032 0.024 0.085 0.036 0.030 0.021 0.009

300 0.081 0.046 0.039 0.032 0.041 0.092 0.041 0.030 0.028 0.025

Wild bootstrap tests

100 0.038 0.028 0.039 0.025 0.021 0.033 0.030 0.041 0.021 0.018

200 0.022 0.037 0.044 0.042 0.031 0.026 0.041 0.043 0.031 0.017

300 0.020 0.034 0.047 0.044 0.040 0.016 0.042 0.045 0.039 0.028
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Table 5: Powers of the HB test S∗
n and three other tests for i.i.d. innovations {et} with

ϕ = −3.5/n. The significance level is 5%, and π = ±0.8, ±0.4 or 0.0.

Constant trend Linear trend

n −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

HB tests

100 0.418 0.193 0.115 0.131 0.135 0.488 0.178 0.070 0.079 0.102

200 0.362 0.181 0.121 0.141 0.172 0.348 0.120 0.063 0.088 0.101

300 0.340 0.164 0.129 0.137 0.143 0.295 0.113 0.080 0.087 0.108

ADF tests

100 0.167 0.105 0.085 0.067 0.043 0.178 0.063 0.031 0.019 0.013

200 0.185 0.123 0.096 0.097 0.087 0.097 0.061 0.044 0.049 0.010

300 0.200 0.124 0.116 0.103 0.070 0.105 0.066 0.059 0.042 0.030

Sieve bootstrap tests

100 0.190 0.096 0.069 0.056 0.033 0.189 0.067 0.029 0.020 0.017

200 0.184 0.120 0.103 0.101 0.080 0.109 0.059 0.044 0.042 0.017

300 0.199 0.111 0.100 0.093 0.088 0.131 0.067 0.059 0.042 0.030

Wild bootstrap tests

100 0.064 0.084 0.114 0.084 0.043 0.059 0.058 0.059 0.041 0.023

200 0.023 0.110 0.119 0.110 0.089 0.027 0.058 0.068 0.070 0.031

300 0.023 0.124 0.134 0.114 0.073 0.024 0.070 0.076 0.071 0.043
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Table 6: Powers of the HB test S∗
n and three other tests for i.i.d. innovations {et} with

ϕ = −7.0/n. The significance level is 5%, and π = ±0.8, ±0.4 or 0.0.

Constant trend Linear trend

n −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

HB tests

100 0.600 0.359 0.231 0.214 0.247 0.639 0.243 0.138 0.103 0.163

200 0.540 0.334 0.276 0.248 0.275 0.493 0.213 0.128 0.156 0.187

300 0.535 0.323 0.279 0.277 0.266 0.447 0.200 0.140 0.148 0.194

ADF tests

100 0.274 0.203 0.178 0.130 0.080 0.248 0.088 0.082 0.031 0.019

200 0.283 0.239 0.227 0.167 0.137 0.149 0.121 0.093 0.068 0.048

300 0.330 0.243 0.249 0.221 0.151 0.174 0.130 0.101 0.080 0.062

Sieve bootstrap tests

100 0.301 0.191 0.184 0.122 0.060 0.263 0.085 0.077 0.030 0.022

200 0.309 0.251 0.197 0.175 0.144 0.177 0.121 0.088 0.072 0.044

300 0.370 0.274 0.207 0.198 0.180 0.200 0.126 0.099 0.076 0.069

Wild bootstrap tests

100 0.117 0.166 0.213 0.152 0.078 0.103 0.061 0.097 0.045 0.031

200 0.058 0.214 0.284 0.223 0.140 0.038 0.086 0.120 0.094 0.052

300 0.059 0.252 0.301 0.261 0.176 0.028 0.098 0.131 0.102 0.074
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Table 7: Powers of the HB test S∗
n and three other tests for GARCH innovations {et}

with ϕ = −3.5/n. The significance level is 5%, and π = ±0.8, ±0.4 or 0.0.

Constant trend Linear trend

n −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

HB tests

100 0.452 0.173 0.096 0.132 0.145 0.475 0.149 0.092 0.084 0.123

200 0.347 0.162 0.123 0.137 0.146 0.337 0.111 0.065 0.084 0.125

300 0.288 0.155 0.118 0.131 0.143 0.285 0.110 0.077 0.100 0.094

ADF tests

100 0.206 0.084 0.059 0.068 0.051 0.176 0.049 0.039 0.018 0.010

200 0.174 0.111 0.091 0.084 0.062 0.114 0.040 0.039 0.034 0.028

300 0.169 0.110 0.089 0.096 0.093 0.097 0.050 0.046 0.051 0.023

Sieve bootstrap tests

100 0.217 0.089 0.069 0.072 0.054 0.201 0.056 0.046 0.020 0.015

200 0.191 0.110 0.103 0.089 0.061 0.136 0.050 0.050 0.039 0.033

300 0.182 0.122 0.099 0.099 0.098 0.119 0.068 0.059 0.063 0.027

Wild bootstrap tests

100 0.090 0.061 0.072 0.077 0.055 0.103 0.039 0.050 0.031 0.020

200 0.027 0.096 0.100 0.094 0.063 0.029 0.047 0.051 0.043 0.029

300 0.028 0.099 0.107 0.108 0.096 0.020 0.053 0.053 0.062 0.039
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Table 8: Powers of the HB test S∗
n and three other tests for GARCH innovations {et}

with ϕ = −7.0/n. The significance level is 5%, and π = ±0.8, ±0.4 or 0.0.

Constant trend Linear trend

n −0.8 −0.4 0.0 0.4 0.8 −0.8 −0.4 0.0 0.4 0.8

HB tests

100 0.609 0.320 0.228 0.200 0.223 0.601 0.251 0.124 0.093 0.145

200 0.535 0.306 0.266 0.246 0.258 0.472 0.179 0.112 0.144 0.145

300 0.491 0.318 0.261 0.249 0.273 0.408 0.183 0.119 0.145 0.167

ADF tests

100 0.249 0.181 0.154 0.088 0.064 0.261 0.092 0.066 0.024 0.021

200 0.283 0.199 0.201 0.150 0.109 0.172 0.076 0.062 0.057 0.032

300 0.314 0.243 0.227 0.190 0.159 0.169 0.095 0.075 0.072 0.054

Sieve bootstrap tests

100 0.271 0.196 0.169 0.101 0.068 0.286 0.111 0.081 0.029 0.024

200 0.313 0.211 0.217 0.168 0.127 0.202 0.091 0.069 0.075 0.040

300 0.324 0.252 0.243 0.208 0.168 0.202 0.109 0.093 0.083 0.066

Wild bootstrap tests

100 0.106 0.144 0.180 0.111 0.056 0.129 0.063 0.096 0.049 0.027

200 0.058 0.170 0.225 0.165 0.133 0.043 0.062 0.091 0.085 0.037

300 0.045 0.232 0.252 0.223 0.183 0.025 0.070 0.105 0.101 0.068
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