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Abstract

Motivation: Synapses are essential to neural signal transmission. Therefore, quantification of synapses and related
neurites from images is vital to gain insights into the underlying pathways of brain functionality and diseases.
Despite the wide availability of synaptic punctum imaging data, several issues are impeding satisfactory quantifica-
tion of these structures by current tools. First, the antibodies used for labeling synapses are not perfectly specific to
synapses. These antibodies may exist in neurites or other cell compartments. Second, the brightness of different
neurites and synaptic puncta is heterogeneous due to the variation of antibody concentration and synapse-intrinsic
differences. Third, images often have low signal to noise ratio due to constraints of experiment facilities and avail-
ability of sensitive antibodies. These issues make the detection of synapses challenging and necessitates developing
a new tool to easily and accurately quantify synapses.

Results: We present an automatic probability-principled synapse detection algorithm and integrate it into our syn-
apse quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discov-
ery rate and improves the power of detecting synapses. SynQuant is unsupervised, works for both 2D and 3D data,
and can handle multiple staining channels. Through extensive experiments on one synthetic and three real datasets
with ground truth annotation or manually labeling, SynQuant was demonstrated to outperform peer specialized un-
supervised synapse detection tools as well as generic spot detection methods.

Availability and implementation: Java source code, Fiji plug-in, and test data are available at https://github.com/yu-
lab-vt/SynQuant.

Contact: yug@vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The synapse is a critical structure in the nervous system that enables
communication and interaction between neurons. Cognitive func-
tions hinge on proper wiring of synaptic connections within neural
circuitry. With the help of microscopic fluorescence imaging of
stained antibodies that co-localize with the underlying synaptic cleft,
it becomes possible to measure the properties of synaptic puncta and
neurites. This information enables researchers to gain insights into
how brains function under normal and abnormal conditions.

Therefore, automatic and accurate quantification of synaptic puncta
is highly needed in today’s brain research. (Burette et al., 2015;
Lin and Anthony, 2010; Ullian et al., 2011).

There are two main challenges in analyzing these fluorescence
images of synaptic puncta (Fig. 1A–C). First, different neurites and
puncta show significant variations in terms of morphology and
brightness. Besides the heterogeneity of staining, another likely rea-
son is the inherent variation among neurons and neurites according
to the different roles they play and the discrepancies in maturity.
Second, localization of proteins of interest within synaptic puncta is
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not typically perfect. One possible reason is that there is actually
Synapsin I at low concentrations in the neurites, which results in a
low level of positive staining. Another possibility is that staining
procedures usually result in some degree of ‘non-specific’ staining.
As a result, this diffuse, non-homogenous signal interferes with syn-
aptic punctum detection. For example, even the signal to noise ratio
is high for some puncta, it could be much lower for many others in
the same dataset. The brighter puncta are more likely to be picked
up, but this will introduce bias to the analysis. The non-specific anti-
bodies make it hard to identify puncta purely based on intensity.
Moreover, some diffused signals could be even stronger than some
puncta. Therefore, the combination of punctum-intrinsic heterogen-
eity, imperfect protein localization to synapses, along with potential-
ly low SNR, leads to great challenges in accurately and reliably
detecting, segmenting and quantifying synaptic puncta.

Synapse detection has been an active research topic in recent
years and quite a few methods were developed (Danielson and Sang,
2014; Feng et al., 2012; Kulikov et al., 2019; Schmitz et al., 2011;
Simhal et al., 2017, 2018). In addition, many image analysis tools
for subcellular localization and spot detection have the potential to

be repurposed to detect synapses, among which Rezatofighi et al.
(2012) and Zhang et al. (2007) are considered as the state of the art
(Smal et al., 2010). We summarized these methods in Table 1 and
present their main idea, pros and cons in Supplementary Table S1.
Through experiments on multiple synthetic and real datasets and
by comparison with ground truth or human perception, we found
the performance of existing algorithms is far from satisfactory,
with either high rates of errors or heavy user intervention. For
thresholding-based methods, they do not work well under inhomo-
geneous background; lack of reliable training data makes it hard to
use supervised methods. More importantly, most of them cannot
provide a rigorous statistical foundation to assess their output
regions and thus give no reliable method to distinguish puncta from
noises. Besides, the inhomogeneity of synaptic puncta and neurites is
not considered and the comparison between images under different
conditions is not well calibrated.

In this work, we develop a probability-principled synaptic punc-
tum detection method that considers the signal non-specificity, het-
erogeneity and large noise. Then we integrate it into our software tool
(SynQuant) that extracts neurites and puncta features (Fig. 1 and

Fig. 1. (A–C) Examples of raw data and detected puncta. First row images are the raw data and the second row overlaid the detected puncta by SynQuant (shown in red). In the first

row, each white arrow points to an example punctum. In the second row, each arrow points to the detected punctum. (A) Bass’ 3D in vivo data (mean projected). (B) In house neuron-

astrocyte co-cultured data. (C) Collman’s array tomography data (one z stack is shown). The pre-synaptic channel is shown in blue and the post-synaptic channel is shown in green.

The detection results are based on the combination of these two channels. (D–I) Joint synaptic punctum detection and segmentation by iterative tree searching and updating. (D)

Illustration for an image with neurites (light green) and puncta (orange). The light blue background and black dots are both noises from the perspective of synaptic punctum detection.

(E) Tree structure based on thresholding. Top: the original image is the root node a (Thr¼ 0). Two branches (b and c) are the children of a with a higher Thr. Repeat this process, we

get other nodes and edges. Bottom: tree representation. The light blue node is the root and orange ones are the puncta to be detected. (F) b is the current most significant node (red solid

circle). The significance of all its descendants d and h, along with all nodes sharing the same ancestry with b are updated (red dashed circles). E.g. the neighborhood of d was originally

chosen within a, but now they were chosen within b (purple boxes in a and b). (G) d becomes the root of a tree and b is the candidate punctum. As f is the most significant one now, e,

i, j and g are chosen to be updated. (H) Now we have four trees with a, d, i and j as roots. Repeat this with node c. (I) Continue this process and we get the five significant puncta

detected: d, e, g, i and j. Even though b, c and f are statistically significant regions, they are disqualified as puncta because they have children that are statistically significant. For the re-

gion d, it has a child h, but the region h is not statistically significant, so the region d remains as a synaptic punctum. (Color version of this figure is available at Bioinformatics online.)
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Supplementary Fig. S1B). To address the signal non-specificity and
heterogeneity, we develop a model that is adaptive to localized region
properties. If a region is a synaptic punctum, it is expected to be
brighter than its surroundings, even though in the same image there
may be brighter non-synaptic background regions. Here are two
major analytical problems: (i) how to choose the neighborhood pixels
for localized modeling and (ii) how to evaluate the difference between
a candidate region and its surroundings, considering some differences
may be purely due to noise. The choice of neighborhood pixels is cru-
cial. For example, for a region inside the neurite, a low intensity pixel
in the non-neurite background should not be used as a neighbor. A
bright pixel in another punctum should not be used either. The differ-
ence cannot be solely evaluated based on intensity contrast, because it
ignores the number of pixels participating in the comparison: the
more pixels, the more reliable the contrast is. Further, although the
conventional t-test between a group of pixels and their neighbors can
integrate the intensity contrast and number of pixels, the model is se-
verely biased. The operation of choosing a candidate region and its
neighbors has already implied that the candidate region is brighter
than its surroundings.

Based on the reasoning above, SynQuant contains two key compo-
nents. First, we use order statistics (David and Nagaraja, 2003) to
properly utilize the local information of puncta and fairly compare all
synaptic punctum candidates (Fig. 2). For a given candidate punctum
region, SynQuant integrates information from the average intensity in-
side the region, the average intensity of its neighbors, the sizes of the re-
gion and of its neighbors, the ranking of all pixels in these two parts
and their noise variance. The theory of order statistics provides a
powerful tool to correct the bias introduced by the candidate selection
operation. To the best of our knowledge, this is the first time that the
inherent bias for synaptic punctum detection has been rigorously mod-
eled. Indeed, we suspect that the unawareness of the right model for
the inherent bias was a major reason for the lack of rigorous statistical
model in the field of synapse detection. Second, we propose an iterative
updating strategy to identify appropriate neighbors of the synapse can-
didates for assessing their statistical significance. By this strategy, we
will detect the smallest regions retaining statistical significance, which
are more likely to be the synaptic puncta. In addition, our method uses
the p-value/z-score reported by order statistics to control the false dis-
covery rate (FDR), which can be pre-specified by the user.

Experiments show that our framework obtains a large accuracy
gain of synaptic punctum detection on both simulated dataset and
three annotated real datasets. In the rest of the paper, we will use
synaptic puncta or puncta to refer the signals in fluorescence imag-
ing to be detected. We use synapse or synaptic cleft to refer to man-
ual annotation in the electron microscope.

2 Materials and methods

We first estimate the noise model parameters and stabilize the
noise variance of the image (Supplementary Fig. S1B, left panel). After
that, we create candidate punctum regions by binarizing the image
with multiple intensity thresholds. These thresholds cover the whole

range of signal intensities and do not require user intervention. Each
threshold leads to some binary connected components, or regions
(Fig. 1E). Clearly, regions can be overlapped. Indeed, we build a tree
structure where each region becomes a node. The region corresponding
to a child node is completely contained in the region of its parent node.
Each region is assigned an initial significance score using order statis-
tics. We iteratively search for candidate puncta in the tree and update
the statistical significance for each candidate based on the search. The
determination of a positive punctum is controlled by the user-specified
threshold on the significance level. Neurite tracing, feature extraction,
channel combining, 3D implementation and other details of the frame-
work can be found in Supplementary S3.

2.1 Noise estimation and variance stabilization
Application of order statistics theory requires the noise statistics of the
pixels in a candidate region and its neighborhood. Conventionally, the
noise is modeled as following a Gaussian distribution which simplifies
subsequent computations. However, the photon detector introduces
noise whose variance is linearly dependent on the signal intensity. We
apply the noise model proposed by Foi et al. (2008). The variance for
pixel ði; jÞ is modelled as var yi;jð Þ ¼ axi;j þ b. Here varðyÞ is the pixel
noise variance. x is the underlying signal intensity, which is unknown
but can be well approximated by the observed pixel intensity. The term
ax models the Poisson type noise and the term b models the additive
Gaussian noise. The model can be fit based on pixel data from a single
image and the resulting a and b are used in the Anscombe transform to
stabilize the noise (Foi et al., 2008), so that the noise variance associ-
ated with the new values after the transform is independent to the in-
tensity itself and can be approximated by a single constant r2

stab.

2.2 Puncta’s significance scores based on order

statistics
In our adaptive tree search and updating algorithm, for each threshold,
we get a set of isolated regions (nodes in the tree), each containing a
set of pixels (Fig. 1D and E). These regions are potential candidates
for synaptic puncta that need to be evaluated by statistical tests. The
test for the individual region is based on the difference of this region
and its neighbor pixels (Fig. 2E). A larger difference implies a larger
possibility that this region is significantly different from the surround-
ings, which is a necessary (but not sufficient) condition for being a syn-
aptic punctum. For each region, a group of neighbor pixels is selected.
We assume there are M pixels S :¼ fx1; . . . ; xMg in the region and N
pixels P :¼ fxMþ1; . . . ; xMþNg in the neighbor, where xi is the inten-
sity level of pixel i. We may use a t-test to compare these two groups.
However, due to the thresholding operation, almost all the M pixels
have higher intensities than the N neighbors, though a few exceptions
are allowed like isolated high-intensity pixels in the neighbors or low-
intensity holes inside the region (Fig. 2B and C). Even if there is no
true signal, due to the thresholding, positive difference usually exists
between the means of the two groups for any candidate region consid-
ered (Fig. 2D and E). This positive difference is a bias and, if not cor-
rected, will complicate the detection and result in a lot of false

Table 1. Summary of synaptic punctum and spot detection methods

Name Reference Training

data needed

Pre- and post-

synaptic channels

3D Complex

back-ground

Manual intervention

per image

GUI Platform

SynQuant This work No Yes Yes Yes No Yes Fiji plug-in

PFSD Simhal et al. (2018) No Yes Yes No No No MATLAB, Python

SynD Schmitz et al. (2011) No No No No Yes Yes MATLAB

SynPAnal Danielson and Sang (2014) No No No No Yes Yes Java App

BGM3D Feng et al. (2012) No No Yes No No No MATLAB

MP-HD Rezatofighi et al. (2012) No No Yes Yes No No MATLAB

MS-VST Zhang et al. (2007) No No Yes Yes No No Binary file, Cþþ
DoGNet Kulikov et al. (2019) Yes Yes Yes Yes No No Python

Bouton Bass et al. (2017) Yes No Yes Yes No Yes MATLAB

U-Net Ronneberger et al. (2015) Yes Yes Yes Yes No No Python
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detections. Here, we are still interested in the difference between the
candidate region and its neighbor pixels, and define the test statistic as
the following,

L ¼ x1 þ � � � þ xM

M
� xMþ1 þ � � � þ xMþN

N
: (1)

Due to the thresholding, the intensities fx1; . . . ; xMg are almost al-
ways larger than any intensity of xMþ1; . . . ; xMþNf g, even without a
true signal. Thus, L will almost always be positive. The theory of order
statistics provides a formal approach to account for the bias by calcu-
lating the mean and variance of L under the null hypothesis that there
is no true signal among the candidate region and its neighbor pixels.
Let n ¼MþN, we can rewrite L as in (David and Nagaraja, 2003):

L ¼ 1

n

Xn

i¼1

J
oi

nþ 1

� �
xi: (2)

Here, J kð Þ is a weight function corresponding to the coefficients for
xi in Eq. 1. For 1 � i � M, J oi=ðnþ 1Þð Þ ¼ n=M, and for
Mþ 1 � i � MþN, Jðoi=ðnþ 1ÞÞ ¼ �n=N: oi is the intensity
order of xi among the n samples. For instance, oi ¼3 if xi is the pixel
with the third highest intensity in the n pixels. Note that the order
statistic theory requires a continuous function J uð Þ where
0 � u � 1. We linearly extrapolate the discrete values J kð Þ
obtained here to the full range of u. We define

l J;Fð Þ ¼
ð1

0

J uð ÞF�1 uð Þdu; (3)

and

r2 J; Fð Þ ¼
ð ð

0<u1<u2<1

2J u1ð ÞJ u2ð Þu1 1� u2ð Þ
f ðF�1 u1ð ÞÞf ðF�1 u2ð ÞÞ

du1du2: (4)

Then we have E Lð Þ ¼ lðJ;FÞ=
ffiffiffi
n
p

and var Lð Þ ¼ r2 J; Fð Þ=n, when
n ¼MþN !1 (David and Nagaraja, 2003). Here f is the normal
probability density function with zero mean and variance as the sta-
bilized noise variance r2

stab. F�1 is the corresponding inverse normal
cumulative distribution function. The integration is computed by
summation using all the n samples. Then we define the order statis-
tic score z as a function fos:

z :¼ fos S;P; r2
stab

� �
¼

ffiffiffi
n
p

L� l J;Fð Þ
r J; Fð Þ ; (5)

where z is asymptotically standard Gaussian and hence can be easily
used to compute the statistical significance of any observed value of L.

As mentioned above, in the presence of noise, the puncta from a
certain threshold may contain holes (Fig. 2B). To make its shape
more realistic, we may fill the holes (Fig. 2C). Besides, isolated pix-
els with higher intensity than the threshold might be included as
neighbors (Fig. 2C). If we do not allow these exceptions, the M pix-
els in the region is strictly brighter than all its N neighbors. Then
the null distribution of L in Eq. 1 can be calculated simply by a trun-
cated Gaussian model, which is computationally more efficient but
less flexible in practice.

2.3 Correction for small sample in order statistics
We note that the statistical significance computed in Eq. 5 is a good
approximation only when the sample size is large enough, which
may not always be the case. With some typical image resolutions,
one synaptic punctum may only contain about 10 or fewer pixels.
Here we apply two corrections for the small sample size to improve
the approximation. First, we notice for the double integration in
r2 J; Fð Þ, the integration space is a triangle defined by 0 < u1

< u2 < 1. Since we are using discrete samples, the boundary points
will noticeably impact the integration results when the sample size is
small. Therefore, half of the boundary points are incorporated in the
integration and the other half are not.

Second, the integration over J is based on a uniform grid, which
corresponds to the x values. However, the boundary points x1 and
xn (the largest and smallest values, respectively) strongly deviate
from this uniform assumption and the results will be affected when
the sample size is small. We would like the integration to mimic the
summation. Therefore, we compute the distribution of the largest
sample (or smallest) and use the mean to get a new grid. The mean
value d is computed by

d ¼ 1� F E x1ð Þ
� �

¼ 1� Fðn
ð1

0

F�1 tð Þtn�1dtÞ: (6)

Here t should be densely sampled from 0 to 1. Then we get a
new grid ½d; . . . ;d þ ði� 1Þð1� 2dÞ=ðn� 1Þ; . . . ; 1� d�.

2.4 Iterative detection, FDR control and post-processing
Our iterative detection and segmentation scheme are driven by the
statistical significance of each region as computed above (Fig. 1D–I
and Supplementary S3.1). Assume the image is stored in 8 bits, we
threshold it with all intensity values (0 to 255). For each threshold
thr 2 f1; . . . ; 254g, we binarize the image I and get all connected
regions as foreground. Suppose we totally get K regions with all
thresholds, the set of all regions is denoted by V ¼ fS1; . . . ; SKg. We
denote Sk as k, then V ¼ f1; . . . ;Kg. We build a tree T, whose nodes

Fig. 2. Illustration of order-statistics based punctum significance evaluation. (A) A small patch of raw data. Brighter pixels have higher intensities. All pixels are contaminated

by Gaussian noise Nð0; r2Þ, where r2 is 0.005. (B) Binarize (A) with threshold 0.4. The pixels above the threshold is shown in red. (C) We remove isolated pixels in (B) and fill

small holes. The resulting red part S is a candidate region. The blue pixels form its neighbor region P. We create a sorted list X of all pixels in region S [ P, where a pixel with

higher intensity will appear earlier. In (C), most pixels in S appear earlier than most pixels in P in X. (D) Under the null hypothesis, there is no true punctum and we obtain X
(along with S and P) by chance due to noise. In (D), we show an example when all pixels are gaussian noise Nð0:27; 0:005Þ and the intensity order given in X is obeyed. The

inner part is still brighter than the neighboring part, but the difference is much less obvious since there is no true punctum now. (E) Under the null hypothesis, we use order sta-

tistics to obtain the null distribution of L (Eq. 1 to Eq. 4). The distribution of L has a positive mean, which models the bias of thresholding operation. For the candidate found

in (C), we calculate its test statistic and check it against the null distribution of L. If it is in the position of the left red arrow, the punctum is not significant. If it is in the right

red arrow, it is significant. Larger intensity difference between S and P; larger size of S and lower noise level will make the candidate more significant and more likely to be

chosen. The creation of the null distribution also models the effect of filling small holes and considers the isolated higher intensity pixels in P

1602 Y.Wang et al.
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are V. E is the edge set describing the way to connect nodes in V.
Now each node k is associated with a region Sk, along with the
threshold tk under which it is generated. Then the directed edge set
is defined as E :¼ fði; jÞjSj � Si; tj ¼ ti þ 1g, which links region i to
region j that is completely within it (Fig. 1E). This structure shares
the similar principle as Mattes et al. (1999).

Each node k is also related to a neighbor pixel set Pk and a score
zk from order statistics. Since the computation of order statistics
depends on the choice of neighbor pixels, zk depends on Pk. Recalling
Eq. 5, we have zk ¼ fosðSk;Pk;r2

stabÞ. On one hand, Pk should include
neighbor pixels of Sk and thus will be within an ancestry node of k,
which is defined by the tree and denoted as AnðkÞ. The number of pix-
els in Pk needs to be carefully specified. If Pk is too large, many pixels
far away from the candidate region Sk will be included and thus the
comparison is not restricted to the local area. If Pk is too small, we
lose the statistical power to assess the significance of the candidate re-
gion. We find that requiring Pk to have a similar size as the candidate
region Sk is a good balance. In practice, we specify the neighbor region
Pk by growing the candidate region Sk layer by layer until Pk is larger
than Sk. On the other hand, not all neighbor pixels of Sk should be
included in Pk even though these pixels are close to Sk, because these
pixels may belong to another synaptic punctum region. Therefore, we
require Pk should not include any pixel of a significant region. Hence,
Pk also depends on zk as the significance of regions is determined by
zk, which leads to the iterative scheme as described below.

Our algorithm iteratively updates Pk and zk for each node n on
the tree T. We initialize the root node (k ¼ 1, whole image) as the
candidate region. For all other nodes, we initialize zk ¼ 0. All the
other nodes now choose neighbor pixels Pk within the image
(Fig. 1E) and do not avoid any pixels, because there is no significant
region. Based on the choice of Pk, we update zk for all nodes (except
the root). Then we search for the most significant node k and update
Pk for all the descendants of AnðkÞ, except those that are already sig-
nificant (Fig. 1F). After that, node k is removed from the tree as a
candidate punctum and its children will be new roots of new trees
(Fig. 1G). Again, the updated Pk will give us new zk. In later itera-
tions, once any descendants of k becomes a new candidate, k is
disqualified as a punctum. This drives the algorithm to avoid
neurite-like structures (Fig. 1H–I).

FDR control is used during the iterations. In each iteration, we
pick the candidate region with the highest score (Eq. 5) and determine
whether we can add it to the list of significant regions. The decision is
made such that we keep the FDR lower than a given threshold among
all synaptic puncta detected. The threshold is a parameter specified by
the user. Because overlapped regions may be correlated, we use the
general case introduced by Benjamini and Yosef (1995). In each iter-
ation, we test that whether adding the newly selected region to the list
of existing significant regions can still keep the FDR lower than the
threshold based on their p-values. If so, we add it as a new significant
region and continue to new iteration. If not, the algorithm stops. The
total number of iterations depends on the number of synaptic puncta
(significant regions) in the image and the user-specified FDR thresh-
old. More details can be found in Supplementary S3.2.

Three rules based on the prior knowledge of the puncta are
applied to post-process the synaptic punctum candidates (Uijlings
et al., 2013). First, we filter out candidates that are too small or too
large. Second, we expect the puncta to be close to circles or ellipses
and we enforce this by setting threshold on the aspect ratios of
puncta. Third, we expect the detected puncta to be roughly convex
shaped, so we compare the area of the bounding box of a punctum
with its area and remove those with low filling rate. In the experi-
ments, these rules are applied to all methods.

3 Results

We tested SynQuant on one simulated and three real datasets and
compared it with four unsupervised methods and up to eleven var-
iants of three supervised methods. The three real datasets include
2D cultured cells (Mizuno et al., 2018), 3D multi-channel array
tomography on brain slices (Collman et al., 2015) and 3D in vivo
data (Bass et al., 2017). We summarize the properties of each

dataset in Supplementary Table S2. Among the methods, SynD,
PFSD, Bouton and DoGNet were designed for synaptic punctum de-
tection, MS-VST and MP-HD are spot detection tools, and U-Net is
a deep learning model for semantic segmentation. DoGNet contains
two shallow neural networks and two deeper models. Each model
uses either an isotropic or anisotropic kernel to match the shape of
puncta. For U-Net, we use the model provided in Kulikov et al.,
2019. Here we did not include the two methods mentioned in
Table 1: SynPAnal and BGM3D. SynPAnal needs user to crop the re-
gion of dendrite first. BGM3D is based on global thresholding like
SynD. All the datasets, labels and code to generate the synthetic data
are available on the GitHub website.

We evaluated the performance by precision, recall, F1-score and
average precision (AP). We use Intersection-over-Union (IoU) to
infer true positive (TP), which is more suitable when we want to
jointly evaluate the detection and segmentation performance. If the
overlap of ground truth and the detected punctum is larger than
50% of their union, the detected punctum is viewed as a TP. For
real data, we do not have pixel-level annotations, so we set the
threshold as 0%, that is, a TP is claimed as long as the detection has
any overlap with the ground truth or annotation. Precision is
defined as the TP/(TPþFP) and recall is TP/(TPþFN), where FP is
the number of false positives and FN is the number of false nega-
tives. The F1-score is 2� precision� recall=ðprecisionþ recallÞ. We
report the best F1-score among all points in the precision-recall
curve (see Supplementary S9.4 for z-score threshold setting of
SynQuant). We also calculate the average precision based on the
precision-recall curve (Everingham et al., 2010), which scans recall
from 0.01 to 1, with step size 0.01. AP summarizes the information
contained in the precision-recall curve and is a more comprehensive
measure than the best F-score. Each method provides a score map
with the same size as the input data. We threshold the score map from
its minimum value to its maximum value with 100 thresholds. We cal-
culate a precision-recall pair for the puncta above each threshold.

We use about 80% the data to train supervised methods. We use
‘trained’ to indicate that methods are trained from scratch. For
Bouton, we also use its pre-trained model. For DoGNet, we also try
to first train on the Collman’s data, which has the largest number of
labels, and then fine tune it using the labeled data provided in each
dataset. This allows us to train the deeper versions of models in
DoGNet. These methods are put in the ‘tuned’ group. In all experi-
ments and for all methods, post processing is applied. Other consid-
erations and parameter settings are discussed in each experiment
and in Supplementary S4. More details on training DoGNet and Un-
Net can be found in Supplementary S5. The minimum size of a
punctum is 8 voxels for real data and 4 for synthetic data; the max-
imum size is 300 voxels; the aspect ratio should be between 0.5 and
2; the ratio of voxels to bounding boxes should be larger than 0.5.
We also investigated the relationship between synapse density and
Down syndrome cell types as in Supplementary S10.

3.1 Results on synthetic data
Our simulated data consists of both synapse and neurite like signals
to mimic real data (Supplementary S6), which simulates the punc-
tum inhomogeneity and antibody non-specificity. We compared the
F1-score of all methods with different simulation settings. We first
simulated the impact of Poisson Gaussian noise on the performance
(Supplementary S7). The SNR was calculated as the average SNR
for each simulated punctum. For all SNRs, SynQuant performs al-
ways the best. For example, when IoU threshold is 0, the best F1-
score of SynQuant outperforms the best performing peer method by
0.162 (0.981 versus 0.819) under 11.5 dB SNR. Then we studied the
impact of the range of punctum size (Supplementary S7). SyQuant
still performs the best in all experiments. When the range of punc-
tum size is 9 to 150 pixels, the best F1-score from SynQuant outper-
forms the best peer method by 0.159 (0.962 versus 0.803) when the
IoU threshold is 0.5 and SNR is 17.2 dB. With IoU threshold equals
to 0.5, inaccurate segmentation of a puncta will be considered as a
false positive. The experiments in the synthetic data show that
SynQuant is robust to noises and punctum size changes. More
details can be found in the Supplementary S7.
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3.2 Results on Bass’ 3D in vivo data
We tested SynQuant on the in vivo 3D image data available in Bass
et al. (2017). In this data, signals can be observed on both neurites
and synaptic puncta (Fig 1A). The dataset contains 20 completely
annotated images. We divide the 20 well annotated images into two
groups. We randomly selected 16 images to train supervised meth-
ods and the remaining 4 were used to test all methods. We repeated
this for 10 times and report the mean performance in Table 2. The
results with standard error are given in Supplementary S9.1. Though
the data is 3D, the annotations are 2D bounding boxes of the
puncta. Besides, we find these labels are all oversized, which contain
many redundant background pixels (Supplementary Fig. S3).
Nearby puncta are easily overlapped with each other with these
large labels. However, by examining the data, one punctum always
occupies single isolated spatial location. Thus, we reduce the label
size by taking the center of each punctum and put a square whose
size is similar to the average actual size of puncta in the image. The
shallow anisotropic version of DoGNet and the deep versions of
DoGNet always fail if directly trained on this data. We do not in-
clude these methods here.

For Bouton, we used the pre-trained model based on the 80 par-
tially labeled training images. In Bouton, the images are first mean-
projected to 2D. For SynQuant and PFSD, we directly detected in
3D. For MS-VST and MP-HD, the performance of 3D version is
comparable with 2D version, so we only show the 2D results. As we
do not have 3D labeling, we apply DoGNet to mean-projected
image as well. The 16 training images are not sufficient to train the
deeper models in DoGNet and cannot make correct predictions.
Therefore, other than directly training deeper models, we also used
the 16 images to fine tune the deeper DoGNet/U-Net models that
are pre-trained in Collman’s data. Results show that for both F1
score and average precision, SynQuant performs the best among all
unsupervised methods compared (Table 2). DoGNet is the best per-
forming supervised method. Bouton fails to detect the center of
puncta accurately, which degrades its performance.

3.3 Results on Collman’s array tomography data
We tested SynQuant on the array tomography data in Collman
et al., (2015). There are two datasets provided and each data is
stained with multiple antibodies. We use the PSD stained post syn-
aptic channel and the Synapsin labeled pre-synaptic channel. Each

data is also imaged with electron microscopy (EM). The synaptic
clefts in the EM images were annotated. The annotations are down-
sampled to match the original resolution of the fluorescence staining
(0.1 lm/pixel). We use Collman14 data to train all supervised meth-
ods and test on Collman15 data (the number of annotations on
Collman14 is �5.5 times to that on Collman15.). The ground truth
annotation is in EM channel, some of which do not correspond to
the puncta in synaptic channels. This kind of inconsistency usually
happens when the imaging field of view for fluorescence channels
and EM channel are different. To correct it, we check each annota-
tion. If it does not have any fluorescence staining co-localized, we re-
move that annotation.

The annotations on EM channel are not suitable for training the
model from scratch for Bouton. SynD does not support 3D data, so
we do not list it here. SynQuant and PFSD can be directly applied
on 3D data. For other methods, we detect puncta stack by stack and
combine the score maps afterwards. This is the default used by
DoGNet and was shown to perform better than 3D version of
DoGNet (Kulikov et al., 2019). The 3D version of MS-VST and
MP-HD performs worse than their 2D version. Since the Collman14
data has large number of ground truth labels, we do not need to use
other data to train first. Therefore, we do not have the ‘tuned’ mod-
els listed in Table 3. While DoGNet and PFSD are able to integrate
information from two channels, other peer methods do not have this
functionality. Therefore, for these methods, we apply the same
method SynQuant uses to combine results from the pre-synaptic and
the post-synaptic channels. We evaluate the performance on pre-
synaptic channel, post-synaptic channel and combined results.
Again, SynQuant performs best among all unsupervised methods
and DoGNet is the best performing supervised methods.

3.4 Results on neuron-astrocyte co-cultured data
We tested SynQuant and other methods on our in-house neuron-
astrocyte co-culture dataset, which contains 16 images. The size of
each image is 256 by 256 pixels. Each image contains two channels:
the synapse channel labeled by Synapsin I and the neurite channel
labeled with Tuj1. We manually labeled puncta in the Synapsin I
channels in these 16 images. Only the puncta that are clear enough
to reach the consensus between two experts are considered as
ground truth. The results based on other ways of combining the two
annotators’ labels are given in Supplementary S9.2. We randomly
selected 12 images to train DoGNet and U-Net. The remaining 4 are
used for testing. This process was repeated for 10 times, and Table 4
shows the mean performance. For the results with standard error,
please see Supplementary Table S6.

For DoGNet and U-Net, directly using the model pre-trained on
Collman’s data does not perform well, so we fine tune the model
pre-trained on Collman’s data using 12 training images. We also dir-
ectly train the DoGNet and U-Net models from scratch using the 12

Table 3. Results on Collman’s array tomography data

Method Precision Recall Best F1 AP

Unsupervised

SynQuant (proposed) 0.882 0.699 0.780 0.754

PFSD 0.885 0.589 0.707 0.666

MSVST 0.905 0.648 0.756 0.715

MP-HD 0.876 0.648 0.745 0.680

Supervised, trained

DoGNet, shallow, isotropic 0.795 0.691 0.739 0.638

DoGNet, shallow, anisotropic 0.868 0.636 0.734 0.621

DoGNet, deep, isotropic 0.880 0.708 0.784 0.704

DoGNet, deep, anisotropic 0.897 0.665 0.764 0.691

U-Net 0.823 0.631 0.715 0.626

Supervised, pretrained

Bouton 0.602 0.224 0.327 0.229

The bold faces were used to highlight these numbers. No statistical

significance associated.

Table 2. Results on Bass’ in vivo 3D data

Method Precision Recall Best F1 AP

Unsupervised

SynQuant (proposed) 0.912 0.862 0.882 0.895

PFSD 0.444 0.355 0.382 0.196

SynD 0.723 0.691 0.683 0.502

MSVST 0.906 0.757 0.818 0.779

MP-HD 0.898 0.717 0.789 0.738

Supervised, trained

DoGNet, shallow, isotropic 0.882 0.785 0.823 0.800

U-Net 0.873 0.553 0.661 0.525

Bouton 0.806 0.851 0.823 0.746

Supervised, pre-trained þ tuned

DoGNet, shallow, isotropic 0.878 0.840 0.851 0.841

DoGNet, shallow, anisotropic 0.890 0.840 0.857 0.841

DoGNet, deep, isotropic 0.664 0.390 0.467 0.298

DoGNet, deep, anisotropic 0.642 0.412 0.484 0.324

U-Net 0.680 0.501 0.562 0.410

Note: Here Best F1 is the best F1 score among all points in the precision-

recall curve. AP is the average precision. The experiments are repeated 10

times by randomly selecting training set and the average performance is

shown here.

The bold faces were used to highlight these numbers. No statistical signifi-

cance associated.
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training images. The deeper models in DoGNet cannot be success-
fully trained given limited training data, though they can be trained
first with the larger Collman’s data and tuned after that. Even
though U-Net is not designed for synaptic punctum detection, it
works well in this data. Because the Bouton model that trained on
this data performs similar with the pre-trained model, we directly
use the pre-trained model here. We report the performance based on
the average of the 8 test images and 10 repeated experiments. The
precision and recall in Table 4 correspond to the best F1 score.
SynQuant outperforms all unsupervised methods for this data.

3.5 Summary and remarks of the experimental results
In summary, tested on a large variety of experiment settings, includ-
ing 2D versus 3D, single versus multiple channels, confocal, two-
photon or array tomography, neurite contamination versus no con-
tamination and manual labeling versus EM annotation, SynQuant
always outperforms other unsupervised state-of-the-arts in terms of
the average precision or the best F1 score. In the experiments, we
directly apply the DoGNet package for neural-networks based
methods. We note the performance of DoGNet and U-Net could be
improved by extensively tuning the hyper parameters for each data-
sets. Since the datasets are all small, DoGNet and U-Net’s perform-
ance may also be improved by employing more sophisticated data
augmentation, obtaining more labeled data and improving the ac-
curacy of the labels.

4 Discussion

We have presented a new automatic synapse quantification frame-
work (SynQuant) for detection and quantification of heterogeneous
and noisy images of synapses and dendrites. SynQuant is able to de-
tect synaptic puncta accurately and extract comprehensive features.
The superior performance of SynQuant comes from the effective
utilization of the local region-neighbor information. Enjoying the
same principle as Hariharan et al. (2014), SynQuant uses the tree
structure of regions to choose the correct neighborhood pixels.
Order statistics provides an unbiased score to each candidate region.
Compared with existing methods, SynQuant is able to extract accur-
ate detection results, which allows access to important features for
synapse studies.

Although supervised methods (like DoGNet) work well on the
datasets we tested above and are likely to have better performance

with more training data and more sophisticated deep learning struc-
tures, they have several limitations. First, the creation of training
labels can be time consuming, especially if a lot of training samples
are needed for better performance. Second, the model trained based
on existing labels usually cannot be directly applied to another data,
unless the datasets are obtained under very similar experiment set-
ups. Therefore, more training labels on the new dataset are needed.
Third, for datasets without ground truth, supervised models may be
influenced by human bias unconsciously introduced in data labels.
For example, we observed that in manually labelled real datasets,
puncta with low intensities are much more likely to be missed in the
labeling than those brighter ones. Under such biased labels, super-
vised models have a high risk of missing dimmer puncta. We note
that SynQuant does not completely avoid users’ bias, because users
need to choose a z-score threshold for SynQuant to balance the
tradeoff between sensitivity and specificity, and this kind of balance
can be viewed as user’s preference or bias. However, the sensitivity-
specificity tradeoff is a necessity for any detection task and
SynQuant makes it explicit.

SynQuant supports 3D data as well as multi-channel data with
both the pre-synaptic puncta and post-synaptic puncta. Moreover,
SynQuant is a general framework to analyze images with a high
level of non-specificity. We can naturally adapt and apply it to bio-
medical images beyond synapse staining, such as particle detection
for the particle tracking problem.

In the future, SynQuant can be improved in two aspects. First,
we did not study the optimal way of combining results from mul-
tiple channels; currently we simply adopted the approach used in
Simhal et al., 2017. As multi-channel data are more and more preva-
lent, it is worthy to study how multiple channels can be best utilized
to predict the synaptic cleft. Second, the order statistics step in
SynQuant requires relatively high computational cost and memory
usage on large images and could be unbearable for extremely large
datasets. From our observation, most puncta are independent with
each other. Thus, separating the field of view into sub-sections, par-
allelly handling them and optimally combining the results is likely to
make SynQuant applicable to super-large scale datasets.
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