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Abstract

Optimal transportation studies the transportation of a given mass distribution to a designated
mass distribution so that a given transport cost function reaches minimum. Under different formu-
lations of transport problems, including the Monge transport problem, the Kantorovich transport
problem, and the ramified transport problem, transportation has various characterizations. In this
dissertation, we use transport paths from ramified transportation to characterize transportation,
and use measures and currents to characterize transport paths. We show that a good decomposi-
tion of a transport path can be refined into a better decomposition that is more cycle “sensitive”.
Using better decomposition, we show that cycle-free transport paths can be decomposed into map-
compatible transport paths components, and we also prove similar results when transport paths are
under capacity constraint. These decomposition results describe properties of optimal transport
paths, and using these properties we can narrow down the scope of finding an optimal transport
path. The notion of capacity constraint on transport paths is a generalization of the usual transport
paths, and it makes transport paths more relevant and applicable to real life transportation.

In Chapter 1, we first review concepts related to measures, then introducing the Monge and the
Kantorovich transport problems. In the Monge and the Kantorovich transport problem, transporta-
tion is characterized by functions defined on sources and targets, rather than the actual transport
path connecting them. In the next chapter, we will see another characterization of transportation
using transport paths.

In Chapter 2, we introduce ramified transportation, which uses the actual transport paths from
sources to targets to characterize the transportation between two mass distributions. Transport
paths in ramified transportation can be described using rectifiable 1-currents, and this is where we
start in this chapter.

In Chapter 3, we first revise good decompositions of a transport path into better decompositions
which are used later to decompose cycle-free transport paths based on targets. Then we show the
components of previously decomposed transport paths are compatible with certain transport maps
and plans. Finally we consider a special type of transport paths, the stair-shaped transport paths,
which can be decomposed as the difference of two map-compatible transport paths.

In Chapter 4, we study transport paths under capacity constraint. In this case, each transport

path is defined through multiple components such that the total mass transported on each transport
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path component is no more than the predetermined capacity. Then we start to analyze the amount
of components needed in a transportation, the existence of admissible optimal transport paths,

regularities among different transport path components, and existence of map-compatibility.
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CHAPTER 1

Introduction to Monge-Kantorovich optimal transportation

This chapter is based on content from [1] and [4]. In this chapter, we will first review some
basic definitions and notations for functions and measures in section 1.1. In section 1.2, we will
see the definition and basic results of the Monge optimal transportation problem. In section 1.3,
we will move to the Kantorovich optimal transport problem, and its related results, i.e. existence,
examples, compactness. In general, optimal transport can be applied in various areas including

economics, image processing, PDEs, probability and statistics. [7]

1.1. Basic notations and concepts

In optimal transport problems, functions and measures are the basic elements that describe
these problems. Functions are used to describe the way that a mass is being transported and the
total cost of a transportation. Measures tell us how these “ready to ship” masses are distributed
before the transportation, and how do we want these masses to be distributed after the transporta-
tion. This brings the need of knowing properties of functions and measures. In this section we will
review some basic concepts and properties of functions and measures from [1] and [4].

Denote R as the extended real line. The characteristic function yz : X — {0, 1} is defined by

1 ifzek
xe(r) =
0 ifze X\E.
The Lebesgue measure in R"” will be denoted by L.

Let (X, d) be a metric space, then denote C'(X) as the space of continuous functions f : X — R,
and denote Cy(X) as the subspace of bounded continuous functions. Let Lip(X) and Lip,(X) denote
the spaces of Lipschitz and bounded Lipschitz functions respectively, with

, flz) = fly
Lin(f) o sup £ = F0)
TFY |x - y|

denotes the Lipschitz constant.



Given an open set U C R™ and k € N, denote C*(U) as the set of functions with k continuous

derivatives in U, and denote elements of C*(U) as the restriction to U of functions in C*(R™). Let
C®(U) := () CH(U), and C=(T) := (| C*(D).
k=1 k=1

Denote elements in C.(U),C¥(U),C>®(U), as functions with compact support.
In a metric space (X,d), let B(X) be its Borel o-algebra and let M(X) be the set of the

o-additive functions p : B(X) — R. Furthermore, denote by
My (X) :={p e M(X): p 20}, P(X)={peMy(X):p(X)=1}
the subsets of nonnegative and probability measures, respectively.

DEFINITION 1.1.1. Given p € M(X), the total variation measure |u| is the set function defined

on B(X) by

|u|(B) := sup {Z |1(B;)| : {Bi}ien is a Borel partition of B} ,
1€N
and for E € B(X), the restriction u| g of p on E is defined by

ple(B) :=p(ENB),  BeBX).
Sometimes we write xgu to denote u| g.
DEFINITION 1.1.2. Given u € M(X), its support is the closed set defined by
supp p:={z € X : |u|(U) > 0 for all U open, such that x € U}.
We say that p is concentrated on A € B(X) if |u[(X \ A) = 0.

Given two measures, we define the push forward operator in the following definition, and we

will see this operator is used to defined the Monge transport problem in the next section.

DEFINITION 1.1.3. Given a Borel function f : X — Y, we define the push forward operator
f#: M(X) = M(Y) by
f#n(B) == u(f"(B)), VYBeB(Y),

and call fuu the push forward measure of u by f.
2



Integration that involve the push forward operator of measures is demonstrated in the following

two propositions.

PROPOSITION 1.1.4. For any Borel function f : X — Y and any Borel function ¢ : Y — [0, 00]

one has

[ o dtun= [ @or) du
Y X
It follows that v : X — R is fup-integrable if and only if ¢ o f is p-integrable.

ProPOSITION 1.1.5. For T': X — Y Borel, one has T'yp = v if and only if

/Y¢>du:/x<¢oT> d, b e CY).

Given any two measures p1, v, we define the upper density D,v(x) and lower density D, v(z) of

v with respect to p as follows.

DEFINITION 1.1.6. Let p and v be Radon measures on R™. For each point x € R”, define

o 1imsup% if u(B(x,r)) >0 for all » > 0
D,v(z) := r—0

+00 if u(B(z,r)) = 0 for some r > 0

and

lim inf AP i p(B(x, 7)) > 0 for all 7 > 0

+oo if w(B(x,r)) =0 for some r > 0

DEFINITION 1.1.7. If Dyv(z) = D,v(x) < +00, we say v is differentiable with respect to u at

x and write

D,v is the derivative of v with respect to u. We also call D,v the density of v with respect to p.

DEFINITION 1.1.8. Let o and v be Borel measures on R”.

(i) The measure v is absolutely continuous with respect to u, written
v,

provided p(A) = 0 implies v(A) = 0 for all A C R".
3



(ii) The measure v and p are mutually singular, written
v Lo,
if there exists a Borel subset B C R"™ such that
w(R"\ B) =v(B) =0.

Using concepts and notations of density of measures, we have the following measure decompo-

sition theorem.

THEOREM 1.1.9 (Lebesgue Decomposition Theorem). Let v and p be Radon measures on R™.

(i) Then

V = Vgc + Vs,
where Ve, Vs are Radon measures on R™ with
Vae < Wy Vs L p.
(ii) Furthermore,
D,v=D,v4, Dywvs=0 p—a.e.,

and consequently

v(A) :/ADqu:“ + v5(A)

for each Borel set A C R"™.

DEFINITION 1.1.10. We call v, the absolutely continuous part and vs the singular part of v

with respect to p.
Now, we may introduce the notion of (weak) convergence of measures.

THEOREM 1.1.11 (Weak convergence of measures). Let u, p, (k= 1,2,...) be Radon measures
on R™. The following three statements are equivalent:
(1) limp—oo fgn fdpie = [gn fdp for all f € C.(R™).
(i) limsupy_,o pk(K) < p(K) for each compact set K C R™ and p(U) < liminfy_ oo pux(U)

for each open set U C R™.



(iii) limg_yoo p(B) = p(B) for each bounded Borel set B C R™ with u(0B) = 0.

DEFINITION 1.1.12. If (i), (ii), (iii) hold, we say the measures {j}7>, converge weakly to the

measure p, written as

Ml — M-

1.2. The Monge optimal transport problem

The Monge optimal transport problem (see [1]) is to find a way to transport mass from a
given distribution to another distribution, such that a given cost function is minimized. In the
current description of Monge optimal transport problem, suppose p € P(X),v € P(Y), a Borel

map T": X — Y such that T = v is called a transport map from p to v, and we denote
Map(p,v) :={T : X =Y Borel, Tyup = v}.
The Monge optimal transport problem is

(1.2.1) inf{/Xc(a:,T(x)) du(z): T € Map(p, y)},

where ¢(z,y) : X x Y — [0,00] is a Borel function, which gives the cost of transporting a unit of
mass from x to y.

In Monge’s original formulation, X = Y were Euclidean spaces and c(z,y) = |r — y|. Let
C.(T) be the transport cost [y c(x, T'(x)) du(x), we will omit 4 when it is clear from the context.
In the following example, we will first see the existence of optimal transport maps for some mass

distributions.

ExaMPLE 1. Given two measures
N N 1
Z N IZ’ Z N ?JJ’
with discrete spaces X = {x1,...,xn} andY = {y1,...,yn}, such that both have cardinality N. A

function T : X — 'Y is a bijection if and only if Typ = v, since

Al
T#/L = Z NéT(xz)
7j=1

5



For any choice of cost function c(x,y), since the class of admissible transport maps T is a finite

set, we have the existence of an optimal transport map.

Monge transport problem may fail to have a solution. For instance, when p = dg, and v =
%(5_1 + d1) there is no transport map, since we cannot map one point {0}, to two points {—1,1}.
Nevertheless, the following result gives the existence of an optimal transport map when measures

are supported on R, and the source measure is atom free.

THEOREM 1.2.1. If p,v € P(R) and p has no atom, then there exists T : R — [—o0, 00| non-
decreasing pushing p into v and any other map S with these properties coincides with T on supp L,
with at most countably many exceptions.

If c(x,y) = ¢(ly — x|) with ¢ : [0,00) — [0,00) convex and non-decreasing, and if C,,(T) < oo,

then T is an optimal map. If ¢ is strictly convex, T is the unique optimal map.

PRrROOF. Denote F),(z) := pu((—o0,x]) as the cumulative distribution function of a probability

measure g in R. Then one can check that the desired transport map is given by

T(z) :=inf{y € suppv : F,(y) > Fj,(x)}.

When ¢ is not strictly convex, we will see from the following example that optimal transport

map is not unique. i.e. when p = 1 both 7} and 75 are optimal in the following example.

EXAMPLE 2. Given an integer M > 2, consider

1 1
w= Mﬁl L[O,M]a V= Mﬁl I_[l,M—i—l]?

and the cost function c(z,y) = |x — y|P with 0 < p < oco. Let T1,T> be two admissible transport

maps where

z+M f0<x<1,
Ti(z) =z+1, Th(z):=

T otherwise.



By Theorem 1.2.1, we have Ty is an optimal map for p > 1. Moreover, when p = 1, both T} and

T5 are optimal. When p =1,
C(h) = M/ (z+1) —z|de =1, C(Tz) = / (x + M) —z|dx = 1.

For every admissible T,

or) = / () — o) du(z) > / T(e) du(z) - / wdp(x) = /R ydu(y) — /R zdu(z)
1 M+1
= ]\4/1 ydy—/ rdr = 1.

From the following example, we will see the infimum in the Monge formulation of transport
map is not necessarily the minimum. i.e. in this example, there is no transport map such that the

corresponding transport cost equals its infimum.

ExXAMPLE 3. Consider

1 1
1=H"{oyx0,11€ P(R?), v = 57'[1 L{fl}x[o,l]_f'ngL{l}x[o,l]a

and the cost function is c(x,y) := |y—x|. Here, H' denotes the one-dimensional Hausdorff measure
in R2.

Let T be any admissible transport map, then for any © € supp u, and y € suppv,

:/ \y—xduZ/ ldp =1.
R2 R2

Nezt, divide the segment {0} x [0,1] into 2N equal pieces, and divide the segments {£1} x [0,1]
into N equal pieces. Let Ty be the map that maps linearly the (2i + 1)-th piece of {0} x [0,1] to
the (i + 1)-th piece of {—1} x [0,1], and maps linearly the (2i + 2)-th piece of {0} x [0,1] to the
(i + 1)-th piece {1} x [0,1], fori=0,1,...,N — 1. Then,
1 1
C(TN):2N/O2N mdy§2N/02N1+ydy:1+$V,
Hence, as N — oo, C(Tn) — 1.

However, no optimal transport map T exists. Indeed, assume there exists T such that

[ (@) = 2 = 1) dutz) =0,
R2
7



Since |T(x) — x| > 1 by definition of p,v, we have |T(x) — x| = 1 p-a.e. Hence, for L'-a.e. and
t €[0,1] either T((0,t)) = (1,¢t) or T'((0,t)) = (—1,t). Denote

Ay ={te0,1]: T((0,t)) = (1,t)}, A_ ={t€[0,1] : T((0,¢)) = (—1,t)},
then

T#u = 7‘[1 L{71}><A_ +H1 L{71}><A_7

which implies Tyup # v, a contradiction.

1.3. The Kantorovich optimal transport problem

In the Kantorovich formulation of optimal transport problem, it uses transport plans to charac-
terize transportation, this will resolve the “non-splitting” issue of the source measure in the Monge
transport problem. Again, the definitions and some major results of Kantorovich optimal transport

problem are from [1].

DEFINITION 1.3.1 (Transport Plans). Given p € P(X) and v € P(Y'), define
Plan(p,v) :={mr e P(X xY):m(AxY) = pu(4), n(X x B) =v(B), for A, B Borel}.

Denoting by px : X XY — X, py : X XY — Y the coordinate projections, definition of

transport plan is equivalent to
(px)gm =, (py)pm =v.

Transport plans represent a way to transport mass, (A x B), from A to B. Kantorovich

formulation of the optimal transport problem is to find

(1.3.1) inf {/Xxyc(a:,y) dr(z,y) : © € Plan(y, y)}.

For each 7 € Plan(u,v), its transportation cost is denoted by

Cr) = /Xxyc(x,y) dr(z,y).

Unlike in the Monge problem, it is much easier to get the existence of an optimal transport

plan for the Kantorovich problem. When c is lower semi-continuous, by [1, Theorem 2.6] we have
8



7w — C(m) is also lower semi-continuous. Since [1, Corollary 2.9] gives the set Plan(u,v) is compact

with respect to the weak topology, we have the following existence result.

THEOREM 1.3.2. [1, Theorem 2.10] Let X,Y be Polish spaces and let ¢ : X xY — [0,00] be

lower semicontinuous. Then the minimum (infimum) in (1.3.1) is attained.

Given a transport map 7' (as illustrated in 1.2.1), we can define the corresponding transport
plan w7 := (id x T') 4 p1, where id x T : X — X x Y is the map  — (x,T(x)). By Proposition 1.1.4,

we have
C(mr) = /X c(x,T(z))dp =C(T).

Thus, by definition from (1.2.1) and (1.3.1),
inf{C(T):T:X —Y Borel ,Typ =v}>inf{C(r) : m € Plan(p,v)},

which gives the infimum in the Monge problem is larger or equal to the infimum in the Kantorovich

problem. By the following theorem, we can still reach equality under suitable conditions.

THEOREM 1.3.3. [1, Theorem 2.2 (Pratelli)] If u has no atom and ¢ : X xY — [0,00) is

continuous, then

inf {/X c(z, T(z)) dpu(z) : T € Map(u, ,,)} = min {/Xxyc(:z,y) dr(z,y): 7€ Plan(,u,l/)} .

When c(z,y) is strictly convex (e.g. 3|z — y|?) and p is absolutely continuous with respect
to Lebesgue measure, we can find optimal transport map by using Kantorovich duality. More

precisely, we have the following results.

DEFINITION 1.3.4. Given a metric space (X, d) and p € [1,00), we define
Pp(X) :={peP(x): / d(x,z0)?P du(z) < oo for some xg € X}.
X
THEOREM 1.3.5. ( [1, Theorem 5.2]) Assume that X =Y = R", c(z,y) = 3|z —y|, p,v €

P2(R™), and p < L™. Then

(i) the Kantorovich optimal transport problem in (1.3.1) has a unique solution w. In addition,

7w 15 induced by a transport map T, which is a unique solution to the Monge optimal
9



transport problem in (1.2.1), and T = V1, where ¢ : R" — (—o00,00] is a lower semi-
continuous convex function differentiable p-a.e.;

(ii) conversely, if 1 convex, lower semi-continuous, differentiable p-a.e. with |Vi| € L?(u),
then T := V1 is optimal from p to v :=Typ € Po(R™);

(iii) if v < L™, denoting by TFY (respectively, TV ") the unique optimal transport map from

i to v (respectively, from v to u), we get that
TV 7HoTH? =id p—ae mR*, THFYoT" 7" =id v—a.e. inR"

The map T in (i) is usually called the Brenier map, and has many applications in the Monge-

Ampere equation and proof of geometric and Gaussian inequalities. [10]

10



CHAPTER 2

Introduction to ramified optimal transportation

In this Chapter we will review some basic definitions of geometric measures theory ( [5], [8]),

and ramified optimal transportation ( [11], [12], [13], [14], [17], [15]).

2.1. Differential forms & Rectifiable currents

We start with the concept of covectors. By convention 0-covectors is defined as scalars, i.e.

N ®) =R

Denote

1
/\ (RP) = {w : w is a linear functional from R? to R}

as the dual space of RP. Let dz?', ..., daP € /\1(Rp) be the basis dual to the standard basis e, ..., e,
of RP. ie. If v = (a1,...,a,) € RP, then dz’(v) = a;, for j =1,2,...,p.

When £ > 2, /\k (RP) denotes the space of k-covectors, which are alternating k-linear functions

on
RP x RP x --- x RP.
k factors
Here, elements w € A"(R?) means w(v1, ..., vg) is linear in each vj € RP, and
W1,y Viy ey Uy e, U) = —w(V1, .., U4, o0, UG, .., V), fOr each @ # g

Let wi,...,w, € \'(RP), then the wedge product wi Awy A --- Aw, € A"(RP) is defined as

(2.1.1) wi Awa A Awp(vr,va, - ,0,) = ngn(a) Wo(1) (V1) Wa(2) (V2) -+ Wo(n) (Vn)
g
= det ((.Ui(U])) ’
where the sum in equation (2.1.1) is over all permutations o of {1,2,...,n}, and sgn(o) is the sign

of the permutation o.
11



For each k > 0, the space A*(RP) is a vector space of dimension (V) with basis
{dz® = dz® DA A de® ) e Iipts

where

Iy = {a = (i1,iz,...,ix) €ZE 11 <iy < - < iy <p}.

Using this basis, each w € A"(RP) can be represented as

w= Z Wiy .ig Az A - Adatt = Z We dz®,

1< <<, <p OzEIk,p
where w;, i, = w(e;,,...,¢€i,). For any w = Zaelnp we dz® € N"(RP) and n = Zﬁelmp n3 dzP €
A" (RP), then

n—+m
wAn= Z wangdx"‘/\dzbﬁe/\ (RP).

ae[ﬂ,lﬁ ﬁelm,p

A k-covector is simple if it is the wedge product of £ numbers of 1-covectors. Note that, for
k= 0,1, p, all k-covectors are simple. Indeed, when k = 0, a 0-covector is just a scalar in R, which

is the wedge product of 0 1-covector. When k = 1, a 1-covector is of the form

P
E w;dz’,
=1

which is the wedge product of the 1-covector itself. When k = p, a p-covector is of the form

Z wWedx™ = Z Wadzt Adz® A - A daP.

aclpp aclp,p

Hence, it is the wedge product of p 1-covectors, dz®’s.

DEFINITION 2.1.1. The dual space A, (RP) of A" (RP) is called the space of k-vectors, it has the

dual basis

{ea =eCq1) N Negk) 1 € Ik,p}-

The spaces /\,(R?) and AF(RP) have inner products induced from R? as follows:

< Z wkdz?, Z widxa> = Z wk w2, < Z vieaqs Z vg‘ea> = Z vf' - vg.

aGIkJ, OéEIkyp ae[kyp CMEIkyp Oéelkyp OéEIkyp

The length of w is given by |w| = (w,w)/?, and similarly, the length of v is given by |v| = (v, v)/2.

12



'V - Vi = -V — :
Moreover, for any k-covector w wadx® and k-vector v v%e,, the inner

aEIkyp aelk,p

product of w and v is defined as:
(2.1.2) (w,v) = D wa 0™

The comass norm of w is defined as
(2.1.3) lw|| == sgp{(w,v),v is simple, |v| < 1,v € /\k(Rp)}.

Given £ : RP — RY linear, the “pull-back” map ¢# : A\F(R?) — A*(RP) is defined as
(2.1.4) (UFw)(v1,vg, ..., vp) == w(l(v1), L(v2), ..., L(vy)), v1,02,..., v € RP.
The “push-forward” map £4 : \,(RP) = A,(R?) is defined as

(o, w) = (. byw), we N\ (R we A (BP).
Here, the inner product is defined according to equation (2.1.2). In this case, we have
o N @Y N and gy A ®P) 5 N\ (R9),
such that
(215)  (F(wr Awp A Awy) = (@10 £) A (w0 ) A A (wp o £), for wr,...,wp € /\ (RY)

and

Lu(vr ANvag A== ANog) = L(v1) AN(v2) A=+~ ANl(vy), for vy, ... v, € RP.

DEFINITION 2.1.2. A k-form (respectively k-vector field) on an open subset U of R? is a function
w: U — A¥(RP) (respectively, & : U — Ak (RP) ). The set of all C*> k-forms on U is denoted by

EF(U). The set of all C*™ k-forms with compact supports in U is denoted by D¥(U), where

spt (Z wadxo‘> = U spt (W) -

13



Note that w € £¥(U) means that

w= Z wadx®, where w, € C*(U).

aGIkJ,
The value of
w(z) = Z we(z)dx®, x e U,

ael;w,
can also be denoted as w|,. We also denote the comass norm of w € E¥(U) by

(2.1.6) el —ilelpllw( )|,

where ||lw(z)|| denotes the comass norm of the covector w(z) as defined in (2.1.3).
Also, the space DF(U) has the topology where the sequence {w;} C DF(U) converges to w €
Dk(U) as i — oo if and only if

e}

U N closure (U spt(wﬁ) is compact,
i=1

and

|Dﬁwi — Dﬁw\ — 0 uniformly on U,

for every multi-index g as i — oc.

Let U C R? be an open set, and

w= Z wadz® € EF(U),

aelk,p

then the exterior derivative d : EF(U) — £¥1(U) is defined as:

dw —Z Z &ua dz? A dz®.

=1 acl} "
Since
2 2 . . . .
88 ‘gaj = aaj(ga -, and dz* A da? = —dz? A dat,
T ox ) ozt
then
u Ow P& 82
(2.1.7) = Z Z —adazj Ndz® | =D 5. 0" ‘A da? A dz® =0,
=1 a€ly, =1 j=1a€ly,
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for all w € EX(U).

Also, given V' C R? open set, with

w= Y wa(y)dy™ € EF(V),

OzEIk,q

and let f = (f', f%,...,f%) : U — V be a smooth map. The “pull back” form f#w ¢ EF(U) is

defined as
o= > (wWa 0 F)dft Adf2 A - Adfi,
a:(i1,i2,...7ik)61k,q
such that for each j =1,2,...,¢,
dfi —
f =1 Oz 1

In other words,
(f#w) |z = (dfm)# (w|f(l)) :

Indeed, note that for each j =1,2,...,¢,

p 8f
=35

and this gives

af af
o, ( oy ) |
= i=1
Using results from equation (2.1.4) and (2.1. 5) we have
(dfo)? (wlf() = Z (wa © f())dy™ (dfy) A dy2(dfy) A - - A dy™ (dfy).
Oc—(’Ll,’LQ, L )EIk q

Since dy’ (df) = dfi, we get (f#w) |2 = (dfz)* (w‘f(w))'

PRrROPOSITION 2.1.3. The exterior derivative commutes with the pull back operator,
df* = f7d.
PrROOF. We may verify this equality by assuming

w= Z wa(y)dy® € EF(V),

aEIkyq
15



and f: U — V smooth, with U C RP, V' C RY.
Then,

df (w) = d( > (waof)dfilAdiQA.--Adik>
=(

11,82,k ) ElR g

P i i in
- d( Z Z (wa0f)8flaf2-- of da:”l/\dxnz/\~--/\dx"k>
=(

Ox™ dgnz  Oxmk
11,82,00050k ) EJ)p g T1,M250 =1

p 4
- Z Z ZA-dﬂc"(’/\dasnl/\dg;”2/\.../\dmnk7

Oé=(n1,n27...7nk)61k.’q nl,nz,...,nkzl no=1

where
B 0 oftr of2 ofn
A= dz"o ((wa ° f)ﬁmnl dxnz D
q j i i 2 pi i i
B Owg ofl oft afin o fn  of* afin
B ; <8yj ° f(z) Ox™o Jx™ 83:”k> * <wa ° /() ox™0dz™ gzn2  OJx™k
afil afig 62 fin
T (wa °f@) dzm dznz Prmodxm )
Notice that each ng,ni,ns,...,n, are from 1 to p, with
dz™ Adz"™t = —dx™ ANdx™, - dx"™ Adx™ = —dx™ A da™,
and
82 fil _ 82]01'1 82fi2 _ 82 fz'2 anin _ 82 fzn
drrodzm  JrmPano’ grmodznz  Jrr2dxno’ T Jrnodank  QxkOano
These imply
P P
dff(w) = > Y ) B-da™ Ada™ Ada™ A Ada,

a=(n1,n2,...,ng)El, g M1,12,....,ng=1ng=1

with

5= (G0 s Of of" 8f>

ox™ Jx™ oxmk

16



On the other side of the equation, we have

q
Owe . . .
ffdw) = f7 Z Z (';y)j dy? Ady™ ANdy? A - Adyt

a=(i1,i2,...,ig)El, ¢ =1

1 &u -
= > Z Lo fla)dfI Adff AdfE A - A df
=1

a:(i17i27“'7ik)elk q

Since
P
4 Bf
J_
df’? = 0 no
no=1
and
P )
7 I3 7 af“ 8f12 afln n n n
dff A A Ndf =Y L S da™ N A A da™
NNy, N =
then
P P
fFdw) = Z Z Z B - dx™ ANdz™ Ndz™ A A da™*
a=(n1,n2,...,ny)EIlL g N1,N2,...,np=1no=1
= dff(w).

In the rest of this section, we will turn our page to concepts that are related to currents. We
will see some of the operations on currents is related to the corresponding operations on differential

forms.

DEFINITION 2.1.4. The space of k-currents Dy (U) is the dual space of D*(U).

Here, a k-current is a continuous linear functional from D¥(U) or D¥(RP) to R, and when
k=0, D¥(U) = C*(U), DF(RP) = C(RP). Hence, 0-currents are continuous linear functionals
on C°(U) or C°(RP), and in other words, O-currents are (Schwartz) distributions on these sets.

In general, a k-current (K > 1) can be identified as a generalized k-dimensional oriented sub-

manifold, such that its H"™ measure is locally finite.

EXAMPLE 4. Let M C U C RP, and M is an oriented k-dimensional C!-submanifold of RP,

with orientation {(x) = £ AT A-+- ATk. Here, 71,7, ..., Ty is an orthonormal basis. Using M,
17



we can define a k-current, [M] € Dy(U), as
(M) 1= [ (@@ g@)at, Yo e D)
DEFINITION 2.1.5. For T € Dy (U) (k > 1),U C RP, the boundary of T is 0T € Dy_1(U), where
T (w) := T(dw), w e D HU).

Note that §*T := 9(9T) = 0, since d* = 0 by equation (2.1.7).

DEFINITION 2.1.6. The support of a k-current T' € D (U),U C RP is defined by
spt(T) =U \U{V C U,V open | spt(w) CV = T(w) = 0}.

DEFINITION 2.1.7. Given T' € Dy(U) and an open subset W C U, the mass of 7" in W is defined
by
My (T) = sup{T(w) : |w| < 1,w € DXU), spt(w) C W},

where ||w|| denotes the comass norm (2.1.6) of w.

When W = U, we may omit the subscript, W, so that mass of T" is written as M(T"). Suppose
T € Dy(U), and My (T) < oo for all W CC U. Riesz representation theorem gives that there
exists a positive Radon measure p7 on U, and a prp-measurable map £ : U — A, (RP) with ||£]| =1

pr-a.e. such that
T(w) = /U (w(x), £)) dur(z), w € DHD).

Here, pup is defined (according to Riesz representation theorem) as
pr(W) = My (T) = sup{T(w) : |w|| < 1,0 € D*(U), spt(w) C W},

which also implies pr(U) = M(T). For any pr-measurable subset £ C U, the restriction T'| g€
Dy (U) on the set E is defined as

(T|e)(w) = / (w(z), &(@))dpr(z), we D).

E
18



In general, for any locally pr-integrable function ¢ on U, the restriction T'|,€ Dy (U) is defined as

(To)(w) = /U (w0, Expdpr.

In the following two propositions, we will see the connection between mass of currents and

convergence of a sequence of currents.

DEFINITION 2.1.8. Let T3,T € Dy (U),U C RP, for j =1,2,---. We say T; converges weakly to
T if and only if
lim Tj(w) = T(w), for all w € D*(U),

J—00

and denote it as T; — T
The following proposition says that Myy is lower semi-continuous.

PropoSITION 2.1.9. Let T;,T € Dy(U), for j = 1,2,---. Suppose T; converges weakly to T,

then for any open subset W C U,

MW (T) < lim inf MW (Tj).

J]—00

PRrOOF. For any w € D¥(U) with ||w|| < 1 and spt(w) € W, by definition of weak convergence,
T(w) = lim Tj(w).

j—o0

Thus,
My (T) = supT(w) = sup lim Tj(w) < liminf <Suij(w)> = lim inf My (7})
w w J—roo J—00 w Jj—oo

0

ProposITION 2.1.10. If {T;} C Dy(U),U C RP, and Mw (T;) < oo for each W CC U, then

there exists a subsequence {1}, }, and T € Dy(U) such that Tj, =T as jr — oo in U.
PROOF. Direct application of Banach-Alaoglu Theorem in the space

M(W) = {T € Di(W) : My (T) < o0}

19



The following result for currents can be used to show mass minimality for some known currents.

PROPOSITION 2.1.11. Suppose T € Di(U),U C RP, M(T) < oo, and there exists a k-form
w* = do with |w*| < 1 and M(T) = T(w*). Then M(T) < M(S) for any S € Di(U) with
0S8 =0T.
PROOF. Direct calculation and using definition of boundary of currents, we get that
M(T) = T(w") = T(dp) = 0T(p) = 05(p) = S(dyp) = S(w*) < M(S).

O

Since we have defined the push forward and pull back operator in differential forms, we may

also define the push forward operator for currents in the following definition.

DEFINITION 2.1.12. Given open sets U CRP, V C R? and f: U — V is a smooth map. The

push forward fg induced by f is defined as fy : Dy(U) — Dy(V), such that
(fuT)(w) = T(f#(w)), for any T € Dy (U),w € Dk(V),
whenever spt(T') is compact.
PROPOSITION 2.1.13. Using notations and conditions as in Definition 2.1.12, then
OfuT = fu0T.

More precisely,

I(f4T) = fx(0T).
PROOF. By Proposition 2.1.3, df# = f#d, then

Of4T(w) = f4T(dw) = T(fFdw) = T(dftw) = IT(fFw) = f4T(w).

DEFINITION 2.1.14. Let T € Di(U),U C RP, T is normal if spt(T") is compact and

M(T') + M(9T) < oo, when k > 0, or M(T') < oo, when k = 0.
20



Before giving the definition for rectifiable currents, we need to first introduce the definition for

rectifiable sets and approximate tangent space.

DEFINITION 2.1.15. A set M C R™* is said to be countably n-rectifiable if
e.9]
McMuU|lJE®RY ],
j=1

where H"(Mp) = 0, and F; : R — R""* are Lipschitz functions for j = 1,2,....

DEFINITION 2.1.16. Let M be an H"-measurable subset of R*** with H*(M N K) < oo for any
compact K. An n-dimensional subspace, P C R"t¥  is called the approximate tangent space for

M at z € R*F if

A—0

lim /n o fy)dH™(y) = /P f(y)dH" (y)

for any f € CO(R"*F), where 1, : R"F — RF g

1
mea(y) = 3y — ),
for z,y € R*% X\ > 0.

THEOREM 2.1.17. Suppose M is H"-measurable with H"(H N K) < oo for any compact K C
R™ k. Then M is countably n-rectifiable if and only if the approzimate tangent space TyM exists
for H"-a.e. x € M.

DEFINITION 2.1.18. Let U be an open set in R"**. An n-current T' € D, (U) is called rectifiable
if for each w € D"(U),

T(w) = /M<w<x>,f<x>>9<x>dﬂn<x>,
where

(1) M is H"-measurable, countable n-rectifiable subset of U,
(2) 0 is a locally ‘H"-integrable positive function,

(3) £: M — A, (R"*) is an H"-measurable function such that for H"-a.e. z € M,
Ex)=m1 AN NTp,

where {71,...,7,} is an orthonormal basis for the approximate tangent space T, M.
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The rectifiable current 7" will be denoted by (M, 6,). Moreover, when 6 is integer valued, T is

called an integer multiplicity (rectifiable) n-current, and 6 is called the multiplicity.

When T' = 7(M, 0,§) is a rectifiable k-current, its mass equals to

M(T) = / 0(z) dH"(x).
M
Finally, we have the important compactness theorem for rectifiable currents.

THEOREM 2.1.19. Suppose T}, is a sequence of rectifiable n-currents in R™* with corresponding

density functions Oy,. If for some R > 0, J,, spt(Th) C Br,
sup{M(T}) + M(9T,)} < R,
h

and

1 R
0, > — wr, — a.e. in Rk

- R’
then there exists a subsequence Ty, and a rectifiable n-current T', such that T, — T'. If each Ty, is

integer multiplicity, then T is also integer multiplicity.

2.2. Ramified and Branched transport

This section is based on [11], [14], and [15]. We will first see the ramified optimal transport
problem in the discrete case, where the starting and ending measures are atomic measures. Next,
we will characterize ramified optimal transport in the continuous case, and see how these “transport
paths” related to the rectifiable currents introduced in the previous section. In the end, we discuss
some theoretical results of ramified optimal transportation. We start by introducing the definition
of ramified optimal transportation in the discrete settings.

Let X be a convex compact subset in a Euclidean space R?. For any = € X, let 6, be the Dirac

measure centered at . An atomic measure in X is in the form of

k
=1

with distinct points z; € X, and m; > 0 for each ¢ = 1,..., k. For any A > 0, let A5 (X) be the

space of all atomic measures on X with total mass A.
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DEFINITION 2.2.1. For any A > 0, and any two atomic measures
k )4
(2.2.1) a=Y mibs , b= n;é, € A\(X)
i=1 j=1

a transport path from a to b is a weighted directed graph G consisting of a vertex set V(G), a

directed edge set E(G) and a weight function
w: E(G) — (0,+00)

such that {x1,z2,..., 2} U{y1,92,...,y¢} C V(G) and for any vertex v € V(G), there is a balance

equation:
m; ifv=ux; forsomei=1,... k
Z w(e) = Z w(e) + —n; ifv=y; forsome j=1,...,¢
ecE(G) e€E(G) .
e~ =v et=v 0  otherwise

where e~ and et denote the starting and ending point of the edge e € E(G).

For any real number « € [0, 1], the M, cost of
G={V(G),E(G),w: E(G) — (0,00)}
is defined by
(2.2.2) Mo(G) == > w(e)*length(e),
€ E(G)

where length(e) denotes the Euclidean distance between endpoints e~ and e™ of e.

For any two atomic measures a,b on X of equal mass, let Path(a,b) be the space of all
transport paths from a to b. The ramified optimal transport problem is: Minimize M, (G) among
all G € Path(a,b).

An M, minimizer in Path(a,b) is called an a-optimal transport path from a to b.

A weighted directed graph G = {V(G), E(G),w : E(G) — (0,00)} contains a cycle if for k > 3,
there exist vertices {vi,ve,...,v;} in V(G) such that for each i = 1,2,... k, either the segment

[Vi, Vig1] or [viy1,v;] is a directed edge in E(G), and vg4q = vy.
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PROPOSITION 2.2.2. Given a,b as in (2.2.1), and let G € Path(a,b). Then, there exists
G € Path(a, b) such that V(G) C V(G), Ma(G) < Mu(G), and G contains no cycle.

The above result implies that when trying to find optimal transport paths, we may restrict to

the set of acyclic transport paths, denoted by
Patho(a,b) = {G € Path(a,b) : G contains no cycles}.

The following result gives an upper bound of the number of branching points for acyclic trans-
port paths.

PROPOSITION 2.2.3. Suppose G € Patho(a,b), where a,b as in (2.2.1), then

{v: deg(v) > 3} < k+¢—2,

where k and ¢ are the cardinality of a, b respectively, and deg(v) denotes the number of edges having

an endpoint v.

LEMMA 2.2.4. Suppose G € Pathy(a,b), where a,b as in (2.2.1), then for any edge e € E(G),
0 <w(e) <A, and
M. (G) _ Mi(O)
A = A

For any atomic measures a,b on X of equal mass, define the minimum M, cost as
(2.2.3) do(a,b) ;= min{M,(G) : G € Path(a,b)}.

Based on results from [11], d,, is a metric on the space of atomic measures of equal mass, and for
each A > 0, do(Aa, Ab) = A\* - d,(a,b).
In the following example, we will illustrate transport paths and transport cost in ramified

transportation.

EXAMPLE 5. Let a = m10;, + m20z,, b = ni1dy,, such that mi + mg = n1. In the non-trivial

case, the optimal transport path from a to b with the cost function My, is a “Y” shaped graph.
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x1 T2

By definition, the total My, cost for the above transport path is
m{|z1 — z| + m§|xe — x| + nflyr — z|.

By taking partial derivatives with respect to coordinates and set the partial derivatives equals to 0,

we get
T —x Ty — X Y1 —x
P R P R e
Denote 01 as the angle between
1 — —x
el ™ "l al
denote 0y as the angle between
Ty — X -z
PR
and let
oy = — =2 gy
mi + mo mi -+ mg
By using cosine formula, we have
cosf; = W, cos @y = W, and cos(01 + 62) = W

When my = ma, then 01 + 03 = arccos(22“~1 — 1), and when o = 0, we have 0; = 03 = 7/3.

Let MA(X) be the space of Radon measures p on X with total mass pu(X) = A, and let
pu, 1wt e Mp(X). Suppose there are two sequences of atomic measures, {a;}, {b;} € M (X), and
G; € Path(a;,b;) such that

a; = by = pt, G =T,
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then we call T' a transport path from p~ to ut. The sequence of triples {{a;}, {b;}, G;} is called

an approzimating graph sequence for T'.

DEFINITION 2.2.5. Let Path(u~, ") be the space of all transport paths from p~ to u*. For
a €10,1],T € Path(p—,u"), define its M, cost as:
M, (T):= inf liminf M,(G;),

{as,b;,G;} i—00

where the infimum is taken over the set of all possible approximating graph sequence {{a;}, {b;}, G;}

of T.

Here, transport paths in ramified transportation can also be expressed in terms of rectifiable

1-currents. Using Definition 2.1.18, and suppose
T =1(M,0,¢).

In this case, T' can be regarded as a transport path in ramified transportation as follows. The
rectifiable set M is equivalent to the set of curves or edges that are in a ramified transport path.
The locally integrable function 6(x) represents the weights that are transported through the set
M at the point z. In the discrete case, (x) = w(e) for all x € e, where e is an edge in a ramified
transport path. The k-vector valued function £(z) is the direction of transportation in a transport
path. Hence, we may use rectifiable currents to define transport paths in ramified transportation
problems.

Suppose T' € Path(a,b), a,b are atomic measures, and T is a rectifiable 1-currents. Then

using boundary of currents (Definition 2.1.5), we may express
(2.2.4) 0T =b — a.

Since T is a 1-current, 9T is a 0-current, which is equivalent to a linear functional on C2°(R"). A
measure, /i, can also be defined as a linear functional on C2°(R") as
u(f) = A fdu.

This implies notations on both side of equation (2.2.4) are well-defined.
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In general, given Radon measures =, u" of equal mass, and T' € Path(u~,pu"). Let T =

7(M,0,€) be a rectifiable 1-current, with 0T = p™ — . For o € [0,1], the M, cost is

M, (T) = /M 0(z)*dH! ().

The first important result of this section is the existence result of optimal transport paths, as

stated in the following theorem.

THEOREM 2.2.6. Given Radon measures pu~, ut € Mp(X) on X CR™ and o € (1 —1/m,1],
there exists an optimal transport path S with least My, cost among all transport paths in the family

Path(p=,u™). Moreover,

A md
MO‘(S) < 21-m(l-a) 9

where d is the diameter of the convex hull of the supports of = and pt.

Using optimal transport paths, we can define a metric on the space of probability measures.

For @ € (1 —1/m, 1], and two Radon measures p~, ut € My (X), we may define
do(p™, 1) := min{M(T) : T € Path(p~,pu")}.
Note that for any A > 0, and pu~, "™ € My (X),

- 7t
do(p™, p") = A%, (%%) :

THEOREM 2.2.7. do is a metric on M1(X) and metrizes the weak—x topology of Mi(X).

Moreover, the space (My,dy) is a length space in the sense that for any u=,u* € My (X), each

a—optimal transport path T corresponds to a continuous map
[0, da (™, 1)) = Mui(X)
such that $(0) = u~, P(da(i™, 1)) = u and for any 0 < s1 < sy < do (=, u*),
do(h(s1), ¢ (s2)) = s2 — s1.

We recall the definition of transport plans between two measures from (1.3.1). When both

measures are atomic, we have the following characterization.
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Suppose a and b are two atomic measures on X as in (2.2.1). A transport plan from a to b is

an atomic measure

k¢
q= Z Z Qij(s(xi,yj)

i=1 j=1
on the product space X x X such that for each 7 and j, ¢;; > 0,

k Y4
Z Qij = nj, and Z Qij = m,;.
i=1 j=1

We denote Plan(a,b) as the space of all transport plans from a to b. We now consider the

compatibility between transport plans and transport paths.

DEFINITION 2.2.8. Let G € Path(a,b) be a transport path such that for each x; and y; there
exists at most one directed polyhedral curve g;; from z; to y;, and ¢ € Plan(a,b) be a transport

plan. The pair (G, ¢) is compatible if ¢;; = 0 whenever g;; = 0 and

ke
GZZZ%"Q@"

i=1 j=1
Here, g;; = 0 represents no directed polyhedral curve exists, and g;; - g;; represents a mass of
¢ij is transported along the polyhedral curve g;; from z; to y;. Using notation of edges, e € E(G),

we have

Z ¢ij = w(e).

eCgij
EXAMPLE 6. Let a = %5561 + %5@, b = %%1 + %5y2, and suppose there exists a transport plan
as follows:
1 1 1 1
7= g‘s(wl,yl) + gd(ﬂvl,w) + 55(»’0273/1) + 15($2,y2) € Plan(a,b).

Let G1 and G4 be two transport paths as illustrated below:
z1 2 x1 2

Y1 Y2 Y1 Y2
G Go

From the above two transport paths, q is compatible with G1 but not compatible with G, since there

is no directed curve from x1 to yo in Ga.
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2.3. Applications in ramified transport

Ramified transportation can be applied in various situations, and we will demonstrate some

applications in this section.

2.3.1. Application in the formation of a tree leaf.
This subsection is based on content from [13] and [15]. In this subsection, we will see how
ramified transportation is used to simulate the growth of a tree leaf. We can visualize this from

the following pictures from [13].

=068, p=0.38, totalcost=49.5418

ol

3 2 -1 o 1 2

0=0.66, B=0.7, totalcost=525.9653

FIGURE 2.1. Formation of a tree leaf.

A leaf is defined as a finite union of squares centered on a given grid. Let h > 0, m,n € Z, and
define
'y = {(mh,nh):m,n € Z}

as the grid of size h. Let

h h h h
Cm,n— mh — §,mh+§) X |:’I’Lh— §,nh+§>
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be the cell of size h, and centered at (mh,nh). Let the origin O = (0,0) € I'j, be the root of a leaf,
and €p = (0,1) be the initial transport direction of water that coming out of the root, O.

Let Q = {x1,22,...,2x} C I'y, be the positions on the grid, which represents a potential tree
leaf. One assumption in the formation of a tree leaf is that each cell need water to survive, and
the amount of water needed is proportional to its area, and we may assume it is h2. This implies a

transport system for a leaf can be modeled as a transport path G from the root O to Ele h?. 5y,

DEFINITION 2.3.1. A transport system of € is a weighted directed graph G = {V(QG), E(G),w}
consists of a finite set of vertices, V(G) C I'y, a directed edge set E(G), and a weight function

w: E(G) — (0,400) such that

(1) QuU{0} CV(QG)
(2) G is connected and contains no cycle.

(3) The weight function w satisfies the balance equation

h2 ifveQ,

ecE(Q) e€E(G) 0 otherwise.
et=v e =v

at each vertex v € V(G) \ {O}.

Let v € V(G) \ {O}, since G is connected and contains no cycle, there exists a unique path
from O to v, and we denote it as P, := {v1,v2,,...,0;,Vit1,...,0k} with v; = O and v = v.
We define p(v;+1) = v;, so that p(v) is the “parent” or “previous” vertex of v. The directed edge
(p(v),v) € E(G) is denoted by e,.

When calculating the total cost of a transport path, shipping in bulk has lower cost than
shipping individually, this can be noticed in the original cost function (2.2.2). Also, branching
structures in ramified transportation tends to transport items or mass in a given transport direction.
This brings the need to consider the cost of rotating a transport direction. For any 8 > 0, let
Hpg :S' x S' — (0, 00], such that

lu-v|™?, ifu-v>0
Hg(u,v) =

400 otherwise.
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DEFINITION 2.3.2. Let a € [0,1), 8 > 0, and G = {V(G), E(G),w} be a transport system of
Q. Let mg(O) =1, éo = (0,1), and for each v € V(G), define

mg(v) = mg(p(v))HB(é’v, gp(v))

The cost of G is defined as :
F(G) := Z mg(e)w(e)*length(e) = mg(v)w(ey)*length(e,).
e€E(G) VeV (G)\{O}
After describing transport paths and transport cost for a prospective leaf, ramified transporta-

tion can also describe the dynamic formation of a tree leaf.
Let Pg :[0,00) x V(G) — (0, 00], such that
Pg(x,v) = z mg(u)[(w(ew) + )% — w(e,)*|length(e,),
ueP,\{O}

for z € [0,00) and v € V(G) \ {O}, where P, is the unique path in G from O to v. This function

gives the increment of cost when adding weight x to the point v. Let
A ={(Q,G) : Q C T}, G is an optimal transport system of Q2 under the F cost},

and for any (2, G) € Ay, a point ¢ € Q is called a boundary point of  if at least one of its eight
neighboring cells in I'y, is not in Q.

For any x € I'y \ Q € Ay, b € B, the transport cost of x through b is defined as:

z—b
Cq(z,b) := h**|z — blms(b)Hpg <\x—b! eb> + Pg(h2,b),

and the cost of adding 1 cell located at z of mass h? to the transport system G is

Co(x) == Iglig Ca(x,b) = Cq(z,b(x)), for some b(z) € B.
€

Here, we made the assumption that a new cell is generated only if the expense Cq(x) is less

than the revenue eh? it produces. Given e > 0, let

Q={z el \Q:Co(z) <eh’}UQ, V=V(G)UQ, E=EG)U{[z,bz)]:zecQ\Q}.

Let G be the new optimal transport path for the transport system on Q.
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Now, define Ly, : Ap, = Ap as Lep(Q,G) = (Q, G), and define
Acp = {(Q,G) e A, : Q C BR(E’Q)(O)},

where R(e, «) is a constant depending on € and «. Then we have the following proposition:

PROPOSITION 2.3.3. Let o € (1/2,1), and (Q,G) € Acp. Suppose Lejp(2,G) = (Q,Q), then
(Q,G) € Acp, and F(G) < F(G) + eh?||Q\ Q]|

Hence, for o € (1/2,1), and (Q,G) = (0, Goy), we can inductively define (,,Gr) = Ly, :
Ap(Qp—1,Gp—1) for n > 1. Since

Qo C Q1 S C -+ C Bre,a)(0) NI,

and Bpcq)(0) NT} is a finite set, we have (;’s converges to some set, i.e. for some N, i > N
implies 2; = Qy. This shows a tree leaf will not grow forever under the ramified transportation

model defined above.

2.3.2. Application in ramified optimal allocation problem.

This subsection in based on [17] and [15]. In this subsection we will see how ramified trans-
portation can be applied in economics and give an optimal resource allocation plan. In the Monge-
Kantorovich and ramified transport problem, a starting measure (source) and an ending measure
(target) is given in the first place. However, these two predetermined parameters are not always
given when considering allocation problems.

In a product allocation problem, suppose there are k factories and ¢ households located in
different regions. Given the demand of £ households, the supply of k factories is determined by the
demand of households and their relative locations to factories. In this case, we need to generate
a production plan among the k factories in this allocation production problem. Therefore, the
ultimate goal is finding an optimal production plan and its corresponding optimal transport path,
so that the total transport cost from factories to households is minimized.

In this allocation problem, there is only 1 product, and let each household j = 1,2,...,¢ has

demand n; for this particular product, which can be represented as

l
(2.3.1) b=> n;d,.
j=1
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DEFINITION 2.3.4. Let x = {1, x9,...,x} be a finite subset of X, which represents locations
of factories, and b be an atomic probability measure that represents demands of households. An

allocation plan from x to b is a probability measure
kL
4= > 6y
i=1 j=1
on X x X such that ¢;; > 0 for each 7, j and
k

Zqij =n; for each j =1,2,... /(.

i=1
Denote Plan[x,b| as the set of all allocation plans from x to b.

Let ¢ € Plan[x,b], then there exists a(¢q) and b such that ¢ € Plan(a(q),b). Here, a(q) is the

probability measure supported on x, which represents the supply of k factories, and

k l
a(Q) = Zml(Q)(sm“ and ml(q) = ZQZja for i = 1727 o '7k'
i=1 j=1

After defining the allocation plan, we may proceed to define its associated cost.

DEFINITION 2.3.5. For any allocation plan ¢ € Plan[x,b] and a € [0, 1), the ramified trans-

portation cost of ¢ is
T.(q) ;== min{M,(G) : G € Path(a(q),b), (G, q) is compatible}.

The M, cost is defined as in (2.2.2), and compatibility is defined as in Definition 2.2.8. An

allocation plan ¢* € Plan[x, b] is optimal if
T.(q") < Tu(q), for any ¢ € Plan[x,b].

Hence, the ramified optimal allocation problem is to find an optimal allocation plan.
Given any allocation plan ¢, there exists a transport path Gy € Path(a(q),b) such that Gy is
compatible with ¢, and T4(q) = My(Gy). This means finding an optimal allocation plan can be

transferred into finding an optimal transport path.

DEFINITION 2.3.6. An allocation path from x to b is a transport path G € Path(a,b) for some

atomic probability measure a supported on x. Denote Path[x,b] as the set of all allocation paths
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from x to b. An allocation path G* € Path[x, b] is optimal if
M, (G*) < M,(G), for any G € Path[x,b].
Using allocation path we have the following important result:

THEOREM 2.3.7. Given G € Path[x, b], there exists an allocation path G € Path|z, b], such
that

M(G) < M(G),
and for any r # s € {1,2,...,k}, x, and x5 do not belong to the same connected component of G.
This theorem gives the information that any two factories belong to 2 disconnected transport

paths, and each household will only receive product from 1 factory. Therefore, each x; € x belongs

to a connected component G; of G, and

G => G, with M(G)

i=1

k
ZMQ(@).

Since each y; is connected to a unique x;, this gives a map S : {1,2,...,¢} — {1,2,...,k} such

that S(j) = 4. Figure 2.2 from [17] gives an illustration of allocation paths.

FiGURE 2.2. Allocation path and its connected components.

DEFINITION 2.3.8. An assignment map is a function S : {1,2,...,¢} — {1,2,...,k}, and let

Mapl¢, k] be the set of all assignment maps. For any S € Map|/, k], « € [0,1), and any given x and
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b, define

k
Eo(S;%x,b) := Y da(as, b;), witha; = [ Y n; | s, bi= > nydy,

i=1 JES—1(4) JESTL(4)

where d,, is defined in equation (2.2.3). An assignment map S* € Mapl/, k| is optimal if
E.(S*;x,b) < E,(S;x,b), for any S € Mapl[/, k].
The main result for allocation problem is as follows:

THEOREM 2.3.9. Given x = {x1,22,...,x} in X, an atomic probability measure b as in (2.3.1),
and o € [0,1).
(1) An allocation plan q € Plan[z, b] is optimal if and only if there exists an optimal assign-

ment map S € Map|l, k] such that
)4
4=4s = Z njd(ﬂfs@)ﬂj)
j=1

(2) An allocation path G € Path[x, b] is optimal if and only if there exists an optimal assign-

ment map S € Mapll, k] such that G = Gs, where Gs = Y% | G; € Path[z, b] with each

G; € Path(a;, b;) being an optimal transport path.
(3) Moreover,

min  Ta(q) = min Ey(S;z,b)= min M,(G).
g€Plan[z,b) S€eMap[l,k] G€EPath|z,b|
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CHAPTER 3

Map-compatible decomposition of transport paths in discrete case

3.1. Introduction

This chapter is based on the paper [16]. In the well-known Monge-Kantorovich transport prob-
lem (see Chapter 1), the transport cost is expressed in terms of transport maps or transport plans.
The existence of optimal transport maps, especially the Brenier map in the case of quadratic cost,
leads to numerous applications of optimal transportation theory in PDEs, Probability theory, Ma-
chine learning, etc. A variant of the Monge-Kantorovich transport problem is ramified optimal
transportation (see Chapter 2). Through the lens of economy of scales, ramified optimal trans-
portation aims at studying the branching structures that appeared in many living or non-living
transport systems. In contrast to the classical Monge-Kantorovich transport problems, where the
transport cost relies on transport maps and plans, the transport cost in the ramified transport
problem is assessed across the entire branching transport system, referred to as transport paths.

Since transport maps/plans only utilize information from the initial/target measures, knowing
only transport maps/plans is insufficient for describing the transport cost that appears in ram-
ified optimal transportation problem. In general, two transport paths (e.g. a “Y-shaped” and
a “V-shaped” path) may have different transportation costs while sharing the same transport
map/plan. Nevertheless, motivated by the significance of transport maps in the context of the
Monge-Kantorovich problem, when a transport path is given, one may wonder if there exists a
hidden transport map or plan that is compatible with this specific transport path. This compatible
transport map/plan tells one how the initial measure is distributed to the target measure via the
given transport path. For simplicity, we will only considers the case of atomic measures, deferring
the exploration of other scenarios for future endeavors. We want to provide a decomposition of
transport paths such that each component in the decomposition is compatible with some transport
map or transport plan.

Roughly speaking, main results of this chapter are :
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e Theorem 3.4.8: Every cycle-free ! transport path 7' can be decomposed as a sum of
subcurrents T'= Ty + 11 + - - - + Ty such that each 17,75, - ,Txy has a single target and
Tp has at most (];7 ) sources>.

e Theorem 3.5.6: Every cycle-free transport path 7" can be decomposed as a sum of
subcurrents T" = T}, + T} such that T, is compatible with some transport map ¢ and T
is compatible with some transport plan .

e Theorem 3.6.8: Every stair-shaped transport path 7' can be decomposed as a sum of
subcurrents T' = 17 + 15 such that both 77 and —T5 are compatible with some transport

maps.

In Section 3.2, we recall some related concepts in geometric measure theory, the classical Monge-
Kantorovich transport problem, and the ramified optimal transport problem. In particular, the good
decomposition (i.e., Smirnov decomposition) of acyclic normal 1-currents.

In general, the family of atoms (i.e., supporting curves) of a good decomposition is not nec-
essarily linearly independent. This fact brings a non-unique representation of vanishing currents
and causes a technical obstacle for the proof of Theorem 3.4.8. To overcome this, we generalize the
notion of “good decomposition” to “better decomposition” (Definition 3.3.1) of transport paths in
Section 3.3. A better decomposition n of a transport path T prohibits combinations of any four
supporting curves of 7 to form a non-trivial cycle on the support of 7. We showed in Theorem
3.3.3 that any good decomposition of a transport path has a better decomposition that is absolutely
continuous with respect to the original good decomposition.

In Section 3.4, we introduce the concept of cycle-free transport paths, which are transport paths
with no non-trivial cycles on® them. Then, we use the “better decomposition” achieved in Theorem
3.3.3 to give a decomposition of cycle-free transport paths, described in Theorem 3.4.8.

In Section 3.5, we consider the concept of “compatibility” between transport paths and trans-
port plans/maps. This concept was first introduced in [11, Definition 7.1] for cycle-free transport

paths to describe whether a given transport plan is practically possible for transportation along the

1A transport path T is called cycle-free if there are no nonzero cycles on T'. See Definition 3.4.2.

2Here7 N is the number of targets in the target measure u™.

3The concept cycle-free is different to the concept “acyclic” defined using subcurrents. As in Definition 3.4.1, a
current S is “on” another current 7" does not mean that S is a subcurrent of 7. When S is on T, unlike being a
subcurrent, it is possible that S has a reverse orientation with 7" on their intersections.
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given transport path. We first generalize this concept, in a more general setting, to the compatibil-
ity between transport paths and transport plans/maps. Then, using Theorem 3.4.8, we decompose
a cycle-free transport path into the sum of a map-compatible path and a plan-compatible path,
which gives Theorem 3.5.6.

In Section 3.6, we proceed to study stair-shaped transport paths. We first show in Theorem 3.6.4
that each matrix? with non-negative entries can be transformed into a stair-shaped matrix, and in
Algorithm 3.6.5, we provide an algorithm for calculating the stair-shaped matrix. A transport path
is called stair-shaped if it has a good decomposition that is represented by a stair-shaped matrix.
A stair-shaped transport path is not necessarily cycle-free, but it still has a better decomposition.
Our main result for the section is Theorem 3.6.8, which says that any stair-shaped transport path
can be decomposed into the difference of two map-compatible transport paths. Note that some
cycle-free transport paths are also stair-shaped. They can be decomposed not only as the sum
of a map-compatible path and a plan-compatible path by Theorem 3.5.6, but also as the sum
of two map-compatible transport paths by Theorem 3.6.8. We further investigate some sufficient
conditions under which cycle-free transport paths are stair-shaped. An illustrating example is

provided at the end.

3.2. Preliminaries

3.2.1. Basic concepts in geometric measure theory.

Using notations and definitions from Section 2.1, we recall some other concepts in literature
that are particularly related to this Chapter.

We first recall the concept of subcurrents, which was introduced by Paolini and Stepanov in [6].

For any T, S € Di(U), S is called a subcurrent of T if
M(T — S) + M(S) = M(T).

A normal current T € Di(R™) is acyclic if there is no non-trivial subcurrent S of 7' such that
05 =0.
Also, in [9], Smirnov showed that every acyclic normal 1-current can be written as the weighted

average of simple Lipschitz curves in the following sense. Let I' be the space of 1-Lipschitz curves

4The size of this matrix may be countably infinite.
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v :[0,00) — R™, which are eventually constant. For v € I, we denote
to(7y) := sup{t : v is constant on [0,t]}, tso(7y) := inf{¢ : v is constant on [¢,00)},

and po(7) = Y(0), Poo(y) = Y(o0) = limy_y0o ¥(t). A curve v € T' is simple if v(s) # ~(t) for

every to(7y) < s <t < tx(vy). For each simple curve v € I', we may associate it with the following

(Im(v), |’7Y:y 1) ,

rectifiable 1-current,

(3.2.1) L=

Il

where Im(~) denotes the image of v in R™.

DEFINITION 3.2.1. Let T be a normal 1-current in R™ and let i be a finite positive measure

on I' such that

(3.2.2) Tz/rfvdn(v)

in the sense that for every smooth compactly supported 1-form w € D(R™), it holds that

(3.2.3) Tw) = [ 1) dn(y).

We say that n is a good decomposition of T (see [2], [3], [9]) if n is supported on non-constant,

simple curves and satisfies the following equalities:

(a) M(T) = [ M(I)dn(v) = [ H' (Im(y))dn(v);
(b) M(T) = [ M(1y)dn(v) = 2n(T').

Moreover, if 7 is a good decomposition of T', the following statements hold [2, Proposition 3.6

[}
(3.2.4) no :/F(S'y(O) dn(v), p* Z/F%(oo) dn ().
o If T'=1(M,0,§) is rectifiable, then

(3.2.5) O(z) =n({y el :x€lm(y)})

for Hl-a.e. z € M.
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e For every 77 < 1, the representation

7= [ b

is a good decomposition of T. Moreover, if T = 7 (M,0,§) is rectifiable, then T can be
written as T = (M, 0,¢) with

(3.2.6) 0(z) < min{f(z),n(I")}

for Hl-a.e. z € M.

In the following contexts, we adopt the notations: for any points x,y € R™ and subset A C R™,

denote

(3.2.7) I'py={yel:zelm(y)},

(3.2.8) Loy ={v €T :po(7) =7, px(v) =y},
(3.2.9) Tay={v€Tl:po(7) €A po(v) =y}

3.2.2. Basic concepts in optimal transportation theory.

In the following results, we will focus on transportation between atomic measures. Let
M N M N
(3.2.10) noo= Zm;d@z and pt = ijéyj with Zm; = ij < 0
i=1 j=1 i=1 j=1

be two finite atomic measures on X of equal mass with M, N € NU{oo}. In this case, the concepts
of Monge-Kantorovich transport problem in Chapter 1 and the concepts of Ramified transport

problem in Chapter 2 have simplified forms:

e A transport map ¢ € Map(u~,u™) corresponds to a map
e:{1,2,--- M} —{1,2,--- N}

such that for each j =1,2,--- | N,



The corresponding transport cost is

M
TIe(p) = Cla, Yp(a))mi-

i=1
A transport plan m € Map(pu~, u) corresponds to an M x N matrix m = [m;] such that

for each i, 7, it holds that

} : 2 : /
T = mj and T35 = m;.
i J

The corresponding transport cost is

M N
Jo(m) =33 cymj
i=1 j=1

where ¢;; = C(z4,y;).

A transport path T' € Path(u~, ut) corresponds to a weighted directed graph T' consisting
of a vertex set V, a directed edge set E and a weight function w : E — (0, +00) such that
{z1,22,.. ., 2} U{y1,y2,...,yn} € V and for any vertex v € V, there is a balance

equation:

m; ifv=ux;forsomei=1,...,M
Z w(e) = Z w(e) + —nj ifv=y;forsomej=1,...,N

0  otherwise,

where e~ and e’ denote the starting and ending point of the edge e € E. The correspond-

ing transport M-cost of T is

M, (T) = Zw(e)alength(e)
eckE

where the length length(e) of the edge e equals to H!(e).

3.3. Better decomposition of acyclic transport paths

Let = and pt be two atomic measures as given in (3.2.10), T' be an acyclic transport path

from = to u™, and let n be a good decomposition (i.e., Smirnov decomposition) of T'. Observe

that as shown in the following example, with respect to the good decomposition 7, it is possible
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that the family
{1y : n({~}) > 0}

is linearly dependent.

EXAMPLE 7. Let T be a transport path from p~ = 48z, + 204, to 't = 38y, + 3dy,, as shown in

the following figure

x
1 4 3y1
T — >—><
6
2?22 33/2

For each (i, ), let vu, y, be the corresponding curve from x; to y; on T'

r1 /?il £E1\( /lil
N / SN
Y2 z2 T2 Y2
Yz1,91 V1,92 Yaa,y1 Y2,z
Then
n= 25711,111 + 25711,1/2 + 57@2791 + 671271/2

is a good decomposition of T'. But

I’Yzhyl - I’YILZ/Q - I’YIz,Zﬂ + I’Yzz,yQ
1s the zero 1-current.

The linear dependence of the family {I, : n({y}) > 0} brings a non-unique representation of
vanishing currents and causes an obstacle later for the proof of Theorem 3.4.8. To overcome this,
we introduce the concept of “better decomposition” of T' as follows.

For each i = 1,2,--- , M, j = 1,2,--- | N, as given in (3.2.8), let Ty, ,, denote all 1-Lipschitz
curves in I' from x; to y;. Also, for any finite positive measure 7 on I', denote

1 .
(3.3.1) S () = T Jray, Bdn i n(Tayy,) > 0
3, () =

0, if n(I'sz;,y,) = 0.
DEFINITION 3.3.1. Let T be a transport path from p~ to u™ where p~ and p* are given in

(3.2.10). Suppose 7 is a good decomposition of T'. We say that 7 is a better decomposition of T if
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for any pairs 1 <i1 <ig < M and 1 < j; < jo <N,

Sivjr (1) = iy ja (M) = Sin, (1) + Siajo(n) =0
implies that
H(inl,yh) = n(inl ,y]-2) = U(inQ,yjl) = 77(F$¢2,yj2) = 0.

ExaMPLE 8. In Example 7,

n= 25%14/1 + 25%14/2 + 5%2»1/1 + 5'7932412

is a good but not better decomposition of T. Indeed,

51,1(77) - 51,2(77) - 52,1(77) + 522 (n) = I’Yllvyl o I’Yllvyz o 1'7227211 + I’YZz,yz =0,

but

n(rrl,yl) - 2777(]:‘901,?;2) - 2777(F$27y1) =1, and 77(1—‘3327?;2) =1

To realize T using 1, all four transportation need to be used.
On the other hand,
+ 26

Y=o,y

s a better decomposition of T. In this case,
S1.1(7) = S12(7) = S2.1(M) + S22(0) = Ly, — Loy e + Ly, 0

despite that

ﬁ(Fm,yl) = 3777(F5517y2) = 1,77(1}273/1) = Ovﬁ(rm,w) =2.

Using this new decomposition, to realize the same T', one only needs to arrange three transportation.

DEFINITION 3.3.2. For any two finite measures n and 7 on I'; we say 17 << n if for each pair

(i),
(3.3.2) / L/dﬁ = Q44 / I’de

Ti,Y5 Frz‘»yj
for some a; ; > 0.

Our main result for this section is the following theorem:
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THEOREM 3.3.3. Let T be a transport path from p~ to p*t where u~ and p* are given in

(8.2.10). For any good decomposition n of T', there exists a better decomposition 1, of T' such that

Noo <X 7).
We first give an equivalent definition of 77 << n as follows.

LEMMA 3.3.4. For any two finite measures n and 1 on L', ) << n if and only if they satisfy the

condition
(3.3.3) if 1(Ta; ;) > 0 for some (4,7), then n(Ty, ;) >0 and S; () = S;;(n).

REMARK 3.3.5. By Lemma 3.3.4, it follows that 7(I's,,,) = 0 whenever 7(T'y,,,) = 0. We use

the notation 7 << 7 to mimic the absolute continuity notation < of measures.

PROOF. Suppose 7] << 1. By taking the boundary operator on both sides of (3.3.2), it follows

that
/F (5yj - 5%)(177 = ai,j/ (5yj - 5zi)d77-

Zi:Yj5 Y5

That is,
ﬁ(rl'hyj)((syj — 0g;) = ai,j"?(rri,yj)((syj —0z,),

which implies that 7(I'z, ;) = a; jn(I's, ;). Thus, 7(T'y, ;) > 0 implies a;; > 0 and n(I'y, ;) > 0.
Moreover,
Sug () = / Ldi= ——-a / Lydn = S; ;(n).
N1(Cay;) Jro,,, aij1(Te; ;) -

On the other hand, suppose (3.3.3) holds. If 7(I'y, ;) = 0, then a;; = 0 will give (3.3.2). If
1(Te;y;) > 0, then (3.3.3) implies n(I', ;) > 0 and S; ;(7) = S; ;(n). By setting

(T, ;)

A5 = )
! ”(Fmivyj)

equation (3.3.1) gives that

/ 1,75 = 1Ty, )S1.5(7) = (ai,j1(Tar,))Sis(m) = s / L,dn.

TiYj ;Y5
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Note that, by using the sign function

1, ifx>0
(3.3.4) sgn(r) =<¢ 0, ifx=0
-1, ifx <0,

equation (3.3.1) gives

(3.3.5) 8Si;(m =4 " v = sgn(n(T'z; y,)) (0y; — 0a,).
Oa lf U(Fwiyyj) = 0

For any pairs 1 <41 <is < M and 1 < j; < jo < N, define
(3-3'6) C[(ilajl)v (i2aj2)’ 77] = Si1,j1 (77) - Sil,jz (77) - Si2,j1 (77) + Sinz (77)
Direct calculation gives

oC|(i1,41), (i2,42),m = sgn(n(Ta,, 4;,) — s9n(N(Cay ;)

+

+

Sgn(ﬁ(rxil 7911) - Sgn(n(rfﬁigyyjl)

)
sgn(1(Tayy ) = 59701(Tary ) ) b,
)
+ )

Sgn(n(rxig,yjz) - sgn(n(rfbil,yh)
Hence, it follows that 0C|[(i1, 1), (i2, j2),n] = 0 if and only if
(3’3'7) Sgn(n(rxi17yj1)) = Sgn(n(inl 7yj2)) = Sgn(n(PIiQ,yjl ) = Sgn(n(rwi2,yj2)) =G

where ¢ = 0 or 1. We denote this common value, ¢, by s[(i1, j1), (i2, j2), 7]

DEFINITION 3.3.6. For any finite positive measure n on I', define
Ap(i*,57) = {(i,5) " <i < M,j* <j <N, C[(¢", "), (4, 5),n] = 0 and s[(i, %), (i,7),n] = 1}.

Using this definition, saying a good decomposition 1 of 1" is a better decomposition of T is

equivalent to Ay (i, j) = 0 for all pairs (4, 7).
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We now consider the graded lexicographical order on N2, namely
(a,b) < (¢,d)ifa+b<c+dora=cbutb<d

Under this order, N? is listed in the order of

(338) {(Zna]n)}zozl = {(17 1)7 (17 2)’ (27 1)’ (17 3)7 RN} (inajn)’ (in+17jn+l)v .. }

LEMMA 3.3.7. For any good decomposition n of T, there exists a good decomposition 1 of T

such that 1 << n and Az(1,1) = 0.

Proor. When n(I'y, 4,) = 0, by (3.3.7), the condition C[(1,1),(4,7),n] = 0 implies

S[(la 1)7 (i’j)’n] =0,

and hence A,(1,1) = 0. Setting 7 := 7 gives us the desired results.

When 7(I'y, ,,) # 0, we inductively define a sequence of good decomposition {n,} of T" with
(L2 4,) > 0, and whose limit is our desired measure 7. Set 11 = 7.

If Ay, (1,1) =0 for some n > 1, set 0, = 1, for all m > n and set 7 = 7, as well.

If A,,(1,1) is non-empty for all n > 1, we construct 7 from {n,} via the following steps.

Step 1: Construct a sequence of good decomposition {n,} of T'.

For each n > 1, assume that 7, is a good decomposition of T" with 7, (I's, 4, ) > 0. Let (in, jn)
be the minimum element in A, (1,1) which is a subset of N? with the graded lexicographical order.

Define

. n er Tin I-me;- Tin LF% Y1 Tin LF%‘ Y
1= +min T v )s FZ 7 191 In in n’?in
Tnt1 = T {10 (Car,y, ) 10 (U 1)} (nn(rm,yl) M Cerg; ) e 1) 0Ty )

Here, the denominators in the above equation are positive because s[(1,1), (in, jn), 7] = 1. Without

loss of generality, we may assume that

0< Un(rxl,yjn> < Wn(rxin7y1)~

Under this construction, we have for each 1, j,

(339) 77n+1 Lrlivyj = (1 + An,i,j)nn |~F1'i’yj
46



for some real number A, ; ; > —1. In particular, it follows that

(3.3.10) nn—i-l(Fxl,yl) > nn(rwmﬂ) >0, Un(le,yjn) > 77n+1(F3317yjn) =0,
(3.3.11) (T, 1) > M1 (Tay, 1) 20, M1 (Tay, iy, ) > (T, iy, ) > 0,
and

(3.3.12) 1Ly ;) = Mn(Lay ;) for all other 4, j.

Since 71, is a good decomposition of T'; we have
7= [ L M(T) = [ ML), () and M(@OT) = [ M@ )dn, (1),
In particular, M(T) = [ M(Z,)dny,(7) implies that
M(S1,1(1n) + Si g (1)) = M(S1,1(7)) + M(Si,, j, (11n)),

and

M(S1,j,, () + Sin,1(Mn)) = M(S15, (7)) + M(Si, 1(10n))-

By assumption,
C[(1,1), (3n, Jn), ] = S1,1(Mn) — 51,5, (Mn) — Sip,1(Ma) + Siy g (M) = 0,
ie., S1,1(Mn) + Sipjn (M) = S1j, (M) + iy 1(1n). Thus,

M(S1,1(1m)) + M(Si,, 5, (1)) = M(S1,1(70) + Sin g (1))

= M(S1, (1n) + i1 (1)) = M(S15, (1)) + M(Si,, 1 (0))-

Now, by the construction of 7,41,

/F Ldnnsr / L, = min{n,(Tar g, ) (Tar. )} - CLL 1), (ims Gn) s 1] = O,
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and

[ M)~ [ M)dn o)
T T

= min{n,(Tay ;)5 2 (Cay, o)} (M(S1,1) — M(S15,) — M(Si, 1) + M(S;, 5,)) = 0.

Moreover,

/ M(D1,)dn 1 (7) — / M(1, )din ()
r I
— (i (Tar g, )0 (Tar, )} (M(DS1 1) — M(9S1,) — M(DS;, 1) + M(5;, 5,)

= min{n,(Tay ;) M (Tay, 1)} (2-2-2+2) =0.

As a result, since 7, is a good decomposition of T, 7,41 is a good decomposition of T" as well.
Step 2: Show that the sequence {7,} converges to a good decomposition 7 of T.
Note that for each 1 < i < M and 1 < j < N, the sequence {n, Lpziyyj }>° , is a monotonic

sequence of measures with bounded mass. Indeed, by the construction above and by equations

(3.3.10), (3.3.11) and (3.3.12),

ifi=1,7 =1, then {n, I, }go 1 is monotone increasing;

ifi=1,7>1, then {n,[r,, };L’O 1 is monotone decreasing;

r..
|

if i >1,j =1, then {n, Lp }OO, is monotone decreasing;
|

if i > 1,7 > 1, then {n, Ty, ~2_ is monotone increasing, and eventually constant.

As a result, the sequence, {n,|r, , }°°;, converges to some measure 7;; for each (i, j). Define

Y5

M N
ﬁ:=:§£:j£:vhf

i=1 j=1
Hence, as n — oo,
M N M N
D) AT ) 9t
=1 j=1 =1 j=1



Since each 7, is a good decomposition of T, it follows that

/I dn = lim Iydnn =T,

n—00

/ M(1,)dn = lim [ M(I,)dn, = M(T),

n—0o0 T

n—oo

/M (0I,)di = lim M(@I Ydn, = M(0T).

As a result, 77 is also a good decomposition of 7'

Step 3: Show that 7 << 7 .

Suppose 7j(I'z, ;) > 0 for some pair (i,j). Then, 7,(I'z,,;) > 0 when n is large enough. By
(3.3.9),

n—1
Mn Lin,yj: H(l + Ak j)nlr Taiy for some Ay ; ; > —1 for each k.
k=1

That is,
n—1
Mn = (H(l + /\kz,i,j)) 7 on Fr“yj.
k=1

As a result, 1,(I's, y;) > 0 implies (L', ;) > 0 and S; j(n,) = Si j(n). Since 7 is the limit of 7,,

Si,j(n) = lim_5; ;(nn) = Sij(n)-

This proves i << 1.
Step 4: Show that A, ., (1,1) & A,,(1,1) for each n.
Note that (in,jn) € Ay, (1,1) \ Ay, (1,1). Indeed, if (in, jn) € Ap,.,(1,1), then

C[(la 1)7 (invjn)vnnJrl} =0 and S[(l’ 1)7 (invjn)vnn+l] =1

This implies sgn(mn+1(I's; y;, ) = 1, which contradicts with 7,41(I'z, 4; ) = 0 as given in (3.3.10).
We now show that A, ., (1,1) € A,,(1,1). For any (ig, jo) € Ay, (1,1), by definition,

C[(17 1)7 (7’-07]'0)77771-!—1} =0 and 8[(17 1)7 (iOij)a 77n+1] =1L

The condition s[(1,1), (40, jo), m+1] = 1 indicates that

M1 Ly ) > 0,01 (Do sy ) > 0,001 (T ) > 0,01 (Do) > 0.
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By equations (3.3.10)—(3.3.12), and (io, jo) # (in, jn)s
Mn(Laryi) > 00 M (Tayyye) 2 a1 (Do) >0,

Un(rxio,yl) > 77n+1(rwi0,y1) >0, Un(rxio,yjo) = 77n+1(rxi0,yj0) > 0.

By (3.3.9), for each i, j, when both 7,(T,,,) > 0 and 7,41(I's, 4;) > 0, then

Sij(Mn) = Sij(Mny1)-

As a result,
C[(1,1), (io, jo), ] = C[(1,1), (i0, jo), Nn+1] = 0.
Therefore, (i, jo) € Ay, (1,1) and hence A,, ,,(1,1) C A4, (1,1).
Step 5: Show that A;(1,1) = 0.
Assume that there exists (', j') € Az(1,1),ie. C[(1,1), (7, ), 7] = 0and s[(1,1), (¢,5),7] = 1.
For any (7,7) € {(1,1),(1,4), (@, 1), (¢, j")}, since s[(1,1), (¢, 5'),7] = 1, it follows that

lim nn(in7yj) = ﬁ(in,yj) > 0.

n—oo

Thus, there exists an No € N such that 7,,(I'z, ;) > 0 for all n > Ny. By (3.3.9), this implies that
the normalized current S; ;(7,) is independent of n, and hence S; j(n,) = S; j(77) for all n > Ny. As

a result, for each n > Ny,

Cl(L,1), (@, 5"),mn] = CI(1, 1), (&', 5'), )] = 0 and s[(1,1), (7', '), mn] = s[(1,1), (', 5"), 7] = 1.

This shows that (¢/, ;") € A,,(1,1). On the other hand, since {A,,(1,1)} is a sequence of nested
subsets in N? with Ay, (1,1) S Ay, (1,1) for each n. When n is larger than the order of the fixed

element (i, j'), it is not possible for (¢, j') € A, (1,1). A contradiction.

We now extend Lemma 3.3.7 to a more general case:

LEMMA 3.3.8. For any good decomposition n of T', there exists a sequence of good decomposition
{m}o2o of T with ng = n such that for eachn > 1, Ny, << Mu—1 and Ay, (ig, ji) = 0 for all1 < k < n,

where {(ix, ji)} is given in (3.5.8).
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Proor. We will prove these results by induction. Lemma 3.3.7 provides the base case when
n = 1. For each n > 2, assume that there exists a good decomposition 7,-1 of T such that
Nn—1 << Nn—2 and Ay, (i, jk) =0 for all 1 <k <n — 1. Using 1,—1, we construct 7, as follows.

Denote

T, = U | S

in<t,jn<j
Let 7, be the measure 7} achieved in Lemma 3.3.7 with n being replaced by 7,1 Lfn and T being
replaced by T := J7, Iydnn—1. Define

M = Tn—1 Lr\fn+ﬁn

We first claim that 7, is a good decomposition of T'. Indeed, since both 7, and 7,1 Lf“n are good

/Ivdnn_/l'ydnn—l :/Ivdﬁn_ﬁ denn—l :07
T r r n

/M Y (v /M Vi1 (v ):/M(Iv)dﬁn— - M(L,)dn, 1 =0,
r T I'n

decompositions of T,

and

/ M(OL,)din( / M(OL, )1 (7) = / M(OL,)dij, — / M(O1, )1 = 0.
T I'n

As a result, since n,—1 is a good decomposition of T, n,, is also a good decomposition of T'.

We now show that 7, << 1,-1. Suppose 7,(I'z, ;) > 0 for some 1 <7 < M,1<j <N,
e When i < i, or j < j,, definition of 7, gives n, pri’yj: Mn—1 hﬂwiwyj' Therefore,
Mn—1(Ta,;) = Mn(Layy,) > 0 and S j(mn—1) = Si; ().
e When i > i, and j > j,, definition of 7, gives n, L[‘z v, = Lpz ;0 SO that
n(Laiy;) = 1 (Tayy;) > 0.

Since 7jn << Mp—1]p, by Lemma 3.3.7, it follows that

Mn-1(Lz;y;) > 0 and S; j(nn—1) = Sij () = Sij (M)
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In both cases, 7n,-1(I'z;y;) > 0 and S; j(ma—1) = Sij(a). That is, 9, << Nn_1.
We now show that A, (ix,jx) = 0 for all 1 < k < n. When k = n, Ay, (in,jn) = 0 by
Lemma 3.3.7. Suppose k < n, and for contradiction, we assume Ay, (i, ji) # 0. Thus, there exists

(Z*a.j*) S A?]n(ik7jk)7 i'e'7
C[(Zkajk)a (2*7.7*)77771,} =0 and 8[(ik7jk)a (Z*7j*)777n] =L

Now, for any (Za]) € {(’Lkajk)a(Zkaj*)a(l*ajk)a(Z*a]*)}a since S[(lka]k)’(l*vj*)ann] = 1, it follows

that 7,(I'z; ;) > 0. By the definition of n,, when i <, or j < jn, n = 1My—1 on I'y, .. Thus,

(3.3.13) Mn—1(Ta,;) = Mn(Layy;) > 0 and S (mn) = Sij(Mn-1)-

When i > i, and j > j,,

Tin(La ;) = MLy ;) > 0.

Since 7jn << Np—1[f, , then equations in (3.3.13) still hold. As a result,

C[(“ﬂ]k)? (i*vj*)’nnfl] = C[('Lka]k)a (Z'*vj*)a nn] =0 and 5[(ik,jk), (i*vj*)vnnfl] =1

Therefore, (i*, j*) € Ay, _, (ik, ji), which contradicts with A,,,_, (ix, jx) = 0 whenever k <n—1. O

We now give the proof of Theorem 3.3.3 by showing that for any good decomposition 7 of
T, there exists a good decomposition 7., of T' such that 1., << n and A, _(i,7) = 0 for all
1<i<M,1<j<N.

PROOF OF THEOREM 3.3.3. Let {n,} be the sequence of good decomposition of T constructed

in the proof of Lemma 3.3.8. Observe that by the construction of the sequence {n,}, it follows that

for any k € N,

(3.3.14) Ml 4, = Mlre, o

for all n > k. Define 7 : I' = R by setting

(3.3.15) Noo =11 on 'y, 4 Vk €N
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We first show that {n,} converges to 7. with respect to the total variation distance || - ||.

Indeed, by (3.3.14),

e = sl = 1O =) s,y 1= 10D (0 =), |

k>1 k>n+1
< Z nn(rwik7yjk) + Z Tk (inkayjk)
k>n+1 k>n+1
< Z nn(r$ik7yjk) + Z Tk (ink 7yjk)
I +Jk>tn+in E>n+1
N M
< Z Z nn<r$ik’yjk) + Z Z nn<r$ik’yjk) - Z nk(rxik 7yjk)
ik >V/injn Jk=1 Ik injn k=1 kzntl
= 2 mit D mit ) mlCay,),
12V inIn szm k>n+1

and

n—o0

o0 n n
Moo (D) = D (T ) = lim D> (T, ) = M Y 0a(Tay, ) < lim 1 (I) = (L) < co.
k=1 k=1 k=1

Thus, since lim,, o injn, = 00 and Ef\il m), = Zjvzl mj < 00, it follows that lim, oo ||77n —1se|| = 0.
Since 7, is a good decomposition for each n, it follows that its limit 7 is also a good decomposition
of T.

) > 0 for some k, then n(T

Moreover, if 7o (T ) > 0 by (3.3.15). Thus, by Lemma

Tig Yjp Tig Yjp

3.3.8 and transitivity of “<<”, we have n, << n, which implies

n(rzik,yjk) > 0and Siy j, (M) = Siy i (M) = S5 (M)

Therefore, . << 7.
We now show that A,,__(ix, ji) = 0 for each k. Assume that for some k, A, (i, ji) contains

an element (iy,j,). Then the definition of A,__(ix, ji) implies n > k and

C[(’Lk,jk), (invjn)vnOO} =0 and 3[(ik7jk)a (imjn)77700] =L

By (3.3.14) and (3.3.15), since (in, jn) has the largest order among the elements

{(ilmjk)’ (ik"jn)’ (in’jk)’ (in,jn)}a
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it follows that 7o = 1, on I'y, ,, for each (i, j) of these four elements. Thus,

Cl(ir, Jr)s (ins Jn)s Mn] = 0 and s[(ix, jr); (in, Jn)s 1] = 1.

This shows (in, jn) € Ay, (i, jk), a contradiction with Ay, (ix, jx) = 0 due to Lemma 3.3.8. O

3.4. Decomposition of cycle-free transport paths

In this section, we will prove the decomposition theorem in Theorem 3.4.8 using the better
decomposition 7. achieved from Theorem 3.3.3.

We first recall a concept that was introduced in [18, Definition 4.6].

DEFINITION 3.4.1. Let T'= 7(M,0,¢) and S = (N, ¢, () be two real rectifiable k-currents. We
say S is on T if HF(N \ M) = 0, and ¢(x) < 6(x) for H* almost all z € N.

Note that when S = 7(N,¢,() is on T' = (M, 0,£), then {(x) = +((z) for HF almost all
x € N, since two rectifiable sets have the same tangent almost everywhere on their intersection.

Using it, we now introduce the concept of “cycle-free” currents as follows:

DEFINITION 3.4.2. Let T and S be two real rectifiable k-currents. S is called a cycle on T' if
Sison T and 0S = 0. Also, T is called cycle-free if except for the zero current, there is no other

cycle on T
The zero current is called the trivial cycle on 7.

REMARK 3.4.3. The concept of “cycle-free” is different from “acyclic”’. A cycle-free current
is automatically acyclic, but not vice versa. For instance, let T be a transport path (which is a

1-current) from p~ = 0,y + 0y, to ut =y, + &y, as shown below.

X Y2
: 1
1

X1 un
T
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Then T is acyclic but not cycle-free.
As an example, we first show that each optimal transport path is cycle-free. To do so, we start

with an analogous result to [18, Theorem 4.7] as follows.

PROPOSITION 3.4.4. Let T € Path(u~,u™) with My (T) < oo for some 0 < a < 1. Suppose
there exists a rectifiable 1-current S such that S is on T and 0S = 0, then for any e € [—1,1],
T + ¢S € Path(p,u™) and

min {My (T + S), Ma(T — 8)} < Ma(T)

with the equality holds only when S = 0.

ProOF. The statements clearly hold if S = 0. Thus, in the following, we may assume that S is
non-zero. Since T' € Path(u~,u™) and S = 0, it holds that (T +eS) = T +€edS = 0T = p*—pu~.
That is, T + €S € Path(u=, u™).

Let T = 7(M,0,§) and S = 7(N,¢,(). Since S is on T, we have H'(N \ M) = 0, and
é(x) < 0(x) for H' almost all z € N. One may assume that N = M by extending ¢(x) = 0 and
((xz) =¢&(x) forx € M\ N.

For € € [—1, 1], we now consider the function

9(€) = Mo (T + ) = / (0(x) + ed()(E(x), C(2))* dH (x).

M

Here, the value of the inner product is (£(x),((z)) = +1 for H! —a.e. x € M. Since M, (T) =

[iy 0%dH < 0o and ¢(z) < O(z) for H' almost all z € M, we have for any € € (—1,1),

gle)=a /M (0(x) + ed(2){E(x), ((2)))* " d(@) (€ (), ¢ () dH (x)

and

g"(€) = afa - 1)/ (0(x) + ed(2)(€(), ¢(2)))** $l)*dH* (z) < 0,

M

because 0 < o < 1 and S is non-zero. This shows that g(e) is a strictly concave function on

(=1,1). By the lower semi-continuity of M, g(e) is lower semi-continuous at ¢ = +1. Thus,

min{g(—1),¢(1)} < g(0). That is, min{My(T + S), Ma(T — 5)} < My(T") whenever S is on T,

nonzero and 95 = 0. 0
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COROLLARY 3.4.5. Suppose T is an a-optimal transport path from p~ to p™ for 0 < o < 1.

Then T is cycle-free.

PROOF. Since T is a-optimal, it is acyclic and hence it has a good decomposition. Suppose S
is on T and S = 0. Assume S is non-zero, then min{M, (T + S), My (T — S)} < M(T), which

contradicts with the M, optimality of T'. Therefore, S must be zero. Hence, T is cycle-free. g

To characterize cycle-free transport paths, we consider their better decomposition.

PROPOSITION 3.4.6. Each cycle-free transport path T € Path(u~,ut) has at least a better

decomposition.

PROOF. By definition, each cycle-free transport path is acyclic and hence has a good decom-

position. By Theorem 3.3.3, it has a better decomposition. ]

PROPOSITION 3.4.7. Let T € Path(u™,u™) be a cycle-free transport path, and let n be a better

decomposition of T'. For each y; € {y1,y2,...,yn}, denote

(3.4.1) Xj(n) =A{z; € X : n(L's, ;) > 0}.
Then for each pair 1 < j1 < jo < N,

(3.4.2) [ X, () N X, ()] < 1,

i.e., the intersection Xj (n) N X,,(n) is either empty or a single point.

PRrROOF. Assume | X}, (1) N Xj,(n)| > 1. Then there exist two distinct points z;,, z;, € X, (1) N
Xj (T]) with 41 < i5. Thus,

(3.4.3) n(FwiPyh) > 0, 77(11%17912) >0, 7](1}1.2%1) >0, and n(FzQ,yjz) > 0.

By (3.3.7), this implies that C|[(i1, j1), (i2,72),n] defined in (3.3.6) is a cycle. Since 7 is a better

decomposition of T', by (3.4.3), it follows that C|(i1, 1), (42, j2), 7] is non-vanishing. Pick

I .
0<e < 1 mm{n(rril,yjl )s U(Fmil,yh)v 77(Fx¢2,yjl ) 77(1—‘382,yj2)}>

and observe that

S =¢o- C[(i1, 1), (i2, J2), M
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is a non-vanishing cycle on T'. Indeed, assume T = 7(M,0,{) and S = 7(N, ¢,(), then N C M

and for H'-a.e. x,

nlr., . nlr., . nlre, . nlr.,. .,
¢($) S 60 21771 11772 _|_ 1277971 + 127772 ({,7 6 F s 6 Im(,y)})
W(le Wi ) 77(in1 Wia ) U(F% Wi ) n(rﬂ% Yjo )
1 1 1 1
< @ <n( + + + >?7({76F:x61m(7)})

F.Til Yiq1 ) n(szl "Yio ) U(Fzzg "Yiq1 ) U(F$12 sYijo )
< n({yel:zclm(y)}) =6(z),

by equation (3.2.5). This shows that S is a non-vanishing cycle on 7. A contradiction with 7" is

cycle-free. O

THEOREM 3.4.8. Let T be a cycle-free transport path from p~ to u™, where u= and p* are

given in (3.2.10). Then there exists a decomposition

(3.4.4) T=> T,
j=0
such that
(a) The set {x1,x2, -+ ,xpr} can be expressed as the disjoint union of its subsets {Bj}j-vzo with

the cardinality |Bo| < (g),

b) For each j =1,2,--- ,N, T; is a single-target transport path from
J
— e t + _ 5 5
By =g 1B 0 p; = 1y,

for some 0 < = p~(Bj) < mj. Each T} is a subcurrent of T

(¢) Ty is a transport path from

N
Ho =17 L to g =Y (mj — 1)y,
j=1
Ty is also a subcurrent of T.
Note that, by Theorem 3.4.8 , it follows that
N N
(3.4.5) uoo= Z,u]_ and p = Z,uj

§=0 j=0
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PROOF. Let 1 be a better decomposition of 7', and X;(n) be the set as defined in (3.4.1).

Denote

(3.4.6) By:=  |J (XN X;,m)
1<j1<j2 <N

and for each 1 < j < N, denote

Bj:= X;(n) \ Bo.

Then {B; } ", are pairwise disjoint. Moreover, by (3.4.2), |By| < (];[ ).
Define

To_zz/ 1, dn,

j=1z;€Bp Loy, Vi

=X

z;€B; Ly, Vs

Then each Tj is a subcurrent of T for 0 < j < N and

and for each 1 < j < N, denote

N M N
T:ZZ/ Lydp=Y_ Z/ Idn+2/
j=1i=1 /Teiy; j=1 \w;€B; ’ =iy; @ €Bo " i)
N N
= > / IvdnthZ/ L dn
j=1z;eB; ' Twiy; j=1z;€Bo ¥ Tzi:y;
N N
= ZT] + 1y = ZT]
7j=1 7=0

For each 1 < j < N, Tj is a single-target transport path with

aTj = Z / (5yj _51'i)d77: Z U(in,yj> 5?4]‘ - Z n(rxiayj)(;xi'

IiEBj Z5,Y5 xiGB]’ IiEBj

Note that when z; € Bj, since {Bj}’s are pairwise disjoint, it follows that n(I's,,,) = 0 for all
k # j. So,

N
Z n(l zz,y] = Z < U(Fmi,yk)> Op; = Z p({@i})ou, = = LBj::u/j_7

z;€B; r;€B; \k= r;€B;
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and

As a result, 0T = uj‘ — K-

Z U(Fa:i,yj) 61/1' = M_(Bj)éyj = 'u;r'
:Diij

Moreover, we have the result,

(3.4.7)

In this section, we will decompose a cycle-free transport path into the sum of two transport
paths, the first one is induced by a compatible transport map, while the second one is induced by a

compatible transport plan. We first recall the concept of compatibility introduced in [11, Definition

aTh

x;€Bg " T %irYj
N
Z U(Fa:i,yj) 5yj - Z ZU(in,yj) Oz,
miGBo IiGBO j:1
Z N(Taiy;) | Oy — Z p~ ({wi})
z;€BoNX;(n) z;€Bo
Z n(Fxmyj) - Z U(Fwi,yj) 5yj — K LBO
zi €X;(n) zi€B;
M
Zn(rxivyj) - Z n(FIiﬂ/j) 53/]' — K LBO
=1 z;€B;
(mj — 1= (B))) 0y, — 1~ Ly

3.5. Transport paths induced transport maps and transport plans

7.1], and rewrite it in terms of our current contexts.

Suppose g~ and pt are two atomic measures of equal finite mass as given in (3.2.10). Let

Patho(pu~, u™) denote the family of all cycle-free transport paths from pu~ to u™.

REMARK 3.5.1. In [11, Definition 7.1], we used Pathg(u~,p") to denote the family of all

“acyclic” transport paths from p~ to p*. In [11], a transport path G is called “acyclic” if it
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satisfies the following condition: for any polyhedral 1-chain G with the support of G contained in
the support of G, if G = 0 then G = 0. In the current context, G is an “acyclic” transport path
simply means that it is cycle-free. To avoid confusion between the term “acyclic” used in [11] and
the acyclic concept defined using subcurrents in [6], we opt for the term “cycle-free” to name the

term “acyclic” used in [11].

Observe that for any G € Patho(p~,u") and for each x; and y;, there exists at most one
directed polyhedral curve g;; from x; to y;, supported on the support of G. Thus, we associate
each G € Patho(p~,u™) with a M x N polyhedral 1-chain valued matrix g = |:Igiji|’ such that

Iy, = 0 when g;; does not exist.

DEFINITION 3.5.2. ( [11, Definition 7.1]) Let G € Patho(u~,u") and ¢ € Plan(u~, p*) with
associated matrices [Igi]} and [qm} respectively. The pair (G, q) is called compatible if ¢;; = 0
whenever I, =0 and

M N M N
(3.5.1) G= " iy, and g =D 4ii0(u. 4

i=1 j=1 i=1 j=1

as polyhedral 1-chains.

EXAMPLE 9. For instance, let
_ 1 3 5 3
wo = Z(srl + Zdww ,u+ = §5y1 + §5y27

and consider the following transport plan,

1

1 1 1 _
1= gé(mhyl) T g(s(wl,yz) T 56(12»1/1) + 15(1"27?;2) € Plan(p~, p").

Let Gy and G2 be two transport paths as illustrated in the following figure.

T T2 1 L2

U1 Y2 y1 Y2
G1 GQ
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Then (G1,q) is compatible but (Ga,q) is not, since q1a = % # 0 and there is no directed curve gio

from x1 to ys on the support of Gs.

Now, we generalize the compatibility of atomic measures 1, u™ stated above to those of general

measures.

DEFINITION 3.5.3. Let p and v be two Radon measures on X of equal total mass. Given
T € Path(p,v), and m € Plan(u,v), we say the pair (T, m) is compatible if there exists a finite

Borel measure 77 on I' such that

= /F Lydn, and m = /F O(po(7):poe (1) 41-

Moreover, given T' € Path(u,v) and ¢ € Map(u,v), we say the pair (T, ¢) is compatible if (T, 7,)

is compatible, where m, = (id X )4 pu.
The following Proposition says that Definition 3.5.3 is a generalization of Definition 3.5.2.

PROPOSITION 3.5.4. Let = and p* be two atomic measures of equal mass as given in (3.2.10).
Let G € Patho(pu~,u™) and q € Plan(pu=,u™). Then (G,q) is compatible in the sense of Definition
3.5.2 if and only if (G,q) is compatible in the sense of Definition 3.5.3.

PROOF. Suppose (G, q) is compatible in the sense of Definition 3.5.2. By setting

M N
n= quij(sgij

i=1 j=1

over all {1 <7< M,1<j <N} with g exists, equation (3.5.1) gives that

G = /F Lydn and ¢ = /F 0o (7),po0 (1) 1-

Therefore, (G, q) is also compatible in the sense of Definition 3.5.3.
On the other hand, suppose (G,q) is compatible in the sense of Definition 3.5.3, then there

exists a Borel measure 1 on I' such that

G = /F Lydn and q = /F Opo (1) poc () 1-
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Since ¢ € Plan(a,b), we may write

M N
0= 0y,
i=1 j=1

for some ¢;; > 0. Denote
Jq ;:{(i’j) 1<i <M 1<j<N, Withqij >0}.

and

I:= U | S

(i,5)€Jq

Since

/ O(po () peo(r))dN + [5(po(7),poo(v))d77 = / S (po(7)pos (7)) AN
O\l r r

M N
= 0= Gl = D Gii0(iy):

i=1j=1 (i,5)€Jq

it follows that

O(po(7),pes (7))@ = 0 and /f‘s(po(v)moo(v))dn = D i)

T\L (if)Edq

Thus, n(I'\T) = 0 and

7= Z / 5(p0(’7)»poo(7))d77: Z Qij(s(m,yj)‘

(irj)€Jq " Toi; (i) €Jq

Hence foreach 1 <:1< M,1 <j <N,
N(Tey;) = @iy if (4,5) € Jq and n(Ty, ;) = 0 if not.

Now, for each (i, j) € Jy, since n(I'y, ;) = ¢i;j > 0 and

G:/Ivdn: > / ILdn,
r
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it follows that there exists a polyhedral 1-curve g;; supported on the support of G. Let

G = Z Gijlg,

(izj)e‘]q

aG-G=a| / Ldn— > aily, | = Y (1(Tary,) = aj) (8y, — 0z) =0,

(i) €dg " Toes (i,4)€Jq (i) €4

so that G — G is a cycle supported on the support of G. Since G € Patho(u~,pT), we have
G — G = 0. Therefore,

G = é = Z qijjgij'
(izj)e’]q

Note also that whenever I,,. = 0, it follows that (i, j) € J,, and thus ¢;; = 0. As a result, (G, q) is

compatible in the sense of Definition 3.5.2. O

PROPOSITION 3.5.5. Let u~ and p* be two atomic measures of equal mass as given in (3.2.10),
T € Path(u=,u") is a optimal transport paths, and let n be a good decomposition of T. Suppose
for any 1 < ji < jo < N, |Xj,(n) N Xj,(n)| = 0, then there exists a transport map ¢, such that

(T, p) is compatible.

PROOF. We first recall the definition of X(n),
Xj(n) = {‘TZ €X: U(in,yj) > O}

In this case, we may define

N
©: U X;(n) = {y1,y2,...,yn}, such that for x € X;(n), p(z) = y;.
j=1

Since for any 1 < ji < jo < N, [ X}, (n) N Xj,(n)| = 0, the function ¢ defined above is well-defined.
Direct calculation gives that for each j =1,2,..., N,

N

pur” ({y}) = w~ (X)) =D nTa,y;) = n* i},

i=1
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which implies ¢ up~ = p. Therefore, we have

M N N
(id x @)™ = D> 1Ta;y,)(id X ©) e, = 1(Ca;0;)0(@,9,)
i=1 j=1 J=1z;€X;(n)
N N M
= Z Z / O (po(7) pos (v ZZ/ O(po(y),pec (7)) 105
=L weX;(n) " ey j=1i=1 7 Ti;
which implies (7, ) is compatible. O

By Theorem 3.4.8, we now have the following theorem:

THEOREM 3.5.6. Let T € Path(u~,u") be a cycle-free transport path, where p~ and p* are
given in (3.2.10). Then there exist

(a) decomposition

W=y A g, w =k 4 pd, with p (X)) = pi (X)), pg (X) = b (X)

where p; and p, have disjoint supports and |spt(u, )| < (g) with |A| denoting the cardi-
nality of the set A;

(b) T =Tx + T, for some Ty € Path (uy,pt) and T, € Path (uy,u}). Both Ty and T, are
subcurrents of T';

(¢) a transport map ¢ € Map (u;, M:Z) such that (T,, @) is compatible;

(d) a transport plan w € Plan (u, , put) such that (Ty, ) is compatible;

(e) For each x; with p; ({x;}) > 0, there are at least two yj,,y;,, such that

m({zi} x {yi}) > 0,7({zi} x {yj}) >0

PRrROOF. We continue with the same notations used in Theorem 3.4.8. Part (a),(b) follows from
(3.4.4) and (3.4.5) by setting

N

P =g fp = s =, ph = Zuj, =T, T, : —ZT

j=1

For part (c), we define

N
©= D YiXe,:
j=1
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where B;’s are subsets of {z1, 22, -,y } given in Theorem 3.4.8. Since p; = pu™ [ 5;, ,uj

and Bj’s are pairwise disjoint for j =1,2,..., N, we get

ﬁJr

N N N N
ou(up)=ou | D wi | =vs D s | =D nw (B) Z
j=1 j=1 j=1 Jj=1

Therefore, ¢ is a transport map from g to ,u;f.

We now show that (7, ¢) is compatible. Since

it is sufficient to show that

N
(3.5.2) mpi=(idx @) up” =Y > / O (po(7),poc (7)) A11-
j=1lz;,€B

€B; Lau;

Indeed, for any measurable rectangle Q x R in X x X,

To(Q@x R) = (idx@)up (Qx R)=p ({z:2€Q,p(x) € R})

N N
= > w{z:zeQ @) =yy € R => xrr ({z:2€Q o) =
=1 j=1

= ZXRy] {:L' xGQ,a}EB} ZXRZ/J QﬂB)

= mjéyj,

yi})

7v))dn

N
= ZXR yj) ((po)4m) (RN Bj) =Y xr(yj)n(py (Q N Bj))
j=1
N N
= ZXR?J] ({v €T, po(v) € QN B;}) ZXR?J] > /
z;€B; Ly, Vi
N N
=YX [ xelmnt) xrtwin=3 3 [ xamn() - xalp()dn
j=lz;€B; Ly, Yy j=1z;€B, Doy, Yy
N
— dp d
;xiz] /Fxl U],a:ler]eR Po(7) * Opoo (1)

N
=X T [ ey @ .

]:1 x;€ ] FIZ Yy

Therefore, (3.5.2) holds and hence (T, ) is compatible.
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For part (d), we define

N
= Z Z n (F:vi,yj) O(a,y5)-

x;€EBg j=1
As shown in (3.4.7),
N N
- :U’; = MSL - F‘a = Z Z W(in,yj) 6yj - Z Zn x“yj 65[31
Jj=1 \z;€Bo z;€By \ j=1

This shows that 7 is a transport plan from u; to uf. Note that since

:i::%/ Ly dn

Ti-Yj

and

N
T=> > 01 (Taiy;) Sy Z > / O(po(7),pec (7)) 4115

z,€Bp j=1 j=1lx;€Bo ”Cz Yj

we have (75, ) is compatible.
For part (e), by definition of u_, z; € By which is defined in Theorem 3.4.8. The result in (e)
then follows from the definition of By given in (3.4.6). O

3.6. Stair-shaped matrices and decomposition of stair-shaped transport paths

In Theorem 3.5.6, we decomposed a cycle-free transport path as the sum of a map-compatible
path and a plan-compatible path. In this section, we aim to decompose some transport paths as
the difference of two map-compatible paths. The family of transport paths that we are interested

in are stair-shaped transport paths. To do this, we start with the study of stair-shaped matrices.

3.6.1. Stair-shaped matrices.
Given M, N € NU{oo}, let Apr n denote the collection of all M x N matrices with non-negative

entries.

DEFINITION 3.6.1. A matrix A € Ay y is called stair-shaped if there exists two non-decreasing
sequences of natural numbers {ry, 7o, -+ ,ryrpn—1}and {c1,¢2, -+, cprpN—1} With rp+c, = k+1 for
each k =1,2,--- , M+ N —2, and entries of A that are not located in the positions {(ry,cx)}x M+N !

equal to zero.
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Note that when A € Ay n is stair-shaped, then (r1,¢1) = (1,1) and (rpy4n—1,cMm+N—1) =

(M, N).

DEFINITION 3.6.2. For each k =1,2,--- ,M + N — 1, a matrix A € Ay n is called k-stairable

if it is in the form of

ailr v Qle—1 aie 0 R 0
Qr-11 **° Gpr_lc—1 GQr—1c 0 T 0
Qr 1 e Ay c—1 GQrc Qrc+1 T Qr 5
A= ,
0 T 0 Qr4l,ec Gryle+l -0 Arglyj
0 . 0 ;¢ i c1 e a; j

where the leading (i.e., upper left corner) sub-matrix

ai1 te a1,c—1 ai,c
Qr—1,1 **° Oprp—lc—1 Gr—1c
ar.1 e Ay.c—1 Qr.c

is stair-shaped and k =7+ ¢ — 1.

In particular, each matrix A € Ap;n is at least 1-stairable, and each stair-shaped matrix
Ae Ay is (M + N — 1)-stairable.

For each 1 <i1 <ip < M and 1 < j; < jo < N, denote E[(i1,71), (i2,j2)] as the M x N matrix
with 1 at (i1,71) and (i2, jo) entries, with —1 at (i1, j2) and (i2, j1) entries, and 0 at all other entries.

Each E[(i1, 1), (i2, j2)] is called an elementary matrix.

DEFINITION 3.6.3. For any two matrices A, B € Ay N, we say A = B if there exists a list of
real numbers {t;}/ | and a list of elementary matrices {Ej} | such that B = A + Sty Ey for

some K € NU {oo}.
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THEOREM 3.6.4. For any matrix A € Ay, there exists a stair-shaped matriz B € Ayr,n such
that A = B.

PrROOF. Step 1: Let

ail a2 - Qi
a1 a2 - Q2j

A= ,
;1 Q2 o Qg

and

M N
Uy = E a;1 and V1 = E ayj.
=2 j=2

If u1 = 0, and since all entries in A are non-negative, then we get

ail aiz - ai

0 ag - ay
A= A=

0 aip - ag

If uy # 0, and uy > v1 then we do the following transformation and denote

A=A+ S FEE(L), (6 4)

i=2 j=2

This implies

[e’¢) oo Q41015 o o aqiai2 L oo 4410154
arr + 22 Zj:Q w412 dica u a1 — X2y w1
oo a2101; as1a12 . . a21014
a1 — Zj:2 u1 ag + uy azj + ul
A =
00 Gi101; ) a;1a12 o | apayy
a1 Zj:2 —ur a2 + = aij + =t
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ail + v 0 0

_u az1a12 4 aziaiy
( u1) a  Gge + azj + =

v aj1aio aj1a1;

(1 - ﬁ) ail a4 T aij + ="

If uy # 0, and u; < vy, we consider the following transformation:

A=A+ T B ), 0,

i=2 j=2
and
[e e} oo A41014 o0 441412 .
ai + Y 0y Zj:? o G127 >ico o a1y
00 G2101; a21a12
a1 — ZjZQ o1 as9 + T
A =
o0 a;1a14 a;1a
Al = D i aip + “HH2
U U
a1l + ug (1 — ﬁ) ai2 (1 - Ti) aij
as1a a210a14
0 a22 _I_ 211)112 a2] _I_ o J
a;la ai1a1j
0 ap+ S aij + =5
Hence, A = Ay where A; is of the form:
aip a2 ayj aip 0 - 0
0 a2 ag;j a1 a2 ag;j
or
0 ap aij a1 ajj
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and (r1,c1) = (1,1). Here and in the following steps, for simplicity of notations, we continue using
the same notation, a;;’s, to denote non-negative entries.
Step 2: Set A; = f(A), note that A7 = A is l-stairable. For each k € N, if Ay = A is

k-stairable, we construct a (k + 1)-stairable matrix Ag11 = A as follows. Given

ai; ot Alg-1 ai e, 0 o 0
akal,l e arkfl,ckfl arkfl,ck 0 e 0
Ari1 T Arpep—1 Qrycy, Ary,ep+1 T Qry,,j
A = )
0 T 0 Arp+ler  Orp+lep+l 0 Arptlyg
0 e 0 ai’ck ai7ck+1 e a’ij

where the upper left corner sub-matrix

aii e Q1,c;,—1 ai,cy,
S =
aT'k—l,l e a/Tk—l,Ck—l aTk—l,Ck
Qpp1 Tt Qry.cy, Ay ey,

is stair-shaped (which implies that ry +c¢; —1=k), S € A, ¢, and let

Qrey, QArp,ep+1 e Qry,j e kaCk bTIka+1 e brkvj
a’l"k-i-l,ck a/’l‘k-i-l,ck-‘rl Tt a'/‘k-i-l,j Tt brk-l—l,ck brk+1,ck+1 e b’/‘k-i-l,j
B pu— f p—
Qi e, Qi1 ai; - bi c,, bic+1 - bi;
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Then we define

ailr o Gle-1 ai,e, 0 e 0
a‘?"k—l,l e a/’l‘k—l,ck—l ark—l,ck O e 0
a’l”kl Tt arkck—l bT‘ka b?“k,ck-i-l Tt b’l”k,j
A1 =
0 T 0 britier Drptler1 oo kaJrLj
0 ce 0 bi,ck bi,c;ﬁ—l Ce bZ]

By definition of f, two sequences (7)72; and (c;)32, can be constructed as follows:

(1) If
st e by ] #f0 e 0 ],

then (rgy1,ckr1) = (g, e+ 1);

(2) If
bt e by ] =0 0]
and
hwuk”.m%.JT#b.”o mr,
then (rgy1,ckr1) = (rp + 1, cx);
(3) If
et e by ] =0 0]
and
[P WA Y M

then (7k41,ckr1) = (rg, e + 1).

This gives (ry)5, (ck)pe; are non-decreasing sequences with 7441 + cpp1 =rp+cp+1 =Kk + 2.
By doing so, we get a (k 4 1)-stairable matrix Agy; with A & Ap = Agy;. Note that in this

construction we have

(3.6.1) Ag11(i,5) = Ag(i,j), fori <rgor j < cg.
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Moreover,

o0
Apy1 = A+ Z b1 B
=1

for some t;,; € R, and E},;’s are elementary matrices. Set

oo [e.e]
Ao = A1+ ) ) ki By,

k=1 [l=1
then
Ao 2 A =2 A

Note that for eachi =1,...,M and j =1,..., N, by (3.6.1) and r; + ¢ — 1 = k, the sequence
Ag(i,j) is eventually constant when k is large enough. Thus, Ay (,7) = limg_ oo Ag(i,7) is well

defined, stair-shaped, with non-negative entries. [l

After knowing the existence of the stair-shaped matrix B using Theorem 3.6.4, one may use

the following algorithm to recursively find its entries.

ALGORITHM 3.6.5.
Input: A matrix A = [a;;] € AuN-
Output: A stair-shaped matrix B = [b;;] € Ay, v with B = A.

Algorithm: One may recursively calculate the entries of B as follows:

e Step 1: Start with ig = 1,jg =1, set

N M
R = Zalj and C' = Za“‘
j=1 i=1

If R < C, then b;y = R, by; = 0 for all j > 1. Otherwise, by; = C and b;; = 0 for all

> 1.

e Step 2: For each (ig, jo) with b;, j, unknown and b;; is known for all i < ip and j < jo, let

N M
R=> ain; = Y bigj, C=> aijo— > bijy.

§<jo i= i<io
If R<C, set

bio,jo = R, bio,j =0 for allj > jo.
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Otherwise, when R > C, set

big.jo = C, bij, = 0 for all i > iy.

Using Step 2 recursively, one can calculate all entries of the stair-shaped matrix B.

3.6.2. Stair-shaped good decomposition.

DEFINITION 3.6.6. Let n be a finite measure on I' with (po)xn = p~ and (peo)sn = u™.
The representing matrix of 7 is the matrix A = [a;;] € Ay, such that a;; = n(I'y, ;) for each
i,7. We say that n is stair-shaped if its representing matrix A is stair-shaped. A transport path
T € Path(p~,u") is called stair-shaped if there exists a good decomposition 7 of T such that 7 is

stair-shaped.

PROPOSITION 3.6.7. Any stair-shaped good decomposition n of T is a better decomposition of

PRrOOF. By Definition 3.3.1, suppose there exist 1 < i1 <io < M and 1 < j; < jo < N, with
Siv,1 (1) = Si1j2 () = Sig j1 (M) + Siz o (1) = 0,
then direct calculation from (3.3.7) gives either
N 51) = 1Ty jz) = 1(Tiy50) = 1Ty 5) = 0,

or
U(FilJl) > 0>77(Fi1,j2) > O?T’(FiQ,jl) > 0777(172,3'2) > 0.

The latter case cannot appear since 7 is stair-shaped and there is no way to align the indexes

(ilajl)a (ihjZ)v (iZajl)a (iQ,jZ)a

such that both two coordinates are non-decreasing sequences. As a result, 7 is a better decompo-

sition.
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A stair-shaped path is not necessarily cycle-free. For instance, the transport path 7" given in

Remark 3.4.3 is stair-shaped because 7 = d, + 0y is a stair-shaped good decomposition of

1,91 2,Y2

T. However, T' is not cycle-free.

ExXAMPLE 10. Let T be a transport path from
[ =90z, + 90z, + 905 + 2705, + 2764, to ut = 360y, + 95y, + 185y, + 98,, + 93y,

given as shown in the following figure.

x1 1
36
9
9 45 9% Yo
9 "N\UI8
x3‘9\A 63\ 81 A'S 18 ™ 3
54
Ty 18 Yaq
27, 9
27
x5 9N ys
T

For each (i,7), let vy, € T be the unique polyhedral curve from z; to y; on T, and a;; be the

(i,4)-entry of the matrix

w W
w

12 3
Then

5
= a;;0.
nA Z YRt PR

ij=1
is a good but not a better decomposition of T'. Using Algorithm 3.6.5, the corresponding stair-shaped

matriz of A is given by

-9 0 00 O-
90 000
B=19 00 0 0
99 900
009 99
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The corresponding measure

5
g =) bijby,,,,

ij=1

on I is a stair-shaped good decomposition of T', which is automatically a better decomposition of T .

The following theorem says that any stair-shaped transport path can be decomposed as the

sum of two subcurrents generated by two transport maps.

THEOREM 3.6.8. Let T € Path(u~, u") be a stair-shaped transport path, where p~ and u* are

given in (3.2.10). Then there exist decomposition
po=p Hpgpt =pf +pg, and T =T+ T,
such that

(a) for each i =1,2, T; is a subcurrent of T and T; € Path(u; ,u;),
(b) there exists transport maps ¢ € Map(uy, ) and p € Map(ug , uy ) such that both (Ty, @)

and (=T5,%) are compatible.

PROOF. Since T is stair-shaped, there exists a good decomposition n whose representing matrix
A = [a;j] is a stair-shaped matrix. We now write A as the sum of B = [b;;] and C' = [¢;;] as follows.

For each ¢ and j, if a;; = 0, set b;; = 0 and ¢;; = 0. When a;; > 0,

e if a;; is the last non-zero entry in the i-th row of A, (i.e., a;j = 0 for all j/ > j +1,) we
set bz’j = Qajj and Cij = 0;
e if a;; is not the last non-zero entry in the i-th row of A, since A is stair-shaped, a;; is the

last non-zero entry in the j-th column of A. In this case, we set b;; = 0 and ¢;; = a;;.

By doing so, we write A = B + C such that each row of B = [b;;] and each column of C' = [c¢;j]
contain at most one non-zero entry. Note that for each (i,7), a;; = bij + ¢;; and a;; > 0 means

either b;; > 0 or ¢;; > 0 but not both. Define

pr= Db | Se i =D (sz‘a) TR DI TS <Z%) Oy
j % J i

i j i j
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Then = = py + py and pt = pf + pg. Let

T1 = /
{r€ry

Both T7 and Ty are subcurrents of T', and

I,dn, and T :—/ L, dn.

bzg >0} {'—Yepa: * Cij >0}

Y5 Y5

3T1:/ (0y; = 0z)dn =) b D =ul -,
{,Yer‘mz y b” >0} .T Z 2] :L/] ll? 1 1

oI, = / ((5 xl d"? ZC”LJ ;i a:i = /L;— — Hg
{’YEFZZ v Cij>0}

which gives T; € Path(u; , p;) for i = 1,2. Then,

T:/Ivdn:/ I,de:/ Ivdn—i-/ I,dn =T +1T>.
r {7€ e, ;0 aij>0} {v€la;,y;: bi;>0} {v€lz, y;: ci;>0}

Denote

X1 ={zi € X :py ({2}) > 0}, Y1 ={y; € X : i ({;}) > 0},
Xy ={wi € X : py ({m:}) > 0}, Yo ={y; € Y : g ({y;}) > 0}

Observe that since A is stair-shaped, by the construction of b;;, for each 4, there exists at most one

J (i.e. the largest j with a;; > 0) such that b;; > 0. This leads to a map: ¢ : X1 — Y7 given by
o(x;) = y; if bj; > 0.

Similarly, for each j, there exists at most one i (i.e. the largest ¢ with a;; > 0) such that ¢;; > 0.

This leads to a map: 9 : Yo — X9 given by
Y(yj) =z if ¢;5 > 0.
By definition of ¢, for each y; € Y7,

pyiy ({yi}) = 1y (97 (y)) = iy ({i = bij > 0}) = Z:u'l ({z:}) = wa wf ({y;})-

lj>0

Therefore, pupu; = uf, and similarly, p, = w#uf. Also, direct calculation gives

ﬂ-CP = (Zd X SD)#/‘I’; = / 6(xi,yj) d777
{'yel“xi’yj: bij >0}
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and

7T¢ = (ld X ¢)#M§r = / 6(yj,-'l7i) d’l?.
{*yel“zbyj: Cij>0}

Hence, (11, ¢) and (—T%,1) are compatible. O

We now provide an example to illustrate Theorem 3.6.8.
EXAMPLE 11. Let T, p~, u™, A, B, na, ng be the same values as defined in Example 10. By

Theorem 3.6.8, we have

By By

I
[es} o Ne) NeJ Ne)
[an} ) ) [an} )
[an)} Ne) ) [an)} jan)
[an} @) ) [an} @)
Ne @) ) [es} @)
I
[an} Ne) ) [an} o
[an} Ne) ) [an} @)
Ne o ) [es} @)
Ne} o ) [en} )
[an} ) o [an} )

so that B = By + By. By matriz B1, we get a transport path Ty, with
1y = 90z, + 903, + 965, + 965, + 904, pi = 276y, + 96y, + 90y,
and ¢ : {71, 72, 73,74, 75} — {Y1,Y3, Y5}, such that

p(r1) = @(w2) = p(x3) = Y1, w(T4) = y3, P(T5) = Ys.

T Y1
b /
R —
9
3 g\g * Y3
Tye 9 / \
s
5

11

\‘-ys

By matriz By, we get a transport path Ts, with

po = 180z, + 180s;, pi3 = 90y, + 90y, + 93y, + 99y,
7



and w : {y17y27y37y4} — {.’B47$‘5}, such that
V(y1) = ¥(y2) = 24, ¥(y3) = ¢Y(ya) = x5
/991
9

/9-3/2

4,/»/\'-?/3

Tie— g / Ya
7

x5
b

Then, T is decomposed as the sum of Th and T5.

3.6.3. Cycle-free stair-shaped transport paths.

To use Theorem 3.6.8, for a given transport path, one may want to find a stair-shaped good
decomposition of it. However, the stair-shaped matrix generated by Algorithm 3.6.5 does not

necessarily correspond to a good decomposition, even if we start with a good decomposition, as

demonstrated by the following example.

EXAMPLE 12. Let T' be the graph given in the following figure, and ~y; ; be the curve onT" from

x; to y; for each i,j.

Z2 I

Then,
n= 6’71,1 + 6’71,2 + 5’72,1

s a good decomposition of T with the representing matrix

A = [ai] =
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Algorithm 3.6.5 gives the stair-shaped matriz

B = [bij] =
0 1

However, the corresponding measure,

nB = 2(571,1 =+ 572,2

is not a good decomposition of T anymore.
To overcome this issue, we introduce the following concepts:

DEFINITION 3.6.9. Given A € Ay, an elementary matrix E[(i1, j1), (i2, j2)] is called ad-
missible to A if a;; > 0 for all (i,5) € {(i1,41), (i2,72), (i1,52), (i2,71)}. For any two matrices
A,B € Ay v, we say A £ B if there exists a list of real numbers {tk}ff:l and a list of elementary

matrices { £} | admissible to A such that B = A + S txEy for some K € NU {oc}.

LEMMA 3.6.10. Suppose A is the representing matrix of a finite measure na on I' satisfying
(po)gna = p~ and (poo)yna = u*. For any matriz B = [b;;] with A £ B, define
(3.6.2) npi= Y %UA r
- ' oay T
with7aij>0
Then np is a finite measure on I' with (po)gnp = p~ and (peo)pnp = pt. Moreover, B is the

representing matriz of ng and np << NA.

PRrROOF. The condition A £ B gives

B:A+ZtkEka
k

for some real numbers ¢, and elementary matrices Ey = E[(ix, ji), (1}, j;.)] that are admissible to
A.
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Note that

b by
() = > Fgale,, M= > Enaley) = D, b
J

. azg . a; .
[2¥) [2¥) [2¥}
with a;;>0 with a;;>0 with a;;>0
= E (aij + tk(Ek;)ij) = E Q5 = T)A(F) < Q.
i3 ()
with Qij >0 with Qij >0
Moreover,
(o)ynn = ) s (Cay ), = bijd
bo)#nB = a“nA zi,y; )% = ij Oy
irj " i
with a;;>0 with a;;>0

= Z Z (aij+ztk(Ek)ij> Oz,

i 7 k
with a;j >0

- Z Z aj [ Oz = Z aij0z; = (Po)#na = 1~ -

( J i,J
with a;;>0 with a;;>0

Similarly, (peo)ns = p*.

We now show that B is the representing matrix of np, i.e., T]B(in,,yj,) = byrj» for each pair
(¢',7"). If ayy = 0, then UB(Fmi/,yj/) = 0 since the sum is over all a;; > 0. Also, since E}’s are
admissible to A, this gives (E})y;» = 0 for all k, so that byj =0 = UB(in/,yj:)- If ayj > 0, then
since (Tay ) = auy,

mCap) = Y Pnalr, (Top,) = b
wit}fgij>0 ’
Therefore, B is the representing matrix of np.

In the end, we show np << na by using Lemma 3.3.4. Suppose ”B(inuyj/) = by > 0, then

previous argument gives a; 5 > 0. Also, by definition of 73,

b 1 1 1
/ I,dnp = J / I,dny, and hence / I,dnp = / I,dna.
T ai’j’ r bi’j’ T ai/j/ T

zi/’yj/ zi/’yj/ Ii/,yj/ mi/,yj/

As a result, Sy (np) = Sirjr(na) as desired. O
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PROPOSITION 3.6.11. Let T be a cycle-free transport path from p~ to u™. Suppose na is a good
decomposition of T, then for any matriz B = [b;j] with A £ B, np given in (3.6.2) is also a good
decomposition of T .

PRrROOF. Let A = [a;j] € Ay, B = [bij] € Ay, then A £ B gives

B:A+ZtkEka
k

for some real numbers ¢ and elementary matrices Ey = E[(ix, ji), (1}, j;.)] that are admissible to

A. Using S; j(n) defined in (3.3.1), we have

fimdons =) = [ 2mlr, = Slr,

Qij

,J
=y i / Ldna
o 5Y;
- Z(bzg - azg i, 77.4 Ztkz Ek: Z] 7](7714)
.J 4,J

= Ztk ( irgn (14) — Sik,j,;(UA) - Sz‘;c,jk(ﬁA) + Sz;c,g,’c(UA)) :
Since E}’s are admissible to A, then a;; > 0 for (4,7) € {(ik, jr))s (ik, 4%))s (&%, Jk)), (iks Jr)) }. Since

Sirir(Ma) = Siy jr (na) = S j, (na) + Sy s (na)

is on T" and a;; > 0, direct calculation gives

9 (Sz‘k,jk (ma) = Sy, g1 (na) — Sir_j, (na) + Sy jv (WA)) =0.

By Definition 3.4.2, T' is a cycle-free transport path implies

i (na) = Siy jr (Ma) = Sir 4. (na) + Sy _jr (na) = 0.

/IydUB :/LydnA.
r r

By using an analogous argument as in the proof of Step 1 in Lemma 3.3.7, it follows that np is

Hence,

also a good decomposition of T O
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Given a matrix A with non-negative entries, Theorem 3.6.4 gives a stair-shaped matrix B, such
that A = B, which by definition says B = A + ), t,E}, for some elementary matrices Ej. In
general, A = B does not imply A £ B, since it is possible that some E}’s are not admissible to A.
However, when each entries of A is positive (as illustrated in Example 10), A = B implies A = B.
In general, when A satisfies certain conditions as stated in the following corollary, we have both
A= B and A2 B, so that the np in (3.6.2) is a stair-shaped good decomposition.

Suppose A = [a;;], let A[(io, jo), (i, J)] be the “sub-matrix” of A with entries a;;’s such that

io <i<ig, jo <j<Jjh

COROLLARY 3.6.12. Let T be a cycle-free transport path from p~ to ut. Let A = [a;j] be

the representing matriz of a good decomposition na of T. If there exist a list of sub-matrices
Ay = Al(ix, i), (3, J1.)] of A such that

(a) (ibjl) = (17 1) and Z;g S ikJrl S l;g + 17 jllg S ijrl S .7]/@ + 1 fOT’ each k}

(b) all elements of the sub-matriz Ay, are positive for each k,

(c) all elements of A not in any of the sub-matrices are 0,

then there exists a stair-shaped good decomposition np of T with np << na. Hence, T 1is stair-

shaped.

PROOF. We construct the desired stair-shaped matrix by using induction. We first apply

Theorem 3.6.4 to the sub-matrix
Al = A[(ilvjl)a (le’ji)]
and get a stair-shaped A}. Then replace entries in A with entries in A} in their corresponding

original positions in A, and denote this new matrix as B;. Inductively, for each & > 1, apply

Theorem 3.6.4 to the sub-matrix

Bk[(ik+1ajk+l)7 (i§c+17jllc+1)]

of By and get a stair-shaped Aj_ ;. Then replace entries in By with entries in Aj_, in their
corresponding original positions in By, and denote this matrix as Bjy1. Note that for each k, by

condition (a), the sub-matrix By|[(i1, j1), (), j;.)] is stair-shaped and

(363) BK[(ilv.h)v (Z;ca.];g)] - Bk[(il?.jl)a (227]1{9)]? for each K > k + 2.
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As a result, for each (i, 7), the limit limg_,o, B (4, ) exists and equals the value of By(i,j) when k
is large enough.

Let B be the limit matrix of {By} whose (i, j)-entry B(i,j) = limg_ o Bi(¢,7) for each (i, 7).
By (3.6.3), Bl(i1, 1), (i}, J1.)] = Bi[(i1,41), (¢}, 53)] for each k. Since By[(i1,j1), (i}, j;,)] is stair-
shaped, B is also stair-shaped. Since B is a stair-shaped matrix, its corresponding measure np as
defined in (3.6.2) is stair-shaped. By (b) and definition of admissible matrices, we have A £ B.

Therefore, Proposition 3.6.11 gives np is a good decomposition with ng << na4. O

In the end, we provide a typical matrix of finite size satisfying conditions (a), (b), (¢) in Corollary
3.6.12, and see how to decompose the corresponding cycle-free stair-shaped transport path into the

difference of two map-compatible paths.

ExaMPLE 13. Let
o =40z, + 1105, + 1464, + 1105, + 1705, + 1065, + 304, + 6925 + 202 + 021y + 50z,

=46y, + 38y, + 146, + 118y, + 120, + T8y, + 0y, + 98,5 + 3045 + 36,10 + 116,

and T be a cycle-free transport path from p~ to p* illustrated by the following diagram:

X7
€1 T5 3
4\ 17
79 11
10
27
x3
11 -
Ye
X
4 yQW 16
AT
(a1 e yr

Transport Path T
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5

Then, A = [a;j] is the corresponding matriz of a good decomposition na of T', namely

= E a;i0 .
na - LRt R
7]

Here, A satisfies conditions (a), (b), (¢) in Corollary 3.6.12 with

By Corollary 3.6.12,

1 2 3
1 3 6 7
, Ao=1|6 7 1|, As= , Ay =
3 4 1 2
5 2 4
8 0 0
, o476 0f
, Ay =16 8 0|, A3 = , Ay =
0019
0 3 8

nB = Z bijdfyiivyj
'7j

84

, and As =

, and Ar =




is a stair-shaped good decomposition of T with ng << na, where the matrix

™

=2

S
) ) [en} ) ) [en} ) ) [en} ) e~
) ) [an)} o ) [an) ja) ) [an} w )
@) ) [an} @) @) [an} @) @) (=} (0¢) )
@) ) [es} @) ) [es} @) w oo @) )
) ) [en} ) =) [en} e~ Qo [en} @) )
(@) @) [an} o @)
o ) [en} @) w [en} @) ) [en} @) )
o ) [an} w ) [an)} o ) [an) o )
[\] w @) [an} @) @) [an} o @)

o o o o o o N o o o o
o o o o O =
o O o o o o o o o o o

1s stair-shaped.
Now, by the proof of Theorem 3.6.8, one may decompose the stair-shaped matrix B into B =
By + By where

-40000000000_ _00000000000_
008 00O0O0OOO0OTOO 03 0000O0O0O0O0O0
0008 00O0OO0OO0OTO0OPO 006 000O0O0O0O0O
00008 0O0O0OO0OGO0OO 0003 00O0O0O0O0OQO
000O0OO0OOGOOOO 000047 000O00O00O0
Bi=10000000900O0]|adB=|0000001S0000
000O0O0OO0OO0OO0OS3°O0¢O0 00 0O0O0OO0OO0OO0OOT OO
000O0OO0OOOOTO0OTO0 3 000 0O0O0O0OO0OTO0OZ 3P0
000O0O0O0OO0OO0OO0OO0 2 000 0O0OO0O0OO0OTO0OTO0O@
00 0O0O0OO0OOGO0OO0OTO 071 00 0O0O0OO0OO0OOOTO OO
_00000000005_ _00000000000_
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From matrix By and the transport path T', we may construct the corresponding transport path

Ty € Path(uy, pi) illustrated below, where
py =46y, + 864, + 804, + 854, + 60,5 + 90 + 300, + 3ug + 2009 + 0y + 502115

and

pi =46y, + 83y, + 83y, + 88y, + 66y, + 95y, + 30y, + 113y, .

X7

T \ Is5 3
g 4 /6
T2 e— 7 -

Transport Path T}

Note that from the non-zero entries of By, there exists a transport map

@1 {21, w2, T3, T4, T5, T, T7, T8, T9, T10, T11} — (Y1, Y3 Y4, U5, Y7- Y85 Y95 Y11}
where

o1(z1) = y1, e1(z2) = y3, Y1(x3) = ya, w1(24) = Y5, V1(w5) = Y7, P1(T6) = Ys,

o1(z7) = Yo, p1(xs) = y11, w1(w9) = y11, Y1(x10) = Y11, Y1(211) = Y11

Here, prpp; = py, and (Th, 1) is compatible.
Similarly, using matrix By and transport path T, we may construct the corresponding transport

path Ty € Path(u;,,u;) as illustrated below, where

[y = 304y + 604, + 365, + 1100, + Oug + 304,
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and

p3 = 30y, + 60y, + 30y, + 40y; + Toys + dyr + 30y,

Ya
6 /VQ Y10
3 / Y3
T4
y2eg "
1%

yr
Transport Path Th

Again, using the non-zero entries of Bo, there exists a transport map
©2 : {Y2, Y3, Y4, Y5, Y6, Y7, Y10} — {22, T3, T4, T5, T6, Ts },
with
P2(y2) = 2, P2(ys) = a3, P2(ya) = T4, P2(y5) = 5, P2(Ys) = 5, P2(y7) = 6, P2(Yy10) = Ts,

Here, p5 = cpg#,uf, and (=14, p2) is compatible.
As a result, we decompose the cycle-free stair-shaped transport path T = Th —T5 as the difference

of two map-compatible paths T and T5.
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CHAPTER 4

Transport paths under capacity constraints

4.1. Introduction & Motivation

As illustrated in Section 2.2 and Section 3.2, transport paths between atomic measures in
ramified transport system can be viewed as weighted directed graphs, as defined in Definition
2.2.1. In general, transport paths between two Radon measures can be viewed as rectifiable 1-
currents, such that the value of density function equals the mass being transported at each position.
Regardless of whether in atomic case or general case, the amount of mass that can be transported
via any admissible transport paths has no restrictions. Hence, the phenomenon of first aggregating
the total mass from the source into one place then transport through a single curve is permitted
and prevalent in ramified transport paths.

As oppose to the theoretical permitted aggregation of total mass, this type of branching struc-
ture of a transport system rarely appears in real life. Transportation in reality often takes place
through various kinds of medium, and most of the medium has transport capacity instantiated
either as the total cumulative amount of mass transported before this medium breaks down (i.e.
the life span of a product) or the maximum amount of mass this particular medium can carry all
at once. In the later case, this property is often named as capacity of a medium or a particular
transport path. For instance, buses, airplanes have limited seats, roads only allow a limited amount
of traffic, i.e. 4 lanes, 6 lanes, etc. This brings naturally the question of ramified transport paths
with capacity constraints, which can be crudely described by imposing an upper bound (called
the capacity) on the weight function of a weighted directed graph or on the density function of a
rectifiable 1-current. This motivates us to consider the following ramified transport problem:

Proposed problem: Given two atomic measures a, b on X with equal mass, ||al| = ||b||, and
¢ > 0. Minimize M, (G) among all G € Path(a,b) with w(e) < ¢, for all e € E(G).

From the description of this problem, if we assume ||a|| = ||b|| < ¢, this is equivalent to imposing

no restriction on transport capacity.
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x1 T2

1 1
2 2
x4
1
T3
(a) Y-shaped (b) Mixture of Y-shaped and V-shaped

FI1GURE 4.1. Y-shaped & Mixture of Y-shaped and V-shaped.

Note that after imposing the capacity constraint, a previously well defined transport path
G € Path(a,b), which has no capacity constraints, is not necessarily an admissible transport path

anymore. This can be demonstrated in the following examples.

EXAMPLE 14. Suppose we want to transport mass from a to b, with an upper bound ¢ imposed
on weight functions, where
1 1 2

a = 55:51 + 5612, b = 5$3, CcC = §

In this case, “Y-shaped” transport paths no longer satisfies the restriction on weight functions, since
after merging at x4 the mass will reach 1. Changing to another kind of branching structure which
18 a mixture of “V-shaped” and “Y-shaped” will resolve this issue. One of the possible cases is
merging % from x1 and % from xa, and let the remaining % from xo transport directly through the

dash line.

Moreover, due to the “merging” effect, which will happen when considering a sequence of
transport paths with decreasing transport cost, the Proposed problem may fail to have an
admissible optimal solution. We may notice this “non-compactness” property of transport paths

that are admissible in the Proposed problem from the following example.

EXAMPLE 15. Let a = 0, and b = 6, which are atomic measures with total mass 1 distributed
on R2. Suppose the transport capacity equals 1/n with n € ZF, then any admissible transport paths
from a to b in the Proposed problem need n curves connecting x to y, where each curve has

weight 1/n.
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) Y )

<

FI1GURE 4.2. The above pictures give an illustration of “convergence” when n = 5.

Since x, y € R?, the curve that has minimum distance and connects these two points is a straight
line segment. Thus, when minimizing the M, cost of the above transport path, we have each of the
n curves converges to the straight line segment connecting r and y, as illustrated from the above
pictures. Hence, by taking the limit over these curves, we get a transport path that reaches the
minimum My, cost. However, the transport path that we get after taking the limit does not satisfy
the transport capacity restriction. Accumulating all the curves that have weight 1/n to one curve
(i.e. the line segment connecting x and y) will make the weight on this curve equals 1, which
is larger than the assumed transport capacity, 1/n. Hence, the limit of a sequence of admissible

transport paths in the Proposed problem is not necessarily an admissible transport path anymore.

4.2. Transport paths with capacity

When directly imposing upper bounds on the weight functions of transport paths or on the
density functions of rectifiable 1-currents, aggregation of weights on some common curves may
result in non-admissible transport paths. To overcome the “non-existence” of limit of a sequence
of transport paths, we instead express transport paths into multiple components, such that each
component represents a ramified transport paths with its total mass does not exceed the assumed
capacity. This directs us to the following new expression of ramified transportation with capacity

constraints.

PrROBLEM 1 (Ramified transportation with capacity). Let u=, u* be two Radon measures
on X C R™ with equal mass = (X) = u™(X) < oo, supported on compact sets, a € (0,1), and
c > 0. Minimize

My (T) =" My(Ty)
k=1
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among T = (Th,Ts, ..., Tn,...) satisfying

[ee] o0
(4.2.1) Ty € Path(up, i), S pp = 1=, S it = ptsand 0 < |l | = |l < .
k=1 k=1

For simplicity of notations, denote Path.(u~, ") as the set of all transport paths T satisfy-
ing conditions in (4.2.1). When T}, = 0 for £ > N + 1 (vanishing rectifiable 1-current), denote
(Th,Ts, ..., Tn,...) as (T1,Tn,...,Tx) for simplicity. Note that each T} is a rectifiable 1-current,
Ty, = 7(My, Ok, &), with 0T), = ,u,:—u,;, and its M, cost is defined as M (T}) := M(z (Mg, 07, &)

Also, note that for any T € Pathe(pu=,pt),

o0
Z Ty, € Path(u~,u™)
i=1

provided that the series is convergent in the following sense:

DEFINITION 4.2.1. Let {T;}°, be any sequence of rectifiable 1-currents. We say the series
> o2 T; converges if the sequence {3 7 | T;}7°; of partial sums converges as currents. i.e. for any

differential 1-form w € D'(R™), the series Y oo, T;(w) of real numbers converges.

LEMMA 4.2.2. For any convergent series .-, T; of rectifiable 1-currents, if & <1 then

" (Z T) <Y Ma(Ty)
i=1 i=1
PROOF. Suppose T}, = 7(My, Oy, &), and let w € DY(R™), then
1) = [ {(e). €(a))0h(a) dH )

and

3 wzoo w(x z)) 0i(x Yz) = H' (@
;m>;AJum»Mwu>AM< Z& ><>

Here, we adopt the convention that for each k, 0y (z) = 0 when = ¢ M}. Since a < 1, then for each

n €N,

<Z Hk(ﬂ?)) <Y k() <) k()"

k=1



so that

Therefore,

(&)

IA
Cg\

5 (Zekm) /U o 2 O )
_ kz/u CER kz/ ) dH( ZM (Tv).
]

LEMMA 4.2.3. For any transport capacity ¢ > 0 and any T e Path.(u=,u™"), there exists a

constant N(c) € N with
2|l |l

N(c) < ;

and T' = (T{, T4, ..., Thoy) € Pathe(u™, i) with Ma(T") < M (T).

PROOF. Since Y 5%, [|py | = S50 [l || < oo, there exists N such that

D
S el = leu H<*
k=N

For any T' = (11, Ty, ..., Tx,...) € Pathe(u, "), denote

Ty = ZTkEPath<Zuk,Zu+>.
k=N

Then 7" = (11, T, ..., Tn—1,T)) € Path.(u~,ut), and

N-1

N-1
Mo (T") = > M (Ti) + Mo(Ty) = > Mq(Ti) + M, <Z Tk> < ZM (T3,) = Mo (T).
k=1 k=1

As a result, without loss of generality, we may assume that T has only finitely number of compo-
nents, i.e. T = (T1,Ts,...,Ty).
We may further assume that there is at most one k with 1 < k < N satisfying ||, || < ¢/2.

Indeed, assume for some 1 < i < j < N such that ||u; || < ¢/2,[|u; || < ¢/2. Let

T* = (Tlv"'7@+T‘j7"'771j—1771j+17"'7TN)7
92



then 7 € Path,(u~, u*), since |cf + it Il = a5 + w5l = a5 | + 15 | < e Also,
Mo (T%) = > Ma(Tk) +Mo(T+ 1)) < > Ma(Ti) +Ma(T) + Ma(T)) = Ma(T).
k#i,j k#i,j
Thus, replacing T by T* if necessary, we may assume that there is at most one k, with 1 < k <

N, satistying ||, || < ¢/2. Hence,

N
_ _ C
™l = g I > (N = 3
k=1

which implies N < 2||p~||/c+1, and since N is integer valued, we have N < 2|[u~||/c as desired. O

REMARK 4.2.4. In the proof of above Lemma, it is not required to assume ||x; ||, [|p; || < ¢/2
for 1 <i < j < N, and then combining these two transport paths and their corresponding source
and target measures. In general, we may assume [[y; |, [[; | < ¢/nfor 1 <i<j<N,andn €N,

n > 2. Then similar argument gives

1)

(N—(n—l))-(n; n e

R — 1.
(n—1) ¢ n

THEOREM 4.2.5. For a € (1 — 1/m, 1], there exists a transport path T e Pathe(u=,put) such

€< ™|, and this gives N <

that Ma(f) s minimized over all admissible transport paths in Problem 1.

PROOF. We first show that there exists a S € Pathe(u~ put) satisfying (4.2.1) with My (S) < co.
Indeed, since both u~ and u™ are supported on a compact set, by existence theorem [11] we can
find S € Path(p=, u™) with M, (S) < o0 for a € (1 —1/m,1].

Pick L € N large enough so that ||ut|| = ||z~ || < ¢L, and let S be the L-vector of 1-rectifiable

currents such that

. 1 1 1
S—[LS,LS,~--,LS].

Note that S satisfies (4.2.1) with ,uii = %ui fori=1,2,---,L and ,uii =0 for i > L. Moreover,

L L
Mo (S) =D Ma(S/L) =Y L™*Ma(S) = L' *M4(S) < .
k=1 k=1

=

Now, let {T™} be any M, minimizing sequence for Problem 1 with Mg (T(™) < M,(S). By
Lemma 4.2.3, without loss of the generality, we may assume that each T = (T, 13-+, TR)
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with N = N(c). Foreach 1 <i < N andn € N, let T* = 7(M; n, 0; n, &) with 0; () < |l || < ¢,
then
MI) = [ o) = [ oW @ < e (@) = ML),
Mi,n M’i,n ’ ’ ,m ,
Hence,

-,

M(T}") < M (T}") < Mo (T™) < M, () < oo

By the weak compactness of rectifiable currents with respect to mass, each sequence {77"}>,
sequentially converges to some rectifiable current T; for ¢ = 1,2,..., N. Since N is finite, we may
assume that they have the same convergent subsequence. As a result, we have a convergent subse-
quence of {f(") = (17,15, ,Tx)} with limit T = (Th,Ts,--- ,Tn). By lower-semicontinuity of

mass of currents, this vector T is the desired solution for Problem 1. O

4.3. Components of transport path with capacity constraints

Given a transport N-path (T1,T%,...,Tn) € Pathe(u~,pt), and note that for each k, Ty €
Path(p,, u;), with 0Ty, = NZ — p, - Denote 0~ T}, := p;; which is the source measure, 97T}, := u,j
which is the target measure, and by definition of transport paths we automatically have |0~ Ty|| =
|0+ Ty |l. The conditions for transport paths in Path.(u~, u) can be expressed as

N
O Ty, 5 = 30Ty, 07Tl = 17T < c.
1 k=1

i
WE

£
Il

DEFINITION 4.3.1. Let T'= 7(M,0,§) and S = (N, ¢, () be two rectifiable 1-currents. We say
Sison T if HY(N\ M) =0, and ¢(x) < 0(z) for H! almost all z € N.

We now give conditions to determine whether a transport path is optimal or not.

THEOREM 4.3.2. Given u~ = Z,]Ll oy T = Zszl i e | = el |l < e, and a transport path
(Ty,Th, ..., Ty) € Pathe(u=, ut). Suppose S = (S1,52,...,SN) consists of n rectifiable 1-currents,
such that for each k =1,2,..., N, it satisfies the following conditions:

(1) Sk is on Ty,
(2) 0Sk = pi(x)0T), with |pr(z)| <1 and

N N
(4.3.1) > k(@) T =0, > pr(z)0" T =0,
k=1 k=1
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(3) 107 (Th £ Si)| < c.

Then for e € [—1,1], T+eS = (Ty + €Sy, To + €So, ..., Ty + €Sn) € Pathe(u,u"), and
min { Mo (T + §), Mo(T - §) } < Mao(T).

Furthermore, when T is a-optimal for a € (0,1), then S, =0 for allk=1,2,--- | N.

PROOF. Since O(Ty + €Sk) = 0Tk + €9Sk = (1 + epr(x))0T; and 0 < 1+ epg(x) for each k, then
O (T + €Sk) = (1 + epi(x))0™ Ty, and 8+(Tk +eSk) =1+ €pk(ﬂj))a+Tk.

By (4.3.1), this implies that

N N
ZE) (Ty + €Sk) :Z(1+6pk 8Tk—28 Tk—i—eZpk 8Tk—28 T, =p,
k=1 k=1 k=1

and similarly

N N

(1+ epk(x))6+Tk = Z OtTy, + € Z pr(z ({')Jer Z ot = u+.
k=1 k=1 k=1

M) =

N
Z 3+(Tk + Esk) =
k=1

e
Il
—

Also,
107 (T + eSk)|| = /X 1+ epi(x) d(0™T)) = /

1d(0™Ty) +€/ pr(x) d(0™ Ty),
X

X

which is a linear function with respect to ¢, so that

/ Ld(@Ty) + ¢ / pi(x) d(O™ T)
X X

< max { [ 1oty + [ p@ao. [ 1aon - [ g d(a—m}
= max { |07 (T + Si)|l, 107 (T — Sp)||} < ¢

Hence, |07 (T + €Sk)|| < ¢, and we can get |07 (T + €Si)|| < ¢ in a similar way. These results
imply T’ + €S € Pathe(u=, pt).
For each k = 1,2,..., N, denote T}, = 7(My, 0i, &), Sk = (N, dr, Ck), and

M} = {x € My, | (&(2), G(x)) = 1}, My = {w € My | (&(x), Gu(2)) = —1}.
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Then

N
Ma(f-i- Eg) = ZMa(Tk + €Sy)
k=1
N
- ;/M; O (x) + edp(@)|"dH’ (z) + /Mk 161 (2) — e ()| “dH' (x),
and
0"Ma (T + €5) _ Y 9°M Tk + €Sk)
@ ;

N
— ala-1) (kz /M; 01 (2)%104 () + ey ()] 2dH" ()

N
2 — el 2N (x
+§ /M,: G0(2)2100(x) — e ()|~ 2dH( ))

< 0.

This implies M (T + €S) is a concave function on €, so that My (T + €5) reaches minimum
value when € reaches end points of its domain. Hence, min{Mq(T + S), Mo(T — §)} < M, (T).
Now assume that T is a-optimal for o € (0,1) but § = (S}, S, ..., Sy) is non-zero. i.e. there

exists k € {1,2,..., N} such that Si is a non-vanishing current. Then,

M, (T + €5) o
0 - a—lz/ 203 ()2t ) <0,
€
e=0
because S is nonzero and on T. This says that Ma(f + e§) cannot achieve a local minimum at

€ = 0, contradicting with T is optimal.

REMARK 4.3.3. Given 9Sy = pi(2)0T}, if > ) pe(2)0~ Ty, = 0,> . pr(x)0T T}, = 0, then

0 (Z Sk) Z@Sk = Zpk )OTy, = Zpk- 8+Tk — Zpk 8T,; =0.
k

Hence, if )", Sk does not form a cycle, Si’s does not satisfy criteria of the above theorem.
Also, when 0Sj, = 0, condition (1) and (2) are automatically satisfied, since we have pg(z) =0

and 8(Tk + Sk) = 8Sk
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In the following content, we will start to analyze transport paths between atomic measures,

where
N N1 N No
(4.3.2) p=Y = omide, pt = b =Y mydy,,
k=1 i=1 k=1 j=1

with N1, Ny € NU{oo}, and equal total mass. Here, we also assume each T e Path.(p~, ut) consists
of N components such that 7' = (Th, T, ..., Ty) and Ty € Path(ulz,u;:) for k=1,2,...,N. Since
each T consists of N components, we may also call T as a transport N-path.

When T = (Th,Ts,...,Ty) is optimal and satisfies conditions in (4.2.1), each T} in T is also
an optimal transport path, which is acyclic. Using the definition of good decomposition and its
related notations from Section 3.2, for each k£ = 1,2,..., N, there exists a good decomposition 7

of T}, such that

(4.3.3) ﬂ:/@mk
I

Since Ty, € Path(p, , u,":), and NZ are as defined in (4.3.2), we may also write T}, as

ﬂZZ/%IW

=1 j=1 i

In this case,

N1 N»
T}, = Z Z Nk (Fxmyj)(éyj - 5:(,‘1')7

i=1 j=1
and
N1 N2 Nl N2
87Tk = Z an(rmi,yj)(;xia 8+Tk = Z Z Nk (Pdfi7yj)5yj’
i=1 j=1 i=1 j=1

Using similar notation as in equation (3.4.1), for each £k = 1,2,...,N and j = 1,2,..., Ny,
denote

Xj(nr) = A{wi € X :mp(Tz, ;) > 0}

Now, we would like to investigate the components of transport paths between atomic measures

defined as in equation (4.3.2).

PROPOSITION 4.3.4. Let T = (Ty, Ty, ..., Ty) € Pathe(u=,ut) be an optimal transport path,

where =, u are defined as in equation (4.3.2), and a € (0,1). For each k =1,2,..., N, let n; be
97



any good decomposition of Ty. Then the collection of sets

{X](T/k) .7: 17277N2}

are mutually disjoint, except for at most No — 1 many k’s.

PROOF. Suppose there are Ny collections of sets
{Xj(nkg) : j = 1,2,...,N2}, for ¢/ = 1,2,...,N2,

where each collection of sets are not mutually disjoint. Then for each /¢, there exist z;,, y;,, Yy such

that x;, € Xj,(nk,) N Xj; (1k, ). In this case, we have

N1 N2 Nl N2
Tkz = Z Z/ I’dekev aTkg = Z anz (F$i,yj)(5yj - 61‘1)7
i=1 j=1"T=sy; i=1 j=1

and
Tk, (inevyjz) >0, Nk, (ine’yjé) > 0.

Our goal is to show the existence of a S such that it satisfies the conditions in Theorem 4.3.2,
and reach a contradiction.

For each £ =1,2,...,No, let ¢;, = (0,...,1,...,0) be the vector of dimension Ny such that it
has 1 at position £. Let M be the matrix

S Y
M = ejé B ejQ
_ej;VQ N ejNQ_
then by definition of e;,’s, we have
1 0
1 0
M | | = | |, which implies rank (M) < Na.

1 0
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Therefore, there exists [c1,ca, ..., cN,]| # 0, such that

(4.3.4) [01,62,...,01\[2} M = [0,0,...,O} .

Let

Cy Ce
Sk :=—/ Idnk+/ Ldn,,
‘ nké (Fmilyyjz) I K ‘ nk@ (Fw’bé ’yjfz) r K ‘

Zig:Yjp

for £ =1,2,...,No, and S, := 0 for any other k’s. Then 0S5, = Cg(syjé — Cg5yje, for £ =1,2,...,No,

TigYy)

and 0S5y = 0 for any other k’s.

For each ¢ =1,2,..., Ny, since
e (T 5,) > 0 1k (T, ) > 0,
and by equation (4.3.4) we may assume that
0 <max{|c| : £ =1,2,...,Na} < min{nkz(f‘xmyje), nke(rmiz,yjz) :0=1,2,...,Na}.
This implies 0Sk = p ()07}, where pi(z) is defined as

_Cf/ Zz Nk, (Fafi,yje) if v = Yje
P, () = ce/ D i My (in@%) if v = vj,

0 otherwise,

for £ =1,2,..., N, and pg(x) = 0 for any other k’s. Therefore, we have |pi(z)| < 1, for all k and
all z.
Also, since 0~ Ty ({z}) = 0 for = & {z1,22,..., 2N, }, and pg(x) = 0 for x € {x1,22,..., 2N, }

then
> k(@) T =Y 00Ty =0.
k k

Since 0S5, = 0 for k # ky,

No No
> @) T =) pr(z) (0T =0 T) =) 08k => 0Sk, =Y - (8y,, — y,,)-
k k k /=1 /=1
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Next, by equation (4.3.4), we have

63/1 5?41
N2 B} 5
Y2 Y2
Zcf'(éyjz_(sng) = |:Cl,02,...,CN2:|M . = |:07077():| .
=1 :
5yN2 _5yN2
N2
= ) 06y, =0
/=1

For k = ky, with £ =1,2,..., No,
H@i(Tkz + Ske)” = ”87TkeH +0<g¢

HaJr(Tkz + Skz)” =Feo o+ H8+TkeH <gc

and for k # ky, |0~ (T, £ Sk)|| = |07 Tk|| < c and ||0F (Tk £ Sk)|| = |07 Tk|| < ¢, hold trivially.
Therefore, by Theorem 4.3.2, and T being a-optimal for o € (0,1) imply that each S is a
vanishing current, contradicting with the non-vanishing Si,’s constructed above. Hence, except for

at most Ny — 1 transport path components (k’s), the collection of sets

{XJ(T]k> . ] = 1,2, . ,NQ}
are mutually disjoint. O

In Chapter 3, we studied the decomposition of cycle-free transport paths such that some of
the components are map-compatible. Now, we would like to introduce a similar result for optimal

transport N-path T = (T1, Ty, ..., Tn) € Pathe(u=, ut).

THEOREM 4.3.5. Let = and p* be defined as in equation (4.3.2), and o € (0,1). Let T =
(Ty, Ty, ..., Ty) € Pathe(u,u™) be a solution to Problem 1. Then for each k = 1,2,..., N, there

exists a better decomposition mi of Ty such that

|Xj1 (nk) N ij (nk)| <1,

for any 1 < j1 < jo < Na. Moreover, except for at most No — 1 many k’s, T}, is a map-compatible

transport path.
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PROOF. Since T = (T1, Ty, ..., Tn) € Path.(u~, ™) is a solution to Problem 1, for each k, T}
is an a-optimal transport path from p, to ,u,;:, which implies T}, is cycle-free. By Proposition 3.4.6,
each T}, has a better decomposition 7. Therefore, forany k =1,2,..., N and any 1 < j; < jo < Na,

Proposition 3.4.7 gives

| X5 () N Xy ()| < 1.

By Definition 3.3.1, n is also a good decomposition for T}.
Proposition 4.3.4 gives that, for each k € {1,2,..., N} with at most Ny — 1 many exceptions,

the collection of sets
{XJ(T]k> . j = 1,2, e ,NQ}

are mutually disjoint, which implies that T} is map-compatible by Proposition 3.5.5. (|

4.4. Case study: Single target

In this section, we would like to investigate the case where p* is supported on a single point,

ie. ut =md,. In this case, for simplicity of notation, we may denote

X(?]k) = {.%Z € X: Uk(in,y) > 0},

where 7, is a good decomposition as in equation (4.3.3). Also, in the following context, we assume

€ (0,1) and T = (Th, T, ..., Tn), consists of N components.

PROPOSITION 4.4.1. Let u= = SN m!d,., u™ = md,, of equal mass, and T € Path.(u~, u")
is optimal. Then for ki # ko,

[ X (k) 0 X (ng,)| < 1.

PRrOOF. For the sake of contradiction, we assume | X (nx,) N X(nk,)| > 2 for some k; # ko.
Without loss of generality, assume k1 = 1,ky = 2, and let 1,29 € X (n1) N X (n2) with z1 # zo.

Since 11 and 7y are good decomposition of 77 and 75 respectively, then

T Z/Iydm, T2=/17d7727
r r

and

Ul(Fxl,y) > O»Ul(rxz,y) > 07772(Fx1,y) > 0a772(rx2,y) > 0.
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Y

FIGURE 4.3. T} and T5

Let ¢ = min{nl(rm,y)a nl(sz,y)a 772(Fx1,y)a 772(Fx2,y)} > 0, and g = (Sl, 527 53, cee ,SN) where

€0 €0
Sy = / Idnl—/ Ldn,
mCary) Jr,,, Mm(Casy) Jr,,,

1,y

€0 €0
Sy ::—/ Idn2+/ Lydna,
772(Fz1,y) r 7 772(Frz,y> r K

z1,Y z1,Y

and Sy := 0 (vanishing currents) for k > 3. Suppose 71 = (M, 0,£) and S1 = (N, ¢, (), then

< eo (771(F;,; N Fm,y) 4 m(Cz N szy)

€0 €0
= - _ I,
¢(x) ‘ (771 (Fxl,y) n valyy m (Fxg,y) n LFZQ’?J) ( ) = m (Fa:1,y) m (Fxg,y)

< nl(rx N le,y) + nl(rx N sz,y) < 771(Fa:) = 9($)

As a result, 57 is on T7 because I';, , C T’

Since
N1 N1 N1
on = /Fal'ydnl =m(I)dy — 2771 (Laiy) 0z, = Z M (L, )0y — 2771 (Taiy)0a;
=1 =1 =1

and

€0 €0
281 = / aldn—/ OL,dn
! MmCar) Jro T i (Cagy) Jr,

T1,Y 1Y

€0 €0
- 9 — dm—/ Oy — 0z, )dm
M (Layy) /le,y( Y 2 M (Lay) le,y( Y 2

= 60512 - 605961,
one may express 051 = p1(x)911, where p;(x) is
p1(z1) = eo/m(Layy)s pr(z2) = —€o/m(Layy),

and pi(x) =0 for x # 1, x2.
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In general, by doing similar calculation as above, for k = 1,2,..., N, we have Si is on T,

0Si = pr(x)0Ty, and |px(x)| < 1 where

T =1x T = T9 otherwise
p1(z) €0/ Tary)  —€0/m(Tasy) 0
p2() _60/772(F:D1,y) 60/772(F902,y) 0
pr(x), k>3 0 0 0
When k£ =1, 2,
N1 1
107 (Ty £ S1) || = (m(Tary) £ €0) + (M (Tany) Feo) + > mTary) =Y mTay) = [0 Th[ <,
=3 =
[0(T1 £+ S1)|| = |07 T < e,
N1 1
107 (T2 £+ S2)|| = (n2(Tzy ) F €0) + (M2(Tasyy) +€0) + 2772(Fm¢,y) = ZW(Fri,y) =07 <«
=3 1=
107 (Ty £ Sa)|| = (|07 T2|| < c.
When k£ > 3,
107(Tk £ SK)|| = 10Tkl < ¢, 07 (Th £ Sp)ll = |07 Ti|| < c.
Also,
N € €
_ 0 0
pre(x)0 T, = — M2, y)0e, — ——— 12z, y) 0z
; ( ) nl(rxl,y) 1( 1y) 1 772(Fw1,y) 2( 1y) 1
€0 €0
-7 F$7 Opy + ——=—= 1 Fac, O
nl(Fzz,y) 1( 2y) 2 772(]-_‘132,y) 2( 21/) 2
= 07
and

=2

> pr(@)0T T = Zo_o

k=1
By Theorem 4.3.2, for a € (0,1), each Si is a Vamshmg current, contradicting with the non-

vanishing Si, Sy constructed above. Hence, | X (1) N X (n2)] < 1. O

PROPOSITION 4.4.2. Let yu= = SN m!d,,, ut = md,, of equal mass, and T € Pathe(u=, i)

is optimal. Suppose ki # ko and | X (ng,) N X (nk,)| = 1, then either [[p, || = ¢ or ||, || = c.
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ProOOF. Without loss of generality, assume k; = 1,ko = 2, and let z; € X(n1) N X(n2).
Arguing by contradiction, assuming ||py ||, ||p5 || < ¢. Since 11,72 are good decomposition of 17, T5

respectively, then

T —/L,dm, T2—/de772,
r r

and

nl(rx1,y) >0, 772(Fx1,y) > 0.

z1

m (Fm,y) 772(F271,y)

Y

FIGURE 4.4. T} and T

Since ||y |, Iz || < ¢, the let eg such that 0 < €o = min{nmi (I, y) 72(Tayy)s =l [l el (1}
Let §: (51,5’2,53, e ,SN), where

€0 €0
Sp = / Ldm, Sy = —/ L,dng,
771(F:v1,y) r K 772(Fm1,y) r K

z1,Y x1,Y
and S := 0 for k£ > 3. Construction of Si’s gives Sy is on T, for all k=1,2,..., N.

Since

N1 Ny Ny
o = /Falvdnl =m(l)dy — an (Fziy)02, = Z M (e, )0y — an (T2, 9) 0z,
i=1 i=1 i=1

and

€0 €0
051 = / ol dm = / (5 — 0y )d"71 = €00y — €00y,
"71(F:v1,y) leyy 7 771(F$17y) Facl,y Y ' Y '

then p1(z1) = €0/m (Lay ), p1(y) = €0/ Son'y (L), and py(z) = 0 for z # 1, .
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By performing similar calculation as above, for k = 1,2,...,n, we get 0Sx = pi(x)9T}, with

|pk(x)| < 1 such that

T =T T=1y otherwise
N
p1(x) co/mTery) €/ 221 mTay) 0

pa(x) —eo/m2(Tary) —€0/ r 12(Tayy) 0
>3 0 0 0

ol

pr(),

When k = 1,2, since [|u || = [l Il

Ny

107 (T1 £ S|l = m (Tayy) £eo+ > mTay) = 6o + |yl <c
=2

N1
104 (Ty & S1)|| = Heo + Y m(Tayy) = Feo + [y || < e,
=1
Ny
107 (To & So)|| = 12(Tayy) Feo+ Y m2(Tay) = Feo+ [z || < e,
=2
N1
0% (Ty £ So) | = Feo+ > _m2(Tay) = Feo + |z [ < e,
=1
When k > 3,

107 (Th = Sp)ll = 107 Thll < e, 107 (Th £ Si)l| = 107 T || < c.

Also,
N

)0 Ty = ———
D (v

€0 €0

M (Car)ory = — oLy )00, = 0,
771( 1,y) 1 7]2(le,y) 772( 1,y) 1

and

N

N1 Nl
€0 €0

Zpk(x)aJer - =N = an(rxi,y)éy T —=<N; = ZUQ(in,y)(Sy =0.

=1 Yimim(La,y) i=1 i1 (Tay) i=1

Theorem 4.3.2 implies for a € (0, 1), each Sy is a vanishing current, but S, Ss constructed above
are non-vanishing, and this leads to a contradiction. Hence, we have one of the values between

g || and [z | equals c. 0
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COROLLARY 4.4.3. Let p= = Zf\’:ll midg,, ut = mdy, of equal mass, and T e Pathe(u=, put) is
optimal. Suppose

ﬂ X (nk,) # 0 for some n > 2.
(=1

Then at most one of the py, has ||p, || < ¢, and any other uy,’s have mass ||py,|| = c.

I L2 T3 I €2 T2 L3

. [

Y Y Y
(a) T1 + T2 (b) T1 (C) T2

FIGURE 4.5. Demonstration of X (n1) N X (n2) # 0, where X (1) = {x1, 22}, and
X(n2) = {z2, z3}.

PROOF. Suppose there exist two components i, , fik, With ||pg, ||, ||k, ]| < c. Proposition 4.4.1
implies | X (1, ) N X (nk,)| < 1. Since X (ng,) N X (nx,) is non-empty, then | X (n,) N X (nk,)| = 1.

Proposition 4.4.2 implies ||ug, || = ¢ or ||pk, || = ¢, which leads to contradiction. O

Results that have proved so far characterize the “support” of component measures and the
weight on components of an optimal transport path. Next, we would like to apply these results to
some specific cases: transport path from 1 point to 1 point and transport path from 2 points to 1
point. In the following Corollaries, denote the line segment from = to y as Ty. Also, denote a[v]
as the rectifiable 1-current, with density equals a, supported on the curve -, and direction along

this curve.

COROLLARY 4.4.4. Suppose = = modz, pu = mody, and T € Patho(u=, i) is optimal. Then

up to a permutation of component indices,
Ty, Ts,..., Tn-1 = c[zy], Ty = ro[zy],
with N = [mg/c], ro = mo — (N — 1)c.
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1

2

T CN—1
CN

FIGURE 4.6. 1 point to 1 point.

Proor. For k = 1,2,..., N, since the minimum path between two points in R is a line
segment, so that Ty, = ¢x[zy] for 0 < ¢ < c. Suppose there exist ki, ky with k1 # ko such that
Chys Chy < ¢, then | X (ng,) N X (nk,)| = [{z}| = 1 and Proposition 4.4.2 implies one of the values
between ci, and ¢, equals ¢, which leads to contradiction.

Hence, for k = 1,2,..., N, there is at most one component k& (without loss of generality assume
this component index is N) such that Ty = ro[zy],r0 € (0,¢], and any other components are
Ty = c[zy]. The total number of components required is N = [mg/c], and since there is only one

component has mass less or equal to ¢, then g = mg — (N — 1)c. O

COROLLARY 4.4.5. Suppose 1~ =m0y + m20y,, pt = (my + ma)dy, and T e Pathe(pu=,put)
is optimal. Then there exists at most one k = 1,2,..., N, such that | X (ng)| = 2. Moreover, there

exist ni,ne € {0} UN with N = ny + na + 2 such that

(1) if | X (nk)| =1 for each k =1,2,...,N, then up to a permutation of component indices,
T17T27 LI aTn1 — C[[m]]a Tn1+laTn1+27 e )TN*2 — C[[Hyﬂ) TN*l — 61[[@]], TN — 62[[@]]7

for 0 <er,ea <ec, andny = [my/c] —1,n2 = [ma/c] — 1;
(2) if | X(ng)| = 2 for some k =1,2,...,N, then up to a permutation of component indices,
k=N,

T, Ty, ..., Ty, = C[[m]]v Toi41:Tng42, - IN—2 = C[[@]]a Iy = 63[[90711/]] or 53[[@]}7
for 0 <e3 <c¢, and max{0,[(m1+ma —c)/c]} <N —-1=mn;+n2+1<[(m+ma)/cl.

PRrROOF. For ki # ko, suppose there are two transport path components, indexed as ki, ko,
such that [X(nk, )| = [X(m,)| = 2. Since |supp(p~)| = [{z1,z2}| = 0, then [X(nk,) 0 X (nr, )| =
[{x1,x2}| = 2, which contradicts Proposition 4.4.1. This implies there exists at most one k such

that | X (ng)] = 2.
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Case (1): Suppose | X (ni)| = 1 for each k = 1,2,..., N, since the path with minimum distance
from x1,x9 to y are line segments, this implies T, = c;[717], ck[727].
T Z2

Ck Ck

Y Y
(a) cx[719] (b) ex[727]

FI1GURE 4.7. Transport paths in Case 1.

Suppose there exist T, = ck, [T19], Tk, = ck,[T1y] with k1 # ko such that ck,,cr, < ¢, then
| X (Mg, ) N X (nk,)| = 1. Proposition 4.4.2 gives one of values between ¢, and ¢y, equals ¢, which
leads to contradiction. Hence, there is at most one component, and without loss of generality this
component is indexed by N — 1, such that Tv_1 = €1 [Z1y], with 0 < €1 < ¢. Any other components
that transport mass from z; to y are c[z7y]. This gives the total number of components that
transport mass from z1 to y is [my/c], n1 = [my/c] — 1, and e = my — ([my/c] — 1)c.

Similarly, there is at most one component, and without loss of generality this component is
indexed by N, such that Ty = e2[z2y], with 0 < e2 < ¢. Any other components that transport
mass from z9 to y are c[zzy]. This gives the total number of components that transport mass from
x9 to y is [ma/c], ng = [ma/c] — 1, and e = my — ([ma/c] — 1)c.

Case (2): Suppose | X (nx)| = 2 for some k = 1,2,..., N, and without loss of generality assume
this component is indexed by N. Then Proposition 4.4.1 implies all the remaining transport paths
components are line segments from z; to y and z9 to y.

By using similar argument as previous case, among all transport path components that trans-
port mass from x; to y, there is at most one component Ty, = e, [Z1y] with 0 < ex, < ¢, and
among all transport path components that transport mass from s to y, there is at most one com-
ponent Ty, = €, [T2y] with 0 < €, < c¢. Moreover, we claim that either e;, = c or €4, = c¢. By
contradiction, assume 0 < €, , €, < c. Suppose 7y is a good decomposition of T, such that

TN :/ I’yan+/ I’yana
T

r
, 1
1Y 2,y
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and by definition of | X (nx)| = 2,

N (L y) > 0,8 (Cayy) > 0.

I I Z2 T2

Ck Ck

) ) )
(a) cx[z1Y] (b) Ty (c) ex[727]

FIGURE 4.8. Transport paths in Case 2.

Let eg = min{eg, , €x,, ¢ — €xy 5 ¢ — €4y, IN(Lay ) IN(Tzp ) } > 0, and define S = (S1,S52,...,5N),
where
S [z19], S [z29], S S / Ldny + ——2 / Ld
k1 = €O[L1Yl, Oky = —C€0[L2Y], PN = — 1IN UL
' : 77N(F:v1,y) Ty ,y ! nN(sz,y) Cag,y K

and Sy = 0 for k # ki, ko, N. By construction, Sy is on T}, for each k. The corresponding pi(z)’s,
where 0Sy = p(z)0T}, for each k, are

T =1 T = T9 r =19y otherwise
Pk (T) €0/ €k, 0 €0/ €k, 0
Pz () 0 —€0/€ky  —€0/€ky 0
pn () | —€o/nN(Tayy) €0/INTasy) 0 0

and pg(z) =0, for k # k1, ke, N.

Direct calculation shows that the non-vanishing Si’s constructed above satisfy conditions in
Theorem 4.3.2, and when « € (0,1), T is optimal, Theorem 4.3.2 gives each S is a vanishing
current. This leads to a contradiction.

This implies one of the values between €, and €, equals c. Hence, there is only one component,
and without loss of generality index it by N — 1, Ty_1 = e3[Z19] or e3[Z2y] with 0 < e3 < ¢, and

any other transport path components (line segments) have weight equals c. Since 0 < |luy|l < ¢,
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then 0 < "0 [lug || < m1 + ma, and this gives
max{0, [(m1+ma—c)/c]} < N—-1=n1+n2+1<[(m +ma)/c].
Note that because of the Ty and T_1 components, we also have

[my/c] —2<n; <[my/c] —1, and [ma/c] —2 < ng < [mg/c] — 1

110



Bibliography

[1] L. AMBROsIO, E. BRUE, AND D. SEMOLA, Lectures on optimal transport, Springer, Volume 130 (2021).

[2] M. CoLoMBO, A. DEROSA, AND M. A, Improved stability of optimal traffic paths, Calc. Var. Partial Differ.
Equ., 57:28 (2018).

[3] M. CoLoMBO, A. DEROSA, AND A. MARCHESE, On the well-posedness of branched transportation, Comm. Pure
Appl. Math., 74 (2021), pp. 833-864.

[4] L. C. Evans AND R. F. GARIEPY, Measure theory and fine properties of functions revised edition, CRC Press
Taylor & Francis Group, (2015).

[5] F. LN AND X. YANG, Geometric measure theory an introduction, Science Press and International Press, (2002).

[6] E. PAOLINI AND E. STEPANOV, Decomposition of acyclic normal currents in a metric space, J Funct Anal, Vol
263, Issue 11 (2012), pp. 3358-3390.

[7] F. SANTAMBROGIO, Optimal transport for applied mathematicians, Springer, (2015).

[8] L. SIMON, Introduction to geometric measure theory, https://web.stanford.edu/class/math285/ts-gmt.pdf,
(2014).

[9] S. K. SMIRNOV, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of
normal one-dimensional flows, Algebra i Analiz, 5 (1993), pp. 206—238.

10] C. VILLANI, Topics in optimal transportation, Graduate Studies in Mathematics, 58 (2003).

11] Q. X1a, Optimal paths related to transport problems, Commun. Contemp. Math., 5 (2003), pp. 251-279.

[

[

[12] ——, Interior reqularity of optimal transport paths, Calc. Var. Partial Differ. Equ., 20 (2004), pp. 421-443.
[13] ——, The formation of a tree leaf, ESAIM Control Optim. Calc. Var., 13 (2007), pp. 359-377.

[14] ———, Boundary regularity of optimal transport paths, Adv. Cale. Var., 4 (2011), pp. 153-174.

[15] ———, Motivations, ideas, and applications of ramified optimal transportation, ESAIM: Math. Model. Numer.

Anal., 49 (2015), pp. 1791 — 1832.
[16] Q. X1A AND H. SUN, Map-compatible decomposition of transport paths, arXiv:2310.03825, (2023).
[17] Q. X1a AND S. XU, On the ramified optimal allocation problem, Netw. Heterog. Media, 8 (2013), pp. 591 — 624.
[18] Q. X1A AND S. XU, Ramified optimal transportation with payoff on the boundary, STAM J. Math. Anal., Vol 55,
No. 1 (2023), pp. 186—209.

111



	Abstract
	Acknowledgments
	Chapter 1. Introduction to Monge-Kantorovich optimal transportation
	1.1. Basic notations and concepts
	1.2. The Monge optimal transport problem
	1.3. The Kantorovich optimal transport problem

	Chapter 2. Introduction to ramified optimal transportation 
	2.1. Differential forms & Rectifiable currents
	2.2. Ramified and Branched transport
	2.3. Applications in ramified transport

	Chapter 3. Map-compatible decomposition of transport paths in discrete case 
	3.1. Introduction
	3.2. Preliminaries
	3.3. Better decomposition of acyclic transport paths 
	3.4. Decomposition of cycle-free transport paths 
	3.5. Transport paths induced transport maps and transport plans
	3.6. Stair-shaped matrices and decomposition of stair-shaped transport paths 

	Chapter 4. Transport paths under capacity constraints 
	4.1. Introduction & Motivation
	4.2. Transport paths with capacity
	4.3. Components of transport path with capacity constraints
	4.4. Case study: Single target

	Bibliography



