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SUMMARY

Aptamers, short RNA or DNA molecules that bind
distinct targets with high affinity and specificity,
can be identified using high-throughput systematic
evolution of ligands by exponential enrichment (HT-
SELEX), but scalable analytic tools for understanding
sequence-function relationships from diverse HT-
SELEX data are not available. Here we present
AptaTRACE, a computational approach that lever-
ages the experimental design of the HT-SELEX pro-
tocol, RNA secondary structure, and the potential
presence of many secondary motifs to identify
sequence-structure motifs that show a signature of
selection. We apply AptaTRACE to identify nine
motifs in C-C chemokine receptor type 7 targeted
by aptamers in an in vitro cell-SELEX experiment.
We experimentally validate two aptamers whose
binding required both sequence and structural fea-
tures. AptaTRACE can identify low-abundance mo-
tifs, and we show through simulations that, because
of this, it could lower HT-SELEX cost and time by
reducing the number of selection cycles required.

INTRODUCTION

Aptamers are short RNA/DNA molecules capable of binding,

with high affinity and specificity, a specific target molecule via

sequence and structure features that are complementary to

the biochemical characteristics of the target’s surface. The utili-

zation of aptamers in a multitude of biotechnological and medi-

cal sciences has recently increased dramatically. Although only

80 aptamer-related publications were added to PubMed in the

year 2000, this number has since roughly doubled every 5 years,

with 207 records added in 2005 alone, 565 additional inclusions

in 2010, and as many as 957 new manuscripts indexed in 2014.

This trend is in part attributable to the considerable diversity of

possible targets, which include small organic molecules (Kim

andGu, 2013), transcription factors (Jolma et al., 2010) and other

proteins or protein complexes (Berezhnoy et al., 2012), the sur-

faces of viruses (Binning et al., 2013), and entire cells (Daniels
62 Cell Systems 3, 62–70, July 27, 2016 Published by Elsevier Inc.
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et al., 2003; Morris et al., 1998; Shi et al., 2013). This broad range

of targets makes aptamers suitable candidates for a variety of

applications ranging from molecular biosensors (Zichel et al.,

2012) to drug delivery systems (Xiang et al., 2015) and antibody

replacement (FDA, 2004), to just name a few.

Although the specifics vary depending on the target, aptamers

are typically identified through the systematic evolution of li-

gands by exponential enrichment (SELEX) protocol (Ellington

and Szostak, 1990). SELEX leverages the well-established para-

digm of in vitro selection by repetitively enriching a pool of initially

random sequences (species) with those that strongly bind a

target of interest. These binders are then selected through a se-

ries of selection cycles, where each such cycle involves incu-

bating the pool with the target; partitioning target-bound species

from non-binders and removing the latter from the pool, followed

by elution of the bound fraction from the target; and amplifying

the remaining sequences via PCR to form the input for the

subsequent round. After a target-specific number of selection

cycles, the final pool is then used to extract dominating, puta-

tively high-affinity species via traditional cloning experiments,

computational analysis, and binding affinity assays. Depending

on their intended application, favorable binders are often further

post-processed in vitro to meet additional requirements such as

improved structural stability or reducing the size of the aptamer

to the relevant binding region.

A key reason for the resurgence of interest in aptamer research

relates to the utilization of affordable next-generation se-

quencing technologies along with traditional SELEX, referred to

as high-throughput SELEX (HT-SELEX) (Jolma et al., 2010;

Zhao et al., 2009). In HT-SELEX, after certain (or all) rounds of se-

lection (including the initial pool), aptamer pools are split into two

samples, the first of which serves as the starting point for the

next cycle, whereas the latter is sequenced. Recently, SELEX-

seq, a variation of the HT-SELEX protocol specifically designed

to quantify DNA binding references for transcription factor

complexes, has been introduced by Slattery et al. (2011). This

protocol utilizes electrophoretic mobility shift assays to capture

oligomers bound by the targets. The resulting sequencing data

of both HT-SELEX and SELEX-seq, consisting of 2–50 million

sequences per round, is then analyzed in silico to identify candi-

dates that experience exponential enrichment throughout the

selection (Alam et al., 2015; Hoinka et al., 2014). The massive

amount of sequencing data produced by these protocols opens

the opportunity for the study ofmany aspects of the protocol that
commons.org/licenses/by/4.0/).

mailto:przytyck@ncbi.nlm.nih.gov
http://dx.doi.org/10.1016/j.cels.2016.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2016.07.003&domain=pdf
http://creativecommons.org/licenses/by/4.0/


were either not accessible in traditional SELEX or that could be

realized more accurately given hundreds of millions of data

points. The development of universal methods for the analysis

of HT-SELEX data is challenged by the vast diversity of selection

conditions (such as temperature, salt concentration, and spe-

cies-to-target ratio) and the target complexity. For example, se-

lection against transcription factors and RNA binding molecules

requires only a small number of selection rounds to produce

high-quality aptamers (Jolma et al., 2010; Kupakuwana et al.,

2011). On the other side of the spectrum, in the case of cell-

SELEX, a variation of SELEX in which the pool is incubated

with entire cells, the number of required selection cycles is signif-

icantly larger (Daniels et al., 2003). Such a target can, in general,

accommodate a multitude of binding sites, each exposing

different binding preferences and leading to a parallel selection

toward unrelated binding motifs (Morris et al., 1998). Indeed,

the discovery of aptamer binding motifs that facilitate binding

to the target is one of the most challenging problems in HT-

SELEX data analysis. Current motif-finding algorithms, however,

have not been designed with these challenges in mind, and the

need for the development of novel computational approaches

that address the characteristics specific to the SELEX protocol

has become highly relevant.

Traditionally, motif discovery has been defined as the problem

of finding a set of common sub-sequences that are statistically

enriched in a given collection of DNA, RNA, or protein se-

quences. To date, a large variety of computational methods in

this area have been published (see Tompa et al., 2005; Zambelli

et al., 2013; and Weirauch et al., 2013 for a comprehensive re-

view). One of the first computational method for finding motifs

on this type of high-throughput data is binding energy estimates

usingmaximum likelihood (BEEML) (Zhao et al., 2009). Assuming

the existence of a single binding motif, the method aims at fitting

a binding energy model to the data that combines independent

attributes from each position in the motif with higher-order de-

pendencies. Another method by Jolma et al. (2010, 2013) ap-

proaches the problem by using k-mers to construct a position

weight matrix (PWM) to infer the binding models. Similarly, Oren-

stein and Shamir (2015) also uses a k-mer approach based on

frequencies from a single round of selection to identify binding

motifs for transcription factor HT-SELEX data.

The search for motifs in the context of RNA molecules has to

consider that binding of ssDNA and RNA molecules depends

on both sequence and structure. In particular, it has been pro-

posed that binding regions in those molecules tend to be pre-

dominantly single-stranded (Johnson and Donaldson, 2006;

Schudoma et al., 2010). MEME in RNAs including secondary

structures (MEMERIS) (Hiller et al., 2006) leverages this assump-

tion by weighting nucleotides according to their likelihood of be-

ing unpaired. In contrast, RNAcontext (Kazan et al., 2010) divides

the single-stranded contexts into known secondary substruc-

tures such as hairpins, bulge loops, inner loops, and stems.

Consequently, RNAcontext is capable of reporting the relative

preference of the structural context along with the primary struc-

ture of the potential motif. A related approach was recently pro-

posed for combining sequence and DNA shape properties (Zhou

et al., 2015). In contrast, AptaMotif (Hoinka et al., 2012) utilizes

information about the structural ensemble of aptamers, obtained

by enumerating of all possible structures within a user-defined
energy range from the minimum free energy (MFE) structure,

and applies an iterative sampling approach combined with

sequence-structure alignment techniques to identify high-

scoring seeds that are consequently extended to motifs over

the full dataset. Subsequently, APTANI (Caroli et al., 2015)

extended AptaMotif to handle larger sequence collections via a

set of parameter optimizations and sampling techniques, but it

also expects a high ratio of motif occurrences.

Still, none of the abovementioned methods address the full

spectrum of challenges related to analyzing data fromHT-SELEX

selections. First, none of these approaches currently scale with

the data sizes produced bymodern high-throughput sequencing

experiments. Next, only a few of the methods consider the exis-

tence of secondary motifs, whereas the majority operates under

the assumption that only a single primary motif is present in the

data. This assumption might apply to TF-SELEX, but it cannot be

generalized to common-purpose HT-SELEX, where many motifs

of possibly similar binding strength or optimized for additional

properties, such as specificity and toxicity, must be considered.

Furthermore, secondary structure information, which has proven

effective in guiding the motif search to biologically relevant bind-

ing sites, is not included in most of these methods. A notable

exception is RNAcontext, which can handle relatively large data-

sets but suffers from the single motif assumption, which cannot

be easily removed. Finally, none of these approaches attempt to

utilize the full scope of the information produced by modern HT-

SELEX experiments, which includes sequencing data from

multiple rounds of selection.

To close this gap, we have developed AptaTRACE, a method

for the identification of sequence-structure motifs for HT-SELEX

that utilizes the available data from all sequenced selection

rounds and that is robust enough to be applicable to a broad

spectrum of RNA/single-stranded DNA (ssDNA) HT-SELEX ex-

periments independent of the target’s properties. Furthermore,

AptaTRACE is not limited to the detection of a single motif but

capable of elucidating an arbitrary number of binding sites along

with their corresponding structural preferences. Unlike previous

methods, it does not rely on aptamer frequency or its derivative

cycle-to-cycle enrichment. Aptamer frequency has been shown

recently to be a poor predictor of aptamer affinity (Cho et al.,

2010; Hoinka et al., 2014; Thiel et al., 2012), and, although cy-

cle-to-cycle enrichment has shown a somewhat better perfor-

mance, the choice of the cycles to compare is not obvious and

does not always allow for extraction of sequence-structure mo-

tifs. In contrast, ourmethod builds on tracing the dynamics of the

SELEX process itself to uncover motif-induced selection trends.

We tested AptaTRACE on sequencing data obtained from

realistically simulating SELEX over ten rounds of selection with

known bindingmotifs and then applied it to an in vitro cell-SELEX

experiment over nine selection cycles (40 million sequences per

cycle). In both cases, our method was successful in extracting

highly significant sequence-structure motifs while scaling well

with the 10-fold increase in data size. We verified the biological

relevance of the topmotif by a series ofmutation studies in which

either the primary or secondary structure of the motif was

removed from a candidate aptamer. In both cases, we observed

a significant decrease in binding affinity compared with the wild-

type. Our results furthermore indicate that the vast majority of

motifs are residing in, and are selected for, single-stranded
Cell Systems 3, 62–70, July 27, 2016 63



regions, consistent with previous reports regarding RNA

target binding (Johnson and Donaldson, 2006). In addition, we

observed that, with sufficient sequencing depth, these motifs

can be detected by AptaTRACE relatively early during the selec-

tion. Therefore, the ability of AptaTRACE to handle very large

input sets opens the possibility of reducing the required number

of selection rounds, which are typically expensive to perform in

terms of time and cost. AptaTRACE is available for download

at http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.

cgi#aptatools.

RESULTS

We start with a high-level outline of the method and refer the

reader to Section A in the Supplemental Experimental Proce-

dures for a detailed description of AptaTRACE, implementation,

and runtime. Next we use simulated data, produced with

an extended version of our AptaSim program (Hoinka et al.,

2015) developed for this study, to compare the performance of

AptaTRACEwithothermethods that canhandle similar data sizes

or incorporate secondary structure into their models. Finally, we

show our results of applying AptaTRACE to an in vitro selection

consisting of high-throughput data from nine rounds of cell-

SELEX (Takahashi et al., BioProject: PRJNA321551).

Top-Level Description of AptaTRACE
Our method builds on accepted assumptions regarding the gen-

eral HT-SELEX procedure. First we assume that the affinity and

specificity of aptamers are mainly attributed to a combination of

localized sequence and structural features that exhibit comple-

mentary biochemical properties to a target’s binding site. Given

a large number of molecules in the initial pool, it is expected that

such binding motifs are embedded in multiple distinct aptamers.

Consequently, during the selection process, aptamers contain-

ing these highly target-affine sequence-structure motifs will

become enriched compared with target non-specific se-

quences. Notably, under these assumptions, aptamers that

contain only the sequence motif without the appropriate struc-

tural context are either not enriched at all or enriched to a

much lower degree. The second critical assumption we make

is the existence of a multitude of sequence-structure binding

motifs that either compete for the same binding site or are bind-

ing to different surface regions of the target (Morris et al., 1998;

Zichel et al., 2012).

Leveraging the above properties of the SELEX protocol,

AptaTRACE detects sequence-structure motifs by identifying

sequence motifs that undergo selection toward a particular sec-

ondary structure context. Specifically, we expect that, in the

initial pool, the structural contexts of each k-mer are distributed

according to a background distribution that can be determined

from the data. However, for sequence motifs involved in binding,

in later selection cycles, this distribution becomes biased toward

the structural context favored by the binding interaction with

the target site. Consequently, AptaTRACE aims at identifying

sequence motifs whose tendency of residing in a hairpin, bulge

loop, inner loop, multiple loop, or dangling end or of being paired

converges to a specific structural context throughout the selec-

tion. To achieve this, for each sequenced pool, we compute the

distribution of the structural contexts of all possible k-mers (all
64 Cell Systems 3, 62–70, July 27, 2016
possible nucleotides sequences of length k) in all aptamers.

Figures 1A–1D provide a schematic of this procedure.

Next we use the relative entropy (Kullback-Leibler [KL] diver-

gence) to estimate, for every k-mer, the change in the distribution

of its secondary structure contexts (K-context distribution for

short) between any cycle to a later cycle (Figures 1E and 1F).

The sumof these KL-divergence scores over all pairs of selection

cycles defines the context shifting score for a given k-mer. The

context shifting score is thus an estimate of the selection toward

the preferred structure(s). Complementing the context shifting

score is the K-context trace, which summarizes the dynamics

of the changes in the K-context distribution over consecutive se-

lection cycles.

To assess the statistical significance of these context shifting

scores, we additionally compute a null distribution consisting of

context shifting scores derived from k-mers of all low-affinity ap-

tamers in the selection. This background is used to determine a p

value for the structural shift for each k-mer (Figure 1G). Predicted

motifs are then constructed by aggregating overlapping k-mers

under the restriction that the structural preferences in the

overlapped region are consistent (Figure 1H). Finally, position-

specific weight matrices of these motifs, specifically their

sequence logos, along with their motif context traces (the

average K-context traces of the k-mers used in the PWM con-

struction) and the corresponding aptamers in which these occur,

are reported to the user (Figure 1I).

Results on Simulated Data
To validate our approach, we applied AptaTRACE to a dataset

generated by means of in silico SELEX. To this end, we used

an extension to our AptaSim program (Hoinka et al., 2015) allow-

ing for implanting specific sequence-structure motifs into the

initial pool. We generated a dataset of 4 million sequences per

round containing five motifs (denoted here as motifs a–e), 5–8

nt in length and located predominantly in unpaired regions.

Note that the motifs’ primary structures also occur randomly in

the background aptamers, albeit in arbitrary structural contexts,

and that the motifs are hence not over-represented in the initial

pool. Eachmotif was initially present in 100 different target-affine

aptamer species and consequently selected for over ten rounds

of SELEX. A complete description of the simulation and the pa-

rameters used during in silico SELEX are available in Section B

in the Supplemental Experimental Procedures.

We applied AptaTRACE as well as discriminative regular

expression motif elicitation (DREME) and RNAcontext to the da-

taset to compare their capability of extracting these motifs.

Notably, RNAcontext was not capable of handling 4 million se-

quences in a reasonable time frame, prompting us to sample

the 10,000 most frequent and least frequent sequences of the

last selection cycle as input. The full scope of parameters used

for these methods during the comparison is detailed in Section

D of the Supplemental Experimental Procedures. The results

of the comparison are summarized in Figure 2A. Notably,

RNAcontext did not return any of the implanted motifs and is

hence not represented in the figure and was excluded from

further comparisons. AptaTRACE was applied to the full dataset

as well as to the last selection cycle only to facilitate a compar-

ison with DREME. Although DREME failed to identify the low-af-

finity motifs d and e, AptaTRACE was able to recover all motifs in

http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#aptatools
http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/index.cgi#aptatools
http://www.ncbi.nlm.nih.gov/bioproject/321551


Figure 1. Schematic Overview of the AptaTRACE Method

(A) For each cycle, all sequences with a frequency above a user-defined threshold a are selected as input.

(B) Computation of secondary structure probability profiles for each aptamer using SFOLD. For each nucleotide, the profile describes the probability of residing in

a hairpin, bulge loop, inner loop, multiple loop, or dangling end or of being paired.

(C) K-context and K-context distribution calculation for each k-mer.

(D) Generation of the K-context trace for each k-mer.

(E–G) k-mer ranking and statistical significance estimation. Given any two selection cycles, the relative entropy (KL-divergence) is used to estimate the change in

the distribution of its K-context distribution. The sum of these KL-divergence scores over all pairs of selection cycles defines the context shifting score for a given

k-mer. To assess the statistical significance of these context shifting scores, a null distribution is computed, consisting of context shifting scores derived from

k-mers of all low-affinity aptamers in the selection (frequency %a). This background is used to determine a p value for the structural shift for each k-mer. Top

scoring k-mers are selected as seeds.

(H) Predicted motifs are constructed by aggregating k-mers overlapping with the seed under the restriction that the structural preferences in the overlapped

region are consistent.

(I) Position-specific weight matrices representing these motifs, along with their K-context traces, and corresponding aptamers are reported to the user.

Cell Systems 3, 62–70, July 27, 2016 65
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Figure 2. Comparison between AptaTRACE and Other Methods Using Simulated Data

(A) Comparison of AptaTRACE against other methods based on simulated data. AptaTRACE was applied to the entire dataset and, for comparison with DREME,

to the last selection cycle only. Shown in the first two columns are the implanted motifs and their binding affinity used throughout the selection (B.A.). The output

PWMs produced by the tested methods that correspond to the implanted motifs are displayed in the remaining columns.

(B) Plot depicting the number of false positive motifs reported by DREME (blue line) and AptaTRACE on the x axis against the number of true positives recovered

on the y axis. For AptaTRACE, we utilized only the initial pool and the last cycle as input (green line) and the full simulated dataset (red line). The former yielded 15

motifs. When applying our method onto the full dataset, a total of 12 motifs were identified.

(C) Sequence-structure motifs identified by AptaTRACE from virtual SELEX given all ten selection cycles, including the initial pool, as input. Shown here are the

identified sequence logos, the k-mer that scored highest in significance used for construction of each motif (seed) and its p value, the abundance of seed of the

motif in the final selection round (Frequency), the first cycle at which the motif was detected (C�), as well as the motif context trace throughout the selection from

the initial pool to round 10.
both test scenarios. In addition, AptaTRACE exhibits, by a large

margin, the lowest false discovery rate compared with DREME

(Figure 2B). We note that DREME took approximately 10 days

to complete, whereas AptaTRACE only required a total of 12 hr

for both computing the secondary structure profiles and for iden-

tifying the sequence-structure motifs. A more detailed summary

of the sequence logos extracted by our approach on the full

dataset, including their motif context traces and statistical signif-

icance, is available in Figure 2C. Interestingly, a visual inspection

of the motif context trace (last column, Figure 2C) points to the

possibility of capturing most of these motifs at earlier cycles.

Indeed, computing the selection round in which a motif was first

detected by AptaTRACE (column C�, Figure 2C), confirmed this

expectation.

Results on Cell-SELEX Data
Next we applied AptaTRACE to the results of an in vitro cell-

SELEX experiment targeting the C-C chemokine receptor

type 7 (CCR7), where the initial pool as well as seven of

nine selection rounds have been sequenced, averaging 40

million aptamers per cycle (see Experimental Procedures for
66 Cell Systems 3, 62–70, July 27, 2016
a detailed description of the experimental procedure).

AptaTRACE was able to successfully extract a total of nine

motifs (Figure 3A).

The context trace of these motifs hints toward two proper-

ties of the selection process. First, a clear selection toward

single-stranded regions for every extracted motif can be

observed. It has always been postulated that ssDNA/RNA

binding motifs are predominantly located in loop regions

(Schudoma et al., 2010). Indeed, this assumption was lever-

aged by MEMERIS (Hiller et al., 2006) by imposing priors, di-

recting the motif search toward single-stranded regions. In

the case of AptaTRACE, no prior assumption of this type

was made. The fact that, despite a lack of such priors, motifs

detected by AptaTRACE conform with the expected properties

of RNA sequence-structure binding sites supports their rele-

vance for binding. Next, the trend of the structural preferences

of these motifs emerges relatively early during the selection

process, indicating that, in conjunction with our method, the

identification of biologically relevant binding sites in general-

purpose HT-SELEX data might be possible with fewer selec-

tion cycles.
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Figure 3. Analysis of Motifs Identified by AptaTRACE in Cell-SELEX Experiments

(A) All sequence-structure motifs as identified by AptaTRACE on cell-SELEX data. The sequence logo as well as the most frequent k-mer constituting the logo

(Logo Seed) and its p value are depicted for eachmotif together with its seed frequency. Themotif context trace for the sequenced cycles (0, 1, 3, 5, 6, 7, 8, and 9)

is shown in the last column. Experimental validation of sequence-structure motifs identified by AptaTRACE.

(B) The selected aptamers, their secondary structure probability profiles, as well as their MFE structure. For each species, the primer regions of the sequence are

colored gray, whereas the 30-nt-long randomized region is presented in black. The secondary structure probability profile reflects, for each nucleotide, the

probability of residing in a hairpin, inner loop, bulge loop, or multiple loop or of being paired. The position of the motif on the aptamer (as shown in the sequence

logo) is highlighted in green, and the primary structure region in which the motif was removed is highlighted in violet.

(C) Flow cytometry analysis of the sequences as shown in (B). Depicted are the percentages of aptamer-bound cells for target-expressing HeLa cells (dark blue)

and target-lacking HeLa cells (light blue) compared with a high-affinity antibody (CCR7 AB) and HeLA cells with no aptamers for control (Cells Only).

Cell Systems 3, 62–70, July 27, 2016 67



Figure 4. Trade-Off between the Number of

Selection Cycles and Sequencing Depth

Shown is the percentage of significant k-mers

identified by AptaTRACE as a function of the

number of cycles and sequencing depth. Each bar

corresponds to the application of our approach

onto a reduced dataset containing all selection

cycles up to round x while utilizing a random sub-

set of y% reads of each cycle. The height of each

column stands for the percentage of the number of

retrieved significant k-mers comparedwith running

AptaTRACE on the full cell-SELEX data. The SDs

correspond to the sampling effects caused by

repeating each experiment 20 times.
Experimental Validation
We further substantiated our findings in vitro by performing a

number of flow cytometry-based binding assays using chemo-

kine receptor-expressing HeLa cells and HeLa cells in which

the receptor is not expressed (Experimental Procedures). Using

the most prevalent sequence-structure motif as a reference, we

selected two highly enriched aptamers, denoted C1-A and C2-A

(Figure 3B), that contain this motif in a hairpin located at the far

30 end of the randomized region. To verify that both sequence

and structure are responsible for the binding interaction with

the target, we additionally engineered four control experiments

based on C2-A in which we either preserved the secondary

structure of the aptamer but replaced the primary structure of

the motif with an arbitrary sequence not related to any motifs

identified by AptaTRACE (NEG1-DEL1 and NEG1-DEL2) or

selected aptamers from the pool which retained the primary

structure of the motif but in which the secondary structure is

contained within a paired region of the species (NEG1-1 and

NEG1-2).

Our binding assays show that, although aptamer C1-A exhibits

the highest affinity to the target, C2-A shows substantially

greater specificity (Figure 3C). The control experiments demon-

strate that eliminating either sequence or structure from themotif

results in a significant decrease of binding ability to the target,

strengthening our argument that AptaTRACE is capable of iden-

tifying biologically relevant sequence-structure motifs from com-

plex HT-SELEX data. Notably, removing the secondary structure

component from the motif resulted in the largest drop in affinity

compared with replacing the primary structure only, further

validating the correlation between motifs located in unpaired re-

gions and expected binding affinity.

Trade-Off between the Number of Selection Cycles and
Sequencing Depth
The ability of AptaTRACE to analyze very large datasets opens

the possibility of reducing the number of selection cycles by

increasing the sequencing depth. Such a reduction in number

of cycles is desirable for two main reasons. First, with current

technology, the cost savings from reducing the number of cycles

outweigh the added cost because of deeper sequencing. Next, a

decrease in the amount of selection rounds allows to reduce the

number of potential artifacts that can accumulate during this

multi-step procedure. Because the sequencing depth of our
68 Cell Systems 3, 62–70, July 27, 2016
cell-SELEX experiment significantly exceeds current practices,

we were able to explore the relationship between sequencing

depth, the number of required selection cycles, and the number

of identified motifs by AptaTRACE. For this purpose, we per-

formed a series of sampling tests on the original data. Specif-

ically, we iteratively reduced the number of selection cycles

down to the first round and randomly selected 5%, 10%, 20%,

and 100% of the sequences in each round. We then utilized

AptaTRACE on the scaled-down datasets and computed the ra-

tio between the number of identified seed k-mers and significant

k-mers compared with running AptaTRACE on the full dataset.

The results suggest that AptaTRACE is capable of identifying

motif signals from as early as selection cycle 3 and that, with

only five rounds, the vast majority of motifs (80%) can be recov-

ered (Figure 4). These findings therefore strongly indicate the

possibility of trading off additional (and expensive) selection cy-

cles in favor of deeper (and more economic) high-throughput

sequencing, even when analyzing complex landscapes as those

generated by cell-SELEX experiments.

DISCUSSION

Unlike in traditional SELEX, where only a handful of potential

binders are retrieved and exhaustively tested experimentally,

HT-SELEX returns a massive amount of sequencing data

sampled from some or all selection rounds. These data conse-

quently serve as the basis for the challenging task of identifying

suitable binding candidates and for deriving their sequence-

structure properties that are key for binding affinity and speci-

ficity. Except for the special case of TF-binding aptamers, no

previous tool addressing this task existed. Several potential fac-

tors during any stage of the selection contribute to the

complexity of developing efficient approaches for the identifica-

tion of sequence-structure binding motifs from HT-SELEX

sequencing data. They include, but are not limited to, polymer-

ase amplification biases, sequencing biases, contamination of

foreign sequences, and non-specific binding. These factors

prompted aptamer experts to consider cycle-to-cycle enrich-

ment instead of frequency counts as a predictor for binding

affinity. Although cycle-to-cycle enrichment did increase the

predictive power of these methods, it cannot bypass

problems related to amplification bias nor can it identify aptamer

properties that drive binding affinity and specificity. In contrast,



AptaTRACE is specifically designed to identify sequence-struc-

ture binding motifs in HT-SELEX data and is thus suitable to

predict the features behind binding affinity and specificity.

An important feature of AptaTRACE is that, rather than using

quantitative information, it directly leverages the experimental

design of the SELEX protocol and identifies motifs that are under

selection through appropriately composed scoring functions. By

focusing on local motifs that are selected for, AptaTRACE by-

passes global biases such as the PCR bias, which is typically

related to more universal sequence properties such as the CG

content. In addition, because AptaTRACEmeasures selection to-

ward a sequence-structure motif by its shift in the distribution of

thestructural context andnotbasedonabundance, it canuncover

statistically significant motifs that are selected for, even when

these only form a small fraction of the pool. This is an important

property that can ultimately help to shorten the number of cycles

required for selection and thus to reduce the overall cost of the

procedure. Indeed, our results have confirmed that, with deep

enough sequencing, only a limited number of selection cycles

mightbe required for exhaustively elucidatingsequence-structure

motifs in HT-SELEXdata. In addition, our analysis also shows that

the dynamics of K-context traces is not the same for all motifs.

Although most trends essentially stabilize at a relatively early cy-

cle, some continue to grow.Wehypothesize that this type of infor-

mation can aid the identification of the most promising binders.

AptaTRACE is therefore not only a powerful method to detect

emerging sequence-structure motifs but also a flexible tool that

can be readily adopted to interrogate such selection dynamics.

EXPERIMENTAL PROCEDURES

Cell-based SELEX was performed using an RNA library containing a random-

ized 30-nt region flanked by fixed primer sequences. Cell-based selection was

performed as described previously (Kim andGu 2013) by employing open PCR

for DNA amplification during each selection round. Positive selection was per-

formed on HeLa cells transduced with a bicistronic lentiviral vector expressing

the target surface receptor and GFP, whereas unmodified HeLa cells, which

lack expression of the target receptor, were used for negative selection.

High throughput sequencing (HTS) was performed on the positive selection

at rounds 0, 1, 3, 5, 6, 7, 8, and 9.

Binding assays were performed using standard flow cytometry. We used

both chemokine receptor-expressing HeLa cells and HeLa cells in which the

receptor was not expressed for the analysis of aptamer binding (see the

Flow Cytometry Analysis of Cell Surface Binding section in the Supplemental

Experimental Procedures for details).

AptaTRACE is available for download at http://www.ncbi.nlm.nih.gov/

CBBresearch/Przytycka/index.cgi#aptatools and as Data S1.

ACCESSION NUMBER

The accession number for the data reported in this paper is BioProject:

PRJNA321551.
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