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a b s t r a c t

Investigations of small world contact networks, defined as networks with a short characteristic path
length and a substantial local clustering of contacts in the neighborhood of each node, have emphasized
the process performance of such networks. The argument that large-scale, small world, contact networks
are structures with startlingly efficient process performance is premised on the existence of shortcuts,
without which the characteristic path lengths of the networks would be substantially larger. No doubt,
given a high probability of transmission in each contact of a network, such shortcuts are a potential
structural basis of reliable flows of information, influence, material and disease. However, interpersonal
contacts are often markedly unreliable transmission conduits, and the average shortcut contact may be
a more unreliable, episodic, transmission conduit than the average contact of cliques. With markedly
unreliable contacts, fundamental helix substructures, that are parallel-transmission subsystems of the
contact network, importantly enter into the analysis of network performance. These substructures of

disjoint path redundancies are based on the local clustering of contacts in the neighborhoods of each
node. Drawing on network reliability theory, this article presents an approach in which intersecting
cliques of contact networks are a theoretically important construct in the specification of the transmission
implications of observed contact networks. Clique intersections are a structural basis of path redundancies
that enable reliable transmission among the nodes of contact networks consisting of contacts that may or
may not be active conduits of transmissions during some period of time. The strong contacts that occur

urthe
among clique members f

. Introduction

Contact networks transmit information, influence, material, and
isease. The performance of contact networks, i.e., their struc-
ural enabling of more or less reliable and rapid transmissions, is
n enduring subject of inquiry.1 Information on local events, wit-
ess and insightful opinions, new practices, valuable commodities,
nd debilitating illnesses are exchanged and spread via interper-
onal contacts. With such transmissions, individuals’ information,
ttitudes, behaviors, resources, and health are not independent of
he other individuals’ information, attitudes, behaviors, resources,

nd health. A fundamental contribution of social network theo-
ies, concerned with processes that unfold in contact networks,
re the explanations that they provide of origins of the states of
ndividuals on these variables. Network-based interdependence

∗ Tel.: +1 805 259 8389.
E-mail address: friedkin@soc.ucsb.edu

1 The term “performance” will have specific well-defined definition in the for-
alization employed in this article—reliability theory, where it refers to success or

ailure of an edge as a transmission conduit during some period of time, and the
eliability of a network as a basis of transmissions in the particular ordered pairs of
odes of the network.

378-8733/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.socnet.2010.11.004
r enhance the contributions of these path redundancies.
© 2010 Elsevier B.V. All rights reserved.

arises in small groups with 2–10 members, in meso-groups with
11–102 members, and groups that are orders of magnitude larger.
The investigation of network-based interdependencies in small-
and meso-groups has been ongoing. Investigations of large-scale
groups have accelerated with work on small-world contact net-
works (Newman, 2000; Newman et al., 2006; Strogatz, 2001; Watts,
1999; Watts and Strogatz, 1998). This article is focused on the lat-
ter line of work and the thesis that particular structural features
of large-scale networks enable reliable transmissions between the
nodes of low density contact networks.

Watts and Strogatz (1998) illustrate the structural properties of
a small-world contact network with Fig. 1. Each node of the graph
(Fig. 1A) is situated in a maximal complete clique of size 3, and
these cliques intersect in a regular manner: each clique intersects
with two other cliques, based on two shared nodes, in single cycle
of intersections. Fig. 1B is based on an algorithm, a constrained ran-
dom rewiring of the edges in Fig. 1A, which produces shortcuts in
the graph. While the algorithm is ad hoc, it serves to realize a graph
with high clustering of contacts in the neighborhood of each node,

and the same number of edges as the graph of Fig. 1A. The result-
ing Fig. 1B graph has a short characteristic path length and large
clustering coefficient. The random shortcuts dramatically reduce
the characteristic path length of the graph without dramatically
reducing its clustering coefficient.

dx.doi.org/10.1016/j.socnet.2010.11.004
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:friedkin@soc.ucsb.edu
dx.doi.org/10.1016/j.socnet.2010.11.004
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Fig. 1. Watts–Strogatz small-world ring. (A) Each node is situated in a maximal
complete clique of size 3 that intersects with two other cliques, based on two
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hared nodes, in single cycle of intersections. (B) The result of a constrained random
ewiring of the edges of (A). The number of nodes of the ring, here 20, and number
f shortcuts, here 3, may both be increased to generate a large-scale small-world
etwork.

The rewiring algorithm employed in the Watts and Strogatz
1998) small-world generation model may be, and has been, mod-
fied (Strogatz, 2001). In its revised form the construction of a
mall-world model starts with a ring of n nodes in which each node
s adjacent to its nearest and next-nearest neighbors out to some
ange k. Shortcut edges are then added – rather than rewired –
etween randomly selected pairs of nodes. Increasing the range k
niformly increases the adjacencies of nodes to 2k, and generates

arger cliques of size k + 1 that sequentially intersect in a ring of
ntersections, where each intersection is based on k shared mem-
ers.

Based on the existence of shortcuts, the key potential implica-
ion of the short paths of small-world networks is their provision
f efficient communication channels between different parts of
system, which allow the dynamical processes unfolding in the

etwork to quickly generate ramifying information flows, behav-
oral cascades, and global coordination of behavior. The hypothesis
hat shortcuts may facilitate such dynamical processes is, of course,
lausible. Whether shortcuts are reliably able to do so is more prob-

ematic. The importance of shortcuts and other paths of a contact
etwork depend not only on the properties of the process that
nfolds in a network, but also on the probability of edge failures
nd mitigating path redundancies. Edge failure refers to the binary
tate of a particular edge as either an active or inactive basis of
ransmission during a period of time, and path-redundancy refers
o the existence of some multiplicity of alternative paths by which
ransmission may occur.

Drawing on threshold models of behavioral diffusion, Centola
nd Macy (2007) illustrate how properties of the process that is
ssumed by such models condition the transmission implications
f structural features of a contact network. Moody (2002) illustrates
ow information on the temporal sequence of disease transmis-
ions in interpersonal contacts conditions the implications of a
ontact network for contagions. The present article is consistent
ith such work, in which a fixed contact network is assumed and

he implications of the network for transmissions among the net-
ork’s nodes is taken as ambiguous in the absence of additional

pecification. Here, I employ a specification of a contact network in
erms of its edge-failure probabilities.

For large-scale networks of interpersonal contacts, a credible
remise is that the average edge of an interpersonal contact is
more or less reliable transmission conduit; each edge of the

etwork may or may not be an active conduit that enables a trans-
ission during some period of time. A further credible premise
s that the average shortcut edge of a contact network is a more
nreliable, episodic, transmission conduit than the average edge of
he cliques of a contact network (Granovetter, 1973, 1983). Thus,
hortcuts provide opportunities that may or may not be realized.
he high clustering coefficients of small-world networks also has an
rks 33 (2011) 88–97 89

ambiguous status. On the one hand, the presence of such clustering
is an acknowledgement that the edges of many empirical contact
networks are clustered and, therefore, should be a structural feature
of small-world models. On the other hand, such clustering has an
important status as the structural basis of path redundancies that
may have a substantial effect on the probability of transmissions
and, perhaps, in turn, on the emergence of global coordination. In
the ring network (Fig. 1), path redundancy increases as the range k
of adjacencies is increased.

The present article considers the implications of edge-failure
probabilities and path redundancies in large-scale contact net-
works. The article draws on network reliability theory to present
a theoretical analysis of the implications of edge-failure probabil-
ities and path redundancies in large-scale “small world” networks
(Colbourn, 1987; Hillier and Lieberman, 1980; Ross, 2007). The
article highlights the transmission implications of sequences of
intersecting cliques, and it assesses the implications of shortcuts
that are added to a contact network in which all nodes are linked
by one or more sequences of intersecting cliques. Based on a strong
form of such sequences, the article presents an analysis that gen-
erally applies to rings, trees and other networks in the domain of
networks with this strong form of clique sequencing. An approach
is employed that deals with conservative lower bounds for network
transmission reliability values based on edge disjoint paths in ideal-
ized “small world” networks with a regular form of clustered edges.

While the main body of this article is focused on a theoretical
analysis that bears on idealized “small world” networks, the net-
work reliability theory that is employed has broader applications to
the investigations of observed contact networks, whether they are
small or large. These applications draw on the familiar constructs of
a network’s reachability matrix and strong components. In empiri-
cal investigations, it is not unusual to find that a network is a single
strong component, or that it contains a giant strong component
that includes a large proportion of the nodes of the network. Such
components, in which each node is linked to each other node by
one or more paths, are opportunity structures for transmissions. In
addition to detailed analyses of their internal structural features
or analyses of particular social processes that may unfold in them,
network reliability theory provides a potentially useful framework
for refining the construct of an opportunity structure.

The approach begins with a valued network, with edge values
that are taken as corresponding to the probability of the state of
each edge, during some period time, as an active or inactive trans-
mission conduit. Thus, a network with |E| edges may be viewed
as having 2|E| realizations of active edges, including a realization
with no active edges, and in each of these realizations a particu-
lar node i is either linked to a particular node j by one or more
paths of active edges that allow a transmission from i to j, or not.
The network’s transmission reliability values, with respect to each
of its ordered pairs of nodes, are the probabilities of the existence
of one or more paths of active edges connecting node i to node j,
on which basis a transmission from i to j may occur. Conditional
on a measurement model for the edges’ probability values, net-
works with otherwise identical structural features may present
startlingly different implications for transmissions. These impli-
cations rest on either analytically derived transmission reliability
values, analytically derived bounds for these reliabilities, or numer-
ically derived estimates of the exact reliabilities. Hence, lines of
work on structural models of cohesion (e.g., Moody and White,
2003) and interpersonal influence networks (e.g., Friedkin, 1998)
may be advanced with this approach. Appendix A of the article

describes and illustrates some the available techniques for obtain-
ing network transmission reliabilities. The numerical technique,
also outlined and illustrated in Appendix A, is readily applicable to
observed complexly configured contact networks and may serve as
a useful adjunct to standard structural analyses.
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. Intersecting cliques and their spines

We need some definitions to proceed with the development
ursued in the present article:

Simple connected graphs and their paths. Let G(V, E) be a nontrivial
simple connected graph, where V = {v1, v2, . . ., vn} is the vertex set
of G and E is the edge set of G. With n = |V| ≥ 2 vertices (nodes), the
graph is nontrivial, and with |E| ≥ 1 edges (lines) it is not empty.
For an vi, vj edge in the edge set of G, the nodes vi and vj are its
endpoints. A path on G is a sequence of nodes (vi, vk, vu, . . ., vw, vj)
in which no node occurs more than once with an edge sequence
of intersecting endpoints as follows (vi, vk)(vk, vu), . . ., (vw, vj). A
path joins the nodes that it contains. The graph is simple when
there are no loops on the nodes (vi, vi edges are absent for all
i), when the edges are undirected and unweighted, and when
at most one edge exists for each of the n(n − 1)/2 pairs of nodes
(multiple edges joining i /= j do not exist for all i and j). The graph
is connected when at least one path joins every i /= j pair of nodes.
The distance dij separating two i /= j nodes of G is the number of
edges of a shortest path that joins them. The characteristic path
length of G is the average distance separating the n(n − 1)/2 pairs
of nodes of G.
Subgraphs, cliques, and densities. An edge-induced subgraph is a
subset of the edges of G together with any vertices that are their
endpoints. A vertex-induced subgraph of G is a subset of the ver-
tices of G together with any edges whose endpoints are both in
this subset. A clique is a complete subgraph of G, i.e., each pair of
nodes in the subgraph is joined by an edge. The clique is maxi-
mal when its subgraph cannot be enlarged with the addition of
other nodes. A k-clique is a subgraph of G in which the maximum
distance separating any pair of nodes in the subgraph less than
or equal to k. The density of a subgraph of G, is the fraction of the
number of possible edges among the nodes of the subgraph that
exist among them.
Adjacency, structural equivalence, node degrees, neighborhoods, and
clustering coefficient. Two nodes i /= j are adjacent in G if they are
joined by an edge. These adjacencies may be represented as an
n × n symmetric adjacency matrix G = [gij], where gii = 0 for all i,
gij = 1 for all i /= j if i and j are joined by an edge, and gij = 0 for
all i /= j if i and j are not joined by an edge. Two nodes i /= j are
structurally equivalent in G if

∑n
m=1(gim − gjm)2 = 0. The degree of

a node i is the number of nodes adjacent to i, di =
∑n

m=1gim. The
neighborhood of node i is this subset of adjacent nodes. The cluster-
ing coefficient of G is the average density of the neighborhoods of
G. Each node of G has di adjacent nodes, among whom di(di − 1)/2
edges may exist. Let fi be the fraction of these possible edges that
exist in G. The clustering coefficient for G is (1/n)

∑n
i=1fi.

Shortcut edges. A shortcut is an i, j edge whose removal from the
edge set of G produces a G− graph in which dij ≥ 3, or in which
dij = ∞ if there is no path in G− that joins i and j. Alternatively,
given dij ≥ 3 in G, the addition of an i, j edge to the edge set of G
produces a G+ in which the i, j edge is a shortcut.

For the theoretical analysis that is presented in this article, I
ill assume a contact network G(V, E), with edges that are inde-
endently open to transmissions with probability � and closed to
ransmissions with probability 1 − �. For this network G, i.e., a sta-
ionary system of Bernoulli random variables, the edges may be
epresented as {X1, X2, . . ., X|E|}, for which there are 2|E| realizations
X1 = x1, X2 = x2, . . . , X|E| = x|E|), where
k =
{

1 if the Xk edge is open, E(Xk = 1) = � for all k

0 if the Xk edge is not open, E(Xk = 0) = 1 − � for all k
(1)

Each realization presents an edge-induced subgraph in which
ode i is either joined to node j by a path, or not. For each pair of
rks 33 (2011) 88–97

nodes, i and j of G, the following structure function for the system is
defined:

�(x) = �(X1 = x1, X2 = x2, . . . , X|E| = x|E|) =
{

1 if i is joined to j

0 if i is not joined to j
(2)

Simply put, each realization has a reachability matrix in which
node i either reaches node j or not. The system’s reliability for a
particular pair of nodes of G, i.e., the probability of a transmission
from i to j, for each i and j of G, is the expectation that i reaches j,
i.e.,

�ij =
∑

x:�(x)=1

|E|∏
i=1

�xi (1 − �)1−xi (3)

Within the constraints of the NP-complete problem of deter-
mining the G system’s reliability values, it is feasible to analytically
derive exact reliabilities, or upper and lower bounds for these val-
ues. In Appendix A, I provide a textbook illustration of how this
is accomplished. A close look at what is involved is instructive.
The analysis is non-trivial. Given a particular contact network of
sufficient importance, an analysis may be justified that takes into
account the full edge set of G. However, it may or may not be feasible
to do so. In the present analytical context, the signature of a NP-
complete problem appears when there is no known algorithm that
is able to solve the analytical problem on a particular network in a
practical amount of time. However, numerical techniques are avail-
able that, while approximate in nature, are feasible to implement
for a broad domain of complexly configured networks.

An intensive focus on particular networks does not provide a
platform for the development of fundamental theory on social net-
work structure in the following specific sense: the more information
on a particular social network that is taken into account, the more
constrained are conclusions about the transmission implications
of generic structural features of networks that exist in each mem-
ber of a broad class of networks. The present investigation focuses
on an elementary idealized substructure of social networks – spine
segments – that occur in the domain of a class of G in which all pairs
of nodes at distance dij ≥ 2 are joined by sequentially intersecting
cliques. The networks in this domain have theoretical foundations
in the semipath structures of generalized balance theory (Johnsen,
1985) and role structure theory (White et al., 1976) in which
the global structure of a contact network is conditioned by basic
premises concerning balanced and unbalanced elementary triadic
structures and structural equivalence, respectively. Large empirical
literatures in social psychology, anthropology, and sociology have
developed on these theories. More broadly, networks consisting of
sequences of intersecting cliques and high-density neighborhoods
have been emphasized in work concerned with the coordination of
large-scale highly differentiated social structures (Friedkin, 1998),
where such sequential intersections are denoted as the spines of
ridge structures. Shortcuts appear as structural anomalies in this
line of work in which the global organization of structural cohesion
is emphasized.

A strong form of sequentially intersecting cliques R(C, B) exists
for a network G(V, E) that may be partitioned into nC = |C| positions,
C = {c1, c2, . . . , cnC }, each of which is occupied by some number of
elementary nodes of G, sk ≥ 2, k = 1, 2, . . ., nC, that is a clique of struc-
turally equivalent nodes in G, where each cu, cv edge of the edge set
of R is bond composed of susv edges of G. Assuming that the vertex-
induced subgraph for the elementary nodes of each position of R
is not empty of elementary edges, the position’s subgraph must be

complete, i.e., a clique, to satisfy the structural equivalence condi-
tion of the elementary nodes located in the position. Similarly, since
each bond of R is not empty of elementary edges, each bond also
must be complete to satisfy the structural equivalence condition of
the elementary nodes of each position.
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Fig. 2. The substructure of spine-segments. The substructure exist for all nodes i and j at distance dij ≥ 2 in the G of R and contains a subset of size s of the shortest i − j paths in
G es in e
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joining nodes i and j. (A) Segments with two (s = 2) and three (s = 3) elementary nod
egments as helical structures with a backbone of composed of undisplayed edges o
y two or more nodes, and the edges are the contacts among these nodes. The inter-
irectly link nodes located in two positions.

Any simple connected graph may be taken as the image of a
(C, B) structure in which the vertices are positions occupied by a
umber of elementary nodes, and in which the edges are bonds
etween the positions composed of elementary edges. For each
uch R, given the specification of the number of elementary nodes
hat are located in each position, S = {s1, s2, . . . , snC }, there is a
orresponding network G with the structural equivalence and com-
leteness conditions entailed in the definition of R. For the class of
(C, B) with |C| ≥ 3 positions and |B| ≥ 2 bonds, the properties of the
orresponding R and G graphs include the following:

a) G(V, E) is a simple connected graph with |V | = ∑|C}
k=1sk nodes

and |E| =
∑|C|

k=1

(
sk

2

)
+

∑|B|
(cu,cv) ∈ Bsusv edges. Each position

contains

(
sk

2

)
elementary edges. The number of edges joining

the members of two positions cu /= cv is either susv or 0, in corre-
spondence to the bonds of R. The elementary nodes involved in
each cu, cv bond of R are a maximal clique of G containing su + sv

elementary nodes and

(
su + sv

2

)
elementary edges.

b) Paths of R with three or more positions, cu, cv, cw, . . . , ck,
involve a sequence of intersecting maximal cliques: the max-
imal clique of elementary nodes in cu ∪ cv intersects with the
maximal clique of elementary nodes in cv ∪ cw , and so on. In
general, the elementary nodes involved in every path of posi-
tions of length k ≥ 2 are a k-clique. All elementary nodes, i and

j, at distance dij ≥ 2 in G are joined by at least one path of posi-
tions, cu, cv, cw, . . . , ck, with su, sv, sw, . . . , sk elementary nodes
in the respective positions and with i ∈ cu (source position) and
j ∈ ck (terminal position). The vertex-induced subgraph of G for
the union of the elementary nodes on this path is denoted as an
ach position of the segment that join nodes i and j. (B) Isomorphic representation of
at join the nodes of adjacent positions. Note. Each oval is a position that is occupied

on bonds are the complete edge sets (one-blocks in the network’s blockmodel) that

ij-spine segment of G (henceforth, simply spine segment). This
spine segment contains a subset of the shortest paths joining
nodes i and j in G. It is a generic substructure that exists for all
nodes dij ≥ 2 in all G in the domain of R.

(c) Now note that the subgraphs of elementary nodes and edges of
a spine segment may be configured in various ways depending
on the number of elementary nodes, su, sv, sw, . . . , sk, that are
located in the positions of the segment. These variations gen-
erate complex arrays of minimal cut sets and minimal paths
in the substructure, as a function of the distribution of the
elementary nodes among the positions. These cut sets and
minimal paths are the analytic grist for determining trans-
mission probabilities (Appendix A). However, within all spine
segments there exists a still more fundamental substructure
that is based on the minimum number of elementary nodes
located in the positions of the segment that joins i and j, s =
min(su, sv, sw, . . . , sk) ≥ 2, that is a vertex-induced subgraph
for the union of s elementary nodes taken from each position
of the segment. All constructions of this more fundamental
substructure, based on s, are isomorphic, i.e., all realizations

of the

{(
su

s

)
,

(
sv
s

)
,

(
sw

s

)
, . . . ,

(
sk

s

)}
combinations of

elementary nodes present isomorphic subgraphs with a clique
of s nodes in each position and 2s edges joining the nodes of
each pair of adjacent positions. This substructure contains s of
the shortest paths of G that join the elementary nodes in the cu

and ck positions.
Fig. 2 illustrates the generic form of the spine-segment substruc-
ture that connect all pairs of dij ≥ 2 elementary nodes in all R for a
node i located in the source position of the segment and a node j
located in the terminal position of the segment. Fig. 2A presents the
special case of a s = 2 segment, the minimal segment for the class
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ig. 3. Adding a shortcut edge to a spine-segment. For the labeled nodes in the two
rom duv ≥ 2 to duv = 1, and an i, j distance dij ≥ 4 to dij = 3, for all i /= u in the same o
ontributes a path of length 3 to the PTS that is shorter than dij + 2. Note. Each oval i
hese nodes. The inter-position bonds are the complete edge sets (one-blocks in the

f R with |C| ≥ 3 positions and |B| ≥ 2 bonds, and a s = 3 segment.
ig. 2B illustrates the helical representation of the substructure,
.e., a double-helix in the case of a s = 2 substructure, a triple-helix
n the case of a s = 3 substructure, and so on. The nodes at the same
evel of the helix are the s elementary nodes of a position, and they
re joined by s(s − 1)/2 edges. The string of nodes on each of the
helices join sequentially a node in one position to a node of an
djacent position. The backbone of the structure is comprised of
he unrepresented edges among the nodes of adjacent levels, e.g.,
he crossed edges of Fig. 2A.

d) Moving still deeper in the pursuit a closed-form generic expres-
sion of the transmission implications of spine segments, it may
be noted that the substructure of all spine-segments contains,
at its core, a parallel transmission subsystem (PTS) with 2s − 1
pairwise edge-disjoint paths of which s are paths of length dij
(the shortest paths) and s − 1 paths of length dij + 2. A paral-
lel transmission subsystem is, by definition, a subsystem based
on pairwise edge-disjoint paths that, by virtue of their disjoint
edge sets, make independent contributions to the probability
of a transmission from node i to node j. The reliability of this
subsystem, i.e., the probability of a transmission from i to j on
the basis of the core PTS, is

�′
ij = 1 − (1 − �dij )s(1 − �dij+2)s−1 (4)

The edge set of the subsystem is obviously a subset of the edge
et of G. Under the natural assumption of a monotone system,
he full system’s i-to-j transmission reliability is �ij ≥ �′

ij
and �′

ij

resents a conservative lower bound for the probability of a trans-
ission from i to j in G. The conservative feature of this elementary

ound allows an analysis of transmission probabilities from i to j
or all i and j at distance dij ≥ 2 in G, for all G in the domain of R. Here,
he global structure of G is ignored in order to present a fundamen-
al set of implications of the core PTS of the spine segments that are
mbedded in each G in the domain of R. Alternative lower bounds,
hich take into account more or all of the edges of G, present values

hat are contingent on the global structure of G. Depending on the
ondition {�, dij, s} of the PTS, �′

ij
may be elevated to a value that is

nly modestly increased by the inclusion of the other i − j minimal
aths of G.
e) Fig. 3 illustrates a G+ circumstance in which a u, v shortcut edge
has been added to the edge set of G. Shortcuts are structural
anomalies in the G of R. The u, v pair of nodes that are the end-
points of the shortcut edge are not structurally equivalent with
the nodes in their respective positions. With the addition of this
ions of the s = 2 and s = 3 segments, the shortcut u, v edge reduces the u, v distance
ion as u and all j /= v in the same position as v. In general, for dij ≥ 2, the u, v shortcut
ition that is occupied by two or more nodes, and the edges are the contacts among
ork’s blockmodel) that directly link nodes located in two positions.

u, v shortcut, the maximum number of pairwise edge-disjoint
paths connecting i and j in the spine-segment remains 2s − 1,
the distribution of path lengths is altered, and transmission
probability for i and j in the PTS of G+ is

�′
ij(G

+) = 1 − (1 − �3)(1 − �dij )s(1 − �dij+2)s−2 (5)

where dij is the length of the shortest paths joining i and j in G
(n.b., not in G+). The additional u, v edge, which generates a path
of length 3 joining i and j, must increase the PTS transmission
probability for i and j. The amount of the increase is

�ij ≡ �′
ij
(G+) − �′

ij
(G)

= �3(1 − �dij−1)(1 − �dij )s(1 − �dij+2)s−2 > 0 (0 < � < 1)
(6)

The effect of the shortcut is its setting of a threshold �3 trans-
mission probability below which the PTS transmission probability
for i and j cannot fall, for an i and j at any distance dij ≥ 2 in G, which
applies to all i /= u in the same of position as u and all j /= v in the
same position as v.

3. Results

Fig. 4A presents the transmission probabilities from a node i
to node j in the G of R that are separated by some distance, dij = 2,
. . ., 25, based on the PTS of the spine-segment that joins them. Each
curve describes the PTS transmission probability in all R with |C| ≥ 3
positions and |B| ≥ 2 bonds with a minimum of s = 2, . . ., 100 occu-
pants in each position of a segment that joins the two nodes. The
three plots presented in Fig. 4A are based, respectively, on edge fail-
ure probabilities of 0.50, 0.30, and 0.10. Presented in this form, the
curves are generally applicable, i.e., all elementary pairs of nodes i
and j, at distance dij ≥ 2 in the class of G under consideration, have
the minimum transmission probability presented on the curve for
that s on the plot.

The effects of path redundancy and edge failure probabil-
ity are evident in these plots. Ceteris paribus, as the probability
of edge failure decreases, the PTS reliability value increases. It
should be evident that as the edge failure probability approaches
0, all structural features of G, except the simple connectivity of i
and j, become increasingly irrelevant. These features include G’s
size, density, characteristic path length and clustering coefficient.
Ceteris paribus, as path redundancy increases, so does the PTS

reliability value. The marginal positive contributions of the path
redundancies of parallel s ≥ 2 subsystems decline with increas-
ing distance. In general, for a given � and dij ≥ 2, there is some
value of s that will satisfy a criterion lower bound �′

ij
≥ � based

on �′
ij

= 1 − (1 − �dij )s(1 − �dij+2)s−1. Below, we have the solution
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Fig. 4. Probabilities of a transmission for the parallel transmission subsystem (PTS) of spine-segments. This subsystem exits for all nodes i and j at distance dij ≥ 2
in the G of R. The curves on each plot are based on position sizes (s) 2–100. The elevation of the curves increase with s. (A) The transmission probability is �′

ij
=

1 dij
s dij+2 s−1 missio ′ 3 dij

s dij+2 s−2
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− (1 − � ) (1 − � ) . (B) With the addition of the u, v shortcut edge, the trans

s a �ij = �3(1 − �dij−1)(1 − �dij )s(1 − �dij+2)s−2 > 0, 0 < � < 1, increase of the i, j tran

f this equation for those values of s that satisfy �′
ij

≥ �, where � is
ome specified minimum criterion reliability value:

>
ln(1 − �dij+2) + ln(1 − �)

ln(1 − �dij ) + ln(1 − �dij+2)
, 0 < � < 1 (7)

To illustrate, for � = 0.70 and dij = 16, s > 342 satisfies the crite-
ion �′

ij
≥ � = 0.80. The implication is that the joint condition of

nreliable edges and long i − j paths is a powerful constraint on reli-
ble transmissions that may be mitigated by the path redundancies
enerated by a sequential intersection of very large cliques.

The plots of Fig. 4B present an analysis of the addition of the
hortcut edge (Fig. 3) to a spine-segment. The plots for s = 2, . . ., 100
resent the PTS probability �′

ij
(G+) for a node i /= u located in the

ame position as u and a node j /= v located in the same position as v,
or dij = 2, 3, . . ., 25 in G. The main effect of the shortcut is a baseline
ransmission value �′

ij
(G+) ≥ �3 below which the PTS transmission

robability cannot fall. For � = 0.70, this baseline value is modest
′
ij
(G+) ≥ 0.343. Although the baseline becomes substantial for high

alues of �, it bears noting again that, for sufficiently high values
f �, all structural features of G, apart from its simple connectivity,
ecome increasingly irrelevant. Thus, it is in systems with unreli-
ble edges that a shortcut may make a substantial contribution, but
t does not suffice to secure a highly reliable transmission.

. Discussion

In this article, network reliability theory is brought to bear on
he analysis of “small world” contact networks. Given the rich

athematical structure and related body of work on reliability
ngineering, the present investigation may usefully serve to fur-

her build the interdisciplinary intersection of developments on
mall-world networks in the engineering, biological, physical, and
ocial sciences. While markedly unreliable edges typically do not
ppear in the engineering applications of network reliability the-
ry, such edges are, arguably, the reality for networks composed
n probability is �
ij

= 1 − (1 − � )(1 − � ) (1 − � ) . The effect of the shortcut

ion probability �′
ij
.

of interpersonal contacts. The present article draws on network
reliability theory to present a theoretical analysis of the impli-
cations of unreliable edges and path redundancies in large-scale
“small world” networks. The analysis occurs in the framework of
idealized “small world” networks with structures that are linked
to sociological work on role structures, and their representation
as blockmodels composed of structurally equivalent positions and
bonds between such positions.

Work on “small world” networks has emphasized that the short
characteristic path length of such networks is a structural basis of
efficient communication channels between distant parts of a sys-
tem, which allow the dynamical processes unfolding in the network
to quickly generate ramifying information flows, behavioral cas-
cades, and global coordination of behavior. The work highlights the
importance of shortcuts. The high clustering coefficients of small-
world networks enters into this work as an acknowledgement that
the edges of many empirical contact networks are clustered and,
therefore, also should be a structural feature of small-world mod-
els. The present analysis suggests that the theoretical importance
of clustering is at least as great as the theoretical importance of
shortcuts in “small world” networks. Clustering does not set up
the “small world” problem; clustering is part of its solution in
providing a multiplicity of alternative transmission paths. If con-
tacts are stochastic conduits of transmissions, with probabilities of
being active (open) or inactive (closed) during some period of time,
then path redundancies enter into the analysis of transmissions
as an important theoretical construct and determinant of reliable
transmissions among the nodes of a network. In contact networks
composed of unreliable edges, the existence of parallel transmis-
sion subsystems in the network is a core structural foundation of
reliable transmissions between the nodes of the network. When

the local clustering of edges in the neighborhoods of nodes gener-
ates a sequence of intersecting cliques, then path redundancy is an
implicated structural feature of such sequences. Path redundancy
mitigates the unreliability edges and may substantially elevate the
probability of transmissions between pairs of nodes. This famil-
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ar terrain of network reliability engineering has an application
n research on “small world” networks. Clique intersections are
ne structural basis of such redundancies, and the strong contacts
f cliques further enhance the contributions of these path redun-
ancies. Thus, the pattern and composition of intersecting cliques
arrant close attention in specifying the transmission implications

f observed contact networks.
In the present work, I allow for the special case implicitly

ssumed in the literature on “small world” contact networks –
he special case of a contact network in which all contacts have
xceedingly high probabilities of being in an active state. I examine
he broader implications of “small world” structural features relax-
ng the assumption that these probabilities are high. I advance the
remise that the probability of an active state for the average con-
act of a large-scale network is substantially less than 1.0 for many
ypes of transmissions, i.e., flows of particular types of information,
nterpersonal influences on particular issues, and transmissions of
articular types of diseases. I note that the contributions of short-
uts to network transmission probabilities, via the short paths that
hey create, may be modest relative to the contributions of path
edundancies enabled by intersecting clique formations. Moreover,
note that sociological research on local bridges in contact networks,
temming from Granovetter’s (1973, 1983) seminal work on them,
oes not support the emphasis that “small world” investigations
ave placed on shortcuts. The available theoretical and empirical

nvestigations of contacts that are local bridges support the con-
lusion that such contacts are weak, more unreliable, episodic,
ransmission conduits than the average contacts of cliques. Gra-
ovetter’s “strength of weak ties” argument does not assert that
eak ties are important transmission conduits; in this argument,
e treats weak ties as unreliable transmission conduits that are

nfrequently activated. The argument is that a local-bridge contact
s more likely to be a weak contact than a within-clique contact
nd that, when a local-bridge contact is active, new or useful infor-
ation is more likely to be transmitted in a local-bridge contact

han in an active within-clique contact. The available empirical evi-
ence supports this nuanced argument and erodes the idea that
aths involving local bridges are reliable structural bases of trans-
issions.
I conclude with discussion of some of the broader applications

f the network reliability approach that has been employed. In
ppendix A of this article, I have described and illustrated the
lassical analytical approach to determining network transmission
eliability values. I also have outlined and illustrated a numeri-
al approach that returns estimates of these values, which may
e applied in empirical investigations of contact networks. This
umerical approach is not constrained by the assumption of the

dealized role structure upon which the present theoretical anal-
sis of “small world” networks has been conducted. It works with
he full edge set of an empirical contact network, and generates
stimates of the network transmission reliability values for each
f the network’s ordered pairs. This application of network reli-
bility theory may be a useful addition to the “tool kit” of social
etwork analysis. Its most basic contribution is a refinement of
he opportunity-structure interpretation of a strong component
n which “opportunity” is replaced with “reliability” values that
re probabilities of the occurrence of at least one active path, dur-
ng some period of time, connecting node i to node j for each of
he ordered pairs of nodes of the network. The implementation
f the refinement requires a measurement model of a valued net-
ork in which the edge values are taken as corresponding to the

robability of an active vs. inactive edge, for each edge. These val-
es may be based on a suitably scaled measure of tie strength or
roximity for each contact. A matrix of estimated contact network
ransmission reliabilities is obtained from a random sample of the
ealizations of active contacts, consistent with the measurement
rks 33 (2011) 88–97

model of the probability matrix for active contacts; that is, for each
of the sampled realizations, the reachability matrix for the realiza-
tion is obtained, and the estimated transmission reliabilities, for
each of the (i, j) pairs of nodes of the contact network, are the pro-
portions of the sampled realizations in which node i reaches node j;
see Appendix A for an illustration. This approach may be employed
on a graph or digraph.

Conditional on the investigator’s specification of the probability
matrix for the active states of the contacts of a network, the matrix
of numerical estimates of the network’s transmission reliabilities
may be employed in hierarchical cluster analyses, blockmodel anal-
yses, point-centrality analyses, and analyses of selected subgroups
of a network. When interest is focused on the structural impli-
cations of the subnets of subgroups, a reliability analysis of the
subnets may be a useful adjunct to standard structural analyses.
Most definitions of structurally cohesive subgroups are consistent
with variable within-group structural features and tie strengths;
for the particular subnet of a subgroup, the reliability matrix for
the subgroup may be obtained. Under the assumption of mono-
tonic positive contributions of the components of reliability values,
ignoring edges that involve nodes outside a particular subgroup
does not diminish the reliability values obtained strictly on the
basis of the subgroup’s subnet.

The application of reliability theory also extends to analyses of
process models of social diffusion unfolding in a network of con-
tacts. Consider the class of deterministic diffusion models in which
a specified diffusion process generates a prediction that some equi-
librium fraction of the contact network members will have adopted
a particular behavior, practice, or innovation. From the perspective
of network reliability theory, if a contact network is employed as
the structural basis of transmission, then some specification of the
uncertain active vs. inactive status of each contact of the network
may be invoked. The reliability of the predictions of deterministic
models of social diffusion that are operationalized with contact-
network constructs may be assessed with a sample of the possible
realizations of the contact network, based on a specification of the
uncertain status of each contact as an active or inactive conduit of
transmissions during some period of time. With respect to a par-
ticular diffusion process, a particular contact network may enable
a reliable outcome that is insensitive to the failures of various con-
tacts as transmission conduits, or components of the pressures to
adopt the behavior, practice, or innovation. Here, again, network
reliability theory may serve as a useful adjunct to structural anal-
yses that rest on the assumption of a stable set of constraints (the
edges of an observed contact network), but allow that these edges
may be active or inactive during some period of time. It should be
noted that the formalization of reliability theory presented in this
article does not assume that the observed edges of a contact net-
work are independent events. It does, however, assume that the
probability that a particular given edge is active or inactive is inde-
pendent of the active or inactive state of other given edges. Relaxing
this assumption is feasible, but invokes a far more complex analy-
sis. Whether the increased complexity entailed with a relaxation of
this assumption is worth dealing with is a judgment that requires
careful consideration.

I close with a comment on the helix representation of the spine-
segments that were analyzed in this article. The graph-analytic
adjacency of nodes does not necessarily imply spatial proximity.
The two-dimensional representation of the spine-segments that
have been analyzed in this article does not exclude their three-
dimensional representation, as illustrated in Fig. 2 in terms of

helices with a backbone that completes their edge set. The helix rep-
resentation is suggestive. Perhaps spatially constrained biological
and physical structures take this compact form when the reliability
of transmissions among elementary nodes is an important factor in
the coordination of complex systems.
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ppendix A.

This appendix describes and illustrates, in separate sections: (a)
he analytical approach with which exact transmission reliabilities
re obtained, (b) the classic analytical approach with which upper
nd lower bounds of transmission reliabilities are obtained, (c) a
umerical approach with which estimates of exact transmission
eliabilities may be obtained, and (d) a conservative lower bound
pproach, based on edge-disjoint paths, that enables the theoretical
nalysis presented in the present article.

nalytical approach to exact reliabilities

Within the constraints of the NP-complete problem of deter-
ining a network’s reliability values, it is feasible to obtain exact

eliabilities for these values. Here, I provide a textbook illustra-
ion of how this is accomplished. A close look at what is involved
s instructive, since analytical problem is non-trivial. The NP-
omplete problem appears when there is no known algorithm that
s able to solve the analytical problem on a particular network in a
ractical amount of time. This problem arises as a function of the
umber of edges involved in the network.

I illustrate the approach with a simple digraph; graphs may be
nalyzed with the same approach. Consider the following small
etwork analyzed by Hillier and Lieberman (1980, pp. 599–605):

In this network, a transmission from A to D will occur during
ome period of time if either (a) edges 1 and 4 are both open, or
b) edges 2 and 5 are both open, or (c) edges 1, 3, and 5 are all
pen. If edge 1 is closed to transmission, then the conditions (a)
nd (c) of a transmission are precluded; if edge 2 is closed, then
b) is precluded; and so on. Given probability values for the open-
losed (active-inactive, success-failure) states of each of the five
dges of the network, the probability of a transmission from A to B is
quivalent to the probability that that at least one of the conditions
(a), (b) or (c)} is satisfied. This probability value is the network’s
eliability value with respect to a transmission from A to B.

To determine the exact value of the network’s reliability value,
ith respect to a transmission from A to B, the states of each of the
ve edges of the network are described by the binary random vari-
bles, X1 = x1, X2 = x2, X3 = x3, X4 = x4, and X5 = x5, for which there are
5 = 32 possible realizations. One such realization is X1 = 1, X2 = 0,
3 = 1, X4 = 0, and X5 = 1, in which a transmission from A to D will

ccur based on the open edges 1, 3, and 5, i.e., A
1−→B

3−→C
5−→D.

Each realization presents an edge-induced subgraph in which
ode A is connected to node D via a path, or not. For each of the 32
ealizations, the structure function for the system generates a binary
utcome

(x) = �(X1 = x1, X2 = x2, . . . , X5 = x5)

=
{

1 if a path from A to B exists

0 if no such path exists
Thus, in the simplest case of Bernoulli variables, we have

k =
{

1 if the Xk edge is open, E(Xk = 1) = �k for each k
0 if the Xk edge is not open, E(Xk = 0) = 1 − �k for each k
rks 33 (2011) 88–97 95

for each of the 5 edges of the network, k = 1, 2, . . ., 5. On this basis,
if a path from A to B exists in a particular realization, then the
probability of that realization may be determined. For example, the

probability of the following realization, A
1−→B

3−→C
5−→D, in which

a transmission from A to D will occur based on the open edges 1, 3,
and 5, is

P(X1 = 1, X2 = 0, X3 = 1, X4 = 0, X5 = 1) = �1(1 − �2)�3(1 − �4)�5

Summing the probabilities of those realizations among the 32
in which a path from A to D exists, the probability of a transmission
from A to D is

�AD =
32∑

x:�(x)=1

5∏
k=1

�xk
k (1 − �k)1−xk

where �AD is the exact probability value of a transmission from A
to B. This probability value is the network’s reliability with respect
to a transmission from A to B during some period of time. The cal-
culation of this reliability value entails the evaluation of each of
the 32 edge-induced subgraphs to determine the outcome of the
structure function (whether or not a particular realization presents
at least one path from A to D) and the calculation of the probability
of each realization. With these values in hand, the expected value
of the outcome of the structure function is determined.

A challenging computational problem arises when the number
of realizations (subgraphs) that must be evaluated is large, e.g.,
1,073,741,824 realizations in the case of a network with 30 edges,
for a particular pair of nodes. If the network with these 30 edges
has 10 nodes, and if the investigator is analyzing the reliability of
a transmission from each node i that is a transmitter to each other
node j that is a potential receiver of i’s transmission, then the num-
ber of realizations involved in the evaluation may increase by a
factor of 45 or 90, depending on whether the network is a graph or
diagraph.

Exact reliability values also may be obtained from the minimal
paths or minimal cuts of the network. A minimal path is a mini-
mal set of open (active) edges that enable a transmission from one
node to another. A minimal cut is a minimal set of closed (inactive)
edges that disable a transmission from one node to another. For the
(A, D) pair in the illustrated network, the minimal paths are X1X4,
X1X3X5, and X2X5, and the minimal cuts are X1X2, X4X5, X2X3X4, and
X1X5. This approach also is computationally intensive. Both meth-
ods reduce to the same result. For the illustrated network, the result
is

�AD = P{�(X1, X2, X3, X4, X5) = 1}
= �1�4 + �1�3�5 + �2�5 − �1�3�4�5 − �1�2�4�5

�1�2�3�5 + �1�2�3�4�5

= 2�2 + �3 − 3�4 + �5, if �k = � for all k

The expansion of latter involves 2z − 1 terms, where z is either
the number of minimal paths or the number of minimal cuts. In
the simplest case of homogeneous probabilities, with � = 0.60, the
reliability of transmission from A to B is �AD = 0.6250.

Classic reliability bounds

When obtaining an exact reliability value via analysis is imprac-
tical, as it frequently is, reliability bounds L ≤ �ij ≤ U may be

obtained more or less readily, depending on the type of bound.
The literature on network reliability theory presents alternative
approaches for obtaining analytical reliability bounds and the prob-
lem of obtaining them is the subject of ongoing research. The
classical approach, with which optimal lower and upper bound val-
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es are obtained, also is based on the minimal path set and the
inimal cut set. The upper bound is based on the minimal path set

nd the lower bound is based on the minimal cut set.
For a minimal path set, the approach to the upper bound is based

n the result that the reliability of a transmission from i to j is equiv-
lent to the probability that least one of the minimal paths is active,
.e., �ij = 1 − P(all paths fail), and that the value P(all paths fail) must
e greater than or equal to the product of the probabilities of each
inimal path’s failure. For the illustrated network,

�AD = P{�(X1, X2, X3, X4, X5) = 1}
= 1 − P(X1X4 = 0, X1X3X5 = 0, X2X5 = 0)

nd

�AD ≤ 1 − P(X1X4 = 0)P(X1X3X5 = 0)P(X2X5 = 0)
= 1 − (1 − �1�4)(1 − �1�3�5)(1 − �2�5)

= 1 − (1 − �2)
2
(1 − �3), if �k = � for all k

nder the assumption of independent random variables. Thus, in
he simplest case of homogeneous probabilities, with � = 0.60, the
bove calculation presents the upper bound �AD ≤ 0.6789.

For a minimal cut set, the approach to the lower bound is based
n the result that the reliability of a transmission from i to j is equiv-
lent to the probability that least one of the edges in each minimal
ut is active, in which case all of the potential cuts fail to eliminate
ll paths from i to j, i.e., �ij = 1 − P(all cuts fail), and on the result that
he probability value P(all cuts fail) must be greater than or equal
o the product of the probabilities of each minimal cut’s failure. For
he illustrated network,

�AD = P{�(X1, X2, X3, X4, X5) = 1}

= P

{
[1 − (1 − X1)(1 − X2)] = 1, [1 − (1 − X4)(1 − X5)] = 1,

[1 − (1 − X2)(1 − X3)(1 − X4)] = 1, [1 − (1 − X1)(1 − X5)] = 1

}

= P

{
[(1 − X1)(1 − X2)] = 0, [(1 − X4)(1 − X5)] = 0

[(1 − X2)(1 − X3)(1 − X4)] = 0, [(1 − X1)(1 − X5)] = 0

}

nd

�AB ≥ P{[(1 − X1)(1 − X2)] = 0}P{[(1 − X4)(1 − X5)] = 0}
P{[(1 − X2)(1 − X3)(1 − X4)] = 0}
P{[(1 − X1)(1 − X5)] = 0}
= [1 − (1 − �1)(1 − �2)][1 − (1 − �4)(1 − �5)]

× [1 − (1 − �2)(1 − �3)(1 − �4)][1 − (1 − �1)(1 − �5)]

= [1 − (1 − �)2]
3
[1 − (1 − �)3], if �k = � for all k

nder the assumption of independent random variables. Thus, in
he simplest case of homogeneous probabilities, with � = 0.60, the
bove calculation presents the lower bound �AD ≥ 0.5548.

In sum, for the illustrated network, in the simplest case of
omogeneous independent probabilities, with � = 0.60, the exact
eliability of transmission from A to B is �AD = 0.6250, and, if it were
mpractical to calculate this exact value (which is obviously not the
ase here) and practical to calculate bounds (which is obviously
he case here), the bounds would be 0.5548 ≤ �AD ≤ 0.6789, with
he lower bound based on the minimal cut set of the network and
he upper bound based on the minimal path set.

numerical approach to exact reliabilities
The network transmission reliability from node A to B is equiva-
ent to the probability of a realization in which A reaches B via one or

ore paths. Given the adjacency matrix G = [gij] for an observed net-
ork, a network reliability analysis requires a measurement model

he n × n probability matrix � = [�ij], where �ij = 0 if gij = 0, and
rks 33 (2011) 88–97

0 ≤ �ij ≤ 1 if gij = 1, for all i and j. Estimates of exact network trans-
mission reliabilities may be obtained directly from the specified
probability matrix. A numerical approach to approximate reliability
values is feasible with Monte Carlo simulations of random realiza-
tions, where in each such realization, Rs = [rsij], rsij = 0 if gij = 0, and
rsij = 1 if �ij ≤ �ij, where �ij is a randomly selected value from the
uniform distribution. Thus, the sample of realizations, Rs (s = 1, 2,
. . . ), are random networks consistent with the specified probability
matrix � for the contact network. The reachability matrix for each
realization will indicate whether or not at least one path exists from
a particular node i to a particular node j. Based on T Monte Carlo
generated random realizations, a numerical estimate of the relia-
bility of a transmission from node i to node j is the proportion of
the T trials in which i reaches j.

With the above approach implemented on the illustrated net-
work, and

G =

⎡
⎢⎣

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

⎤
⎥⎦ , � =

⎡
⎢⎣

0 0.60 0.60 0
0 0 0.60 0.60
0 0 0 0.60
0 0 0 0

⎤
⎥⎦

a numerical estimate of �14 = �AD = 0.6150 is obtained based on T = 2,
000 Monte Carlo trials. Note that this estimate is close to the exact
analytically determined value of 0.6250. Five additional estimates
(replications based on the same numerical procedure) are also close
to this exact value: 0.6155, 0.6285, 0.6085, 0.6270 and 0.6130.

This numerical approach may be implemented on a heteroge-
neous probability matrix. For example, based on

G =

⎡
⎢⎣

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

⎤
⎥⎦ , � =

⎡
⎢⎣

0 0.30 0.45 0
0 0 0.35 0.50
0 0 0 0.75
0 0 0 0

⎤
⎥⎦

a numerical estimate of �14 = �AD = 0.4685 based on T = 2000 Monte
Carlo trials. This estimate is close to the exact analytically deter-
mined value

�AD P{�(X1, X2, X3, X4, X5) = 1}
= �1�4 + �1�3�5 + �2�5 − �1�3�4�5 − �1�2�4�5

− �1�2�3�5 + �1�2�3�4�5

= 0.4585

Five additional estimates (replications based on the same
numerical procedure) are also close to this exact value: 0.4620,
0.4530, 0.4580, 0.4755, and 0.4505.

Clearly, since this numerical approach is based on the reach-
ability matrices of the sampled realizations, estimates of the
reliabilities of all the ordered pairs of the network are available.
For example, with

G =

⎡
⎢⎢⎢⎣

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

0 0.60 0.60 0

0 0 0.60 0.60

0 0 0 0.60

0 0 0 0

⎤
⎥⎥⎥⎦

we obtain the estimates

⎡ 0 0.5985 0.7510 0.6275 ⎤

P = [�ij] =

⎢⎢⎢⎣
0 0 0.6205 0.7530

0 0 0 0.5940

0 0 0 0

⎥⎥⎥⎦
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Watts, D.J., 1999. Small Worlds. Princeton University Press, Princeton.
N.E. Friedkin / Social

nd with

=

⎡
⎢⎢⎢⎣

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎣

0 0.30 0.45 0

0 0 0.35 0.50

0 0 0 0.75

0 0 0 0

⎤
⎥⎥⎥⎦

e obtain the estimates

= [�ij] =

⎡
⎢⎢⎢⎣

0 0.3175 0.5155 0.4575

0 0 0.3605 0.6240

0 0 0 0.7430

0 0 0 0

⎤
⎥⎥⎥⎦

n which the �14 = �AD estimate is an embedded element. Moreover,
ince efficient algorithms exist for obtaining reachability matri-
es, obtaining such transmission reliability estimates is practical
or large networks.

heoretical analyses

The present article draws on network reliability theory to
resent a theoretical analysis of the implications of unreliable edges
nd path redundancies in large-scale “small world” networks. For
his analysis, an approach is employed that deals with conserva-

ive lower bounds. These bounds are based on edge disjoint paths
n idealized networks with a regular form of clustered edges. The
pproach is detailed in the body of the body of the article and is not
epeated here. Given the techniques and illustrations presented in
he previous sections of this appendix, the reader may appreciate
rks 33 (2011) 88–97 97

why a closed-form general expression for reliabilities was enabled
by the idealized role structure considered in this article, and the
generic spine-segment components of this role structure.
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