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We present results from the first phase of the KamLAND-Zen double-beta decay experiment, corresponding
to an exposure of 89.5 kg-yr of 136Xe. We obtain a lower limit for the neutrinoless double-beta decay half-life
of T 0ν

1/2 > 1.9 × 1025 yr at 90% C.L. The combined results from KamLAND-Zen and EXO-200 give T 0ν
1/2 >

3.4×1025 yr at 90% C.L., which corresponds to a Majorana neutrino mass limit of 〈mββ〉 < (120−250)meV
based on a representative range of available matrix element calculations. Using those calculations, this result
excludes the Majorana neutrino mass range expected from the neutrinoless double-beta decay detection claim
in 76Ge, reported by a part of the Heidelberg-Moscow collaboration, at more than 97.5% C.L.

PACS numbers: 23.40.-s, 21.10.Tg, 14.60.Pq
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Double-beta (ββ) decay is a rare nuclear process observ-
able in even-even nuclei for which ordinary beta decay is en-
ergetically forbidden or highly suppressed by large spin differ-
ences. Standard ββ decay proceeds by a second-order weak
interaction emitting two electron anti-neutrinos and two elec-
trons (2νββ). If, however, the neutrino is a massive Majo-

rana particle, ββ decay might also occur without the emission
of neutrinos (0νββ). Observation of such a process would
demonstrate that lepton number is not conserved in nature.
Moreover, if the process is mediated by the exchange of a light
left-handed neutrino, its rate increases with the square of the
effective Majorana neutrino mass 〈mββ〉 ≡

∣∣ΣiU2
eimνi

∣∣, and
hence its measurement would provide information on the ab-
solute neutrino mass scale. To date there has been only one
claimed observation of 0νββ decay, in 76Ge [1].

At present there are several operating experiments perform-
ing 0νββ decay searches with design sensitivity sufficient to
test the Majorana neutrino mass implied by the claim in [1]
within a few years of running: GERDA with 76Ge, CUORE-0
with 130Te, and EXO-200 and KamLAND-Zen with 136Xe.
Among those experiments, KamLAND-Zen released its first
0νββ half-life limit, T 0ν

1/2 > 5.7× 1024 yr at 90% C.L., based
on a 27.4 kg-yr exposure [2]. Although the sensitivity of this
result was impeded by the presence of an unexpected back-
ground peak just above the 2.458 MeV Q-value of 136Xe ββ
decay, the Majorana neutrino mass sensitivity was similar to
that in Ref. [1]. EXO-200 later improved on this limit by a
factor of 2.8 [3], constraining the result in [1] for a number of
nuclear matrix element (NME) calculations.

As shown below, we have found the problematic back-
ground peak in the KamLAND-Zen spectrum to most likely
come from metastable 110mAg. We embarked recently on
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TABLE I: Two data sets used in this 136Xe 0νββ decay analysis.

DS-1 DS-2 Total
livetime (days) 112.3 101.1 213.4
fiducial Xe-LS mass (ton) 8.04 5.55 -
Xe concentration (wt%) 2.44 2.48 -
136Xe mass (kg) 179 125 -
136Xe exposure (kg-yr) 54.9 34.6 89.5

a purification campaign to remove this isotope. Doing so
required extracting the Xe from the detector, thus marking
the end of the first phase of KamLAND-Zen. In this Let-
ter we report on the full data set from the first phase of
KamLAND-Zen, corresponding to an exposure of 89.5 kg-
yr of 136Xe. This represents a factor of 3.2 increase over
KamLAND-Zen’s first result [2], and is also the largest ex-
posure for a ββ decay isotope to date.

The KamLAND-Zen (KamLAND Zero-Neutrino Double-
Beta Decay) experiment consists of 13 tons of Xe-loaded liq-
uid scintillator (Xe-LS) contained in a 3.08-m-diameter trans-
parent nylon-based inner balloon (IB), suspended at the cen-
ter of the KamLAND detector by film straps. The IB is sur-
rounded by 1 kton of liquid scintillator (LS) contained in a 13-
m-diameter outer balloon (OB). To detect scintillation light,
1,325 17-inch and 554 20-inch photomultiplier tubes (PMTs)
are mounted on the stainless-steel containment tank (SST),
providing 34% photo-cathode coverage. The SST is sur-
rounded by a 3.2-kton water-Cherenkov detector for cosmic-
ray muon identification. Details of the KamLAND-Zen detec-
tor are given in Ref. [2].

We report on data collected between October 12, 2011, and
June 14, 2012. In February 2012 we attempted to remove
impurities from KamLAND-Zen by passing 37 m3 of the Xe-
LS (corresponding to 2.3 full volume exchanges) through a
50 nm PTFE-based filter. To facilitate analysis, we divided the
data into two sets: one taken before (DS-1) and the other after
(DS-2) the filtration. DS-1 corresponds to the data set reported
in Ref. [4] except with the fiducial radius increased to 1.35 m
to optimize the 0νββ search, yielding a fiducial Xe-LS mass
of 8.04 tons. For DS-2, additional fiducial volume cuts were
made around the siphoning hardware left in place after the fil-
tration ended–namely, a 0.2-m-radius cylindrical cut along the
length of the Teflon piping, as well as a 1.2-m-radius spherical
cut around the stainless steel inlet at its tip. The total livetime
after removing periods of high background rate due to 222Rn
daughters introduced by the filtration is 213.4 days. The live-
time, fiducial Xe-LS mass, Xe concentration, 136Xe mass, and
exposure for the data sets are summarized in Table I.

Event vertex and energy are reconstructed based on the tim-
ing and charge distributions of photoelectrons recorded by
the PMTs. Energy calibration is performed using 208Tl γ’s
from a ThO2W source [2], 214Bi β’s and γ’s from 222Rn
(τ = 5.5 day) introduced during the initial filling of the IB
with Xe-LS, and 2.225 MeV γ’s from capture of spallation
neutrons by protons. Uncertainties from the nonlinear energy
response due to scintillator quenching and Cherenkov light
production are constrained by the calibrations. The energy

scale variation was confirmed by the neutron-capture γ data
to be less than 1.0% over the Xe-LS volume, and stable to
within 1.0% during the data taking period. The vertex res-
olution is ∼15 cm/

√
E(MeV), and the energy resolution is

(6.6± 0.3)%/
√
E(MeV).

Double-beta decay events are selected by performing the
following series of cuts: (i) The reconstructed vertex must be
within the FV defined for each data set. (ii) Muons and events
within 2 ms after muons are rejected. (iii) Events occurring
within 3 ms of another are eliminated to avoid background
from 214Bi-214Po (τ=237µs) decays. (iv) Reactor νe’s iden-
tified by a delayed coincidence of positrons and neutron-
capture γ’s are eliminated. (v) Poorly reconstructed events are
rejected. These events are tagged using a vertex-time-charge
discriminator which measures how well the observed PMT
time-charge distributions agree with those expected based on
the reconstructed vertex [5]. The event selection criteria (ii-v)
are the same as those described in detail in Ref. [2]. The total
efficiency for identifying ββ events is (99.8±0.2)%. The cuts
impose a deadtime of <0.2%.

Nominally, the 1.35-m-radius FV for DS-1 corresponds to
0.624 ± 0.006 of the total Xe-LS volume (16.51 ± 0.17 m3),
or 179 kg of 136Xe. The FV fraction is also estimated from
the ratio of 214Bi events which pass the FV cuts to the total
number in the entire Xe-LS volume after subtraction of the
IB surface contribution. The result is 0.620 ± 0.007(stat) ±
0.021(syst). The difference in these values is taken as a mea-
sure of the systemic error on the vertex-defined FV. Combin-
ing the errors, we obtain a 3.9% systematic uncertainty on
the FV for DS-1. Similarly, the error for DS-2 is estimated
to be 4.1%. The total systematic uncertainties on the ββ de-
cay half-life measurements for DS-1/DS-2 are 3.9%/4.1% [4],
resulting from the quadrature sum of the uncertainties in
the fiducial volume (3.9%/4.1%), enrichment level of 136Xe
(0.05%) [2], Xe concentration (0.34%/0.37%), detector en-
ergy scale (0.3%) [2], and detection efficiency (0.2%).

The main contributors to the ββ decay background can be
divided into three categories: those from radioactive impuri-
ties in the Xe-LS; those from muon-induced spallation prod-
ucts; and those external to the Xe-LS, mainly from the IB ma-
terial. The U and Th contaminations in the Xe-LS can be
investigated by the delayed coincidence detection of 214Bi-
214Po and 212Bi-212Po. Assuming secular equilibrium, the
238U and 232Th concentrations are estimated to be (1.3 ±
0.2) × 10−16 g/g and (1.8 ± 0.1) × 10−15 g/g, respectively.
The 238U level reported in Ref. [2] was overestimated due to
slight contamination of 222Rn in early data, which can be re-
moved. To allow for the possibility of decay chain nonequilib-
rium, however, the Bi-Po measurements are used to constrain
only the rates for the 222Rn-210Pb subchain of the 238U series
and the 228Th-208Pb subchain of the 232Th series, while other
background rates in both series are left unconstrained.

Spallation neutrons are captured mainly on protons
(2.225 MeV) and 12C (4.946 MeV) in organic scintillator
components, and only rarely on 136Xe (4.026 MeV) and 134Xe
(6.364 MeV), with fractions of the total captures, 9.5 × 10−4

and 9.4 × 10−5, respectively, for the latter two. The neutron
capture product 137Xe (β−, τ = 5.5 min, Q = 4.17 MeV) is
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a potential background, but its expected rate is negligible in
the current 0νββ search. For carbon spallation products, we
expect event rates of 1.11 ± 0.28 (ton·day)−1 and (2.11 ±
0.44) × 10−2 (ton·day)−1 from 11C (β+, τ = 29.4 min,
Q = 1.98 MeV) and 10C (β+, τ = 27.8 s, Q = 3.65 MeV),
respectively. There are no past experimental data for muon
spallation of Xe, but background from short-lived products of
Xe with lifetimes of less than 100 s is constrained from the
study of muon time-correlated events [2].

By looking at events near the IB radius, we found that the
IB, which was fabricated 100 km from the Fukushima-I re-
actor, was contaminated by fallout from the Fukushima nu-
clear accident in March 2011 [2]. The dominant activities
from this fallout are 134Cs (β + γ’s) and 137Cs (0.662 MeV
γ), but they do not generate background in the energy region
2.2 < E < 3.0 MeV relevant to the 136Xe 0νββ decay search
(i.e., the 0νββ window). In this region, the dominant IB con-
taminant is 214Bi (β + γ’s) from the U decay chain. The Cs
and U are not distributed uniformly on the IB film. Rather,
their activity appears to increase proportionally with the area
of the film welding lines. This indicates that the dominant IB
backgrounds may have been introduced during the welding
process from dust containing both natural U and Fukushima
fallout contaminants. The activity of the 214Bi on the IB drives
the spherical fiducial radius in the analysis.

In the combined DS-1 and DS-2 data set, a peak can
also be observed in the IB backgrounds located in the 0νββ
window on top of the 214Bi contribution, similar in en-
ergy to the peak found within the fiducial volume. To ex-
plore this activity we performed two-dimensional fits in R
and energy, assuming that the only contributions on the IB
are from 214Bi and 110mAg. Floating the rates from back-
ground sources uniformly distributed in the Xe-LS, the fit
results for the 214Bi and 110mAg event rates on the IB are
19.0± 1.8 day−1and 3.3± 0.4 day−1, respectively, for DS-1,
and 15.2±2.3 day−1and 2.2±0.4 day−1for DS-2. The rejec-
tion efficiencies of the FV cut R < 1.35 m against 214Bi and
110mAg on the IB are (96.8 ± 0.3)% and (93.8 ± 0.7)%, re-
spectively, where the uncertainties include the uncertainty in
the IB position.

The energy spectra of selected candidate events for DS-1
and DS-2 are shown in Fig. 1. The ββ decay rates are
estimated from a likelihood fit to the binned energy spec-
trum between 0.5 and 4.8 MeV for each data set. The back-
ground rates described above are floated but constrained by
their estimated values, as are the detector energy response
model parameters. As discussed in Ref. [2], contributions
from 110mAg (β− decay, τ = 360 day, Q = 3.01 MeV), 88Y
(EC decay, τ = 154 day, Q = 3.62 MeV), 208Bi (EC de-
cay, τ = 5.31× 105 yr, Q = 2.88 MeV), and 60Co (β− de-
cay, τ = 7.61 yr, Q = 2.82 MeV) are considered as potential
background sources in the 0νββ region of interest. The in-
creased exposure time of this data set allows for improved
constraints on the identity of the background due to the differ-
ent lifetimes of the considered isotopes. Fig. 2 shows the event
rate time variation in the energy range 2.2 < E < 3.0 MeV,
which exhibits a strong preference for the lifetime of 110mAg,
if the filtration is assumed to have no effect. Allowing for the
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FIG. 1: (a) Energy spectrum of selected candidate events together
with the best-fit backgrounds and 2νββ decays, and the 90% C.L.
upper limit for 0νββ decays, for the combined data from DS-1 and
DS-2; the fit range is 0.5 < E < 4.8MeV. (b) Closeup of (a) for
2.2 < E < 3.0MeV after subtracting known background contribu-
tions.

110mAg levels between DS-1 and DS-2 to float, the estimated
removal efficiency of 110mAg is (1±19)%, indicating that the
Xe-LS filtration was not effective in reducing the background.
In the fit to extract the 0νββ limit we include all candidate
sources in the Xe-LS, considering the possibility of composite
contributions and allowing for independent background rates
before and after the filtration.

The best-fit event rate of 136Xe 2νββ decays is 82.9 ±
1.1(stat) ± 3.4(syst) (ton·day)−1for DS-1, and 80.2 ±
1.8(stat) ± 3.3(syst) (ton·day)−1for DS-2. These results are
consistent within the uncertainties, and both data sets indicate
a uniform distribution of the Xe throughout the Xe-LS. They
are also consistent with EXO-200 [3] and that obtained with a
smaller exposure [4], which requires the FV cut R < 1.2 m to
avoid the large 134Cs backgrounds on the IB, more appropri-
ate for the 2νββ analysis.

The best-fit 110mAg rates in the Xe-LS are 0.19 ±
0.02 (ton·day)−1and 0.14 ± 0.03 (ton·day)−1for DS-1 and
DS-2, respectively, indicating a dominant contribution of
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110mAg in the 0νββ region. The 90% C.L. upper lim-
its on the number of 136Xe 0νββ decays are <16 events
and <8.7 events for DS-1 and DS-2, respectively. Com-
bining the results, we obtain a 90% C.L. upper limit of
<0.16 (kg·yr)−1in units of 136Xe exposure, or T 0ν

1/2 > 1.9 ×
1025 yr (90% C.L.). This corresponds to a factor of 3.3 im-
provement over the first KamLAND-Zen result [2]. The hy-
pothesis that backgrounds from 88Y, 208Bi, and 60Co are ab-
sent marginally increases the limit to T 0ν

1/2 > 2.0 × 1025 yr
(90% C.L.). A Monte Carlo of an ensemble of experiments
based on the best-fit background spectrum indicates a sensi-
tivity [6] of 1.0 × 1025 yr. The chance of obtaining a limit
equal to or stronger than that reported here is 12%.

A combination of the limits from KamLAND-Zen and
EXO-200, constructed by a χ2 test tuned to reproduce the re-
sult in Ref. [3], gives T 0ν

1/2 > 3.4 × 1025 yr (90% C.L.). The
combined measurement has a sensitivity of 1.6× 1025 yr, and
the probability of obtaining a stronger limit is 7%. From the
combined half-life limit, we obtain a 90% C.L. upper limit of
〈mββ〉 < (120− 250) meV considering various NME calcu-
lations [7–10]. The constraint from this combined result on
the detection claim in Ref. [1] is shown in Fig. 3 for different
NME estimates. We find that the combined result for 136Xe
refutes the 0νββ detection claim in 76Ge at >97.5% C.L. for
all NME considered assuming that 0νββ decay proceeds via
light Majorana neutrino exchange. While the statistical treat-
ment of the NME uncertainties is not straightforward, even
if we apply the uncertainties and correlations in Ref. [11],
which assumes a statistical distribution of the NME for var-
ious (R)QRPA models and does not include a tuning of the
parameter gpp for 136Xe based on its measured 2νββ half-life,
we find the rejection significance is still 95.6% C.L.

The KamLAND-Zen result is still limited by the back-
ground from 110mAg. The two leading hypotheses to explain
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1/2) in 76Ge

and 136Xe. The 68% C.L. limit from the claim in Ref. [1] is indi-
cated by the gray band. The limits for KamLAND-Zen (this work),
EXO-200 [3], and their combination are shown at 90% C.L. The cor-
relation between the 76Ge and 136Xe half-lives predicted by various
NME calculations [7–10] is drawn as diagonal lines together with the
〈mββ〉 (eV) scale. The band for QRPA and RQRPA represents the
range of these NME under the variation of model parameters.

its presence in the Xe-LS are (i) IB contamination during
fabrication by Fukushima-I fallout and (ii) cosmogenic pro-
duction by Xe spallation [2]. While the distribution of Cs
isotopes is consistent with IB contamination during fabrica-
tion, hypothesis of the adsorption of cosmogenically produced
110mAg onto the IB still cannot be rejected. Improved statis-
tics on the distribution of 110mAg on the IB may help reveal
the source of the contamination. In the meantime, we have re-
moved the Xe from the Xe-LS by vacuum extraction and veri-
fied that the 110mAg rate in the LS remains at its present level.
We are proceeding to distill the LS to remove the 110mAg,
while we also pursue options for IB replacement and further
detector upgrades.

In summary, we have performed the most stringent test
to date on the claimed observation of 0νββ decay in
76Ge [1]. Combining the limits on 136Xe 0νββ decay by
KamLAND-Zen and EXO-200, we find that the Majorana
mass range expected from the claimed 76Ge 0νββ decay half-
life is excluded at >97.5% C.L. for a representative range
of nuclear matrix element estimations. KamLAND-Zen and
EXO-200 demonstrated that we have arrived at an exciting
new era in the field, and that the technology needed to judge
the claimed 76Ge 0νββ decay with other nuclei has been
achieved.
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