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ABSTRACT OF THE THESIS 

 

Hidden suppressive interactions are common  

in higher-order drug combinations 

 

by 

 

April Chengxin Zhou 

Master of Science in Bioinformatics 

University of California, Los Angeles, 2021 

Professor Van M. Savage, Chair 

 

 Combinational therapy has been one method used to combat the growing concern of 

multi-antibiotic resistant bacteria. In identifying the interaction type of a drug combination, the 

focus is often on the overall effect of the combination derived from comparison to each drug 

alone. These identifications tend away from suppression, where bacteria grow better in 

combination than when treated with a single drug component. They also miss “hidden” cases of 

suppression, where the highest-order can be suppressive to a lower-order but not to a single drug. 

We examined an extensive dataset of 5-drug and all lower-order combinations using 

computational methods and regression analysis and found that over half of combinations contain 

hidden suppression. My specific focus was on examining possible structures of hidden 

suppression at these higher orders. Overall, understanding this is important because of how it can 

affect our predictions of antibiotic resistance evolution in combinational treatments.  
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CHAPTER 1. INTRODUCTION 

Drugs are prevalent in our daily lives, and over the years, drug resistance—and especially 

antibiotic resistance—has become a leading public health concern (Bloom et al., 2018, Chokshi 

et al., 2019, Povolo and Ackermann, 2019). Though a natural occurrence in that resistance can 

evolve, its sheer prevalence has been expedited by inappropriate prescriptions as well as 

antibiotic overuse in agriculture and the community (Ventola, 2015, Aslam et al., 2018). To 

compound this problem, the discovery of new antibiotics is low, due to lack of financial 

lucrativity, regulatory barriers, and limited mechanisms of actions that can be targeted with 

traditional therapeutic methods (Cooper and Shlaes, 2011, Aslam et al., 2018). Currently, all 

major infectious diseases face the issue of antibiotic resistance and even multi-antibiotic 

resistance. This has all come at a great cost in multiple ways. Most notably, resistance hampers 

treatment against diseases, leading to higher risk of mortality for patients—especially in clinical 

settings, where vulnerable patients are clustered in one setting (Dadgostar, 2019). Hence, efforts 

have been made to combat the spread of antibiotic resistance.  

One strategy for working against antibiotic resistance is use of combinational antibiotic 

therapy, exploiting therapeutic effects to combat pathogens and drug-resistant strains more 

effectively and to reduce resistance evolution (Fischbach, 2011, Rieg et al., 2018, Liu et al., 

2020). The key therapeutic effect typically desired is that of synergy when it comes to the drug-

drug interaction within the combination (Yin et al., 2018). Overall, there are three 

categorizations for the way two or more drugs interact: synergistically, antagonistically, or 

additively. In synergistic interactions, the effect of the drugs together is better than the expected 

effect based of each drugs’ individual effects. Conversely, in antagonistic interactions, the 
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combined effect is lesser than the expected effect; in additive interactions, the combined and 

expected effects are matched (Bliss, 1939) (Box 1).  

In the most extreme form of antagonism, now termed suppression, drugs work more 

ineffectively together than at least one of the drugs alone (Yeh et al., 2006, Chait et al., 2007). 

This was first described by Fraser (1870), who showed that individually administering two toxins 

to a rabbit would kill it, but that administering jointly would keep it alive. Now, over a century 

later, interest in this phenomenon has been renewed (Yeh et al., 2006, Chait et al., 2007, Cokol et 

al., 2014, de Vos and Bollenbach, 2014, Bollenbach, 2015, Singh and Yeh, 2017, Lukačišin and 

Bollenbach, 2019, Tyers and Wright, 2019, Dean et al., 2020). Regarding antibiotic interactions, 

the term suppression was first brought to attention in a systematic study of two-drug interactions 

in 21 antibiotics, which found that approximately 10% of all interactions could be classified as 

such (Yeh et al., 2006). In the past decade, more studies have been published elucidating the 

effects of suppression on resistance evolution, its mechanisms, and its prevalence as well. For 

instance, studies have pointed to suppressive drug combinations possibly decreasing the rate of 

bacterial adaptation to and evolution of drug resistance (Hegreness et al., 2008). They have also 

indicated suppressive combinations could decrease the likelihood of resistance evolution 

resulting from spontaneous mutations, as well as decrease such likelihood by lowering 

evolutionary fitness of high-resistant strains and favoring wildtype, drug-sensitive strains in 

direct competition in vitro as a result (Chait et al., 2007). Relating to mechanisms, it has been 

found that nonoptimal ribosomal gene regulation drives the suppressive nature of drugs that act 

on protein and DNA synthesis (Bollenbach et al., 2009). Relating to prevalence, amount of 

suppression found has varied. Cokol et al. (2014), in screening a dataset of 175 two-drug 

combinations to identify synergistic combinations, found approximately 17% to be suppressive. 
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Yeh et al. (2006) reported 8% of 2-drug combinations examined to be suppressive and Beppler et 

al. (2017) reported 5% to be suppressive. In higher-order combinations of more than two drugs, 

Beppler et al. (2017) reported 3% of combinations examined and Tekin et al. (2018) reported 

8%.  

At the two-drug level, suppressive interactions are easy to identify, as bacterial growth 

under either single drug is lesser than that of the growth under both drugs (Figure 1). However, 

suppressive interactions can also occur in high orders of drug combinations (Figure 1). Notably, 

this is the direction combinational drug therapy is heading, with some prominent combinational 

treatments already involving three-drug combinations (Mokhtari et al., 2017, Guerrero-Garcia 

and Rubio-Guerra, 2018). For instance, in a 5-drug combination, the drugs together can have a 

lesser effect than one of the single drugs alone. Alternatively, the 5 drugs together could have a 

lesser effect than any of the 3 or 2 drugs together. Within this, a 4-drug subset of the 5 drugs can 

be suppressive to a 3- or 2-drug combination or a single drug; a 3-drug subset can be suppressive 

to a 2-drug combination or a single drug as well. Usually, studies examine interaction type based 

on the effects of single drug components—thus, if the suppressive interaction occurs between the 

highest-order and a lower-order combination within it, the interaction is termed “hidden” 

(Beppler et al., 2017, Tekin et al., 2018) (Figure 1). In other words, identification of suppressive 

effects can be missed if lower-order, non-single drug effects are not examined. Suppressive 

effects that can be identified using just the highest-order combination at hand in addition to the 

singular components, meanwhile, are “net” suppressive (Cokol et al., 2011, Stergiopoulou et al., 

2011, Otto-Hanson et al., 2013, Tekin et al., 2017, Katzir et al., 2019) (Box 1). For instance, 

given a 3-drug combination, it is possible for suppression to not appear between the 3 drugs and 

any of the single drugs, yet appear between the 3 drugs and one of the 2-drug subsets within it. 
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Given this possibility of hidden interactions, examination of lower-order combinations is of 

importance in determining the interaction type of higher order drug combinations.  

 Hidden interactions play a role both clinically and scientifically. Clinically, if 

combinations are screened without considerations towards interactions with lower-order sub-

combinations, then screening outcome and expected efficacy of the treatment may be different 

because of hidden suppressive interactions. Scientifically, hidden suppressive interactions can 

significantly alter the topography of a fitness landscape, which visualizes the relationships 

between stressors or mutations and their effects on fitness (Wright, 1932, Wright, 1988). 

Specifically, they can alter the peaks and valleys, with peaks being environments beneficial to 

bacterial growth and valleys resulting in areas difficult for populations to cross, owing to 

intermediate traits or environments that face an overall decrease in fitness (Figure 2). Hence, a 

better understanding of hidden interactions is useful from both an evolutionary and clinical 

standpoint. 

 Traditionally, interaction within a combination of drugs is determined solely based off 

comparison to effect of all single drug components; this is reflective of the difficulty of studying 

hidden interactions. First, studying these interactions in higher orders requires obtaining the 

growth measurements of all single and combinational drug subsets under a select higher-order 

combination. For a 5-drug combination, this includes the one 5-drug combination, five 4-drug 

combinations, ten 3-drug combinations, ten 2-drug combinations, five single drugs alone, and a 

no-drug control. Together, these measurements make up one full-factorial of growth 

measurements. Second, classifying higher-order interactions requires calculations with 

contributions from all lower levels in a combination, which amounts to a high number. Applying 

the scope of emergent interactions to this makes for more intricate calculations for each 
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combinatorial component of a full-factorial. This is because calculations then account for how 

single drugs may affect the interactions of another included subset—as an example, a third drug 

can alter the interaction between two other drugs, rather than just how the third drug affects the 

two drugs on an individual level (Beppler et al., 2016, Tekin et al., 2016, Tekin et al., 2017, 

Tekin et al., 2018). For net interactions where only single drugs and their effects on the highest-

order combination are concerned, the calculation is simpler but can still be computationally time 

consuming. Overall, there are logistical hurdles to examining interactions.  

Net and emergent interactions aside, the identification of hidden interactions is a 

challenge because after identifying interactions at all order levels, these values must then be 

compared to one another. At the 5-drug level, this makes for 120 comparisons per combination 

studied. On another note, understanding how to theoretically and conceptually quantify higher-

order drug combination interactions is difficult. However, advances in hardware and automated 

robotics have alleviated the logistical hurdle because of a better ability to handle large quantities 

of computation and measurements. Regarding the conceptual side, framework for the 

categorization of combinations and their interactions, including emergent properties, have 

become more elucidated.  

 Here, we perform a systematic examination of the structure of suppressive interactions in 

higher-order drug combinations. Specifically, we ask: 1) how prevalent are hidden suppressive 

interactions? 2) What is the structure of a suppressive interaction: are they likely to be 

suppressive to the next lower-order combination? For example, do we primarily see a 5-drug 

combination that is suppressive relative to a 4-drug combination, or are there larger jumps in 

suppression, for example, a 5-drug combination that is suppressive relative to a 2-drug 

combination? Or is suppression likely to be nested—that is, if a 5-drug combination is 
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suppressive, is it likely to be suppressive to 4-drug and 3-drug subsets within the 5-drug 

combination? 3) Lastly, are some antibiotics or main mechanism of actions more likely to be 

involved in general suppressive interactions? The focus of my thesis was question 2; however, I 

contributed to questions 1 and 3 as well. 

 

CHAPTER 2. METHODS 

We re-examined the data set collected and published in Tekin et al. (2018) to examine the 

presence and patterns of suppressive interactions (both hidden and net) within these 

combinations. 

A. Experimental set-up of Tekin et al. (2018) 

The data set examined was originally collected and published in Tekin et al. (2018). A 

pathogenic E. coli strain CFT073 was isolated from human clinical specimens and obtained from 

ATCC (700928). A culture of CFT073 was streak-purified on Luria Broth (LB) (10 g/l tryptone, 

5 g/l yeast extract, and 10 g/l NaCl) agar and a single colony was selected to make individual 

aliquots of bacteria stored in 25% glycerol and frozen at -80°C. For each day of experiments, a 

new aliquot was used, which was thawed and diluted by a factor of 102 in LB and a culture was 

grown for approximately 4 hours at 37°C.  

Eight different antibiotics that span a range of mechanisms of action was used (Table 1): 

Ampicillin (A9518), Cefoxitin Sodium Salt (C4786), Ciprofloxacin Hydrochloride (MP 

Biomedicals 199020), Doxycycline Hyclate (D9891), Erythromycin (E6376), Fusidic Acid 

Sodium Salt (F0881), Streptomycin (S6501), and Trimethoprim (T7883) (Table 1). All drugs 

were obtained from Sigma Aldrich unless otherwise noted. Each antibiotic was prepared in 

solution in 100% DMSO, except for streptomycin which was dissolved in 50% DMSO. 
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Dose-response curves were generated using GraphPad Prism 7 

(http://www.graphpad.com/quickcalcs/Ecanything1/) to estimate IC10, IC5, and IC1 for each 

antibiotic, using 20-step 2-fold dilutions beginning at 0.1mM. For fusidic acid, the concentration 

used to begin the 2-fold dilutions was 1mM, since using 0.1mM to begin the dilutions resulted in 

the inability to determine an IC50 using Graphpad Prism 7. Three concentrations at the sub-

inhibitory level were used so that growth still occurred but was slowed in comparison to no-

growth bacteria (Table 1). Once usable concentrations were determined, source plates (one plate 

with one antibiotic and two plates with two antibiotics combined in DMSO) were made using 

100% DMSO except in the case of streptomycin where 50% DMSO was used. 

All possible 2-, 3-, 4-, and 5-drug combinations of the antibiotics listed in Table 1 at each 

of the three possible drug concentrations were tested. This resulted in 13,608 5-drug-dose 

combinations, 5,670 4-drug-dose combinations, 1,512 3-drug-dose combinations, 251 2-drug-

dose combinations, and 24 single drug treatments. Each well was filled on each experimental 

plate to a total volume of 50μL. 25μL of LB was pinned with 250nL of antibiotics from the 

appropriate source plates and 25μL of the inoculum (a 10-4 dilution of the over day culture). 

Plates were incubated at 37°C and read at OD590 every 4hr for 16hr. Each combination had a 

minimum of three replicates.  

 

B. Calculation of growth measurements performed by co-author 

Growth measurements for each well were approximated from the maximum linear slope 

of the log transformed optical density (OD) readings that occurred over each time step (0hr to 

4hr, 4hr to 8hr, 8hr to 12hr, and 12hr to 16hr) as a relative proxy to an exponential growth rate. 

These growth measurements were then normalized to the positive no-drug control wells to 
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determine relative fitness values. Fitness values below 5% were considered to be lethal and 

fitness values that were +100% were set back to be 100%. These fitness values were then used to 

evaluate drug interactions based on the methods used in Tekin et al. (2018). 

 

C. Measurement of interactions by Tekin et al. (2018) 

To measure the deviation from additivity, known as “net interactions,” Bliss 

Independence methods (Bliss, 1939) were followed. The Bliss independence method is widely 

used to categorize interactions  (Sühnel, 1998, Meletiadis et al., 2005, Yeh et al., 2006, Petraitis 

et al., 2009, Zhao et al., 2014, Baeder et al., 2016, Koch et al., 2016, Liu et al., 2018). Bliss 

independence assumes that at a set concentration of an antibiotic the relative effect is completely 

independent of each other. A deviation from this expectation results in either a synergistic 

interaction (positive deviation, Figure 1) or antagonistic interaction (negative deviation, Figure 

1). 

To measure net interactions, methods outlined in Beppler et al. (2016), Tekin et al. 

(2016), and Tekin et al. (2018) were used. This framework is used to examine 2-, 3-, 4-, and 5-

drug combinations but can also be expanded to N number of drugs (Tekin et al., 2018). To find 

the net interaction, or the deviation from additivity for N drugs (DAN) the fitness effects (𝑤) 

contributed by each drug alone are removed from the overall fitness effect (𝑤𝐷1,𝐷2,𝐷3…𝐷𝑁
) 

assuming Bliss independence (Equation 1).  

Equation 1: [𝑫𝑨𝑵]𝑫𝟏,𝑫𝟐,𝑫𝟑…𝑫𝑵
= 𝒘𝑫𝟏,𝑫𝟐,𝑫𝟑…𝑫𝑵

− 𝒘𝑫𝟏
𝒘𝑫𝟐

𝒘𝑫𝟑
… 𝒘𝑫𝑵

 

After the initial interaction value is determined, a rescaling process is used to better distinguish 

between interaction types (Tekin et al., 2016).  For rescaling, when the DA is synergistic one 
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rescales to the lethal case. This is because when measuring growth, it is not possible to be deader 

than dead. If the interaction was not synergistic then it was normalized to the minimum fitness of 

an individual drug within the deviation from additivity formulas. Equation 2 shows the example 

for a 3-drug combination.  

Equation 2: 𝑫𝑨𝒓𝒆𝒔𝒄𝒂𝒍𝒆𝒅 =
[𝑫𝑨𝑵]𝑫𝟏,𝑫𝟐,𝑫𝟑…𝑫𝑵

|𝒎𝒊𝒏(𝒘𝑫𝟏
, 𝒘𝑫𝟐

,𝒘𝑫𝟑
,…𝒘𝑫𝑵

) −𝒘𝑫𝟏
𝒘𝑫𝟐

𝒘𝑫𝟑
…𝒘𝑫𝑵

|
 

Emergent interactions were also examined. An emergent interaction is the interaction that is 

unique to either the three, four, or five drugs being present within a combination. For example, 

when considering all possible drug effects that can be occurring within a single 3-drug 

combination there are a total of seven effects. First, all three individual drugs have their own 

effect. These effects are accounted for when we are determining the deviation from additivity. 

Next, there are three pairwise interactions that can also interact with the individual drug effects 

of the third drug. And finally, there is the emergent effect, which is the interaction that is strictly 

because of the three drugs being in combination. Similar to the DA calculations the emergent 

calculations (E3) removes the effects of the single drugs but then also removes the effects of the 

pairwise interaction only leaving the effects uniquely due to the 3-drug combination (Equation 

3). This can then be rewritten only in fitness effects. (Equation 4). 

Equation 3: 𝑬𝟑 = 𝑫𝑨𝑿,𝒀,𝒁 − 𝒘𝑿𝑫𝑨𝒀,𝒁 − 𝒘𝒀𝑫𝑨𝑿,𝒁 − 𝒘𝒁𝑫𝑨𝑿,𝒀 

Equation 4: 𝑬𝟑 = 𝒘𝑿𝒀𝒁 − 𝒘𝑿𝒘𝒀𝒁 − 𝒘𝒀𝒘𝒁𝑿 − 𝒘𝒁𝒘𝒀𝒁 + 𝟐𝒘𝑿𝒘𝒀𝒘𝒁 

The same principals can be expanded out to accommodate N number of drugs within a 

combination Tekin et al. (2018). These emergent interaction were then rescaled in a similar way 

as the DA values as described in Tekin et al. (2018). 
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D. Analysis of Prevalence and Patterns of Suppression and Hidden Suppression 

Following the calculations for the measurements of interactions, I focused on examining 

the drug-dose replicates and developing a framework to determine the prevalence of hidden 

suppression in the drug combinations. I also determined cases to classify the types of structures 

of hidden suppression that can be found within a combination and evaluated the abundance of 

combinations that fell into each specified case. Cases are defined in Table 2.   

The median DAN of drug-dose replicate experiments was used to determine patterns of 

suppression in three, four, and five drug-dose combinations. A cutoff value of DAN > 1.3 to 

classify combinations as net suppressive was used. This cutoff value is based on the framework 

used by Beppler et al. (2017), which only examined 2-drug and 3-drug combinations. All 

combinations, regardless of net interaction, were screened for hidden suppression. 

Following this identification of net interactions, “paths” were generated for each of the 

drug-dose combinations. A “path” is a unique heterarchical grouping containing one 

representative of each of all the lower-order combinations within the highest-order combination. 

These paths facilitate comparisons of nested fitness values within N-order combinations, which 

are used to determine cases of suppression and hidden suppression. For instance, when 

evaluating possible hidden suppression in a 4 drug-dose combination, pairwise drug-dose 

combination values can only be compared to those of 3 drug-dose combinations that they are a 

part of, rather than those of all possible 3 drug-dose combinations (Figure 3A). Fitness values of 

all combinations and single drugs were included in these paths, resulting in six paths for each 3-

drug-dose combination, 24 paths for each 4-drug-dose combination (Figure 3A), and 120 paths 

for each 5-drug-dose combination (Figure 3B).  
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To identify the presence of hidden suppression, the fitness of the highest-order 

combination (𝑤𝑫𝟏,𝑫𝟐,𝑫𝟑…𝑫𝑵
) was divided by the fitness of the lower-order combination with the 

smallest fitness (min(𝑤𝑫𝟏,𝑫𝟐,𝑫𝟑…𝑫𝑵−𝟏
… 𝑤𝑫𝟏,𝑫𝟐

)) (Equation 5). 

Equation 5: 𝑯𝒊𝒅𝒅𝒆𝒏 𝒔𝒖𝒑𝒑𝒓𝒆𝒔𝒊𝒐𝒏 ⇔  
𝒘𝑫𝟏,𝑫𝟐,𝑫𝟑…𝑫𝑵

𝒎𝒊𝒏(𝒘𝑫𝟏,𝑫𝟐,𝑫𝟑…𝑫𝑵−𝟏,….𝒘𝑫𝟏,𝑫𝟐
 )

≥ 𝟏 

A value greater than or equal to 1.3 indicates the presence of hidden suppression. Once the 

presence of hidden suppression was determined within a combination, each path was examined 

in-depth for all possible hidden suppression relationships. The net interaction, representative 

fitness values of inclusive combinations, and single drugs were compared and used to assess if 

the combination could be considered a special case (Table 2).   

Data for combinations with any suppressive interactions, net or hidden, was analyzed in 

through the use of logistic regression in R using the glm function. The variables were first 

changed to binary, with 1 indicating presence and 0 indicating the absence of drug or the main 

mechanism of action creating the initial sets of predictors. Because hidden suppressive 

interactions require at least three drugs to be present to be defined, this makes it necessary for the 

logistic regression model to not have an intercept term. This is because the case where all 

dummy variables are zero corresponds to no drug being present, in which case any suppressive 

interaction is not possible by definition. Single drugs and 2-drug combinations were evaluated 

separately for a clearer interpretation of the data and to ensure model identifiability without 

removing variables. Coefficients, confidence intervals, p-values, odds ratios, and the probability 

from the logistic regressions are available in Tables 3-14. 

 

E. Program Language and Code Availability 



 

12 

 

The data analysis is performed in MATLAB version 2015a, Python version 3.7.0, and R 

4.0.2. PRISM was used by Tekin et al. (2018) for their study but was not needed in the reanalysis 

performed by this study. Measurement of interactions and interaction type determination was 

performed in MATLAB. Generation of paths and the identification of hidden suppression and 

special cases were performed in Python. Code for these parts can be found in the appendix. The 

determination of the growth measurements and logistic regressions were performed in R. 

 

CHAPTER 3. RESULTS 

I compared the fitness of the highest-order interaction to all lower-order interactions, to 

determine if hidden suppression was present within the combination. This information was then 

examined through the use of paths. A path, to refresh, is a unique heterarchical grouping 

containing one representative of each of all the lower-order combinations within the highest-

order combination (Figure 3). I use these paths to identify what suppressive interactions occur 

within a combination and to detect nesting of hidden suppression. That is, for example, “full” 

nesting occurs in a 5-drug combination when the 5-drug combination (A+B+C+D+E) is 

suppressive to a 4-drug combination (A+B+D+E) and that 4-drug combination is suppressive to 

a 3-drug combination (A+D+E) which is then suppressive to a 2-drug combination (A+D). 

Analyzing paths will enable us to understand the structure of the interactions—determining 

which comparisons between a specific lower-order combination and the highest-order 

combination are suppressive (Box 1). More specifically, hidden suppression was identified by 

comparing the fitness of the highest-order combination with that of the lowest fitness from its 

lower-order combinations. Paths of hidden suppressive combinations were also analyzed to see 

what types of suppression could be identified. Please note that when referring to a single drug the 
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full name of the antibiotic is written out, when referring to a combination as a single entity the 

abbreviations of the drugs (Table 1) within the combination are used. For example, a 

combination containing the drugs ampicillin, fusidic acid, and streptomycin is listed as 

AMP+FUS+STR. 

 

A. The Prevalence of Hidden Suppression 

Nearly all higher-order combinations of unique drugs had at least one dose that produced 

a hidden suppressive interaction. Out of all the possible 182 higher order drug combinations (56 

3-drug combinations + 70 4-drug combinations + 56 5-drug combinations) only five (four 3-drug 

combinations and one 5-drug combination) had no unique dose that had hidden suppression: 

AMP+FUS+ERY, AMP+FOX+FUS, FOX+CRP+FUS, STR+FOX+FUS, and 

TMP+STR+FUS+DOX.  Among all 20,790 of unique drug-dose combinations studied, 

suppressive interactions are observed in 54% (11,302) of combinations. With only 17% (3,534) 

of the total combinations identified as net suppressive (Tekin et al., 2018) the remaining 7,768 

combinations with suppressive interactions only contain hidden suppressive interactions. By 

solely considering the highest-order combination and the single drug effects, 69% of the 

combinations with suppressive interactions would not be identified (i.e., 7,768 out of 11,302). As 

the number of drugs in a unique drug dosage combination increases so does the percentage of 

combinations with hidden suppression: 33% of the 3-drug combinations, 48% of the 4-drug 

combinations, and 59% of the 5-drugs combinations had hidden suppression (Figure 4). 

In cases where the net interaction is synergistic or additive, hidden suppression can still 

occur when the highest-order combination is compared to a lower-order combination (Figure 1, 

Figure 5-6). Importantly, for a combination to contain hidden suppression, it is not dependent on 
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the interaction type based on comparing the fitness values to the single drugs alone. For instance, 

a synergistic 4-drug combination that results in 20% relative fitness compared with no-drug 

environments can have a lower-order synergistic 2-drug combination that results in 10% relative 

fitness. This example then also has hidden suppression because the 4-drug combination results in 

more bacterial growth than the lower-order 2-drug combination but is still below the additive 

effects of the single drugs (Figure 1). Net additive combinations had hidden suppression in 27% 

of 3-drug combinations, 40% in 4-drug combinations, and 67% in 5-drug combinations (Figure 

7). In net synergistic combinations, hidden suppression was found in 0% of 3-drug combinations, 

7% of 4-drug combinations, and 23% in 5-drug combinations (Figure 7). Hidden suppression in 

net antagonistic combinations also increased as the number of drugs increased: 52% of 3-drug 

combinations, 71% of 4-drug combinations, and 72% in 5-drug combinations. In contrast, 

combinations that are net suppressive showed a decrease in the amount of hidden suppression as 

the number of drugs increased; 96% of 3-drug combinations, 92% of 4-drug combinations, and 

88% in 5-drug combinations. These trends—the increase in the amounts of hidden suppression in 

synergistic, additive, and antagonistic with the increase in the number of drugs, and the decrease 

in hidden suppression with the increase in the number of drugs among the suppressive 

interactions—are also observed when examining emergent interactions (Figure 7). 

 

B. The Structure of Hidden Suppression 

When addressing the structure of hidden suppression, it is important to recognize that in 

each drug combination multiple lower-order interactions are occurring. For example, in a 3-drug 

combination, there are three unique 2-drug combinations within it. Using the same framework, in 

a 5-drug combination there are ten unique 2-drug combinations, ten unique 3-drug combinations, 
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and five unique 4-drug combinations. This results in a total of 25 possible hidden interactions. 

Combinations that contain hidden suppressive interactions can have suppressive interactions with 

one of the 25 possibilities, all of them, or any amount in between. 

The highest-order combination has N drugs and is compared to all of the lower-order 

combinations to see where hidden suppression took place (Table 15). When comparing net 

suppressive combinations and those that only have hidden suppression, there are more instances 

of hidden suppression in combinations that are net suppressive no matter the number of drugs in 

the lower-order combination (Table 15, Figure 8).  For example, in a 4-drug combination, there 

is suppression to the 3-drug combinations in 71% in net suppressive combinations while in 

combinations with only hidden suppression it was only observed 60% of the time. Combinations 

that are net suppressive also have the highest amounts of hidden suppression occurring between 

all possible lower-order combinations (Figure 8). For example, in a 5-drug combination, there 

are a total of ten possible 2-drug combinations. In net suppressive 5-drug combinations, hidden 

suppression occurs between the highest-order combination and all possible 2-drug combinations 

roughly 60% of the time. This occurs in less than 20% of 5-drug combinations that only have 

hidden suppression.  

In breaking this down from a paths perspective, 78% of paths in net suppressive 3-drug 

combinations were suppressive to a possible 2-drug combination. 14% of paths in net 

suppressive 4-drug combinations were suppressive to a possible 2-drug combination only; 10% 

were suppressive to a 3-drug combination only, and 61% were suppressive to both a 2- and 3-

drug combination. In net suppressive 5-drug combinations, 4% of paths were suppressive to a 2-

drug combination only; 2% to a 3-drug combination only; 5% to a 4-drug combination only; 6% 

to both a 2- and 3-drug combination; 4% to both 2- and 4-drug combination; 5% to both a 3- and 
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4-drug combination; and 66% to all 2-, 3-, and 4-drug combinations in a path (Table 16). In 

combinations with hidden suppression only, 77% of paths in 3-drug combinations were 

suppressive to a possible 2-drug combination. 17% of paths in hidden suppression only 4-drug 

combinations were suppressive to a possible 2-drug combination only; 16% were suppressive to 

a 3-drug combination only, and 45% were suppressive to both a 2- and 3-drug combination. In 

hidden suppression only 5-drug combinations, 6% of paths were suppressive to a 2-drug 

combination only; 4% to a 3-drug combination only; 18% to a 4-drug combination only; 7% to 

both a 2- and 3-drug combination; 5% to both 2- and 4-drug combination; 7% to both a 3- and 4-

drug combination; and 23% to all 2-, 3-, and 4-drug combinations in a path (Table 17). 

This trend, of hidden suppression being more common in net suppressive combinations 

than only hidden suppression combinations, can be observed no matter how many drugs are in 

the highest-order combination or the number of drugs in the lower-order combination it is being 

compared to. It also strengthens as the number of drugs in the highest-order combination 

increases. Figure 8 compares the amounts of hidden suppression in net suppressive combinations 

and only hidden suppression combinations. Overall, the difference between net suppressive 

combinations and only hidden suppression combinations is smaller in 3-drug combinations than 

in 5-drug combinations. This is especially true when observing if there is hidden suppression for 

all possible options of N-drugs in a lower-order combination.  

 For net suppressive combinations, full nesting—when fitness at any order is greater than 

the fitness of the next lower-order combination in all paths including single drug effects—was 

only observed in the 3-drug and 4-drug combinations. A majority of net suppressive 

combinations were considered to have partially nested suppression, wherein at least one path, the 

fitness at any order must be greater than the fitness of all lower-orders (defined in Table 2) 
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(Figure 9). When examining the potential nesting of non-net suppressive combination, single 

drug effects do not need to be considered because by definition there would be no suppression to 

the single drugs. All net synergistic combinations only contain hidden suppression that does not 

fall into any special case.  

 Disregarding highest-order interaction type, 52.4% of net suppressive 3-drug 

combinations had fully nested suppression; 44.0% had partially nested suppression and 3.6% had 

no hidden suppression. In net suppressive 4-drug combinations, 0.5% had fully nested 

suppression, 87.7% had partially nested suppression, 3.3% were partially suppressed, and 8.5% 

had no hidden suppression. In net suppressive 5-drug combinations, 81.2% had partially nested 

suppression, 6.7% were partially suppressed, and 12.1% had no hidden suppression (Table 18). 

When classifying interaction using emergent interactions, fully nested suppression only appeared 

in 3-drug combinations. Based on emergent interactions, 36.8% of suppressive 3-drug 

combinations had fully nested suppression, 46.9% had partially nested suppression, and 16.3% 

had no hidden suppression. In suppressive 4-drug combinations, 49.6% had partially nested 

suppression, 5.9% were partially suppressed, 0.4% were suppressive with some form of hidden 

suppression, and 44.1% had no hidden suppression. In suppressive 5-drug combinations, 33.8% 

had partially nested suppression, 7.1% were partially suppressed, and 59.1% had no hidden 

suppression (Table 19). Overall, whether net suppressive or suppressive based on emergent 

interactions, higher-order drug combinations that fit into a defined case mostly fit the definition 

for partially nested suppression. 

 In regard to 3-drug combinations that have hidden suppression only and were neither net 

suppressive nor deemed suppressive using emergent interactions, all such combinations did not 

fit definitions for the fully hidden suppression or partially hidden suppression cases. This was 
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also the case for all 4- and 5-drug combinations that only had hidden suppression. Using net 

interactions, 0.3% of 4-drug combinations with hidden suppression only experienced fully nested 

hidden suppression; 78% experienced partially nested hidden suppression, and 21.8% just had a 

hidden suppressive interaction of some kind. In 5-drug combinations, 39.2% had partially nested 

hidden suppression, and 60.8% had a hidden suppressive interaction of some kind (Table 20). 

Using emergent interactions, 0.4% of 4-drug combinations with hidden suppression only 

experienced fully nested hidden suppression; 81.8% experienced partially nested hidden 

suppression, and 17.8% only had hidden suppressive interaction of some kind. In 5-drug 

combinations, 55.9% of combinations had partially nested hidden suppression and 44.1% had 

hidden suppressive interactions of some kind (Table 21). In general, the trend of 4- and 5-drug 

combinations with hidden suppressive interactions only mostly falling into the partially nested 

hidden suppression case is shared between net and emergent-identified combinations. Across all 

combinations determined to be suppressive or have hidden suppression using both net and 

emergent interactions, the number of combinations that fit the case of partially nested 

suppression is most abundant.  

 

C. Likelihood of Specific Drugs or Mechanisms of Action Involved in Suppressive Interactions 

We used logistic regressions to determine if any drug or the main mechanism of action 

may have a positive association with general suppressive interactions (hidden and net). The 

presence of trimethoprim alone was found to be significantly positively associated with 

suppressive interactions for 3-drug, 4-drug, and 5-drug combinations (Table 3, Table 7, Table 

11). Ciprofloxacin, doxycycline, and erythromycin only had a significant positive association 

with suppressive interactions in 4-drug and 5-drug combinations (Table 7 and Table 11). The 



 

19 

 

presence of trimethoprim increased the odds of a 3-drug, 4-drug, and 5-drug combination being 

suppressive by roughly two-fold (p < 0.001). The combined presence of ciprofloxacin and 

trimethoprim (CPR+TMP), and cefoxitin and trimethoprim (FOX+TMP) were also found to 

significantly increase the probability of finding suppressive interactions in 3-drug, 4-drug, and 5-

drug combinations (p < 0.001) (Table 4, Table 8, Table 12). The combined presence of 

ampicillin and ciprofloxacin, ciprofloxacin and erythromycin, doxycycline and cefoxitin, and 

erythromycin and trimethoprim, had a positive association with suppressive interactions for 4-

drug, and 5-drug combinations (p < 0.001) (Table 8 and Table 12). 

When considering the main mechanism of action rather than individual antibiotics, the 

presence of the antibiotic acting on folic acid biosynthesis (trimethoprim) was found to be 

significantly positively associated with suppressive interactions (p < 0.01) in 3-drug, 4-drug, and 

5-drug combinations (Table 5, Table 9, Table 13). There were only two positive associations that 

occur across all levels of higher-order drug combinations (i.e. 3-drugs, 4-drug, and 5-drug 

combinations): they are with the antibiotic acting on folic acid biosynthesis, trimethoprim, alone 

(p < 0.0001) and the combination of two main mechanism of actions—folic acid biosynthesis 

and the DNA gyrase (p < 0.001) (Table 6, Table 10, Table 14). The probability of a combination 

having suppressive interactions decreases with the presence of an antibiotic acting on the 30S 

ribosomal subunit alone in the 3-drug, 4-drug, and 5-drug combinations (p < 0.0001) (Table 5, 

Table 9, Table 13).  

 

CHAPTER 4. DISCUSSION 

While it was previously reported that higher-order drug combinations had a substantial 

amount of suppressive interactions (14% in Beppler et al. (2017) and 8% in Tekin et al. (2018)),  
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there has been no further work on understanding the patterns and prevalence of higher-order 

suppressive interactions, particularly hidden interactions. The idea of hidden suppressive 

interactions was first introduced by Beppler and colleagues several years ago (Beppler et al., 

2017). New technologies are now allowing rapid detection of suppressive interactions using both 

very small volumes of bacterial culture and antibiotic combinations (<1uL) and very short time 

frames of several hours (Cokol et al., 2011, Churski et al., 2012, Cokol et al., 2014). New 

conceptual advances allow us to examine higher-order interactions and emergent properties of 

drug combinations (Beppler et al., 2016, Tekin et al., 2016, Katzir et al., 2019, Lukačišin and 

Bollenbach, 2019). Because of this, suppressive interactions have received more focus recently 

(see review Singh and Yeh (2017)).  We have shown that even with recent advancements and 

interest in suppression, one can severely underestimate the number of suppressive interactions by 

not considering hidden suppression.  

When examining hidden suppression, increasing the number of drugs in a combination 

also increases the number of possible lower-order combinations thus possibly increasing the total 

number of combinations with hidden suppression interaction. When we look at the overall 

percentage of combinations with hidden suppression this value steadily increases from 33% to 

48% to 59% as the number of drugs increases (Figure 4). This would explain the trends we see in 

Figure 5 for synergistic, additive, and antagonistic combinations. However, this does not offer a 

viable explanation for the negative correlation between the amount of hidden suppression and the 

number of drugs in a combination of net and emergent suppressive combinations. 

  In 2-drug combinations, it has been shown that a combination of DNA synthesis 

inhibitors and protein synthesis inhibitors have higher amounts of suppression (Yeh et al., 2006, 

Chait et al., 2007, Bollenbach et al., 2009). Thus, we expected that we might find some drugs or 
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main mechanisms of actions more consistently involved in suppressive interactions, and this was 

indeed the case. We have shown that there is a significant positive association with suppressive 

interactions and interference with the 50S ribosomal subunit in combination with a DNA gyrase 

in 4-drug combinations and a significant positive association with suppressive interactions and 

interference with the 30S ribosomal subunit in combination with a DNA gyrase in 5-drug 

combinations. These findings are supported by the one suppressive mechanism that is very well 

understood (Bollenbach et al., 2009).  

 The main mechanism of action is one way that antibiotics are commonly grouped. We 

expected to see similar patterns of association between the logistic regressions based on specific 

drugs and based on the main mechanism of actions. We observe this similarity with the main 

mechanism of actions affecting folic acid biosynthesis trimethoprim, affecting the 50S ribosomal 

subunit—doxycycline and erythromycin, and affecting DNA gyrase—ciprofloxacin. As 

previously described the identification of DNA gyrases and protein syntheses can be expected to 

be positively associated with suppressive interactions. However, folic acid biosynthesis 

interference is positively associated with suppressive interactions in all levels of drug 

combinations (3-drug, 4-drug, and 5-drug combinations). We suggest that this cellular 

mechanism may also be a mechanism for suppression and could be a fruitful avenue for future 

studies. 

Further, though use of net and emergent interactions resulted in different values of 

combinations fitting the cases defined (Table 2), the partially nested suppression case was 

identified the most. This may give insight into a prevalent structure of hidden suppression in 

higher-order combinations when present. Admittedly, though, the combinations screened as 

having hidden suppression with a different highest-order interaction are of the most interest. 
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Combinations deemed synergistic but with hidden suppression would be of further interest, but 

no synergistic combinations had hidden suppression that fell into any special case. This is 

because such combinations could possibly reap the benefits of both the highest-order interaction 

and the hidden suppressive interactions to lower-orders. 

 Hidden suppressive interactions can affect fitness landscapes, which means they 

ultimately could affect the evolutionary trajectory of populations. For example, if we use a drug 

combination with a corresponding fitness landscape based only on information from the single 

drugs and the 5-drug combination, we could end up with a landscape topography that looks very 

different from a fitness landscape where we had information from all lower-order drugs (Figure 

10). This is not surprising because we have more information in the latter than the former. 

Qualitatively, the fitness landscapes are similar, but there are quantitative differences (Sanchez-

Gorostiaga et al., 2019).  In contrast, in cases where hidden suppression is present, a landscape 

without the lower-order interaction information would look very different from a landscape with 

all the lower-order interactions (Figure 10-11). Qualitatively, there are important differences 

between the fitness landscape because there are local valleys and peaks that are present in the 

latter and not present in the former. These valleys and peaks can affect how a population evolves, 

and where it ends up (Østman et al., 2011, Palmer et al., 2015, Bendixsen et al., 2017).  

 Within a specific drug pair, recent work has shown that the concentrations at which two 

drugs veer into suppressive territory (from, for example, additivity) could be understood via a 

cost-benefit analysis. There is a trade-off between a drug inducing resistance (good for the 

bacterial cell) and increasing toxicity (bad for the bacterial cell), and this trade-off could explain 

why certain concentrations in one drug pair are suppressive, whereas other concentrations exhibit 

different interaction types (Wood and Cluzel, 2012).  Furthermore, with some exceptions, 
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suppressive interactions, as with most interactions, are typically robust to genetic mutations 

(Chevereau and Bollenbach, 2015).   

 Clinicians traditionally favor treatments with synergistic combinations, because it limits 

the number of antibiotics prescribed to the patient limiting any potential adverse effects (Lepper 

and Dowling, 1951, French et al., 1985, Sun et al., 2013, Arya et al., 2019), rather than treatment 

with suppressive combinations.  This is because by definition, using suppressive interactions 

means using higher drug concentrations to achieve the same bacterial killing effect as drugs that 

are additive or synergistic. Thus, hidden suppressive interactions are ones that could be 

confounding in the clinic. As more treatments move to higher-order combinations of drugs 

(Mbuagbaw et al., 2016, Sun et al., 2016, Morimoto et al., 2018, Tsigelny, 2019), it becomes 

critical to understand where suppressive interactions may be hidden, to avoid surprising and 

unwelcome clinical outcomes. For example, as shown in Figure 10, if one were to use a 

combination of CPR+ERY+STR+FUS+TMP, if we only compared the results of the five drugs 

together with all the single drugs alone, we would think this was a potentially useful 

combination, in that killing efficiency seems to increase relative to the five single drugs by 

themselves. But once we examine these in light of emergent properties, what we see is that 

CPR+ERY+STR+FUS+TMP has a lower killing efficiency than CPR+STR+FUS+TMP.  

 In conclusion, we show here that higher-order drug combinations exhibit a large number 

of suppressive interactions, and these interactions are primarily hidden. That is, we would never 

know there was a suppressive interaction if we only looked at the effects of the highest-order 

combinations and compared that to all the single-drug effects. Uncovering hidden suppressive 

interactions could decrease surprises regarding how populations evolve to drug combinations. At 
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the same time, identifying hidden suppression can yield valuable information about underlying 

reasons regarding which drug combinations could be useful and which ones should be avoided.   

 

CHAPTER 4. LIMITATIONS AND RESOURCE AVAILABILITY 

Limitations of the Study 

Here we exemplify the need to consider hidden interactions and the possible implications 

of hidden suppression. To do this we examined an extensive data set and found intriguing results. 

However, ideally, additional data could be analyzed with an even larger group of drugs 

examined, allowing for multiple representatives from each antibiotic class and the main 

mechanism of actions. The data set from Tekin et al. (2018) used low levels of inhibition for 

each individual drug in an attempt to have detectable growth when antibiotics are used in 5-drug 

combinations. The low inhibition of each individual drug can affect the fraction of net-

suppressive interactions by narrowing the range of a suppressive interaction. But ultimately these 

concentrations were chosen to avoid killing off the entire bacterial populations before a 5-drug 

combination could be examined.  

Additionally, given that we used the same cutoff for hidden suppression as is used for net 

suppression, identifying a more formal cutoff value for hidden suppression would be ideal. Our 

value is somewhat arbitrary given its determination came from the same dataset used. It resulted 

from scaling the interaction values and identifying peaks in the distribution of drug combinations 

against the interaction metric that best-informed cutoffs for the different interaction types (Tekin 

et al., 2018). The same process could be used again across multiple datasets to see if a more 

fitting cutoff can be generalized.  
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Resource Availability  

Materials Availability 

This study did not generate new unique reagents. 

Data and Code Availability  

All data and code has been made freely available via Mendeley Data 

(https://data.mendeley.com/datasets/ts2hnd72yf/draft?a=4fec844a-e75b-402b-9883-

e34bfeff5c2a). 

 

CHAPTER 5. FIGURES AND TABLES 

A. FIGURES 

 
Figure 1. Antibiotic interactions in 2-drug and 3-drug combinations. Hatched bars represent growth 

in a no-drug environment, black bars represent the fitness of bacteria treated with a single antibiotic. Light 

gray bars represent the fitness of additive drug interactions, synergistic interactions are in red, 

antagonistic interactions are in green and suppressive interactions are in teal. Note that the 2-drug 

combinations do not need to have the same net interaction type for a 3-drug combination to have a 

particular net interaction. Suppressive interactions are an extreme form of antagonism: notice that the 

bacteria treated with the suppressive drug combination has a higher fitness then the single drugs. 
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Importantly, suppressive interactions can be hidden: this occurs when the highest-order combination has 

higher fitness than a lower-order combination but it does not have higher fitness than any of the single 

drugs. Thus, hidden suppression can only occur in a combination of 3 or more drugs. Also note, that 

bacteria treated with the 3-drug combination with hidden suppression has a higher fitness compared to 

any of the 2-drug combinations but not one of the single drugs.  

 

 

 
Figure 2. An illustration of the fitness landscapes and the importance of ruggedness in evolutionary 

trajectories. A) A smooth landscape only has one peak. As a population evolves to an environment there 

is always a path that leads to the optimum set of traits resulting in the highest possible fitness. B) In a 

rugged landscape, multiple peaks and valleys make evolving to the highest fitness not as straightforward 

as in a smooth landscape. Populations may have to cross a valley which means (1) a loss of fitness must 

first occur before a net increase in fitness, (2) the population can become stuck at a local peak rather than 

evolve and ascend to the global peak, or (3) the population must make a jump from one peak to the next. 

Without the lower-order interactions, we may miss key details of intermediate peaks and valleys in the 

fitness landscape. 

 

 

 
Figure 3. The paths for a 4-drug and a 5-drug combination consisting of drugs A, B, C, D, and E. A) 

All 24 possible paths are shown for a 4-drug combination. B) All 120 possible paths are shown for a 5-

drug combination. For both the 4-drug (A) and 5-drug (B) combinations, a single path is shown in a bold 
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line with the highest-order combination and each lower-order combination highlighted in gray. This 

single path represents a unique set of drugs, one at each level of combinations (4-drug, 3-drug, 2-drug, 

and a single drug), allowing for an assessment of any nesting. For this example, nested hidden 

suppression occurs when the 5-drug combination is suppressive to the 4-drug, the 4-drug combination is 

suppressive to a 3-drug combination, and the 3-drug combination is then suppressive to a 2-drug 

combination. And, if appropriate, the 2-drug combination is suppressive to the single drug effects (this is 

only considered if the combination is net suppressive). If this is true for all paths the combination is 

considered to be fully nested. If this is only observed in some paths the combination is considered to be 

partially nested.  

 
 

 
Figure 4. Hidden suppression is present in a majority of higher-order combinations. Hidden 

Suppression was found in all levels examined—3-drug, 4-drug, and 5-drug combinations. The amount of 

hidden suppression increases as the number of drug increase.  
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Figure 5. Examples from the data of antibiotic interactions in 2-drug and 3-drug combinations. 

Combinations are listed above bar graphs for each example (for abbreviations see Table 1). Hatched bars 

represent growth in a no-drug environment, black bars represent the fitness of bacteria treated with a 

single antibiotic. Light gray bars represent the fitness of additive drug interactions, synergistic 

interactions are in red, antagonistic interactions are in green and suppressive interactions are in teal. Note 

that the 2-drug combinations do not need to have the same net interaction type for a 3-drug combination 

to have a particular net interaction. Suppressive interactions are an extreme form of antagonism: notice 

that the bacteria treated with the suppressive drug combination has a higher fitness then the single drugs. 

Importantly, suppressive interactions can also be hidden when the highest-order combination has higher 

fitness than a lower-order combination and not the single drugs. Thus, hidden suppression can only occur 

in a combination of 3 or more drugs. Also note, that bacteria treated with the 3-drug combination with 

hidden suppression has a higher fitness compared to any of the 2-drug combinations but not one of the 

single drugs.  
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Figure 6. Hidden suppression can be within a net additive combination. The bars in black show the 

effects of the single drugs. The grey bars on the left show the additive expectations given the single drug 

effects while the bar on the right shows the actual relative growth when exposed to the combination. The 

2-drug combinations have varying interactions, combination AB is an antagonistic interaction (green bar), 

combination AC is an additive interaction so the expected grey bar is the same as the relative growth that 

is observed, and BC is a synergistic combination (red bar). Due to the nature of a hidden suppressive 

interaction, a net additive combination can have hidden suppressive interactions (3-drug combination in 

dark gray) as long as at least one of the lower-order interactions is synergistic (2-drug combination BC in 

red). Note that although the three-drug combination (dark gray) has the same value as the strictly additive 

case (light gray) it is considered to have hidden suppression because one of the lower-order 2-drug 

combinations is synergistic (red). This makes the 3-drug combination have higher fitness than the 2-drug 

lower-order combination. 

 



 

30 

 

 
Figure 7. The distributions and relative proportion of hidden suppression for each interaction type 

for net (A) and emergent (B) interactions for 3-, 4-, and 5- drug combinations. The proportion of 

combinations with hidden suppression (HS) of suppressive interactions (teal) decreases as the number of 

drugs in a combination increases. The percentage written inside the darker shades of the bars represents 

the proportion of combinations with hidden suppression present in that specific interaction type. The y-

axis is the percentage of each interaction type within the designated level of the drug combination, 

showing the overall distribution of net or emergent interactions. For example, in A) the net suppressive 4-

drug combinations, 92% of the combinations have hidden suppression within them. As the number of 

drugs increases, the amount of hidden suppression within additive, synergistic, and antagonistic 

combinations also increase. 
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Figure 8. Hidden suppressive interactions occur more frequently within net suppressive 

combinations rather than within non-net suppressive combinations. The amounts of hidden 

suppression are shown out of the total number of lower-ordered combinations within a single higher-order 

combination that is either net suppressive (teal) or have some instances of hidden suppression (gray).  
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Figure 9. Distribution of special cases of hidden suppression structure. All net synergistic 

combinations only have hidden suppression that does not adhere to any special case. 3-drug combinations 

were only tested for fully hidden suppression, hidden suppression, nested suppression, and partially 

suppressed, because all other special cases are trivial in a 3-drug combination. 
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Figure 10. Fitness graphs show the importance of considering hidden interactions. Fitness graphs 

show similar information as a fitness landscape, they both help to visualize the relationships between 

stressors or genetic mutations and their effects on fitness. However, fitness graphs can be more 

appropriate for discrete data. Here we show fitness graphs of two synergistic 5-drug combinations (for 

abbreviations see Table 1). Drug combination 1 has no hidden suppression (top) and drug combination 2 

has hidden suppression (bottom). The left-hand side shows the fitness graphs not considering the hidden 

suppression notice how similar these two appear to be. While the figures on the right-hand side show the 

fitness graphs including the lower-order combinations, notice the increase in ruggedness is due to the 

hidden suppressive interactions (the decrease in fitness at one of the 4-drug combinations) in the bottom 

right. The edges in red highlight the paths involved in hidden suppression. For more detailed information 

about these paths please see Figure 11.   
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Figure 11. Paths of example synergistic drug combination with hidden suppression. All 120 paths for 

the combination CPR+ERY+STR+FUS+TMP (for abbreviations see Table 1). Paths highlighted in red 

with bold edges contain hidden suppression between the 5-drug combination and the 4-drug combination 

CPR+STR+FUS+TMP (shaded in grey). These highlighted paths are the same paths shown in Figure 10. 

 

B. TABLES 

Table 1. A list of the names, concentrations, main mechanism of action, mean relative 

growth compared to a no-drug control, and the abbreviation of the antibiotics used in this 

study. 
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Table 2. Special Case Definitions. A description of each special case definition for both net 

suppressive interactions and not net suppressive interactions. 

Net Suppression Classification 

(𝑫𝑨𝐍 > 𝟏. 𝟑) 

Hidden Suppression Classification 

(
𝒘𝐍

𝒘𝐦𝐢𝐧 𝐨𝐟 𝐥𝐨𝐰𝐞𝐫 𝐨𝐫𝐝𝐞𝐫𝐬
⁄ > 𝟏. 𝟑) 

Special Case  Definition  Special Case  Definition 

Fully Nested 

Suppression 

In all paths, fitness at 

any order must be 

greater than the fitness 

of all lower-orders. 

Fully Nested 

Hidden 

Suppression 

In all paths, fitness at 

any order must be 

greater than the fitness 

of all lower-orders, 

excluding the single 

drugs. 

 

Name 

(Abbreviation) 

Main 

Mechanism of 

Action 

Concentration 

(𝛍𝐌) 

Relative Growth 

(%) 

Standard 

Error (%) 

Ampicillin 

(AMP) 
Cell Wall 

1- 2.89 

2- 2.52 

3- 1.87 

1- 77.43% 

2- 86.01% 

3- 87.06% 

1- 3.05% 

2- 1.74% 

3- 2.42% 

Cefoxitin sodium 

salt 

(FOX) 

Cell Wall 

1- 1.78 

2- 1.37 

3- 0.78 

1- 83.46% 

2- 92.13% 

3- 93.33% 

1- 4.73% 

2- 2.58% 

3- 1.81% 

Trimethoprim 

(TMP) 

Folic Acid 

Biosynthesis 

1- 0.22 

2- 0.15 

3- 0.07 

1- 79.59% 

2- 74.63% 

3- 68.20% 

1- 3.89% 

2- 4.26% 

3- 3.93% 

Ciprofloxacin 

hydrochloride 

(CPR) 

DNA gyrase 

1- 0.03 

2- 0.02 

3- 0.01 

1- 92.14% 

2- 92.14% 

3- 91.06% 

1- 1.69% 

2- 2.40% 

3- 2.17% 

Streptomycin 

(STR) 

Aminoglycoside 

 

Ribosome, 30S 

1- 19.04 

2- 16.6 

3- 12.25 

1- 81.10% 

2- 90.77% 

3- 83.53% 

1- 6.50% 

2- 1.37% 

3- 4.30% 

Doxycycline 

hyclate 

(DOX) 

Ribosome, 50S 

1- 0.35 

2- 0.27 

3- 0.15 

1- 75.15% 

2- 76.53% 

3- 70.01% 

1- 5.51% 

2- 5.13% 

3- 4.73% 

Erythromycin 

(ERY) 
Ribosome, 50S 

1- 16.62 

2- 8.29 

3- 1.78 

1- 84.25% 

2- 84.29% 

3- 79.63% 

1- 5.77% 

2- 5.60% 

3- 5.91% 

Fusidic acid 

sodium salt 

(FUS) 

Ribosome, 30S 

1- 94.42 

2- 71.01 

3- 37.85 

1- 82.31% 

2- 78.82% 

3- 82.62% 

1- 2.51% 

2- 2.83% 

3- 2.47% 
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Partially Nested 

Suppression 

In at least one path, 

fitness at any order 

must be greater than the 

fitness of all lower-

orders. 

Partially Nested 

Hidden 

Suppression 

In at least one path, 

fitness at any order 

must be greater than 

the fitness of all lower-

orders, excluding the 

single drugs. 

Fully Suppressed 

In all paths, fitness at 

the highest-order(𝑤N) 

is greater than the 

fitness of all lower-

orders. 

Fully Hidden 

Suppression 

In all paths, fitness at 

the highest-order(𝑤N) 

is greater than the 

fitness of all lower-

orders, excluding the 

single drugs. 

Partially Suppressed 

Only some paths have 

the highest-order(𝑤N) 

fitness greater than all 

lower-order fitness. 

Partially Hidden 

Suppression 

Only some paths have 

the highest-order(𝑤N) 

fitness greater than all 

lower-order fitness, 

excluding the single 

drugs. 

Suppressive 

Interaction with 

Hidden Suppression 

The highest-order 

combination does not 

fulfill any other 

conditions but is still 

has at least one hidden 

suppressive interaction.  

Hidden 

Suppressive 

Interaction 

The highest-order 

combination does not 

fulfill any above 

conditions, but still has 

an element of hidden 

suppression. 

No Hidden 

Suppression 

No paths have the 

highest-order(𝑤N) 

fitness greater than 

lower-order fitness, 

excluding first-

order(𝑤1). 

 

 
 

Table 3. Logistic regression of a single drug with 3-drug combinations with some levels of 

suppressive interactions (hidden and net). Terms in bold have a significant positive 

association with suppressive interactions. 

Term Coefficient 
Confidence Interval 

p-value 
Odds 

Ratio 
Probability 

0.30% 99.70% 

AMP -0.416 -0.720 -0.117 1.58E-04 0.660 40% 

CPR 0.019 -0.277 0.311 0.863 1.019 50% 

DOX 0.096 -0.198 0.388 0.371 1.100 52% 

ERY -0.112 -0.409 0.183 0.302 0.894 47% 

FOX -0.085 -0.382 0.208 0.429 0.918 48% 

FUS -0.868 -1.185 -0.560 2.96E-14 0.420 30% 

STR -1.684 -2.053 -1.337 5.02E-38 0.186 16% 
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TMP 0.729 0.443 1.018 3.75E-12 2.074 67% 

AIC: 

1678.2 
Bonferroni- corrected 𝛼: 0.00625 

Degrees of Freedom: 

1512 

 

 

Table 4. Logistic regression of pairwise drugs with 3-drug combinations with some levels of 

suppressive interactions (hidden and net). Terms in bold have a significant positive 

association with suppressive interactions. 

Term Coefficient 
Confidence Interval 

p-value 
Odds 

Ratio 
Probability 

0.10% 99.90% 

AMP+CPR 0.126 -0.576 0.817 0.571 1.134 53% 

AMP+DOX 0.252 -0.379 0.877 0.208 1.287 56% 

AMP+ERY -0.778 -1.498 -0.097 4.95E-04 0.460 31% 

AMP+FOX -0.524 -1.291 0.212 0.029 0.592 37% 

AMP+FUS -1.671 -2.593 -0.861 1.27E-09 0.188 16% 

AMP+STR -1.432 -2.477 -0.559 2.23E-06 0.239 19% 

AMP+TMP 0.953 0.305 1.627 6.08E-06 2.594 72% 

CPR+DOX 0.159 -0.439 0.753 0.403 1.172 54% 

CPR+ERY -0.208 -0.836 0.406 0.294 0.812 45% 

CPR+FOX -0.857 -1.565 -0.182 1.01E-04 0.425 30% 

CPR+FUS -0.307 -1.008 0.359 0.159 0.736 42% 

CPR+STR -0.755 -1.561 -0.027 1.94E-03 0.470 32% 

CPR+TMP 0.739 0.122 1.379 2.25E-04 2.094 68% 

DOX+ERY -0.189 -0.798 0.407 0.326 0.828 45% 

DOX+FOX 0.570 -0.039 1.185 3.51E-03 1.768 64% 

DOX+FUS 0.388 -0.238 1.002 0.050 1.474 60% 

DOX+STR -0.939 -1.783 -0.186 2.10E-04 0.391 28% 

DOX+TMP -1.044 -1.685 -0.420 2.31E-07 0.352 26% 

ERY+FOX 0.182 -0.485 0.846 0.392 1.199 55% 

ERY+FUS -0.775 -1.498 -0.101 4.93E-04 0.461 32% 

ERY+STR 0.030 -0.682 0.699 0.890 1.031 51% 

ERY+TMP 0.464 -0.155 1.094 0.020 1.590 61% 

FOX+FUS -0.848 -1.632 -0.122 4.23E-04 0.428 30% 

FOX+STR -1.607 -2.635 -0.740 8.27E-08 0.201 17% 

FOX+TMP 1.026 0.387 1.698 9.05E-07 2.790 74% 

FUS+STR -0.942 -1.924 -0.104 1.06E-03 0.390 28% 

FUS+TMP -0.058 -0.688 0.559 0.769 0.943 49% 

STR+TMP -0.978 -1.756 -0.259 4.08E-05 0.376 27% 

AIC: 1579.7 Bonferroni- corrected 𝛼: 0.00179 
Degrees of Freedom: 

1512 

 

 

Table 5. Logistic regression of the main mechanism of actions with 3-drug combinations 

with some levels of suppressive interactions (hidden and net). Terms in bold have a 

significant positive association with suppressive interactions. 
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Term Coefficient 

Confidence 

Interval p-value 
Odds 

Ratio 
Probability 

0.50% 99.50% 

Cell Wall -0.267 -0.517 -0.018 5.76E-03 0.765 43% 

Folic Acid Biosynthesis 0.742 0.470 1.017 2.74E-12 2.100 68% 

DNA gyrase 0.035 -0.246 0.314 0.747 1.036 51% 

Ribosome, 30S -1.462 -1.719 -1.212 5.36E-50 0.232 19% 

Ribosome, 50S 0.062 -0.188 0.312 0.524 1.064 52% 

AIC: 1716 Bonferroni- corrected 𝛼: 0.01 Degrees of Freedom: 1512 

 

 

Table 6. Logistic regression of the pairwise main mechanism of actions with 3-drug 

combinations with some levels of suppressive interactions (hidden and net). Terms in bold 

have a significant positive association with suppressive interactions. 

Term Coefficient 

Confidence 

Interval p-value 
Odds 

Ratio 
Probability 

0.20% 99.80% 

Cell Wall+Folic Acid 

Biosynthesis 
1.016 0.548 1.495 5.52E-10 2.762 73% 

Cell Wall+DNA gyrase -0.417 -0.949 0.096 0.021 0.659 40% 

Cell Wall+Ribosome, 

30S 
-1.565 -2.050 -1.109 6.46E-22 0.209 17% 

Cell Wall+Ribosome, 

50S 
0.265 -0.114 0.645 0.044 1.303 57% 

Folic Acid 

Biosynthesis+DNA 

gyrase 

0.742 0.175 1.326 1.90E-04 2.100 68% 

Folic Acid 

Biosynthesis+Ribosome, 

30S 

-0.304 -0.790 0.172 0.068 0.738 42% 

Folic Acid 

Biosynthesis+Ribosome, 

50S 

-0.522 -1.022 -0.038 2.10E-03 0.593 37% 

DNA gyrase+Ribosome, 

Ribosome, 30S 
-0.529 -1.082 -0.009 4.25E-03 0.589 37% 

DNA gyrase+Ribosome, 

Ribosome, 50S 
-0.039 -0.507 0.428 0.808 0.961 49% 

Ribosome, 

30S+Ribosome, 50S 
-0.160 -0.572 0.252 0.262 0.852 46% 

Cell Wall+Cell Wall -0.584 -1.148 -0.044 2.18E-03 0.558 36% 

Ribosome, 

30S+Ribosome, 30S 
-1.565 -2.411 -0.857 3.93E-09 0.209 17% 

Ribosome, 

50S+Ribosome, 50S 
-0.402 -0.905 0.085 0.019 0.669 40% 

AIC: 1670.9 Bonferroni- corrected 𝛼: 0.0039 Degrees of Freedom: 1512 
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Table 7. Logistic regression of single drug with 4-drug combinations with some levels of 

suppressive interactions (hidden and net). Terms in bold have a significant positive 

association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value Odds Ratio Probability 
2.5% 97.5% 

AMP -0.270 -0.373 -0.168 2.50E-07 0.763 43% 

CPR 0.430 0.327 0.533 2.37E-16 1.537 61% 

DOX 0.214 0.112 0.317 4.22E-05 1.239 55% 

ERY 0.517 0.414 0.620 7.30E-23 1.677 63% 

FOX 0.385 0.282 0.488 2.09E-13 1.469 60% 

FUS -0.829 -0.934 -0.724 3.75E-54 0.437 30% 

STR -1.333 -1.439 -1.228 2.61E-135 0.264 21% 

TMP 0.799 0.696 0.903 1.11E-51 2.223 69% 

AIC: 6693.7 Bonferroni-corrected 𝛼: 0.00625 Degrees of Freedom: 5670 

 

 

Table 8. Logistic regression of pairwise drugs with 4-drug combinations with some levels of 

suppressive interactions (hidden and net). Terms in bold have a significant positive 

association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value 
Odds 

Ratio 
Probability 

2.5% 97.5% 

AMP+CPR 0.329 0.145 0.513 4.65E-04 1.389 58% 

AMP+DOX 0.039 -0.143 0.220 0.677 1.039 51% 

AMP+ERY -0.548 -0.730 -0.366 3.69E-09 0.578 37% 

AMP+FOX -0.185 -0.368 -0.003 0.047 0.831 45% 

AMP+FUS -0.356 -0.542 -0.171 1.71E-04 0.700 41% 

AMP+STR -0.416 -0.604 -0.229 1.36E-05 0.660 40% 

AMP+TMP 0.694 0.506 0.882 5.26E-13 2.001 67% 

CPR+DOX 0.622 0.436 0.809 5.87E-11 1.863 65% 

CPR+ERY 0.860 0.671 1.051 7.30E-19 2.363 70% 

CPR+FOX -0.519 -0.705 -0.334 4.02E-08 0.595 37% 

CPR+FUS -0.520 -0.705 -0.335 3.69E-08 0.595 37% 

CPR+STR -0.652 -0.838 -0.467 5.72E-12 0.521 34% 

CPR+TMP 0.958 0.758 1.160 8.83E-21 2.606 72% 

DOX+ERY 0.191 0.008 0.375 0.042 1.211 55% 

DOX+FOX 0.517 0.335 0.699 2.48E-08 1.677 63% 

DOX+FUS -0.132 -0.313 0.049 0.153 0.877 47% 

DOX+STR -0.574 -0.759 -0.391 8.63E-10 0.563 36% 

DOX+TMP -0.159 -0.350 0.033 0.104 0.853 46% 

ERY+FOX 0.122 -0.063 0.307 0.198 1.129 53% 

ERY+FUS -0.026 -0.207 0.154 0.774 0.974 49% 

ERY+STR -0.098 -0.279 0.082 0.286 0.906 48% 

ERY+TMP 0.724 0.528 0.922 5.59E-13 2.063 67% 

FOX+FUS -0.250 -0.432 -0.069 6.77E-03 0.779 44% 
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FOX+STR -0.012 -0.194 0.169 0.893 0.988 50% 

FOX+TMP 1.204 1.011 1.400 7.50E-34 3.334 77% 

FUS+STR -0.054 -0.246 0.138 0.584 0.948 49% 

FUS+TMP -0.497 -0.686 -0.310 2.11E-07 0.608 38% 

STR+TMP -1.087 -1.278 -0.898 2.92E-29 0.337 25% 

AIC: 6308.8 Bonferroni-corrected 𝛼: 0.00179 Degrees of Freedom: 5670 

 

 

Table 9. Logistic regression of the main mechanism of actions with 4-drug combinations 

with some levels of suppressive interactions (hidden and net). Terms in bold have a 

significant positive association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value 
Odds 

Ratio 
Probability 

2.5% 97.5% 

Cell Wall 0.280 0.171 0.390 5.69E-07 1.324 57% 

Folic Acid Biosynthesis 0.848 0.743 0.954 1.64E-55 2.335 70% 

DNA gyrase 0.493 0.388 0.598 3.68E-20 1.637 62% 

Ribosome, 30S -1.706 -1.836 -1.579 1.47E-149 0.182 15% 

Ribosome, 50S 0.613 0.503 0.725 3.23E-27 1.847 65% 

AIC: 6871.4 Bonferroni-corrected 𝛼: 0.01 Degrees of Freedom: 5670 

 

 

Table 10. Logistic regression of the pairwise main mechanism of actions with 4-drug 

combinations with some levels of suppressive interactions (hidden and net). Terms in bold 

have a significant positive association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value 
Odds 

Ratio 
Probability 

2.5% 97.5% 

Cell Wall+Folic Acid 

Biosynthesis 
1.112 0.897 1.329 6.62E-24 3.040 75% 

Cell Wall+DNA gyrase -0.219 -0.437 -0.001 0.049 0.803 45% 

Cell Wall+Ribosome, 

30S 
-0.488 -0.728 -0.246 7.11E-05 0.614 38% 

Cell Wall+Ribosome, 

50S 
0.263 0.037 0.487 0.022 1.301 57% 

Folic Acid 

Biosynthesis+DNA 

gyrase 

0.870 0.662 1.083 5.15E-16 2.388 70% 

Folic Acid 

Biosynthesis+Ribosome, 

30S 

-0.737 -0.971 -0.506 5.13E-10 0.479 32% 

Folic Acid 

Biosynthesis+Ribosome, 

50S 

0.183 -0.050 0.417 0.124 1.201 55% 

DNA gyrase+Ribosome, 

Ribosome, 30S 
-0.418 -0.656 -0.182 5.34E-04 0.658 40% 
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DNA gyrase+Ribosome, 

Ribosome, 50S 
0.782 0.562 1.004 3.76E-12 2.185 69% 

Ribosome, 

30S+Ribosome, 50S 
-0.300 -0.532 -0.066 0.012 0.741 43% 

Cell Wall+Cell Wall -0.081 -0.222 0.060 0.263 0.923 48% 

Ribosome, 

30S+Ribosome, 30S 
-0.749 -0.899 -0.602 4.70E-23 0.473 32% 

Ribosome, 

50S+Ribosome, 50S 
0.346 0.204 0.489 1.82E-06 1.413 59% 

AIC: 6695.6 Bonferroni-corrected 𝛼: 0.0039 Degrees of Freedom: 5670 

 

 

Table 11. Logistic regression of single drug with 5-drug combinations with some levels of 

suppressive interactions (hidden and net). Terms in bold have a significant positive 

association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value Odds Ratio Probability 
2.5% 97.5% 

AMP 0.033 -0.032 0.097 0.317 1.033 51% 

CPR 0.351 0.287 0.415 9.27E-27 1.420 59% 

DOX 0.148 0.083 0.212 7.02E-06 1.159 54% 

ERY 0.261 0.197 0.326 1.65E-15 1.299 56% 

FOX 0.205 0.140 0.269 4.60E-10 1.227 55% 

FUS -0.465 -0.530 -0.399 5.03E-44 0.628 39% 

STR -0.292 -0.357 -0.227 1.36E-18 0.747 43% 

TMP 0.572 0.508 0.636 2.25E-68 1.771 64% 

AIC: 17458 Bonferroni-corrected 𝛼: 0.00625 Degrees of Freedom: 13602 

 

 

Table 12. Logistic regression of pairwise drugs with 5-drug combinations with some levels 

of suppressive interactions (hidden and net). Terms in bold have a significant positive 

association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value 
Odds 

Ratio 
Probability 

2.5% 97.5% 

AMP+CPR 0.738 0.618 0.857 1.41E-33 2.091 68% 

AMP+DOX -0.008 -0.127 0.111 0.891 0.992 50% 

AMP+ERY -0.480 -0.599 -0.362 1.78E-15 0.619 38% 

AMP+FOX -0.065 -0.183 0.054 0.286 0.937 48% 

AMP+FUS 0.298 0.172 0.425 3.75E-06 1.347 57% 

AMP+STR -0.131 -0.254 -0.008 0.037 0.877 47% 

AMP+TMP -0.041 -0.161 0.078 0.499 0.960 49% 

CPR+DOX 0.128 0.009 0.247 0.035 1.136 53% 

CPR+ERY 0.513 0.394 0.632 3.81E-17 1.670 63% 

CPR+FOX -0.337 -0.456 -0.219 2.29E-08 0.714 42% 

CPR+FUS -0.238 -0.361 -0.114 1.60E-04 0.788 44% 

CPR+STR -0.570 -0.693 -0.448 7.58E-20 0.565 36% 
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CPR+TMP 0.704 0.584 0.826 4.02E-30 2.023 67% 

DOX+ERY 0.266 0.147 0.386 1.31E-05 1.305 57% 

DOX+FOX 0.496 0.377 0.616 3.98E-16 1.642 62% 

DOX+FUS -0.502 -0.624 -0.379 9.13E-16 0.606 38% 

DOX+STR -0.461 -0.584 -0.339 1.73E-13 0.631 39% 

DOX+TMP 0.740 0.619 0.861 3.89E-33 2.095 68% 

ERY+FOX 0.369 0.250 0.489 1.28E-09 1.447 59% 

ERY+FUS -0.483 -0.605 -0.361 7.90E-15 0.617 38% 

ERY+STR -0.183 -0.305 -0.060 3.45E-03 0.833 45% 

ERY+TMP 0.821 0.700 0.943 2.54E-40 2.274 69% 

FOX+FUS -0.609 -0.731 -0.487 1.19E-22 0.544 35% 

FOX+STR 0.466 0.341 0.591 2.80E-13 1.594 61% 

FOX+TMP 0.315 0.195 0.435 2.59E-07 1.371 58% 

FUS+STR 1.174 1.022 1.331 3.24E-50 3.236 76% 

FUS+TMP -0.388 -0.511 -0.265 6.09E-10 0.678 40% 

STR+TMP -0.802 -0.926 -0.679 2.60E-37 0.448 31% 

AIC: 17458 Bonferroni-corrected 𝛼: 0.00179 Degrees of Freedom: 13602 

 

 

Table 13. Logistic regression of the main mechanism of actions with 5-drug combinations 

with some levels of suppressive interactions (hidden and net). Terms in bold have a 

significant positive association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value 
Odds 

Ratio 
Probability 

2.5% 97.5% 

Cell Wall 0.498 0.404 0.592 3.289E-25 1.645 62% 

Folic Acid Biosynthesis 0.677 0.608 0.746 1.343E-82 1.967 66% 

DNA gyrase 0.457 0.388 0.526 1.416E-38 1.579 61% 

Ribosome, 30S -1.296 -1.416 -1.178 8.45E-102 0.274 21% 

Ribosome, 50S 0.585 0.491 0.679 2.201E-34 1.795 64% 

AIC: 17234 Bonferroni-corrected 𝛼: 0.01 Degrees of Freedom: 13602 

 

 

Table 14. Logistic regression of the pairwise main mechanism of actions with 5-drug 

combinations with some levels of suppressive interactions (hidden and net). Terms in bold 

have a significant positive association with suppressive interactions. 

Term Coefficient 
95% CI 

p-value 
Odds 

Ratio 
Probability 

2.5% 97.5% 

Cell Wall+Folic Acid 

Biosynthesis 
-1.609 -1.925 -1.305 2.14E-24 0.200 17% 

Cell Wall+DNA gyrase -0.984 -1.263 -0.709 3.45E-12 0.374 27% 

Cell Wall+Ribosome, 

30S 
-0.983 -1.411 -0.564 5.34E-06 0.374 27% 

Cell Wall+Ribosome, 

50S 
3.715 3.160 4.299 1.67E-37 41.06 98% 
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Folic Acid 

Biosynthesis+DNA 

gyrase 

0.431 0.279 0.583 2.47E-08 1.540 61% 

Folic Acid 

Biosynthesis+Ribosome, 

30S 

1.932 1.518 2.365 3.81E-19 6.900 87% 

Folic Acid 

Biosynthesis+Ribosome, 

50S 

0.193 -0.087 0.472 0.174 1.213 55% 

DNA gyrase+Ribosome, 

Ribosome, 30S 
1.300 0.921 1.696 4.53E-11 3.669 79% 

DNA gyrase+Ribosome, 

Ribosome, 50S 
0.030 -0.243 0.301 0.827 1.031 51% 

Ribosome, 

30S+Ribosome, 50S 
-3.349 -3.799 -2.913 1.04E-49 0.035 3% 

Cell Wall+Cell Wall 0.322 0.237 0.407 1.44E-13 1.379 58% 

Ribosome, 

30S+Ribosome, 30S 
0.395 0.311 0.480 4.36E-20 1.485 60% 

Ribosome, 

50S+Ribosome, 50S 
0.521 0.435 0.608 4.36E-32 1.683 63% 

AIC: 16981 Bonferroni-corrected 𝛼: 0.0039 Degrees of Freedom: 13602 

 

 

Table 15. Net suppressive combinations have more hidden suppression than combinations 

that are not net suppressive 

Hidden suppression found 

between 
Hidden Suppression Only Net Suppression 

5-Drugs v. 4-Drugs 53% 80% 

5-Drugs v. 3-Drugs 41% 79% 

5-Drugs v. 2-Drugs 40% 80% 

 

4-Drugs v. 3-Drugs 60% 71% 

4-Drugs v. 2-Drugs 61% 75% 

 

3-Drugs v. 2-Drugs 76% 77% 

 

 

Table 16. Path breakdown of hidden suppression between highest-order and lower-order 

sub-combinations in net suppressive combinations. There are a total of 504 paths across net-

suppressive 3-drug combinations, 19704 paths across net-suppressive 4-drug combinations, and 

315600 paths across net-suppressive 5-drug combinations. 

Combination Order of hidden suppression found against 

  2 only 3 only 4 only 2 and 3 2 and 4 3 and 4 2, 3, and 4 None 
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3 Drug 78%             22% 

4 Drug 14% 10%   61%       15% 

5 Drug 4% 2% 5% 6% 4% 5% 66% 8% 

 

 

Table 17. Path breakdown of hidden suppression between highest-order and lower-order 

sub-combinations in non-net suppressive combinations. There are a total of 2484 paths across 

non-net suppressive 3-drug combinations, 47136 paths across non-net suppressive 4-drug 

combinations, and 693720 paths across non-net suppressive 5-drug combinations. 

Combination Order of hidden suppression found against 

  2 only 3 only 4 only 2 and 3 2 and 4 3 and 4 2, 3, and 4 None 

3 Drug 77%             23% 

4 Drug 17% 16%   45%       23% 

5 Drug 6% 4% 18% 7% 5% 7% 23% 31% 

 

 

Table 18. Case categorization of net-suppressive drug combinations. There are a total of 84 

net-suppressive 3-drug combinations, 821 4-drug combinations, and 2629 5-drug combinations. 

Case Drug Combination 

  3 4 5 

Fully Nested Suppression 52.4% 0.5% 0% 

Partially Nested Suppression 44.0% 87.7% 81.2% 

Fully Suppressed 0% 0% 0% 

Partially Suppressed 0% 3.3% 6.7% 

Suppressive Interaction with Hidden Suppression 0% 0% 0% 

No Hidden Suppression 3.6% 8.5% 12.1% 

 

 

Table 19. Case categorization of suppressive drug combinations determined through 

emergent interactions. There are a total of 209 suppressive 3-drug combinations, 827 4-drug 

combinations, and 3871 5-drug combinations determined through emergent interactions. 

Case Drug Combination 

  3 4 5 

Fully Nested Suppression 36.8% 0% 0% 

Partially Nested Suppression 46.9% 49.6% 33.8% 

Fully Suppressed 0% 0% 0% 

Partially Suppressed 0% 5.9% 7.1% 

Suppressive Interaction with Hidden Suppression 0% 0.4% 0% 

No Hidden Suppression 16.3% 44.1% 59.1% 
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Table 20. Case categorization of net-suppressive drug combinations with hidden 

suppression only. There are a total of 414 non-net suppressive 3-drug combinations, 1964 4-

drug combinations, and 5781 5-drug combinations with hidden suppressive interactions only.  

Case Drug Combination 

  3 4 5 

Fully Nested Hidden Suppression   0.3% 0% 

Partially Nested Hidden Suppression   78.0% 39.2% 

Fully Hidden Suppression 0% 0% 0% 

Partially Hidden Suppression 0% 0% 0% 

Hidden Suppressive Interaction 100.0% 21.8% 60.8% 

 

 

Table 21. Case categorization of drug combinations with hidden suppression only 

determined through emergent interactions. There are a total of 382 3-drug combinations, 

2258 4-drug combinations, and 5544 5-drug combinations with hidden suppressive interactions 

only as determined through emergent interactions. 

Case Drug Combination 

  3 4 5 

Fully Nested Hidden Suppression   0.4% 0.0% 

Partially Nested Hidden Suppression   81.8% 55.9% 

Fully Hidden Suppression 0% 0% 0% 

Partially Hidden Suppression 0% 0% 0% 

Hidden Suppressive Interaction 100.0% 17.8% 44.1% 

 

C. BOX 

Box 1. Definitions of important terms used 

Combination Types  

Higher-Order Combination: a drug combination of three or more drugs 

Lower-Order Combination: a drug combination consisting of a smaller number of drugs that are 

included within a higher-order combination; in a 5-drug combination all combinations with four 

of those drugs, all combinations with three of those drugs, and all combination of two of those 

drugs within the 5-drug combination are considered to be a lower-order combination to that 

specific 5-drug combination. 
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Drug Interactions 

Additive Interaction: no interaction between drugs; under Bliss independence, the combined 

effect is as expected assuming each drug is acting independently (Bliss, 1939) 

Synergistic Interaction: interaction between drugs is stronger than expected; drugs in 

combination are more effective at inhibiting growth than expected under the additive model 

Antagonistic Interaction: interaction between drugs is weaker than expected; drugs in 

combination are less effective at inhibiting growth than expected under the additive model 

Suppressive Interaction: interaction between drugs results in increased bacterial growth rate 

compared to the effects of fewer numbers of drugs; drugs in combination are not only less 

effective at inhibiting growth than expected under the additive model but increases growth 

compared to lower-order combinations or single drugs 

Net Suppression: a suppressive interaction that occurs between the combination of drugs and the 

single drug effects; there is greater bacterial growth when exposed to a drug combination than 

when exposed to a single drug 

Emergent Suppression: a suppressive interaction that occurs solely because all drugs are present 

in the combination 

Hidden Suppression: a suppressive interaction that occurs between the combination of drugs and 

a lower-order combination 

 

Other Useful Terms 

Full-Factorial: a dataset that examines higher-order combinations with all their possible lower-

order combinations, single drug effects, along with positive and negative controls. For example, 
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the full-factorial dataset for a single 5-drug combination includes the effects of the 5-drug 

combination as well as all possible 4-, 3-, and 2-drug combinations of those five drugs, all single 

drugs, positive controls, and negative controls. 

Structure: the way to describe where interactions (net and hidden) occur within a combination 

Path: a unique heterarchical grouping containing one representative of each of all the lower-

order combinations within the highest-order combination 

Nesting: a special type of structure where suppressive interactions occur when an N-drug 

combination is suppressive to an (N-1)-drug combination and that (N-1)-drug combination is 

suppressive to an (N-2)-drug combination which is suppressive to an (N-3)-drug combination, 

this nesting can continue until you compare a 2-drug combination with a single drug. 

 

CHAPTER 6. APPENDIX  

This appendix contains code snippets to exemplify what was used to create the paths, as 

well as evaluate hidden suppression and any particular cases as defined in Table 2. Again, all 

data and code has been made freely available via Mendeley Data 

(https://data.mendeley.com/datasets/ts2hnd72yf/draft?a=4fec844a-e75b-402b-9883-

e34bfeff5c2a). 

A. Path creation 

 For each combination order, the median DAN of drug-dose replicate experiments was 

used and rearranged to create paths. Starting with a highest-order combination of interest, the 

names of subsequent inclusive lower-order combinations were generated, with median DAN 

values of those combinations then searched for. For instance, in the code below, the 2-drug 

combinations under a 3-drug combination are identified and the relevant value attached to each 
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2-drug combination is then searched for. Next, the process is done for the single drugs under 

each 2-drug combination. The final output is a .csv for each specific highest-order combination, 

with each row being a path that contains fitness values. Net-suppressive and non-net suppressive 

combination outputs were split in different destinations.   

import pandas as pd # use “pd” to call for pandas 

import itertools # for combinations 

import os 

for index, row in DAF3.iterrows(): 

 SORTING3 = pd.DataFrame(columns = 

['C3','F3','C2','F2','C1','F1','INTR']) # format for .csv output 

 

 if row["DA"] < 1.30: ##### SEARCH FOR HIDDEN SUPPRESSION #### >= 1.30 

USED FOR SUPPRESSIVE COMBINATIONS ##### 

  d1 = row["Drug1"] # NOTE: uses title of columns 

  d2 = row["Drug2"] 

  d3 = row["Drug3"] 

  f3 = row["fitness"] # goes into PD 

  c3 = frozenset((d1,d2,d3)) 

  print3 = d1+d2+d3 # goes into PD 

  intr3 = row["interaction"] 

   

  f2 = 0 

  print2 = 0 

 

  combo_gen2 = [d1,d2,d3] 

  combo2 = list(itertools.combinations(combo_gen2,2)) # combos 

within higher level combo 

  for i in combo2: 

   dr1, dr2 = i 

   c2 = frozenset((dr1,dr2)) # for comparison 

   print2 = dr1+dr2 # rewrites above; goes into PD 

    

   for a,b in DAF2.iterrows(): 

    r1 = b["Drug1"] 

    r2 = b["Drug2"] 

    comp2 = frozenset((r1,r2)) # for comparison (current 

combo w/ what's generated from above) 

    if comp2 == c2: 

     f2 = b["fitness"] # rewrites above; goes into 

PD 

     break 

   

   for ind, rw in E1.iterrows(): 

    drug1 = rw["DRUG"] 

    if drug1 == dr1: 

     f1 = rw["MEDIAN"] 

     SORTING3 = 

SORTING3.append({'C3':print3,'F3':f3,'C2':print2,'F2':f2,'C1':drug1,'F1':f1,'

INTR':intr3}, ignore_index=True) # a single path 
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    if drug1 == dr2: 

     f1 = rw["MEDIAN"] 

     SORTING3 = 

SORTING3.append({'C3':print3,'F3':f3,'C2':print2,'F2':f2,'C1':drug1,'F1':f1,'

INTR':intr3}, ignore_index=True) 

 

  f_name = "/u/.../HD/C3/%s%s.csv"%(COMB3,str(number3)) 

  SORTING3.to_csv(f_name) # export csv 

  

  number3 = number3 + 1 

 

B. Evaluating for hidden suppression 

 In evaluating for hidden suppression, files containing the paths for both net-suppressive 

and non-net suppressive combinations were iterated through. The value of the highest-order 

combination at hand was divided by that of the lowest among all the lower-order combinations 

within. This new value was then compared against a cutoff as detailed in Methods; the final 

output is a .csv similar to that of the input, but with an additional column containing the new 

value. The code below illustrates this for a 3-drug combination.  

COMB3 = "nC3_" # naming purposes 

number3 = 0 

for num in range (0,1428): ##### CHANGE VALUE DEPENDING ON AMOUNT OF COMBOS 

IN QUESTION AT THE FILE FOLDER DESTINATION (by drug and whether net-

suppressive or not) ##### 

 look = storage[num] # looping through dictionary of paths for these 

files 

 lowFit = look.iloc[0]["F2"] # temporary value 

  

 for index, rows in look.iterrows(): # looking for smallest fitness at 

lower orders 

  nf2 = rows["F2"] 

  if nf2 < lowFit: 

   lowFit = nf2 

 

 EDIT3 = pd.DataFrame(columns = 

['C3','F3','C2','F2','C1','F1','newDA','INTR'])    

 for indx, rws in look.iterrows(): # adding adjusted DA row 

  c3 = rws["C3"] 

  f3 = rws["F3"] # 

  c2 = rws["C2"] 

  f2 = rws["F2"] 

  c1 = rws["C1"] 

  f1 = rws["F1"] # don't need to check bc already gone over via 

DA3 >= 1.3 check 

  i3 = rws["INTR"] 
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  if lowFit == 0: 

   lowFit = 0.000000000001 # so no division by 0 

  nd = f3/lowFit 

 

  EDIT3 = 

EDIT3.append({'C3':c3,'F3':f3,'C2':c2,'F2':f2,'C1':c1,'F1':f1,'newDA':nd,'INT

R':i3}, ignore_index=True) 

 

 f_name = "/u/.../HD/nC3/%s%s.csv"%(COMB3,str(number3)) 

 EDIT3.to_csv(f_name, index = False) 

  

 number3 = number3 + 1 

 

C. Defined cases 

 To evaluate for defined cases of hidden suppression, the values within each path of a 

select higher-order combination were compared against each other. Counts of how comparisons 

could be categorized were then evaluated to see if any special cases, defined in Table 2, were 

met. The final outputs are .csvs containing the counts of cases met by combination order. The 

code below is a snippet for the 3-drug combination scenario. Note that a dictionary containing 

paths to the files created in the last step, which includes the new values used to identify hidden 

suppression, was iterated through.  

x3 = 0 

#----------------- # category counts 

types3 = pd.DataFrame(columns = ['FNS','NS','FS','PH','NHS','NA']) 

FNS3 = 0 # fully nested suppression 

NS3 = 0 # nested suppression 

FS3 = 0 # fully suppressed 

PH3 = 0 # partially hidden suppression 

NHS3 = 0 # no hidden suppression 

NA3 = 0 # no "case" 

#----------------- # combo lists 

fns3 = pd.DataFrame(columns = ['combos','INTR']) # intr is "original" 

interaction 

ns3 = pd.DataFrame(columns = ['combos','INTR']) 

fs3 = pd.DataFrame(columns = ['combos','INTR']) 

ph3 = pd.DataFrame(columns = ['combos','2 only','INTR']) 

nhs3 = pd.DataFrame(columns = ['combos','INTR']) 

na3 = pd.DataFrame(columns = ['combos','INTR']) 

 

for num in range (0,84): ##### CHANGE VALUE DEPENDING ON CSVS APPLICABLE 

##### 

 look3 = YN3[num] # looping through dictionary - 1 combo per dictionary 

key 
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 name = look3.iloc[0]["C3"] 

 i3 = look3.iloc[0]["INTR"] 

 #----------------- overall counts 

 nested_count = 0 

 LRsml_count = 0 

 f32_count = 0 

 #----------------- PH counts 

 h2 = 0 

  

 for index, rows in look3.iterrows(): # counts 

  C3 = rows["C3"] 

  F3 = rows["F3"] 

  C2 = rows["C2"] 

  F2 = rows["F2"] 

  C1 = rows["C1"] 

  F1 = rows["F1"] 

 

  # -------------- overall counts 

  if F3 > F2 and F3 > F1 and F2 > F1:     

   nested_count = nested_count + 1 

  if F3 > F1: 

   LRsml_count = LRsml_count + 1 

  if F3 > F2: 

   f32_count = f32_count + 1 

   

  # -------------- PH counts 

  if F3 > F2: 

   h2 = h2 + 1 

   

 # classification 

 if nested_count == 6: # fully nested suppression 

  FNS3 = FNS3 + 1 

  fns3 = fns3.append({'combos':name,'INTR':i3}, ignore_index=True) 

 elif nested_count > 0: # nested suppression 

  NS3 = NS3 + 1 

  ns3 = ns3.append({'combos':name,'INTR':i3}, ignore_index=True) 

 elif nested_count == 0: 

  if LRsml_count > 0 and f32_count == 6: # fully suppressed 

   FS3 = FS3 + 1 

   fs3 = fs3.append({'combos':name,'INTR':i3}, 

ignore_index=True) 

  elif LRsml_count > 0 and f32_count > 0: # partially hidden 

   PH3 = PH3 + 1 

   ph3 = ph3.append({'combos':name,'2 only':h2,'INTR':i3}, 

ignore_index=True) 

  elif LRsml_count > 0 and f32_count == 0: # no hidden 

   NHS3 = NHS3 + 1 

   nhs3 = nhs3.append({'combos':name,'INTR':i3}, 

ignore_index=True) 

  else: 

   NA3 = NA3 + 1 

   na3 = na3.append({'combos':name,'INTR':i3}, 

ignore_index=True) 
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types3 = 

types3.append({'FNS':FNS3,'NS':NS3,'FS':FS3,'PH':PH3,'NHS':NHS3,'NA':NA3}, 

ignore_index=True) 

types3.to_csv(r"/u/.../SUPR/suprSORT/Supr3_Counts.csv",index=False) 

# all other dataframes .to_csv as well  
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