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ARTICLE

Epidemic dynamics of respiratory syncytial virus in
current and future climates
Rachel E. Baker 1*, Ayesha S. Mahmud2,8, Caroline E. Wagner3, Wenchang Yang 4, Virginia E. Pitzer5,

Cecile Viboud6, Gabriel A. Vecchi 1,4, C. Jessica E. Metcalf 3,7 & Bryan T. Grenfell3,6,7

A key question for infectious disease dynamics is the impact of the climate on future burden.

Here, we evaluate the climate drivers of respiratory syncytial virus (RSV), an important

determinant of disease in young children. We combine a dataset of county-level observations

from the US with state-level observations from Mexico, spanning much of the global range of

climatological conditions. Using a combination of nonlinear epidemic models with statistical

techniques, we find consistent patterns of climate drivers at a continental scale explaining

latitudinal differences in the dynamics and timing of local epidemics. Strikingly, estimated

effects of precipitation and humidity on transmission mirror prior results for influenza. We

couple our model with projections for future climate, to show that temperature-driven

increases to humidity may lead to a northward shift in the dynamic patterns observed and

that the likelihood of severe outbreaks of RSV hinges on projections for extreme rainfall.
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Understanding the climate drivers of infectious diseases has
clear public health implications, often delineating our
ability to predict the timing, location and magnitude of

outbreaks both currently and in the future as the climate chan-
ges1. Important steps have been taken to decompose the climatic
drivers of vector-borne2 and waterborne diseases3,4, and to
develop projections for the future burden and geographical range
of pathogens across climate change scenarios5. Less attention has
been paid to directly-transmitted infections, despite key work on
influenza demonstrating the significant role climatic variables can
play in driving the transmission of these types of infections.
Experimental studies show that influenza transmission increases
in conditions of low humidity6–8. Observational studies in tem-
perate climates support this finding; while in tropical locations,
influenza peaks have been observed to occur in the rainy season
when humidity increases9,10. The rapid evolution of the seasonal
influenza virus and the consequent complexity of dynamics
makes projections of future epidemics difficult11,12. In contrast,
many major childhood infections exhibit more regular dynamics,
making the long-term consequences of environmental drivers
easier to dissect13–16.

Respiratory syncytial virus infects most children before the age
of two and is a leading cause of lower respiratory tract infections
in infants, particularly bronchiolitis and pneumonia, and has also
been implicated in the later life development of asthma17,18.
Recent estimates suggest that RSV is responsible for ~5.2% of
under-five deaths globally19, though the proportion may be even
higher for younger age groups experiencing their first
infection20,21. RSV epidemics exhibit distinct seasonal cycles22,
with the peak occurring around the winter months in temperate
locations and closer to the rainy season in tropical, more humid
locations23–25, as has been noted for influenza9,26. Recent work by
Pitzer et al., using state-level data from the United States, showed
broad-scale correlations between several annually-averaged cli-
mate variables and the amplitude of the periodic forcing of the
modeled RSV cycle, suggesting that climate may play a crucial
role in driving epidemics27. However, the results did not address
the distinct seasonality of RSV in tropical locations, nor the
earlier timing of epidemic onset in Florida. Higher resolution data
over a wider spatial scale is required to disentangle the specific
climatic drivers governing the dynamics and timing of RSV
epidemics and to unite predictions for both temperate and tro-
pical locations.

Here, we leverage a county-level dataset of weekly RSV hos-
pitalizations from over 300 locations in the United States and
combine these observations with weekly bronchiolitis hospitali-
zation data from all 32 states in Mexico. The temporal range of
our dataset spans 5–15 years depending on location (Fig. 1a). The
spatial extent of our dataset covers a diverse set of climatologies
including tropical, humid locations in southern Mexico and
temperate climates in the US, where locations in northern lati-
tudes experience large seasonal variation in climate conditions
(Supplementary Fig. 1 and 2). We combine our RSV case data
with high resolution climate data (precipitation, specific humid-
ity, and temperature) in order to investigate spatial patterns in
dynamics, evaluate the drivers of transmission, and project future
RSV cycles under climate change scenarios.

Results
Current climate. Spatial order is observed in the timing of onset
of the RSV epidemic and the dynamic patterns of incidence
(Fig. 1b, e). Mid-western and northern counties in the United
States have biennial cycles which alternate between high and low
incidence years (Fig. 1c)27. Coastal and southern US locations
exhibit annual cycles of incidence where cases peak seasonally

and then disappear in the off-season. Counties in Florida and
most Mexican states also experience annual cycles of incidence,
although the epidemic in these locations persists throughout the
year resulting in a shallow-trough cycle. The earliest onset of the
epidemic occurs in the summer months simultaneously in Miami,
Florida, and the Yucatan peninsula in Mexico. Onset timing then
follows a latitudinal gradient northward such that onset occurs
last in the northern US in late December (Fig. 1b, Supplementary
Fig. 5). The timing of school semesters is unlikely to drive this
gradient: while US school start dates vary by state, in Mexico the
first day of the school year is more broadly standardized across
the country28.

We find that timing of onset is correlated with mean local
climate (Fig. 1d). There is no animal model for RSV so we rely on
mechanistic understanding developed from influenza experi-
ments to inform our choice of climate variables (Supplementary
Note 1). Therefore we begin our analysis by considering specific
humidity and include precipitation because of its observed
importance in tropical locations9,23–26. We also test for effects
of temperature as a fundamental meteorological variable (though
it is functionally related to specific humidity: Supplementary
Note 1). Specific humidity, precipitation, and temperature are
significantly (p � 0:001) associated with the mean timing of
onset of the RSV epidemic, with specific humidity explaining 52%
of the variance in mean onset timing across locations. Southern
Florida and the Yucatan peninsula, where the outbreak starts, are
the most humid regions in the dataset. To investigate whether
year-to-year variations in humidity can alter the timing of onset
of the epidemic within a particular location, we calculate the
onset week for every year for each location in our dataset, and fit
a regression model including dummies for each location to
remove mean onset timing. We find that a 1 (g/kg) increase in
mean annual specific humidity shifts the timing of the RSV
epidemic back by 1 week (p � 0:001). Similar effects are shown
for both temperature (0.3 week/°C) and average precipitation
(0.5 week/mm) (Supplementary Table 1).

While these spatial level correlations are striking, it is
necessary to characterize the climate drivers of transmission in
order to model possible future changes to RSV dynamics. We
calculate an empirical transmission rate based on the discrete
time version of the susceptible–infected–recovered (TSIR) model
using Emβt ¼ Itþ1Nt

Iαt St
, assuming we can approximate the first RSV

infection as immunizing given that secondary infections are less
severe and less infectious29,30. Here we observe It , Itþ1, and Nt
directly from our data where I is incidence, N is population and t
is the generation time of RSV, approximated as 1 week27. α
captures heterogeneities in mixing and the effects of discretiza-
tion. In order to estimate S, the number of susceptibles, which is
not directly observed within our dataset, we fit the TSIR model to
each location and extract the time series of susceptibles from the
mean model fit.

The constructed dataset of empirical transmission rates is
included in a panel regression model, where log transmission is
the dependent variable and climate variables are the independent
variables. Our main regression specification includes a suite of
controls: specifically, county-by-month dummies to remove
potential confounding from location-specific seasonal aggregation
such as school semesters, and county-by-year dummies to remove
confounding from location-specific episodic events. As in the
descriptive analysis, we include both precipitation and specific
humidity in our baseline regression model. Results for tempera-
ture are included in Supplementary Fig. 10 and mirror an expected
logarithmic functional transformation of the humidity result.

We find a significant effect (p � 0:001) of both precipitation
and specific humidity on RSV transmission (Fig. 2a, Supplementary
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Fig. 1 Broad-scale patterns of RSV are correlated with local climate. a Incidence time series for each county (USA) and state (Mexico) in the dataset.
b Timing of onset (color) and dynamic pattern (shape) of each location in the dataset. c Example incidence time series for four location exhibiting distinct
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correlation between RSV time series.
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Fig. 2 Specific humidity and precipitation drive RSV transmission. a Model results for the predicted effect of specific humidity and precipitation on
transmission. b Normalized monthly RSV cases before peak incidence (gray) and after peak incidence (yellow) against mean monthly humidity for four
locations in the dataset, month-of-year shown in point. c Mean incidence averaged biennially for the same four locations demonstrating distinct dynamic
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Table 2). Fitting a flexible nonparametric model reveals that
humidity follows an inverse relationship with log transmis-
sion (Supplementary Fig. 8 and 9). Peak transmission occurs in
very dry conditions and drops sharply as humidity increases. In
contrast, we find a positive linear effect of rainfall on transmission.
Our combined results imply that the humidity effect will dominate
in locations that experience very low humidity at certain times of
year, while rainfall will become a key driver in locations where
humidity is on average higher or varies minimally over the year,
such as in tropical climates.

We consider the implications of our estimated climate effect
for four locations in our dataset with exemplar dynamic patterns
and timing of epidemic onset (Fig. 2b, c). In Fig. 2d we show the
seasonal trajectories for these locations, with the mean monthly
rainfall and humidity overlaid on our predicted transmission
effect. Hennepin County, MN, an example of a location with
biennial outbreaks, has large changes in predicted transmission
over the course of the year, with maximum transmission in the
winter months (Fig. 2c) when peak incidence also occurs (Fig. 2b).
Kings County, NY, an example of a location with annual
outbreaks, has a wintertime peak in predicted transmission driven
by declining humidity, though not to the same extent as the
biennial test case. In contrast, our model predicts that Miami-
Dade County, FL, an example of a shallow-trough location,
experiences peak transmission in the summer months driven by
summertime rainfall. The dominance of the rainfall effect means
that Miami experiences an increase in cases even as humidity
increases, a reversal of the patterns observed over most US
counties (Fig. 2b), which explains the early onset of the epidemic
in this location.

Many Mexican states show a similar result to Miami. However,
for some states such as Sinaloa our model predicts two optimal
times for transmission within a year, one driven by low humidity
and the other driven by increasing rainfall. These two peaks are
visible in the Sinaloa incidence time series (Fig. 1c). While such
patterns have been previously observed in both RSV and
influenza time series in tropical countries9,23, our results provide
evidence for the climatic variation driving these observed
dynamics. Across the dataset we find that locations with biennial
dynamics experienced larger seasonal changes in predicted
transmission than locations with shallow-trough dynamics
(Fig. 2e) as suggested by earlier work27.

Future climate. In our historical analysis we made the con-
servative assumption of removing local seasonal variation and
local year-to-year mean variation with the inclusion of dummy
variables, essentially looking at the effect of climate anomalies on
transmission. These dummy variables subsume both annual cli-
mate variations and social drivers of transmission. In future
projections we refit the model without these dummy variables to
explore the maximum likely effect of climate on future trans-
mission (Supplementary Fig. 12, using a common seasonal effect
across locations to capture schooling generates similar results:
Supplementary Fig. 14). We run simulations varying the mean
transmission rate and the amplitude of the seasonal change in
transmission, holding birth rates and population constant (Fig. 3a
left). As the amplitude increases, cycles tend to become more
biennial and eventually chaotic31,32. Figure 3a (right) shows the
trajectory of each county in terms of current to future predicted
cycle dynamics, where the future is the end-of-century Coupled
Model Intercomparison Project Phase 5 (CMIP5) multi-model-
mean climate, based on the Representative Concentration Path-
way 8.5 (RCP8.5) scenario33. We find that increases to specific
humidity, driven by higher temperatures, result in reduced
transmission and a lower amplitude of seasonal transmission,

with locations in our dataset no longer experiencing the very dry
conditions that drive larger seasonal transmission changes. This
results in cycles becoming more annual and shallower on average:
a northward latitudinal shift in the types of dynamic patterns
observed.

While individual CMIP5 models are consistent in projecting
increasing surface air temperature and hence specific humidity,
there is significant disagreement across models with regard to
future changes to regional precipitation34. Given that precipita-
tion is found to be an important driver of RSV, particularly in
tropical locations, we explore the implications of the model range
in precipitation projections for future RSV epidemic dynamics. In
Fig. 3b we show simulations of the RSV cycle for three locations
in Mexico where transmission is driven by humidity, fixed at the
2100 CMIP5 multi-model-mean and precipitation, based on
trajectories from all 23 CMIP5 models (three models did not
include explicit precipitation projections and are removed). The
upper 90th percentile, the 50th percentile, and the lower 10th
percentile, in terms of the amplitude of RSV transmission
predicted by the model, are highlighted within the figure.

The uncertainty in the size of simulated epidemics depends on
the relative role of precipitation in driving the transmission cycle
in a particular location. For instance, the seasonal cycle of RSV in
Sonora is mostly driven by changes to humidity (Supplementary
Fig. 11), meaning that deviations from mean precipitation do not
alter cycle dynamics. However, in Oaxaca, where humidity
remains constant throughout the year, differences in future
rainfall across CMIP5 models result in divergent cycle dynamics.
High precipitation results in a bifurcation, leading to biennial
outbreak cycles.

We evaluate the CMIP5 model uncertainty by calculating
differences between individual 2100 model projections and 2010
estimates of the seasonal change in transmission across all
locations in the dataset (Fig. 3c). For many locations in the
United States, model differences in rainfall projections do not
alter the mean decline in seasonal transmission change. In these
locations the RSV cycle is driven primarily by changes to
humidity. However, for Mexico, Florida, and coastal parts of the
western US, there is a large divergence across models and extreme
rainfall increases the seasonal transmission change in multiple
scenarios. In these locations, the future dynamics of RSV will
hinge on future rainfall, and reducing uncertainty across climate
models will help better predict and prepare for potential changes
to RSV epidemic intensity.

Discussion
Our model unites predictions for the climate drivers of RSV across
both temperate and tropical locations, finding that the effect of
low humidity trades off against rainfall drivers, depending on
location. The striking similarity in the role of specific humidity for
both influenza and RSV suggests that parallel mechanisms are at
play for the two viruses (Fig. 4); however, the lack of an animal
model for RSV means experimental work cannot currently be used
to support our findings. This correspondence appears to hold even
though the population dynamics of influenza and RSV are palp-
ably different. Influenza disappears at high latitudes in the sum-
mer whereas RSV is much more endemic. Disentangling the roots
of these differences is an important area for future work. Pre-
cipitation has also been hypothesized to be important for influenza
transmission, although this has not been tested in laboratory
settings, likely due to the relative complexity of experimental set-
up35. It is unknown whether physical processes such as aerosol
deposition, or behavioral processes such as grouping indoors,
explain the mechanism of precipitation drivers of transmission for
both RSV and influenza.
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There are important caveats to our results. We made the
decision to remove dummy variables in future projections so that
annual variation in forced climate could flexibly determine
transmission. However, this means our simulations do not
account for non-climatic factors that may also structure trans-
mission. We crudely tested this by using a common seasonal fixed
effect which gave qualitatively similar results, reinforcing the
robustness of our assumption. Developing a richer understanding
of the mechanisms connecting climate to transmission would
help validate our results further. Our model also does not take
into account genetic sub-type of RSV30 due to data limitations in
the US and Mexico. We also do not consider age structure or
potential secondary infections: secondary RSV infections are less
severe27. Nonetheless, we are able to capture the limit cycle
structure of RSV dynamics well and elucidate multiple streams of
evidence for a fundamental climate effect.

The public health implications of changes to future RSV epi-
demic dynamics will depend on location-specific climatic chan-
ges. Precipitation-driven increases to epidemic intensity, caused
by climate change or other large-scale climatic events such as the
El-Nino-Southern Oscillation, will require increased surge capa-
city in locations that typically observe more uniformly distributed
cases31. Humidity-driven reductions to the seasonal change in
transmission in other locations will result in persistent epidemics,
meaning cases will occur outside of the typical “RSV season”
requiring changes to the temporal allocation of resources.
Changing dynamics can also alter the age of infection36,37. This
consideration is important given that early RSV infections have
been implicated in the later life development of asthma17.

Understanding the impact of climate change on the trans-
mission dynamics of infectious diseases is critical for predicting

and preparing for future outbreaks and the optimal deployment
of future vaccines. Our results highlight the nonlinear impact of
climate on RSV dynamics, across a wide range of climatic con-
ditions. Shifts in the timing and magnitude of RSV outbreaks will
be location-specific, depending on the realized climatic change. In
regions where transmission is dominated by humidity, we can be
relatively confident in our projections. However, in regions where
precipitation dominates transmission, the future dynamics of
RSV are more uncertain. Efforts to better resolve precipitation
projections across climate models will improve the precision of
these results. These findings also have potential implications for
other airborne pathogens and future research efforts should be
directed towards understanding the various processes through
which climate affects airborne transmission. More broadly, our
preliminary comparison between RSV and influenza reveals the
potential for comparative studies to elucidate the mechanisms of
climatic forcing for major respiratory infections.

Methods
Data. The US county-level RSV dataset comes from hospitalizations data originally
obtained from the State Inpatient Databases (SIDs) of the Healthcare Cost and
Utilization Project (HCUP) maintained by the Agency for Healthcare Research and
Quality (AHRQ). HCUP SIDs data represents on average 96% of community
hospital inpatient discharges for reporting states, though not all states participate in
data collection. There are some fluctuations in the number of community hospitals
reporting over time, depending on the state. The standard deviation in percentage
reporting in 2% on average. Hospitalization records that included the International
Classification of Diseases 9th revision, Clinical Modification (ICD-9-CM) code for
RSV (079.6, 466.11, 480.1) within the 15 discharge diagnoses were included.
Hospitalization data were made available at the weekly level. Hospitalization data
are available from 1989, however, a change in reporting codes in 1996 results in a
large increase in cases at this time. To avoid potential bias from the switch in
reporting, we take all county-level observations from 1997 onward. The longest
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time series spans 1997–2011. We remove counties with very sparse observations
(max incidence <10 cases) and we also remove series of zero observations from the
start of the time series. We remove any counties that have <5 years of consecutive
observations due to potential erroneous model-fitting over this shorter time series,
though these counties are retained when plotting spatial averages.

State-level Mexico hospitalization data come from the Subsistema
Automatizado de Egresos Hospitalarios (SAEH) collected by the Sistema Nacional
de Información en Salud (SINAIS) and overseen by Secretaría de Salud. We take
data from all cases of bronchiolitis (ICD-10 codes J21.0, J21.1, J21.8, J21.9), a
serious respiratory tract infection primarily caused by RSV38 (Supplementary Table
8). Data were summed over the week to match the US data and reflect the
generation time of RSV. Mexico data cover all years from 2000 to 2014.

Temperature and specific humidity data come from the North America
Regional Reanalysis (NARR) gridded dataset39, produced by the National Centers
for Environmental Prediction (NCEP). This high resolution dataset (32 km, daily
observations) spans the geographic and temporal extent of our health data.
Precipitation data come from Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS)40. Spatial averages are constructed using shapefiles for US
counties from the United States Census Bureau and for Mexican states.

Climate projections data come from the Coupled Model Intercomparison
Project Phase 5 (CMIP5). Precipitation projections come from all CMIP5 models
run under the Representative Concentration Pathway 8.5 scenario. Specific
humidity is calculated from projections for temperature and relative humidity
based on the multi-model mean, accessed via the KNMI Climate Explorer (https://
climexp.knmi.nl/start.cgi).

Population data for the US were obtained from publicly-available combined
files of United States Census Bureau data available via the National Bureau of
Economic Research. US birth data were downloaded from the Centers for Disease
Control. Demographic data for Mexico were obtained from the Instituto Nacional
de Estadística y Geografía. Annual county (US) and state (Mexico) population
estimates from these sources were interpolated at the weekly level using a cubic
spline to avoid stepwise jumps at year transitions.

County-level data in the United States are noisier than state-level averages used
in ref. 27, however, they provide some advantages. For instance, state-level time
series for California show a dynamic transition from biennial outbreaks to annual
outbreaks in 1999. At the county level we observe biennial cycles persisting from
1999 onward in California but with northern counties and southern counties out-
of-phase (Supplementary Fig. 4). This suggests that using county-level data may
provide a more accurate picture of location-specific dynamics.

Definitions. We define three types of dynamic pattern observed in the location-
specific time series within the dataset. Shallow-trough dynamics are defined as
when the annual mean minimum incidence for a particular location exceeds 5% of
the mean maximum incidence. Biennial locations are defined using the significance
of the biennial signal using the Lomb-Scargle periodogram. We use a significance
value of 1% (all p-values under 5% are shown in the chloropleth Supplementary
Fig. 3a, as well as the ratio of biennial to annual Fourier amplitudes in Supple-
mentary Fig. 3b27). When running simulations for Fig. 3, we define chaotic regions
as locations where the Lyapunov constant is positive.

To calculate mean onset week we first calculate mean incidence per week (i.e.,
each week averaged over all years for a given locations), and then normalize these
values between 0 and 1. We define the start of the epidemic period as the 26th week
of the year, approximately the first week of July. This period is chosen as it spans all
epidemics within our data (Supplementary Fig. 6). We define onset as when
normalized incidence exceeds 0.2, assuming this value is low enough to constitute
onset but high enough to exceed random fluctuations in the data. Using
normalized incidence, as opposed to incidence/population thresholds, allows to
create a uniform measure across both US and Mexican datasets in spite of sampling
differences between the two locations.

Modeling approach. Our modeling approach follows two steps29. We first use the
time series TSIR model, a discrete time adaptation of the SIR model14,41, to esti-
mate the unobserved susceptible population for each location over time. Next, we
use the estimated susceptible time series to construct an empirical transmission
rate. The transmission rate is used as a dependent variable in a panel regression
where the effect of climate is estimated.

The TSIR model. The TSIR model describes the number infected and susceptible
individuals as a set of difference equations. The number of susceptible individuals
is given by:

Stþ1 ¼ St þ Bt � It þ ut ð1Þ
where St and It are the number of susceptible individuals and the number of
infected individuals, respectively, and the time period, t, is the generation time for
RSV approximated as 1 week. Bt are births and ut is additive noise, with E½ut � ¼ 0.
The susceptible population at each time step can be written as St ¼ �Sþ Zt , where �S
is the mean number of susceptible individuals in the population and Zt is the
unknown deviation from the mean number of susceptible individuals at each time
step. The susceptible equation can thus be rewritten in terms of deviations Zt and
iterated successively with the starting condition Z0, giving:

Xt�1

k¼0

Bk ¼ �Z0 þ 1=ρ
Xt�1

k¼0

Irk þ Zt þ ut ð2Þ

where ρ is the reporting rate which accounts for both under-reporting of RSV
hospitalizations as well as infections that did not result in hospitalization and Irk is
the reported incidence. Using this equation, Zt is estimated as the residuals from
the linear regression of cumulative births on cumulative cases, assuming ut is small.
The inverse of the slope of the regression line provides an estimate of the reporting
rate ρ. Zt estimates can be used to reconstruct the susceptible time series though
must be combined with an estimate for �S. We calculate this by defining the
expected number of infected cases at each time step, E½Itþ1�, as:

E½Itþ1� ¼
βt I

α
t St

Nt
ð3Þ

which is log-linearized as:

lnðE½Itþ1�Þ ¼ lnðβtÞ þ αlnðItÞ þ lnð�Sþ ZtÞ � lnðNtÞ ð4Þ
where βt are biweekly factors that capture the seasonal trend in transmission rate
and α is a constant that captures heterogeneities in mixing and the discretization of
a continuous time process. We fix α at 0.97 to be consistent with prior studies42.
Biweekly seasonal betas, as opposed to weekly betas, are estimated to avoid the
overfitting of parameters due to the high correlation in transmission rates across
successive weeks. Equation (4) is fit using a Poisson regression with log link. Final
results are robust to using a negative binomial at this stage (Supplementary
Table 7). The mean number of susceptible individuals, �S, can then be estimated
using marginal profile likelihoods from estimating Eq. (4), for a range of candidate
values. The TSIR model is used to reconstruct St for each location in the dataset.
An empirical estimate of the transmission rate, Emβt , was then calculated for each
location and time step in the dataset by rewriting Eq. (3), assuming that
E½Itþ1� ¼ Itþ1:

Emβt ¼
Itþ1Nt

Iαt St
ð5Þ

To avoid inflation of Emβt we add one to zero observations in the infected time
series which represents continual low-level background transmission resulting in
the lack of epidemic extinction we observe in the data. Model results are also robust
to removing zero observations from the infected time series (Supplementary
Table 3). For fitting the TSIR we use the tsiR package43. Example TSIR fits are
shown in Supplementary Fig. 7.
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Fig. 4 Comparison with influenza results. Removing precipitation from our
regression model and including a quadratic humidity term reveals a very
similar response (a) to earlier work on influenza (b adapted from Tamerius
et al.9, Fig 3a) suggesting potential similar mechanisms underlie the climate
effect on the two diseases. Predicted minimum transmission for RSV occurs
at 11.16 g/kg, with influenza found to be similarly 11–12 g/kg9. Tamerius
et al. suggest precipitation may drive the right hand side of the humidity-
influenza curve, as we find for RSV.
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We remove data from all US counties where the R2 of the TSIR fit is <0.5 (101
counties). These locations tend to be in counties with very low population numbers
where low-level stochastic variability in cases becomes proportional to the size of
seasonal variation. Our results are robust to using the full dataset and a population-
based cut off (Supplementary Tables 5 and 6). The time series in the Mexican
dataset are noisier than the United States, even for larger population states, which
we hypothesize is due to the stochastic nature of rainfall drivers that dominate in
this region and also due to sampling issues such as a higher threshold for
hospitalization. In Mexico, we remove data from two states where the TSIR model
does not provide a good fit due to very sparse data (under 10 cases at maximum in
the time series): Colima and Queretaro. Our final dataset to which we fit the main
regression model has 214 locations and a total of 119,802 location-by-week
observations. Model results are robust to including data from all US counties and
Mexico (Supplementary Table 5).

Panel regression. We fit a linear regression model using the empirical trans-
mission rate as a dependent variable:

lnðEmβt;lÞ ¼ b1ð1=Ht;lÞ þ b2Pt;l þ γl;m þ δl;y þ ϵt;l ð6Þ
where Emβt;l is the empirical transmission at time t and location l, Htl

is humidity,
and Pt;l is precipitation. We include location-by-month dummies γl;m that remove
location-specific seasonal variation in transmission which may be confounded by
other seasonally varying factors such as school semesters. We also include location-
by-year dummies δl;y that remove location-specific trends in transmission or epi-
sodic transmission events that may be spuriously correlated with climate. Standard
errors are clustered at the location level, though White’s standard errors give
similar results (Supplementary Table 4).

Nonparametric binned models and general additive models are also fitted to test
the accuracy of the fitted functional form of the specific humidity and precipitation
relationship (Supplementary Fig. 8 and 9). Lagged precipitation and humdity, in
the week prior to transmission, are tested but not found to be significant
(Supplementary Table 9).

Simulations. We run several different simulations to test for the effect of climate
on the epidemic dynamics of RSV. To allow for climate to fully characterize the
seasonal changes in transmission and mean transmission we re-estimate Eq. (6)
removing dummy variable controls as:

lnðEmβt;lÞ ¼ b1ð1=Ht;lÞ þ b2Pt;l þ ϵt;l ð7Þ
This model may be biased by other seasonally varying or location-specific

trends and as such represents an upper bound on the climate effect. Results from
this model are shown in Supplementary Fig. 11 and are significant (p � 0:001).

We run simulations over the parameter space of mean transmission and
seasonal change in transmission values with the aim of evaluating (1) the location
of bifurcations (Fig. 3a left plot) and (2) the difference between present and 2100
future projected dynamics (Fig. 3a right plot). In order to smoothly vary the
seasonal change in transmission across the parameter space we use a cosine
function to represent seasonality in humidity. Simulations are run for 50 years to
remove the effect of transients and only the last 10 years are analyzed. To keep
other factors constant, demographics in these simulations are based on Kings
County, New York. In Fig. 3a (right), we plot an arrow for each location within
our dataset where the base of the arrow represents the estimated present
parameter values and the point of the arrow represents the projected future
parameter values.

To produce Fig. 3b we run simulations this time allowing seasonal climate
variations to fully specify the seasonal and mean transmission rate, removing the
cosine structure. We take output from all 23 climate models included in the CMIP5
mean. For each model we calculate the ratio of the week-of-year average rainfall at
the end of the century to the start of the century (using a 5-year average anomaly in
each case). We then apply this ratio to the observed precipitation in our
dataset also averaged over a 5-year period to minimize bias from comparing model
output to observational data. We apply the same method to the model-mean
specific humidity. Projected precipitation and humidity are input into Eq. (7) to
calculate a seasonally varying transmission rate. Forward simulations are run for 50
years to remove transients with only the last 5 years shown in Fig. 3b.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The US RSV hospitalization data are available from the Agency for Healthcare Research
and Quality upon signing a data use agreement. The Mexico hospitalization dataset is
available from the Sistema Nacional de Información en Salud.
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