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Article

Are Atmospheric Models Too Cold in the  
Mountains? The State of Science and Insights  
from the SAIL Field Campaign
William Rudisill ,a Alan Rhoades,a Zexuan Xu,a and Daniel R. Feldmana

ABSTRACT: Mountains play an outsized role in water resource availability, and the amount and  
timing of water they provide depend strongly on temperature. To that end, we ask the question: How 
well are atmospheric models capturing mountain temperatures? We synthesize results showing that 
high-resolution, regionally relevant climate models produce 2-m air temperature (T2m) measurements 
colder than what is observed (a “cold bias”), particularly in snow-covered midlatitude mountain ranges 
during winter. We find common cold biases in 44 studies across global mountain ranges, including 
single-model and multimodel ensembles. We explore the factors driving these biases and examine 
the physical mechanisms, data limitations, and observational uncertainties behind T2m. Our analysis 
suggests that the biases are genuine and not due to observation sparsity or resolution mismatches. 
Cold biases occur primarily on mountain peaks and ridges, whereas valleys are often warm biased. 
Our literature review suggests that increasing model resolution does not clearly mitigate the bias. 
By analyzing data from the Surface Atmosphere Integrated Field Laboratory (SAIL) field campaign in 
the Colorado Rocky Mountains, we test various hypotheses related to cold biases and find that local 
wind circulations, longwave (LW) radiation, and surface-layer parameterizations contribute to the 
T2m biases in this particular location. We conclude by emphasizing the value of coordinated model 
evaluation and development efforts in heavily instrumented mountain locations for addressing the 
root cause(s) of T2m biases and improving predictive understanding of mountain climates.

SIGNIFICANCE STATEMENT: Mountain climates are rapidly changing, and along with them are the 
temperature-sensitive components of the water budget that societies have relied on. Yet atmospheric 
models, from those that predict the weather to those that predict the future climate, are several 
degrees too cold on average in these same mountain regions. This cold bias has not been system-
atically identified in the published literature yet, so we discuss evidence of its pervasiveness across 
models, its potential causes, and pathways to eliminate it using targeted models and observations. 
With community support, this bias can be uprooted, thereby enabling model projections that better 
project the climatic and water resource changes in these vital regions.
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1. Introduction
In this study, we compile evidence suggesting that many types of high-resolution atmospheric 
models (Gutowski et al. 2020) report cold biases in 2-m air temperature (“T2m”) measure-
ments across major mountain regions. The inaccuracies in modeled T2m beg the question 
of how such biases should be treated and whether key processes are being adequately rep-
resented at the scales required for the skillful projection of climate change in Earth’s water 
towers (Viviroli and Weingartner 2004; Immerzeel et al. 2020; Siirila-Woodburn et al. 2021). 
The bias is defined here as the difference between the model and the observation, so a cold 
bias of 1°C indicates that the model is colder than the observations by that amount. In the 
following sections, we describe 44 studies from the last decade, including both limited-area 
models (LAMs) and variable resolution general circulation models (Table A1). Most notably, at 
the mountain-range scale, we were unable to find examples of warm biases in the published 
literature (though, as we will show, warm biases can occur in valley subregions of mountain  
ranges). For simplicity, we refer to all of these previous studies as Models of Applicable  
Resolution for Mountain Meteorology across Time Scales (MARMOTS), based on their  
common goal of producing meteorological information at scales applicable to questions 
related to mountain hydroclimates.

a. Mountains in a warming world. Though they occupy a small percentage of Earth’s land-
mass (between 13% and 30%; Kapos et al. 2000; Körner et al. 2011, 2017; Snethlage et al. 
2022), mountains have an outsized global impact as the world’s water towers (Viviroli and 
Weingartner 2004; Immerzeel et  al. 2020; Siirila-Woodburn et  al. 2021). Theoretically, 
mountains warm from anthropogenic climate change at rates different from low-lying regions 
through a variety of mechanisms related to both cryospheric changes (e.g., snow albedo 
feedbacks) and atmospheric thermodynamic considerations (Mountain Research Initiative 
EDW Working Group 2015; Palazzi et al. 2019; Hock et al. 2019). However, observational 
determination of elevation-dependent warming has proven more elusive (Pepin et al. 2022), 
and such assessments are limited by data quality, continuity, and coverage in high-elevation 
areas (Oyler et al. 2015b; McAfee et al. 2019; Ma et al. 2019). At the same time, T2m is the 
first-order control of whether precipitation falls as rain or snow (Harpold et al. 2017; Jennings 
et al. 2018) including rain-on-snow events (Heggli et al. 2022), snowmelt timing (Musselman 
et al. 2021), and streamflow drought (Udall and Overpeck 2017; Gangopadhyay et al. 2022) 
in many mountain regions.

A number of factors complicate the spatiotemporal patterns of T2m in complex mountain 
terrain compared to flat, low-elevation areas. Figure 1 illustrates idealized depictions of 
some of these processes. Mountains are generally high elevation, so the total mass of the 
atmosphere above them (pressure) is less than in low-lying areas. As a consequence, there is 
less diffuse radiation from scattering and more intense direct beam radiation (Smith 2019). 
At the surface, the incident radiation also depends on slope, aspect, and terrain shadow-
ing and terrain reflection (Fig. 1a), so sun-facing aspects may have warmer temperatures  
(Strachan and Daly 2017). Additional complications of T2m in mountain regions may arise 
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from the patchwork of land-cover types, namely, snow and vegetation, which impact the  
surface energy balance and therefore T2m. Snow has a high albedo and a high emissivity  
(Fig. 1b), so it both very effectively reflects incoming radiation and emits heat in the longwave 
(LW) (Armstrong and Brun 2008). Vegetation has high surface roughness and a lower albedo 
than snow (Fig. 1c) and likewise influences the surface energy balance through both radia-
tive and turbulent exchange mechanisms (Lee et al. 2011; Schultz et al. 2017; Burakowski 
et al. 2018).

Cold-air pools are common features in mountain climates that result from the topography 
and occur especially during periods of light winds, clear skies, during winter, and at night 
(Figs. 1d,e; Daly et al. 2010; Whiteman 2000; Lundquist et al. 2008). In such cases, cold, 
dense air drains from aloft and settles in valley bottoms, leading to stable stratification with 
relatively warm air overlying the cold air near the surface. Cold-air pools may also form even 
with relatively minimal cold-air drainage, in cases where topography limits mixing with ambi-
ent air (Clements et al. 2003) and radiative cooling dominates. In these cases, T2m observed 
within the valley cold pool may be colder than T2m observed at higher altitudes (an inverted 
temperature profile; Fig. 1e). Such features may mix out during the day or persist for days or 
weeks (Fig. 1d). The intricacies of the mountain planetary boundary layer are complex and 

Fig. 1. Depiction of processes influencing mountain T2m. (a) Incident solar radiation at the ground surface 
depends on terrain aspect and shadowing. Mountain slopes can also reflect SW and emit LW radiation;  
(b) snow reflects solar radiation, cooling surface temperatures through the snow-albedo feedback;  
(c) vegetation’s high surface roughness and lower albedos warm surrounding air relative to nonvegetated  
snow surfaces; (d) moderate synoptic forcing leads to upper-air and boundary layer temperature mixing, 
with an uninverted vs elevation profile; (e) katabatic flows develop valley temperature inversions during 
clear-sky, cloud-free conditions when surface LW cooling is strong.
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have only begun to be explored (Lehner and Rotach 2018; Serafin et al. 2018). Serafin et al. 
(2018) provide a thorough review of many unique features of the mountain planetary bound-
ary layer and challenges for models therein.

b. MARMOTS: The keys to understanding mountain climates. High-resolution atmospheric 
models are nonetheless the best methods for assessing climate impacts in the world’s moun-
tain regions, as uniform-resolution general circulation models are currently too coarse to 
resolve the mountain topography that is so fundamental for shaping mountainous climates 
(Rhoades et al. 2018a; Gutowski et al. 2020; Demory et al. 2014). Prein et al. (2015) discuss 
some of the relatively recent advancements in MARMOTS development. Numerical weather 
prediction models often share similar dynamical cores and parameterizations with their cli-
mate model counterparts but are intended to operate on shorter time scales with continu-
ally updated initial and boundary conditions and even state information (through nudging) 
that make extensive use of existing data assimilation datasets. Thus, output from numerical 
weather prediction models is increasingly used as inputs into models for mountain hydro-
logical research (e.g., Currier et al. 2017; Reynolds et al. 2021; Meyer et al. 2023), so nu-
merical weather prediction studies are also considered in this review.

c. Goals and outline. The paper is structured as follows. We start by reviewing papers evalu-
ating MARMOTS temperature biases. We augment the literature review by analyzing T2m 
data from NCAR’s “high-resolution CONUS (HRCONUS)” model dataset, presented in Liu 
et al. (2017), which covers the entire United States at a 4-km grid spacing. We then pose the 
question: Is T2m bias truly a bias, or a by-product of model-to-observation resolution mis-
matches? To answer these questions, we review observational capabilities across the globe 
and examine some of the gridded reference datasets that are frequently used to compute 
T2m biases.

Finally, we examine model T2m biases in the 300-km2 upper East River watershed 
(ERW), located in the Colorado Rockies, using data collected during the Surface Atmosphere  
Integrated Field Laboratory (SAIL) field campaign (Feldman et al. 2023). We examine T2m from 
nine stations located throughout the ERW valley (spanning ∼600 m of elevation) in addition 
to single-site measurements of T2m covariates, namely, near-surface wind speed, 2-m specific 
humidity, snow skin temperature, precipitable water vapor (PWV), and cloud cover fraction. 
We compare observed T2m to output from the High-Resolution Rapid Refresh (HRRR) model 
(Benjamin et al. 2016) and the reanalysis-forced Weather Research and Forecasting (WRF; 
Powers et al. 2017) Model configuration described in Xu et al. (2023). We do not propose a 
solution to the problem of winter season T2m cold biases, as the solutions will undoubtedly 
require community-wide efforts, but instead seek to demonstrate the nature of the problem 
and illuminate paths forward for solutions.

2. MARMOTS are cold biased over mountains, particularly in winter
A review of the recent literature shows that 44 studies report winter season cold biases across 
the world’s major mountain regions (Fig. 2 and Table A2). Mentions of model cold bias were 
found by first searching major studies, such as multimodel ensemble evaluation studies and 
those that have been widely shared and cited in the mountain hydroclimate field. We uncovered 
the majority of the studies by looking at the chain of references from those studies. Additional 
studies were found using search terms on Google Scholar such as “regional climate model 
evaluation,” or “WRF Model evaluation mountains” and related terms. While it is possible 
that some published model configurations have shown warm biases over mountain regions, 
none were found from this analysis.
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The model biases reported in these studies are typically determined by evaluating model 
output against gridded meteorological observations covering the same model extent or by 
comparing individual weather stations to the closest model grid cells. T2m tends to reach 
a minimum at night (TMIN) and a maximum during the day (TMAX) and is often reported  
in terms of the daily average (TAVG). Unless specified, T2m refers to TAVG. The magnitude  
of cold biases generally ranges from 1° to 5°C (Table A2), though not all studies report a 
quantitative value of the bias.

a. Examples of model cold bias. Vautard et al. (2021) present a historical climate bias anal-
ysis of temperature from the 0.11° horizontal resolution European Coordinated Regional 
Downscaling Experiment (EURO-CORDEX) ensemble consisting of 8 global climate model 
drivers and 11 independent regional models. The median model is cold biased over the Alps, 
Pyrenees, and Scandinavian ranges. Even the “hottest” models (95th percentile), with posi-
tive temperature biases in lowlands, are too cold in mountain regions. They further show 
that the TMIN bias is dominated by model structural variability rather than boundary condi-
tions. Earlier EURO-CORDEX analyses showed similar cold biases in the Alps and Scandi-
navian ranges (Kotlarski et al. 2014). South American CORDEX (SA-CORDEX) experiments 
are similarly cold biased in the Andes (Blázquez and Solman 2023; Solman and Blázquez 
2019; Torrez-Rodriguez et al. 2023). Similar biases are also found in SA-CORDEX and North 
American CORDEX (NA-CORDEX) evaluations (Torrez-Rodriguez et al. 2023; Xu et al. 2019). 
Results from Australasia-CORDEX show extensive cold biases that may be related to eleva-
tion (Di Virgilio et al. 2019). NA-CORDEX is cold biased in the Sierra Nevada (Xu et al. 2019) 
and possibly the Southern Rockies (McCrary et al. 2017).

Fig. 2. The geographic locations (yellow boxes) of studies reporting mountain cold biases. The global mountain classifications 
from Snethlage et al. (2022) are shown in blue. The 44 studies are all reported in the peer-reviewed literature with publication 
dates spanning 2011–23 and include both single-model experiments and multimodel ensemble evaluations.
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Variable-resolution global models likewise demonstrate cold biases. Rhoades et al. (2018b) 
found extensive cold biases in variable-resolution CESM (VR-CESM) (Table A1) over the  
Sierra Nevada. Similar results are found again in the Sierra Nevada (Fig. 13 of Xu et al. 2018; 
Xu et al. 2021) as well as the Rockies (Fig. 3 of Wu et al. 2017), the Tibetan Plateau (Xu et al. 
2021), and the Andes (Bambach et al. 2022). The System for Integrated Modeling of the 
Atmosphere-MPAS (SIMA-MPAS) model (Table A1) likewise shows a cold bias for high peaks 
in the western United States (WUS; X. Huang et al. 2022). The recently evaluated regionally 
refined mesh Energy Exascale Earth System Model (RRM-E3SM) (Table A1) demonstrates 
pervasive cold biases, though elevation-specific analyses are not presented (Tang et al. 2023).

The WRF Model has been applied across the globe as both a regional climate model and 
a numerical weather prediction model. WRF’s utility for supporting snow-water resource 
applications has been strongly argued given its skill in simulating orographic precipita-
tion (Ikeda et al. 2010; Gutmann et al. 2012; He et al. 2019; Liu et al. 2011; Lundquist et al. 
2019), but fewer studies scrutinize WRF’s T2m performance in mountains. Nonetheless, 
cold biases in that model have been articulated or shown in the Sierra Nevada (Fig. 5 of Pan 
et al. 2011; Huang et al. 2018; Walton and Hall 2018), the Wasatch (Scalzitti et al. 2016), and 
the Idaho–Bitterroot (Rudisill et al. 2022; Havens et al. 2019) ranges and other interior WUS  
mountain ranges (Fig. 13 of Wang et al. 2018). Similar biases in that model are found in  
Japan, the Himalayas, and the Southern Alps (Kawase et al. 2013; Karki et al. 2017; Kropač 
et al. 2021). NCAR’s convection-permitting WRF simulations described in Liu et al. (2017), 
hereafter L2017, cover all of CONUS at a 4-km horizontal grid spacing between 2000 and 2013 
using ERA-Interim lateral boundary conditions. L2017 is cold biased over major mountain 
ranges, particularly on snow-topped peaks (He et al. 2019). As this dataset is publicly avail-
able and one of very few covering the entire WUS at a 4-km grid spacing, we analyze L2017 
in greater detail in the next section.

b. Scrutinizing T2m biases from the L2017 4-km WRF dataset. To better illustrate the nature 
of T2m biases, we evaluate data from L2017 for January–March 2008 (Fig. 3a). This specific 
time period is chosen because it was also examined in L2017 (Fig. 11 of their paper), and 
they note that it was also analyzed in several other studies. We group temperature biases 
by selected mountain regions using the regional definitions from Snethlage et al. (2022).  
The T2m biases are computed against the 4-km Parameter-Elevation Regressions on Inde-
pendent Slopes Model (PRISM) AN81d daily temperature (https://prism.oregonstate.edu/). In 
addition, we perform a landform classification that groups each site as either a slope, a 
valley, or ridge-top grid cell using standard terrain position metrics (Lindsay 2016). The 
supplemental material provides additional information about the processing steps. We 
also group T2m biases by the entire dataset (every grid cell evaluated in the model against 
PRISM) and only those grid cells that encompass a weather station observation. We do this 
because the PRISM data should be very close to the underlying observations for those grid 
cells with weather stations, so we can test whether biases persist for areas with observations 
or whether they are primarily in locations where PRISM does not have an observation.

We find T2m biases are approximately normally distributed across the entire CONUS 
(Figs. 3b,i), with a mean near zero, but each mountain range of the WUS shows a cold bias 
(Figs. 3c–i) of between 0.8° and 1.4°C averaged across all mountain-range grid cells. The 
dry continental interior ranges (e.g., Figs. 3h,c) have more extreme cold biases than the 
coastal ranges (e.g., Figs. 3e,f), reaching cold bias values of over 3°C in certain regions. 
Cold biases persist even when only the grid cells containing weather station observations 
are compared between WRF and PRISM (and in some cases become worse), suggesting 
that biases are not merely a product of out-of-sample predictions made by PRISM. The 
geographic pattern of the T2m biases suggests that they are not purely a function of 
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elevation or snow cover. When we group the T2m biases at weather station grid cells by 
land classification (Fig. 3j), we find not only that the model cold biases are primarily at 
ridge locations but also that the model is typically warm biased in valleys greater than 
1000 m above mean sea level.

From the studies examined, a common thread emerges: Aggregating across entire mountain 
ranges, model T2m fields are cold biased on average, though mountain valleys are sometimes 
too warm. T2m biases are generally more significant in the winter, and they do not necessar-
ily decrease in magnitude as the model resolution increases. The following sections evaluate 
the biases and their potential causes in greater detail.

3. How are MARMOTS biases determined? Notes on observations and gridded  
data products in mountains
Finding persistent model biases begs the question of how well we actually understand the 
reference data, particularly in mountains where measurements are challenging. This section 
reviews current challenges and limitations of T2m observations in mountains.

Fig. 3. (a) Average T2m from the Liu et al. (2017) 4-km WRF dataset for January through March 2008 
across select mountain ranges of the WUS in (b) T2m bias evaluated using the PRISM AN81d product as 
reference, (c)–(h) T2m biases grouped by mountain range for all PRISM cells (orange) and for only cells 
containing station observations (blue), (i) T2m bias for all of CONUS, and (j) T2m biases for western U.S. 
stations greater than 1000 m of elevation (all) grouped by valley and ridge landform types. All units are 
in degrees Celsius.
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a. Observation and measuring challenges of T2m networks. While measuring T2m in moun-
tains is easier than measuring precipitation (Lundquist et al. 2019; Goodison et al. 1998), 
observations can themselves suffer from calibration challenges (Oyler et al. 2015b), temporal  
inhomogeneities (McAfee et  al. 2019), and representation biases. For instance, less than 
1% of the stations of the well-vetted and globally spanning Global Historical Climatology  
Network version 4 (GHCNv4) dataset (Menne et al. 2018) are above 3000 m (Mountain  
Research Initiative EDW Working Group 2015) and are systematically biased toward more 
accessible, less-rugged regions of mountain ranges (Thornton et al. 2022).

Figure 4a shows the temperature-observing stations across the WUS used by the PRISM 
dataset, which includes nearly all available data streams. These include Natural Resources 
Conservation Service (NRCS) Snowpack Telemetry (SNOTEL; Serreze et al. 1999; Strachan 
and Daly 2017), National Weather Service Cooperative Observer Program (COOP), Remote 
Automatic Weather Stations (RAWS; Zachariassen et al. 2003), and a variety of other local 
networks with data distributed by the MesoWest network (Horel et al. 2002). The primary 
high-elevation T2m observations in the mountains are from SNOTEL (Fig. 4d) which is 
preferentially located in tree-sheltered, midvalley regions that accumulate deep snowpacks 
(Strachan and Daly 2017). The majority of sites are located on slopes, with the exception of 
COOP stations, which are almost exclusively in valley locations (Fig. 4d). The station densities 

Fig. 4. (a) T2m observing stations used by the PRISM dataset at the time of publication in the WUS, including the National 
Weather Service COOP, RAWS (Zachariassen et al. 2003), NRCS SNOTEL stations (Serreze et al. 1999), and “other” sites included 
in the MesoWest network (Horel et al. 2002). All station points are denoted by blue circles, and stations within one of the eight 
mountain-range zones examined are denoted by marker color. (b),(c) The elevation distribution of stations (box and whiskers)  
compared against the parent mountain-range cumulative area–elevation curves. The number of observing stations per  
1000 square kilometers is also shown in bold type in the upper left. (d) Stations classified by elevation and landform type posi-
tions (ridge, slope, and valley).
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are between 1 and 4 stations per 1000 km2 in the major ranges of the WUS, with the lowest 
density in the Great Basin and Idaho–Bitterroot range. At the same time, the median station 
elevation for western mountain ranges is fairly well aligned with the distribution of topog-
raphy, covering between 40% and 85% of the cumulative area of each mountain range. The 
Greater Yellowstone and the Sierra Nevada have the worst observational coverage over their 
highest elevations, with 9%–10% of the total (high-elevation) land area completely unsampled 
by weather stations (Figs. 4b,c).

b. The challenges of “gridding” sparse T2m observations in complex terrain. The develop-
ment of gridded observational products from station observations is a widely utilized prac-
tice and facilitates direct comparisons with model outputs. Because there are many steps 
associated with gridding, understanding the physical and statistical assumptions made in 
gridded observational products is central to diagnosing and quantifying sources of model 
T2m biases. Gridding approaches generally create two-dimensional fields by attempting to 
capture the salient processes that can be predicted with each grid box in the domain given a 
sparse series of T2m values from stations. This prediction can be based on statistical models 
such as fitting smooth surfaces or interpolating between observation points using various 
approaches such as regression kriging or locally weighted interpolations (Thornton et al. 
1997; Maurer et al. 2002; Livneh et al. 2013; Dodson and Marks 1997; Fick and Hijmans 
2017). Terrain elevation is typically used as a covariate, while other covariates such as dis-
tance from the coast and terrain aspect are used less commonly, and some algorithms explic-
itly model cold-air pool formation in mountain valleys based on topographic factors (Daly 
et al. 2008). Other gridded products incorporate remote sensing observations (Oyler et al. 
2015a; Alvarez-Garreton et al. 2018) or use reanalysis products as starting points (Cosgrove 
et al. 2003; Weedon et al. 2014). Table A3 provides a list of gridded T2m datasets that are 
used as reference in the studies we examined in this paper. The PRISM dataset is frequently 
used in the United States, whereas the E-OBS version 17 (E-OBS17) dataset is commonly used 
in Europe and was explicitly designed for the purpose of MARMOTS evaluation (Haylock et al. 
2008). Additionally, many datasets may still use PRISM data as part of their gridding proce-
dure (Behnke et al. 2016), so there may be common sources of skill and/or error in different 
gridding procedures.

If there were dense observations in mountain terrain, then elevational gradients of T2m 
would simply be calculated from those observations—but this is not the case. In some grid-
ded datasets, it is assumed that T2m decreases with terrain elevation at a rate equivalent to 
the lapse rate of the international standard atmosphere (6.5°C km−1; note that the lapse rate 
is typically defined as the rate of the decrease in temperature with altitude, so positive lapse 
rate values indicate decreasing temperatures above the surface). This assumption has been 
shown to produce too cold temperatures at mountain peaks (Walton and Hall 2018; Mizukami 
et al. 2014; Newman et al. 2015), and an abundance of evidence suggests that the true T2m 
elevational gradient is generally less steep or even of the opposite sign (i.e., a temperature in-
version, where T2m increases with elevation) particularly during calm conditions (Dobrowski 
et al. 2009; Lute and Abatzoglou 2021; Blandford et al. 2008; Minder et al. 2010; Lundquist 
and Cayan 2007), while also exhibiting seasonal variation (Liston and Elder 2006; Immerzeel 
et al. 2014; Kattel et al. 2013; Rozante et al. 2022). Consequently, the elevational gradient as-
sumptions of any gridded dataset should be carefully considered before diagnosing a model 
simulation as biased.

There have been relatively few independent, mountain-focused validations of global or 
regional T2m datasets either among products or between products and independent observa-
tions. PRISM and the Daymet (Thornton et al. 2016) datasets differ in TMIN January tempera-
tures by as much as 1°–3°C in WUS mountains (Daly et al. 2008), and some comparisons show 
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absolute differences as high as 6°C (Walton and Hall 2018) for reasons that are sometimes 
attributable to T2m elevational gradient assumptions (Newman et al. 2015). Even fewer 
studies have compared gridded datasets against out-of-sample observational sources. Those 
that do provide such comparisons show that dataset skill varies by season and depends on 
physiographic position and other factors (Strachan and Daly 2017).

Last, the relationships between TMIN, TMAX, and TAVG in mountain environments and 
over snow cover may warrant additional scrutiny. For instance, PRISM creates grids of TMIN 
and TMAX and computes TAVG as the arithmetic mean of the two fields, implicitly assuming 
that diurnal air temperatures are symmetrical about the mean. Few studies have investigated 
the assumption of symmetry of diurnal temperature in complex terrain, though Wang et al. 
(2018) intentionally compared the average of WRF TMIN and TMAX (rather than the average 
of all sub-daily outputs) against TAVG from PRISM, and still found a cold bias in the inte-
rior WUS mountains. Furthermore, the time of day that observations are recorded poses a 
well-known challenge to analyzing temperature records, and model evaluation procedures 
need to be cognizant of this issue (Wang and Zeng 2014).

4. Possible causes of T2m cold bias
Many of the studies we have surveyed also include hypotheses on the cause(s) of modeled 
T2m cold biases, which we report without judgment in Table 1. The hypotheses include errors 
in cloud cover, snow properties, surface albedo, low wind speeds, radiation [shortwave (SW) 
and longwave], and surface-layer parameterizations. Some of the proposed causes cannot 
necessarily be separated (i.e., too much snow accumulation may lead to a high-albedo bias). 
Each of the causes is, at the outset, plausible, but the relative and absolute importance of 
each of these as a function of location and time is central to addressing this bias. Therefore, 
the following section investigates possible causes in greater detail.

a.  Observation density, quality, and model scale mismatch.  A number of studies have 
noted that data sparsity, quality, or related issues with the gridded reference data itself ex-
plain, in part, the observed model T2m biases (Table 1). However, we find that the reported 
MARMOTS cold biases are likely true biases and not just artifacts of under-sampling or 
data representation issues. Model T2m biases do not differ between grid cells with weather  
station observations and ones without those observations, as they would if the biases were 

Table 1. Potential causes of model T2m cold biases.

Proposed cause Citation

Too little cloud cover Vionnet et al. (2016), Monteiro et al. (2022)

High snow bias Kotlarski et al. (2014), Vionnet et al. (2016), Ma et al. (2023), Liu et al. (2017), 
McCrary et al. (2017), Careto et al. (2022)

Surface albedo Yang et al. (2021), Xu et al. (2019), He et al. (2019), Careto et al. (2022), 
Torrez-Rodriguez et al. (2023)

Snow-covered area parameterization Liu et al. (2017)

Wind speeds too slow Xu et al. (2021), Gouttevin et al. (2022)

Downwelling SW low biased Xu et al. (2021), Vionnet et al. (2016)

Downwelling LW low biased Gouttevin et al. (2022), Vionnet et al. (2016)

Surface-layer parameterization Rontu et al. (2016), Monteiro et al. (2022)

Observation sparsity Torma et al. (2011), Huang et al. (2018), Fernández et al. (2021), 
Torrez-Rodriguez et al. (2023)

Observation quality Rasmussen et al. (2023)

Model-to-observation elevation 
differences

Kotlarski et al. (2014)
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the result of the gridding procedure. However, L2017 biases persist even when only the  
grid cells containing a weather station observation are compared to corresponding WRF  
grid cells (Fig. 3) suggesting this is not the case. Moreover, high-resolution (1–4 km) model 
configurations are still cold biased when the station-to-gridcell elevation differences are 
compared, and in such cases, the elevation mismatch between the coarse model grid topog-
raphy and the true elevation grid is likely minimal. Other studies have found that T2m cold 
biases have persisted after applying elevation corrections (Kotlarski et al. 2014). Rasmussen 
et al. (2023) recently attributed WRF cold biases to well-known sensor calibration issues at 
SNOTEL stations (Oyler et al. 2015a). However, cold biases are also found in areas outside 
of the United States, and the RAWS network in the United States still provides information 
from high-elevation regions (Fig. 4d) that do not suffer the same systematic calibration is-
sue. Therefore, it seems difficult to ascribe all model biases to T2m observing errors alone, 
though the case is certainly far from closed.

b. Snow representation in land surface models. Snow on the ground actively influences T2m 
across continental (Dutra et al. 2011) to local scales (Mott et al. 2018; Rudisill et al. 2021). As 
such, errors in modeled snowpack thermodynamics are suspected to be the cause of T2m model 
bias in many studies (Table 1). The atmospheric layer between the surface and the lowest model 
level can become very stable, and turbulent transfer coefficients become quite low (Lapo et al. 
2019). In these conditions, the snow receives little heating from sensible heat flux and further 
decouples the snowpack from the atmosphere, causing excessively cold surface temperatures 
(Slater et al. 2001). Modeling highly stable boundary layers is a well-known challenge even for 
flat terrain (Sterk et al. 2013), and assumptions of canonical surface-layer exchange formula-
tions are violated in complex terrain (Rotach et al. 2022, 2008; Serafin et al. 2018; Lehner and 
Rotach 2018). As such, errors in snow energy budgets, the stable atmospheric layers above 
them, and the formulae used to interpolate between skin temperature and the lowest model 
levels [Eq. (A1)] are very much connected and are areas that need further attention.

Gouttevin et al. (2022) investigated many of the hypotheses concerning the causes of T2m 
biases in Table 1 with the AROME model (Table A1). They used single-column and offline land 
surface model frameworks for a modeling domain with a 1.3-km grid spacing across the French 
Alps and concluded that the contribution from downwelling shortwave radiation is minimal 
and that most of the bias is caused by AROME exhibiting both too low wind speed errors and 
too low downwelling longwave radiation relative to observations. The remainder of the T2m 
bias is attributable to the surface-layer parameterization in clear-sky, low wind speed condi-
tions. Whether or not these findings are applicable to other regions and models remains to 
be seen, but these results show how multiple observations that constrain the processes that 
control T2m enable straightforward diagnostics that identify the cause(s) of T2m model biases.

c. Model grid spacing. While finer model grid spacings should, in principle, better resolve 
the processes that control T2m and therefore reduce model T2m biases, the evidence col-
lected by this study presents a more complicated picture. Orographic precipitation biases 
tend to decrease at finer horizontal grid spacings (Ikeda et al. 2010, 2021; Ban et al. 2021), 
as do, in principle, other climate variables (Lucas-Picher et al. 2021). However, Soares et al. 
(2022) and Careto et al. (2022) quantified the added value of finer grid spacings for T2m and 
found little improvement in bias by downscaling at 2–3 km compared to coarser 12–25-km 
simulations (Coppola et al. 2020).

VR-CESM simulations from Rhoades et al. (2018b) demonstrate that “all VR-CESM simula-
tions exhibited a systemic mountain cold bias that worsened with elevation…” even when 
resolution is increased from 55 to 7 km, a finding recently corroborated by Wijngaard et al. 
(2023). WRF simulations with grid spacings on the order of 500 m–2 km (Xu et al. 2023;  
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Rudisill et al. 2022; Havens et al. 2019) do not appear to report less significant T2m biases 
than the 4-km L2017, though precise model configuration differences preclude direct com-
parison. Similarly, the cold biases in the COSMO Model (Table A1) are not mitigated going 
from grid spacings ranging from 22 to 2 km (Kotlarski et al. 2012; Ban et al. 2014; Winstral 
et al. 2019). Whether or not subkilometer simulations solve T2m biases remains to be seen. 
However, Vionnet et al. (2015) report that 0.25-km grid spacing improved high-elevation T2m 
biases but still performed poorly in valleys.

d. Other factors contributing to T2m bias.  In addition to the previously mentioned fac-
tors that contribute to T2m biases, there are process representations within models that 
are known to be deficient. One known deficiency in models is associated with their repre-
sentations of radiative fluxes in complex terrain (Fig. 1a). For shortwave radiation, terrain 
shadowing and surface reflection can lead to large and systematic differences in surface and 
intra-atmospheric shortwave radiative fluxes in complex terrain relative to a plane-parallel 
atmosphere and surface. The emission of longwave radiation by heterogeneous surfaces 
with variable skin temperatures can likewise lead to systematic differences in the down-
welling longwave relative to a plane-parallel atmosphere and surface assumptions. A num-
ber of models do account for 3D terrain-related shortwave effects through straightforward 
parameterization (e.g., Lee et al. 2019; Steger et al. 2022), but fewer account for 3D long-
wave effects that likely contribute significantly to surface energy budgets (Plüss and Ohmura 
1997; Zhu et al. 2017; Feldman et al. 2022). Missing 3D longwave effects could contribute 
to low-longwave biases that have been attributed to T2m biases in some studies (Table 1).

5. Case study: Diagnosing T2m biases with observations from the SAIL campaign
Resolving T2m model biases with a limited number of atmosphere and surface observations is 
ill posed because T2m is the manifestation of many unconstrained and interacting processes 
that impact the surface energy balance (Figs. 1a–c). However, the recently deployed U.S. De-
partment of Energy Atmospheric Radiation Measurement program’s SAIL campaign (Feldman 
et al. 2023) from 2021 to 2023 near Crested Butte, Colorado, and partner campaigns includ-
ing NOAA’s Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology 
(SPLASH; de Boer et al. 2023), in Colorado’s 300-km2 ERW, provide the means to diagnose 
T2m biases with many more simultaneous observational constraints than are typically found 
in mountain watersheds. These include measurements of fractional cloud cover made using a 
hemispheric sky imager, precipitable water vapor retrievals using ground station microwave 
radiometry, snow skin temperature measurements using an infrared thermometer, and down-
welling longwave radiation measured by a pyrgeometer. Other quantities were measured using 
standard meteorological instruments (additional descriptions are provided in Table A4). All 
of these observations were collected at the main SAIL facility located in an open clearing in 
the upper reach of the ERW valley (Fig. 5a; 38°57′22.35″N, 106°59′16.66″W at 2885 MSL). 
The main SAIL observing site is classified as a “valley” using the criteria employed previously  
(Figs. 3 and 4). Additional automated weather station data located throughout the ERW  
(Fig. 5) were used in this analysis, as were topographic elevation information at 50-m resolu-
tion that was acquired from an airborne lidar survey of the region (https://data.airbornesnow 
observatories.com/).

Using SAIL and partner organization data, we examine T2m biases and their po-
tential causes in the 3-km HRRR model version 4 (Benjamin et al. 2016) and the CFSR 
reanalysis-forced WRF configuration described in Xu et al. (2023), henceforth Xu-WRF. 
Xu-WRF has a 500-m innermost grid spacing which is used for analysis. This compari-
son is performed over the period 1 January–1 April 2022 during which the entire ERW is 
snow covered. Here, the zeroth hour of the HRRR forecast (also called the “analysis” in 
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the operational community) is concatenated into a continuous time series for comparison 
against observations.

a. Elevational gradients of T2m in observations and models. Figure 5 illustrates the relation-
ship between T2m and terrain elevation in both observations and models, recognizing that 
the elevation grid in the model contains coarsened topography. Observational data were visu-
ally inspected for anomalies prior to analysis, and both observational and model data span 
an elevation range of ∼600 m. The grid cells from the Xu-WRF and HRRR models that are clos-
est to each observation station were selected for analysis (Figs. 5a–c). Since the stations are 
close together, there are only six unique HRRR grid cells (but nine for Xu-WRF) that represent 
the nine station locations. The coarser HRRR model (Fig. 5a) shows more substantial offsets 
between the closest gridcell center and station location than in the Xu-WRF Model (Fig. 5b).

During the analysis period (1 January–1 April 2022), we find that the observed T2m  
actually increases with increasing terrain elevation on average (a temperature inversion).  

Fig. 5. Terrain elevation from the (a) 3-km HRRR model, (b) 500-m Xu-WRF Model, and (c) 50-m Airborne Snow Observatory Inc. 
DEM. The locations of nine temperature-observing stations are depicted by open circles. Filled markers (diamond and “x” for 
HRRR and Xu-WRF, respectively) show the location of model grid cells closest to the station. The dashed box indicates the location 
of the primary SAIL observing site. (d) The average T2m from 1 Jan to 1 Apr 2022 plotted against the corresponding terrain eleva-
tion for Xu-WRF and HRRR grid cells. The color of each marker denotes the station. The dashed lines depict linear regressions with 
90% mean confidence intervals highlighted. (e) As in (d), but showing observed T2m. The HRRR and Xu-WRF linear regressions 
from (d) are replotted in the second panel for comparison purposes between the models and observations.
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Both Xu-WRF and HRRR fail to produce the observed T2m inversion; rather, the models 
exhibit elevational gradients in T2m that closely follow the mean environmental lapse rate 
of the standard atmosphere—lapse rates of 6.92° and 7.84°C km−1 for Xu-WRF and HRRR, 
respectively (Fig. 5d). As found by other studies (e.g., Lute and Abatzoglou 2021; Blandford 
et al. 2008), the mean environmental lapse rate proves to be a poor representation of the actual 
T2m–elevation relationship, and consequently, both models are cold biased at high-elevation 
stations (Butte, Schofield, and SAIL S2; Fig. 5e), but warm biased at most valley sites. This 
pattern matches Fig. 4 of Xu et al. (2023) that evaluates the same model against PRISM, as 
well as the patterns found across the entire WUS in L2017 (Fig. 3). It is important to keep in 
mind that the positive T2m elevational gradient from the observations spans a relatively short 
range of elevations, is confined to one particular valley, and would likely not be appropriate 
for larger spatial scales. Gridcell elevation mismatches play a small role in the spatial patterns 
of this bias, as the model gridcell elevations are within 100 m or less of the true elevation in 
the Xu-WRF Model, though the coarser HRRR model has some larger elevational deviations.

b. HRRR and reanalysis-driven WRF evaluation of T2m biases. To scrutinize the drivers of 
T2m biases, we examine covariate observations of cloud cover, precipitable water vapor, 
wind speed, and snow skin temperature at the main SAIL site (referred to as “MET” Fig. 5) 
located in the upper reaches of the ERW valley. Downwelling longwave radiation is also ex-
amined, as this has been suspected as a cause of T2m bias (Table 1).

HRRR and Xu-WRF T2m biases exhibit many common symptoms (Fig. 6). The biases are not 
always evenly distributed over the diurnal cycle and depend on background meteorological 
factors. For instance, Xu-WRF is cold biased by 2.1°C during the night hours and slightly warm 
biased (0.1°C) during the daytime (Fig. 6a). Meanwhile, HRRR is cold biased over 2.3°C for 
both periods (Fig. 6b). Both models show warm biases during the daytime when the skies are 
clear and wind speeds are low, but cold biases when there are even moderate cloud fractions 

Fig. 6. Corresponding grid cells from the (a) Xu-WRF and (b) HRRR T2m biases computed against SAIL 
meteorological station T2m observations for day and night hours between 1 Jan and 1 Apr 2022. Hori-
zontal lines show the mean values of each distribution. The day and night means of the HRRR bias 
distribution are visually indistinguishable. The right column depicts the relationship between the T2m 
bias, the daytime cloud fraction as measured by the SAIL total sky imager, and the observed wind 
speed. The solid black lines show the line of zero bias.
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and moderate winds. These results show the models contain compensating errors and that a 
decomposition of T2m bias analysis between clear-sky and non-clear-sky days and day and 
night is likely warranted. Furthermore, the cold bias is uncorrelated with cloud fraction when 
cloud fraction exceeds 10%, which points to nonradiative processes causing T2m biases under 
most non-clear-sky conditions.

c. Diagnosing source(s) of T2m biases with T2m and skin temperature correlations. To inves-
tigate these relationships further, and the potential contribution of the surface-layer formula-
tion to the observed T2m bias, we examine 2D histograms of skin temperature, T2m, and wind 
speed (Fig. 7). SAIL observations show that the land surface skin temperature and T2m are 
in reality more closely correlated (with linear model R2 values of 0.81) than they are in either 
model (R2 values of 0.46 and 0.63, respectively) especially at temperatures below −24°C. SAIL 
data also show that T2m almost never exceeds the skin temperature (Fig. 7a). Both models  
have a positive wind speed bias, which is a longstanding challenge in complex terrain  
(Jiménez and Dudhia 2012). The 500-m Xu-WRF Model appears to generate light winds better 
than the coarser HRRR model, possibly due to Xu-WRF having more realistic topography.

In reality, the weakest winds lead to the coldest observed temperatures (Fig. 7b). The 2D 
histograms and the locally estimated scatterplot smoothing curves (Cleveland 1979) of obser-
vations (shown as a dashed black line) indicate that the coldest temperatures occur with light 
winds (<2 m s−1), while both models indicate that the coldest temperatures occur with moderate 
winds (∼5 m s−1). Whether or not the weak winds represent drainage flows that contribute cold 

Fig. 7. The 2D histograms showing relationships between (a) T2m vs land skin temperature and (b) T2m 
vs near-surface wind speed for the HRRR model, Xu-WRF Model, and SAIL observations. Color count 
denotes the number of hourly data points from between 1 Jan and 1 Apr 2022 that fall within each bin. 
Gray dashed lines denote 0°C. In (a), the red lines denote the 1:1 line, the dashed black line shows a 
fitted linear regression model, and the R2 is reported for that regression model. In (b), the curved black 
lines are locally estimated scatterplot smoothing regression lines.
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air into the basin from upslope, or possibly that weak background winds simply inhibit the 
mixing of warm ambient air, allowing the cold pool to grow through radiative cooling (e.g., 
Clements et al. 2003) remains to be seen. Regardless of the cause, models do not capture the 
correlation structure between T2m and wind speed (Fig. 7b).

d. Diagnosing contribution(s) to T2m biases from humidity and longwave radiation biases.  
Downwelling LW (DLW) radiation is suspected as a cause of T2m bias (Table 1), so we ex-
amine the relationship between DLW, specific humidity at two meters, and column precipi-
table water vapor (Fig. 8). The net longwave radiation budget is a major component of the 
snow surface energy balance (Slater et  al. 2001; Lapo et  al. 2015) and influences valley 
T2m structure (Clements et al. 2003; Rauchöcker et al. 2023), and model errors in the at-
mospheric component of net longwave may cause, or be caused by, errors in other param-
eterized processes or state variables (e.g., the surface layer, planetary boundary layer, or 
biases in boundary conditions). We leverage the well-established functional relationships 
between DLW and near-surface humidity in cold, high-elevation environments (Rangwala 
2013; Rangwala and Miller 2012) to evaluate model longwave biases and their causes dur-
ing the SAIL period. Only 6-hourly profiles of precipitable water vapor were saved from the 
Xu-WRF data, but all other quantities are examined hourly. Empirically derived power-law 
curves between specific humidity and DLW for cloud-covered (top) and cloud-free conditions 
(bottom) developed previously by Naud et al. (2013), which represent a radiative transfer  
parameterization in complex terrain, are found to fit the SAIL observations well (black 
dashed curves; Fig. 8a). The SAIL site is very dry, but even still, the 2-m specific humidity  
is low biased in both models by 0.36 and 0.40 g kg−1 for Xu-WRF and HRRR, respectively 
(Fig. 8b), though the modeled total column precipitable water generally matched observations.  

Fig. 8. (a) Relationship between 2-m specific humidity Q and DLW radiation. Empirical curves from Naud 
et al. (2013) are shown as dashed lines for (a) cloudy and (b) cloud-free conditions. Grid cells are colored 
by the modeled (Xu-WRF and HRRR) and observed (SAIL) PWV content (cm). All data points are hourly, 
but only 6-hourly precipitable water from Xu-WRF was available. Gray dots are shown at time steps 
where PWV observations are not available. (b) Downwelling LW and 2-m specific humidity biases for 
Xu-WRF and HRRR evaluated against observations from the main SAIL site.
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The models, meanwhile, exhibit radiative transfer errors that produce specific humidity/
DLW relationships that are too linear than what is observed, particularly during clear-sky 
conditions. Ultimately, the DLW is biased in both models by −20 and −24 W m−2, with long 
tails of the distribution up to −100 W m−2. This relationship serves as a useful metric to guide 
model development, since it indicates that the radiation and surface-layer schemes need to 
capture the observed, scale-independent relationship between DLW and humidity.

e. Transferability of SAIL observations. As with any field campaign, it is essential to estab-
lish the transferability of findings to other regions. Some indicators of transferability are 
already clear. Ultimately, a warm-valley and cold-ridge bias pattern found in L2017 (Fig. 3) 
across the WUS is confirmed in the ERW as well (Fig. 5). Both the Xu-WRF and HRRR models 
are cold biased significantly at the two nearby SNOTEL sites (also found in Rudisill et al. 
2023). Given that SNOTELs are not generally located in valley sites (Fig. 4), it is possible that 
some model evaluations that only report biases at these locations have likely failed to report 
nearby warm biases in adjacent valleys (Rudisill et al. 2022; Havens et al. 2019), as the val-
ley data are simply not present.

The SAIL data show that the model biases are related to a variety of compensating errors 
related to the surface layer, clouds, radiation, and winds. The magnitude and even the sign 
of the bias (either cold or warm) depend on elevation, time of day, and background meteorol-
ogy. Therefore, it is crucial for model evaluators to keep in mind that T2m biases may not be 
monocausal nor purely a function of elevation alone. Model evaluators should first investigate 
whether the interactions between the PBL and surface schemes are producing wrong-signed 
T2m elevational gradients in high-elevation mountain valleys (Fig. 5), while the interrelation-
ships between T2m, skin temperature, and winds suggest model developers should critically 
evaluate, using benchmarks and other simple cases, the surface-layer scheme performance 
under clear/calm conditions (Figs. 6 and 7). Negative downwelling longwave biases point to 
the need for radiative transfer parameterization updates (Fig. 8).

6. Discussion and conclusions
We have shown that MARMOTS of many types are cold biased in midlatitude mountain ranges, 
particularly during winter. The exact causes of cold biases currently remain unknown but 
are likely related to a combination of multiple, interacting parameterization deficiencies, and 
surface-layer exchange processes over snowpacks in particular. Model biases can depend 
on the physiographic classification (i.e., slope, ridge, or valley) suggesting a connection to 
cold-air pools and local wind circulations. In many cases, valleys are warm biased with ridges 
and slopes too cold (Figs. 3 and 5). As such, there are likely compensating error mechanisms 
that produce the ultimate T2m bias (Figs. 6 and 7).

a. The need for direct and ancillary observations of T2m in mountains. While the density of 
observations is typically quite low in mountains (1–4 stations per 1000 km2 in the WUS and 
lesser in other mountain ranges) and biased toward lower-elevation and less-rugged terrain 
(Fig. 4), we have argued that cold biases are still true biases and not products of resolution 
mismatches or the assumptions introduced by reference datasets. Nevertheless, targeted ob-
serving campaigns can constrain processes and allow for systematic T2m bias diagnostics. 
Measuring T2m is easier to measure than other climate variables like snowfall (Rasmussen  
et  al. 2012; Goodison et  al. 1998) and can be done accurately with low-cost sensors  
(Hubbart et al. 2005; Minder et al. 2010). Deploying targeted, dense sensor networks and 
adequately sampling ridges, valleys, and slopes at the scale of a MARMOTS grid cell is one 
clear, though logistically challenging, target for model evaluation improvement. Engaging  
with winter recreationists and related industries, such as ski areas, avalanche forecasting 
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centers, and backcountry huts, could expand existing networks of T2m measurements in 
mountains. Gridded T2m reference datasets are the standard for model evaluation, but the 
associated uncertainties introduced by different gridding methodologies are not always 
clear. As such, intercomparisons of gridded datasets in mountains are warranted.

b. Suggestions for modelers: How to improve diagnoses of T2m bias. Modelers should 
recognize that finer horizontal model resolutions alone may not be sufficient to improve T2m 
in mountains (e.g., Soares et al. 2022). If biases are found in model results, it is important 
to first understand the limitations and assumptions made in reference datasets, particularly 
assumptions about T2m elevational gradients which typically decrease at a rate less than 
the standard free atmosphere (6.5°C km−1), as well as issues related to data quality (e.g., 
Rasmussen et al. 2023). That understanding is best achieved through communication with 
those who collected/constructed those datasets and/or are very familiar with the observa-
tional information contained within those datasets and their strengths and limitations. Be-
ing aware of the details of how the data were collected, including when using the datasets 
is warranted or alternatively when caution must be exercised in using the datasets, is an 
essential prerequisite for model diagnostics and ultimately the model development that will 
be required to mitigate T2m biases. Differentiating biases by physiographic category (slope, 
valley, ridge), synoptic classification (strong/weak forcing, clear/cloudy), hour of day, and 
covariates with other meteorological variables (skin temperature, wind speed) will undoubt-
edly uncover information about the circumstances leading to T2m bias and further point to 
pathways for model and process parameterization improvement.

c. Looking forward: Cross-disciplinary collaborations are needed to improve mountain 
climate understanding.  Improving T2m in models ultimately will require both specific 
attention to its root cause(s) in the mountains and a collaboration between atmospheric 
model developers, model users, and mountain climate and regional experts. Intensive field 
campaigns have been essential for moving the science forward (Smith 2019), and observ-
ing campaigns such as SAIL (Feldman et al. 2023) and the upcoming Multi-Scale Transport 
and Exchange Processes in the Atmosphere over Mountains–Programme and Experiment 
(TEAMx) (Rotach et al. 2022) campaigns show that observational density enables multivari-
ate model diagnostics and preliminary determination of potential model development tar-
gets. The systematic evaluation of model parameterizations (such as radiation and the surface 
layer) through the use of single-column models (e.g., Massey et al. 2016; Bogenschutz et al. 
2020; M. Huang et al. 2022; Gouttevin et al. 2022) is also warranted and likely essential for 
improving understanding and enhancing model’s predictive powers in mountains.
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APPENDIX 
Additional Information for Interpreting MARMOTS T2m Biases
a. How is T2m diagnosed in models? T2m is typically a diagnostic quantity, rather than 
prognostic quantity, as the lowest model level of an atmospheric model is typically higher 
than 2 m above the land surface. In the WRF Model, T2m is diagnosed using the following 
equation:
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where θz0 is the potential temperature at the ground (surface) level, θz is the potential tem-
perature at the lowest atmospheric level z, z0 is the roughness length, L is the Obukhov length 
(Jiménez et al. 2012), and ψ is the similarity function from Monin–Obukhov theory, the shape 
of which depends on the stability regime and the specific formulation employed (Brutsaert 
2013). Thus, errors in T2m depend on errors of temperature at the lowest model level, errors 
of the skin temperature of the ground/snow surface, and errors in the interpolation formula 
that depends on surface-layer parameterizations [Eq. (A1)], all of which are related and de-
pend on the near-surface energy budget, surface roughness, and meteorological conditions.

b. Tables. Tables A1–A3 describe the models examined in this review, specific model studies 
that have reported cold biases, and the gridded temperature datasets used to evaluate those 
models. Direct quotes about biases are provided in Table A2 if they are available. Table A4 
describes the SAIL instrument data used to produce in Figs. 5–8 in the main text.

Table A1. MARMOTS evaluated in this study. Some models are part of larger CORDEX ensembles  
or may be part of studies that evaluate single-model configurations. LAM = limited-area model; 
RRM = regionally refined mesh.

Model Grid type Citation

AROME LAM Seity et al. (2011)

ARPEGE LAM Roehrig et al. (2020)

CanRCM4 LAM Scinocca et al. (2016)

COSMO LAM Schättler et al. (2021)

COSMO-CLM (CCLM) LAM https://www.clm-community.eu/

CRCM5 LAM Zadra et al. (2008)

GEM-LAM LAM Zadra et al. (2008)

HiRAM5 LAM Christensen et al. (2007)

HRRR LAM Benjamin et al. (2016)

RACMO LAM van Meijgaard et al. (2008)

RCA4 LAM Jones et al. (2011)

RegCM4 LAM Giorgi et al. (2012)

REMO LAM Jacob et al. (2012)

RRM-E3SM RRM Tang et al. (2023)

SIMA-MPAS RRM Skamarock et al. (2012), X. Huang et al. (2022)

VR-CESM RRM Zarzycki et al. (2014)

WRF LAM Powers et al. (2017), Skamarock et al. (2019)
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Table A2. MARMOTS studies examined in this review and used to produce Fig. 2. The model platform, geographic region, grid 
spacing, and reference dataset used to compute the T2m bias are listed. Direct quotes from the paper describing cold biases 
are given in the notes columns when applicable. Otherwise, a description/interpretation of the cold bias is provided. Table A3 
in the appendix lists the study for the reference dataset used to identify the model T2m bias. Otherwise, “stations” refers to 
comparing single grid cells against weather station observations.

Study Model Region
Horiz. 

grid spacing
Reference  
dataset Notes

Ma et al. (2023) WRF Tibetan Plateau 9 km Stations Cold bias of 4.5°C in southern  
Tibetan Plateau

Huang et al.  
(2018)

WRF Sierra Nevada 9 km Unstated  
(cites previous  
evaluation study)

“A slight cold bias exists in WRF at higher  
elevations, partly due to the sparse  
observations over mountain peaks”

Yang et al.  
(2021)

WRF Tien Shan 9 km Stations T2m bias has a range between +2° and −6°C, 
with a mean below zero (a cold bias) for each 
region examined

Walton and 
Hall (2018)

WRF Sierra Nevada 9 km Multiple gridded  
temperature datasets

Model T2m is colder across the entire domain, 
but particularly in the Sierra Nevada

Kawase et al.  
(2013)

WRF Japan 4.5 km Stations “Low temperature bias around 1.0 to 1.5 K. In  
particular, the minimum temperature below 
0°C has the lower temperature bias”

Liu et al. (2017) WRF CONUS 4 km PRISM Cold bias over mountains in the WUS

He et al. (2019) WRF CONUS 4 km Multiple Uses the same data as Liu et al. (2017); finds 
cold biases over mountain ranges particularly 
in the interior WUS for one year of evaluation

Scalzitti et al.  
(2016)

WRF Western Rocky 
Mountains

4 km PRISM Cold bias of 5°C

Pan et al. (2011) WRF Sierra Nevada 4 km PRISM Cold bias in maximum temperatures (Fig. 5 of 
their paper)

Mooney et al.  
(2020)

WRF Scandinavian 
Mountains

3 km E-OBS17; seNorge Cold bias of approximately 2°C and  
stronger in winter compared against 
E-OBS17; possible warm bias when compared 
against seNorge product

Kropač et al.  
(2021)

WRF Southern Alps 2 km Stations Cold bias and wind speed overstimulation at 
a glacier observing site

Havens et al.  
(2019)

WRF Idaho–Bitterroot 
Mountains

2 km Stations Cold bias at lower temperatures compared 
against NRCS SNOTEL during winter

Karki et al.  
(2017)

WRF Himalaya 1 km Stations “Winter and pre-monsoon seasons feature  
a high cold bias for high elevations while 
lower elevations show a simultaneous 
warm bias”

Rudisill et al.  
(2022)

WRF Idaho–Bitterroot 
Mountains

1 km Stations Cold bias of 1°C compared against NRCS 
SNOTEL during winter

Rudisill et al.  
(2023)

WRF Rockies 1 km Stations Cold bias of 1°–3°C compared against NRCS  
SNOTEL during winter

Wang et al.  
(2018)

WRF Interior WUS 
Mountains

4 km PRISM “A cold bias of 4°C is observed over high 
mountain ridges in winter”

Vionnet et al.  
(2016)

AROME European Alps 2.5 km Stations Cold bias of 1.5°C increasing with elevation

Gouttevin et al.  
(2022)

AROME European Alps 1.3 km Stations Cold biases attributed to LW radiation, wind, 
and turbulence parameterizations

Monteiro et al.  
(2022)

AROME European Alps 2.5 km S2M Cold bias increases with elevation and during  
winter. Convection-permitting resolution 
does improve bias, but it still remains.

Kotlarski et al.  
(2012)

COSMO European Alps 22 km E-OBS17 Cold bias “Strongly negative above 1000 m”

Winstral et al.  
(2019)

COSMO European Alps 2.2 km Stations Cold bias of 1°–2°C

(Continued)
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Ban et al. (2014) COSMO European Alps 12, 2 km E-OBS17 “In the winter season, a weak cold bias 
is found over most of the domain in 
both models”

Vionnet et al.  
(2015)

GEM-LAM Canadian  
Rockies

1–0.25 km Stations 0.5°C cold bias at high elevations. Finer 
model resolution improves temperatures on 
peaks, but cold pools still do not form well in 
valleys.

Kotlarski et al.  
(2015)

ENSEMBLES Alps, Pyrenees 25 km E-OBS17 Models show “an overestimated temperature 
decrease with elevation”

Vautard et al.  
2021

EURO-CORDEX Europe 0.11° E-OBS17 Winter cold bias in the Alps and Scandinavian 
Mountains

Kotlarski et al.  
(2014)

EURO-CORDEX Europe 0.11° E-OBS17 Winter cold bias in the Alps and Scandinavian 
Mountains

Matiu et al.  
(2019)

EURO-CORDEX Italian Alps 0.11° E-OBS17 Winter cold bias in the Italian Alps

Smiatek et al.  
(2016)

EURO-CORDEX Italian Alps 0.11° E-OBS17 Winter cold bias in the Italian Alps (Fig. 2 of 
their paper)

Soares et al.  
(2022)

CORDEX-FPS Alps 3–4 km E-OBS17 Higher model resolution does not improve 
biases in the Alps

Blázquez and 
Solman (2023)

SA-CORDEX Andes 0.44°–0.22° CPC Cold bias in DJF and JJA (Figs. 1 and 2)

Solman et al.  
(2013)

SA-CORDEX Andes 0.44° UDEL, CRU 2°C cold bias

Torrez-Rodriguez 
et al. (2023)

CORDEX-CORE Chilean Andes 10–14 km CR2METv1 “RCMs and ERA5 have a common prominent 
cold bias at high elevations”

Xu et al. (2019) NA-CORDEX Sierra Nevada 44–11 km PRISM Cold bias across models and resolutions

McCrary et al.  
(2017)

NARCCAP/
NA-CORDEX

Rockies 0.5° UDEL Areal averaged cold bias in three of six 
MARMOTS experiments in the Southern 
Rockies region

Di Virgilio et al.  
(2019)

CORDEX-Australasia Australian Alps 0.44° AGCD Large cold bias across most of Australia;  
possibly more significant in the Eastern  
Australian Highlands

Rhoades et al.  
(2018b)

VR-CESM Sierra Nevada 55–9 km PRISM Increasing cold bias with elevation 
across multiple model grid spacings and 
configurations

Wu et al. (2017) VR-CESM Northern Rocky 
Mountains

0.125° PRISM, stations Winter cold bias in Tmin of 1°–6°C

Bambach et al.  
(2022)

VR-CESM Andes 14 km UDEL Cold bias in the Andes during winter

Xu et al. (2021) VR-CESM Tibetan  
Plateau; WUS

0.125° PRISM Cold bias in the Tibetan Plateau and WUS

Rahimi et al.  
(2019)

VR-CESM and WRF Tibetan Plateau 0.1° 
and 12 km

AIRS, APHRODITE Both WRF and VR-CESM are cold biased in 
the Tibetan Plateau during DJF

Wijngaard et al.  
(2023)

VR-CESM High  
Mountain Asia

7 km WFDEI “Western HMA subregions have cold  
temperature biases during winter; these 
biases grow with increasing resolution”

X. Huang et al.  
(2022)

SIMA-MPAS WUS 3–4 km PRISM SIMA-MPAS is cold biased “over very high 
mountain top ranges” (Fig. 8)

Torma et al.  
(2011)

RegCM3 Carpathians 10 km E-OBS17; Additional 
station data

“A systematic cold bias is found over the 
mountainous areas of the alpine region and 
the coastal Balkans”

Winter et al.  
(2017)

Multiple RCMs Alps 25 km Stations “Cold temperature biases at high elevations 
seem to contribute to a “snow albedo  
feedback” overestimation in several RCMs”

Table A2. (Continued).

Study Model Region
Horiz. 

grid spacing
Reference  
dataset Notes
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c. List of Abbreviations. 
CONUS Contiguous United States
CORDEX Coordinated Regional Climate Downscaling Experiment
DLW Downwelling longwave
EURO-CORDEX European Coordinated Regional Downscaling Experiment
ERW East River watershed
HRRR High-Resolution Rapid Refresh model
MARMOTS  Models of Applicable Resolution for Mountain Meteorology across Time Scales
NA-CORDEX North American Coordinated Regional Downscaling Experiment
PRISM Parameter-Elevation Regressions on Independent Slopes Model
PWV Precipitable water vapor
SA-CORDEX South American Coordinated Regional Downscaling Experiment
SAIL Surface Atmosphere Integrated Field Laboratory
T2m Two-meter air temperature
VR-CESM Variable-resolution Community Earth System Model
WRF Weather Research and Forecasting Model
WUS Western United States of America

Table A3. Gridded T2m reference datasets used in the studies examined in Table A2.

Abbreviation Horizontal resolution Extent Reference

AGCD 0.05° Australia Jones et al. (2009)

APHRODITE 0.5°–0.25° Asia Yatagai et al. (2012)

CR2METv1 0.05° South America Alvarez-Garreton et al. (2018)

CRU 0.5° Global Mitchell and Jones (2005)

Daymet 1 km United States Thornton et al. (2016)

E-OBS17 0.25° Europe Haylock et al. (2008)

ERA5-Land 9 km Global Muñoz-Sabater et al. (2021)

Hiebl et al. 1 km Europe Hiebl et al. (2009)

PRISM 800 m–4 km United States Daly et al. (2008)

UDEL 0.5° Global Matsuura and Willmott (2009)

S2m Multiple Europe Vernay et al. (2022)

seNorge 1 km Scandinavia Lussana et al. (2019)

WFDEI 0.5° Global Weedon et al. (2014)

WorldClim 1 km Global Fick and Hijmans (2017)

Table A4. SAIL and partner organization instrumentation used to evaluate Xu-WRF and HRRR models.

Instrument Quantity Instrument citation
Campaign or 
organization

Microwave radiometer Atmospheric PWV (cm) Morris (2019) SAIL

SAIL T2m, wind speed, relative  
humidity, barometric pressure

Ritsche (2011) SAIL

Automated weather stations

Ground facing IR thermometer Snow surface temperature Morris (2018) SAIL

Surface energy  
balance system

Downwelling broadband SW 
irradiance, downwelling  
broadband SW irradiance

Cook and Sullivan (2019) SAIL

Total sky imager Percent of the upward-facing 
sky view that is covered by 
opaque clouds

Morris (2005) SAIL

SNOTEL temp T2m Serreze et al. (1999) NRCS

Northern Arizona University (NAU) 
automated weather station

T2m Simonpietri et al. (2022) NAU
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