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ABSTRACT
Planar optodes were used to visualize oxygen distribution patterns associated with a
coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia
sp.) separately, as standalone organisms, and placed in close proximity mimicking
coral-algal interactions. Oxygen patterns were assessed in light and dark conditions
and under varying flow regimes. The images show discrete high oxygen concen-
tration regions above the organisms during lighted periods and low oxygen in the
dark. Size and orientation of these areas were dependent on flow regime. For corals
and algae in close proximity the 2D optodes show areas of extremely low oxygen
concentration at the interaction interfaces under both dark (18.4± 7.7 µmol O2 L−1)
and daylight (97.9± 27.5 µmol O2 L−1) conditions. These images present the first
two-dimensional visualization of oxygen gradients generated by benthic reef algae
and corals under varying flow conditions and provide a 2D depiction of previously
observed hypoxic zones at coral algae interfaces. This approach allows for visualiza-
tion of locally confined, distinctive alterations of oxygen concentrations facilitated
by benthic organisms and provides compelling evidence for hypoxic conditions at
coral-algae interaction zones.

Subjects Ecology, Marine Biology
Keywords Planar optode, Dissolved oxygen, Interaction, Algae, Coral,
Two dimensional visualization

INTRODUCTION
Reef building corals and macroalgae can both act as ecosystem engineers by physically

and chemically altering their environment (Jones, Lawton & Shachak, 1994; Wild et al.,

2004) but they do so in different ways (Wild et al., 2010; Haas et al., 2011). One of the key

water column parameters affected by both of these organismal groups (and many others) is

oxygen availability (Wild et al., 2010; Niggl, Haas & Wild, 2010). Dissolved oxygen concen-

trations in the reef water column can vary by more than 50% between daylight hours with

active benthic photosynthesis and night, where respiration by the reef community results

in net oxygen consumption (Niggl, Haas & Wild, 2010; Haas et al., 2010).

Many studies have investigated variation in oxygen concentrations in different marine

environments and on different scales. While some studies have targeted small scale oxygen

changes in boundary layers (de Beer et al., 1994; Larkum, Koch & Kühl, 2003), coral
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interstices (Shashar, Cohen & Loya, 1993; Kühl et al., 1995), and coral-algal interaction

interfaces (Smith et al., 2006; Barott et al., 2009), others have examined whole reef areas

(Middleton et al., 1994; Niggl, Haas & Wild, 2010) or even influences of warming on

dissolved oxygen concentrations in oceans around the world (Stramma et al., 2010). All

of these studies assessed changes in oxygen concentrations by point measurements with

varying spatial and temporal resolution across a gradient or grid. Water column oxygen

concentrations are clearly not static and are going to vary across space and over time due

to biological processes and hydrodynamics (Rasheed et al., 2004). This variability makes it

difficult to understand how individual organisms or communities affect or are affected by

oxygen concentrations on coral reefs.

Planar oxygen optodes have been used to resolve oxygen dynamics in a variety of

complex benthic environments such as animal burrows (Volkenborn et al., 2010), marine

plant root systems (Frederiksen & Glud, 2006), permeable sands (Polerecky et al., 2005),

and even in endolithic algal communities within coral holobionts (Kühl et al., 2008). These

optodes function via a luminescent indicator that is differentially quenched in the presence

of oxygen, which allows for the two-dimensional visualization of oxygen distribution

patterns (Holst et al., 1998; Oguri, Kitazato & Glud, 2006). However, planar optodes have

never been used to investigate oxygen distribution patterns in the water column, and

until now have not been used for in situ measurements. In the present study we used a

planar optode system (Larsen et al., 2011), modified for in situ applications (AK Gregg,

unpublished data), to visualize the two-dimensional oxygen concentrations patterns

generated by coral reef associated macroalgae and corals separately and in close proximity

to one another. This allows for the assessment of the influence of the respective organisms

on DO concentration, and the potential variation resulting from competition/interaction

processes on oxygen distribution patterns in the surrounding water column.

MATERIAL AND METHODS
Experimental setup
Oxygen distribution patterns facilitated by independent coral and algal samples and

samples of each taxon placed in close proximity to one another (mimicking coral-algae

interactions), were assessed under flow and no-flow conditions. To generate unidirectional

flow a flow chamber was constructed from clear acrylic with inner dimensions of

16× 16× 50 cm. The flow chamber was constantly supplied with filtered (nominal

pore size 50 µm) and temperature controlled (26.3 ± 0.4◦C) seawater. Flow rates were

adjusted to the desired flow regime by controlling the water supply to the chamber. Flow

rates were calculated by determining the water quantity passing through the chamber

and visually verified by tracking the passage of neutrally buoyant particles through

the chamber. Temperature was recorded every minute by an Onset HOBO® Pendant

UA-002-64 temperature logger throughout the duration of each experiment.

Algae (Chaetomorpha sp.) and coral (Favia sp.) specimens used in this experiment were

provided by the Birch Aquarium at Scripps Institution of Oceanography. Corals were

mounted with coral cement (Instant Ocean, Holdfast® Epoxy Stick) and algae were fixed
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with zip ties to identical ceramic tiles (5.0× 5.0× 0.5 cm) that fit exactly in a cut out square

on the bottom of the flow chamber to prevent turbulence generated by the ceramic tile

base. Specimens were acclimated for at least 48 h in a cultivation tank with temperature

controlled (Temp = 26.1 ± 0.5◦C) flow through seawater to recover from handling as

described above.

For each experimental run (n = 3 for each “run”) the tile-attached organisms were

placed in the designated notch of the flow chamber and an optode sheet (16× 16× 30 cm)

was placed in a vertical plane over them (Fig. 1A). All samples were exposed to four

different treatments, comprising artificial daylight and dark conditions in a non-moving

water body and under flow rates of∼5 cm s−1 at distances of>5 cm from chamber walls.

Artificial light was provided by 2× 54 W 6000 K Aquablue+, 1× 54 W 6000 K Midday,

and 1× 54 W Actinic+ aquarium lights (Geismann, Germany), mounted 80 cm above the

experimental chambers resulting in photosynthetic active radiation of 160 µmol quanta

m−2 s−1 as measured by a LI-COR LI-193 Spherical Quantum Sensor. Samples were

incubated for at least 3 h in the respective experimental conditions and pictures of the

planar optodes were captured every 30 min. To verify oxygen concentrations patterns

visualized by the optodes, 3 hand-held LBOD101 luminescent oxygen meters (Hach Lange,

Germany, precision 0.01 mg l−1, accuracy± 0.05%) were mounted in control setups, in-

and outside of the expected oxygen plumes as reference (deviation was always<5%).

Planar optode images
Camera and light settings – Images of planar optodes (Fig. 1B) were taken visualize oxygen

concentrations in two-dimensions along the optode sheet (modified from Larsen et al.,

2011). Planar oxygen optodes were photographed using a G11 (Canon, USA) placed at

a distance of∼25 cm from the flow chamber; images were captured in RAW format. All

photographs were taken with identical settings of ISO 200, f\8 and shutter speed of 1.3 s.

Four Rebel Royal Blue light emitting diodes (LED) with a λ-peak of 445 nm (Phillips-

Luxeon, Canada) were used as the excitation source in combination with a 470 nm short

pass filter (UQG Optics, UK). To prevent the excitation source from contaminating the

luminescent signal, a Schott 530 nm long pass filter (UQG Optics, UK) was mounted on

the camera lens. All images were taken in the absence of ambient light.

Oxygen planar optodes
The oxygen sensitive optical indicator platinum (II) octaethylporphyrin (PtOEP) was

used in combination with the coumarin antenna dye macrolex® fluorescence yellow

10GN (MY) (for details see Larsen et al., 2011). The luminescence of PtOEP, with a peak

wavelength of 650 nm, is quenched in the presence of oxygen and its intensity therefore

dependent on the oxygen concentration, whereas the MY emission intensity, with a peak

wavelength of 515 nm, remains unaffected by oxygen concentrations and is therefore

constant. In this system, only part of the excitation energy collected by the antenna is

transferred to the indicator dye (Mayr et al., 2009) and the remaining energy is emitted

from the antenna dye itself, thereby acting as an internal reference (Larsen et al., 2011).

Absolute oxygen concentrations can therefore be calculated using the ratio of red pixel
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Figure 1 Experimental setup. (A) Flow chamber: (i) Canon D10 camera equipped with Schott 530 nm
long pass filter (ii) 445 nm LED with a 470 nm Blue Dichroic short pass filter (iii) Planar oxygen optode,
mounted in vertical plane over (iv) benthic organism(s) (v) Diffuser to create consistent laminar water
flow. (B) Example of a picture taken to visualize oxygen distribution generated by algae and coral in
close proximity, subjected to flow conditions (indicated by arrows) during dark incubation (indicated
by moon). Oxygen scale represents approximate values. (C) Plot of dissolved oxygen concentrations at
26.0◦C as seen in Fig. 1B; analyzed in MATLAB. Oxygen scale represents exact values. Grayscale represents
coral and algae specimens; not representative of oxygen concentration.

intensity (oxygen-dependent dye) to green pixel intensity (oxygen-independent dye).

Optode sheets were prepared using 0.04% (w/v) of both PtOEP and MY, along with

4% (wt/vol) polystyrene, dissolved in chloroform (Larsen et al., 2011), and spread onto

0.125 mm thick PET film (GoodfellowUSA, USA). The final thickness of the optode sheet

was approximately 10 microns. The sheets were then cut to fit in the vertical plane of the

flow chamber, leaving a 6 cm wide semicircle cut-out for the biological samples.
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Image analysis
The RAW images were imported into the image-processing program RawHide (v0.88.001,

My-Spot Software, USA). Resulting pixel size for TIFF images was 3.1 megapixels. Each

RAW file was converted into three 16-bit TIFF images (i.e. red, averaged green and

blue color channel). The pixel information from the red and green channel images

were imported into MATLAB and further analyzed using the image toolbox (Fig. 1C,

Supplemental Information 1). The red and green intensity values (0–65,536 for a 16-bit

image) were obtained for each pixel and used to calculate the pixel intensity ration (R)

(Eq. (1)). The resulting ratios were used in the modified Stern-Volmer equation (Klimant,

Meyer & Kühl, 1995), where α is the unquenched portion of the indicator, R0 is the ratio at

anoxia, C is the concentration of oxygen and Ksv is the Stern-Volmer constant.

R=
intensity of red− intensity of green

intensity of green
(1)

R

R0
=

[
α+ (1−α)

(
1

1+Ksv ·C

)]
(2)

To establish the constants necessary to calculate absolute oxygen concentrations, a

calibration of each optode sheet under identical temperature conditions was performed

prior to the experiment. Each optode sheet was calibrated by taking images at known

oxygen concentrations. Filtered and temperature controlled seawater was doused

with nitrogen gas to obtain 8 different concentrations of oxygen ranging from 100%

air-saturation to anoxia. Starting concentrations were approximately 250 µM oxygen

and an image was taken at approximately every 30 µM step until the seawater was anoxic.

The resulting oxygen concentrations were constantly measured for comparison using an

LBOD101 luminescent oxygen probe. From this calibration, we determined our values for

α and Ksv for each respective optode (Eq. (2), example given in Fig. S1) using a non-linear

regression (Prism version 5, R version 2.13.2). Regression curves are included in Fig. S1. If

not further specified, values are given as mean± standard error (SE).

RESULTS AND DISCUSSION
Here we visualized two-dimensional oxygen distribution patterns generated by distinct

functional groups of coral reef associated ecosystem engineers using planar optodes.

Analyses of the images revealed discrete regions of oxygen concentration changes in their

surrounding water column. Oxygen concentrations in the surrounding water columns

were comparable between light (161.8± 10.4 µmol O2 L−1) and dark incubations (164.5

± 13.5 µmol O2 L−1). Measurements showed that during daylight hours, and with no flow,

oxygen concentrations were elevated by 91–210 µmol O2 L−1 in the water overlying the

algae (Fig. 2A) and 19–149 µmol O2 L−1 above the investigated coral (Fig. 2B). Maximum

oxygen concentrations (∼400 µmol O2 L−1) were considerably above (∼200% oxygen

saturation) the seawater saturation limit in these oxygen plumes. Oxygen concentration

visualization in the non-flow water conditions showed minimal lateral influences of the

biological samples on the water column next to them. The released oxygen rapidly rose to

Haas et al. (2013), PeerJ, DOI 10.7717/peerj.106 5/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.106
http://dx.doi.org/10.7717/peerj.106
http://dx.doi.org/10.7717/peerj.106
http://dx.doi.org/10.7717/peerj.106
http://dx.doi.org/10.7717/peerj.106
http://dx.doi.org/10.7717/peerj.106
http://dx.doi.org/10.7717/peerj.106
http://dx.doi.org/10.7717/peerj.106


Figure 2 Oxygen patterns over coral and algae during light and dark. Examples of pictures taken of
planar optodes mounted over algae (A, C) and corals (B, D) subjected to no-flow conditions during
artificial daylight (A, B) and dark (C, D) incubations (indicated by sun and moon icons). Note the plumes
of oxygen (green signal) rising from the organisms. Oxygen scale represents approximate values.

the surface, suggesting that under low flow conditions (e.g., ebb tide) a major part of the

oxygen produced, may not necessarily be available to the surrounding benthic community

but is rather shunted vertically through the water column. This visible phenomenon was

more pronounced in the water column overlying algae than that of the corals (oxygen

concentration difference between inside and outside the plumes for algae: 148.3 ± 24.7

µmol O2 L−1 and coral: 66.7± 30.7 µmol O2 L−1 standalone treatments).

Organismal respiration generated reverse patterns of oxygen distribution during dark

conditions. Concentration differences were in the same range (77–107 µmol O2 L−1 for

corals and 34–160 µmol O2 L−1 for algae), but spatially more confined and with less

pronounced vertical patterns (Figs. 2C and 2D). Minimum oxygen concentrations of 79.8

± 16.4 µmol O2 L−1 for algae and 70.4 ± 13.1 µmol O2 L−1 for corals were detectable

within 5–10 mm of the organisms. There were no noticeable differences in the distribution

patterns of low oxygen zones facilitated by standalone coral and benthic algae during dark

conditions.
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Figure 3 Algae generated oxygen patterns under flow conditions. Photographic visualization of 2-
dimensional oxygen distribution patterns around algae in under flow conditions during daylight (A) and
dark (B) conditions (indicated by sun and moon icons). Arrows indicate direction of water movement.
(C, D) MATLAB processed Plot of dissolved oxygen concentrations at 26.0◦C as seen in corresponding
pictures A and B. Oxygen scale represents exact values. Grayscale represents coral and algae specimens;
not representative of oxygen concentration.

Water flow of∼5 cm s−1, simulating flow regimes in ranges which can be found in situ

in back reef environments (Hench, Leichter & Monismith, 2008), decreased intensity and

changed the direction of the plumes (Fig. 3). Increased (Fig. 3A) or decreased (Fig. 3B)

oxygen was observed downstream of all specimens under light and dark conditions,

respectively. Relatively sharp boundaries in oxygen concentrations were maintained over

distances in the range of centimeters (Figs. 3C and 3D). Previous studies have suggested

that oxygen distribution patterns facilitated by benthic organisms are determined by

light conditions and the boundary layer thickness, and as a function of flow and surface

type (Brown, 2012). Additionally Marhaver et al. (2013) described current dependant

distribution patterns of organism-associated microbes in ranges of up to 1 m around coral

colonies. These findings collectively suggest that benthic organisms living adjacent to one

another may experience large fluctuations in key parameters such as oxygen availability,

pH values (Smith et al., 2013), microbial community structure, and this variability will be

dependent on irradiance, hydrodynamics and their surrounding cohabitants.

Although hydrodynamic conditions might have been affected by wall effects along

the planar optode, our study reveals that benthic organisms can drive distinctive, locally

heterogeneous patterns in oxygen concentration in their surroundings. The images

generated in this study suggest that single point oxygen concentration measurements, that

are often made to quantify variability across space and time, may not accurately represent

the true oxygen dynamics. Here we found that oxygen concentrations may differ by more

than 60% along distances of less than 10 mm. Recent efforts in developing in situ applicable

oxygen sensitive planar optodes (Glud et al., 2001, AK Gregg, unpublished data) could

however provide a useful tool to allow for a better understanding of oxygen fluxes in the 2

or even 3-dimensional space of a highly complex coral reef environment.
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Figure 4 Oxygen patterns generated by coral algae interaction. Examples of pictures taken of planar
optodes mounted over corals and algae in close proximity mimicking coral algae interaction processes
during daylight (A) and dark (B) conditions. Note the low oxygen concentration zones at the interfaces of
coral algal interactions visible even during light conditions permitting photosynthetic oxygen production.
Oxygen scale represents approximate values.

The images generated from planar optodes on oxygen dynamics of the interactions

between coral and algae when placed in close proximity to one another yielded comparable

patterns where there was high oxygen production during the day and consumption at night

on the sample surfaces not at the zone of interaction. However, highly reduced oxygen

concentrations were present in the immediate proximity of the interfaces. During dark

incubations these interaction zones showed the lowest oxygen concentrations measured

(18.4± 7.7 µmol O2 L−1, Fig. 4B). Even during light treatments with noticeable oxygen

generation of both organisms on the distal side, the interfaces were engulfed in spatially

confined, low oxygen zones (97.9± 27.5 µmol O2 L−1, Fig. 4A). Although these zones of

decreased oxygen concentrations were most pronounced in environments with no induced

water movement, they could also be detected under flow conditions and in situ, in a pilot

study to develop new in situ Submersible Oxygen Optode Recording (SOOpR) system, by

AK Gregg (unpublished data).

These hypoxic, or even anoxic zones at interaction interfaces, have been suggested

to drive coral-algal competition processes (Smith et al., 2006), and have been noted by

other studies (Barott et al., 2009; Wangpraseurt et al., 2012), but could never be shown in
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their full extent and under varying light conditions and hydrodynamics. The mechanisms

underlying these patterns are currently subject to discussion. While some studies attribute

these anoxic conditions to modifications in small scale topography, with no immediate

effects on interaction processes, others suggest increased microbial oxygen demand as

the underlying cause. Previous studies have shown that phase shifts from slow-growing

reef-building organisms to fleshy algae, as a result of increased anthropogenic influences

(Francini-Filho et al., 2013), were accompanied by shifts from photosynthetic microbial

communities to higher abundances of archaeal and viral sequences and more bacterial

pathogens (Bruce et al., 2012). These shifts may also result in shifts in microbial metabolic

rates at coral algal interaction zones.

The DDAM (dissolved organic matter, disease, algae, microbes) model introduced by

Dinsdale & Rohwer (2011) hypothesizes that algae release bioavailable organic compounds

(Haas et al., 2011), which then facilitate microbial growth and respiration (Wild et al., 2010;

Nelson et al., 2013), particularly of opportunistic pathogens (Dinsdale et al., 2008). This

likely leads to higher morbidity and mortality of corals (Kuntz et al., 2005; Kline et al., 2006)

as a consequence of both increases in coral pathogens and dramatically reduced oxygen

availability (reviewed in Barott & Rohwer, 2012).

The data presented here provides compelling, visible evidence of the existence of highly

variable patterns in oxygen distribution patterns associated with benthic reef organisms.

Despite this variability we see clear patterns of oxygen decline associated with the interface

between interacting coral and algae during both dark and daylight conditions. This implies

that the driver for these pronounced low oxygen regions is not solely an effect of low

metabolic activity facilitated by a depression in the local topography (Wangpraseurt et al.,

2012), but can more likely be attributed to (a) increases in heterotrophic metabolism of

the competitors as a general response to stress (Moberg et al., 1997; Abrego et al., 2008), or

(b) increases in microbial oxygen demand (Smith et al., 2006; Barott & Rohwer, 2012).

This new technique thus provides an opportunity to clearly visualize and quantify

these patterns. Further our results suggest that the pattern of algae induced hypoxia in

competitive interactions between corals and algae may be a common phenomenon.
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Larkum AWD, Koch EMW, Kühl M. 2003. Diffusive boundary layers and photosynthesis of the
epilithic algal community of coral reefs. Marine Biology 142:1073–1082.

Larsen M, Borisov SM, Grunwald B, Klimant I, Glud RN. 2011. A simple and inexpensive high
resolution color ratiometric planar optode imaging approach: application to oxygen and pH
sensing. Limnology and Oceanography: Methods 9:348–360 DOI 10.4319/lom.2011.9.348.

Marhaver KL, Vermeij MJ, Rohwer F, Sandin SA. 2013. Janzen-Connell effects in a
broadcast-spawning Caribbean coral: distance-dependent survival of larvae and settlers. Ecology
94:146–160 DOI 10.1890/12-0985.1.

Mayr T, Borisov SM, Abel T, Enko B, Waich K, Mistlberger G, Klimant I. 2009. Light harvesting
as a simple and versatile way to enhance brightness of luminescent sensors. Analytical Chemistry
81:6541–6545 DOI 10.1021/ac900662x.

Middleton JH, Coutis P, Griffin DA, Macks A, McTaggart A, Merrifield MA, Nippard GJ. 1994.
Circulation and water mass characteristics of the southern Great Barrier Reef. Australian Journal
of Marine and Freshwater Research 45:1–18 DOI 10.1071/MF9940001.

Moberg F, Nyström M, Kautsky N, Tedengren M, Jarayabhand P. 1997. Effects of reduced salinity
on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and
Pocillopora damicornis. Marine Ecology Progress Series 157:53–59 DOI 10.3354/meps157053.

Nelson CE, Goldberg SJ, Kelly LW, Haas AF, Smith JE, Rohwer F, Carlson CA. 2013. Coral
and macroalgal exudates vary in neutral sugar composition and differentially enrich reef
bacterioplankton lineages. The ISME Journal 7:962–979 DOI 10.1038/ismej.2012.161.

Niggl W, Haas AF, Wild C. 2010. Benthic community composition affects O2 availability
and variability in a Northern Red Sea fringing reef. Hydrobiologia 644:401–405
DOI 10.1007/s10750-010-0200-4.

Oguri K, Kitazato H, Glud RN. 2006. Platinum octaetylporphyrin based planar optodes combined
with UV-LED excitation light source: an ideal tool for high resolution O2 imaging in O2

depleted environments. Marine Chemistry 100:95–107 DOI 10.1016/j.marchem.2005.11.005.

Polerecky L, Franke U, Werner U, Grunwald B, de Beer D. 2005. High spatial resolution
measurement of oxygen consumption rates in permeable sediments. Limnology and
Oceanography: Methods 3:75–85 DOI 10.4319/lom.2005.3.75.

Rasheed M, Wild C, Franke U, Huettel M. 2004. Benthic photosynthesis and oxygen consumption
in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia. Estuarine
Coastal and Shelf Science 59:139–150 DOI 10.1016/j.ecss.2003.08.013.

Shashar N, Cohen Y, Loya Y. 1993. Extreme diel fluctuations of oxygen in diffusive boundary
layers surrounding stony corals. Biological Bulletin 185:455–461 DOI 10.2307/1542485.

Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, Sandin SA, Smriga S, Hatay M,
Rohwer FL. 2006. Indirect effects of algae on coral: algae-mediated, microbe-induced coral
mortality. Ecology Letters 9:835–845 DOI 10.1111/j.1461-0248.2006.00937.x.

Smith JE, Price NN, Nelson CE, Haas AF. 2013. Coupled changes in oxygen concentration
and pH caused by metabolism of benthic coral reef organisms. Marine Biology
DOI 10.1007/s00227-013-2239-z.

Stramma L, Schmidtko S, Levin LA, Johnson GC. 2010. Ocean oxygen minima expansions and
their biological impacts. Deep-Sea Research I 57:587–595 DOI 10.1016/j.dsr.2010.01.005.

Haas et al. (2013), PeerJ, DOI 10.7717/peerj.106 12/13

https://peerj.com
http://dx.doi.org/10.3354/meps294173
http://dx.doi.org/10.4319/lom.2011.9.348
http://dx.doi.org/10.1890/12-0985.1
http://dx.doi.org/10.1021/ac900662x
http://dx.doi.org/10.1071/MF9940001
http://dx.doi.org/10.3354/meps157053
http://dx.doi.org/10.1038/ismej.2012.161
http://dx.doi.org/10.1007/s10750-010-0200-4
http://dx.doi.org/10.1016/j.marchem.2005.11.005
http://dx.doi.org/10.4319/lom.2005.3.75
http://dx.doi.org/10.1016/j.ecss.2003.08.013
http://dx.doi.org/10.2307/1542485
http://dx.doi.org/10.1111/j.1461-0248.2006.00937.x
http://dx.doi.org/10.1007/s00227-013-2239-z
http://dx.doi.org/10.1016/j.dsr.2010.01.005
http://dx.doi.org/10.7717/peerj.106


Volkenborn N, Polerecky L, Wethey DS, Woodin SA. 2010. Oscillatory porewater bioadvection
in marine sediments induced by hydraulic activities of Arenicola marina. Limnology and
Oceanography 55:1231–1247 DOI 10.4319/lo.2010.55.3.1231.

Wangpraseurt D, Weber M, Røy H, Polerecky L, de Beer D, Nugues MM. 2012. In situ oxygen
dynamics in coral-algal interactions. PLoS ONE 7:e31192 DOI 10.1371/journal.pone.0031192.

Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MY, Jørgensen BB. 2004. Coral mucus
functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70
DOI 10.1038/nature02344.

Wild C, Niggl W, Naumann MS, Haas AF. 2010. Organic matter release by Red Sea coral reef
organisms - potential effects on microbial activity and in-situ O2 availability. Marine Ecology
Progress Series 411:61–71 DOI 10.3354/meps08653.

Haas et al. (2013), PeerJ, DOI 10.7717/peerj.106 13/13

https://peerj.com
http://dx.doi.org/10.4319/lo.2010.55.3.1231
http://dx.doi.org/10.1371/journal.pone.0031192
http://dx.doi.org/10.1038/nature02344
http://dx.doi.org/10.3354/meps08653
http://dx.doi.org/10.7717/peerj.106

	Visualization of oxygen distribution patterns caused by coral and algae
	Introduction
	Material and Methods
	Experimental setup
	Planar optode images
	Oxygen planar optodes
	Image analysis

	Results and Discussion
	Acknowledgements
	References




