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Abstract
Background: Many data summary statistics have been developed to detect departures from
neutral expectations of evolutionary models. However questions about the neutrality of the
evolution of genetic loci within natural populations remain difficult to assess. One critical cause of
this difficulty is that most methods for testing neutrality make simplifying assumptions
simultaneously about the mutational model and the population size model. Consequentially,
rejecting the null hypothesis of neutrality under these methods could result from violations of
either or both assumptions, making interpretation troublesome.

Results: Here we harness posterior predictive simulation to exploit summary statistics of both the
data and model parameters to test the goodness-of-fit of standard models of evolution. We apply
the method to test the selective neutrality of molecular evolution in non-recombining gene
genealogies and we demonstrate the utility of our method on four real data sets, identifying
significant departures of neutrality in human influenza A virus, even after controlling for variation
in population size.

Conclusion: Importantly, by employing a full model-based Bayesian analysis, our method separates
the effects of demography from the effects of selection. The method also allows multiple summary
statistics to be used in concert, thus potentially increasing sensitivity. Furthermore, our method
remains useful in situations where analytical expectations and variances of summary statistics are
not available. This aspect has great potential for the analysis of temporally spaced data, an expanding
area previously ignored for limited availability of theory and methods.

Background
The field of population genetics has a long history in the
development of tests of selective neutrality. This is both
because of the difficulty of developing a tractable alterna-
tive to the neutral theory and because of the ongoing
debate about how well the neutral theory can explain real
data. Although a number of important steps have been

made to develop powerful tests of neutrality [1-3] there
are evident problems with many currently available tests.
For example many of the tests, such as Tajima's D (DT)
and Fu and Li's D (DF) have difficulty in accurately dis-
criminating between selection and changes in population
size.
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In fact, most available tests of neutrality can only test con-
stant population size neutrality against alternatives that
include both population growth and selection. Further-
more, most tests require accurate knowledge of the
number of mutations that have occurred or the branch
lengths in the gene tree, and do not adequately take into
account the uncertainty in these quantities (i.e. most tests
implicitly assume an infinite-sites model of evolution).
Finally, tree-based summary statistics are often based on
one estimate of the genealogy, despite the fact that the
true genealogy and branch lengths are seldom known.

Broadly speaking, on the basis of the sequence informa-
tion used, statistics for testing neutrality can be placed
into three classes:

1. statistics that use the mutation (segregating site) fre-
quency spectrum [1,2,4,5],

2. statistics that use the haplotype distribution [3,6,7] and

3. statistics that use the pair-wise distance (mismatch) dis-
tribution [8,9].

A recent comprehensive survey of the power of these dif-
ferent classes of tests for detecting population expansion
found that classes 1 and 2 were generally more powerful
than the best class 3 statistics [10]. Some of the best-
known test statistics come from class 1 and essentially
work by comparing aspects of the mutation frequency
spectrum with neutral expectations. This class of test sta-
tistics include DT [1], DF [2] and the H statistic [5]. In the
simplest case, these statistics can be used to measure devi-
ations from the null hypothesis of constant population
size, random mating and no recombination. For example
DF measures the normalized difference between the
number of mutations on the external branches and the
total number of mutations in the genealogy. Under the
null hypothesis of neutral evolution the expectation of DF
is zero, and a significant departure from zero signifies
selection (balancing, directional, negative), recombina-
tion or changes in population size. The last of these alter-
natives is problematic because exponential growth is
expected to give results similar to directional or purifying
selection. For this reason it would seem desirable to
develop a method that directly accounts for alternative
demographic models of population size through time. In
this context, several studies have combined the use of
summary statistics and demographic models [11-15].

Apart from biasing the mutation frequency distribution,
selection may also affect the shape of the gene tree [16].
Although few attempts have been made to use this expec-
tation in a rigorous test of neutrality (c.f. [17]), a number
of branching models and summary statistics measuring

tree imbalance exist in the literature of speciation models
[18-21]. A method that could use information both from
the mutation frequency spectrum and from the shape of
the gene tree may be more powerful than either used indi-
vidually.

If all sequences comprising a gene tree are sampled from
the same time point (as is required by most tests of neu-
trality) then there is very little power to distinguish
between selection and exponential growth. However if
sequence data is available from different times, during
which measurable evolution has taken place, as in RNA
viruses and ancient mitochondrial DNA (mtDNA) data
[22,23] then the power to distinguish between these two
alternatives is potentially much greater. Unfortunately,
the expectations and variances of crucial quantities (such
as tree length) are not yet available for serially sampled
data, so this potential power has not been tapped.

Apart from analyses of intra-population sequence varia-
tion, evidence for non-neutrality can also be detected by
comparing within- and between-species sequence varia-
tion [24]. For example, it has been widely observed that in
some species there is an excess number of polymorphic
non-synonymous sites segregating within the species rela-
tive to the number of non-synonymous sites with fixed
differences between closely related species [19,25]. This
effect is consistent with the conclusion that a substantial
fraction of non-synonymous mutations are slightly dele-
terious mutations (SDMs) that often persist as polymor-
phisms within populations for some time but have a low
probability of eventual fixation [26]. However this pattern
is not universal. In fact, at least in Drosophila the pattern
appears to be the reverse [27], possibly implying a prom-
inent role for recurring positive selection [28]. Regardless
of the direction of non-neutral evolution this test may
suggest, it has been shown that, as with summary statistics
of the mutation frequency spectrum, the accuracy of these
methods is compromised by the effects of unrecognized
historical demographic change [29]. Both within-species
and between-species methods rely on the fact that SDMs
become increasingly rare relative to neutral mutations at
higher frequencies. For example, within a panmictic pop-
ulation, the distribution of SDMs is expected to predomi-
nate near the tips of a population genealogy [30], so that
SDMs are on average younger than neutral mutations
[25]. Thus the older branches (and associated mutations)
within a population will tend to consist of relatively fewer
SDMs (as purifying selection has had longer to act).

Although a number of researchers have observed non-
neutral behaviour of non-synonymous polymorphism in
protein-coding regions, few have considered the effect of
SDMs on linked genetic variation in non-coding regions.
This is particularly pertinent to the study of the control
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region of mitochondrial genes, which is extensively used
for within-population genetic sampling of animal
mtDNA [31]. The action of Hill-Robertson interference is
expected to exacerbate the persistence of SDMs in popula-
tions [32], because it reduces the efficiency of purifying
selection. Even moderately deleterious mutations, which
would otherwise be removed by selection very quickly,
can persist in the population if there is substantial genetic
linkage between sites [30]. Therefore, in non-recombining
genetic elements such as the mitochondrial genome and
the genomes of negatively stranded RNA viruses, muta-
tions that are themselves selectively neutral will neverthe-
less tend to share the fate of linked deleterious mutations.

In this paper we extend an existing Bayesian method orig-
inally applied to investigating non-neutrality in HIV evo-
lution [33], that can be used to test for selective neutrality
in both coding and non-coding genetic regions sampled
from within a single population. The method assumes no
knowledge of ancestral mutation frequencies and takes
into account the confounding effects of demographic his-
tory. We demonstrate the utility of this method on four
examples comprised of one non-coding data set and three
coding data sets. This method assumes a single genealogy
describes the evolutionary history of the sequences under
study, but makes no assumptions about ancestral muta-
tion frequencies and takes into account the confounding
effects of demographic history. We demonstrate the utility
of this method on four non-recombinant examples com-
prised of one non-coding data set and three coding data
sets.

Results and discussion
We employed a suite of summary statistics to test the
assumption of neutrality on four example data sets.
Because selection is expected to change both the distribu-
tion of mutations on the tree and the shape of the sample
genealogy [30], statistics that measure both of these
departures were included in the analysis.

Summary statistics
Fu and Li [2] compared two estimates of population
parameter θ that can be derived for a sample of n
sequences:

1. the total number of singleton polymorphisms and

2. the total number of segregating sites divided by

.

Under neutrality the difference between these two meas-
ures is expected to be zero, and the variance in the differ-
ence can be calculated. The resulting normalized test
statistic DF assumes an infinite sites model of mutation,
because it equates mutations with branch lengths in the
underlying coalescent tree and does not therefore account
for the possibility of multiple mutations at a single site. To
avoid this assumption we employ a genealogy-based ver-
sion of DF, which compares the length of terminal
branches to the total length of the coalescent genealogy
(we term this the genealogical DF). In addition to the gene-
alogical DF, two other measures of branch length distribu-
tion (age of most recent common ancestor, and total tree
length; see Table 1) and three measures of tree imbalance
B1, Ic and Cn were also employed.

The B1 statistic is the maximum number of nodes between
an internal node and the tips of the tree, summed over all
internal nodes and excluding the root [34]. Higher values
of B1 are expected with increasing symmetry of the phyl-
ogeny. Colless's tree imbalance index Ic considers each
internal node of a bifurcating tree and partitions the
number of terminal sequences that descend from it into
two groups, r and s, where r ≥ s. Symmetry is measured
based on the difference between r and s, summed over all
internal nodes [18]. The measure increases from 0 for a
perfectly symmetrical tree, to 1 if the tree is completely
asymmetric. The final tree-asymmetry measure, Cherry
count Cn, is simply the number of pairs of sequences
joined by their most recent common ancestor [20]. More
symmetrical trees are identified by higher values of Cn. All
six summary statistics used are listed in Table 1.

a kn k

n= −
=
−∑ 1
1

1

Table 1: Summary statistics used in test of neutrality

Summary Statistic Reference Description

T - The total length of all branches of the tree.
tMRCA - The difference in age between the most recent common ancestor and the most modern individual.

DF [2] A classic summary statistic for testing neutrality. Normalized difference between external branch lengths and total 
tree length.

B1 [34] A measure of tree-imbalance.
Cn [20] The number of internal nodes with exactly two terminal children(the number of cherries).
Ic [18] A measure of tree-imbalance. Ranges is [0,1]. Larger numbers signify more imbalanced trees.
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Data analysis
Brown bear mitochondrial DNA
An alignment of non-coding mitochondrial DNA from
the d-loop of brown bears Ursus ursus was compiled as an
example of non-coding molecular sequence data that is
assumed to be evolving neutrally. The data set comprised
30 previously published ancient DNA sequences [35],
along with 44 modern brown bear sequences obtained
from GenBank. The software BEAST [36] was used to con-
duct Bayesian MCMC analysis on the full data set (n = 74),
yielding estimates of evolutionary rate, population size
and ancestral genealogy (Table 2). The substitution model
chosen allowed for different rates of transitions and trans-
versions [37] as well as Γ-distributed rate heterogeneity
among sites [38]. Both constant-size and exponential-
growth models of demography were investigated. To test
if the assumption of neutrality was warranted, posterior
and posterior predictive values were calculated for each of
the summary statistics in Table 1, along with their corre-
sponding multivariate posterior predictive p-value. A
Bayes factor computed via importance sampling [39,40]
was used as a model choice criterion to compare the rela-
tive marginal likelihoods of the two models, resulting in
rejection of the exponential growth model in favour of a
constant-size population. However under both models,
differences between the posterior and posterior predictive
values did not suggest any significant departures from
neutrality in any of the six summary statistics investigated.
The multivariate p-values for constant and exponential
growth were 0.219 and 0.284 respectively. This result sug-
gests, at least in terms of tree asymmetry and branch
length distribution, that selective neutrality cannot be
rejected for the d-loop of brown bears.

RNA virus data sets
Three RNA virus data sets were also analyzed under the
same model conditions as described above. The first was
a multiple sequence alignment (n = 129) of the g gene (L
= 629 bp) of human respiratory syncytial virus (HRSV)
spanning 46 years from 1956 to 2002 [41]. This virus was
used as an example of a coding gene of an RNA virus that
exhibits only a weak signal of non-neutrality in terms of
its tree shape. The estimates of mutation rate and popula-
tion size are shown in Table 2. A constant population size
was preferred over exponential growth using a Bayes fac-
tor. The multivariate posterior predictive p-values did not
reject neutrality (p = 0.33). We followed up with a series
of univariate analyses using the individual summary sta-
tistics. The tree length T, age of the root tMRCA and DF sta-
tistics are all close to significance under the assumption of
constant population size, as shown in Table 3, while the
remaining univariate statistics are less suggestive. There-
fore, there is only marginal evidence for low levels of non-
neutrality in the tree shape of HRSV.

To demonstrate the ability of this method to detect non-
neutrality, two additional data sets were analyzed. The
first was a previously published data set of the E gene of
the dengue-4 virus (n = 69, L = 1485) from Puerto Rico
[42] spanning 17 years. The second was a data set of
hemagglutinin sequences from human influenza A virus
selected to have a similar time frame (1981–1998). These
two viral data sets are both expected to exhibit the effects
of adaptive selection, particularly influenza A virus, given
the nature of their life histories [42-44]. As for the previ-
ous data sets, posterior and posterior predictive values
were calculated for each of the summary statistics in Table
1. Under constant population size, the multivariate poste-
rior predictive p-value = 0.0269 for the dengue-4 virus
data set and = 0.0240 for the influenza A virus data set.

Table 2: Bayesian parameter estimates

Data Set Demographic Model log P(D|M)1 Neτ (years) r2 μ3 α4 κ tMRCA (years)

Brown bear
(d-loop)

Constant* -2200 113,800 - 5.68 × 10-7 0.243 41.8 153,500

Exp. growth -2198 127,000 5.45 × 10-6 5.95 × 10-7 0.243 41.7 145,100
HRSV
(g gene)

Constant* -6068 36.3 - 0.00242 0.900 12.4 56.1

Exp. growth -6070 53.0 0.0263 0.00239 0.900 12.4 55.8
Dengue-4
(E gene)

Constant -3960 11.2 - 0.000976 0.167 17.3 19.7

Exp. growth* -3952 38.9 0.134 0.00096 0.167 17.2 19.0
Influenza A
(HA)

Constant* -4386 4.3 - 0.00503 0.332 5.49 19.0

Exp. growth -4383 7.25 0.0681 0.00506 0.332 5.5 18.9

Posterior parameter estimates from the MCMC analyses. The effective population size is reported only as a product with generation time (Neτ) and 
the compound parameter has unit of years for virus data sets and radiocarbon years for the brown bear data set. Posterior means are reported for 
all model parameters. For each data set, the demographic model chosen by a Bayes factor is marked (*). 1marginal likelihood, 2exponential growth 
rate, 3substitution rate, 4shape parameter of the Γ-distribution.
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Both of these data sets exhibited significantly more nega-
tive DF then expected under neutrality, suggesting that the
relative length of the terminal branches is larger than
expected in both data sets. Additionally, the human influ-
enza A data set also had marginally more tree-imbalance
than expected under neutrality, and for the dengue-4 data
set, the age of the most recent common ancestor was sig-
nificantly smaller than expected under neutrality. Figure 1
shows the posterior and predictive distributions for DF
and tree length T for all four data sets. Figure 2 shows (A)
two human influenza A virus trees from the posterior dis-
tribution of the exponential growth analysis along with
(B) the corresponding simulated trees in the predictive
distribution. These observations provide qualitative evi-
dence for the ability to detect non-neutral evolutionary
dynamics from tree shape as suggested in a recent review
of the nascent field of phylodynamics [16].

Distinguishing selection from exponential growth
A criticism often leveled at tests of neutrality such as DF, is
that significantly negative values of DF could signify expo-
nential growth rather than non-neutral evolution. As
demonstrated above the methodology employed here
allows the demographic history to be described paramet-
rically as part of the model. Therefore, inference and test-
ing can both be achieved under a model of exponential
growth. In this case, any additional departure from expec-
tations cannot be attributed to exponential growth as the
demographic signal is incorporated into the test via the
predictive distribution. The results of the tests including
exponential growth are also presented in Table 3. Interest-
ingly, model selection by Bayes factors can not strongly
reject constant populations in all of the data sets except for
dengue-4. In the case of dengue-4, the log Bayes factor in
favor of the exponential population model is approxi-
mately 8. However, the multivariate p-value for dengue-4

is no longer significant once exponential growth is incor-
porated. We can therefore distinguish between selection
and growth in the dengue-4 and influenza data sets. In
dengue-4, the departure from neutral expectations can be
explained by an incorrect choice of demographic func-
tions. Whereas in influenza, significant departures from
neutral expectations are observed under both demo-
graphic scenarios. In contrast, there is little evidence of
non-neutrality in the bear and HRSV data sets.

Simulations
For infinitely long sequences, for which no uncertainty in
the underlying genealogy exists, pB behaves like a classical
p-value. In the infinite data situation, the posterior distri-
bution of T(·) collapses to a single point and equation (5)
then returns the probability of observing a test statistic
under the null hypothesis of selective neutrality as
extreme as the test statistic of the data. In finite data situ-
ations, pB is stochastically less variable than a uniform dis-
tribution but with the same mean. This implies that the
distribution of pB is more centered about 1/2 than a uni-
form random variable, leading to slightly more conserva-
tive tests when one choses small Type I error rates. To test
the assertion that pB can still be interpreted as a p-value
even when sequences are of short length and there is sig-
nificant uncertainty in the underlying genealogy, a simu-
lation study was undertaken. A number of replicate data
sets (n = 100) were simulated and analyzed as follows:

1. A time-structured coalescent tree was simulated with
sample times at 0, 300, 600, and 900 days, with 10
sequences at each time and a constant population-size
parameter Neτ = 1500 (the product of Ne and generation
length in days).

Table 3: Predictive Probabilities

Data Set Demographic Model T tMRCA DF Ic Cn B1 MV

Brown bear
(d-loop)

Constant 0.205 0.164 0.128 0.307 0.844 0.900 0.219

Exponential growth 0.382 0.374 0.209 0.305 0.832 0.886 0.284
HRSV
(g gene)

Constant 0.045 0.034 0.044 0.835 0.851 0.865 0.330

Exponential growth 0.294 0.335 0.121 0.805 0.845 0.857 0.463
Dengue-4
(E gene)

Constant 0.036 0.004* 0.001* 0.434 0.401 0.581 0.027*

Exponential growth 0.219 0.170 0.013* 0.449 0.349 0.498 0.128
Human influenza A
(HA)

Constant 0.040 0.101 <0.001* 0.951 0.392 0.393 0.024*

Exponential growth 0.085 0.381 0.001* 0.916 0.427 0.438 0.018*

Univariate and multivariate posterior predictive p-values for summary statistics on each of the example data sets. Significant departures (univariate: 
pB <α/2 or pB > 1 - α/2; multivariate: pB <α for α = 0.05) from neutrality are marked (*). Significant departures on the best fitting model for each 
data set are in bold.
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2. DNA sequences of length 400 were simulated down the
coalescent tree under an HKY85 + Γ model of substitution
with parameters κ = 8, σ = 0.1, and μ = 4.0 × 10-5 per site
per day. Insertions and deletions were not simulated.

3. A Bayesian MCMC analysis was run on the resulting
DNA sequence alignments using BEAST (Drummond and
Rambaut 2004), assuming a constant population and an
HKY85 + Γ model of substitution. The demographic and

Posterior and predictive distributions of tree length T and DFFigure 1
Posterior and predictive distributions of tree length T and DF. Posterior and predictive distributions of tree length T 
and DF for all four data sets. The dengue-4 data is from an analysis assuming exponential growth, while the other three analyses 
assumed a constant population size. Human influenza A virus shows the largest departure from neutrality, with the posterior 
distribution completely disjoint from the predictive distribution.
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substitution parameters were all estimated assuming flat
priors with conservative upper bounds.

4. For each state p of the MCMC, the sampled population
size parameter θ(p) ~ P(�|Y) was used to generate a time-
structure coalescent tree Grep,(p). The set of trees for p = 1,
..., P is the predictive distribution of genealogies.

5. Using equation (5), the posterior distribution of gene-
alogies was compared with the predictive distribution of

genealogies, resulting in a pB value (using the DF statistic
to summary the genealogies, as DF proved most powerful
on the real data sets).

In the above scheme, the model used to simulate the data
is the same as the model that we are testing against. There-
fore we would expect the pB values to be distributed
approximately uniformly between 0 and 1 under the null
hypothesis. Figure 3 shows the cumulative probability dis-
tribution for the pB statistics calculated using the above

Posterior and posterior predictive genealogies of human influenza A virusFigure 2
Posterior and posterior predictive genealogies of human influenza A virus. (A) A sample of two trees from the pos-
terior distribution of the human influenza A virus data set. (B) The two matching trees simulated for the predictive distribution 
of the human influenza A virus data set. Obvious differences between the posterior and predictive trees are the shorter tree 
length and absence of deep splits in the posterior trees.
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scheme as well as for a 100 replicates where exponential
growth (Neτ = 5000, r = 2 × 10-3) was assumed instead of
a constant population size. For the case of constant popu-
lation size, the pB values are distributed approximately
uniformly, with 8 false positives (i.e. pB < 0.05) suggesting
that the test is neither overly sensitive nor too conservative
(Figure 3). However for the case of exponential growth the
values of pB do not appear uniform with too few extreme
values suggesting that the test would be conservative.
These results strengthen the conclusion of a relative abun-
dance of external-branch mutations in the viral data sets
analyzed in this paper, because the significant statistics
observed for real data sets both under constant-size and
exponential growth assumptions would not be expected
under neutrality.

Conclusion
The results presented here demonstrate the utility of pos-
terior predictive simulation for testing the goodness-of-fit
of population genetic models of molecular evolution. In
particular we tested the assumption of neutrality under

both constant population size and exponential growth on
four example data sets where temporally spaced data was
available. In both dengue-4 and the human influenza A
viruses there was a significant excess of mutations on ter-
minal branches whether or not exponential growth was
assumed. In contrast gene trees of HRSV and the d-loop of
brown bears did not exhibit any significant departure
from neutral expectations in terms of tree shape or genea-
logical distribution of mutations, although all four data
sets had greater than average numbers of mutations on
terminal branches relative to internal branches when
compared to neutral expectations. Furthermore all four
data sets had below average age of the root and below
average tree length. In terms of tree-imbalance, both
above and below average imbalances were observed for all
three tree-imbalance statistics measured (B1, Cn, Ic).

This paper has been primarily concerned with demon-
strating the utility of using existing summary statistics for
testing neutrality in temporally spaced data sets. While we
have demonstrated that existing statistics, such as DF can
be successfully used to uncover non-neutral evolution it
remains likely that better summary statistics may exist. We
have described a method for comparing measures of tree
shape with their expectations even if the tree shape statis-
tic cannot be directly calculated from the sequence data.
We hope that further development of test statistics of tree
shape explicitly designed for temporally spaced data will
proceed. By doing this we hope tests of recent phylody-
namic theories [16] of genetic diversity and evolution in
viral pathogens can be constructed. With the posterior
predictive framework outlined here, new statistics should
greatly increase our ability to detect non-neutral evolution
and other departures from standard models of molecular
evolution and population genetics. One potentially fruit-
ful direction lies in examining violations of neutrality in
the underlying substitution process, as well as in tree-
shape. Efficient methods to detect substitution model vio-
lations by comparing the expected numbers of different
classes of nucleotide substitutions have already been
introduced [45]. This allows future work to combine
appropriate summary statistics across the full model
parameter space in order to maximize statistical power to
detect non-neutral evolution.

Our reliance on posterior predictive simulation may raise
the concern that the observed data Y for each example is
"used" twice, first in generating the posterior distribution
of model parameters and then in estimating the test-statis-
tic employed to reject the null hypothesis. An alternative
approach utilizing prior predictive simulation exists [46]
and satisfies the above criticism. However, prior predictive
simulation is undefined under improper prior distribu-
tions [47] and may not offer sufficient statistical power
when vague priors are employed [48,49], such is the case

Cumulative distribution of pBFigure 3
Cumulative distribution of pB. (Cumulative distribution 
of pB values (based on DF statistic) on 100 simulated data sets 
under a constant population (open circles) and an exponen-
tially growing population (closed circles). The ideal behaviour 
for pB when applied to data simulated from the null distribu-
tion would be a uniform distribution (see main text for 
details). This plot shows that if the true demographic history 
is a constant population, then pB will be a good test of neu-
trality. However, if the true demographic history is exponen-
tial growth pB will be a conservative test, as can be seen by 
the lack of high pB values in the closed circles.
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in this work. In general, if the model parameters G, Ω and
θ are well-estimated given Y, then the posterior predictive
p-value yields results similar to classical p-values (when
available), while the prior predictive assessment is highly
sensitive to prior distribution choice [47]. In addition to
these fully Bayesian predictive methods, Bayes factors [50]
are effective model selection tools in phylogenetics [51].
A Bayes factor measures the relative likelihood of two
competing models. To compute the Bayes factor in favor
of the null model of neutrality, one must specify an alter-
native model. Unless the researcher has firm a priori
knowledge about how neutrality might be violated in
their data, we recommend starting with rejecting the null
through these predictive methods and only then attempt-
ing the difficult task of non-neutral model construction
and fitting.

Although both dengue-4 and the human influenza A
viruses exhibit very ladder-like trees that are highly imbal-
anced, our analysis suggests that this amount of imbal-
ance is not much more than would be expected given the
sampling scheme and estimated effective population
sizes. However it can be argued that small effective popu-
lation sizes, by themselves, are evidence for selection. This
is because effective population size (Ne) is a measure of
the number of productively replicating individuals, only
when the population is evolving under conditions of neu-
trality. In the absence of any such prior assumptions, Ne
should be considered only as a surrogate measure of diver-
sity in the population. Because diversity is reduced by
selection, a low estimated Ne could be a sign that the pop-
ulation process is being driven by natural selection. Nev-
ertheless, the results presented here emphasize that
ladder-like trees, by themselves, do not necessarily suggest
selection. Consequently, interpretation of tree shape
imbalance should not be made in the absence of an
understanding of the expectations under the null model.
Overall, for the example data sets chosen in this study, tree
shape did not seem to be a powerful indicator of non-neu-
tral evolution. Finally, by incorporating a demographic
model into the test framework, we have ruled out expo-
nential growth as the reason for significant predictive
probabilities (pB) in all data sets besides dengue-4. Never-
theless there remain a number of alternative explanations
for neutrality being rejected.

Both human influenza A and dengue-4 viruses show a sig-
nificant excess of mutations on terminal branches when
compared to the predictions of the best fitting parameters
of the neutral model. These departures from neutrality
lend insight into the process of molecular evolution in
RNA viruses, and suggest that new models that take into
account these departures need to be developed to accu-
rately model their genetic variation. In contrast, at least
with respect to tree shape and genealogical distribution of

mutations, neutrality seems to be an approximately ade-
quate model for the G gene of HRSV and the d-loop of
brown bears. We hope that further application of poste-
rior predictive simulation will shed light on the pattern of
within-population genetic variation in a wide range of
species and genetic elements.

Methods
To assess selective neutrality in evolution, traditional test
statistics summarize either the observed sequence data Y
directly or the shape and inter-node distribution of a fixed
gene genealogy G relating the sequences, where G is
assumed known. In general, however, G is unknown a pri-
ori and must also be inferred from the sequence data with
considerable uncertainty for measurably evolving popula-
tions [23]. This presents a difficulty for classical statistical
tests. We overcome this short-fall in a Bayesian framework
using posterior predictive assessment of model fit [33,47].
In this framework, we estimate G and its associated uncer-
tainty from Y using a statistical model of molecular evolu-
tion and population demography and simultaneously
compare a summary statistic of the random genealogy G
to the statistic's expectation under neutrality. Our
approach relies on assuming a statistical model for molec-
ular evolution under neutrality. We employ a standard
choice based on a continuous-time Markov chain process
for nucleotide substitution [52] and an underlying coales-
cent process to generate the genealogy [53]. In particular,
we assume the [37] (HKY85) substitution model with dis-
crete – distributed rate heterogeneity across sites [38]
parameterized by Ω = (μ, κ, σ). Parameter μ is the overall
rate of mutation, κ is the transition/transversion bias and
σ is the Gamma shape parameter. We assume a demo-
graphic coalescent process that allows for exponential
population growth parameterized by θ = (Neτ, r). Param-
eter Neτ is the product of the effective population size and
generation time and r is the exponential growth rate.
Restricting r = 0 results in a constant population-size
model. After assuming a prior distribution over (Ω, θ), we
can approximate the posterior distribution

P(G, Ω, θ|Y) (1)

using Markov chain Monte Carlo (MCMC) techniques
[54,55]. We refer interested readers to [22] for further
details on prior choices and our MCMC approach. Simu-
lation of (1) is readily available using the software BEAST
[36].

With the tools to infer the random genealogy G and
model parameters given sequence data in hand, we now
consider summary statistics to assess the neutral model fit.
Consider a vector of test statistics T(G) = [T1(G), ..., TK(G)]
that summarize the shape of the genealogy G. Each ele-
ment Tk(G) for k = 1, ..., K serves as a unique mapping
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between G and the real numbers and generally returns a
small value if G were generated by a neutral process and a
large value otherwise. One such example for Tk(G) is DF.
Different Tk(G) serve to detect different types of depar-
tures from the neutral tree form.

It is important to note that T(G) depends on an unknown
model parameter in contrast to a classical test statistic that
depends only on fixed quantities, such as the observed

data Y or a fixed estimate of the genealogy . In the Baye-
sian literature, test statistics that depend on unknown
model parameters (and also sometimes the data directly)
are generally referred to as "discrepancy values" [48] to
help differentiate them from classical measures. To sim-
plify notation, we continue to refer to T(G) as a summary
statistic with the implicit understanding that it is random
and not directly observable. The advantage afforded by
leaving T(G) a random variable is that we are now able to
compare the discrepancy between the observed data Y and
the posited neutral model as a whole, instead of between
the data and the best fit of the model. To use T(G) to assess
the model fit of neutrality, we consider the following
thought experiment. Suppose we randomly simulate
under a neutral model a genealogy Grep from a replicated
population almost identical to the population yielding
the sequence data Y, where both populations share the

same unknown demographic parameters θ, number of
tips and tip-dates. Then, we compare quantities T(Grep)
and T(G) given Y. Disparate values signify model mis-
specification caused by non-neutral evolutionary forces.

We recall that T(Grep) and T(G) given Y are not fixed val-
ues, but are random variables represented by probability
distributions. As a consequence, we must integrate over all
possible realizations weighed by their posterior probabil-
ities to generate a test based on T(·). This process is called
posterior predictive simulation [46-48,56]. Model selec-
tion and critique using posterior predictive simulation has
had a successful history in phylogenetics [33,49,57-59].

The central distribution that we require is the posterior
predictive distribution of the test statistic

In practice, one approximates the predictive distribution
in (2) by first generating a posterior sample {G(p), Ω(p),
θ(p)} for p = 1, ..., P from P(G, Ω, θ|Y). Then, for each p,
one draws

Grep,(p) ~ P(·|θ(p)), (3)

where P(Grep|θ) describes a selectively neutral coalescent
process. Finally, one tabulates T(Grep,(p)). We interpret this
predictive distribution as a description of the values that
T(·) generates when applied to genealogies from selec-
tively neutral populations. To assess neutrality in the
observed data, we compare the predictive distribution to
the posterior distribution of the test statistic

approximated by tabulating T(G(p)) for p = 1, ..., P.

When the test statistic T(·) is univariate [33], assessing
differences between predictive and posterior distributions
can be done in two ways [47]. The first method is graphi-
cal, generating a scatterplot of {[T(Grep,(p), T(G(p))], p = 1,
..., P}. The second method is more formal, employing tail-
area probabilities.

Let the posterior predictive p-value [48]

pB = P[T(Grep) ≥ T(G)|Y], (5)

then pB remains well-defined even though T(Grep) and
T(G) given Y are not directly observable [47]. Probability
pB shares many characteristics with a classical p-value; for
example, pB can be viewed as its posterior mean and,
under the null hypothesis of neutrality, pB is approxi-
mately distributed as a Uniform [0, 1) random variable
[48]. Given these properties, we reject the selectively neu-
tral model for extreme values of pB, say pB <α = 0.05 for
strictly non-negative T(·) or pB <α/2 or pB > 1 - α/2 other-
wise.

To calculate pB, a consistent estimator is

where 1{·} is the indicator function, returning 1 if its
argument is true and 0 otherwise.

When the test statistic T(·) is multivariate, we are able to
detect a greater variety of departures from selective neu-
trality simultaneously, but a single tail-area probability
becomes more troublesome to calculate. In this situation,
we first standardize individual elements Tk(·) such that
var [Tk(G)|Y] = 1 for all k. This places all measures on a
common scale. We then generate scatterplots of the mul-
tivariate distributions. We agree with [47] in that compar-
ing the posterior and predictive distributions graphically
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can provide more information than reporting a single p-
value. For example, we can identify which components
Tk(·) in T(·) contribute greatest to the discrepancy
between the data and a selectively neutral model.

To calculate a tail-area probability in the multivariate set-
ting, we turn to the (squared) Mahalanobis distance in

constructing a posterior predictive test [60]. Let  be an

estimate of the predictive mean of T(Grep) and  be an
estimate of its variance-covariance matrix, such that

for p = 1, ..., P. Then, we define the (squared) Mahalanobis
distance

where we substitute T(G) for x when considering the dis-
tance's posterior distribution and T(Grep) for x when con-
sidering its predictive distribution. Mahalanobis distances
are commonly used in discrimination analysis and classi-
fication. The metric of the Mahalanobis distance M(·) is

the inverse of the variance-covariance matrix  of the
predictive distribution and, as such, returns distances nor-
malized relative to the multidimensional spread of the
data under selective neutrality. Following in the light of
Equation (5), we define the multivariate posterior predic-
tive p-value

pB = P[M(Grep) ≥ M(G)|Y]. (9)

A consistent estimator of the multivariate pB is readily
available in the vain of Equation (6).

When it is unclear a priori which elements Tk(·) provide
the most power to reject selective neutrality, the multivar-
iate approach side-steps the multiple testing problem
inherent in examining each element independently. In
these situations, we consider first using (9) as a global test
with a fixed Type I Error rate α and then sub-selecting a
small number of individual Tk(·) for further univariate
analysis. For researchers who begin by examining the K
univariate analyses separately, we recommend applying a
Bonferroni correction by decreasing the critical value cut-
off from α to α/K per test. For large K, a Bonferrioni cor-

rection is overly conservative, especially when considering
the potentially high correlation between Tk(·). At this
point, monitoring the false discovery rate [61] becomes
more practical.
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