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ABSTRACT 26 

Tropical forest restoration presents a potential lifeline to mitigate climate change and 27 

biodiversity crises in the Anthropocene. Yet, the extent to which human interventions, such as 28 

tree planting, accelerate the recovery of mature functioning ecosystems or redirect successional 29 

trajectories towards novel states remains uncertain due to a lack of long-term experiments. In 30 

2004-2006, we established three 0.25-ha plots at ten sites in southern Costa Rica to test three 31 

forest restoration approaches: natural regeneration (no planting), applied nucleation (planting in 32 

patches), and plantation (full planting). In a comprehensive survey after 16-18 years of recovery, 33 

we censused >80,000 seedlings, saplings, and trees from at least 255 species across 26 34 

restoration plots (9 natural regeneration, 9 applied nucleation, 8 plantation) and six adjacent 35 

reference forests to evaluate treatment effects on recruitment patterns and community 36 

composition. Both applied nucleation and plantation treatments resulted in significantly elevated 37 

seedling and sapling establishment and more predictable community composition compared to 38 

natural regeneration. Similarity of vegetation composition to reference forest tended to scale 39 

positively with treatment planting intensity. Later-successional species with seeds ≥5 mm had 40 

significantly greater seedling and sapling abundance in the two planted treatments, and 41 

plantation showed similar recruitment densities of large-seeded (≥10 mm) species to reference 42 

forest. Plantation tended towards a lower abundance of early-successional recruits than applied 43 

nucleation. Trees (≥5 cm DBH) in all restoration treatments continued to be dominated by a few 44 

early-successional species and originally transplanted individuals. Seedling recruits of planted 45 

taxa were more abundant in applied nucleation than the other treatments though few transitioned 46 

into the sapling layer. Overall, our findings show that active tree planting accelerates the 47 

establishment of later-successional trees compared to natural regeneration after nearly two 48 
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decades. While the apparent advantages of higher density tree planting on dispersal and 49 

understory establishment of larger-seeded, later-successional species recruitment is notable, 50 

more time is needed to assess whether these differences will persist and transition to the more 51 

rapid development of a mature later-successional canopy. Our results underscore the need for 52 

ecological restoration planning and monitoring that targets biodiversity recovery over multiple 53 

decades. 54 

 55 

INTRODUCTION 56 

In recent years, recognition of the regenerative potential of forests in human-modified tropical 57 

landscapes (Chazdon and Guariguata 2016, Williams et al. 2023) has contributed to expanding 58 

investment in forest restoration as a tool to sequester carbon, preserve biodiversity, and improve 59 

human wellbeing (Edwards et al. 2021, Fuss et al. 2021, Koch and Kaplan 2022, Tonetti et al. 60 

2022, Aguirre-Gutiérrez et al. 2023). In addition to the ongoing UN Decade on Ecosystem 61 

Restoration, numerous global initiatives have emerged to plant vast numbers of trees and restore 62 

hundreds of millions of hectares of land (e.g., Trillion Trees Campaign, Bonn Challenge), largely 63 

targeting tropical regions (Brancalion and Holl 2020, Martin et al. 2021). Although the goals of 64 

restoration vary, efforts targeting recovery of the high species diversity and complex ecological 65 

interactions characteristic of tropical forests require management strategies that promote the 66 

assembly of rich communities of native species whose composition, structure, and function 67 

closely resemble that of reference forests (Gann et al. 2019, Carrick and Forsythe 2020). Despite 68 

a large body of research that details how tropical forests recover, well-replicated field 69 

experiments directly comparing restoration interventions that are monitored for multidecadal 70 



4  

timeframes relevant to successional processes remain scarce (Chazdon et al. 2017, Brancalion et 71 

al. 2019). 72 

A suite of well-studied abiotic and biotic barriers limit the recovery of woody plant 73 

communities in tropical ecosystems; these frequently include degraded soils, extreme 74 

microclimates, competition with invasive vegetation (e.g., grasses), and seed limitation (Holl et 75 

al. 2000, Zimmerman et al. 2000, Blackham et al. 2014). Given that most tropical trees are 76 

adapted for dispersal by frugivorous animals (Howe and Smallwood 1982), seed dispersal is a 77 

dynamic process linked to the abundance and diversity of the disperser assemblage and seed 78 

sources (Carlo and Morales 2016, Zahawi et al. 2021). Previous studies from Neotropical forests 79 

largely show that wind, bats, and small birds consistently facilitate the dispersal of subsets of 80 

early-successional trees and shrubs that are adapted to grow quickly in high-light environments 81 

(Ingle 2003, González-Castro et al. 2019, Palma et al. 2021).  82 

As secondary forests age, canopy height, contiguity, and habitat complexity are linked to 83 

increased animal seed dispersal, greater incidences of large birds and mammals that are 84 

responsible for the dispersal of larger-seeded, often later-successional trees (De La Peña‐Domene 85 

et al. 2016, Bradfer-Lawrence et al. 2018), and understory microclimates that increasingly favor 86 

shade-tolerant species adapted to establish and grow under dense mature forest canopies (Dent et 87 

al. 2013, Rüger et al. 2023). Research from chronosequence studies consistently show that 88 

naturally regenerating secondary tropical forests take a half century or more to recover similar 89 

species composition to primary forests (Finegan 1996, Rozendaal et al. 2019). Recovery of 90 

maturing forests at these stages is driven by the transition of mid- and late-successional tree 91 

species into the canopy and continued colonization of rare and dispersal-limited trees that are 92 

most characteristic of old growth forests (Martínez-Garza and Howe 2003, Muscarella et al. 93 
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2017, Rüger et al. 2023). Therefore, rapid recovery of biomass and initial canopy structure is not 94 

necessarily predictive of later-successional processes. 95 

Active restoration through tree planting has long been heralded as a key approach to 96 

accelerate tropical forest succession (Holl et al. 2000, Chazdon 2008, Brancalion and Holl 2020). 97 

Numerous field experiments have shown that tree planting interventions often produce greater 98 

tree cover and woody recruitment than in paired natural regeneration sites during the first two 99 

decades of recovery (Wilson and Rhemtulla 2016, Li et al. 2018, Trujillo-Miranda et al. 2018, 100 

Osuri et al. 2019), although some studies show minimal difference in diversity or compositional 101 

measures (Gilman et al. 2016, Meli et al. 2017, Ssekuubwa et al. 2019). Tree planting typically 102 

increases the rate of recovery of early-successional (i.e., pioneer) species by enhancing seed 103 

dispersal and overcoming barriers to establishment (Parrotta et al. 1997, de la Peña-Domene et 104 

al. 2013, Osuri et al. 2019). Nevertheless, conventional tree plantations with fixed spacing in 105 

grids (hereafter “plantations”) can create homogeneous habitat conditions, and strong legacy 106 

effects from initially planted species can direct succession toward a community composition 107 

considerably different to what is found in reference forests (Cusack and Montagnini 2004, Wills 108 

et al. 2017, César et al. 2018). 109 

Spatially-patterned planting methods (sensu Shaw et al. 2020), such as applied nucleation 110 

(planting trees in patches), are hypothesized to have similar effects as plantations in overcoming 111 

barriers to recovery by enhancing seed dispersal and seedling establishment (Zahawi and 112 

Augspurger 2006, Benayas et al. 2008), without redirecting natural successional trajectories to 113 

the same extent as plantations. According to nucleation theory, initial patches of recovering 114 

vegetation facilitate recruitment of other species via enhanced seed dispersal and improved 115 

establishment conditions (e.g. grass suppression, minimizing temperature and moisture 116 
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extremes), regenerating outward and gradually coalescing with other nuclei (Yarranton and 117 

Morrison 1974). Applied nucleation presents an attractive option for restoration managers to 118 

accelerate recovery of spatially-heterogenous ecosystems, while also reducing project costs 119 

(Robinson and Handel 2000, Benayas et al. 2008, Holl et al. 2011, Corbin and Holl 2012). Prior 120 

studies of applied nucleation support its effectiveness in facilitating tropical forest recovery 121 

during the early years of restoration through increased bird activity, seed rain, and seedling 122 

establishment (Zahawi and Augspurger 2006, Piiroinen et al. 2015, Ramírez-Soto et al. 2018, 123 

Holl et al. 2020). However, the trade-offs between applied nucleation and traditional planting 124 

methods have rarely been directly compared (Corbin et al. 2016, Holl et al. 2020), and few field 125 

studies have been sustained long enough to observe the effects of differing management 126 

interventions on successional processes over multi-decadal timeframes in tropical forests. 127 

Here, we report on a comprehensive census of all tree recruits ≥20 cm in height from a 128 

spatially replicated restoration experiment after almost two decades of recovery, comparing three 129 

restoration interventions (natural regeneration, applied nucleation, and plantation-style tree 130 

plantings) and nearby reference forests. We examine how species richness, community 131 

composition, and relative abundance of tree recruits of different successional stages and seed 132 

sizes differ among treatments. Results from the first decade of this experiment previously 133 

showed positive effects of both planted treatments compared to natural regeneration on 134 

abundance and richness of tree seedlings (Holl et al. 2017, Werden et al. 2022). However, 135 

plantations have significantly greater overall canopy cover (Holl et al. 2020) and more frequent 136 

incidence of large frugivores (Reid et al. 2021), which could facilitate greater colonization by 137 

later-successional larger-seeded trees over time. In contrast, applied nucleation treatments have 138 

many fewer planted trees with lower and more heterogenous canopy cover (Zahawi et al. 2015a, 139 
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Holl et al. 2020) that have previously fostered greater seedling survival and sapling growth rates 140 

(Kulikowski et al. 2023). Through an exhaustive census of tree recruits, we sought to evaluate 141 

how the differential effects of restoration treatments influence community assembly after nearly 142 

two decades. 143 

 144 

METHODS 145 

STUDY REGION 146 

We conducted this study at 10 sites spread across a ~100 km2 area between the Las Cruces 147 

Biological Station (LCBS; 8° 47’ 7” N; 82° 57’ 32” W) and Agua Buena (8° 44’ 42” N; 82° 56’ 148 

53” W) in southern Costa Rica. The sites are at the boundary between Tropical Premontane Wet 149 

and Rain Forest life zones (Holdridge et al. 1971), range in elevation from 1100-1430 m, receive 150 

mean annual rainfall of 3500-4000 mm with a dry season from December to March, and have a 151 

mean annual temperature of ~21°C. All sites are separated by a minimum of 700 m, and the 152 

surrounding landscape is a mosaic of agricultural fields and pasture interspersed with remnant 153 

forest patches (Zahawi et al. 2015b). All sites were farmed or grazed by cattle for ≥18 yr and 154 

most were dominated by non-native forage grasses prior to the start of the study. Most sites are 155 

steeply sloped (15-35º). Soils are volcanic in origin, mildly acidic (pH = 5.3 ± 0.04; mean ± SE), 156 

low in P (Mehlich III: 3.9 ± 0.4 mg/kg), and high in organic matter (16.7 ± 0.8%) (Holl and 157 

Zahawi 2014). 158 

 159 

EXPERIMENTAL DESIGN 160 

At each site we established three 0.25-ha plots separated by a ≥5-m buffer. In 2004-2006 each 161 

plot received one of three randomized treatments: natural regeneration, applied nucleation, or 162 
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plantation. By the time of this census three sites were missing one or two treatments due to major 163 

human disturbances over the nearly two decades of the study: natural regeneration n = 9 plots, 164 

applied nucleation n = 9, plantation n = 8. Plantations were uniformly planted with tree 165 

seedlings, while the applied nucleation treatment was planted with six tree islands of three sizes: 166 

two each of 4×4, 8×8 and 12×12 m. Planted seedling spacing was kept constant (~2.8 m) in 167 

plantation and applied nucleation treatments; 313 trees were planted in plantation, 86 in applied 168 

nucleation, and none in natural regeneration plots (Holl et al. 2011). All plots (including natural 169 

regeneration) were cleared to ground level by machete at ~3-mo intervals for the first 2.5 yr to 170 

allow planted tree seedlings to grow above existing vegetation. We planted seedlings (20-30 cm 171 

tall) of four tree species; these included two native late-successional species, Terminalia 172 

amazonia (J.F. Gmel.) Exell (Combretaceae) and Vochysia guatemalensis Donn. Sm. 173 

(Vochysiaceae), and two naturalized early-successional species, Erythrina poeppigiana (Walp.) 174 

Skeels and Inga edulis Mart. (both Fabaceae) that are used widely in intercropping systems in 175 

Central America. By the time of the surveys presented here, a majority of the planted softwoods 176 

had died (mean survival and standard deviation: E. poeppigiana 34.5 ± 28.5%; I. edulis 22.9 ± 177 

18.5%). Survival of the other two species remained high (V. guatemalensis 82.8 ± 18.4%; T. 178 

amazonia 82.1% ± 17.8%). At six sites, we also sampled adjacent remnant forests to serve as 179 

references. These reference forests ranged in size from 2-320 ha and showed no evidence of 180 

clearing in the last 75 years since aerial photographs have been available (Zahawi et al. 2015b). 181 

All have all been impacted to some extent by human disturbance, as “pristine” forests are not 182 

present in our study area (Clement and Horn 2001). 183 

 184 

DATA COLLECTION 185 
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During June and July 2022, 16-18 years after establishing plots, we censused all naturally 186 

recruiting trees ≥20 cm height (hereafter “recruits”) throughout each restoration treatment plot. 187 

We mapped individual recruits to a grid of 3×3 m quadrats and counted the number of seedlings 188 

≥20 cm but <1 cm diameter at breast height (DBH) of each species within each quadrat. We 189 

measured DBH for all recruits ≥1 cm and categorized each into sapling (1-<5 cm DBH) or tree 190 

(≥5 cm DBH) size classes. If an individual had multiple stems, we based our size classification 191 

on the largest stem. Individual restoration plots were mostly 48×48 m (256 3×3 m quadrats), but 192 

in some cases plots were 42×54 m (252 quadrats) due to constraints in the landscape at initial 193 

plot set up. In a few cases, a smaller plot area was sampled primarily due to extensive 194 

anthropogenic damage to a section of the plot (Table S1). The layout of the reference forest plots 195 

was slightly different and consisted of four 21×21 m plots (196 quadrats) at five sites and three 196 

21×21 m plots (147 quadrats) at one site. Tree recruits were identified to the lowest operational 197 

taxonomic unit (hereafter referred to as “species”) following the nomenclature of Tropicos 198 

(https://www.tropicos.org).  199 

 200 

DATA ANALYSIS 201 

We categorized recruits of all species that were not planted as part of restoration treatments as 202 

either early-, mid- or late-successional (Table S2), based on the extensive observations and 203 

botanical expertise of two of the authors (RAZ and FOB) who have sampled vegetation 204 

composition in many sites in the region for over two decades. We considered early-successional 205 

taxa (37 spp.) as pioneer trees which are commonly found in disturbed environments and young 206 

secondary forests but typically are not found in mature forests; nearly all early-successional 207 

recruits have animal-dispersed seeds <5 mm in width or wind-dispersed seeds. Mid-successional 208 

https://www.tropicos.org/
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taxa (referred to as “both” in Werden et al. 2021) include tree species that colonize at any stage 209 

of forest succession but are well represented in old growth forests. We considered late-210 

successional species as taxa typically observed in mature forests only. Both mid- and late-211 

successional taxa had a range of seed sizes, so we further categorized the latter two successional 212 

groups based on seed width: <5 mm, 5-<10 mm, and ≥10 mm, referred to as small, medium, and 213 

large, respectively. Successional groups and seed size are not independent, with most (64%) mid-214 

successional species having small seeds whereas 71% of late-successional species had seeds ≥5 215 

mm (i.e., medium and large). We use the term “later-successional” when referring to these two 216 

groups collectively. A few distinct taxa (i.e., Citrus spp., Heliocarpus spp.) were not consistently 217 

identified to species level and, therefore, grouped together in analyses of diversity and species 218 

composition. A small number of individuals (0.04%) in the census were not identified and were 219 

excluded from analyses. 220 

For analyses of taxonomic richness among experimental treatments, we separated recruit 221 

data by size class: seedling (<1 cm DBH), sapling (1-<5 cm DBH), or tree (≥5 cm DBH). All 222 

statistical analyses were performed in R 4.3.3 (R Core Team 2024). We summarized species 223 

richness of experimental treatments using species-accumulation models from the ‘iNEXT’ 224 

package (Hsieh et al. 2016), in which rarefied, observed, and extrapolated richness were 225 

calculated from incidence data across sampling quadrats. Estimated sampling completeness was 226 

high across all size classes and successional groups (85-99%). We made statistical inferences 227 

from sample-sized-based calculations of bootstrapped (n = 1,000) 95% confidence intervals for 228 

accumulated richness at 1.01 ha, which was the minimum area sampled for all four treatments.  229 

To compare the composition of communities, we used non-metric multidimensional 230 

scaling (NMDS) of the species abundance matrices of each experimental plot with distances 231 
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calculated from the Chao dissimilarity index and 95% confidence intervals calculated from 232 

within-treatment variability in the ‘vegan’ package (Chao et al. 2005, Oksanen et al. 2022). We 233 

compared groups using pairwise permutational analysis of variance (PERMANOVA) between 234 

centroids and adjusted p-values using the Bonferroni method for multiple tests. 235 

We drew further inferences on community composition differences through variation in 236 

densities of successional groups and recruit size classes among treatments. For each grouping 237 

(e.g., early-successional saplings), we used generalized linear mixed models with a negative 238 

binomial distribution to analyze the effect of restoration treatment using the ‘glmmTMB’ 239 

package (Magnusson et al. 2017). Site was included as a random factor and an offset term was 240 

used to account for differing sampling areas. We interpreted pairwise comparisons of estimated 241 

marginal means of treatment groups with a Bonferroni correction to resulting p-values using the 242 

‘emmeans’ package (Lenth 2021). 243 

 244 

RESULTS 245 

Species richness  246 

We censused a total of 66,446 seedling, 14,038 sapling, and 3,842 tree recruits representing 255 247 

operational taxonomic units from 65 families, as well as 1,941 survivors of the originally-planted 248 

trees. Of the naturally recruited taxa (hereafter, species) we identified 94.2% of individuals to 249 

species, 4.6% to genus, and 1.1% to family levels. Overall observed species richness among the 250 

treatments increased across the planting gradient with natural regeneration lowest (156), and 251 

applied nucleation (185) and plantation (196) intermediate; species richness of reference forest 252 

(205) highest, despite the fact that total reference forest sampling area was approximately half 253 
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that of the three restoration treatments. All but 10.5% of tree species recorded in reference forest 254 

were found to have colonized at least one restoration plot. 255 

Early-successional seedling and sapling richness were consistently higher across 256 

restoration treatments than in reference forest (Fig. 1A&D, Table S3), and while seedling 257 

richness was similar among the restoration treatments, sapling richness was notably higher in 258 

applied nucleation than plantation. Species richness of early-successional trees (≥5 cm DBH) 259 

was greater in natural regeneration and applied nucleation than in plantations and was 260 

intermediate in reference forest (Fig. 1G, Table S3). We observed higher richness of mid-261 

successional seedlings in plantation than the other restoration treatments (Fig. 1B, Table S3). 262 

Mid-successional saplings and late-successional seedlings and saplings showed a similar trend of 263 

the highest richness in reference forest, intermediate richness in both planted treatments, and the 264 

lowest in natural regeneration (Fig. 1C,E,F, Table S3). This pattern was strongest for late-265 

successional saplings with both planted treatments having >50% more species than natural 266 

regeneration, but only approximately half the number of late-successional species that were 267 

censused in reference forest (Fig. 1F). Later-successional tree communities showed similarly low 268 

richness across all restoration treatments (Fig. 1H&I), with only approximately 50% of mid- and 269 

15% of late-successional species recorded in the tree size class of any restoration treatment 270 

compared to that in reference forest. 271 

 272 

Community composition 273 

Seedling and sapling community composition tended to increase in similarity to reference forest 274 

with the extent of the planting treatment (Fig. 2A-B), although for seedlings the differences 275 

among restoration treatments were not significant but all restoration treatments differed from 276 
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reference forest. For saplings, all treatments differed significantly except applied nucleation and 277 

plantation (Table S4). The compositional differences among restoration treatments in the sapling 278 

layer were partly driven by the relative abundance of early-successional species (e.g., 279 

Koanophyllon pittieri, Myrsine coriacea, Conostegia xalapensis, Psidium guajava, Viburnum 280 

costaricanum); early-successional taxa made up 54.0% and 43.3% of saplings in natural 281 

regeneration and applied nucleation, but only 18.6% in plantations. Species commonly found in 282 

reference forest that were rarely recorded as saplings in restored sites included Drypetes brownii, 283 

Guarea montana, Inga punctata, Garcinia intermedia, Desmopsis oerstedii, and Posoqueria 284 

costaricensis, among others. Both seedling and sapling communities showed greater variability 285 

in species composition under natural regeneration than in either planting intervention.  286 

The community composition of recruited trees in restoration treatments had no overlap 287 

with reference forest (Fig. 2C), and differences among restoration treatments resulted primarily 288 

from higher densities of the originally planted trees (Fig. 3C), as the difference disappeared when 289 

planted trees were removed from the analysis (Fig. S1). Naturally-recruited trees in restored plots 290 

were largely comprised of a handful of early-successional taxa – Cecropia obtusifolia, Hampea 291 

appendiculata, Koanophyllon pittieri, Myrsine coriacea, Viburnum costaricanum, Heliocarpus 292 

spp., and several Melastomataceae that accounted for >75% censused individuals. 293 

 294 

Abundance of naturally-recruiting trees 295 

Seedlings from planted tree species formed a small percentage of the total number of 296 

recruiting seedlings across all treatments, but their abundance, particularly of I. edulis and V. 297 

guatemalensis, was significantly greater in applied nucleation (13.0%) than plantation (4.7%), 298 

despite the difference in original planting intensity (Fig. 3A). There were relatively few saplings 299 
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of planted species in any treatment (1.8% of all saplings), and 60% of these stems in the two 300 

planted treatments were originally-planted individuals that never grew into the tree size class. All 301 

trees (≥5 cm DBH) of these species in applied nucleation and plantation were planted as part of 302 

the initial restoration (Fig 3C). The few saplings and trees of planted species in natural 303 

regeneration were largely E. poeppigiana that had resprouted from individuals present prior to 304 

the start of the study.  305 

Early-successional seedling and sapling abundance did not differ significantly across 306 

restoration treatments, but there was a trend toward a larger number of individuals in applied 307 

nucleation plots (Fig. 3A&B). The abundance of early-successional trees was greater in both 308 

natural regeneration and applied nucleation than plantation and reference forest treatments (Fig. 309 

3C). 310 

Density of later-successional individuals in the tree size class across all restoration 311 

treatments was a small fraction (8%) of that in reference forest, although applied nucleation 312 

showed marginally higher densities of small- and medium-seeded recruits than did the other 313 

restoration treatments (Fig. 3C; Fig. S2). Differences in abundance of later-successional 314 

seedlings and saplings across treatments varied by seed size. Small-seeded, later-successional 315 

seedlings showed similar abundance across all treatments (Fig. 3A), whereas sapling densities 316 

were lower in natural regeneration (Fig. 3B). Miconia spp. and Palicourea padifolia were 317 

particularly common mid-successional taxa across all restoration treatments, though P. padifolia 318 

was rarely observed in reference forest (Fig. S3-4). Small-seeded, late-successional saplings 319 

were more abundant in reference forest (Fig. S2B) largely driven by Trophis mexicana and 320 

Lacistema aggregatum (Fig. S4D).  321 
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Seedlings and sapling density of later-successional species with medium and large seeds 322 

generally were lowest in natural regeneration, intermediate in applied nucleation, and highest in 323 

plantation and reference forest with the pattern being strongest for large-seeded late-successional 324 

taxa (Fig. 3A-B, Fig. S2A-B). Medium-seeded, mid-successional saplings (e.g., Ocotea 325 

puberula, Allophylus psilospermus; Fig. S3) had the lowest densities in natural regeneration 326 

while both planted treatments had densities at least equal to those observed in reference forest 327 

(Fig. S2A-B). 328 

 329 

DISCUSSION 330 

After nearly two decades, our comprehensive census of experimental restoration plots showed 331 

that the naturally recruiting tree communities are still limited to planted and early-successional 332 

taxa, but understory communities show high potential for future forest recovery. Natural 333 

regeneration plots had more than twice the expected number of species (corrected for differences 334 

in sampling area) as recorded in surveys 7 years prior (Holl et al. 2017). In turn, both planted 335 

treatments produced similarly elevated richness of recruiting seedling and sapling communities 336 

as compared to natural regeneration, but the relative abundance of late-successional recruits, 337 

particularly those with large seeds, was greatest in plantation plots. Any positive effects of either 338 

tree-planting strategy on later-successional species recruitment, however, were not yet detectable 339 

among the largest stem sizes, and the overall composition of all restoration treatments still 340 

differed substantially from reference forest. These demographic and compositional patterns 341 

signal that differing restoration approaches could have diverging effects on both the pace and 342 

trajectory of succession beyond the second decade of recovery. 343 
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Although previous observations from this study have consistently shown similar effects 344 

of the two planting methods on the recovery of seed dispersal and seedlings (e.g., Holl et al. 345 

2017, Werden et al. 2022), our comprehensive census reveals subtle compositional differences 346 

between applied nucleation and plantation treatments after nearly two decades. First, we found 347 

evidence of recruitment limitation as a function of seed size that is curtailed through active 348 

planting. Recruit densities of late-successional seedling and sapling species with medium and 349 

large seeds were consistently greater in the planted treatments than natural regeneration, and 350 

plantation showed comparable densities to reference forest. Our findings support the importance 351 

of canopy formation to facilitate colonization of large-seeded species during tropical forest 352 

succession, a result consistent with many prior studies (De La Peña‐Domene et al. 2016, Rivas-353 

Alonso et al. 2021). Despite increasing canopy cover in applied nucleation plots, plantations 354 

continue to have a more uniform canopy cover than applied nucleation in this second decade of 355 

recovery (Holl et al. 2020, Zahawi et al. unpublished data). In turn, large birds such as toucans, 356 

which are a key disperser of large seeds in our study region, visited plantations more frequently 357 

than they did applied nucleation plots over a decade-long period (Reid et al. 2021). Whereas 358 

differential seed fates among treatments present an alternative explanation to the observed 359 

treatment effects, large-seeded trees are generally not strongly establishment-limited during 360 

tropical secondary succession (Pereira et al. 2013, de la Pena-Domene et al. 2018, Metz et al. 361 

2023) and prior data from our experiment suggested dispersal- rather than establishment-362 

limitation as the primary driver of variation among treatments (Werden et al. 2020). Recent seed 363 

dispersal data (San José et al. unpublished), however, indicate that differences in abundance of 364 

medium- and large-seeded, later-successional seeds dispersed to the three treatments have 365 
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diminished substantially in the past few, suggesting that recruit similarity across restoration 366 

treatments may converge over time.    367 

 A second pattern we observed is that applied nucleation plots tended toward higher 368 

densities of early-successional seedlings than plantations, although the difference was not 369 

significant due to high within-treatment variation. Given the ubiquitous dispersal of these taxa in 370 

our study system (Reid et al. 2015, Werden et al. 2021), their varying recruit densities are 371 

indicative of differing ecological filtering between the two planted treatments. Varying canopy 372 

development and light environments are often important drivers of tropical forest plant size class 373 

distributions, particularly as succession proceeds (Nicotra et al. 1999, Balderrama and Chazdon 374 

2005, Van Breugel et al. 2019). The greater canopy cover in plantations corresponds with 375 

increased shade and litter depth, both of which inhibit the germination and emergence of early-376 

successional tropical trees with small seeds (Celentano et al. 2011, Muscarella et al. 2013).  377 

At the same time, the slightly more open canopy, and in turn light availability, in applied 378 

nucleation environments has the potential to enhance growth and transition of recruits to larger 379 

size classes (Caughlin et al. 2019). Indeed, there were more early successional trees in applied 380 

nucleation and natural regeneration than in plantation plots, and saplings showed a similar trend. 381 

However, we observed an overall suppression of natural recruits reaching the canopy in 382 

plantations and a trend toward accelerated recruit growth (i.e., more tree-sized stems) in applied 383 

nucleation for some later-successional species, which has also been supported by individual 384 

sapling measurements over time (Kulikowski et al. 2023). These demographic trade-offs in 385 

restoration strategies present important questions about late-successional processes which have 386 

rarely been investigated. As seed rain becomes more similar to the restored forest stand over time 387 

(Huanca Nuñez et al. 2021), local abiotic and biotic conditions – light availability in particular – 388 
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will determine which species survive and transition into the canopy layer (Caughlin et al. 2019) 389 

while the canopy cover across treatments is also slowly converging over time (Zahawi et al. 390 

unpublished data). 391 

 A major open question in the forest restoration literature is the extent to which active 392 

planting interventions have legacy effects on successional trajectories over time as compared to 393 

naturally generating forest. In recent years, we have observed high mortality of our two fast-394 

growing planted species, E. poeppigiana and I. edulis, of which only ~30% survived after 16-18 395 

years. Nonetheless the tree layer in plantations remains dominated by planted species, all of 396 

which are now reproductive so recruits of these species could influence the successional 397 

trajectory. Contrary to expectation, however, abundance of planted tree recruits did not 398 

correspond with greater initial planting densities as applied nucleation had greater seedling 399 

abundance of these species, which was likely facilitated by the more heterogenous and open 400 

canopy during the first decade. That said, the abundance of saplings of planted species was 401 

similarly low across restoration treatments which is consistent with our observations of very high 402 

seedling mortality of these species that is likely driven by shading and herbivory (Holl et al. 403 

2022, Kulikowski et al. 2022).  404 

Beyond the initial two decades of forest recovery, tropical forest succession is largely 405 

dependent on the mortality of pioneers and planted tree species to drive gap dynamic processes 406 

and growth of later successional species (Finegan 1996, Philipson et al. 2012, Swinfield et al. 407 

2016). Until now, however, canopy openings created by E. poeppigiana and I. edulis mortality 408 

have been filled quickly by the expanding crowns of V. guatemalensis and early-successional 409 

trees, such as Koanophyllon pittieri, Hampea appendiculata, and Heliocarpus spp. (Lanuza et al. 410 

2018). Whether gap dynamics occur naturally or are facilitated by subsequent felling by 411 
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restoration managers to enhance growth of later-successional species will depend on the specific 412 

tree species used in restoration interventions and long-term project goals.  413 

Many past studies show that natural regeneration, while often a cost-effective restoration 414 

option, can have highly unpredictable recovery outcomes (e.g., Chazdon and Guariguata 2016, 415 

Chazdon et al. 2020, Atkinson et al. 2022). Additionally, in the absence of active management, 416 

there is a much stronger likelihood that succession under natural regeneration will become 417 

arrested or not proceed along a timeline that is relevant to restoration goals (Benayas et al. 2009, 418 

Meli et al. 2017). Natural regeneration plots in our study consistently supported substantial 419 

abundance of early-successional trees and some seedlings and saplings of later-successional 420 

species, suggesting that succession is progressing, albeit slowly. Yet, natural regeneration had 421 

more variable composition among plots for seedling and saplings than did both planted 422 

treatments. Even under conditions with high natural regeneration potential, the stochastic 423 

recovery pattern can produce alternative successional trajectories that are dependent on local 424 

seed sources, the regional species pool, and land use history (Mesquita et al. 2015, Norden et al. 425 

2015, Atkinson et al. 2022). These variable trajectories can include facilitating actively invading 426 

non-native species, which tend to have pioneer life history strategies (Catterall 2016). Indeed, 427 

our natural regeneration plots assembled communities that were disproportionately dominated by 428 

early-successional species compared to active restoration and also showed a propensity to 429 

amplify legacies from prior land-use conditions. Namely, several natural regeneration plots had 430 

substantial abundances of non-native (albeit naturalized) species such as E. poeppigiana, Citrus 431 

spp., and Syzygium jambos that are common in agricultural landscapes. E. poeppigiana and 432 

Citrus spp. primarily occurred from resprouting of cut stems established before restoration had 433 

begun, whereas S. jambos established from seeds dispersed by bats. Importantly, actively 434 
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restored plots had fewer individuals of these non-native species growing past the seedling stage. 435 

In sum, the greater likelihood of poor outcomes such as stalled recovery or invasion make natural 436 

regeneration a potentially risky strategy for restoration practitioners aiming to achieve specific 437 

long-term restoration outcomes, although allowing recovery to proceed for a couple of years 438 

before choosing whether intervention is necessary can help to reduce this uncertainty (Holl et al. 439 

2018), and thereby allocate limiting resources more effectively. Such preparatory monitoring 440 

periods also provide an opportunity to identify naturally regenerating trees, which can be assisted 441 

(e.g., grass clearing, preventing fires) in tandem with more targeted plantings in areas with sparse 442 

seedling growth.  443 

 444 

Conclusions and Management Recommendations 445 

Our study is one of the few with the longevity, replication, and thorough sampling to 446 

compare the effects of restoration interventions on mid-successional filtering, revealing several 447 

key management implications. First, we show in a multi-site experiment that earlier patterns of 448 

active tree planting (applied nucleation and plantation strategies) accelerating recovery over 449 

natural regeneration continue through the second decade. Planting only four species of trees 450 

substantially increased the number of species and individuals of later-successional species and, 451 

importantly, reduced variability in recovery across sites. This contrasts with prior meta-analyses 452 

of active vs. passive tree planting strategies that mostly compared results from sites with 453 

different land use histories and studies of single restoration interventions and suggested that 454 

natural regeneration results in similar or faster recovery rates to active tree planting (Meli et al. 455 

2017, Crouzeilles et al. 2017). Given the highly variable recovery patterns in natural 456 
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regeneration, active planting strategies should be encouraged when land use history and seed 457 

sources are either poorly documented or known to be unfavorable. 458 

Second, whereas both applied nucleation and plantation restoration strategies accelerated 459 

recovery, nuanced ecological tradeoffs emerged in the second decade. We found a new trend of 460 

greater abundance of larger-seeded, late-successional species in plantation than applied 461 

nucleation plots but longer-term data are needed to determine whether these comparatively rich 462 

understory communities will transition into mature canopy trees more rapidly than in applied 463 

nucleation. In fact, data presented here and growth measurements of marked recruits over time 464 

(Kulikowski et al. 2023) suggest that recruits are likely to mature more rapidly in the slightly 465 

more open canopy of the applied nucleation treatment. Given that the plantation treatment 466 

canopy remains dominated by planted species, canopy thinning might help to further accelerate 467 

recovery processes (Swinfield et al. 2016), but needs testing.  468 

Finally, the fact that we observed ~90% of reference forest species in our restored plots 469 

after less than two decades supports the potential for tropical forests to recover from intensive 470 

prior agricultural land-use. Nonetheless, we hasten to reiterate that the overall structure and 471 

composition of all our restoration treatments are still substantially different from reference forest, 472 

and full recovery is likely to take several decades to centuries (Elsy et al. 2024). Moreover, the 473 

rapid recolonization rate of a diverse suite of species is partly a function of the extensive seed 474 

sources remaining in remnant forests, along fence lines, and in active agricultural lands in the 475 

region (Zahawi et al. 2015a, 2021), and would likely be substantially slower in more deforested 476 

landscapes (Pardini et al. 2010). So, protecting existing tropical forests must be the first priority 477 

(Brancalion and Holl 2020, Di Sacco et al. 2021). Taken together, our results highlight (1) the 478 

value of multi-decadal, well-replicated studies to evaluate the effect restoration on successional 479 
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trajectories, and (2) the importance of long-term commitments to forest restoration to achieve 480 

promised biodiversity outcomes. 481 
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FIGURE CAPTIONS 776 

 777 

Figure 1: Species accumulation curves for seedling, sapling, and tree recruits for early- (n = 38 778 

spp.), mid- (n = 52 spp.), and late-successional species (n = 163 spp.) in natural regeneration 779 

(NR), applied nucleation (AN), plantation (PL), and reference forest (RF). Rarefaction was 780 

performed across randomized samples of 3 × 3 m quadrats with 95% confidence intervals, 781 

displayed as shaded area. Dotted sections of curves indicate extrapolated calculations. See Table 782 

S3 for statistical comparisons of species richness estimates. 783 

 784 

Figure 2: Non-metric multi-dimensional scaling (NMDS) plot of Chao dissimilarity distances 785 

among site community matrices based on total species abundances for (A) seedling, (B) sapling, 786 

and (C) tree recruits from natural regeneration (NR), applied nucleation (AN), plantation (PL), 787 

and reference forest (RF). Shaded ellipses indicate 95% confidence intervals of within-group 788 

variance. Plot values are shown as small circles, and treatment group centroids are large cross-789 

filled squares. Stress = 0.17-0.18 for all three vegetation size classes. See Table S4 for pairwise 790 

comparisons of treatments. 791 

 792 

Figure 3: Mean stem densities of (A) seedlings, (B) saplings, and (C) trees of planted, early 793 

successional, and later-successional species with small (Sm, <5 mm), medium (Md, 5-<10 mm) 794 

and large (Lg, ≥10 mm) seeds across the four treatments: natural regeneration (NR), applied 795 

nucleation (AN), plantation (PL), and reference forest (RF). Later-successional species include 796 

mid- (no cross hatching) and late- (cross hatching) species. Error bars represent 95% confidence 797 

intervals. Note different y-axis scales. Means with the same letter do not differ significantly (p > 798 
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0.05) using pairwise comparisons of estimated marginal means with a Bonferroni correction to 799 

resulting p-values. See Fig. S2 for statistical comparisons of mid- and late-successional species 800 

separately. 801 




