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ARTICLE

Genetic Regulation of Adipose Gene Expression
and Cardio-Metabolic Traits

Mete Civelek,1,2,3,13 Ying Wu,4,13 Calvin Pan,1 Chelsea K. Raulerson,4 Arthur Ko,5,6 Aiqing He,7

Charles Tilford,7 Niyas K. Saleem,8 Alena Stan�cáková,8 Laura J. Scott,9 Christian Fuchsberger,9

Heather M. Stringham,9 Anne U. Jackson,9 Narisu Narisu,10 Peter S. Chines,10 Kerrin S. Small,11

Johanna Kuusisto,8 Brian W. Parks,1 Päivi Pajukanta,5,6 Todd Kirchgessner,7 Francis S. Collins,10

Peter S. Gargalovic,7 Michael Boehnke,9 Markku Laakso,8,14 Karen L. Mohlke,4,14,*
and Aldons J. Lusis1,5,6,12,14,*

Subcutaneous adipose tissue stores excess lipids and maintains energy balance. We performed expression quantitative trait locus (eQTL)

analyses by using abdominal subcutaneous adipose tissue of 770 extensively phenotyped participants of the METSIM study. We iden-

tified cis-eQTLs for 12,400 genes at a 1% false-discovery rate. Among an approximately 680 known genome-wide association study

(GWAS) loci for cardio-metabolic traits, we identified 140 coincident cis-eQTLs at 109 GWAS loci, including 93 eQTLs not previously

described. At 49 of these 140 eQTLs, gene expression was nominally associated (p < 0.05) with levels of the GWAS trait. The size of

our dataset enabled identification of five loci associated (p < 5 3 10�8) with at least five genes located >5 Mb away. These trans-eQTL

signals confirmed and extended the previously reported KLF14-mediated network to 55 target genes, validated the CIITA regulation

of class II MHC genes, and identified ZNF800 as a candidate master regulator. Finally, we observed similar expression-clinical trait cor-

relations of genes associated with GWAS loci in both humans and a panel of genetically diverse mice. These results provide candidate

genes for further investigation of their potential roles in adipose biology and in regulating cardio-metabolic traits.
Introduction

Genome-wide association studies (GWASs) have identified

many loci for complex metabolic and cardiovascular traits,

yet the underlying genes and mechanisms by which they

affect disease remain poorly characterized.1,2 The genetic

analysis of gene expression by identification of expression

quantitative trait loci (eQTLs) in relevant tissues has

proven useful to predict candidate genes at GWAS loci

and biological pathways that are perturbed in affected indi-

viduals.3–6 Subcutaneous adipose tissue serves as a buff-

ering system for lipid energy balance, particularly fatty

acids,7,8 and might play a protective role in metabolic

and cardiovascular disease risk.9

Subcutaneous adipose eQTL studies have implicated

genes involved in obesity and metabolic traits.10–13 Recent

GWASs for type 2 diabetes (T2D), cholesterol and triglycer-

ide levels, body mass index, waist-hip ratio, and adiponec-

tin have reported subcutaneous adipose eQTLs that are

coincident with specific GWAS loci.14–17 Similarly, a recent

large GWAS for waist-hip ratio identified loci that were

enriched for genes expressed in subcutaneous adipose

tissue and for putative regulatory elements in adipocyte
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nuclei.16 Many GWAS loci for these traits do not yet have

clear candidate genes, in part because of the limited statis-

tical power of existing eQTL studies.

trans-eQTL associations between variants and tran-

scripts located far from each other or on different chromo-

somes can identify downstream disease genes, including

those not implicated by GWASs. Identifying these distant

relationships is difficult because of the multiple testing

burden in humans. Studies of natural variation in mice

have identified a number of ‘‘hotspot’’ loci associated

with trans regulation of genes and clinical traits.18,19 One

of the first reported human trans-acting eQTLs involved

the KLF14 transcription factor in adipose tissue.20 The

locus associated with T2D and HDL-cholesterol levels

showed a cis-acting association with expression of KLF14

and ten distal genes.20 Studies of gene expression in circu-

lating monocytes or whole-blood cells have also provided

evidence of trans regulation of gene expression with link-

age to traits relevant to lipid metabolism, type 1 diabetes,

hypertension, celiac disease, and cancer.21,22

In light of the widespread use of mice to help validate

and gain mechanistic understanding of genes in GWAS

loci, commonalities and differences in the regulatory
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networks of mice and humans are of clear relevance for

studies of common diseases.6 A previous comparison be-

tweenmouse and human adipose transcriptional networks

detected a shared core-network module enriched for genes

involved in the inflammatory and immune response caus-

ally associated with obesity-related traits.10 Recent analysis

of DNase I hypersensitive sites and occupancy profiles of

transcription-factor binding in humans and mice suggests

the preservation of similar regulatory mechanisms for adi-

pose gene expression in both species, and this preservation

could be leveraged to inform disease pathways.23,24

We describe here the analysis of gene expression in 770

subcutaneous adipose samples from Metabolic Syndrome

in Men (METSIM), a study of 10,197 men, 45–73 years of

age, living in the Kuopio area of Finland. Study data

include dense genotypes and extensive metabolic and car-

diovascular traits, such as plasma lipids, inflammatory

markers, glycemic traits, and anthropometric traits.25 We

identified cis-eQTLs at GWAS loci for cardio-metabolic

traits, as well as trans-eQTL hotspots with at least five

distant target genes. We also identified associations of

gene expression with human clinical traits and compared

our results with those of analogous studies in a set of 120

inbred strains of mice.
Subjects and Methods

METSIM Study Participants and Sample Characteristics
We analyzed samples from 770 males who are part of the METSIM

study.25 The Ethics Committee of the Northern Savo Hospital Dis-

trict approved this study, and all participants gave written

informed consent. The population-based METSIM study included

10,197 men, aged 45–73 years and randomly selected from the

population register of Kuopio town in eastern Finland (population

95,000). Every participant had a 1 day outpatient visit to the

Clinical Research Unit at the University of Kuopio, including an

interview on the history of previous diseases and current drug

treatment and an evaluation of glucose tolerance and cardiovascu-

lar risk factors. After 12 hr of fasting, a 2 hr oral 75 g glucose toler-

ance test was performed, and the blood samples were drawn at 0,

30, and 120 min. Plasma glucose was measured by enzymatic

hexokinase photometric assay (Konelab Systems reagents; Thermo

Fischer Scientific), and insulin and pro-insulin were determined by

immunoassay (ADVIA Centaur Insulin IRI no. 02230141; Siemens

Medical Solutions Diagnostics). Evaluation of insulin sensitivity

(Matsuda index) and insulin secretion (calculated from area

under the curve between 0 and 30 min of glucose tolerance test

with the formula InsAUC0–30/GlucAUC0–30) have been previously

described.25,26 Plasma levels of lipids were determined via enzy-

matic colorimetric methods (Konelab System reagents, Thermo

Fisher Scientific). Plasma adiponectin was measured with the

Human Adiponectin Elisa Kit (Linco Research), C-reactive protein

with high sensitive assay (Roche Diagnostics GmbH, Mannheim,

Germany), and interleukin 1 receptor agonist with immunoassay

(ELISA, Quantikine DRA00 Human IL-1RA, R&D Systems). Serum

creatinine was measured by the Jaffe kinetic method (Konelab Sys-

tem reagents, Thermo Fisher Scientific) and was used for calcu-

lating the glomerular filtration rate. Height and weight were

measured to the nearest 0.5 cm and 0.1 kg, respectively. Waist
The Ameri
circumference (at the midpoint between the lateral iliac crest and

lowest rib) and hip circumference (at the level of the trochanter

major) were measured to the nearest 0.5 cm. Body composition

was determined by bioelectrical impedance (RJL Systems) in partic-

ipants in the supine position. The characteristics of the study par-

ticipants are shown in Table S1. 770 participants were recruited for

adipose-tissue needle biopsies. 61 participants were diagnosedwith

impaired glucose tolerance, and 27 participants had newly diag-

nosed type 2 diabetes at the time of the tissue collection.
Genotyping and Imputation
Genotyping of METSIM samples was performed with the Illumina

HumanOmniExpress BeadChip array and the Illumina Human-

CoreExome at the Center for Inherited Disease Research. Markers

with poor mapping, no founder genotypes, call rate < 95%, devi-

ation from Hardy-Weinberg equilibrium (p < 10�6), or more than

two alleles were removed from subsequent imputation. We carried

out genotype imputation of the 681,789 directly genotyped vari-

ants that passed quality control by applying the Markov Chain

Haplotyping algorithm (MaCH) and the reference panel from

the Haplotype Reference Consortium (see Web Resources). After

imputation, variants were filtered on the basis of imputation qual-

ity (MaCH r2 > 0.3) and minor-allele frequency (MAF R 0.01).

7,677,146 variants were retained for subsequent analysis.
Gene Expression Profiling
Total RNA from METSIM participants was isolated from adipose

tissue via the QIAGEN miRNeasy kit, according to the manufac-

turer’s instructions. RNA integrity numbers (RINs) were assessed

with the Agilent Bioanalyzer 2100 instrument, and 770 samples

with RIN > 7.0 were used for transcriptional profiling. Expression

profiling with the Affymetrix U219 microarray was performed at

the Department of Applied Genomics at Bristol-Myers Squibb ac-

cording to the manufacturer’s protocols. The probe sequences

were re-annotated so that probes that mapped to multiple loca-

tions, contained variants with MAF > 0.01 in the 1000 Genomes

Project European samples, or did not map to known transcripts

on the basis of the RefSeq (version 59) and Ensembl (version 72)

databases were removed; 6,199 probe sets were removed in this

filtering step. For subsequent analyses, we used 43,145 probe sets

that represent 18,155 unique genes. The microarray image data

were processed with the Affymetrix GCOS algorithm via the

robust multiarray average (RMA) method for determination of

the specific hybridizing signal for each gene.
PEER Factor Analysis
We applied the probabilistic estimation of expression residuals

(PEER) method27 to infer and account for complex non-genetic

factors affecting gene expression levels. This method is designed

to detect the maximum number of cis-eQTLs. To optimize the dis-

covery of trans-eQTLs within the same analysis, we performed

PEER analysis by examining 10–50 inferred factors (Nk) at incre-

ments of five factors. We then used Matrix eQTL28 to assess the

genetic association with inverse normal-transformed PEER-

processed residuals from RMA-normalized expression data. The

numbers of cis- and trans-eQTLs obtained at different Nk levels

are shown in Table S2. We examined variants on chromosome 7,

including rs4731702 at the known master regulator KLF14,20 to

determine the number of trans-eQTL target genes by using various

numbers of PEER factors. We selected Nk ¼ 35 as a single analysis

to maximize the number of target genes at this locus; this
can Journal of Human Genetics 100, 428–443, March 2, 2017 429



threshold captured the 94.8% of cis-eQTLs identified with 50 PEER

factors. For downstream eQTL mapping, we used the inverse

normal-transformed PEER-processed residuals after accounting

for 35 factors.
eQTL Mapping
We performed eQTLmapping in 770MESTIM individuals by using

both FaST-LMM29 and EPACTS and implementing a linear mixed

model to account for the population structure among the sam-

ples.30 Genotype dosages from all autosomal chromosomes and

expression data that had passed the aforementioned quality-con-

trol measures were used. For FaST-LMM implementation, to

improve power31 when testing all the variants on chromosome

N for association, we constructed the kinship matrix by using

the variants from all other chromosomes besides N. This proced-

ure allowed us to include the variant being tested for association

in the regression equation only once. Results obtained with

FaST-LMM and EPACTS were similar. Results obtained from

EPACTS analysis were used in the identification of coincident

eQTL and GWAS signals. Results from the FaST-LMM analysis are

available on our website.

eQTLs were defined as cis (local) if the peak association was

within 1 Mb on either side of the exon boundaries of the gene

or as trans (distal) if the peak association was at least 5 Mb outside

of the exon boundaries. We used all association p values in the cis

region to estimate the false-discovery rate (FDR-qvalue) by

using the qvalue package in R. Variants with association p values

< 2.46 3 10�4 corresponding to 1% FDR were considered signifi-

cant. Considering the large number of analyses we performed to

calculate trans-eQTL associations, we used the conservative Bon-

ferroni-corrected p < 1.51 3 10�13 (0.05/[7.67 million variants 3

43,145 probe sets]) to identify trans-eQTLs. To detect possible

trans-eQTL hotspots, we report variants that are associated with

at least five genes at a more liberal threshold of p< 53 10�8. These

hotspots were visualized with Circos-0.66.32 LocusZoom was used

for the regional visualization of eQTL results on the basis of

linkage disequilibrium (LD) ascertained from the 770 METSIM

samples.33
Heritability Calculations
Heritability was estimated via a linear mixed model with the

GCTA software.34,35 In this approach, gene expression pheno-

types are assumed to be generated by genetic and environmental

components. The assumption behind the linear-mixed-model

approach is that the covariance of the genetic component of

the phenotypic data is proportional to the kinship or genetic

similarity matrix between the individuals. The analysis provides

estimates of s2
u and s2

e, the variances corresponding to the ge-

netic and environmental components, respectively. The herita-

bility is then the fraction of the variance accounted for by the

genetics

h2 ¼ varðuÞ
varðuÞ þ varðeÞ;

where var(u) and var(e) are, respectively, the genetic and residual

variance components estimated by the restricted-maximum-

likelihood approach using related individuals, and is computed

for each probe set. A standardized kinship matrix, which has a

mean of 1 along the diagonal, is used for these estimates

so that they are consistent with the classical definition of

heritability.36
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Evaluation of eQTLs in Another Adipose eQTL Cohort
eQTLs identified in METSIM and MuTHER cohorts37 were

compared in each study reciprocally. Of the ~5 million significant

variant-probe pairs identified in the METSIM study for cis associa-

tions (Table S3), 453,484 had an exact match for the variant in a

corresponding variant-probe pair in theMuTHER study. Amajority

of the genes are represented by multiple probes on the Affymetrix

microarray used in theMETSIM study and the Illuminamicroarray

used in the MuTHER study. Therefore, we required at least 50% of

the variant-probe pairs for a given gene to have the same direction

of effect in both studies at various p value thresholds (p< 53 10�2

to 5 3 10�6) in the MuTHER study. Of the 11,053 significant

variant-probe pairs identified in theMETSIM study for trans associ-

ations (Table S3), 2,312 had an exact match for the variant in a

corresponding variant-probe pair in the MuTHER study. We report

the METSIM-detected trans-eQTLs for which the exact variant-

gene pair exists and shows the same direction of effect inMuTHER

at several p value thresholds (p < 5 3 10�2 to 5 3 10�6) for which

MuTHER data were available. cis- and trans-eQTLs detected in

the MuTHER study were compared to those in the METSIM study

according to the same criteria.

For the three trans-eQTL hotspots for which the peak variant or

its LD proxy was available in the MuTHER dataset, we were able to

find corresponding variant-probe pairs for 83 of the 106 genes. We

report the variant-gene pairs with the same direction of effect size

at p < 0.05 in the MuTHER study.
cis-eQTLs at GWAS Loci
We focused on the GWAS index variants reported to be associated

at genome-wide significance (p < 53 10�8) with any of 91 cardio-

metabolic diseases and related quantitative traits (Table S4). We

downloaded these variants from the National Human Genome

Research Institute–European Bioinformatics Institute GWAS Cata-

log (September 22, 2014) and included additional variants.16,17We

estimated the number of loci for each trait group on the basis of

the names of ‘‘reported gene(s)’’ and/or ‘‘mapped genes’’ shown

in the catalog. Within the variants available in the METSIM

eQTL data, we initially examined 115 variants at 68 loci for T2D,

114 variants at 68 loci for glycemic traits, 325 variants at 205

loci for obesity and related traits, 410 variants at 213 loci for lipid

traits, 79 variants at 60 loci for metabolic syndrome, and 249 var-

iants at 187 loci for other broadly defined cardiovascular risk traits.

After removing duplicate variants present in at least one disease/

trait group, we further examined the remaining 1,221 GWAS

variants at approximately 680 loci for association with local

gene expression levels.

For significant variant-transcript associations (FDR < 1%), if

multiple probe sets mapped to the same transcript, we retained

the probe sets for which the lead eSNP (the variant that exhibited

the strongest evidence of association with the expression level of

the corresponding transcript) had the largest pairwise LD r2 esti-

mate with the GWAS variant; LD was calculated from the 770

METSIM samples. If two or more highly correlated variants (LD

r2 > 0.8) were associated with the same transcript, we reported

the variant with the largest LD r2 with the lead eSNP. For two var-

iants (pairwise LD r2 ¼ 0.79) associated with different GALNT2

probe sets, we kept the variant exhibiting higher LD r2 with the

GWAS index variant.

We further examined whether each eQTL was coincident with

the GWAS signal. We defined GWAS-coincident eQTLs as loci

with pairwise LD r2 > 0.8 between the GWAS index variant and
2, 2017



the lead eSNP. To evaluate association between the GWAS variant

and the lead eQTL variant at each locus, we performed reciprocal

conditional analyses; we tested association between the GWAS

variant and transcript level when the lead eSNP was included in

the model, and vice versa.

For 61 cardio-metabolic traits with publically available GWAS

summary results14,16,17,38–48 (Table S5), we applied the summary-

data-based Mendelian randomization (SMR) method to propose

relevant genes at the GWAS loci.49 We performed a transcrip-

tome-wide association for 61 cardio-metabolic traits and 24,383

probe sets with cis-eQTLs (<1 Mb) and focused on GWAS loci

(p < 5 3 10�8). Probe sets with pSMR < 2.1 3 10�6 (0.05/24,383

probe sets) were then tested for pleiotropy via heterogeneity in

dependent instruments (HEIDI). Probe sets with pHEIDI R 0.05

were identified as potential gene targets of GWAS loci.

We also quantified the uncertainty in the inference that the cis-

eQTL genes are causally mediating the association between the

GWAS loci with cardio-metabolic traits by using the causal infer-

ence test (CIT).50 We used the GWAS index variants, expression

level of the cis-eQTL genes, and the inverse normalized GWAS trait

measured in METSIM to infer a causal relationship wherein for

gene expression mediates the association between GWAS variant

and trait when pCIT < 0.05.50
Association between Gene Expression Level and

Phenotypic Traits
We conducted regression analyses to evaluate the association be-

tween gene expression and 23 cardio-metabolic-related traits in

up to 770 METSIM individuals. The RMA-normalized expression

levels were inverse normal transformed after age and BMI were ac-

counted for.We used non-PEER-corrected expression levels for this

analysis because correction for PEER factors can remove broadly

acting phenotypic effects on gene expression. Eight of the 35

PEER factors had significant correlation with BMI (jrj ¼ 0.10 to

0.50, p ¼ 2.8 3 10�3 to 3.5 3 10�50). For genes coincident with

GWAS loci, in addition to non-PEER-corrected associations, we

calculated the association between PEER-corrected expression

levels and traits. The 23 phenotypic traits examined included

five obesity-related traits (BMI, waist-hip ratio, waist circumfer-

ence, hip circumference, and fat-free mass), seven glycemic traits

(glucose, insulin, proinsulin, HOMA-b, Hb1Ac, Matsuda index,

and adiponectin), six lipid-related traits (total cholesterol, low-

density lipoprotein cholesterol [LDL-C], high-density lipoprotein

cholesterol [HDL-C], triglycerides, total fatty acids, and free fatty

acids), two inflammatory traits (C-reactive protein and interleukin

1 receptor antagonist), two blood-pressure traits (systolic and dia-

stolic blood pressure, respectively), and one kidney-function trait

(glomerular filtration rate). The phenotypic traits were adjusted

for age and BMI before inverse normal transformation. When

examining the association between gene expression and BMI,

we applied no adjustment for BMI for either the phenotypic trait

(BMI) or gene expression level. We used FDR < 1% (equivalent

p < 6.5 3 10�4) to define a significant association between gene

expression level and phenotypic-trait level. Genes were clustered

via hierarchical clustering based on Euclidian distance as imple-

mented in the heatmap2 function of the gplots package in R.
Mouse Expression and Phenotypic-Trait Data
The mouse studies using the Hybrid Mouse Diversity Panel

(HMDP) have been described previously (GEO: GSE42890).51,52

In brief, mice from 120 strains were obtained from The Jackson
The Ameri
Laboratory and were bred at the University of California, Los

Angeles. Mice were maintained on a chow diet (Ralston Purina

Company) until 8 weeks of age, when they were either continued

on a chow diet (n ¼ 185 mice) or given a high-fat, high-sucrose

diet (Research Diets-D12266B) for an additional 8 weeks (n ¼
227 mice). Body composition analysis was performed by nuclear

magnetic resonance with a Bruker Minispec. Retro-orbital blood

was collected under isoflurane anesthesia after mice fasted for

4 hr. Plasma lipids, insulin, glucose, and HOMA-IR were deter-

mined as previously described.52,53 The animal protocol for the

study was approved by the Institutional Care and Use Committee

(IACUC) at the University of California, Los Angeles. Total RNA

from flash-frozen epididymal adipose samples from 228 male

mice was hybridized to Affymetrix HT_MG-430A arrays and

scanned according to standard Affymetrix protocols. To reduce

the chances of spurious association results, we performed RMA

normalization after removing all individual probes with variants

and all probe sets containing eight or more variant-containing

probes, which resulted in 22,416 remaining probe sets. Correla-

tions of non-PEER-corrected expression levels with phenotypic

traits were calculated with the biweight midcorrelation, which is

robust to outliers.54
Results

Genetic Variants Associated with Gene Expression in

Subcutaneous Adipose Tissue

To identify genetic loci associated with transcript

abundance in abdominal subcutaneous adipose tissue,

we studied 770 extensively phenotyped men from the

METSIM study. We analyzed ~7.67 million variants and

abundance of 43,145 probe sets corresponding to 18,155

unique genes. The mean narrow-sense heritability, h2, of

the probe sets was 0.27, suggesting significant genetic ef-

fects on adipose gene expression (Figure S1).

eQTL mapping identified cis-eQTLs (<1 Mb) for 12,400

genes at a 1% FDR (p < 2.46 3 10�4) (Figure S2 and Table

S3). The larger number of adipose eQTLs observed in

comparison to that in previous adipose eQTL studies

might be due to the larger sample size, denser imputation,

and/or analysis of a larger number of transcripts; some

differences might be due to different microarray plat-

forms, statistical methodology, and p value thresholds

(Table S6).10,11,37

30% of the cis-eQTLs discovered in METSIM at p < 5 3

10�6 showed consistent allelic direction of effect in the

MuTHER study, and 79.1% of the cis-eQTLs reported in

MuTHER at this threshold showed a consistent direction

of effect in METSIM (Table S7).
Coincidence of cis-eQTLs and GWAS Loci

Hundreds of GWAS loci have been reported for cardio-

metabolic diseases and related traits.55 Given the value

of identifying candidate genes at GWAS loci and the

observation that many eQTLs are shared across tissues,56

we investigated loci for a broad set of 91 cardio-metabolic

diseases or traits (Table S4). Among the 1,221 GWAS sig-

nals (p < 5 3 10�8), we detected 944 initial unique
can Journal of Human Genetics 100, 428–443, March 2, 2017 431



GWAS variant and eQTL gene pairs (FDR< 1%, equivalent

p < 2.4 3 10�4) (Table S8).

On the basis of pairwise LD r2 > 0.8 between the GWAS

variant and the variant that exhibited the strongest associ-

ation with the gene expression level (lead eSNP), 140

(15%) of the 944 cis-eQTLs appear to be coincident with

the GWAS signals. The coincidence is supported by recip-

rocal conditional analysis: after conditioning was per-

formed on each lead eSNP, no GWAS variant remained

significant (FDR < 1%), and after conditioning on each

GWAS variant, 124 eSNP signals were no longer significant,

and 16 were strongly attenuated (Dlog10(p) of 8.5 to 112 )

(Table S8). Of the 140 cis-eQTLs at GWAS loci, 93 (66.4%)

were not previously reported by large-scale GWASs that

interrogated available cis-eQTLs14–17,38,45,48,57–68 and 50

showed consistent direction of allelic effect at p < 0.05

in the MuTHER study. Table 1 shows 29 eQTLs for glyce-

mic, obesity, and lipid traits at the LD threshold of r2 >

0.9 between the GWAS variant and lead eSNP; three of

these eQTLs were also identified with the SMR method.

The full set of 944 adipose eQTLs at GWAS loci, evidence

of their coincidence with the GWAS signals, and the corre-

sponding p values in the MuTHER study are provided in

Table S8.

To consider potential pleiotropic effects of theGWAS var-

iants on gene expression and cardio-metabolic traits, we

performed two additional tests. We applied the SMR Men-

delian randomizationmethod to loci for 61 traits and iden-

tified 46 genes (pSMR< 2.13 10�6; pHEIDIR 0.05) (Table S9),

19ofwhichwere identifiedvia LD (r2>0.8) andconditional

analyses. The SMR analysis also detected nine genes

(C18orf8, CABLES1, CADM1, CDK6, CENPW, LMOD1,

MFAP2, MT1M, and STARD10) that were not identified via

the conditional analysis approach.

We applied a causal-inference test50 and identified 15

variant-transcript pairs for seven traits that showed evi-

dence of causal mediation (pCIT < 0.05) (Table S10 and

Figure S3). None of the target genes identified by the

causal-inference test overlap with the genes identified by

the SMR analysis.

The coincident GWAS and eQTL signals suggest candi-

date genes that might influence cardio-metabolic risk. For

example, at the ARL15 locus associated with adiponectin

and HDL-C14,38, the GWAS index variant rs6450176 was

associated with expression of FST (p ¼ 3.33 10�9), located

~500 kb away, and exhibited strong LD (r2 ¼ 0.99) with the

lead eSNP rs59061738, associated with FST expression (p ¼
1.8 3 10�9, Figure 1A and Table 1). Reciprocal conditional

analyses provided additional evidence that this eQTL was

coincident with the GWAS signal (pcond ¼ 0.43 for

rs6450176 and 0.17 for rs59061738). FST expression levels

were negatively associated with HDL-C (p ¼ 1.2 3 10�3)

and adiponectin (p ¼ 6.0 3 10�6, Figure 1B). Encoded by

FST, the protein follistatin has been shown to promote

adipocyte differentiation and reduce fat mass and insulin

resistance.70,71 The same GWAS variant showed no eQTL

for the nearest gene, ARL15 (p ¼ 0.43), and the expression
432 The American Journal of Human Genetics 100, 428–443, March
level of ARL15was not associated with HDL-C (p¼ 0.85) or

adiponectin (p ¼ 0.084). These data suggest that the

associations with the levels of adiponectin and HDL-C at

this GWAS locusmight bemediated at least in part through

the altered expression of FST.

Association between Gene Expression Level and

Phenotypic Traits

We investigated the effects of gene expression levels on

cardio-metabolic risk by evaluating the association

between the expression levels of all 43,145 probe sets

and 23 cardio-metabolic-related traits (Table S11). At

FDR < 1% (equivalent p < 6.5 3 10�4), we observed

48,365 significant associations between probe set and

trait, and these corresponded to 29,920 gene-trait associa-

tions and 7,643 genes that were associated with 1 to

16 cardio-metabolic traits (Table S12). 10,819 probe sets

(6,064 genes) were associated with BMI, 6,640 probe

sets (3,940 genes) with Matsuda index, and 4,933 probe

sets (3,039 genes) with insulin levels.

We next examined associations between the identified

eQTL genes and cardio-metabolic traits measured in exten-

sively phenotyped participants of the METSIM study.

Among the genes for the 140 GWAS-relevant eQTLs, the

expression levels of 49 were associated with the corre-

sponding GWAS traits at p < 0.05 (Figure 2; also

Figure S4 and Table S8). For example, TBX15 at the

TBX15-WARS2 locus was associated with waist-hip ratio

adjusted for BMI (p ¼ 1.3 3 10�8) and 12 other traits

(p ¼ 4.3 3 10�21 to 2.6 3 10�4), and expression of

GPR146 at the lipid locus GPR146 was associated with

HDL-C (p ¼ 3.3 3 10�13), triglycerides (p ¼ 3.9 3 10�13),

and ten other traits (p ¼ 2.3 3 10�45 to 6.6 3 10�5,

Figure 2). These gene expression and trait associations at

GWAS loci further suggest plausible roles of these genes

in mediating variant effects on cardio-metabolic disorders.

Human GWAS eQTL Genes in Mice

Wenext sought additional evidence for the involvement of

GWAS-relevant eQTL genes in regulating cardio-metabolic

traits by comparing results with those from a diverse panel

of 120 inbred mouse strains known as the Hybrid Mouse

Diversity Panel (HMDP).72 In the panel, we identified

microarray probes for 107 of the 140 mouse orthologs

and tested them for association between adipose expres-

sion level and metabolic traits, including plasma lipids, in-

sulin, glucose, and body-fat composition. We observed a

significant correlation between 70 genes and one of the

metabolic traits (p < 5.2 3 10�5; 0.05/963 tests for nine

traits 3 107 genes) (Figure S5). Of these genes, 25 showed

expression levels correlated with a similar metabolic trait

in the same direction (Table S13). 13.1% of 10,771 orthol-

ogous genes had expression-trait correlations in the same

direction in the adipose tissue of both species for waist-

hip ratio, total cholesterol, insulin, and glucose. For

example, GWAS variants associated with the homeostatic

model of insulin resistance (HOMA-IR) are associated
2, 2017



Table 1. Selected Adipose eQTLs Coincident with GWAS Signals for Cardiometabolic Risk

GWAS Variant GWAS Trait GWAS Locus eQTL Gene

GWAS Variant Lead eSNP

LD r2A1/A2 binitial pinitial bcond pcond Lead eSNP A1/A2 binitial pinitial bcond pcond

rs2013208 HDL cholesterol RBM5 RBM6 C/T �0.987 4.4E�113 0.120 6.9E�01 rs11130233 G/T �0.992 4.7E�116 �1.099 2.2E�04 0.98

rs12051272 adiponectin CDH13 CDH13 T/G 1.370 4.3E�80 0.000 2.8E�01 rs12051272 T/G 1.370 4.3E�80 0.000 2.8E�01 1.00

rs6805251 HDL cholesterol GSK3B GSK3B C/T �0.696 1.5E�43 0.067 7.4E�01 rs334533 C/T �0.718 9.2E�47 �0.786 1.3E�04 0.95

rs8077889 triglycerides MPP3 MPP3 C/A �0.696 9.2E�33 �0.174 7.4E�01 rs55768269 T/C �0.695 5.6E�33 �0.569 2.8E�01 0.99

rs4148008 HDL cholesterol ABCA8 ABCA8 G/C �0.538 5.9E�26 0.415 2.1E�02 rs1156340 T/C �0.598 1.8E�31 �1.019 2.5E�08 0.92

rs12489828 waist-hip ratio NT5DC2 NT5DC2 G/T 0.503 4.0E�24 0.089 7.6E�01 rs6778735 T/C 0.510 1.8E�24 0.398 1.9E�01 0.97

rs138777 total cholesterol TOM1 HMGXB4 A/G �0.495 1.7E�22 0.141 8.4E�01 rs9306298 T/C �0.498 1.1E�22 0.636 3.7E�01 0.99

rs2254287 LDL cholesterol B3GALT4 HSD17B8 G/C �0.417 3.5E�17 0.000 2.1E�01 rs2254287 G/C �0.417 3.5E�17 0.000 2.1E�01 1.00

rs12679556 waist-hip ratio MSC EYA1 G/T 0.463 1.1E�16 �0.202 6.2E�01 rs4738141 G/A 0.469 3.4E�17 �0.677 9.7E�02 0.98

rs12748152 HDL cholesterol NR0B2-PIGV PIGV T/C �0.698 4.0E�14 �0.054 8.5E�01 rs6656815 A/G �0.732 2.7E�15 �0.687 1.9E�02 0.90

rs10919388 waist-hip ratio GORAB PRRX1 C/A �0.448 4.5E�14 �0.212 3.3E�01 rs6427242 G/C �0.448 3.7E�14 �0.245 2.5E�01 0.93

rs8077889 triglycerides MPP3 DUSP3 C/A 0.430 6.6E�13 0.000 5.6E�01 rs2342310 C/T 0.430 6.6E�13 0.000 5.6E�01 1.00

rs11136341 LDL cholesterol PLEC1 PLEC G/A �0.358 9.5E�13 0.084 6.5E�01 rs10107388 C/T �0.379 4.9E�14 �0.455 1.5E�02 0.92

rs2590838 adiponectin GNL3 NEK4 G/A 0.346 8.4E�12 �0.018 9.9E�01 rs35212380 C/G 0.346 7.8E�12 �0.415 6.7E�01 1.00

rs439401 triglycerides APOE-TOMM40 APOE T/C 0.384 2.1E�11 0.000 6.7E�01 rs439401 T/C 0.384 2.1E�11 0.000 6.7E�01 1.00

rs181362 HDL cholesterol UBE2L3 YDJC T/C 0.327 7.6E�11 �0.254 1.3E�01 rs11089620 G/C 0.368 3.1E�13 �0.621 2.3E�04 0.91

rs7134375 HDL cholesterol PDE3A PDE3A C/A 0.342 1.6E�10 0.000 3.5E�01 rs7134375 C/A 0.342 1.6E�10 0.000 3.5E�01 1.00

rs11869286 HDL cholesterol STARD3 STARD3 G/C 0.333 1.1E�09 0.000 9.8E�01 rs11869286 G/C 0.333 1.1E�09 0.000 9.8E�01 1.00

rs9400239 body mass index FOXO3 FOXO3 C/T 0.323 3.0E�09 0.008 9.7E�01 rs3800228 G/T 0.337 5.9E�10 0.350 5.5E�02 0.92

rs12748152 HDL cholesterol NR0B2-PIGV ARID1A T/C �0.521 2.2E�08 �0.091 7.8E�01 rs34217609 C/T �0.515 1.1E�08 �0.388 2.2E�01 0.92

rs3812316 triglycerides MLXIPL BCL7B C/G �0.411 6.5E�08 �0.059 8.2E�01 rs799166 C/G �0.431 2.1E�08 �0.395 1.4E�01 0.92

rs4846914 HDL cholesterol GALNT2 GALNT2 G/A �0.267 4.1E�07 0.221 4.4E�01 rs4631704 C/T �0.279 1.3E�07 0.503 8.4E�02 0.97

rs12145743 HDL cholesterol PMVK-HDGF RRNAD1 T/G �0.262 7.9E�07 �0.115 8.1E�01 rs3806415 C/T �0.263 7.8E�07 �0.139 7.7E�01 0.99

rs10501320 proinsulin MADD ACP2 G/C 0.309 1.3E�06 0.024 9.7E�01 rs11039149 A/G 0.310 1.2E�06 0.259 6.5E�01 0.99

rs6784615 waist-hip ratio NISCH-STAB1 NISCH T/C 0.649 1.6E�06 0.000 6.6E�01 rs728408 A/G 0.649 1.5E�06 0.000 7.4E�01 1.00

rs780094 glucose, triglycerides GCKR EMILIN1 T/C 0.240 3.3E�06 0.000 7.2E�01 rs780094 T/C 0.240 3.3E�06 0.000 7.2E�01 1.00

rs10761731 triglycerides JMJD1C NRBF2 A/T �0.231 5.8E�06 0.000 5.8E�02 rs10761739 G/C �0.233 5.2E�06 0.000 4.3E�02 1.00

(Continued on next page)
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with decreased expression level of IRS1 (p ¼ 2.0 3 10�50).

IRS1 expression is negatively correlated with HOMA-IR

(r ¼ �0.40, p ¼ 3.0 3 10�30) in METSIM and the HMDP

(r ¼ �0.50, p ¼ 1 3 10�13) (Figure S6).

The HMDP data support a biological contribution of 25

eQTL genes at GWAS loci; 18 of these genes did not have

significant associations in humans (p > 0.05) but had

significant associations in mice, possibly because of the

heterogeneous environmental effects in humans and

controlled experimental environment in mice (Table

S13). For example, the chromosome 2q35 variants

reported by the GIANT consortium to be associated with

BMI17 span ~300 kb and nine genes. In METSIM, the

BMI risk allele rs492400 was significantly associated with

increased expression of RQCD1 (p ¼ 8.9 3 10�43,

Figure 1C), although RQCD1 expression was only nomi-

nally correlated with BMI (r ¼ 0.09, p ¼ 0.01, Figure 1D).

In the HMDP, Rqcd1 expression was more strongly posi-

tively correlated with subcutaneous fat weight (r ¼ 0.45,

p ¼ 1.2 3 10�12, Figure 1E), providing further support for

the role of RQCD1 in BMI. Consistent correlation between

gene expression and clinical traits in mice for cis-regulated

genes at human GWAS loci supports the fruitful use of

mouse models to further understand the roles of candidate

genes for cardio-metabolic traits.

trans-eQTLs

Associations of variants with expression of distant genes in

trans allow the identification of regulatory networks in

adipose tissue. We observed trans-eQTLs at a Bonferroni-

corrected significance threshold (p < 1.51 3 10�13) for

90 genes (Table S3). To better identify regulatory networks

in human samples, we searched for variants that were asso-

ciated with at least five distal genes at a more liberal

threshold of p < 5 3 10�8. These variants were located

on chromosomes 3, 7, 11, and 16 in five independent

loci (pairwise LD r2 ¼ 0) that we termed trans-eQTL hot-

spots (Table S14, Figure 3). Four of the hotspot loci were

associated with local (cis) gene expression at p < 1 3

10�3 (Figure S7).

40 of the 55 trans-mediated genes at the KLF14 locus

were significantly associated with metabolic phenotypes

at 1% FDR, representing a significant enrichment with

respect to all the genes assayed on the microarray (Chi-

square p value ¼ 8.4 3 10�6) (Figure S8). The trans-regu-

lated genes were co-expressed with pairwise correlations

of�0.48 to 0.67 (p¼ 8.93 10�4 to 1.63 10�100); however,

they were not enriched for known biological pathways ac-

cording to the analysis involving the DAVID database.73

Some of the distal genes have been previously studied in

relation to adipose biology, but their association with the

KLF14 locus was not known. Among the trans-regulated

genes, PLIN5 was associated with 13 of the metabolic phe-

notypes (Figure S8). PLIN5 encodes Perilipin 5, a lipid-

droplet-associated protein that helps maintain a balance

between lipolysis and lipogenesis and has been shown

to play a role in fatty-acid oxidation in adipose tissue.74
2, 2017



Figure 1. Example Subcutaneous Adipose eQTL Genes at GWAS Loci
(A) The adipose eQTL of FST is coincident with the adiponectin GWAS locus ARL15.69 Regional association of variants with expression
level of FST is shownwith the GWAS variant rs6450176 plotted as the index (purple diamond). LD is colored on the basis of theMETSIM
population.
(B) Association between adiponectin level and FST expression level in METSIM.
(C) The adipose eQTL of RQCD1 is coincident with the USP37 GWAS locus for BMI.17 Regional association of variants with expression
level of RQCD1 is shown with the eSNP rs4674320 (r2 ¼ 1.0 with BMI index SNP rs492400) plotted as the index.
(D and E) Association between (D) BMI and RQCD1 expression level in humans from the METSIM study and (E) body fat and Rqcd1
expression level in mice from the HMDP study.
The expanded KLF14-mediated trans network of genes

suggests that these targets might also influence cardio-

metabolic traits.
The Ameri
Variants located near CIITA (class II, major histocom-

patibility transactivator), which is known to activate the

MHC class II genes at the HLA locus75 (Figure 3B), were
can Journal of Human Genetics 100, 428–443, March 2, 2017 435



Figure 2. Heatmap of Effect Sizes for Significant Associations between Gene Expression Level and Cardio-Metabolic-Trait Levels at
GWAS Loci with Coincident eQTLs
Rows show 23 selected cardio-metabolic traits, and columns show the eQTL genes (and reported GWAS trait at the coincident locus).
Negative values (blue) indicate that increased gene expression level was associated (p < 0.05) with decreased trait level, whereas positive
values (orange) indicate that increased gene expression level was associated with increased trait level.
associated with six MHC class II genes (HLA-DPA1, HLA-

DMA, HLA-DPB1, HLA-DOA, HLA-DRA, and HLA-DMB)

located on chromosome 6 and with CD74 on chromo-

some 5. CD74 encodes for a protein that associates with

the class II MHC complex and regulates antigen presenta-

tion.76 The variants were also suggestively associated

with CIITA expression (p ¼ 1.0 3 10�3, Figure S7), suggest-

ing that variation in its expressionmight be responsible for

the trans-eQTL signals. Our eQTL results captured the

known biology of CIITA regulation of MHC class II genes.

Further, expression of CIITA and the seven trans-mediated

genes was significantly associated with 14 of the metabolic

traits (jbj¼ 0.12 to 0.37, p¼ 6.43 10�4 to 7.73 10�26), sug-

gesting a role for this network of genes in adipose tissue

(Figure S8).

The second largest trans-eQTL hotspot was located on

chromosome 3 and was associated with the expression of

44 genes (Figure 3B). This locus has been reported in other

tissues, including liver and omental fat,77 but the target

genes identified in our study do not overlap with the pre-

vious ones, suggesting a unique trans-regulatory network

in subcutaneous adipose tissue.11 Variants in this locus
436 The American Journal of Human Genetics 100, 428–443, March
showed the strongest local association with the expression

of SLC25A38, located ~1 Mb away (p ¼ 1.7 3 10�7,

Figure S7). Missense mutations in SLC25A38, which en-

codes a mitochondrial solute carrier, lead to congenital

sideroblastic anemia characterized by defective erythropoi-

esis and mitochondrial iron overload.78 The function of

SLC25A38 in adipose tissue remains unclear. The signal

observed at this locus might represent cell types other

than adipocytes in light of the cellular heterogeneity of ad-

ipose tissue. The adipose expression level of SLC25A38 was

nominally associated with 24 of the trans-mediated genes

(jbj ¼ 0.07 to 0.29, p ¼ 6.8 3 10�16 to 4.7 3 10�2) and

with 14 cardio-metabolic-related traits (jbj ¼ 0.08 to 0.33,

p ¼ 6.7 3 10�21 to 3.1 3 10�2) (Figure S7). For example,

SLC25A38 is negatively associated with BMI in METSIM

participants (b ¼ �0.33, p ¼ 6.7 3 10�21). On the basis

of structural similarity with other SLC25 proteins,

SLC25A38 is predicted to transport glycine into the mito-

chondrial matrix for condensation with succinyl-coen-

zyme A to form 5-aminolevulinic acid, which is exported

to the cytoplasm for haem synthesis.79,80 Only a few of

the trans-mediated genes have been shown to play
2, 2017



Figure 3. trans-eQTL Hotspots in Subcutaenous Adipose Tissue
(A) KLF14 trans-eQTL hotspot and target genes in subcutaneous adipose tissue. Representation of the location of 55 distal genes for
which expression level is associated with rs12154627 at the KLF14 locus.
(B) Representation of the location of 65 distal genes for which expression level is associated with one of four trans-eQTL hotspots:
SLC25A38 locus (black), ZNF800 locus (blue), CIITA locus (green), and HBB locus (red).
Arrowheads point to the trans-eQTL loci, and curves indicate the associations with the four sets of target genes.
important roles in adipocytes. For example, ESRRA encodes

estrogen-related receptor alpha, which modulates the

expression of adipogenesis genes during adipocyte differ-

entiation.81 SPTLC1 encodes one of the subunits of serine

palmitoyltransferase, the key enzyme in sphingolipid

biosynthesis.82 These bioactive lipids are altered with

obesity and can regulate inflammatory gene expression

in adipocytes.83 Another target gene,GOT2, encodes gluta-

mic-oxaloacetic transaminase, which functions in the in-

ner mitochondrial membrane and has been shown to

play a key role in amino acid metabolism.84 Although

the function in adipose of the genes associated with

SLC25A38 variants remains unclear, our results suggest a

metabolic role.

We also observed a trans-eQTL hotspot, located on

chromosome 7 but ~3.3 Mb away from KLF14, associated

with the expression of nine genes. The variants at this

locus were independent from those at KLF14 and had

distinct target genes (Figure 3B). The lead variant,

rs62621812 in ZNF800, encodes a missense change

(p.Pro103Ser) and is also associated with that gene’s

expression level (p¼ 2.83 10�16), providing evidence sug-

gesting that this gene regulates the target genes. ZNF800

encodes a C2H2 zinc finger protein and is a putative tran-

scription factor.85 ZNF800 expression level is associated

with theMatsuda Index (b¼ 0.12, p¼ 1.33 10�3), suggest-

ing a role in insulin sensitivity.

A fifth trans-eQTL, located on chromosome 11, was asso-

ciated with expression of five trans genes. The peak variant,
The Ameri
rs10742583, is located ~2 kb upstream of HBB, which

encodes beta hemoglobin, and is in complete LD (r2 ¼
1.0) with a HBB synonymous variant, rs713040, although

rs10742583 was not associated with the expression level of

any local gene (p < 2.4 3 10�4). A functional role for HBB

in adipose biology is not clear. Although HBB is distinctly

and highly expressed in whole blood, the trans-mediated

target genes are expressed in a range of tissues.56 This

trans-eQTL signal might reflect cellular heterogeneity,

especially blood cells present in adipose tissue.

To validate these trans-eQTL hotspots, we asked whether

eQTLs were also observed in the MuTHER study. Variant

information was available for three of the loci, near CIITA,

SLC25A38, and KLF14. All seven genes that mapped to the

CIITA locus, 35 of the 44 genes that mapped to the

SLC25A38 locus, and 41 of the 55 genes that mapped to

the KLF14 locus had corresponding probes available in

the MuTHER study. Although only two of the 35 target

genes for the SLC25A38 locus had evidence of association

(FDR < 1%) in the MuTHER study, many KLF14 and CIITA

target genes were replicated (Table S14). For the KLF14

trans-eQTL hotspot, originally described in MuTHER,20

25 of the 41 target genes showed consistent direction of

effect and nominal associations (p < 0.05) in the MuTHER

study, whereas none of the genes showed an opposite

effect. For the CIITA locus, six of the seven target genes

were validated in MuTHER with a consistent direction of

effect (p < 0.05), indicating strong support for these two

trans-eQTL hotspots.
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Discussion

We report an analysis of genetic variants, adipose gene

expression, and cardio-metabolic traits in a deeply pheno-

typed cross-sectional sample of 770 participants in the

METSIM study and compare the results to those of studies

performed in 120 diverse inbred strains of mice. These re-

sults help to prioritize potential target genes at GWAS

loci, and they identify several trans-regulatory networks

associated with metabolic syndrome and its component

traits. In addition, the results reveal concordance between

mice and humans in terms of correlations between gene

expression and traits.

A main challenge with regard to gaining biological in-

sights from genetic associations is to identify which genes

and pathways explain the associations. Systems genetics

aims to address this challenge by integrating genetic vari-

ants with molecular phenotypes to more comprehensively

define the relationship between genotype and phenotype.

Because a large fraction of the variation underlying com-

mon diseases appears to be regulatory,4,86,87 eQTLs that

coincide with GWAS loci can link trait-associated loci

with molecular perturbations. Overall, using reciprocal

conditional analyses, we provided evidence for 140 genes

at 105 loci that may be involved inmetabolic traits (Table 1

and Table S8). This analysis of gene expression in a single

tissue might not be relevant for the mechanisms of some

of the cardio-metabolic traits. Although our analysis pro-

vides indirect evidence of an association, because the coloc-

alization of an eQTL with a disease locus could be coinci-

dental, the cardio-metabolic phenotypes available in the

METSIM cohort provided additional evidence for 49 genes

for which expression level was associated with the relevant

trait. In addition, a subset of the 140 genes was also linked

to GWAS traits via the summary-data-based Mendelian-

randomization and causal-inference tests. Of note, we

limited our analysis to lead eQTL variants and lead GWAS

variants in high pairwise LD (r2 R 0.8). This threshold

might be conservative if the GWAS lead variant imperfectly

tags a causal variant and might underestimate the number

of GWAS loci that are coincident with eQTLs. Consistent

with this possibility, we found evidence of association for

579 genes at 415 loci for which conditioning on the

GWAS variant partially attenuated the eQTL effect (Table

S8). Furthermore, secondary independent associations for

both eQTLs and GWAS signals have been shown to play

an important role in altering the expression of a gene in a

locus;22 however, additional secondary and tertiary eQTL

signals were not separately analyzed in this study. These

genes provide a larger set of possible targets for GWAS loci.

Employing genotype imputation with a dense reference

panel and analyzing 43,145 transcripts on a microarray to

measure expression, we were able to identify more eQTLs

than were identified in other subcutaneous adipose studies

with similar sample sizes.10,11,37 Using these eQTLs, we

implicated 50 genes that were distinct from the initial

locus annotations used as signposts for the GWAS loci
438 The American Journal of Human Genetics 100, 428–443, March
(Table S8). For example, rs11231693 is associated

with waist-hip ratio adjusted for BMI16 and is located in

the intron of MACROD1. Our results showed a strong

association with the expression level of VEGFB (p ¼
2.2 3 10�67), located 140 kb from the variant. For ten

loci, we identified multiple genes associated with the risk

variants. For example, BMI-associated variants in the

INO80E locus17 are also the strongest variants associated

with the expression of five nearby genes: YPEL3, INO80E,

TMEM219, TBX6, and HIRIP3 (p ¼ 1.4 3 10�8 to 1.8 3

10�4), suggesting that variation in one or more of these

genes might influence BMI. Finally, at the GCKR, LCAT,

and LDLR genes that harbor common and rare coding

variants that can affect plasma lipid levels, we observed

eQTL effects on nearby genes, including EMILIN1 at the

GCKR locus (p ¼ 3.3 3 10�6), GFOD2 and NUTF2 at the

LCAT locus (p ¼ 1.9 3 10�6 and 1.6 3 10�4, respectively),

and YIPF2 at the LDLR locus (p ¼ 1.5 3 10�6). Some coin-

cident associations between GWAS variants and eQTLs

might not contribute strongly to trait variation.

Recent studies demonstrated the evolutionary conserva-

tion of regulatory networks that increase susceptibility to

atherosclerosis and other cardio-metabolic traits in dis-

ease-relevant tissues in humans and mice.88 Genetically

diverse mouse populations allow for the control of con-

founding factors, such as environmental exposure that

are difficult to assess in humans. TheHMDPhas also helped

researchers to understand contributions of genetic factors

to cardio-metabolic traits.72 The results of our cross-species

analysis showed consistent association between traits and

the expression of 25 genes in humans and mice, providing

support for further study of these genes in mouse models

(Figure S5 and Table S13). Of course, the possibility exists

that mechanisms might differ between species or that the

wrong tissues are being compared. In addition to priori-

tizing candidate genes, studies of natural variation in

gene expression in mice should be useful in elucidating

mechanisms relating to the gene-by-gene, gene-by-envi-

ronment, and gene-by-sex interactions.51,52,89 For

example, although it is clear that genetic background con-

tributes to weight gain and related traits in response to

dietary challenge,90 the inability to accurately ascertain

environmental factors over a lifetime in humans has

made molecular dissection difficult. In contrast, studies of

natural variation in mice have revealed that gene-by-envi-

ronment interactions can contribute substantially to the

overall variance in traits such as obesity and that the under-

lying genes and pathways can be identified.51,52

Whereas numerous studies have successfully mapped

cis associations, few studies have reported trans-eQTLs

because of small effect sizes, multiple testing thresholds,

and computational burden.22,37,91 These issues are

consistent with the low reciprocal replication rates of

trans-eQTLs identified in MuTHER and METSIM cohorts.

However, in-depth characterization of the architecture of

trans regulation of gene expression is useful in attempting

to understand complex biological mechanisms, as shown
2, 2017



by the expanded network of trans-regulated genes at the

KLF14 locus, which has been associated with T2D and

several metabolic traits. The 55 genes that map to this

locus demonstrate the extensive downstream effects of

an individual association signal and provide additional

genes that might influence disease manifestation. The

identification of trans-regulatory networks also offers op-

portunities for understanding fundamental biology. For

example, ZNF800 is a putative transcription factor, and

although little is known about the function of the encoded

protein, our results implicate a novel role for ZNF800 in

adipose biology. In addition, some trans-eQTL associations

might be influenced by the cellular composition of the

adipose tissue; for example, adipose tissue of obese indi-

viduals tends to have higher macrophage content.90,91

Although we failed to observe any association between

the trans-acting loci and expression of macrophage

markers such as ABCG1 and CD68 (data not shown), we

cannot rule out a role for cell-type heterogeneity. We also

observed weaker cis associations compared to trans associ-

ations in the trans-eQTL hotspots. This may be an artifact

of data pre-processing or inaccuracy in measuring low

levels of expression. Future studies involving single-cell an-

alyses might clarify the role of adipose tissue by identifying

cell-type-specific eQTLs. Our study highlights the power of

a systems-genetics approach in dissecting complex traits

and identifying causal genes and pathways.
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H., Liu, C.T., Hong, J., Jensen, R.A., Rice, K., Morris, A.P., et al.

(2016). Genome-wide association study of the modified Stum-

voll insulin sensitivity index identifies BCL2 and FAM19A2 as

novel insulin sensitivity loci. Diabetes 65, 3200–3211.
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liotes, E.K., Mägi, R., et al.; MAGIC (2010). Meta-analysis iden-

tifies 13 new loci associated with waist-hip ratio and reveals

sexual dimorphism in the genetic basis of fat distribution.

Nat. Genet. 42, 949–960.

63. Teslovich, T.M., Musunuru, K., Smith, A.V., Edmondson, A.C.,

Stylianou, I.M., Koseki, M., Pirruccello, J.P., Ripatti, S., Chas-

man, D.I., Willer, C.J., et al. (2010). Biological, clinical and

population relevance of 95 loci for blood lipids. Nature 466,

707–713.

64. Kooner, J.S., Saleheen, D., Sim, X., Sehmi, J., Zhang, W., Fros-

sard, P., Been, L.F., Chia, K.S., Dimas, A.S., Hassanali, N., et al.;

DIAGRAM; and MuTHER (2011). Genome-wide association

study in individuals of South Asian ancestry identifies six

new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989.

65. C4D Consortium (2011). A genome-wide association study in

Europeans and South Asians identifies five new loci for coro-

nary artery disease. Nat. Genet. 43, 339–344.

66. Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segrè,
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