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ARTICLE

Distributed harmonic patterns of structure-function
dependence orchestrate human consciousness
Andrea I. Luppi 1,2,3✉, Jakub Vohryzek 4,5,6, Morten L. Kringelbach 4,5, Pedro A. M. Mediano 7,8,

Michael M. Craig1,2, Ram Adapa 1, Robin L. Carhart-Harris9,10, Leor Roseman9, Ioannis Pappas1,2,11,

Alexander R. D. Peattie 1,2, Anne E. Manktelow 1, Barbara J. Sahakian12,13, Paola Finoia 1,14,

Guy B. Williams 2,12, Judith Allanson2,15, John D. Pickard 2,12,14, David K. Menon 1, Selen Atasoy4,5 &

Emmanuel A. Stamatakis 1,2

A central question in neuroscience is how consciousness arises from the dynamic interplay of

brain structure and function. Here we decompose functional MRI signals from pathological

and pharmacologically-induced perturbations of consciousness into distributed patterns of

structure-function dependence across scales: the harmonic modes of the human structural

connectome. We show that structure-function coupling is a generalisable indicator of con-

sciousness that is under bi-directional neuromodulatory control. We find increased structure-

function coupling across scales during loss of consciousness, whether due to anaesthesia or

brain injury, capable of discriminating between behaviourally indistinguishable sub-categories

of brain-injured patients, tracking the presence of covert consciousness. The opposite har-

monic signature characterises the altered state induced by LSD or ketamine, reflecting

psychedelic-induced decoupling of brain function from structure and correlating with phy-

siological and subjective scores. Overall, connectome harmonic decomposition reveals how

neuromodulation and the network architecture of the human connectome jointly shape

consciousness and distributed functional activation across scales.
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Understanding the neural underpinnings of human con-
sciousness is a major challenge of contemporary
neuroscience1. In addition to being scientifically intri-

guing, this question also carries clear relevance for clinical prac-
tice. On one hand, anaesthesia, the pharmacological induction on
a reversible state of unconsciousness, enables millions of life-
saving surgeries every year—yet this process remains incomple-
tely understood. On the other hand, patients can suffer from
chronic disorders of consciousness following brain injury; our
limited understanding of this phenomenon is an obstacle to the
identification of better treatment options, and prognosis remains
poor. Converging evidence suggests that consciousness is sup-
ported by a dynamic repertoire of brain activity2–13. These dis-
coveries raise the question of how the rich dynamics that support
consciousness can arise from a fixed network of anatomical
connections—the brain’s structural connectome14–21. Initial
progress on this question has provided fundamental insights into
loss of consciousness and its signatures: when consciousness is
lost, the pattern of co-fluctuations between regional BOLD
timeseries (functional connectivity) becomes more similar to the
pattern of anatomical connections between regions3,5,11,22–24.

However, existing investigations of structure-function corre-
spondence during altered states of consciousness have typically
relied on correlation or distance metrics, which do not account
for the inherently asymmetric relationship between brain struc-
ture and function: the organization of anatomical connections
guides and constrains the propagation of functional signals, but
not vice-versa (a fundamentally different way of relating structure
and function—including in different states of consciousness—is
by means of whole-brain computational models25–28: rather than
focusing on the direct quantification of structure-function cor-
respondence in empirical data, these approaches aim to simulate
brain activity from structural connectivity). In addition, existing
approaches quantify structure-function correspondence at a sin-
gle scale, even though brain structure and function both exhibit
multi-scale, hierarchical network organization29.

Here, we capitalize on the emerging mathematical framework of
connectome harmonic decomposition (CHD) to overcome both of
these limitations, by generalising the well-known Fourier transform
to the network structure of the human brain. The traditional
Fourier transform re-represents a signal from the time domain to
the domain of temporal harmonic modes (Fig. 1a). The signal is
decomposed into a new set of basis functions: temporal harmonics
(sinusoidal waves), each associated with a specific temporal fre-
quency (Fig. 1b). Generalising this mathematical principle, CHD
uses the harmonic modes of the human structural connectome to
perform an analogous change of basis functions (Fig. 1c). Func-
tional brain signals are re-represented from the spatial domain, to
the domain of connectome harmonics: distributed patterns of
activity, each associated with a specific spatial frequency, from
coarse- to fine-grained14,30–32 (Fig. 1d).

CHD is appealing for two reasons. Mathematically, it directly
re-expresses functional signals in terms of their dependence on
the underlying structural connectome. By direct analogy with the
Fourier transform (Fig. 1b), low-frequency (coarse-grained)
connectome harmonics indicate that the functional signal is
closely constrained by the underlying organisation of the struc-
tural connectome: nodes that are highly interconnected to one
another exhibit similar functional signals to one another. In turn,
high-frequency (fine-grained) connectome harmonics indicate a
divergence between the spatial organisation of the functional
signal and the underlying network structure: nodes may exhibit
different functional signals even if they are closely connected in
the structural network (Fig. 1d). Therefore, just like temporal
harmonics reflect time-dependence in the signal, so connectome

harmonics quantify how brain activity is constrained by the
underlying structural network on which it unfolds.

More broadly, CHD provides an alternative approach to con-
ceptualize brain function in terms of distributed activity. The
dominant perspective in neuroimaging views brain activity in
terms of discrete, spatially localized signals. Operating within this
spatially-localised framework, previous studies have sought to
identify neural correlates of consciousness in terms of regional
changes: whether pertaining to the intrinsic properties of a region,
or its relationship with other regions (e.g., connectivity-based
approaches). This endeavour has driven major progress in our
understanding of consciousness and its neural bases33–49.

However, localized and distributed function co-exist in the
brain, and its regions are intricately interconnected: local per-
turbations can have wide-ranging repercussions (diaschisis)50

highlighting the limits of the location-centric view. Con-
ceptually, the mathematical analogy between CHD and the
Fourier transform highlights that viewing brain activity in terms
of connectome harmonics (distributed patterns of different
spatial scale) is just as legitimate as viewing it in terms of dis-
crete spatial locations (Fig. 1c): the two approaches provide
perspectives that are neither redundant nor antithetical, but
rather complementary.

More broadly, CHD is part of a family of approaches known as
Graph Signal Processing, which evaluate how a property of nodes
in a graph (in this case, brain activation), treated as a signal,
relates to the organisation of the graph itself (in this case,
structural connectivity)51. Similarly to the Fourier transform for
the time domain, applications include filtering and spectral
analysis52–54. The approach has found increasing application in
neuroscience, albeit with a wide variety of names and mathe-
matical operationalisations53. Graph Signal Processing is also
mathematically and conceptually related to Graph Spectral The-
ory, which is primarily used for dimensionality reduction of
graph-based data, including the well-known principal gradient of
functional connectivity introduced by Margulies55, and sub-
sequent applications to structural, microstructural, and other
forms of connectivity56,57; being nonlinear, this graph-based
approach can provide a superior characterisation than what is
obtained from linear approaches such as Independent Compo-
nents Analysis and Principal Components Analysis53,58. This
latter approach has found increasing traction as a way to com-
plement traditional analyses based on spatially localised regions-
of-interest. In the words of Lioi and colleagues’ authoritative
review on this topic: “Some processes may be best characterized
in terms of nonoverlapping fixed regions, others in terms of
delocalized, overlapping eigenmodes”53.

The spatially distributed perspective on brain function pro-
vided by CHD raises a pressing question: what insights are we
missing out on as a field, by limiting ourselves to the spatially-
localised view of brain function? The central hypothesis of this
work is that the connectome harmonic view of brain activity will
provide insights about consciousness that are complementary to
the spatially-localised perspective, which has dominated neuroi-
maging research to date.

Crucially, loss of consciousness can occur through different
mechanisms, ranging from transient pharmacological inter-
ventions to chronic neuroanatomical injuries. To make progress
in our understanding of consciousness, it is imperative to
identify signatures of consciousness per se, which generalise
across different neurophysiological states. Therefore, here we
leverage connectome harmonic decomposition of human
functional MRI data to investigate the connectome harmonic
signatures of loss of consciousness induced by different means:
acutely, with the intravenous anaesthetic propofol47; and in
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brain-injured patients with chronic disorders of consciousness2.
In addition, a comprehensive characterisation of human con-
sciousness should account for different kinds of perturbations,
whereby consciousness is not lost but rather subjectively altered
—such as the states induced by the classic psychedelic LSD and
the atypical psychedelic ketamine. Since previous work has
shown that CHD can identify a consistent neural signature
across the serotonergic psychedelics LSD and psilocybin30,59,
extending this signature to ketamine (which is an N-methyl-D-
aspartate receptor antagonist60) will provide critical insights
into CHD’s ability to identify generalizable links between brain
dynamics and alterations of consciousness.

Overall, here we aim to depart from the predominant
location-centric view in neuroimaging and provide an alter-
native, mathematically principled perspective on the neural
signatures of consciousness: one that is intrinsically centred on
how the distributed network architecture of the human struc-
tural connectome shapes neural activation across scales.

Results
Here, we adopt the mathematical framework of connectome
harmonic decomposition to undertake an empirical investigation
of the similarities and differences between perturbations of con-
sciousness induced by the anaesthetic propofol, severe brain
injury, sub-anaesthetic ketamine and LSD.

Connectome harmonic decomposition: relating brain structure
and function to characterise states of consciousness. To map
the landscape of consciousness, we decompose brain activity
(BOLD signals from functional MRI) during each state of con-
sciousness in terms of multi-scale contributions from the har-
monic modes of a representative human structural connectome.
These harmonic modes are obtained from eigen-decomposition
of the graph Laplacian applied to a high-resolution reconstruction
of a representative human connectome, and used as a new set of
basis functions to re-represent functional brain signals into

Fig. 1 Connectome harmonic decomposition generalises the Fourier transform to the network structure of the human brain. a In traditional Fourier
analysis, a signal in the time domain (represented in terms of sequential time-points) is decomposed into temporal harmonics of different frequency,
thereby re-representing it in terms of a new set of basis functions. b High-frequency temporal harmonics correspond to fast-changing signals, such that
data-points may have very different values even if they are close in time; in contrast, low-frequency temporal harmonics correspond to signals that vary
slowly over time, such that temporally contiguous data-points have similar values, reflecting greater time-dependence of the signal. c In connectome
harmonic decomposition, a signal in the space domain (represented in terms of BOLD activation at discrete spatial locations over the cortex) is
decomposed into harmonic modes of the human structural connectome, providing a new set of basis functions in terms of whole-brain distributed patterns
of activity propagation at different scales, from global patterns of smooth variation along geometrical axes (left–right and anterior–posterior being the most
prominent) to increasingly complex and fine-grained patterns. Note that here, frequency is not about time, but about spatial scale (granularity). d Low-
frequency (coarse-grained) connectome harmonics indicate that the spatial organisation of the functional signal is closely aligned with the underlying
organisation of the structural connectome: nodes that are highly interconnected to one another exhibit similar functional signals to one another (indicated
by colour). High-frequency (fine-grained) patterns indicate a divergence between the spatial organisation of the functional signal and the underlying
network structure, whereby nodes may exhibit different functional signals even if they are closely connected in the structural network.
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whole-brain patterns of different spatial scale (frequency): from
an entire hemisphere to just a few millimetres31.

In traditional Fourier analysis, the temporal frequency of each
temporal harmonic (sinusoid) reflects how much the signal varies
over time (Fig. 1a, b); likewise, CHD quantifies to what extent the
BOLD signal is constrained by the global network organisation of
the connectome, or deviates from it. Low-frequency connectome
harmonics correspond to coarse-grained patterns of spatial
variation, whereby structurally connected nodes have similar
values of the functional signal; in contrast, high-frequency
connectome harmonics denote fine-grained patterns of spatial
variation, such that nodes can have different values of the
functional signal irrespective of whether they are structurally
connected (Fig. 1c, d). An overview of our analytic workflow is

provided in Fig. 2. For consistency with previous work, for our
main results we show connectome harmonics obtained from the
same reconstruction of the human structural connectome used by
Atasoy and colleagues30,31. However, we replicated our results
using two alternative reconstructions of the human connectome
at higher resolution (see ‘Methods’), including one obtained from
aggregating 985 subjects from the Human Connectome Project
(HCP): arguably one of the most representative reconstructions of
the human structural connectome available to date.

Loss of consciousness and the psychedelic state are character-
ized by specific and opposite connectome harmonic signatures.
Based on computational modelling, we had previously predicted
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that increased global inhibition should lead to a shift in the
frequency-specific contribution (energy) of connectome harmo-
nics: from high-frequency (fine-grained), structurally decoupled
harmonic patterns to low-frequency (coarse-grained), structurally
coupled ones30,31. Here, we began by testing this prediction: as an
agonist of the chief inhibitory neurotransmitter GABA, propofol
induces globally increased neuronal inhibition61. In accordance
with our hypothesis, across N= 15 volunteers undergoing
increasing levels of propofol sedation, we observed significantly
increased energy of low-frequency harmonics and significantly
decreased energy of high-frequency harmonics (Fig. 3a–e, Sup-
plementary Fig. 2), reflecting greater dependence of the signal on
the network structure of the human connectome.

Note that this characteristic connectome harmonic signature is
not found at just any level of propofol: it is not present for mild
sedation, when participants are drowsy but still conscious
(Fig. 3a). Instead, it only arises for a dose of propofol sufficient
to induce loss of responsiveness (Fig. 3b, c), and it is then
reversed upon post-anaesthetic recovery of responsiveness
(Fig. 3d) (note that here we follow the relevant literature in
considering individuals to be unconscious when they fail to
provide evidence of consciousness through either overt or covert
responsiveness; we return to this issue in the ‘Discussion’).
Therefore, the appearance of this connectome harmonic signature
is tied to propofol-induced loss of responsiveness.

Crucially, an analogous connectome harmonic signature is also
observed for chronic loss of responsiveness induced by severe
brain injury—but only when restricting the comparison to
patients who provided no evidence of being conscious (Fig. 3f±i).
Specifically, we studied a cohort of N= 22 patients: although all
met diagnostic criteria for disorders of consciousness based on
overt behaviour, eight patients nevertheless provided evidence of
covert consciousness by successfully performing mental imagery
tasks in the fMRI scanner (labelled fMRI+), whereas the
remaining 14 did not (labelled fMRI−)62,63.

When comparing the entire cohort of DOC patients against
awake healthy controls, connectome harmonic decomposition
revealed an energy signature with significant similarity to the
signature of moderate propofol anaesthesia (Spearman’s ρ= 0.60,
CI95% [0.13, 0.85], p= 0.020), although most frequency-specific
differences did not reach statistical significance after correction
for multiple comparisons (Fig. 3g). Crucially, when the
comparison was restricted to fMRI− patients versus controls,
the overall signature increased its similarity with the connectome
harmonic signature of moderate propofol anaesthesia, both

visually and numerically (Spearman’s ρ= 0.87, CI95% [0.64,
0.96], p < 0.001; Fig. 3h). Indeed, in this case we observed both
significant increases in the energy of some low-frequency
connectome harmonics, and also significant decreases in the
energy of some high-frequency harmonics—despite using a
smaller sample of patients (Fig. 3h).

Remarkably, this overall harmonic signature also persisted
when comparing fMRI− patients against fMRI+ patients, despite
the fact that both groups of patients are diagnosed as suffering
from disorders of consciousness based on their overt behaviour
(Fig. 3i). Although individual frequency-specific differences did
not reach statistical significance after correction for multiple
comparisons, the overall signature remained strongly and
significantly correlated with the signature of moderate propofol
anaesthesia (Spearman’s ρ= 0.94, CI95% [0.81, 0.98], p < 0.001).
Crucially, however, this putative unconsciousness-specific pattern
of connectome harmonic energy was not observed when
comparing the subgroup of fMRI+ DOC patients with awake
volunteers (Fig. 3f). This is reassuring, being what we should
expect from a specific marker of unconsciousness, given that each
fMRI+ patient had previously exhibited evidence of being
covertly conscious.

Having investigated connectome harmonic signatures across
different ways of losing consciousness, we next sought to further
expand our investigation of human consciousness by considering
the altered state induced by a sub-anaesthetic dose of the NMDA
receptor antagonist, ketamine, and comparing it with the
previously published connectome harmonic signatures of classic
serotonergic psychedelics30,59. At sub-anaesthetic doses, ketamine
induces an altered state of consciousness with characteristics
including perceptual distortions, vivid imagery and hallucina-
tions, and dissociative symptoms: a set of subjective experiences
that are shared by psychedelics, and have led to sub-anaesthetic
ketamine being characterised as an atypical psychedelic64–66.
Connectome harmonic decomposition of fMRI data from N= 20
volunteers revealed that sub-anaesthetic ketamine increased the
energy of high-frequency harmonics just like LSD and
psilocybin30,59 (Fig. 3j); despite lacking LSD’s pronounced
suppression of the low-frequency harmonics, the energy signature
of ketamine was strongly correlated with the signature of LSD
(Spearman’s ρ= 0.98, CI95% [0.95, 0.99], p < 0.001). Validating
previous theoretical predictions14, our findings demonstrate that
the common psychoactive effects of ketamine and classic
serotonergic psychedelics are reflected in their common increases
of high-frequency connectome harmonics, despite occurring

Fig. 2 Connectome harmonic decomposition: relating brain structure and function to characterise states of consciousness. a High-resolution rendering
of the representative human connectome is obtained from HCP subjects by combining the surface-based local connections within the grey matter,
reconstructed from structural magnetic resonance imaging (sMRI); and the long-range white-matter axonal tracts calculated with diffusion tensor imaging
(DTI), thereby taking into account both local and long-range connectivity. b The graph Laplacian of this high-resolution connectome is then decomposed
into its eigenvectors φ1…n (harmonic modes) and their associated eigenvalues λ1…n (spatial frequencies with increasing granularity). With an increasing
connectome harmonic number k (which we also refer to as wavenumber), we obtain more complex and fine-grained spatial patterns. c For every timepoint
ti, functional magnetic resonance imaging (fMRI) data are projected from volumetric space onto the cortical surface. d Connectome harmonic
decomposition (CHD) of the fMRI data estimates the contribution ωk (ti) of each harmonic mode φk to the cortical activity at every timepoint ti. e The
connectome harmonic power spectrum is estimated as the absolute magnitude of contribution of each individual harmonic φk to the fMRI data at every
timepoint ti: Pðφk; tiÞ ¼ ωkðtiÞ

�� ��. Similarly, the connectome harmonic energy spectrum is estimated as the square of the absolute contribution ωkðtiÞ
�� �� of

individual harmonics φk to the fMRI data, weighted by the square of the harmonics’ corresponding eigenvalue λk (intrinsic energy) at every timepoint ti:
Eðφk; tiÞ ¼ ωkðtiÞ

�� ��2λk
2). The overall binned energy spectrum across subjects and timepoints is constructed by discretising the energy of connectome

harmonics in 15 logarithmically-spaced frequency-specific bins, here shown for a target state (dark blue) and a reference state (light blue), following
previous work showing that this procedure can successfully highlight the connectome harmonic signatures of altered states of consciousness30,31

(Supplementary Fig. 1). f Repertoire entropy is defined as the entropy of the power spectrum across all 18,715 harmonics, for every timepoint ti, computed
with the continuous Kozachenko approximation The data-driven energy signature of a target state of consciousness (designated by the term “multivariate
signature”, MVS) is obtained from the first principal component of Partial Least Squares-Discriminant Analysis (PLS-DA), which maximally discriminates
the target state (dark blue) from the reference state (light blue), based on their respective binned connectome harmonic energy spectra.
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Fig. 3 Loss of consciousness and the psychedelic state are characterized by specific and opposite signatures of connectome harmonic energy. Pairs of
conditions (states of consciousness) were compared with linear mixed effects modelling, by treating condition as a fixed effect and subjects as random
effects. Timepoints were also included as random effects, nested within subjects. Plot shows the statistical estimates (fixed effect of condition) for each
contrast, and error bars indicate the 95% CIs, from the LME model. Data distributions of connectome harmonic energy for each condition and bin are
shown in Supplementary Fig. 2. a Mild propofol sedation (n= 15 subjects with 145 timepoints each) > wakefulness (n= 15 subjects with 145 timepoints
each). b Moderate anaesthesia (n= 15 subjects with 145 timepoints each) > wakefulness (n= 15 subjects with 145 timepoints each). c Moderate
anaesthesia (n= 15 subjects with 145 timepoints each) > mild sedation (n= 15 subjects with 145 timepoints each). d Moderate anaesthesia
(n= 15 subjects with 145 timepoints each) > post-anaesthetic recovery (n= 15 subjects with 145 timepoints each). e Recovery (n= 15 subjects with 145
timepoints each) > wakefulness (n= 15 subjects with 145 timepoints each). f DOC patients (n= 22 subjects with 295 timepoints each) > awake healthy
controls (n= 15 subjects with 145 timepoints each). g DOC fMRI+ patients (n= 8 subjects with 295 timepoints each) > awake healthy controls
(n= 15 subjects with 145 timepoints each). h DOC fMRI− patients (n= 14 subjects with 295 timepoints each) > awake healthy controls (n= 15 subjects
with 145 timepoints each). i fMRI− DOC patients (n= 14 subjects with 295 timepoints each)> fMRI+ DOC patients (n= 8 subjects with 295 timepoints
each). j Ketamine (n= 20 subjects with 295 timepoints each) > placebo (n= 20 subjects with 295 timepoints each). A brain surface projection of the
connectome harmonic pattern corresponding to each frequency bin, averaged over the constituent spatial frequencies, is shown above each bin. See
Supplementary Fig. 3 for our re-derivation of the LSD signature using the same preprocessing and denoising procedures as for our other data to ensure
consistency. Source data are provided in Supplementary Data 1. *p < 0.05, FDR-corrected across 15 frequency bins.
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through different molecular mechanisms: increased global
excitation arising from NMDA receptor antagonism, versus
5HT2A receptor agonism, respectively. Thus, CHD can also
identify similar alterations in consciousness induced by different
pharmacological interventions.

Intriguingly, elevated energy in high-frequency connectome
harmonics, and reduced energy in low-frequency ones, were also
observed when comparing post-anaesthetic recovery and pre-
anaesthetic wakefulness—resembling the pattern previously
observed with classic psychedelics30,59. We elaborate on possible
interpretations of this observation in the ‘Discussion’. We also
show (Supplementary Figs. 4, 5) that the connectome harmonic
energy signatures are preserved if a different number of bins (25
instead of 15) is used (note that binning is logarithmic). Overall,
these results suggest that structure-function coupling across scales
is under control by neuromodulation, consistently with computa-
tional predictions30,59: different pharmacological interventions
can either increase it (GABA-ergic agonism induced by propofol)
or decrease it (NMDA receptor antagonism from ketamine;
5HT2A receptor agonism from LSD).

Connectome harmonic signatures generalise across states of
consciousness and are related to pharmacological and sub-
jective scores. It is readily apparent from Fig. 3 that anaesthesia
and disorders of consciousness are characterised by similar pat-
terns of change across the spectrum of connectome harmonic
energy; in addition, this signature looks like a mirror-reversed
version of the change in energy corresponding to the psychedelic
state (whether induced by sub-anaesthetic ketamine or ser-
otonergic psychedelics30,59 (Fig. 3j, Supplementary Fig. 3). These
observations suggest that it should be possible to generalise
connectome harmonic patterns across datasets, to establish
the harmonic signature of (a) unconsciousness and (b) the
psychedelic state.

To take into account the full spectrum of connectome
harmonic changes at the same time, we turned to Partial Least
Squares Discriminant Analysis (PLS-DA)67,68: this data-driven
technique allowed us to extract the multivariate patterns of
connectome harmonic energy that maximally distinguish between
each pair of conditions (multivariate signatures, MVS). The first
principal component extracted by PLS-DA represents the single
most discriminative pattern present in the data, in terms of
distinguishing observations (subjects) belonging to the two
different classes (states of consciousness). This approach clearly
revealed the existence of two mirror-reversed multivariate
patterns characterising loss of consciousness and the psychedelic
state (Supplementary Figs. 6, 7).

Next, we aimed to provide an even more compelling
demonstration that the signatures of unconsciousness extracted
from CHD are generalisable across ways of losing consciousness,
by relating them to the underlying neurobiology across subjects.
For each stage of sedation in the propofol dataset (mild,
moderate, and recovery) we quantified the correspondence
between the connectome harmonic energy of each subject (at
that stage), and the connectome harmonic signature of uncon-
sciousness, designated as the MVS that best discriminates
between fMRI+ and fMRI− DOC patients (Fig. 4). Specifically,
we took the dot-product between the two patterns, thereby
measuring the alignment between them.

We show that changes in this alignment across progressive
stages of sedation correlate with corresponding changes in
propofol concentration in the subjects’ blood serum. We observed
this both for the transition from consciousness to unconscious-
ness, i.e., from mild to moderate propofol anaesthesia (Spear-
man’s ρ= 0.57, CI95% [0.08, 0.84], p= 0.026; Fig. 4a), and also

when transitioning back from moderate anaesthesia to recovery
(Spearman’s ρ= 0.56, CI95% [0.07, 0.83], p= 0.030; Fig. 4b). In
other words, a greater increase in propofol concentration when
transitioning from consciousness to unconsciousness, corre-
sponds to a greater neural alignment with the connectome
harmonic signature of unconsciousness (extracted from DOC
patients)—and vice-versa when awakening from anaesthesia.
These results establish both the generalisability of this con-
nectome harmonic signature of unconsciousness, and also its
biological relevance, by correlating with a key pharmacological
measure that we know to be causally related to the induction of
unconsciousness (propofol concentration).

Furthermore, we demonstrate that the generalisability of
connectome harmonic signatures also extends to the psychedelic
state (note that from here on we use the term psychedelic to refer
to the phenomenology that is shared by classic serotonergic
psychedelics and sub-anaesthetic ketamine, including perceptual
distortions, vivid imagery and hallucinations, and dissociative
symptoms, in line with previous work69,70). Using the LSD data
previously used by Atasoy and colleagues30,59 we show that for
each individual, the subjective intensity of the psychedelic
experience induced by LSD can be predicted by the change in
alignment between the subjects’ connectome harmonic energy
spectrum, and the connectome harmonic signature derived from
ketamine (i.e., the MVS that best discriminates between ketamine
and placebo) (Spearman’s ρ= 0.57, CI95% [0.08, 0.84], p= 0.026;
Fig. 4c). In other words, the more a subject’s energy pattern
becomes similar to the connectome harmonic signature of the
psychedelic state (as extracted from the ketamine dataset), the
more intense that subject will rate the subjective experience
induced by LSD. These results suggest a profound connection
between the neural and phenomenological aspects of the
psychedelic state, regardless of how induced.

Overall, these findings identify connectome harmonic signa-
tures of conscious-to-unconscious transitions (and vice-versa)
induced by both propofol anaesthesia and DOC, as well as
signatures of the psychedelic experience induced by the
serotonergic psychedelic LSD and the atypical psychedelic
ketamine. In addition, we have shown that connectome harmonic
signatures can relate brain activity to both pharmacology
(correlating with the change in propofol in the bloodstream)
and subjective phenomenology (correlating with the intensity of
the psychedelic experience induced by LSD).

Diversity of connectome harmonic repertoire tracks level of
consciousness from loss of responsiveness to psychedelics.
Having demonstrated that connectome harmonic signatures can
generalise between specific states of consciousness (different ways
of losing consciousness, or different psychedelic drugs), we
sought to provide one further level of generalisation, by explicitly
bringing all the states of consciousness considered here into the
same continuum.

Specifically, recent theoretical efforts seeking to establish a
correspondence between the dynamics of mind and brain71–73 posit
that states of diminished consciousness should be characterized by a
more restricted repertoire of brain patterns—whereas the rich
mental content and diversity of experiences that characterize the
psychedelic state72,74 should correspond to an expanded repertoire
of brain patterns. Here, we pursued this hypothesis by quantifying
the diversity of the connectome harmonics that are recruited to
compose brain activity, across different states of consciousness.
Specifically, we expected that anaesthesia and disorders of
consciousness should exhibit reduced diversity (quantified in terms
of entropy) of connectome harmonics, whereas increased entropy
should be observed for ketamine and LSD.
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Our results support each of these predictions (Fig. 5 and
Supplementary Table 1). Ketamine and LSD exhibited signifi-
cantly higher diversity of the repertoire of connectome harmonics
than placebo, whereas moderate anaesthesia with propofol
induced a collapse in the repertoire when compared with
wakefulness, recovery, and even mild sedation. Remarkably, our
analysis revealed that DOC patients who had previously exhibited
evidence of covert consciousness (fMRI+), also exhibited entropy
levels comparable to those of awake volunteers—in sharp contrast
with fMRI− patients, who had provided no evidence of being
conscious, and for whom the repertoire entropy of connectome
harmonic signatures was significantly compromised (Fig. 5 and
Supplementary Table 1). We also repeated this analysis with a
different stratification of DOC patients, combining clinical
diagnosis and fMRI-based assessment: on one hand, we grouped
together covertly conscious patients (fMRI+) and patients
diagnosed with a less severe disorder of consciousness based on
their overt behaviour (minimally conscious state) (N= 14); and
on the other hand were patients (N= 8) who were both classified
as fMRI− based on lack of in-scanner brain responses, and
diagnosed with unresponsive wakefulness syndrome based on
lack of overt behaviour (Table 1). The binned harmonic energy
signature and PLS-derived multivariate signature for this contrast
(Any response vs No-response) both showed the expected
pattern. Crucially, the two groups also differed significantly in
terms of the diversity (entropy) of the full connectome harmonic

repertoire, which was significantly diminished for No-response
(i.e., fMRI− UWS) patients (Supplementary Fig. 10 and
Supplementary Table 1).

Conversely, neither mild sedation nor recovery (during which
volunteers were conscious) was significantly different from
normal wakefulness in terms of their diversity of harmonic
repertoire, despite the presence of propofol in the blood in both
cases. This confirms that diversity of the connectome harmonic
repertoire is closely associated with the presence or absence of
consciousness. As an important validation, no differences in
repertoire diversity were observed in our test-retest dataset, when
comparing two scans of the same healthy volunteers during
normal wakefulness. Taken together, our results demonstrate that
the diversity (entropy) of connectome harmonic repertoire can
track variations in conscious state on a one-dimensional
continuum.

Role and relevance of the human connectome for mapping
states of consciousness. To validate our results, we also
demonstrate the test-retest reliability of CHD. In a test-retest
fMRI dataset of 18 individuals, each scanned twice during resting
wakefulness within a timespan of 2–4 weeks, we show that no
discernible pattern of differences can be identified when com-
paring the energy spectra of the first and second scans (Supple-
mentary Fig. 11). In addition, no significant correlations are
found between the connectome harmonic signatures of different

Fig. 4 Neurobiological and subjective relevance of connectome harmonic signatures across states of consciousness. Each scatterplot displays individual
scores (serum propofol change or subjective intensity) versus the drug-induced change in alignment (dot product) between that subject’s spectrum of
connectome harmonic energy, and the multivariate energy signature (MVS). a Change in energy projection onto the DOC energy signature between mild
and moderate anaesthesia (moderate minus mild), versus the change of propofol levels in volunteers’ blood serum (n= 15 subjects). b Change in energy
projection onto the DOC energy signature between moderate anaesthesia and recovery (moderate minus recovery), versus the change of propofol levels in
volunteers’ blood serum (n= 15 subjects). c Change in energy projection onto the ketamine energy signature between placebo and LSD (LSD minus
placebo), versus the subjective intensity of the psychedelic experience induced by LSD (n= 15 subjects). Note that this similarity between similar
subjective states of consciousness induced by different means is not brought about by generic confounding effects across the datasets, such as head
motion: for both the propofol and LSD datasets, the same MVS projections were not significantly correlated with differences in head motion, thereby
excluding this potential confound (Supplementary Fig. 8). Shading indicates 95% confidence interval. Source data are provided in Supplementary Data 2.
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states of consciousness, and the signature obtained from test-
retest scans of the same awake individuals (Supplementary
Table 2). This evidence indicates that connectome harmonic
patterns remain stable across scans of the same individuals, when
they are in the same state of consciousness (resting wakefulness)
—providing an important negative control for our previous
results.

Finally, we demonstrate that using the human structural
connectome for harmonic mode decomposition of fMRI signals is
crucial to obtaining a coherent mapping of states of conscious-
ness. The ability of CHD to recover meaningful patterns among
the various states of consciousness considered here is critically
compromised, if the neuroanatomical distribution of the
connectome harmonics is disrupted through spatial rotation58,75,
or if the structural connectome is subjected to degree-preserving
randomisation, thereby perturbing its topology (Supplementary
Figs. 12–19 and Supplementary Tables 3, 4).

Crucially, we also show that our results do not depend on our
specific operationalisation of the human connectome. Our results
are successfully replicated when employing alternative methods of

reconstructing a high-resolution representative human connec-
tome—whether from combining a much larger sample of 985
HCP subjects, corresponding to a 100-fold increase in sample size
(Supplementary Figs. 20–24, Supplementary Table 5); or by using
high-quality DSI data (Supplementary Figs. 25–29, Supplemen-
tary Table 6), thereby demonstrating the robustness of our
approach. In fact, using these state-of-the-art connectome
reconstructions highlights additional significant frequency-
specific differences between DOC patients and healthy controls
(Supplementary Figs. 21, 22, 26, 27), as well as a significant
difference in repertoire diversity between fMRI+ and fMRI−
DOC patients (Supplementary Figs. 24, 29). Taken together, these
results indicate that the harmonic modes of the representative
human connectome may represent an especially suitable frame of
reference for mapping the landscape of consciousness across
individuals and datasets.

Discussion
Here, we set out to address a key challenge of contemporary
neuroscience: relating different states of consciousness to the
underlying brain states. Leveraging the recent framework of
connectome harmonic decomposition (CHD) of functional MRI
data30,31 we investigated a wide range of perturbations of human
consciousness: propofol anaesthesia, disorders of consciousness,
and the altered states induced by psychoactive (sub-anaesthetic)
doses of ketamine and by the serotonergic psychedelic LSD.

To understand how brain structure supports human con-
sciousness and its alterations, we sought a mathematically prin-
cipled interpretation of altered states of consciousness in terms of
structure-function relationships across scales. Generalizing the
Fourier transform to the network structure of the human
brain30,31, CHD explicitly re-expresses brain activity in terms of
multi-scale contributions from the underlying structural network:
each connectome harmonic is a distributed activation pattern
characterized by a specific spatial scale (frequency). Just like
temporal harmonics from traditional Fourier analysis quantify
time-dependence in the signal, so the harmonic modes of the
human connectome quantify connectome-dependence in brain
activity across scales (Fig. 1). Therefore, CHD provides a prin-
cipled alternative to go beyond the dominant view of brain
activity as consisting of discrete spatial locations, offering com-
plementary insights that are not available from the location-
centric perspective.

Complementing extensive previous studies that have sought to
implicate specific neuroanatomical regions in supporting
consciousness2,3,33–49, our results reveal that the range of states of
consciousness considered here can be characterised by their
specific patterns of connectome harmonics, regardless of how
they are induced. Despite their different molecular mechanisms of
action, ketamine (at psychedelic-like dosage) and the serotonergic
psychedelic LSD increase the contribution of high-frequency
(fine-grained) connectome harmonics, whereas propofol- and
brain injury-induced unconsciousness lead to reduced high-
frequency and increased low-frequency connectome harmonics—
demonstrating the value of CHD as a neural marker of conscious
state across datasets.

Recall that formally, the progression from low- to high-
frequency connectome harmonics reflects increasing decoupling
of functional brain activity from the underlying structural
connectivity53,76,77 (Fig. 1). Therefore, our results can be inter-
preted as showing that unconsciousness and the psychedelic state
stand in opposite relationships with respect to human structural
connectivity (as encoded in the representative high-resolution
connectome obtained from HCP data). In unconsciousness, our
analysis reveals that functional brain activity becomes more

Fig. 5 Diversity of connectome harmonic repertoire tracks level of
consciousness from loss of responsiveness to psychedelics. Pairs of
conditions (states of consciousness) were compared with linear mixed
effects modelling, by treating condition as a fixed effect and subjects as
random effects. Timepoints were also included as random effects, nested
within subjects. Plot shows the statistical estimates (fixed effect of
condition) for each contrast, and error bars indicate the 95% CIs, from the
LME model. At every timepoint ti, the contribution of each connectome
harmonic to the overall pattern of brain activity is quantified by the
harmonic power: Pðφk; tiÞ ¼ ωkðtiÞ

�� ��. Note that no binning was used for this
analysis. The diversity of the repertoire of harmonic power can then be
quantified in terms of the entropy of the power distribution: the higher the
“harmonic repertoire diversity”, the wider the range of connectome
harmonics that are recruited to compose cortical activity. Data distributions
of connectome harmonic repertoire for each condition are shown in
Supplementary Fig. 9, and source data are provided in Supplementary
Data 3. Wakefulness, mild sedation, moderate anaesthesia, and recovery:
n= 15 subjects with 145 timepoints each, for each condition. DOC fMRI+
patients: n= 8 subjects with 295 timepoints each; DOC fMRI− patients:
n= 14 subjects with 295 timepoints each. Test-retest scan 1 and scan 2:
n= 18 subjects with 155 timepoints each, for each condition. Ketamine and
placebo: n= 20 subjects with 295 timepoints each, for each condition. LSD
and placebo: n= 15 subjects with 435 timepoints each, for each condition.
***p < 0.001; **p < 0.01; *p < 0.10.
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constrained by the structure of the human connectome, as indi-
cated by an increased contribution of low-frequency, large-scale
harmonic modes and a more restricted repertoire. In contrast, the
psychedelic-induced energy shift to high-frequency harmonics
indicates a departure from standard activity patterns encoded in
the structural connectome, in favour of increasingly diverse and
variable ones78—a plausible neural correlate for the phenomen-
ologically rich state of mind induced by psychedelics30,59,79

according to leading theoretical accounts73,74.
CHD overcomes the main limitations of current structure-

function investigations of consciousness, which typically ignore
the multi-scale network organization of the connectome, as well
as the asymmetric relation between structure and function in the
brain. However, it is reassuring that the present results about
structure-function relationships of human brain activity are
complementary with previous evidence pertaining to functional
connectivity, whereby both anaesthesia and disorders of con-
sciousness increase the correlation between the patterns of
structural and functional connections3,5,11 whereas LSD reduces
structure-function correlation12. Thus, converging evidence
implicates a key role of structure-function relationships to
understand human consciousness—supporting the explicitly
connectome-oriented view that is offered by the connectome
harmonics. Future work could proceed to bring the spatially
localised and distributed approaches closer together: for instance,
by studying functional networks whereby the nodes do not
represent distinct spatial locations (regions), but rather they
represent connectome harmonics of different frequencies, and the
edges would reflect their correlation over time, as a measure of
coupling between different spatial frequencies. This is one of
many possible future extensions that we envision for CHD-based
analysis of functional neuroimaging data, which we hope will
continue to provide new insights.

By comparing different states of consciousness in terms of the
same spectrum of connectome harmonics (i.e., harmonic modes
obtained from the same high-resolution representative human
connectome), we have shown that diversity of the connectome
harmonic repertoire provides a powerful one-dimensional

indicator of level of consciousness, sensitive to differences in
anaesthetic dose (mild sedation vs moderate anaesthesia vs
recovery) as well as behaviourally indistinguishable sub-categories
of patients with disorders of consciousness.

It is important to emphasise that this result is fundamentally
distinct from previous evidence of diminished entropy of tem-
poral signals during loss of consciousness2,80–85 (but see ref. 86)
and increased temporal entropy in the psychedelic
state69,70,74,87,88 (see ref. 79 for a recent review). Those previous
studies quantified the diversity of brain signals by focusing on the
temporal dimension (“Does the brain visit few or many states in a
given period of time?”). In contrast, here we quantified diversity
in terms of the repertoire of connectome harmonic frequencies
that contribute to brain activity (“Do we need a wide or restricted
repertoire of connectome harmonics to build the brain activity we
observed?”). Therefore, our harmonic-based measure of diversity
and the entropy of temporal signals provide complementary
rather than redundant perspectives.

Likewise, it is intriguing that loss of consciousness also tends to
increase the prevalence of low-frequency (i.e., slow) temporal
oscillations, and vice-versa for psychedelics86,89–95. However,
temporal frequencies and connectome harmonic frequencies are
distinct concepts, each providing a unique perspective, and
should not be confused or conflated: recent work has begun to
investigate the relationship between connectome eigenmodes and
M/EEG temporal frequencies96–98, opening the door for future
multi-modal studies combining fMRI and EEG to elucidate the
complex inter-relationships between connectome harmonics,
temporal frequencies, and consciousness in the human brain.

We have also shown how connectome harmonics relate brain
structure and function with neurophysiology and phenomenol-
ogy. Computational modelling work has indicated that the rela-
tive prevalence of high- vs low-frequency connectome harmonics
in brain activity is governed by the global balance between
excitation and inhibition30,31. Therefore, changes in the con-
nectome harmonic repertoire reflect the influence of both neu-
roanatomy (as the source of harmonics) and neurophysiology
(governing their relative prevalence) on brain function. This

Table 1 Demographic information for patients with disorders of consciousness.

Sex Age Aetiology Diagnosis CRS-R Score Tennis task Navigation task Classification

M 46 TBI UWS 6 No evidence No evidence fMRI−
M 57 TBI MCS 12 No evidence No evidence fMRI−
M 46 TBI MCS 10 No evidence No evidence fMRI−
M 35 Anoxic UWS 8 No evidence No evidence fMRI−
M 17 Anoxic UWS 8 No evidence Positive fMRI+
F 31 Anoxic MCS 10 No evidence No evidence fMRI−
F 38 TBI MCS 11 Positive No evidence fMRI+
M 29 TBI MCS 10 SMA +ve PPA +ve fMRI+
M 23 TBI MCS 7 SMA +ve No evidence fMRI+
F 70 Cerebral bleed MCS 9 No evidence No evidence fMRI−
F 30 Anoxic MCS 9 PMC +ve No evidence fMRI+
F 36 Anoxic UWS 8 No evidence PPA +ve fMRI+
M 22 Anoxic UWS 7 No evidence No evidence fMRI−
M 40 Anoxic UWS 7 No evidence No evidence fMRI−
F 62 Anoxic UWS 7 No evidence No evidence fMRI−
M 46 Anoxic UWS 5 No evidence No evidence fMRI−
M 21 TBI MCS 11 No evidence No evidence fMRI−
M 67 TBI MCS 11 SMA +ve PPA +ve fMRI+
F 55 Hypoxia UWS 7 No evidence Negative fMRI−
M 28 TBI MCS 8 Positive Positive fMRI+
M 22 TBI MCS 10 No evidence Negative fMRI−
F 28 ADEM UWS 6 No evidence Negative fMRI−

CRS-R Coma Recovery Scale-Revised, UWS Unresponsive Wakefulness Syndrome, MCSMinimally Conscious State, TBI Traumatic Brain Injury, fMRI− negative responders to mental imagery task, fMRI+
positive responders to mental imagery task, SMA supplementary motor area, PPA parahippocampal place area, PMC pre-motor cortex.
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suggests that propofol-induced global inhibition may provide an
explanation for the increased structure-function coupling
observed during anaesthesia, by restricting the repertoire of
connectome harmonic building blocks that are available to con-
tribute to brain activity. Indeed, our results demonstrate that
change in propofol concentration correlates with the alignment
between an individual’s harmonic spectrum and the connectome
harmonic signature of unconsciousness—even when extracted
from a different dataset (DOC patients; Fig. 4).

More broadly, the entire spectrum of connectome harmonics
may be used to characterise the quality of various states of con-
sciousness, in terms of being unconscious-like or psychedelic-like
(or neither, as in the case of our test-retest data). Indeed, our
analyses uncovered that the connectome harmonic signature of
post-anaesthetic recovery (and, to a lesser extent, mild sedation),
resembled the signature of the psychedelic state—even though
diversity of the repertoire was near baseline levels. This intriguing
observation may reflect the phenomenon whereby individuals
emerging from anaesthesia can exhibit symptoms of delirium,
cognitive alterations, and even hallucinations99,100. Thus, the
similarity that we observed between anaesthetic emergence and
psychedelics in terms of connectome harmonics may provide a
link between the shared aspects of their phenomenology,
demonstrating the usefulness of CHD for generating empirically
testable predictions.

Crucially, these results demonstrate that connectome harmo-
nics offer not only an effective one-dimensional indicator, com-
plementing existing complexity measures69,79,81, but also a richer
multi-dimensional characterisation of conscious states. Although
a deeper understanding of the underlying neurophysiology will be
required, it is noteworthy that individual alignment with our
connectome harmonic signature of the psychedelic state corre-
lates with the subjective intensity of the psychedelic experience
induced by LSD (Fig. 4), suggesting that connectome harmonics
may provide a bridge between brain structure, function, and
phenomenology (subjective experience). In particular, our results
demonstrate that structure-function coupling across scales is
under control by neuromodulation, since different pharmacolo-
gical interventions can either increase it (GABA-ergic agonism
induced by propofol) or decrease it (NMDA receptor antagonism
and 5HT2A receptor agonism).

It is essential to realize that the general principle of harmonic
mode decomposition does not require the harmonic modes to be
derived from the same subject who is providing the functional
data. In fact, the harmonic modes do not even need to have a
biological origin at all. At one extreme, researchers have suc-
cessfully employed harmonics derived from a sphere to investi-
gate how brain activity depends on the most general geometric
properties of the brain and skull101,102. Insights about abnormal
processing in DOC patients have also been obtained using graph
signal processing on the network of geometrical distances
between EEG electrodes, indicating increasingly segregated
processing103. At the other extreme, investigators whose focus is
subject-specific insight, rather than generalization across datasets,
could perform CHD using each individual’s own connectome.

Our choice of using the harmonic modes of a high-resolution
representative human connectome (replicated using data from
985 HCP subjects, and processed with a different pipeline)
enabled us to strike a balance between these two extremes,
combining neurobiological insight with generalizability. On one
hand, given our goal of obtaining connectome harmonic sig-
natures of each state of consciousness that can be meaningfully
compared across subjects and across datasets, it was imperative
for us to use the same set of basis functions (i.e., harmonic modes
of the same representative connectome) to decompose different
datasets. In this respect, CHD based on a representative

connectome is not conceptually different from the traditional
spatially-resolved view of brain activity, which to be able to refer
to the same localized region across individuals, requires spatial
normalization to a standard template (e.g., MNI-152), and use of
a standard parcellation, both obtained from aggregating neuroi-
maging data across healthy individuals104.

On the other hand, in addition to the conceptual advantages of
taking into account known physical and anatomical properties of
the human brain (e.g. cortical folding, local grey-matter con-
nectivity and long-range white matter projections; see ref. 78 for a
detailed discussion), our results provided empirical demonstra-
tion that both the specific anatomical distribution of connectome
harmonics, and the specific topological organization of the high-
resolution human structural connectome, play a crucial role in
identifying consistent patterns across different states of con-
sciousness: perturbing either of these two aspects (via spatial
rotation or randomization, respectively) obliterated the ability of
harmonic decomposition to recover common patterns across the
various states of consciousness considered here.

Importantly, our results revealed a prominent role of the fine-
grained, high-frequency harmonics to distinguish between states
of consciousness. This insight was only possible thanks to the
availability of high-quality, high-resolution HCP diffusion data,
which we could aggregate across subjects to obtain high-fidelity
reconstructions even at the finest scale (up to three orders of
magnitude more fine-grained than other approaches to harmonic
mode decomposition based on the connectome, which have relied
on parcellated data20,21,76,77,98,105). In fact, we successfully
replicated our results using a high-resolution connectome
obtained by combining 985 HCP subjects: arguably the most
representative operationalization of the structural wiring of the
human brain that is available to date. The need for high-quality
connectome reconstruction may pose a challenge when seeking to
perform CHD based on individual subjects’ connectomes,
whereupon diffusion data of sufficiently high quality is not always
available, and this issue could not be mitigated via aggregation
across subjects. Even so, diffusion imaging and tractography are
not without limitations: chief among them, their inability to infer
fibre directionality, an important feature of brain wiring that will
need to be accounted for through both technological and con-
ceptual advances. Likewise, future work could extend our results
by taking into account transmission delays based on tract
length20.

It is noteworthy that although we stratified our DOC patients
based on their performance on mental imagery tasks in the
scanner, our connectome harmonic analysis was entirely based on
resting-state (i.e., task-free) fMRI data, which imposes no cog-
nitive demands on patients, unlike task-based paradigms106.
Connectome harmonics analysis of rs-fMRI may represent a
useful screening tool in the clinic to identify patients for more in-
depth assessment—contributing to alleviate the high rate of
misdiagnoses for DOC patients when relying solely on beha-
vioural criteria106,107. To this end, it will be important to replicate
the present results in different, larger samples, both of DOC
patients and pertaining to pharmacological perturbations of
consciousness, to ensure their robustness.

However, even failure to respond to the fMRI mental imagery
tasks cannot conclusively rule out residual consciousness in DOC
patients, and loss of behavioural responsiveness during anaesthesia
may not always coincide with loss of brain responsiveness and
subjective experience91,108,109. More broadly, to further establish the
potential clinical value of CHD as a general neural marker of
consciousness, it will be essential to obtain a convergence of multi-
modal markers of consciousness that bypass overt behaviour, across
different neuroimaging modalities91,106,110. For instance, given
evidence that EEG slow-wave activity saturation constitutes a
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marker of loss of brain responsiveness induced by propofol91, a
promising avenue for future work will be to investigate whether a
corresponding saturation of low-frequency connectome harmonics
can be identified in the fMRI signal. Likewise, establishing the
susceptibility of connectome harmonics to intervention via Tran-
scranial Magnetic Stimulation will shed light on their suitability as a
target for treatment, and enable a potential convergence with the
Perturbational Complexity Index: one of the most sensitive indi-
cators of consciousness available to date, which is based on how the
brain’s response to TMS pulses spread79,110–112.

Overall, the energy spectrum of connectome harmonics and
the diversity of their repertoire provide distinct and synergistic
insights, to identify meaningful relationships between brain
function, its network structure, and subjective experience. Having
demonstrated the generalisability of connectome harmonic
decomposition across datasets and states of consciousness, and
their bi-directional control by neuromodulation, our results lay
the groundwork for future harmonic-based quantitative com-
parison of different mental states in health and disease.

Methods
Generalising the Fourier transform to the network structure of the human
connectome: theoretical background. Connectome harmonic decomposition
(CHD) generalises the mathematics of the Fourier transform to the network
structure of the human brain. The traditional Fourier transform operates in the
temporal domain (Fig. 1a): decomposition into temporal harmonics quantifies to
what extent the signal varies slowly (low-frequency temporal harmonics) or quickly
(high-frequency temporal harmonics) over time (Fig. 1b). Analogously, CHD re-
represents a spatial signal in terms of harmonic modes of the human connectome,
so that the spatial frequency (granularity) of each connectome harmonic quantifies
to what extent the organization of functional brain signals deviates from the
organization of the underlying structural network (Fig. 1c, d). Therefore, CHD is
fundamentally different from, and complementary to, traditional approaches to
functional MRI data analysis. This is because CHD does not view functional brain
activity as composed of signals from discrete spatial locations, but rather as
composed of contributions from distinct spatial frequencies: each connectome
harmonic is a whole-brain pattern with a characteristic spatial scale (granularity)—
from an entire hemisphere to just a few millimetres.

On one hand, this means that CHD is unsuitable to address questions
pertaining to spatial localisation and the involvement of specific neuroanatomical
regions; such questions have been extensively investigated within the traditional
framework of viewing brain activity in terms of spatially discrete regions, and
several previous studies have implicated specific neuroanatomical regions in
supporting consciousness33–49. On the other hand, CHD enables us to consider
how brain activity across states of consciousness is shaped by the brain’s distributed
network of structural connections, reflecting the contribution of global patterns at
different spatial scales—each arising from the network topology of the human
connectome. We emphasise that neither approach is inherently superior, but rather
they each provide a unique perspective on brain function: one localised, the other
distributed. The traditional spatially-resolved approach and our frequency-resolved
approach are two synergistic sides of the same coin.

Crucially, the use of the word “frequency” for both connectome harmonic
decomposition and traditional Fourier analysis should not give the misleading
impression that our analyses are redundant with previous literature based on
traditional Fourier analysis in the domain of temporal frequencies (just like the
connectome harmonic energy defined below is entirely different from metabolic
energy). On the contrary, signal decomposition in terms of temporal frequencies
(i.e., Fourier analysis) and connectome-based frequencies (i.e., CHD) operate in
entirely separate domains and provide very different information about the signal
(temporal dependence versus spatial dependence on the connectome network
structure). Indeed, this means that even the most suitable neuroimaging modalities
for each analysis are different: CHD relies on fMRI data with high spatial
resolution, but which have a restricted content of temporal frequencies (the BOLD
signals used here were all band-pass filtered in the low-frequency range as part of
standard denoising procedures), whereas Fourier investigations of consciousness
require high temporal resolution and are therefore typically performed on electro-
or magneto-encephalography data. Please note that throughout this article, unless
otherwise specified, our use of the word “frequency” refers to the frequency of
connectome harmonics (spatial granularity, from fine-grained to coarse-grained).

High-resolution structural connectome. Whereas alternative approaches to
harmonic mode decomposition rely exclusively on white-matter connectivity
between macroscopic brain regions defined by sub-dividing the brain into discrete
parcels21,76,77,113, CHD combines long-range white-matter connections with local
connectivity within the grey matter on a continuous cortical surface, thereby

achieving a representation of the human structural connectome at the highest
resolution available for MR imaging31,78. For consistency with previous work
employing connectome harmonic decomposition, for our main results we used
connectome harmonics obtained from the same reconstruction of the human
structural connectome used by Atasoy and colleagues30. However, note that we also
replicated our results using two alternative reconstructions of the human con-
nectome at higher resolution (described below), including one obtained from
aggregating 985 subjects from the Human Connectome Project (HCP)114: arguably
one of the most representative reconstructions of the human structural connectome
available to date, corresponding to a nearly 100-fold increase in sample size with
respect to previous CHD studies30.

Connectome reconstruction. The workflow was the same as described in previous
work by Atasoy and colleagues30, who derived a high-resolution human structural
connectome from derived from DTI and structural MRI data from an independent
sample of 10 HCP subjects (six female, age 22–35), preprocessed according to
minimal preprocessing guidelines of the HCP protocol. For each of these HCP
subjects, Freesurfer (http://freesurfer.net) was used to reconstruct the cortical
surfaces of each hemisphere at the interface of white and grey matter, based on the
0.7 mm resolution data from T1-weighted MRI. This resulted in a representation of
18,715 cortical surface vertices for each subject. Subsequently, deterministic trac-
tography was used to reconstruct long-range white matter fibres. After co-
registering each subject’s diffusion imaging and cortical surface data, each of the
18,715 vertices of the reconstructed cortical surface was used as a centre to initialise
eight seeds for deterministic tractography, implemented with the MrDiffusion tool
(http://white.stanford.edu/newlm/index.php/MrDiffusion). Tracking was termi-
nated when fractional anisotropy (FA) was below a threshold of 0.3, with 20 mm
minimum tract length, and setting 30 degrees as the maximum allowed angle
between consecutive tracking steps30.

The structural connectome of each subject was then represented as a binary
adjacency matrix A, treating each cortical surface vertex as a node: for each pair i
and j of the n= 18,715 cortical surface grey matter nodes, Aij was set to 1 if there
was a white matter tract connecting them, as estimated from the deterministic
tractography step described above (in order to account for long-range
connections); or if they were adjacent in the grey matter cortical surface
representation, thereby accounting for the presence of local (1–6 mm) connections
within the grey matter (the importance of accounting for short-range grey-matter
connections in addition to long-range white matter tracts was demonstrated in a
recent study78). If neither long-range nor short-range connections between i and j
existed, Aij was set to 0. This procedure resulted in a symmetric (undirected) binary
matrix30.

The individual adjacency matrices were then averaged across the 10 HCP
subjects to obtain a group-average matrix �A, encoding a representative structural
conenctome We then define the degree matrix D of the graph as:

D i; ið Þ ¼ ∑
n

j¼1
�A i; j
� �

: ð1Þ

Extraction of connectome harmonics. Following ref. 30, we compute the sym-
metric graph Laplacian ΔG on the group-average adjacency matrix �A that repre-
sents the human connectome, in order to estimate the Laplacian (discrete
counterpart of the Laplace operator Δ115) of the human structural connectome:

4G ¼ D�1=2LD�1=2; with L ¼ D� �A: ð2Þ
We then calculate the connectome harmonics φk, k ∈ {1, …, 18,715} by solving

the following eigenvalue problem:

4Gφk vi
� � ¼ λkφk vi

� �8vi 2 V ; with 0< λ1< λ2<:::< λn; ð3Þ
where λk, k ∈ {1, …, n} is the corresponding eigenvalue of the eigenfunction φk, V
is the set of cortical surface vertices and n represents the number of vertices. In
other words, λk and φk are the eigenvalues and eigenvectors of the Laplacian of the
human structural connectivity network, respectively. Therefore, if φk is the
connectome harmonic pattern of the kth spatial frequency (wavenumber), then the
corresponding eigenvalue λk is a term relating to the intrinsic energy of that
particular harmonic mode. Crucially, we reiterate that the frequencies associated
with each connectome harmonic are in the spatial rather than temporal domain,
and should not be confused with the temporal frequencies identified by Fourier
transform in the temporal domain (e.g., for denoising of timeseries).

Connectome-harmonic decomposition of fMRI data. At each timepoint t ∈
{1,…,T} (corresponding to one TR), the preprocessed and denoised fMRI data (see
below for details of these steps) were projected onto cortical surface coordinates by
means of the Human Connectome Project Workbench -volume-to-surface-mapping
tool. Then, the spatial pattern of cortical activity over vertices v at time t, denoted
as Ft (v), was decomposed as a linear combination of the set of connectome
harmonics Ψ ¼ fφkgNk¼1:

Ft ¼ ω1ðtÞφ1 þ ω2ðtÞφ2 þ :::þ ωnðtÞφn ¼ ∑
n

k¼1
ωkðtÞφkðvÞ ð4Þ
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with the contribution ωk (t) of each connectome harmonic φk at time t being
estimated as the projection (dot product) of the fMRI data Ft (v) onto φk:

ωk tð Þ ¼ Ft ;φk

� �
: ð5Þ

Power and energy of connectome harmonics. Once the fMRI cortical activation
pattern at time t has been decomposed into a linear combination of connectome
harmonics, the magnitude of contribution to cortical activity of each harmonic φk,
k ∈ {1, …, n} (regardless of sign) at any given timepoint t (P(φk, t)), called its
“power” for analogy with the Fourier transform, is computed as the amplitude of its
contribution:

Pðφk; tÞ ¼ ωkðtÞ
�� ��: ð6Þ

In turn, the normalized frequency-specific contribution of each harmonic φk, k
∈ {1, …, n} at timepoint t, termed energy, is estimated by combining the strength
of activation (power) of a particular connectome harmonic with its own intrinsic
energy given by λk

2:

Eðφk; tÞ ¼ ωkðtÞ
�� ��2λk

2: ð7Þ
Consequently, total brain energy at time t is given by

Etotal tð Þ ¼ ∑
n

k¼1
ωk tð Þ
�� ��2λk

2 ¼ jj4Ft vð Þjj2: ð8Þ

Since the Laplace operator Δ represents the amount of activity flow, the latter
part of Eq. 8 indicates that the total brain energy at a given point in time can be
interpreted as the total cortical flow of neural activity at that time30. A binned
energy spectrum across subjects and timepoints is constructed by discretising the
energy of connectome harmonics into 15 logarithmically-spaced frequency-specific
bins, following previous work showing that this procedure can successfully
highlight the connectome harmonic signatures of altered states of consciousness30

(Supplementary Fig. 1).

Data-driven extraction of multivariate connectome harmonic signatures.
Partial least squares (PLS, also known as Projection on Latent Spaces) is a multi-
variate statistical analysis used to identify relationships between one or more tar-
gets (Y) and a set of predictor variables X. This method extracts principal
components as linear combinations of variables in each set that maximally covary
with each other. In the present case, for each pair of states of consciousness under
comparison, X was the matrix of 15 binned energy values (see above) for each
subject (averaged over timepoints), and Y was the vector of binary classification
between the two states (here, target vs baseline state of consciousness, e.g. anaes-
thetised vs awake, ketamine vs placebo, fMRI− vs fMRI+ DOC, etc.)—making this
an application of Partial Least Squares Discriminant Analysis (PLS-DA), owing to
the binary nature of Y116. The first principal component extracted by PLS-DA
represents the single most discriminative pattern present in the data, in terms of
distinguishing observations (subjects) belonging to the two different classes (states
of consciousness).

Diversity of connectome harmonic repertoire. To quantify the diversity of the
repertoire of connectome harmonics recruited at each point in time, we start by
observing that a diverse repertoire is one in which different harmonic modes
contribute in different degrees to brain activity—neither one single mode dom-
inating (which would correspond to a periodic oscillation, in analogy with the
traditional Fourier transform) nor every mode contributing the same as every other
mode (which would correspond to white noise). To capture this intuition, we
quantify repertoire diversity in terms of the entropy of the distribution of con-
nectome harmonic power (absolute strength of contribution to the cortical acti-
vation pattern) across all 18,715 connectome harmonics (i.e., binning was not used
for this analysis). Specifically, to deal with continuous data (as in the present case)
we rely on the Kozachenko approximation, as implemented in the Java Informa-
tion Dynamics Toolbox (JIDT; http://jlizier.github.io/jidt/)117. We note that when
dealing with continuous variables, entropy can have negative values118, but its
interpretation remains the same: a more entropic distribution (i.e. having a value of
entropy closer to positive infinity) will correspond to a more diverse repertoire. We
calculate this entropy for each timepoint of each subject.

High-resolution alternative reconstructions of the human connectome. To
demonstrate that our results are not fundamentally dependent on this specific
operationalisation of the human connectome, we also used two alternative repre-
sentative human connectomes. The first alternative connectome was constructed
from multi-shell diffusion-weighted imaging data from 985 subjects of the HCP
1200 data release (http://www.humanconnectome.org/), each scanned for
approximately 59 min. This represents a nearly 100-fold increase in sample size
compared with the original connectome used for connectome harmonic
decomposition30. We refer to the human connectome constructed from these data
as the HCP-985 connectome. The second alternative connectome was constructed
from 32 healthy volunteers from the HCP database who were scanned for a full
89 min at Massachusetts General Hospital with high-resolution diffusion spectrum
imaging, which can better resolve crossing fibres. We refer to this connectome as

the MGH-32 connectome. Acquisition parameters for both groups are described in
detail in the relative documentation (http://www.humanconnectome.org/)119, and
both dMRI datasets were preprocessed and made available as part of the freely
available Lead-DBS software package (http://www.lead-dbs.org/).

For the reconstruction of long-range white matter tracts of each individual, we
followed the procedures previously used on these data by Deco and colleagues120:
the diffusion data were processed using a generalized q-sampling imaging
algorithm implemented in DSI Studio (http://dsi-studio.labsolver.org). A white-
matter mask was obtained from segmentation of the T2-weighted anatomical
images, which were co-registered to the b0 image of the diffusion data using
SPM12. In each HCP participant, 200,000 fibres were sampled within the white-
matter mask, using a tracking method that previously achieved the highest (92%)
valid connection score among 96 methods submitted from 20 different research
groups in a recent open competition121. Finally, the fibres were transformed into
standard Montreal Neurological Institute (MNI-152) space using Lead-DBS122.
The remaining procedures for obtaining individual connectomes and aggregating
them into a group-average representative connectome, and subsequent
connectome harmonic decomposition, were the same as described above. To
ensure that our results were not unduly influenced by potential aliasing effects
introduced by the use of high-resolution diffusion data, for both the HCP-985 and
MGH-32 analyses we only used the first 14 logarithmically spaced bins (instead of
15 as for the previous analyses), showing that our results are not critically
dependent on the precise number of bins.

Rotated harmonics. To demonstrate the importance of the neuroanatomical
distribution of connectome harmonics, we assessed whether our results would
replicate when using spherically rotated connectome harmonics, following a
recently described approach58, based on freely available code (github.com/spin-
test/spin-test)75. After obtaining the connectome harmonics following the proce-
dure described above, the corresponding surface maps were projected onto a
spherical surface, and subsequently rotated by a random angle, before mapping
back the rotated values onto the nearest vertex (ignoring parts of the corpus
callosum that are mapped onto the cortical surface). Since we used multi-
dimensional basis functions, we rotated the surface maps corresponding to each
dimension by the same angle. Note that the resulting rotated maps are not
orthonormal anymore, because each rotated map is symmetrised to preserve this
important property. We then proceeded with the normal CHD analysis workflow
as described above.

Randomised connectome. To demonstrate the importance of the specific topology
of the human connectome, obtained by combining local grey matter connectivity
and long-range white matter fibres, we also tested whether our results would
replicate when using harmonics obtained from a randomised connectome78. Before
performing Laplacian decomposition, the original connectome was therefore
turned into a random network using the degree-preserving procedure implemented
in the Brain Connectivity Toolbox123. Harmonics were then extracted from
Laplacian eigendecomposition, and the full connectome harmonic decomposition
pipeline was followed. As for the validation analyses using alternative oper-
ationalisations of the human connectome, for this analysis we also only used the
first 14 logarithmically spaced bins.

Propofol dataset. The propofol data used in this study have been published before.
For clarity and consistency of reporting, where applicable we use the same wording
as in our previous publications with these data47,48. Sixteen healthy volunteer
subjects were recruited for scanning. In addition to the original 16 volunteers, data
were acquired for nine additional participants using the same procedures, bringing
the total number of participants in this dataset to 25 (11 males, 14 females; mean
age 34.7 years, SD= 9.0 years). Ethical approval for these studies was obtained
from the Cambridgeshire 2 Regional Ethics Committee, and all subjects gave
informed consent to participate in the study. Volunteers were informed of the risks
of propofol administration, such as loss of consciousness, respiratory and cardio-
vascular depression. They were also informed about more minor effects of propofol
such as pain on injection, sedation and amnesia. In addition, standard information
about intravenous cannulation, blood sampling and MRI scanning was provided.
The GABA-ergic intravenous agent propofol is one of the most commonly used
anaesthetic drugs, owing to the stability and predictability of its effects. Three target
plasma levels of propofol were used—no drug (Awake), 0.6 mg/ml (Mild sedation)
and 1.2 mg/ml (Moderate sedation). Scanning (rs-fMRI) was acquired at each
stage, and also at Recovery; anatomical images were also acquired. The level of
sedation was assessed verbally immediately before and after each of the
scanning runs.

Propofol study: infusion protocol. Propofol was administered intravenously as a
“target controlled infusion” (plasma concentration mode), using an Alaris PK
infusion pump (Carefusion, Basingstoke, UK)47,48. A period of 10 min was allowed
for equilibration of plasma and effect-site propofol concentrations. Blood samples
were drawn towards the end of each titration period and before the plasma target
was altered, to assess plasma propofol levels. In total, 6 blood samples were drawn
during the study. The mean (SD) measured plasma propofol concentration was
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304.8 (141.1) ng/ml during mild sedation, 723.3 (320.5) ng/ml during moderate
sedation and 275.8 (75.42) ng/ml during recovery. Mean (SD) total mass of pro-
pofol administered was 210.15 (33.17) mg, equivalent to 3.0 (0.47) mg/kg. Two
senior anaesthetists were present during scanning sessions and observed the sub-
jects throughout the study from the MRI control room and on a video link that
showed the subject in the scanner. Electrocardiography and pulse oximetry were
performed continuously, and measurements of heart rate, non-invasive blood
pressure, and oxygen saturation were recorded at regular intervals47,48.

Propofol study: MRI data acquisition. The acquisition procedures are described
in detail in the original study47. Briefly, MRI data were acquired on a Siemens Trio
3T scanner (WBIC, Cambridge). For each level of sedation, 150 rs-fMRI volumes
(5 min scanning) were acquired. Each functional BOLD volume consisted of 32
interleaved, descending, oblique axial slices, 3 mm thick with interslice gap of
0.75 mm and in-plane resolution of 3 mm, field of view = 192 × 192 mm, repetition
time = 2000 ms, acquisition time = 2 s, time echo = 30 ms, and flip angle 78. We
also acquired T1-weighted structural images at 1 mm isotropic resolution in the
sagittal plane, using an MPRAGE sequence with TR= 2250 ms, TI= 900 ms,
TE= 2.99 ms and flip angle = 9 degrees, for localization purposes. During scan-
ning we instructed volunteers to close their eyes and think about nothing in par-
ticular throughout the acquisition of the resting-state BOLD data. Of the 25 healthy
subjects, 15 were ultimately retained (7 males, 8 females): 10 were excluded, either
because of missing scans (n= 2), or due of excessive motion in the scanner (n= 8,
5 mm maximum motion threshold).

Disorders of consciousness patient dataset. The DOC patient data used in this
study have been published before. For clarity and consistency of reporting, where
applicable we use the same wording as in our previous publications with these
data2,27. Briefly, 71 DOC patients were recruited from specialised long-term care
centres from January 2010 to December 2015. Ethical approval for this study was
provided by the National Research Ethics Service (National Health Service, UK;
LREC reference 99/391). Patients were eligible to be recruited in the study if they
had a diagnosis of chronic disorder of consciousness, provided that written
informed consent to participation was provided by their legal representative, and
provided that the patients could be transported to Addenbrooke’s Hospital
(Cambridge, UK). The exclusion criteria included any medical condition that made
it unsafe for the patient to participate, according to clinical personnel blinded to the
specific aims of the study; or any reason that made a patient unsuitable to enter the
MRI scanner environment (e.g. non-MRI-safe implants). Patients were also
excluded based on significant pre-existing mental health problems, or insufficient
fluency in the English language prior to their injury. After admission to Adden-
brooke’s Hospital, each patient underwent clinical and neuroimaging testing
(including task-based, resting-state, and anatomical scans), spending a total of five
days in the hospital (including arrival and departure days). Neuroimaging scanning
took place at the Wolfson Brain Imaging Centre (Addenbrooke’s Hospital, Cam-
bridge, UK), and medication prescribed to each patient was maintained during
scanning.

For each day of admission, Coma Recovery Scale-Revised (CRS-R) assessments
were recorded at least daily. Patients whose behavioural responses were not
indicative of awareness at any time, were classified as UWS. In contrast, patients
were classified as being in a minimally conscious state (MCS) if they provided
behavioural evidence of simple automatic motor reactions (e.g., scratching, pulling
the bed sheet), visual fixation and pursuit, or localisation to noxious stimulation)
(note that due to the limited size of our sample of MCS patients, we do not sub-
divide these patients into MCS− and MCS+)124,125. Since this study focused on
whole-brain properties, coverage of most of the brain was required, and we
followed the same criteria as in our previous studies2,27: before analysis took place,
patients were systematically excluded if an expert neuroanatomist blinded to
diagnosis judged that they displayed excessive focal brain damage (over one-third
of one hemisphere), or if brain damage led to suboptimal segmentation and
normalisation, or due to excessive head motion in the MRI scanner (exceeding
3 mm translation or 3 degrees rotation)2,27. Forty-one patients were excluded due
to excessive brain damage and distortion preventing satisfactory segmentation and
normalisation; 8 further patients due to excessive motion. A total of 22 adults (14
males, 8 females; age range 17–70 years; mean time post injury: 13 months)
meeting diagnostic criteria for Unresponsive Wakefulness Syndrome/Vegetative
State (N= 10) or Minimally Conscious State (N= 12) due to brain injury were
included in this study (Table 1)2,27.

Stratification of DOC Patients into fMRI+ and fMRI−. Following our previous
work62,63, patients were stratified into two groups based on their ability to
perform volitional tasks (mental imagery) in the scanner62,63,126,127. The
mental imagery tasks used here have been previously used to assess the pre-
sence of covert consciousness in DOC patients62,63,126,127 and their validity has
been confirmed in healthy individuals128. Patients were instructed to perform
two mental imagery tasks2,27. The first task involved motor imagery (tennis
task): each patient was asked to imagine being on a tennis court swinging their
arm to hit the ball back and forth with an imagined opponent. The second was
a task of spatial imagery (navigation task): the patient was required to imagine

walking around the rooms of their house, or the streets of a familiar city, and to
visualise what they would see if they were there. Each task comprised five cycles
of alternating imagery and rest blocks, each lasting 30 s. The two kinds of
mental imagery blocks were cued with the spoken word “tennis” or “naviga-
tion”, respectively, whereas the resting blocks were cued with the word “relax”,
corresponding to instructions for the patient to just stay still and keep their
eyes closed. Univariate fMRI analysis was conducted on all 22 patients for both
the motor and spatial mental imagery tasks62. The analyses were performed
using FSL version 5.0.9 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The results of
these analyses determined which patients would be placed in each classification
condition. For each functional scan, a general linear model consisting of
contrasting periods of rest and active imagery was computed. Results were
considered significant at a cluster level of z > 2.3 (corrected p < 0.05 at the
cluster level)62,63. Patients who exhibited significantly greater brain activation
in the appropriate regions (supplementary motor area (SMA) for the tennis
task, and parahippocampal place area (PPA) for the navigation task, respec-
tively) during either of the volitional mental imagery tasks than rest (i.e., those
who exhibited evidence of being able to respond to the task) were deemed to be
covertly conscious (N= 8); for brevity, we refer to these positive responders
with the label “fMRI+”62,63. Conversely, we refer to patients who did not
respond to either task (negative responders), and who therefore did not exhibit
detectable evidence of covert consciousness (N= 14), as “fMRI−”62,63

(Table 1).

DOC patients: MRI data acquisition. Resting-state fMRI was acquired for 10 min
(300 volumes, TR= 2000 ms) using a Siemens Trio 3T scanner (Erlangen, Ger-
many). Functional images (32 slices) were acquired using an echo planar sequence,
with the following parameters: 3 × 3 × 3.75 mm resolution, TR= 2000 ms, TE=
30 ms, 78 degrees FA. Anatomical scanning was also performed, acquiring high-
resolution T1-weighted images with an MPRAGE sequence, using the following
parameters: TR= 2300 ms, TE= 2.47 ms, 150 slices, resolution 1 × 1 × 1mm2,27.

Ketamine dataset. The ketamine data used in this study have been published
before. For clarity and consistency of reporting, where applicable we use the
same wording as in our previous publications with these data64. A total of 21
participants (10 males; mean age 28.7 years, SD= 3.2 years) were recruited via
advertisements placed throughout central Cambridge, UK64. All participants
underwent a screening interview in which they were asked whether they had
previously been diagnosed or treated for any mental health problems and
whether they had ever taken any psychotropic medications. Participants
reporting a personal history of any mental health problems or a history of any
treatment were excluded from the study. All participants were right-handed,
were free of current of previous psychiatric or neurological disorder or sub-
stance abuse problems, and had no history of cardiovascular illness or family
history of psychiatric disorder/substance abuse64. The study was approved by
the Cambridge Local Research and Ethics Committee, and all participants
provided written informed consent in accordance with ethics committee
guidelines. Participants were scanned (resting-state functional MRI and ana-
tomical T1) on two occasions, separated by at least 1 week. On one occasion,
they received a continuous computer-controlled intravenous infusion of a
racemic ketamine solution (2 mg/ml) until a targeted plasma concentration of
100 ng/ml was reached. This concentration was sustained throughout the
protocol. A saline infusion was administered on the other occasion. Infusion
order was randomly counterbalanced across participants64.

Ketamine study: infusion protocol. The infusion was performed and monitored
by a trained anaesthetist (RA) who was unblinded for safety reasons, but who
otherwise had minimal contact with participants64. At all other times, participants
were supervised by investigators blinded to the infusion protocol. The participants
remained blinded until both assessments were completed. Bilateral intravenous
catheters were inserted into volunteers’ forearms, one for infusion, and the other
for serial blood sampling. We used a validated and previously implemented three-
compartment pharmacokinetic model to achieve a constant plasma concentration
of 100 ng/ml using a computerized pump (Graseby 3500, Graseby Medical, UK).
The infusion continued for 15 min to allow stabilization of plasma levels. Blood
samples were drawn before and after the resting fMRI scan and then placed on ice.
Plasma was obtained by centrifugation and stored at −70 °C. Plasma ketamine
concentrations were measured by gas chromatography–mass spectrometry.

Ketamine study: MRI data acquisition. All MRI and assessment procedures were
identical across assessment occasions64. Scanning was performed using a 3.0T MRI
scanner (Siemens Magnetom, Trio Tim, Erlangen, Germany) equipped with a 12-
channel array coil located at the Wolfson Brain Imaging Centre, Addenbrooke’s
Hospital, Cambridge, UK. T2*-weighted echo-planar images were acquired under
eyes-closed resting-state conditions. Participants were instructed to close their eyes
and let the minds wander without going to sleep. Subsequent participant debriefing
ensured that no participants fell asleep during the scan. Imaging parameters were:
3 × 3 × 3.75 mm voxel size, with a time-to-repetition (TR) of 2000 ms, time-to-echo
(TE) of 30 ms, flip angle of 781 in 64 × 64 matrix size, and 240 mm field of view
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(FOV). A total of 300 volumes comprising 32 slices each were obtained. In addi-
tion, high-resolution anatomical T1 images were acquired using a three-
dimensional magnetic-prepared rapid gradient echo (MPPRAGE) sequence. In all,
176 contiguous sagittal slices of 1.0 mm thickness using a TR of 2300 ms, TE of
2.98 ms, flip angle of 91, and a FOV of 256 mm in 240 × 256 matrix were acquired
with a voxel size of 1.0 mm3. One participant was excluded due to excessive
movement, resulting in a final sample of N= 20 subjects.

LSD dataset. The original study129 was approved by the National Research
Ethics Service Committee London–West London and was conducted in
accordance with the revised declaration of Helsinki (2000), the International
Committee on Harmonization Good Clinical Practice guidelines and National
Health Service Research Governance Framework. Imperial College London
sponsored the research, which was conducted under a Home Office license for
research with schedule 1 drugs. All participants were recruited via word of
mouth and provided written informed consent to participate after study
briefing and screening for physical and mental health. The screening for
physical health included electrocardiogram (ECG), routine blood tests, and
urine test for recent drug use and pregnancy. A psychiatric interview was
conducted and participants provided full disclosure of their drug use history.
Key exclusion criteria included: <21 years of age, personal history of diagnosed
psychiatric illness, immediate family history of a psychotic disorder, an
absence of previous experience with a classic psychedelic drug (e.g. LSD,
mescaline, psilocybin/magic mushrooms or DMT/ayahuasca), any psychedelic
drug use within 6 weeks of the first scanning day, pregnancy, problematic
alcohol use (i.e. >40 units consumed per week), or a medically significant
condition rendering the volunteer unsuitable for the study. Twenty healthy
volunteers with a previous experience using psychedelic drugs were scanned.
Volunteers underwent two scans, 14 days apart. On one day they were given a
placebo (10-mL saline) and the other they were given an active dose of LSD
(75 μg of LSD in 10-mL saline). The order of the conditions was balanced
across participants, and participants were blind to this order but the
researchers were not. Participants carried out VAS-style ratings via button-
press and a digital display screen presented after each scan, and the 11-factor
altered states of consciousness (ASC) questionnaire was completed at the end
of each dosing day129. All participants reported marked alterations of con-
sciousness under LSD.

LSD study: infusion protocol. The LSD data used in this study have been pub-
lished before12,129,130, so we will describe them in brief here. For clarity and
consistency of reporting, where applicable we use the same wording as in our
previous publications with these data12. The infusion (drug/placebo) was admi-
nistered over 2 min and occurred 115 min before the resting-state scans were
initiated. After infusion, subjects had a brief acclimation period in a mock MRI
scanner to prepare them for the experience of being in the real machine. ASL and
BOLD scanning consisted of three seven-minute eyes closed resting state scans.
The ASL data were not analysed for this study, and will not be discussed further.

LSD study: MRI data acquisition. The first and third scans were eyes-closed,
resting state without stimulation, while the second scan involved listening to music;
however, this scan was not used in this analysis. The precise length of each of the
two BOLD scans included here was 7:20 min. For the present analysis, these two
scans were concatenated together in time. Imaging was performed on a 3T GE
HDx system. High-resolution anatomical images were acquired with 3D fast
spoiled gradient echo scans in an axial orientation, with field of view =
256 × 256 × 192 and matrix = 256 × 256 × 129 to yield 1 mm isotropic voxel
resolution. TR/TE= 7.9/3.0 ms; inversion time = 450 ms; flip angle = 20. BOLD-
weighted fMRI data were acquired using a gradient echo planer imaging sequence,
TR/TE= 2000/35 ms, FoV = 220 mm, 64 × 64 acquisition matrix, parallel accel-
eration factor = 2, 90 flip angle. Thirty five oblique axial slices were acquired in an
interleaved fashion, each 3.4 mm thick with zero slice gap (3.4 mm isotropic
voxels). One subject aborted the experiment due to anxiety and four others were
excluded for excessive motion (measured in terms of frame-wise displacement),
leaving 15 subjects for analysis (11 males, 4 females; mean age 30.5 years, SD= 8.0
years)129.

Test-retest dataset. The test-retest data used in this study have been published
before131–133, so we will describe them in brief here. For clarity and consistency of
reporting, where applicable we use the same wording as in our previous publica-
tions with these data131–133. Right-handed healthy participants (N= 22, age range,
19–57 years; mean age, 35.0 years; SD 11.2; female-to-male ratio, 9/13) were
recruited via advertisements in the Cambridge area and were paid for their par-
ticipation. Cambridgeshire 2 Research Ethics Committee approved the study
(LREC 08/H0308/246) and all volunteers gave written informed consent before
participating. Exclusion criteria included National Adult Reading Test (NART) <
70, Mini Mental State Examination (MMSE) < 23, left-handedness, history of drug/
alcohol abuse, history of psychiatric or neurological disorders, contraindications for
MRI scanning, medication that may affect cognitive performance or prescribed for

depression, and any physical handicap that could prevent the completion of testing.
The study consisted of two scanning visits (separated by 2–4 weeks).

Test-retest dataset: MRI data acquisition. For each visit, resting-state fMRI was
acquired for 5:20 min using a Siemens Trio 3T scanner (Erlangen, Germany).
Functional imaging data were acquired using an echo-planar imaging (EPI)
sequence with parameters TR 2000 ms, TE 30 ms, Flip Angle 78◦, FOV
192 × 192 mm2, in-plane resolution 3.0 × 3.0 mm, 32 slices 3.0 mm thick with a gap
of 0.75 mm between slices. A 3D high-resolution MPRAGE structural image was
also acquired, with the following parameters: TR 2300 ms, TE 2.98 ms, Flip Angle
9◦, FOV 256 × 256 mm2. Task-based data were also collected, and have been
analysed before to investigate separate experimental questions131–133. A final set of
18 participants had usable data for both resting-state fMRI scans and were included
in the present analysis.

The datasets and final number of participants included in each analysis are
summarised in Table 2.

FMRI preprocessing and denoising. Preprocessing and denoising followed the
same pipelines as in our previous publications2,12. For clarity and consistency
of reporting, where applicable we use the same wording as in those previous
publications. We preprocessed the functional imaging data using a standard
pipeline, implemented within the SPM12-based (http://www.fil.ion.ucl.ac.uk/
spm) toolbox CONN (http://www.nitrc.org/projects/conn), version 17f134. The
pipeline comprised the following steps: removal of the first five scans, to allow
magnetisation to reach steady state; functional realignment and motion cor-
rection; slice-timing correction to account for differences in time of acquisition
between slices; identification of outlier scans for subsequent regression by
means of the quality assurance/artefact rejection software art (http://www.
nitrc.org/projects/artifact_detect); structure-function coregistration using each
volunteer’s high-resolution T1-weighted image; spatial normalisation to
Montreal Neurological Institute (MNI-152) standard space with 2 mm iso-
tropic resampling resolution, using the segmented grey matter image, together
with an a priori grey matter template.

To reduce noise due to cardiac and motion artefacts, we applied the anatomical
CompCor method of denoising the functional data2,12, also implemented within
the CONN toolbox135. The anatomical CompCor method involves regressing out
of the functional data the following confounding effects: the first five principal
components attributable to each individual’s white matter signal, and the first five
components attributable to individual cerebrospinal fluid (CSF) signal; six subject-
specific realignment parameters (three translations and three rotations) as well as
their first-order temporal derivatives; the artefacts identified by art; and main effect
of scanning condition135. Linear detrending was also applied, and the subject-
specific denoised BOLD signal timeseries were band-pass filtered to eliminate both
low-frequency drift effects and high-frequency noise, thus retaining temporal
frequencies between 0.008 and 0.09 Hz. Importantly, note that this band-pass
filtering pertains to temporal frequencies, which are distinct from the spatial
frequencies obtained from connectome harmonic decomposition (as described
below).

Due to the presence of deformations caused by brain injury, rather than relying
on automated pipelines, DOC patients’ brains were individually preprocessed using
SPM12, with visual inspections after each step. In addition, to further reduce
potential movement artefacts, data underwent despiking with a hyperbolic tangent
squashing function2. The remaining preprocessing and denoising steps were the
same as described above for the ketamine and propofol data.

Finally, the preprocessed and denoised functional MRI data were then projected
onto the cortical surface and decomposed in terms of connectome harmonics, as
described above.

Statistics and reproducibility. Linear Mixed Effects models (implemented as the
MATLAB function fitlme) were used to assess the statistical significance of the
differences between conditions (states of consciousness), treating condition as a
fixed effect, and subjects as random effects. When one measurement was obtained
for each timepoint, timepoints were also included as random effects, nested within
subjects. Results are reported in terms of the fixed effect of condition, and the
upper and lower bounds of its 95% confidence interval, with associated p-value.
When comparing different groups, we included age and biological sex as covariates

Table 2 Summary of datasets and the number of individuals
included in the final analysis.

Dataset Final N for analysis

DOC 22 (10 UWS, 12 MCS)
Propofol 15
Ketamine 21
LSD 15
Test-Retest 18
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of no interest. For comparison of frequency-specific harmonic energy, the False
Discovery Rate for multiple comparisons across 15 frequency bins was controlled
by means of the Benjamini–Hochberg procedure136. Correlations were assessed
using Spearman’s non-parametric rank-based ρ. All analyses were two-sided, and
statistical significance was assessed at the standard alpha threshold of 0.05.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 3–5 are presented in Supplementary Data 1–3, respectively.
raw data analysed during the current study are available on request from the following
authors. Propofol anaesthesia, Disorders of Consciousness and test-retest datasets: Dr.
Emmanuel A. Stamatakis (University of Cambridge, Division of Anaesthesia; email:
eas46@cam.ac.uk). LSD dataset: Dr. Robin L. Carhart-Harris (Imperial College London/
University of California – San Francisco; email: robin.carhart-harris@ucsf.edu).
Ketamine dataset: Dr. Ram Adapa (University of Cambridge, Division of Anaesthesia;
email: ra342@cam.ac.uk). The Human Connectome Project datasets are freely available
from http://www.humanconnectome.org/.

Code availability
The Java Information Dynamics Toolbox117, together with together with Python and
Octave/Matlab interfaces, has been made freely available online: https://github.com/
jlizier/jidt. Code for the spherical rotations has been made freely available online:
github.com/spin-test/spin-test. The CONN toolbox v17f is freely available online (http://
www.nitrc.org/projects/conn). DSI Studio is freely available online: http://dsi-studio.
labsolver.org. Lead-DBS is freely available online: http://www.lead-dbs.org. The Brain
Connectivity Toolbox is freely available online: https://sites.google.com/site/bctnet/.
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