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Abstract Structure profiling experiments provide single nucleotide informa-
tion on RNA structure. Recent advances in chemistry combined with applica-
tion of high-throughput sequencing have enabled structure profiling at tran-
scriptome scale and in living cells, creating unprecedented opportunities for
RNA biology. Propelled by these experimental advances, massive data with
ever-increasing diversity and complexity have been generated, which give rise
to new challenges in interpreting and analyzing these data. We review current
practices in analysis of structure profiling data with emphasis on comparative
and integrative analysis as well as highlight emerging questions. Comparative
analysis has revealed structural patterns across transcriptomes and has become
an integral component of recent profiling studies. Additionally, profiling data
can be integrated into traditional structure prediction algorithms to improve
prediction accuracy. To keep pace with experimental developments, methods
to facilitate, enhance and refine such analyses are needed. Parallel advances in
analysis will complement profiling technologies and help them reach their full
potential.

Keywords RNA structure profiling · high-throughput sequencing · compar-
ative analysis · secondary structure prediction

1 Introduction

RNAs are known to play essential roles in diverse cellular functions, extending
well-beyond transfer of information from genes to proteins [1, 2]. For exam-
ple, small non-coding RNAs such as microRNAs and small interfering RNAs
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have regulatory roles in gene expression [3]. Long non-coding RNAs are also
widely found in various regulatory roles at both transcriptional and post-
transcriptional levels [4]. RNA function is closely linked with its ability to fold
into and convert between specific complex structures. In fact, determining
structure has become a crucial step in understanding RNA function [5]. Ac-
curate and high-resolution structure models have been traditionally obtained
using comparative sequence analysis or experimental techniques, such as X-ray
crystallography and nuclear magnetic resonance (NMR) [6]. However, these
methods require considerable manual labor and suffer technological limita-
tions, which have precluded their use beyond a small scale [7]. Computational
structure prediction from sequence information is a broadly applicable alter-
native that has been widely used [8, 9], but reported structures often suffer
from poor accuracy.

Structure profiling (SP), also known as structure probing or chemical prob-
ing, refers to a family of experiments that characterize RNA structure [10,
11]. In these experiments, local structural characteristics are gleaned using
structure-sensitive reagents that modify RNAs at nucleotide level. Well-studied
reagents include dimethyl sulfate (DMS) [12], kethoxal [13], hydroxyl radi-
cals [14], diethyl pyrocarbonate (DEPC) [15], CMCT [16], lead(II) [17, 18],
nucleases [19] and SHAPE (selective 2’-hydroxyl acylation analyzed by primer
extension) [20]. Until very recently, limitations of probing reagents as well as
sequencing and informatics challenges restricted SP to select few RNAs studied
individually and primarily under in vitro conditions. The newest generation
of SP experiments utilizes high-throughput sequencing techniques, which pro-
vide unprecedented multiplexing capacity in a cost-effective and automated
manner. These advances have been used to study RNAs of varying lengths in
vitro and in vivo, and more recently at transcriptome scale [21–42]. Despite
shared principles, experiments differ in the information they extract and in
the statistical properties of their measurements. Experimental protocols for
SP and their biological applications have been reviewed previously, see for
example [11,43–46].

Sequencing readouts from SP experiments are analyzed to extract struc-
tural parameters of interest for each nucleotide, in terms of its reactivity to the
probing reagent. Nucleotide-level estimates are subsequently used to answer
biological questions of interest, which may entail further analysis and interpre-
tation. In this manuscript, we focus on approaches to using reactivity data for
comparative and integrative analysis – a central theme in recent studies. Com-
parative analysis of SP data has revealed structural patterns across different
levels, ranging from low-resolution transcriptome level to high-resolution nu-
cleotide level. Each level may require specialized analysis methods. Note that
even for the same level, the ideal approach could possibly differ depending
on the context. We discuss three different contexts where technical, biological
and systematic replicates of SP data are available. In addition to comparative
analysis, we also review current progress in data-directed structure prediction,
which is the most straightforward application of SP data in structural biology.
Unlike X-ray crystallography and NMR, in which RNA structure is explicitly



Title Suppressed Due to Excessive Length 3

modeled, SP does not directly reveal the pairing state of a nucleotide nor its
pairing partner. However, it can complement structure prediction algorithms
to enhance their performance [47,48].

This review is organized as follows. We begin with a discussion in Section
2 on shared aspects of SP experiments and devote the bulk of the article to
data interpretation and analysis. In Section 3, we review current practices and
principles in reactivity calculation. Recent approaches and emerging questions
in comparative and integrative analysis are discussed in Section 4, while qual-
ity control of large-scale SP data is discussed in Section 5. Algorithms for
secondary structure prediction and efforts to leverage SP data for improving
their performance are reviewed in Section 6. Recent progress in public reposi-
tories, analysis tools and visualization platforms is reported in Section 7.

2 Overview of structure profiling experiments

The general goal of an SP experiment is to obtain nucleotide-resolution struc-
tural characteristics of all RNAs in a sample [49]. Structural characteristics
in the vicinity of a nucleotide are reflected in local stereochemical properties
such as nucleotide dynamics, solvent accessibility and electrostatic environ-
ment [11,50]. In particular, pairing state of a nucleotide is known to be corre-
lated with these stereochemical properties [51]. SP experiments utilize reagents
that are sensitive to local stereochemistry [11]. These reagents react with nu-
cleotides such that the reactivity to any particular nucleotide depends on its
local stereochemistry, which in turn is affected by its pairing state. Hence,
SP experiments aim to measure the sequence of reactivities corresponding to
nucleotides of each transcript. High and low reactivities are indicative of un-
paired and paired nucleotides, respectively [52]. Hence, it is understood that
the sequence of nucleotide reactivities, henceforth called reactivity profile, is a
representation of RNA’s structure [53].

Most sequencing-based SP techniques share a common workflow (Fig. 1)
[43, 44]. To start with, a sample of RNAs is allowed to react with structure-
sensitive reagents, resulting in chemical modifications of nucleotides. Degree of
modification can be detected by reverse transcription (RT), which either stops
or proceeds but with a mutation at modified nucleotides. The resulting cDNA
library is sequenced and reads are mapped to sequences of target RNAs. Then,
RT stops or mutations are counted for each nucleotide. To measure background
noise in RT stops or mutations, parallel to the experiment, a control assay is
performed wherein the RNAs are not treated with reagents. This control assay
also yields a count summary for each nucleotide. The counts from experiment
and control assays are combined to obtain reactivity profiles for all target
RNAs.

Despite the shared principles, measured reactivities are influenced by nu-
merous intertwined factors that all impact the variability of data [54]. In fact, it
has been found that single nucleotide variants can lead to significantly different
reactivity profiles [55,56] and identical sequences can have different reactivity
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profiles under different conditions [40,57,58]. Comparison of reactivity profiles
reveals that quantitative differences persist even in the absence of structural
differences between RNAs from one sample to another [54, 59]. Listed below
are factors that influence reactivity profiles.

Technical factors. Numerous technical factors add to variability in ob-
served profiles. First, chemical reactions involved in SP occur in presence of
limited quantities of reagents/transcripts. Concentrations of reagents are of-
ten controlled deliberately to limiting amounts to achieve desirable reaction
kinetics [11]. In addition, many RNAs of interest are present in limited quanti-
ties [28]. As such, the reactions feature inherent stochasticity [54,60]. Secondly,
these reactions are sensitive to stereochemistry and solvent conditions [11,61].
Nevertheless, they often occur in complex and dynamic solution environments.
For example, RNAs often feature a dynamic ensemble of co-existing structures
in vivo interacting with proteins and other biomolecules [62–64]. However, SP
captures only the average profile for all these structures, combining influences
from intermolecular interactions [65]. In addition, cDNA library preparation
involves numerous steps such as adapter ligation, reverse transcription and
PCR, which also introduce stochasticities. Finally, readouts from sequencing
machines are also affected by stochasticities [54, 66, 67]. These factors con-
tribute to variance in reactivity profiles. In fact, they contribute to variance
in any other parameter of interest that is estimated from data, e.g., Gini in-
dex of counts/reactivities [26,40,68]. Variance contribution of technical factors
to any parameter of interest can be estimated by performing multiple repli-
cates, called as technical replicates of experiment-control study starting from
biologically indistinguishable RNA samples. We refer to variance in estimates
observed purely due to said technical factors as technical variation [69–71].

Biological factors. RNAs with significant structural diversity are sub-
jects of recent studies. For example, ncRNAs are known to be highly struc-
tured while mRNAs are thought to have a lesser degree of structure. In fact,
within an RNA, structure could significantly vary from one region to another.
For example, mRNAs are believed to be less structured in coding regions than
in untranslated regions [40]. Additionally, RNA structure is sensitive to factors
such as solvent conditions, ligand and salt concentrations, temperature vari-
ations and interactions with proteins [61]. Should any of these factors differ
between studies, detectable differences in the estimated reactivities may be
observed. For example, reactivity profiles for the same transcript have been
found to be different between in vitro and in vivo conditions [40, 68, 72]. We
refer to variance of an estimate observed purely due to biological factors as
biological variation. Additionally, it is to be noted that biological variation
might be caused by differences in RNA-protein interactions besides structural
differences [73]. Proteins can cover certain stretches of nucleotides on RNA,
influencing the reactivities. Two RNA samples known to have come from dif-
ferent biological sources are called biological replicates [69–71]. These contain
information about biological differences between the samples.

Systematic factors. For biologically identical RNAs, reactivity measure-
ments obtained in one experiment can differ from the profiles obtained through
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a different experimental protocol [53, 74]. Technical replicates do not capture
these variations as they do not differ in protocol steps. Yet, such variations
do not originate due to biological factors. Such differences can be attributed
to discrepancies in key steps. For example, many current methods differ in
choice of probing reagent. In fact, a variety of reagents are available, e.g.,
DMS, kethoxal, hydroxyl radical, 1M7, NMIA, NAI, NAI-N3, etc. but each
has its pros and cons [11,22,40,75]. These reagents differ in their stereochemi-
cal characteristics and reaction mechanisms. Consequently, the reactivity pro-
files may reflect these differences. In addition, many reagents do not probe all
nucleotides and have biases that cause different reactivities depending on nu-
cleotide type even in the absence of structural differences [11]. Besides choice
of probing reagent, protocols often differ in priming methods, modification de-
tection method (e.g. stop/mutation), ligation strategies, enrichment, sequenc-
ing mode (single/paired-ended), reactivity estimation method among others.
These are a few noteworthy steps having equally plausible alternatives. Many
of these steps contribute to biases, which interplay with other steps resulting
in miscellaneous effects in parameter estimates [54]. Nevertheless, biologically
identical RNAs can be studied using different protocols to obtain detailed and
comprehensive insights [74]. We refer to experiments involving SP of biolog-
ically indistinguishable samples using different protocols as systematic repli-
cates and variances originating due to differences in protocol as systematic
variation.

3 Estimation of structure profile

As mentioned earlier, sequenced reads from both experiment and control as-
says are summarized as count of stops or mutations for each nucleotide. How-
ever, per-nucleotide counts are not directly comparable because they can
differ in magnitude due to a variety of reasons. Number of reads mapped
to a transcript, also known as its coverage, varies between transcripts due
to the dramatic differences in their relative abundances, which often range
over five orders of magnitude [28, 76]. Additionally, priming or ligation bi-
ases contribute to sequence-specific variations in counts within the same tran-
script [22, 54, 59, 77, 78]. Counts may differ due to background noise in RT
stops and mutations. In fact, for the same nucleotide between experiment and
control, counts may not be comparable due to difference in sequencing depths.
For these reasons, counts are processed into normalized reactivities, which are
assumed to be comparable across transcripts and replicates.

Reactivity estimation methods differ between studies but share the follow-
ing conceptual framework (see Fig. 1). 1) Counts are adjusted to account for
variations in coverage, yielding two detection rates - one for experiment and
one for control. 2) Comparison of detection rates yields an estimate for degree
of modification, or raw reactivity. 3) Raw reactivities are normalized to ensure
that values for all transcripts and replicates thereof span the same interval.
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Detection rates. Detection rates are calculated to account for variations
in coverage. However, variations in coverage exist at all levels. For example,
substantial coverage differences have been noted between rRNAs and mRNAs
[28]. Significant differences in coverage exist from one transcript to another
within the same functional class. Additionally, within a transcript, coverage
can be considered on regional basis (e.g., coverage of 5′ untranslated region
or coding region, or 3′ end, etc.), sequence basis (e.g., more coverage in GC
rich regions due to priming bias), or per-nucleotide basis. In general, coverage
differences can be noted at all levels of organization. Analysis methods in
various studies differ in the level of detail at which they account for coverage
variations.

Many groups consider coverage variations between transcripts as significant
while assuming uniformity of coverage within each transcript. Higher coverages
for a transcript may be a result of its over-abundance in sample or priming
biases among other factors. In such cases, counts corresponding to nucleotides
of the transcript may be assumed to be proportionally higher. Hence, several
studies adjust counts by their mean to account for coverage bias [28, 30, 31,
35, 36, 55]. Additionally, Ding et al. [28] take the logarithm of counts to make
count distribution symmetric. Others note that there could be local biases
within the transcripts. For example, Rouskin et al. [26] adjusted counts for
each nucleotide by maximum counts in a local window. In fact, several studies
[22, 25, 40, 60, 79, 80] have accounted for nucleotide-level coverage variations.
Through these adjustments, detection rates are estimated for both experiment
and control.

Raw reactivities. Detections in control result from noise in RT while
detections in experiment result from noise in RT as well as modifications at
nucleotides. Hence, it is expected that at any nucleotide, detection rate will
be higher in experiment. One assumption is that structure-sensitive modifi-
cations contribute additively to a background level of detection rates. Hence,
reactivities are calculated by subtracting detection rate in control from that in
experiment [22,28,40,60,80]. Alternatively, reactivities have been estimated as
odds ratio of experiment to control detection rates [35]. To control the range of
reactivities, others take the logarithm of the odds ratio [30,31,36,55,81]. Ad-
ditionally, sometimes detection rates in experiment are found to be less than
control. In such cases, a basal reactivity value of 0 (if subtracting detection
rates) or 1 (if taking ratio) is assigned. This is done because the detection rate
due to noise is often very low and if detection rates remain comparable or lower
in the presence of modifications, it indicates negligible degree of modification.

Normalized reactivities. Profiles from different protocols could span dis-
joint intervals even for the same RNA. In fact, for different RNAs in the same
experiment, profiles could span disjoint intervals because of biological varia-
tion. Raw reactivities are not considered comparable in absolute magnitude.
Hence, all profiles are normalized such that average reactivity of ∼ 10% of the
most reactive nucleotides is 1, excluding few unusually reactive nucleotides
that are considered outliers [47]. Outliers can originate in datasets due to a
variety of reasons, such as excessive degradation or over-modification at cer-
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tain nucleotides, or over-representation of certain fragments due to various
inherent biases in protocols. In fact, such hyper-reactive sites often appear in
datasets [51,82].

Accordingly, most current approaches to normalization begin with identi-
fication of outliers in reactivity estimates [83]. This is done by either box plot
analysis whereby reactivities greater than 1.5 times the interquartile range
are deemed outliers [47,82], or by assuming that reactivities beyond a certain
percentile are outliers [47]. Outliers are either ignored [47] in the process of
calculating normalization constant or winsorized [21,26, 36]. To estimate nor-
malization constant, one approach is to take the mean of values greater than a
certain percentile after removing outliers. For example, 2-8% method assumes
that the top 2% of reactivities are outliers and normalizes with mean of the
next 8% of highest reactivities [47]. The winsorization approach aims to scale
reactivities such that they range from 0-1 for all transcripts. Hence, after win-
sorization, the highest reactivity is chosen as normalization constant [21,26,36].

In the majority of analysis methods, the above workflow is preceeded
by conventional read alignment and counting routines. Recently, these pre-
procesing steps were integrated with reactivity estimation, such that counting
and estimation are resolved simultaneously [79]. This is especially attractive
in situations where multi-mapping reads (reads which align to multiple sites
in a transcriptome) abound, e.g., in studies of splicing isoforms. While com-
mon remedies discard such reads or allocate them uniformly among potential
alignments, Li et al. [79] expand on prior modeling and statistical inference
work in RNA-Seq [84, 85] and SHAPE-Seq analysis [80] to address this issue.
Another extension of the said statistical modeling work on SHAPE-Seq has
been recently published by Selega et al. [81] This method scores significance
of modification level from stop counts and nucleotide-level coverages under
an assumption that modification states do not randomly switch, i.e., signifi-
cantly reactive/unreactive nucleotides tend to appear in continuous stretches.
The assumption is enforced using a Hidden Markov Model with transition
probabilities based on empirically derived expected lengths of reactive and
unreactive contiguous stretches.

4 Comparative analysis

Before the advent of high-throughput sequencing, probing was mostly applied
to select highly structured ncRNAs under in vitro conditions. Recent advances
have dramatically expanded the scope of SP and diverse RNAs can now be
studied in biologically relevant conditions. In fact, applications of SP to numer-
ous transcripts and transcriptomes have revealed novel insights [2, 44]. Most
such applications feature comparative analysis. Several recent examples of such
analysis can be noted: 1) Spitale et al. [40] compared mRNA profiles and
identified conserved patterns around translation start site. 2) Protein-RNA
interactions were studied in viral RNA and mammalian ncRNAs and mR-
NAs by comparing reactivity profiles under different conditions [40,58,86,87],
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finding that interactions modulate reactivities significantly. 3) Comparison of
coding regions of mRNAs revealed a three-nucleotide periodicity pattern in re-
activities [28, 30, 40]. 4) Significant structural alterations have been identified
for single-nucleotide variants [55,88]. 5) Comparisons of entire transcriptomes
at different temperatures identified structure-altering responses [26, 89, 90].
6) Prevalence of specific noncanonical structural motifs have been found to
differ between in vitro and in vivo conditions [68]. In fact, these studies in-
volve comparisons at different levels such as structure at the level of regions
within a transcript, at the transcript level, within functional classes, or at
transcriptome level. In this section, we review recent methods and emerging
questions in addressing these challenges.

Notably, SP collects data at nucleotide level, but structural dynamics most
often involve at least a few nucleotides or even entire functional domains. For
example, many of the studies mentioned above seek signals that span protein-
binding sites, codons and well-defined local structural motifs. In fact, it is
rare for a biological study to home in on isolated single-nucleotide reactivity
changes. For this reason, comparative studies must also bridge between the res-
olution of measurements and that of sought-after effects. This is typically ac-
complished by integrating nucleotide information for scoping structural effects
at various levels of lower resolution and/or by inspecting data-directed sec-
ondary structure predictions for detectable changes at that level [40,53,56,91].

4.1 Comparing technical replicates

Agreement between technical replicates indicates high quality of data. Tech-
nical replicates can be compared at the level of transcripts or at the level of
nucleotides.

Transcript-level comparison. In high-throughput experiments or when
studying long transcripts, agreement between replicates of a transcript is com-
monly evaluated as Pearson correlation coefficient (PCC) for reactivity pro-
files. Transcripts with low PCC are filtered for biological purposes as their
replicates do not agree. For each pair of profiles, PCC quantifies agreement in
one number that is invariant to normalization. However, PCC has its limita-
tions as a measure of agreement [92–94].

First, PCC is sensitive to outliers [92]. PCC is based on the sample means
of reactivities in the profiles that it is comparing. Sample means are known
to be sensitive to outliers, leading to similar sensitivity of PCC. Indeed, PCC
is affected by both magnitude of outliers and the overall proportion of reac-
tivities that is outlier. Hence, PCC is to be used with caution, especially for
transcriptome-wide data as outliers have indeed been noted routinely in ex-
periments [47,59]. From our experience, we have found a common practice in
handling of missing information that often systematically leads to outliers in
reactivities. While estimating reactivity profiles, poorly covered sites have a
bias towards an apparent zero reactivity. This bias significantly adds to the
proportion of outliers at the lower extreme – with zero reactivities. However,
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most studies do not filter outliers while calculating PCC. Hence, PCC may be
misleading in evaluating replicate agreement. Second, though PCC can evalu-
ate agreement between profiles for two transcript, it does not quantify agree-
ment at the level of each nucleotide. Finally, PCC only evaluates correlation
between two profiles and is unaffected by magnitude differences of nucleotide-
level values. Nevertheless, to gauge significance of biological variation found in
a study, it is important to quantify technical variation. In fact, since biological
variation of interest is often nucleotide-resolution, it is desirable to quantify
technical variation at the nucleotide-level.

Nucleotide-level comparison. At the nucleotide-level, replicates have
been compared by taking mean and standard deviation of reactivities. In ab-
sence of replicates, theoretical formulas and computational methods have been
utilized to evaluate technical variation at nucleotide-level [22,59]. However, due
to challenges in visualizing technical variation, most such nucleotide-level eval-
uations were restricted to one or few selected transcripts. In a recent work,
Choudhary et al. [59] proposed a method to visualize technical variation at
nucleotide-resolution for large-scale data based on Signal-to-Noise ratio (SNR).
For each nucleotide, its SNR is defined as the ratio of sample mean to standard
deviation of reactivities in all replicates. SNR is high when replicates are in
quantitative agreement for the nucleotide and low otherwise. SNR values for
a transcript could be visualized as box plot to glean replicate agreement for
multiple replicates from one plot. Additionally, they proposed mean of SNR
as a one-number or point summary for overall transcript’s data quality. They
found that mean SNR correlates with PCC and transcript’s coverage.

Open questions. Nucleotide-resolution comparison of reactivities requires
normalization strategies to render values in different replicates comparable.
Clearly, normalization methods described in Section 3 require optimizing two
criteria – one for identifying outliers and another for selecting reactivities that
will be used to estimate normalization constant. However, the proportion of
outliers in a dataset could vary depending on the length of transcripts involved,
as well as the quality of experiment. Indeed, different labs and even same labs
have made different choices for the normalization method for different datasets,
though the general principle has been to eliminate outliers and scale reactiv-
ities such that they range approximately from 0-2 [39]. These normalization
methods have been adopted based either on experience with structure-probing
data before high-throughput technologies were developed [47] or validations
with structure-prediction [82]. Indeed, the field may benefit from a universal
method for normalization, which is assuring enough to dispense with the need
for routine optimization of normalization strategy. In fact, before SP became
high-throughput, most of the RNAs that were studied with chemical prob-
ing were highly structured rRNAs. Heuristic guidelines formulated based on
rRNAs may not apply to all transcripts. Also, validation based on structure-
prediction itself involves parameter optimization and modeling assumptions
as described later. Given the recent advances in SP, methods of normalization
warrant a revisit.
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4.2 Comparing biological replicates

Comparison of reactivities from different biological replicates could possibly
identify significant biological variation. If technical variation is high, statisti-
cally significant biological results may not be obtained from data. To estimate
significance of biological variation, it has to be examined in comparison with
technical variation [69–71]. Indeed, several published studies have reported
biological variation at all levels. At transcriptome level, differences in over-
all structural characteristics have been reported under different conditions
and between different strains [26,40]. At transcript-to-transcript level, rRNAs
have been described as being more structured than mRNAs. At a finer level,
while differences in reactivities can be observed at nucleotide-level, biological
variations are assumed to span a stretch of nucleotides [86]. In fact, within
transcripts, biological variation has been described between regions. For ex-
ample, significant differences in structure has been noted between UTRs and
coding regions of mRNAs. Here, we review the methods used to measure bio-
logical variation.

Transcriptome-level comparison. Current normalization methods as
described in Section 3 generally scale the reactivities such that they range
from 0 to ∼2 [39]. However, this does not ensure that reactivities of different
transcripts are directly comparable. For example, though mRNAs are widely
understood to be less structured than the rRNAs [40], current normalization
methods scale reactivities for both these classes of RNAs such that they span
approximately the same interval. Hence, comparing absolute values of reactiv-
ities on a transcriptome scale might be misleading. Differences in lengths of
transcripts within the same functional class exacerbate the challenges in com-
paring profiles due to the need of reliable alignment. To facilitate nucleotide-
level comparison of reactivities in case of differences in lengths, particularly
for mRNAs, transcripts are often aligned by the start/stop codon and arbi-
trary lengths (∼ 40-100 nt) are chosen upstream and downstream of start/stop
codon in all transcripts to be compared [28,30,36,40,89]. However, functional
elements in UTRs differ in sequence and distance from start/stop codon, thus
presenting an additional challenge in direct comparisons.

Besides direct nucleotide-level comparisons, another approach invariant to
current normalization methods (due to properties as listed below) and applica-
ble for transcripts of different lengths has been utilized. At the transcriptome-
level, it has been found that RNAs are, in general, less structured in vivo than
they are in vitro [40]. This conclusion was obtained by examining distribution
of Gini indices for reactivity profiles. Gini index is a measure of inequality
in a distribution [95]. It has two notable properties - 1) It is a measure of in-
equality that is high if there is substantial gap in values across the nucleotides.
Such high gaps (or inequalities) in distribution of counts and reactivities are
expected in case of structured RNAs. Hence, Gini index can serve as a metric
to characterize degree of structure in a transcript; 2) It is invariant to scaling,
i.e., Gini index does not change as long as relative magnitudes of quantities
remain the same. As current normalization methods essentially scale reactivity
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profiles linearly, scaling invariance is a significant merit of Gini index. It allows
application of Gini index without need for optimized normalization strategies.

Transcript-level comparison. Structural similarities are often corre-
lated with sequence and/or functional similarity [96]. Hence, in presence of
known sequence and/or functional similarities, it may be reasonable to assume
that reactivity profiles should span the same interval. Current normalization
schemes do scale reactivity profiles such that they span the same interval
from 0 to ∼2 [39]. Hence, for cases with sequence and/or functional similarity,
reactivity profiles have been compared by taking difference of normalized re-
activities [23,40,58,86]. Additionally, based on models specific to the context,
p-values can be calculated to characterize the significance of observed dif-
ferences. Other approaches to establish statistical significance have also been
used. For example, Smola et al. [86] used a modified version of Z-factor test [97]
instead of p-values to screen for sites with statistically significant differential
reactivities. Z-factor is a screening coefficient that identifies nucleotides with
biological variation substantially greater than technical variation. Recently,
Choudhary et al. [59] have described a way using SNR to quantify magnitudes
of biological and technical variation. Besides these methods, comparability of
profiles under conditions of sequence and/or functional similarity has been
assumed when summarizing reactivity profiles for multiple RNAs with the av-
erage reactivity profile. For example, mean of reactivities has been used to
summarize the general characteristic of mRNA reactivity profiles around the
translation start site [26,28].

Regional comparison. Reactivity profiles often feature significant vari-
ations across the length of the transcript indicating presence of structured
and unstructured regions [28, 40]. Several methods have been utilized to scan
regions of transcript for structural properties. Overall, the methods differ pri-
marily in the structural characteristic that they scan for. For example, Gini
index has been applied to regions within a transcript [26,40] to identify those
with high inequalities in counts/reactivities across nucleotides. While Spitale
et al. [40] applied it to designated regions (such as UTRs and coding regions
of mRNAs), Rouskin et al. [26] applied it to rolling windows containing 50
probed nucleotides. Other studies scanned transcripts to identify regions with
higher or lower reactivities. Reactivity level in a region can provide an idea
about the number of base pairs in that region. To this end, median of reac-
tivities for a region has been used as a robust summary of regional structural
characteristics [39,53,98]. Standard statistical tests such as Wilcoxon rank sum
test have been used to evaluate statistical significance of differences between
centers of reactivity distributions for two regions [36]. Additionally, Siegfried
et al. [39] utilized Shannon entropy estimates based on pairing likelihood from
data-directed ensemble prediction to quantify a region’s structural properties.
Shannon entropies are low for regions that have well-defined structures or are
predominantly single-stranded and high otherwise.

Open questions. Comparative analysis of SP data is in its nascent phase
and several issues are yet to be addressed. For several comparisons, the field
has resorted to point summary of structure (e.g., Gini index of counts). While
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reactivity profiles are being compared for quantitative differences in structure,
standard characteristics of more structured sequences have not been discussed
adequately. Consequently, multiple metrics for quantifying regional structure
have prevailed thus far.

At the transcriptome-level, Gini index has been applied as a point summary
of transcripts structure. However, there are several drawbacks of this index.
One of the major issues with this index is that it is highly influenced by out-
liers [99], which again underscores the importance of robust outlier detection
methods. Another major issue is that two transcripts could have very different
reactivity distributions but the same Gini index making it difficult to interpret
this index. For example, consider two transcripts with different distributions
- (a) 50% of nucleotides with zero reactivities and rest with equal and high
reactivities (or in other words, 50% sites with high reactivity and 50% sites
with low reactivity) and (b) 25% of nucleotides with reactivity of 0.11 and rest
with reactivity 1 (or in other words, 75% sites with high reactivity and 25%
sites with low reactivity). Both these distributions result in Gini index of 0.5,
although the underlying structure profiles are significantly different.

4.3 Comparing systematic replicates

Reactivity profiles estimated from systematic replicates may provide more
comprehensive insights into structure. For example, collecting and comparing
information from multiple probing reagents has traditionally served as means
of increasing confidence in structural inference from data. Whereas such ap-
proach had been limited in applicability due to cost and labor constraints, as
experiments have now become more accessible to the community, it appears to
be gaining popularity [74,100–102]. To date, comparisons of systematic repli-
cates have been mostly performed semi-quantitatively or via PCC [33, 53].
While PCC only informs about agreement of data, it is often desirable to in-
tegrate data from systematic replicates. For example, data from systematic
replicates could improve the accuracy of data-directed structure prediction
if fused appropriately [103], such that correlations and systematic deviations
are well-characterized and accounted for. However, systematic replicates often
derive from significantly different statistical distributions. So, besides scale,
normalizing systematic replicates is done to ensure comparability of statistical
properties. For this purpose, Wu et al. [104] used quantile normalization to
transform reactivities of each RNA in different datasets such that they follow
the same distribution. Because the data throughput bottleneck was only re-
cently eliminated, not much has been done to address these emerging needs.
Ensuring quantitative comparability and integrability of profiles from system-
atic replicates remains an open challenge.
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5 Screening data for quality

Since its days of inception, SP has moved towards large-scale transcriptome-
wide and in vivo experiments. Despite significant advances, data quality re-
mains non-uniform across the transcriptome. Data quality is primarily deter-
mined by coverage and agreement of technical replicates. Most studies filter
out poor-quality data and base the biological insights on high-quality data.
Simple criteria based on transcript’s coverage per unit length have been uti-
lized to screen for high-quality components of dataset. Several groups have
considered transcript’s coverage per unit length ≥ 1 as acceptable criterion
for quality [26,28,34,36]. Besides transcript’s coverage per unit length, others
have considered nucleotide-level coverage as an important criterion for good
quality [22, 39, 40]. Several conditions have been used to optimize these cri-
teria. For example, Smola et al. recommend nucleotide-level coverage above
∼ 2000 for high confidence in reactivity estimates [22]. This value is desired
to achieve high accuracy of structure prediction [39]. Another group, Spitale
et al. optimized their criteria for high coverage such that transcripts satisfy-
ing this criteria have high PCC between replicates [40]. On the other hand,
Choudhary et al. [59] built upon the probabilistic model by Aviran et al. [60]
to develop Coverage Quality Index (CQI) that quantifies the “goodness” of
each nucleotide’s coverage. Basically, given a desired level of confidence for
an acceptable variation in estimates, CQI is the ratio of desired coverage of
a nucleotide to its observed coverage. CQI < 1 is indicative of good quality
while CQI > 1 is indicative of poor quality. Including several metrics such
as CQI, SNR and others, Choudhary et al. put together an SP data quality
assessment tool, called SEQualyzer (see Fig. 2 for an example) that includes
quality results and visualizations from nucleotide to transcriptome level [105].
Standardized methods for evaluating quality of data and screening data for
high-quality components are indeed essential for maturation of the field.

6 Secondary structure prediction

Computational RNA structure prediction has been studied for several decades.
Here, we focus on secondary structure prediction; readers are referred to [106]
for a recent review on three-dimensional structure modeling. Typically, sec-
ondary structure prediction methods fall into three major categories: free
energy minimization, ensemble-based prediction and comparative sequence
analysis. It is worth noting that most existing methods do not allow pseudo-
knots in predicted structures, which will make the problem computationally
intractable. Several solutions were developed but with additional constraints
on the type of considered pseudo-knots [107–115].
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6.1 Free energy minimization

The most widely used method for structure prediction from a single sequence
aims to find the structure with minimum free energy (MFE). This method
relies on the second law of thermodynamics which states that MFE structure
is the most thermodynamically stable and the most prevalent in living cells.
Free energy of a structure can be calculated based on a set of nearest-neighbor
thermodynamic models (NNTM) parameters, which are obtained using optical
melting experiments [116–118].

At the core of MFE prediction is a dynamic programming algorithm put
forth in [119, 120] and was first proposed in the context of maximizing the
number of predicted base pairs in [119,121]. It was then extended in [122,123]
by incorporating free energies of different structure motifs. This algorithm
has been implemented in popular software packages such as UNAFold [124],
RNAstructure [125] and ViennaRNA package [126]. For algorithmic details on
various MFE prediction algorithms, readers are referred to the comprehensive
reviews [9, 127–131].

While MFE predictions have been well studied and widely used, they of-
ten suffer from low prediction accuracies when utilizing sequence information
alone, especially for long RNAs [132]. One possible reason is that the assump-
tion that RNA folds into the MFE structure may not always hold [47]. On
the other hand, RNA can interact with other biomolecules in the cell, stabi-
lizing specific non-MFE conformations. In addition, the existing set of NNTM
parameters are not perfect although they have been improved over the years.
The free energy of some structure motifs, such as multi-branch loops, are still
not well understood and are thus obtained using simplified models [118].

In addition to the MFE structure, many programs have the option to also
report a set of suboptimal structures. This is also a computational solution
to the imperfect situation mentioned above. Such information is valuable for
many downstream analysis applications. For example, one could generate en-
ergy dot plots from optimal and suboptimal structures, which could then used
to find frequent structure motifs [133].

6.2 Ensemble-based predictions

Prediction of suboptimal structures is complementary to the MFE structure.
However, it is worth noting that suboptimal structures could be quite differ-
ent than the corresponding MFE structure, even when the differences between
their free energies are very small. Take the aspartic acid tRNA in yeast as an
example (Fig. 3). The energy of the predicted MFE structure and its closest
suboptimal structures differ by 0.1 (-28 vs. -27.9), but their sensitivity differ
quite a lot (76.2% vs. 33.3%); see Section 6.4 for a formal definition of sen-
sitivity. Furthermore, MFE predictions are very sensitive in the sense that a
minor change in NNTM parameters or experimental conditions may lead to a
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switch between the MFE and suboptimal structures; see [134] for a discussion
on ribosomal 30S subunit structure revealed in [135].

A natural extension of suboptimal structures is to consider all possible
structures. This can be accomplished by computing a partition function, which
models the contribution of all structures weighted by their Boltzmann proba-
bilities [62, 136, 137]. For a given sequence, the partition function, Q, can be
calculated as

Q =
∑
k

e−∆Gk/RT ,

where ∆Gk is the free energy of the k-th possible secondary structure, R is
the gas constant and T is temperature. Furthermore, the probability of a base
pair formed by nucleotide i and j can be calculated as

pij =

∑
kij
e−∆Gkij

/RT

Q
,

where the sum occurs over structures that include base pair i-j.

Several algorithms that utilize the statistical nature of partition function
calculations have been proposed for structure predictions. The Sfold program
first samples a user-specified number of structures from the Boltzmann ensem-
ble. It then computes a centroid structure based on base-pair distances be-
tween structures [138]. Another type of approach predicts secondary structure
by maximizing the expected base-pair accuracy (MEA). Briefly, MEA looks
for the structure that maximizes the sum of base-paired and single-stranded
probabilities. This objective function matches well with the observation that
base pairs with high pairing probabilities are more likely to be present in the
known reference structure [136]. MEA was first proposed in CONTRAfold,
which learns probabilistic parameters from a set of known structures based
on conditional log-linear models [139]. Later, Lu et al. implemented another
MEA approach that directly depends on base pairing probabilities derived
from partition function of the given sequence [140]. A relevant work that con-
siders pseudo-expected accuracy is reported in [141].

It is most common for prediction algorithms to report a single optimal
structure. However, some RNAs are known to have multiple functional struc-
tures in living cells. The function of these RNAs not only depends on these
conformations but also on their ability to inter-convert [142]. For example,
riboswitches can adopt different structures upon binding by a small molecule
in order to control gene expression. [5, 143]. Similar to riboswitch, a single
nucleotide variant (SNV) can alter the structure of riboSNitchs [88], which is
critical to understand the effect of polymorphic loci, notably in humans. For
such studies, analysis of structure ensembles are the natural choice compared
to MFE prediction.



16 Choudhary et al.

6.3 Comparative sequence analysis

The structures of many RNAs, such as tRNAs and rRNAs, are usually highly
conserved, despite possible discrepancies in their primary sequences [144].
Comparative sequence analysis aims to find a consensus structure from a set
of homologous sequences [7, 9, 145]. This approach is highly accurate and has
been widely used to study the structures of several RNAs, e.g., rRNAs [146].
Overall, three approaches currently exist to implement comparative analysis.

Align then fold aligns sequences first and then predicts the consensus
structure [110, 147, 148]. Two of the widely used programs in this category
are RNAalifold [149] and Pfold [150]. RNAalifold aims to find the minimum
energy structure that are formed by a set of aligned sequences. It also supports
the computation of partition function and the centroid structure, which is the
structure with minimum base pair distance to other structures in the ensemble.
Here, distance is defined based on base-pairing probabilities. Pfold uses the
stochastic context-free grammar (SCFG) [151,152] to combine an evolutionary
model of sequences with a probabilistic model for secondary structures.

Fold and align simultaneously aligns and folds input sequences [153–156].
This idea was first proposed by Sankoff [153], which basically is a dynamic pro-
gramming algorithm. The Sankoff algorithm has a time complexity of O(n3m)
for m sequences with maximum length n, and thus is computationally expen-
sive to apply to large inputs. By posing extra restrictions on the problem,
several variations of the Sankoff algorithm with feasible complexity have been
developed [155,157–159].

Fold then align predicts a structure from each input sequence, followed by
alignment of structures. This method is particularly useful in scenarios where
input sequences are not sufficiently conserved for direct alignment. Represen-
tatives of this method are reported in [160,161].

Although comparative sequence analysis is highly accurate, it has been
successfully applied only to a limited number of RNAs with rich phylogenetic
information available. This is because, analogous to many phylogenetic studies,
high accuracy can only be achieved when input sequences are sufficiently diver-
gent to contain enough co-variation information. At the same time, sequences
need to be sufficiently similar in order to be aligned properly; otherwise it
becomes unfeasible to find a good consensus [47].

6.4 Performance measures

The accuracy of a predicted structure can be measured by comparing it to the
known reference structure, which is typically obtained through crystallography
experiments or comparative sequence analysis [145]. Sensitivity and PPV are
the two most commonly used metrics for this purpose. Sensitivity is the frac-
tion of base pairs in the reference structure that are correctly predicted, while
PPV is the fraction of correctly predicted base pairs in the predicted struc-
ture. Matthews correlation coefficient (MCC) is another widely used metric
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that combines sensitivity and PPV. Some studies approximate it using the
geometric mean of sensitivity and PPV [145]. For partition function-based
predictions, one can measure the reliability of a prediction by calculating en-
semble diversity and positional entropy, as proposed by [48].

When comparing different prediction algorithms, studies often use a bench-
mark dataset with multiple RNAs and compare their average performances.
It is pointed out in [134] that this simple metric is not informative enough, as
it is heavily biased by performances of short RNAs. To resolve this issue, this
study proposed to use the “sequence-length-weighted average” (SLW-average)
to replace the simple average. Intuitively, the SLW-average takes sequence
length into consideration when averaging the performances of multiple RNAs.

7 Data-directed secondary structure prediction

In this section, we review data-directed prediction methods. While most meth-
ods seek a single optimal structure, they differ in their interpretation of SP
data and/or in how they integrate it with computation.

7.1 Pseudoenergy-based approaches

The idea of converting SHAPE data into a pseudoenergy was first proposed
by Deigan et al. [82]. Serving as ad hoc energy modifications, pseudoenergies
are incorporated into MFE predictions to find the structure that minimizes
the sum of NNTM free energy and pseudoenergy. For a given reactivity α, its
pseudoenergy is calculated using a linear-log formula, m(1 + α) + b, where m
and b are two parameters determined on a training set of RNAs with known
reference structures using grid search. Note that the optimal values of m and
b could differ quite a lot between different data sets [33, 162], as they depend
on the statistical properties of the data as well as on its dynamic range. This
method was first implemented in the RNAstructure package [125], and was re-
cently included in the ViennaRNA package [48]. It is also part of data analysis
pipeline for some genome-wide SP experiments [163].

Deigan et al.’s approach has been widely used by the community and
proved to significantly improve predictions for several RNAs [28,48,164,165].
For example, it has been included in RNAalifold program in the new version
of the ViennaRNA package [48, 166], which predicts the MFE structure and
centroid structure given a set of aligned sequences. As another example, this
approach is also at the core of the experimental 3S technique for secondary
structure determination of long non-coding RNAs [167]. 3S, also called shot-
gun SHAPE, is motivated by the observation that traditional thermodynamic-
based prediction algorithms often have limited accuracy. It probes an entire
RNA along with its shorter overlapping segments. By comparing reactivity
profiles of short segments with that of the entire RNA, modular sub-domains
are identified, whose structures are then predicted using Deigan et al.’s ap-
proach. However, it is worth noting that this linear-log model was not built
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based on biological assumptions but rather using heuristics [131,168]. Initially
developed and optimized for SHAPE chemistry data, it is unknown how well
this model fits other types of SP data. In fact, Deng et al. showed, using
mock-probe simulations, that Deigan et al.’s approach can give relatively poor
performance when input data deviate from its assumed model [134]. To allevi-
ate this problem, several other methods have been developed. Most methods
follow the “training and prediction” paradigm, where a model is first trained
on SP data with known reference structures. The trained model is then used
to direct structure prediction on new data. In an earlier work, pseudoenergies
are derived from the log likelihood ratio of a nucleotide being paired versus
unpaired given its reactivity [74]. Benchmarked on DMS data, this work uses
two gamma distributions to model paired and unpaired likelihood separately.

Motivated by the log likelihood ratio in [74], the RME program converts
reactivities into posterior probabilities before deriving pseudoenergies from
them [104]. Pseudoenergies are then used to direct partition function calcula-
tion and to further obtain an MEA structure, in contrast to the MFE structure
in [74,82]. Note that in RME, SP data are not only involved in the initial cal-
culation of partition function, but also in the post-calibration of base pairing
probabilities, both in the form of posterior probabilities.

Eddy pointed out that Deigan et al.’s model actually signifies a base-pairing
likelihood ratio [52]. Furthermore, he proposed a principled and broadly appli-
cable framework that directly derives from statistical modeling of SP data. Un-
der the assumption that reactivities are only depedend on structural contexts
(e.g., paired, unpaired, stacked, helix-end), the pseudoenergy of a reactivity for
a given structural context can be derived from its likelihood. This framework
has been implemented and extended in the RNAprob package for MFE predic-
tion [134]. RNAprob investigates two different resolutions of structure context,
with a low resolution distinguishing between paired and unpaired nucleotides
while the higher resolution further dividing paired nucleotides into stacked and
helix-end, resulting into three contexts. In RNAprob, pseudoenergies are ap-
plied once to each nucleotide, regardless of its structural context. In contrast,
they are applied to every nearest-neighbor stack in [74,82,104]. Consequently,
pseudoenergies are applied 0, 1 and 2 times for each unpaired, helix-end and
stacked nucleotide respectively. Note that RNAprob is implemented within the
programming infrastructure of RNAstructure package [125], while providing
enhanced applicability.

Similar to RNAprob, RNAsc includes pseudoenergies for all nucleotides,
featuring two structural contexts (paired and unpaired) [169]. Unlike the afore-
mentioned likelihood- and posterior-based pseudoenergy derivation, RNAsc
first converts each reactivity i into pi, the probability of being unpaired. A
pseudoenergy is then computed for each of the two structural contexts as
β|xi− pi|, where β is a user-specified scaling factor, xi = 0 and 1 for unpaired
and paired nucleotides, respectively.

RNApbfold extends the idea of pseudoenergy into perturbations in the con-
text of partition function, without explicitly converting SP data into ad hoc
pseudoenergies [170]. Specifically, it aims to find a perturbation vector that
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minimizes the discrepancy between predictions and SP data. This perturba-
tion vector applies only when SP data disagree with predictions based on the
thermodynamic model.

7.2 Non-pseudoenergy-based approaches

While pseudoenergy-based approaches have attracted much attention in re-
cent years, alternative data-directed prediction approaches have gained much
progress. SeqFold adopts the “sample and select” strategy [171]. It first sam-
ples a set of structures from the whole structure ensemble of a given sequence,
which are then clustered using Sfold [63]. One of the clusters is then selected
based on the distance of each sampled structure to the input SP profile, from
which a consensus structure is further computed. The accuracy of this ap-
proach is largely determined by its ability to sample the “correct” structure.
However, as the number of possible structures is huge, there is no guarantee
that the correct structure will be sampled. Ideas of sample and select can also
be found in [65].

PPfold 3.0 extends the Pfold package [150] by combining phylogeny with
SP data [172]. It uses 1) a stochastic context-free grammars (SCFGs) to model
structures; 2) a phylogeny model to compute the likelihood of input alignments
and 3) a probabilistic model to include SP data. In a more recent work, Prob-
Fold proposes to combine SCFGs with probabilistic graphical models [173].
While SCFGs give prior knowledge over structures as in PPfold 3.0, the prob-
abilistic graphical models account for sequence and SP data.

The above data-directed structure prediction methods all utilize SP data
from a single experiment. The mutate-and-map (M2) strategy developed by the
Das lab provides 2D SP data [174]. For a sequence of length N , M2 performs
N+1 SP experiments: one for the wild type and others for each of the N point-
mutated sequences. Basically, M2 is based on the assumption that mutation
of a nucleotide may result in local or global structural changes, which in turn
result in reactivity change. M2 data can be converted into Z-scores and then
plug in to RNAstructure package as extra energy bonus for MFE structure
prediction. Recently, M2 data have been used to predict multiple functional
structures as well as their relative proportion in the REEFFIT program [142]

7.3 Information content of SP data

The addition of SP data to better predict RNA structure proved to be suc-
cessful on a variety of RNAs. A natural question that arises is “Do all reac-
tivities contribute equally to drive structure prediction?”. This question was
recently addressed in the context of SHAPE data [134]. Instead of evaluat-
ing the relative contribution (information content) of each single reactivity in
a SHAPE profile, they are divided into five equally populated subsets (a.k.a
quintiles). The information content of each quintile is then quantified using
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a combination of leave-one-in and leave-one-out analysis. In the leave-one-in
analysis, only a selected quintile is used to direct structure prediction, whereas
in the leave-one-out analysis, all quintiles except for the selected one are used.
Benchmarked on a set of 23 RNAs, this study showed that the top 20% re-
activities are the major driving force for structure prediction, followed by the
lowest 20%. In contrast, middle-range reactivities are less informative and
have marginal contribution to improving prediction. Furthermore, the study
showed, by a thought experiment, that middle-range reactivities are key to
further improving predictions (Fig. 4). Briefly, this experiment is done by in-
putting perfect information (0 and 1.6 for paired and unpaired nucleotides,
respectively in [134]) to a given quintile, while leaving reactivities of other
quintiles unchanged. Note that while it remains unknown if the conclusions
reported above will hold for other types of SP data, these analytical methods
will work for any SP datasets.

Understanding information content of SP data gives us some practical
guideline on data-directed predictions. For example, one may choose to use
selective reactivities that are informative and ignore reactivities that are am-
biguous. In addition, this also facilitates new models with more discriminative
power, which can possibly reduce the number of less informative reactivities
and in turn improve structure prediction.

7.4 Open questions

Structure prediction has been greatly facilitated by the rapid development of
SP technologies. Studies have shown that data-directed predictions often lead
to better predictions. However, it is worth noting that the extent of improve-
ment in prediction accuracy varies substantially among RNAs and appears
to be sequence dependent. It sometimes can have minor or even negative ef-
fect on resulting predictions [134, 175]. On the other hand, regardless of the
existence of various strategies to incorporate SP data, currently no method
is universally better than the others [134]. As such, further improvement is
desired and can be possibly approached from the following aspects: 1) The
pseudoenergy-based methods give good performance in practice. We antici-
pate that better performances can be achieved with pseudoenergy derivation
models that are more biological and statistical meaningful. 2) As in [171–173],
pseudoenergies are not the only way to use SP data and it will be interesting
to explore alternative strategies for modeling SP data. 3) Recent development
of novel transcriptome wide methods to probe RNA structures experimentally
presents us with massive data of unprecedented complexity and diversity. This
data have the potential to lead to better structure prediction, while presenting
challenge on how to integrate information from multiple SP data in current
algorithms. An attempt in this direction is reported in [103]. Availability of
probabilistic methods, such as RNAprob and ProbFold, will certainly help
efforts in this direction.
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8 Software infrastructure

The rapid development of SP has brought massive amounts of diverse data. As
for many other sequencing-based studies, tools for data sharing and analysis
are two major needs. Here, we review recent progress towards these aims.

8.1 Databases and visualization tools

Structure Surfer [176], RNAex [177] and FoldAtlas [178] are three recent tools
for data sharing, covering DMS-seq [26], structure-seq [28], icSHAPE [40],
PARS [55], ds/ssRNA-seq [179], etc. In addition, they all provide a set of
useful inspection and visualization tools. Specifically, Structure Surfer allows
to visually compare different data sets, while RNAex and FoldAtlas support
visualization of predicted secondary structures. RNAex also supports anno-
tated RNA editing, RNA modification and SNP sites in predicted structures.
A recent tool, SEQualyzer, for SP data quality screening is reported in [105].

8.2 Data preprocessing

Data analysis usually entails five major steps: 1) Data cleaning removes adapters,
PCR duplicates or other undesired sequences; 2) Read mapping maps reads
to a reference set of transcripts; 3) Count summarization at nucleotide level;
4) Reactivity calculation ; and 5) Data-directed secondary structure prediction.
Steps 2, 3 and 4 are routinely featured in all platforms, while steps 1 and 5
are supported by a subset of tools.

Most recent SP protocols are adjoined by specialized analysis pipelines.
Spats processes reads from SHAPE-Seq experiments [33]. Reactivities are cal-
culated using a maximum likelihood estimate model [60,80,180]. ShapeMapper
and SuperFold are two separate analysis pipelines for SHAPE-MaP experi-
ments [39]. ShapeMapper converts raw sequencing reads into mutational pro-
files, which are then used as input to SuperFold for secondary structure predic-
tion. They also allow de novo identification of well-defined and stable structure
regions. Other specialized pipelines include Mod-Seeker [35], MAPseeker [38]
and icSHAPE [40].

Tools designed with broader applicability in mind include StructureFold
[163], RSF [181] and PROBer [79]. Deployed as part of the Galaxy plat-
form [182], StructureFold supports covertion of reads into reactivities and
supports structure prediction, each of which is provided as a separate mod-
ule. It implements the reactivity calculation method proposed in [28]. Another
modular pipeline, RNA Structure Framework (RSF), supports similar fun-
tionality as well as data cleaning. Additionally, it offers flexibility in choosing
certain reactivity calculation methods [26,28] and normalization strategies (2-
8%, 90% winsorizing and box plot). In contrast to the former two, PROBer is
a closed-box solution that implements the statistical model-based approach of
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Li et al. (see Section 3). However, it applies to a broader class of experiments,
encompassing a number of recent techniques beyond SP, which share a com-
mon workflow, as follows. 1) Chemical modification of nucleotides encodes a
signal of interest. 2) Signal is detected via RT termination. 3) cDNA prod-
ucts are sequenced and mapped to estimate modification intensities per nu-
cleotide. Examples of biological signals that can be studied within this frame-
work include protein-RNA interactions [183, 184], posttranscriptional RNA
modifications [185–191] and sites of unique structural motifs such as RNA G-
quadruplexes [42]. This unified view not only lends iteself to shared analysis
tools but also allludes to plausible commonalities in comparative and integra-
tive analysis. Methods that approach these emerging challenges from a broader
perspective may then reach a wider research community and potentially exert
greater impact.

9 Conclusion

We reviewed current practices and emerging questions in comparative and in-
tegrative analysis of SP data. However, there are other emerging applications
that we have not touched upon, which are timely as they directly leverage the
new wealth of information. For example, SHAPE-based alignment is shown to
have comparable accuracy to traditional sequence-based alignment [166].The
alignment can be further improved when combining sequence information with
SHAPE data. In addition, SP data-directed partition function can be used to
calculate Shannon entropy, which in turn is useful in discovering well-defined
RNA structures [39]. These and additional timely applications are described in
a recent review [53]. Another exciting direction is the emergence of a new class
of RNA structure experiments, which identify long-range and inter-molecular
base-pairing interactions [192–197]. Integrating this type of information with
SP data and with structure prediction algorithms is likely to pose newer chal-
lenges and trigger dedicated methods development.

The advent of SP techniques has greatly expanded our capability to un-
derstand structures of various RNAs and their functional roles. Propelled by
these advances, we are standing in the era of large-scale data with increasing
diversity and complexity, which in turn poses great informatics challenges in
data interpretation and analysis. To maximize the potential of these data, we
need to develop methods for accurate data interpretation leveraging intrinsic
statistical properties of an SP protocol. Additionally, we need to better suit
the methodology for comparative analysis to discover biological patterns of in-
terest and the methodology for characterizing SP information content to more
suitably feed data into structure prediction algorithms.
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Fig. 1 Overview of structure-profiling experiments. RNA sample of interest (at the
top) is probed with structure-sensitive reagent, which introduces a modification (red pins)
preferentially at unpaired nucleotides. Degree of modification is read via reverse transcrip-
tion and sequencing. Next, the readouts are mapped to reference sequence and normalized
reactivities are calculated from counts summary of mapped reads. Reactivity profiles of
probed RNAs are used for diverse downstream applications, some of which are listed.
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Fig. 2 Quality screening with SEQualyzer. Bars represent per-residue SNR and black
lines represent rolling mean of per-residue SNR for windows of 20 nt. SEQualyzer estimates
SNR via bootstrapping as described by Choudhary et al. [59] Examination of quality profiles
reveals that signal quality is good for entire RNA except a short region from nucleotides
35-53 where it is poor in all replicates. For illustration purpose, we used data for P4-P6
domain of Tetrahymena group I intron ribozyme from Loughrey et al. [33]
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Fig. 3 Comparison between MFE secondary structure and one of the suboptimal
secondary structures for tRNA(asp), yeast. A: Reference (accepted) structure. B: MFE
structure. C: Suboptimal structure. D: Circular plot comparing the MFE structure in B to
the reference structure in A. E: Circular plot comparing the suboptimal structure in C to the
reference structure in A. Structures are predicted using the Fold program in RNAstructure
package [125] with default parameters. Plots A, B and C are prepared with VARNA [198].
Circular plots D and E are prepared with the CircleCompare program in RNAstructure. In
D and E, base pairs are indicated by lines. Pairs present in both the predicted and reference
structures are green; pairs which are present only in the predicted structure are in red; and
pairs which are present only in the reference structure are in black.
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Fig. 4 Information content of SHAPE data with perfect information. Two data-
directed structure prediction methods, i.e., Deigan’s approach [82] and RNAprob [134], are
tested on a set of 23 RNAs, as used in [134]. For RNAprob, the variant with two structural
contexts and empirical decoder is used. Bars represent SLW-average MCC values of quintiles
with perfect information. Upper dashed lines represent the performance with the entire SP
set to perfect information. Solid lines indicate the performance with the original SP data
and the bottom dashed line corresponds to the no-SHAPE control.
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