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Prioritizing Security Practices via Large-Scale Measurement of User Behavior
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Professor Geoffrey M. Voelker, Co-Chair

Security is an ever growing concern for daily Internet users, especially since many facets

of a user’s daily interactions (banking, commerce, workplace) are now accessed via the Internet.

Fortunately, recent technical advancements such as encrypted web browsing, email spam

filtering, and login two factor authentication have increased the accessibility and practicality of

security for users. However, studies show that the majority of exploited attacks take advantage

of the human in the loop. Technology and humans are required to work in harmony for security

to be effective. As a result, it is crucial that we understand the extent to which users follow

best practices, and that we evaluate whether their behaviors in fact help prevent adverse security
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outcomes. In this dissertation, I argue that large-scale empirical measurement is a practical

and effective technique to answer these questions as the basis for prioritizing security practices,

and I support this argument with three different projects. First, I use network traffic data and

measurement methods to quantify user behavior “best practices” and how they relate to an

outcome (in this case, compromise). Next I examine how communication about a security policy

change can affect an organization by analyzing large-scale organizational data. Finally, I quantify

attacker behavior in the Hack for Hire market by hiring and monitoring attackers, which provides

insight into which defenses to prioritize for better protecting users from these types of attacks. By

empirically understanding and prioritizing effective security practices, we can further improve

security for users.
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Chapter 1

Introduction

Security is an ever growing concern for daily Internet users, especially since the world is

becoming more interconnected. Banking, workplaces, and commerce all have online presences,

and a user must understand how to navigate security best practices while also achieving whatever

their end goal may be. This is not an easy situation for users.

However, a promising facet of security is that much of the technical work has become

more stable in recent years. While technical advancements continue, achievements such as the

use of HTTPS for web browsing, spam filtering on email and other communications, and two

factor authentication for login have made security far more accessible and practical for users of

all backgrounds and capabilities.

As a result, many of the difficulties that plague online security today are not technical

issues, but the interplay between technology and the human. Secure technology can only affect

change so far if the human in the loop, and the difficulties humans experience using various

technologies, is not accounted for.

Indeed, empirical data shows that many attacks rely on exploiting the human, not the

technology itself. For example, Verizons yearly data breach report aggregates data across

thousands of incidents and organizations to provide a comprehensive list of attack vectors. In

2022, 82% of these attacks were exploited by taking advantage of the human in the loop. While

the ubiquity of HTTPS on websites today may represent a significant technological deployment
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success, encryption does not help protect a user if a user is tricked into downloading a piece of

malware.

Thus, for security to be effective, both the technical and human element must be secure

themselves. However, this model assumes that the user will operate under best practices to

keep themselves safe. While previous studies have examined user best practices from expert or

crowdsourced points of view, two important questions remain unanswered: at large scale, do

users follow these best practices, and do these practices have any sort of empirical effect on

outcome?

In this dissertation, I argue that large-scale empirical measurement is a practical and

effective technique to answer these questions. While the security field has some notion of best

practices (e.g., update frequently, have long passwords, use 2FA), it is unclear how effective

they may be at protecting the user, and which practices should be prioritized. While it would

be ideal for users to follow all best practices, the reality is that time and energy is limited, so

understanding which to prioritize would be a more effective practice.

I use large-scale measurement to quantify user behaviors and prioritize security processes

in three different projects. First, I use network traffic data to quantify user behavior best practices

and how it relates to an outcome (in this case, compromise). I find that in some cases, best

practice does in fact line up with outcome, but not to a strong effect, requiring us to reassess

whether focusing on these best practices is sufficient.

Next I examine how communication about a security policy change can affect an orga-

nization. I find that certain communications are more effective at convincing users to execute

the change, which is useful for future organizational efforts that aim to change user behavior en

masse. Understanding the most effective change allows an organization to prioritize using that

method over others to better its security.

Finally, I quantify attacker behavior in the Hack for Hire market, which is a commodity

market that sells email hacking services for $100 - $400 USD. Empirically measuring this market

and its attributes provides insight into which defenses to prioritize for better protecting users

2



from these types of attacks.

Security will continue to remain an important facet of user lives, and using large-scale

empirical measurement, we can better prioritize user and organizational time and efforts that

matter in increasing security.

This dissertation is structured as follows. In Chapter 2 I discuss a measurement study

that empirically quantifies and relates end user behavior to device compromise. In Chapter 3

I describe a study that examines effective communication mechanisms for a security policy

change from the perspective of a large orgnaization. Chapter 4 examines a commodity market

for breaking into email accounts, which provides insights into defenses against these attacks.

Finally, Chapter 5 summarizes this disseration.

Chapter 2, in part, is a reprint of the material as it appears in the Proceedings of the

International Measurement Conference 2019. Louis F. DeKoven, Audrey Randall, Ariana Mirian,

Gautam Akiwate, Ansel Blume, Lawrence K. Saul, Aaron Schulman, Geoffrey M. Voelker, and

Stefan Savage. The dissertation author was a collaborator and contributor to this paper.

Chapter 3, in full, is currently being prepared for submission for publication of material.

Ariana Mirian, Grant Ho, Stefan Savage, Geoffrey M. Voelker. The dissertation author was the

primary investigator and author of this material.

Chapter 4, in full, is a reprint of the material as it appears in The World Wide Web

Conference 2019. Ariana Mirian, Joe DeBlasio, Stefan Savage, Geoffrey M. Voelker, and Kurt

Thomas. The dissertation author was the primary investigator and author of this material.
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Chapter 2

Measuring Security Practices and How
They Impact Security

We start by measuring end user behavior itself. By examining end user behavior, we

can empirically quantify the extent to which users follow “best security practices” and also how

those practices relate to security outcomes, if at all. In this chapter, I explore end user behaviors

of UCSD students who reside in the dormitories via a network vantage point, and how these

behaviors relate to device compromise. This analysis allows us to better understand whether

certain behaviors should be encouraged or discouraged to improve the security of user devices.

2.1 Overview

Ensuring effective computer security is widely understood to require a combination of

both appropriate technological measures and prudent human behaviors; e.g., , rapid installation

of security updates to patch vulnerabilities or the use of password managers to ensure login

credentials are distinct and random. Implicit in this status quo is the recognition that security is

not an intrinsic property of today’s systems, but is a byproduct of making appropriate choices —

choices about what security products to employ, choices about how to manage system software,

and choices about how to engage (or not) with third-party services on the Internet. Indeed, the

codifying of good security choices, commonly referred to as security policy or “best practice”,

has been a part of our lives as long as security has been a concern.
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However, establishing the value provided by these security practices is underexamined at

best. First, we have limited empirical data about which security advice is adopted in practice.

Users have a plethora of advice to choose from, highlighted by Reeder et al.’s recent study of

expert security advice, whose title — “152 Simple Steps to Stay Safe Online” — underscores

both the irony and the variability in such security lore [80]. Clearly few users are likely to

follow all such dicta, but if user behavior is indeed key to security, it is important to know which

practices are widely followed and which have only limited uptake.

A second, more subtle issue concerns the efficacy of security practices when followed:

Do they work? Here the evidence is scant. Even practices widely agreed upon by Reeder’s

experts, such as keeping software patched, are not justified beyond a rhetorical argument. In

fact, virtually all of the most established security best practices — including “use antivirus

software”, “use HTTPS/TLS”, “update your software regularly”, “use a password manager”, and

so on — have attained this status without empirical evidence quantifying their impact on security

outcomes. Summarizing this state of affairs, Herley writes, “[Security] advice is complex and

growing, but the benefit is largely speculative or moot”, which he argues leads rational users to

reject security advice [44].

Our existing models of security all rely on end users to follow a range of best practices.

However, we neither understand the extent to which they are following this advice, nor do we

have good information about how much this behavior ultimately impacts their future security.

This chapter seeks to make progress on both issues — the prevalence of popular security

practices and their relationship to security outcomes — via longitudinal empirical measurement

of a large population of computer devices. In particular, we monitor the online behavior of

15,291 independently administered desktop/laptop computers and identify per-device security

behaviors: is the software patched, how quickly their software is patched, as well as concrete

security outcomes (i.e., , whether a particular machine becomes compromised). In the course of

this work, we describe three primary contributions:
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1. Large-scale passive feature collection. Our results are based on large-scale measurement

using passive monitoring. In doing so, we develop and test a large dictionary of classifica-

tion rules to indirectly infer software state on monitored machines (e.g., , that a machine is

running antivirus of a particular brand, or if its operating system has been updated). In

addition, to ensure that features are consistently associated with particular devices, we

describe techniques for addressing a range of aliasing challenges due to DHCP and to

DNS caching.

2. Outcome-based analysis. We use a combination of operational security logs and network

intrusion detection alerts to identify the subset of machines in our data set that are truly

compromised. This outcome data allows us to examine the impact of adopted security

practices in terms of individual security outcomes and with respect to concrete time periods

surrounding the likely time of compromise.

3. Prevalence and impact of security practices. For our user population, we establish the

prevalence of a range of popular security practices as well as how these behaviors relate

to security outcomes. We specifically explore the hypotheses that a range of existing

“best practices” are negatively correlated with host compromise or that “bad practices” are

positively correlated. We consider both behaviors that could directly lead to compromise

and those which may indirectly reflect a user’s attentiveness to security hygiene.

Finally, while we find a number of behaviors that are positively correlated with host

compromise, few “best practices” exhibit the negative correlations that would support their value

in improving end user security.

2.2 Methodology

Our measurement methodology uses passive network traffic monitoring to infer the

security and behavioral practices of devices within a university residential network. This
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Figure 2.1. System architecture overview. Network traffic is first processed into logs and
its addresses anonymized. The next stage replays the network traffic logs to extract further
information and label each connection with (also anonymized) MAC address information. The
decorated logs are then stored in Hive where they are labeled with security incidents, security
practice features, and behavioral features. Lastly, device models are created for analysis.

approach has numerous advantages, including scalability (we are able to collect data from tens

of thousands of devices) and granular analysis (we can frequently infer when a device updates

a particular application and to what version). However, it also introduces liabilities (a focus

on a particular population) and risks (in particular to privacy). In this section we first focus on

the technical aspects of our data collection methodology and then discuss some of its attendant

challenges and limitations.

2.2.1 Network Traffic Processing

The first stage of our system takes as input 4–6 Gbps of raw bi-directional network traffic

from the campus residential network, and outputs logs of processed network events at the rate of

millions of records per second. As part of this stage, campus IP addresses are anonymized and,

to track the contemporaneous mapping of IP addresses to device MAC addresses, this stage also

collects and compatibly anonymizes contemporaneous DHCP syslog traffic.

Residential Network Traffic

As shown in the Network Traffic Processing stage of Figure 2.1, our server receives

network traffic mirrored from a campus Arista switch using two 10G fiber optic links. In addition

to load balancing, the switch filters out high-volume traffic from popular content distribution

networks (CDNs) (e.g., , Netflix, YouTube, Akamai, etc.), resulting in a load of 4–6 Gbps of
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traffic on our server.

To minimize loss while processing traffic, we experimented with a number of network

processing configurations before settling on the following. We use the PF RING ZC (Zero

Copy) framework [69] to move traffic from the network card directly into user-level ring buffers,

bypassing the kernel. We then use the zbalance ipc application from PF RING ZC to locally

perform 4-tuple load balancing across many virtual network interfaces. Instances of the Bro

(now Zeek) IDS [73] then read from each virtual network interface, consuming and processing

the network traffic into a custom log format. This configuration results in an average daily loss

of 0.5% of received packets throughout our six-month measurement period.

While IDS are typically used for detecting threats and anomalous network behavior, we

use Bro to convert network traffic into logs since it is extensible, discards raw network traffic

as soon as a connection is closed (or after a timeout), and is able to parse numerous network

protocols [117]. We also customize the Bro output logs to record only information needed to

identify security practice and behavioral features.

In particular, we use the HTTP, SSL, DNS, and Connection protocol analyzers. The HTTP

analyzer provides a summary of HTTP traffic on the network, including components such as

the HOST and URI fields. The SSL analyzer extracts the SNI field from TLS connections. SNI

is an extension of the TLS protocol enabled by most modern browsers, and allows a client to

indicate the hostname it is contacting at the start of an encrypted connection. The SNI field

is particularly useful for inferring the destination of connections that otherwise are encrypted.

The DNS analyzer provides a summary of DNS requests and responses. Lastly, the Connection

analyzer summarizes information about TCP, UDP, and ICMP connections.

Every thirty minutes Bro rotates the previous logs through an address anonymization

filter that encrypts campus IP addresses. At this stage of processing, the logs contain IP addresses

and not MAC addresses since DHCP traffic is not propagated to our network vantage point.

After being so anonymized, the logs are rotated across the DMZ to another server for further

processing (Section 2.2.2).
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DHCP Traffic

The server also runs a syslog collector that receives forwarded DHCP traffic from the

residential network’s DHCP servers. DHCP dynamically provides an IP address to a device

joining the network. The IP address is leased to the device (by MAC address) for a specified

duration, typically 15 minutes. Since we need to track a device’s security and behavioral practices

for long time periods, we utilize this IP-to-MAC mapping in later processing.

Similar to the Bro IDS logs, every thirty minutes we process the previous DHCP traffic

into a (MAC address, IP address, starting time, lease duration) tuple. Then, the entire IP

address and identifying lower 24-bits of the MAC address are encrypted using a similar address

anonymization filter. The anonymized DHCP logs are then rotated across the DMZ to the Log

Decoration server.

2.2.2 Log Decoration

The second stage takes as input these intermediate network event and DHCP logs, and

processes them further to produce a single stream of network events associated with (anonymized)

device MAC addresses and domain names.

Associating Flows to Devices. Our goal is to model device behavior based upon network

activity over long time spans. While we identify unique devices based upon their MAC address,

the network events that we collect have dynamically assigned IP addresses. As a result, we must

also track dynamic IP address assignments to map IP-based network events to specific device

MAC addresses.

We use a Redis key-value store [76] to build a DHCP cache by replaying campus DHCP

logs. We use the DHCP cache to assign a MAC address to the inbound and outbound IP of each

connection. We consider an IP-to-MAC mapping valid if a connection takes place during the

time when the IP address was allocated and the lease is still valid. In the event that there is not a

valid mapping (e.g., , the IP address is a non-university IP, or a the device uses a static IP), we do
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not assign a MAC address to the IP.

Associating Flows to Domains. When using network activity to model device behavior,

it useful to know the domain name associated with the end points devices are communicating

with (e.g., categorizing the type of web site being visited). We also extract the registered domain

and TLD from each fully qualified domain name using the Public Suffix List [68]. Again,

since the network events we observe use IP addresses, we must map IP addresses to domain

names. And since the mapping of DNS names to IP addresses also changes over time, we also

dynamically track DNS resolutions as observed in the network so that we can map network

events to the domain names involved.

Due to our network vantage point (at the campus edge), the DNS traffic our collection

server observes generally has the source IP address of our local DNS resolver, and not the IP

address of the host which will subsequently make a connection to the resolved IP.1 This constraint

limits our ability to use the DNS mapping alone to infer a connection’s domain name. Therefore,

one of the steps in this stage is to build a local DNS cache by replaying the logs in chronological

order and labeling the domain name of observed connections where it is not already provided

(i.e., , excluding HTTP and SNI-labeled connections).

We use another Redis key-value store to build a DNS cache by replaying DNS traffic.

The cache tracks the mappings of each IP address to domain name at the time the IP address was

observed. We consider a mapping to be valid as long as it has not expired — the log time falls

between the time at which the DNS request was observed plus the response TTL — and there is

one registered domain name mapped to the IP address.

When sites use virtual hosting, it is possible that an IP address has multiple domain

names associated with it. In this case, we first check if the registered domain names match (e.g., ,

bar.bar.com and car.bar.com share a registered domain of bar.com). If the registered domains

match, we label the connection using the longest suffix substring match (e.g., , ar.bar.com) and

set a flag indicating that the fully qualified domain name has been truncated. In the case where

1The primary exceptions are devices configured to use remote DNS resolvers.
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there is more than one registered domain with a valid mapping to the IP address, we do not use

the mapping to label connections until enough of the conflicting mappings expire such that they

share a registered domain, or there is only one mapping.

User Agent. We parse HTTP user agent strings using the open-source ua-parser library.

From the user agent string we extract browser, OS, and device information when present.

2.2.3 Feature Extraction

In the final stage of our system we store the log events in a Hive database [4] and process

them to extract a wide variety of software and network activity features associated with the

devices and their activity as seen on our network. The last critical feature is device outcomes:

knowing when a device has become compromised. We derive device outcomes from a log of

alerts from a campus IDS appliance, and also store that information in our database.

Software Features

To identify features describing application use on devices, we crafted custom network

traffic signatures to identify application use (e.g., a particular browser) as well as various kinds

of application behavior (e.g., a software update).

To create our network signatures we use virtual machines instrumented with Wire-

shark [98]. We then manually exercise various applications and monitor the machine’s network

behavior to derive a unique signature for each application. Fortunately most applications asso-

ciated with security risk frequently reveal their presence when checking for updates. In total,

we develop network signatures for 68 different applications, including OS. For a subset of

applications, we are also able to detect the application’s version. Knowing application versions

allows us to compare how fine-grained recommended security practices (i.e., updating regularly)

correlates with device compromise.

Operating System. We created six signatures to identify the OS running on devices.

Since regular OS updating is a popular recommended security practice, we also created signatures
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to detect OS updates. While Windows and Mac OS operating system updates are downloaded

over a CDN that is removed from the network traffic before reaching our system (Section 2.2.1),

we can use OS version information from the host header and User-Agent string provided in

HTTP traffic to infer that updates have taken place.

Detecting Security Incidents

While previous work has relied on the use of blacklists or Google Safe Browsing to

identify devices that expose users to potential risk, we are able to identify compromised devices

with high confidence as a result of post-infection behavior, typically in the form of CNC

communication [12, 86]. To identify compromised devices (i.e., , ones with a security incident)

we use alerts generated by a campus network appliance running the Suricata IDS [96]. The

campus security system uses deep packet inspection with an industry-standard malware rule set

to flag devices exhibiting post-compromise behavior [75].

The IDS rules also detect network activity that might occur before a device becomes

compromised (e.g., , possible phishing attempts, exploit kit landing pages, etc.). Since we

focus on compromised devices, we reduce the rules we consider to ones that explicitly detect

post-infection behavior. False positives are likely with any real-world signature-based intrusion

detection system. To minimize the frequency of false positives, we manually remove rules that

are frequently triggered, but do not indicate that a device has been compromised.

2.3 Ethical Considerations

Having described our measurement methodology in considerable detail, we now consider

the risks it presents – both to the privacy of network users and to the validity of conclusions

drawn from these measurements.

Protecting user privacy. Foremost among the risks associated with the passive mea-

surement approach is privacy. Even with the prevalence of encrypted connections (e.g., via

TLS), processing raw network data is highly sensitive. From an ethical standpoint, the potential
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benefits of our research must be weighed against potential harms from any privacy violations.

In engaging with this question — and developing controls for privacy risk — we involved a

broad range of independent campus entities including our institutional review board (IRB), the

campus-wide cybersecurity governance committee and our network operations and cybersecurity

staff. Together, these organizations provided necessary approvals, direction and guidance in how

to best structure our experiment, and strong support for the goals of our research. The campus

security group has been particularly interested in using our measurements to gain insight into the

security risks of devices operating on their network.2

Operationally, we address privacy issues via minimization, anonymization and careful

control over data. First, as soon as each connection has been processed, we discard the raw

content and log only metadata from the connection (e.g., a feature indicating that device X is

updating antivirus product Y ). Thus, the vast majority of data is never stored. Next, for those

features we do collect, we anonymize the campus IP and the last 24-bits of each MAC address,

using a keyed format-preserving encryption scheme [6].3 Thus, we cannot easily determine

the identity of which machine generated a given feature and, as a matter of policy, we do not

engage in any queries to attempt to make such determinations via re-identification. Finally, we

use a combination of physical and network security controls to restrict access to both monitoring

capabilities and feature data (this is to help foreclose the possibility that any outside party,

not bound by our policies, is unable to access the data or our collection infrastructure). Thus,

the server processing raw network streams is located in a secure campus machine room with

restricted physical access, only accepts communications from a small static set of dedicated

campus machines and requires multi-factor authentication for any logins. Moreover, its activity

is itself logged and monitored for any anomalous accesses. We use similar mechanisms to

protect the processed and anonymized feature data, although these servers are located in our

2Indeed, during the course of our work we have been able to report a variety of unexpected and suspicious
activity to campus for further action.

3Thus, the IP address 192.168.0.1 may be replaced with 205.4.32.501 and the MAC address
00:26:18:a5:38:24 may become 00:26:18:b5:fe:ba. We do not anonymize the organizationally unique
identifier (OUI) to allow us to derive the network device manufacturer.
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local machine room. The feature data set is only accessible to members of our group, subject to

IRB and our agreements with campus, and will not (and cannot) be shared further.

Limitations of our approach. In addition to privacy risk, it is important to document

the implicit limitations of our study arising from its focus on a residential campus population —

primarily undergraduates, as well as the use of a particular IDS and rule set to detect security

incidents [96, 75].

It is entirely possible that the behavioral modes of this population, particularly with

respect to security, are distinct from older, less affluent or more professional cohorts. This

population bias is also likely to impact time-of-day effects, as well as the kinds of hardware

and software used. Additionally, the security incidents we consider rely on the Suricata IDS,

commercial network traffic signatures, and security-related network usage requirements of our

university environment (e.g., , residential students are nominally required to have antivirus

software installed on their devices before connecting). It is entirely possible that these incident

detection biases also influence the behaviors and software applications that correlate with device

compromise. Thus, were our same methodology employed in other kinds of networks, serving

other populations, using different security incident detection techniques, it is possible that

the results may differ. For this reason, we hope to see our measurements replicated in other

environments.

2.4 Recommended Practices

There are a variety of security practices widely recommended by experts to help users

become safer online. Prior work has explored some of these practices in terms of users being

exposed to risky web sites [12, 86]. Since our data includes actual security outcomes, we start our

evaluation by exploring the correlation of various security practices to actual device compromises

in our user population: operating system choice and keeping software up to date.
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Total

Incidents

Operating System Incidents Total Devices

Windows 538 (7.0%) 7,668
Mac OS 140 (1.9%) 7,339
ChromeOS 1 (0.5%) 205
Linux Variant 3 (3.8%) 79

Figure 2.2. Device operating system classification after removing Internet-of-Things and mobile
devices, including the total number of devices with each operating system and the number with a
security incident.

2.4.1 Operating System

Different operating systems have different security reputations, so it is not surprising that

experts have recommendations of the form “Use an uncommon OS” [80]. Part of the underlying

reasoning is that attackers will spend their efforts targeting devices with most common systems,

so using an uncommon operating system makes that device less of a target.

In terms of device compromise, as with previous work and experience, such advice holds

for our user population as well. Using the OS classification method described above, Table 2.2

shows the number of devices using major operating systems and the number of each that were

compromised during our measurement period. Most devices use Windows and Mac OS, split

nearly equally between the two. The baseline compromise rate among devices is 4.5%, but

Windows devices are 3.9× more likely to be compromised than Mac OS devices. The Chrome

OS population is small, but only one such device was compromised.

Of course, modulo dual-booting or using virtual machines, this kind of advice is only

actionable to users when choosing a device to use, and is no help once a user is already using a

system.
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Figure 2.3. Number of days a Mac OS X device takes to update to a specific version. The
version number on the x-axis denotes the day that the specified version update was published.

2.4.2 Update Software

Among hundreds of security experts surveyed, by far the most popular advice is to “Keep

systems and software up to date” [80]. In this part we explore the operating system, browser, and

Flash update characteristics of the devices in our population, and how they correlate with device

compromise.

Operating System

Mac OS. We start by analyzing the update behavior of devices running Mac OS. Our

system labels each HTTP connection of a device with the type of operating system and its current

version number, both extracted from the User Agent string. However, if a device leaves the

network and returns with an updated version number in the UA string, then we cannot accurately

tell when the device was updated. Thus, we only utilize devices that are absent for less than four

days to bound the error on update times. We see 7,268 (47.5%) devices that identify as Mac
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according to the User Agent string. Of these devices, we see at least one update for 2,113 (29.1%

of all Mac OS devices). Figure 2.3 shows the update pattern of these Mac OS devices over time,

anchored around the three OS updates released by Apple during our measurement period. In

general, Mac OS users are relatively slow to update, anecdotally because of the interruptions and

risks Mac OS updates entail.

Of these devices, 57 (2.7%) of them were compromised. Compromised devices have a

mean and median update rate of 16.21 and 14 days, respectively, while their clean counterparts

have a mean and median update rate of 17.96 and 16 days. However, this difference is not

statistically significant according to the Mann-Whitney U test (p = 0.13).4

Web Browser

Updating the browser may be as important as updating the operating system. Browsers

are also large, complex pieces of software used on a daily basis and, as with most software,

these large programs have vulnerabilities. Updating is viewed as such an important process that

Chrome and Firefox employ auto-updating by default [103, 28], with UI features to encourage

timely updating.

As such, we explore the relationship between compromised and clean devices and browser

updating behaviors. Similar to the Mac OS devices, we are able to detect the current browser

version number from the User Agent string of a device. Since browser vendors publish the dates

when they make updates available,5 we can check whether the browser on a device is out of date

each time we see the device on the network. Across the measurement period, we then calculate

how quickly devices update. Also similarly to the Mac OS analysis, we exclude devices that are

absent from the network for more than three days.

Moreover, we only analyze the dominant browser for each device. Many devices have

User Agent strings naming different browsers. While users may use different browsers for
4The Mann-Whitney U test is a non-parametric statistical test that can be used to determine if two independent

samples are selected from populations with the same distribution. The null hypothesis for a Mann-Whitney U test is
that the populations are selected from the same distribution.

5During our measurement period each popular browser had at least three major updates.
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Table 2.1. Number of days between when an update is published and when devices update.
Compromised devices update faster than their clean counterparts.

Browser Mean, Median, # (Cmp) Mean, Median, # (Cln)

Chrome 14.4, 15.0 (421) 15.4, 15.0 (7883)
Firefox 5.64, 3.00 (24) 9.65, 5.00 (424)

different use cases, we identify a dominant browser to remove the noise from user applications

that spoof a browser in their User Agent string. Thus, we determine which browser connects to

the largest number of distinct registered domains from a device and label the device with that

dominant browser. We choose unique registered domains as our metric over number of HTTP

connections because there are web sites and applications that “spam” the network, making the

device appear to use one browser dominantly when the natural user behavior is actually coming

from a different browser.

We analyzed updates for devices that dominantly use Chrome, Edge, Firefox, and Safari.

Of the total devices, 10,831 (70.8%) devices use Chrome, 719 (4.7%) devices use Edge, 561

(3.7%) devices use Firefox, and 2993 (19.6%) devices use Safari. However, only 8,304 (76.7%)

of the Chrome devices, 132 (18.4%) of the Edge devices, 448 (80.0%) of the Firefox devices,

and 1592 (53.2%) of the Safari devices are on the network continuously (absent for less than

three days).

Table 2.1 shows the browsers with statistically significant differences in update time

between clean and compromised devices (Mann Whitney U: Chrome p = 4.2×10−4 and Firefox

p = 0.03).

Clean devices appear to spend more time out of date than their compromised counterparts.

Examining this phenomenon in more detail, we compare the update behavior of compromised

devices before and after their compromise date. We focus on devices using Chrome that have two

updates spanning the compromise event (other browsers do not have a sufficiently large sample

size). Figure 2.4 shows the distribution of times devices were out of date with respect to when a

browser update was released for updates before and after the device was compromised. The shift
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Figure 2.4. Distribution of days a device takes to update Chrome before compromise and after
compromise.

in distributions illustrates that devices update faster after compromise. In more detail, devices

that use Chrome have a before-compromise mean update rate of 18.9 days (18.0 median days)

and an after-compromise mean update rate of 14.2 days (15.0 days median). This difference is

significant, with p = 4.8×10−12 using the Wilcoxon signed-rank test.6

2.5 Related Work

This study follows a large body of prior work that empirically relates user activity to

various risk factors, which we highlight in five categories below.

Small scale studies of individuals. In 2008, Carlinet et al. [13] analyzed three-hour

long packet traces of ADSL customers (from 200–900 customers) and correlated hosts that

experienced at least one Snort IDS alert with other factors. Their study revealed a relationship

between those machines raising alerts, and their use of the Windows operating system as well as

6The Wilcoxon signed-rank test is a non-parametric paired difference test which indicates if the means of two
dependent samples differ. The null hypothesis of the Wilxocon signed-rank test is that the means do not differ.
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heavy web browsing habits. Our study is similarly based on passive network data collection, but

we operate at a significantly larger scale (in number and diversity of hosts as well as duration)

and we also explicitly try to control for a range of confounding factors.

Aggregate studies of user behavior. Others have studied risk factors in aggregate across

large organizations. Notably, Yang et al. [59] correlated publicly-declared data breaches and web

site hacks with external measurements (e.g., misconfigured DNS or HTTPS certificates). They

found that evidence of organizational failures to police security is predictive of attacks. Similarly,

recent papers have focused on exploring how differences in deployed defenses (e.g., across ISPs

or web sites) relate to the occurrence of particular attacks [108, 97], and Xiao et al. [116] showed

that user patterns of security activity can be a predictor of future malware outbreaks in an ISP.

Web access behavior. Other researchers have investigated how a user’s web browsing

habits reveal risk factors. Levesque et al. [53] monitored web browser activity for 50 users over

four months and found that the likelihood of visiting a malware hosting site was correlated with

the other kinds of sites a machine visited (e.g., with P2P and gambling sites). Canali et al. [12]

replicated this study using antivirus telemetry (100,000 users), and Sharif et al. [86] describe

a similar analysis for 20,000 mobile users. Both found that frequent, nighttime, and weekend

browsing activity are correlated with security risk.

Software Updates. Another vein of research has correlated poor software update habits

with indicators of host compromise. Kahn et al. [48] used passive monitoring of roughly 5,000

hosts to infer software updates and used the Bothunter traffic analysis tool [38] to infer likely

infected hosts based on suspicious traffic patterns (e.g., based on outbound scanning). They

found a positive correlation between infection indicators and a lack of regular updating practice.

At a larger scale, Bilge et al. [8] used antivirus logs and telemetry from over 600,000

enterprise hosts to retrospectively relate software updates to subsequent infections. They found

that devices that do not patch correlate with those that were at some point infected. Finally,

Sarabi et al. [83] used a similar data set of 400,000 Windows hosts and found that patching faster

provides limited benefit if vulnerabilities are frequently introduced into product code.
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Human factors. Finally, there is an extensive literature on the human factors issues

involved in relating security advice to users, the extent to which the advice leads to changes

in behaviors, and how such effects are driven by both individual self-confidence and cultural

norms [31, 84, 111, 77, 78, 79, 112, 113].

2.6 Discussion

The practice of cybersecurity implicitly relies on the assumptions that users act “securely”

and that our security advice to them is well-founded. In this chapter, we have sought to ground

both assumptions empirically: measuring both the prevalence of key security “best practices” as

well as the extent to which these behaviors (and others) relate to eventual security outcomes. We

believe that such analysis is critical to making the practice of security a rigorous discipline and

not simply an art.

However, achieving the goal of evidence-based security is every bit as formidable as

delivering evidence-based healthcare has proven to be. In any complex system, the relationship

between behaviors and outcomes can be subtle and ambiguous. For example, our results show

that devices using Windows are significantly more likely to be compromised. This is a factual

result in our data and is in opposition to the “best practice” that using a common OS will

more likely protect a user. However, there are a number of potential explanations for why this

relationship appears: since the Windows operating system is more widely used, and has been

in use for longer than its counterparts, attackers have developed a myriad of attacks in order to

target a large number of victims simultaneously.

Thus, while some of our results seem likely to have explanatory power others demand

more study and in a broader range of populations. Those results that lack simple explanations

are a reflection of the complexity of the task at hand and force us to question which security

practices are truly best to prioritize in a user population.

Chapter 2, in part, is a reprint of the material as it appears in the Proceedings of the
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International Measurement Conference 2019. Louis F. DeKoven, Audrey Randall, Ariana Mirian,

Gautam Akiwate, Ansel Blume, Lawrence K. Saul, Aaron Schulman, Geoffrey M. Voelker, and

Stefan Savage. The dissertation author was a collaborator and contributor to this paper.
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Chapter 3

Passwords

End user behavior is critical in understanding how to best prioritize security processes.

Just as crucial, however, is understanding an organization’s efforts in changing user behavior to

employe better security practices. In this chapter, I explore UCSD’s efforts in motivating it’s

user population to change the passwords of their campus accounts, and what communication

mecahnisms are most effective in prompting organizational security changes.

3.1 Overview

Enterprise-wide mandatory password updates are inevitably fraught affairs. Typically

driven by either a change in circumstances (e.g., , evidence of a data breach) or security policy

(e.g., , requirements for longer or more complex passwords), such mandates require that all

members of an organization update their Single-Sign On (SSO) passwords within a set time

period. These dual requirements of completeness and timeliness are particularly challenging

given the limited resources of IT service departments. Scale requires that instructions be

delivered via mass communication (e.g., , email), yet they must contend with a broad spectrum

of understanding, capability, and incentives in the user population. Unsurprisingly, there are few

established best practices for how to achieve these goals, and limited empirical data about how

to most effectively enact this change at enterprise scale.

This chapter seeks to address this deficit through the empirical analysis of a mandatory
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password update event at our institution, one which required almost 10,000 faculty and staff

to take independent action. Using data from this experience, we explore how the operational

requirements of coordinated enterprise-scale password changes — timeliness, completeness, and

staff overhead — interact with the behavioral and organizational aspects of the problem that

have the potential to create friction.1 We are guided by concretely motivated questions that, were

the answer understood, would directly inform operational practice, such as: How long does it

take to effect institution-wide password updates? What impact do notifications have on user

compliance? What factors predict efficient password updating behavior and how significant is

the staff overhead in managing user problems during the process?

Our work combines detailed records of user notification events, password update logs,

and IT help desk reports, to empirically deconstruct the synchronized password update process

across our campus population. In doing so our work makes three primary analysis contributions:

1. Communication Effectiveness. We demonstrate the effectiveness of repeated email requests

in driving timely password update behavior—characterizing how much of the population

is responsive to serial pleas over time and what subset is not reached and/or motivated

by such efforts. We also analyze the effects of Web-based interstitial login reminders in

galvanizing this unresponsive remainder into action.

2. Completeness hazards. It is common during such updates to track the fraction of user

accounts that have complied with the password update edict. After correcting for inactive

accounts (e.g., , for users who have left the institution), we identify the small subset of

users who are ultimately unable to meet the password update burden. We show that this set

is over-represented in business units whose job function does not require regular computer

use.

3. Quantified IT overhead. Finally, we explore the costs to IT organizations in supporting

1We specifically do not focus on issues such as how password policies interact with password strength, for which
there is an extensive literature [118, 10, 114, 63, 115, 20, 29, 105, 74, 52].
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Figure 3.1. Example of the browser intercept message that campus’s SSO portal displayed to
users who had not updated their passwords by mid October 2021.

universal mandatory password updates, using the number of help desk tickets as a proxy

for the IT staff time that must be spent to help shepherd users through the process.

From these results we provide guidelines for reasoning about mandatory password update

costs in terms of effectiveness and IT staff effort. We believe this is a pragmatic example of a

more general and analytical approach to managing enterprise IT security processes.

3.2 Background

This study describes a natural experiment driven by a security policy directive that

required all users at our university to update their campus Active Directory passwords, used for

Single-Sign On (SSO) across a range of university IT services (i.e., , including organizational

e-mail, calendaring, financial services, etc.). For a variety of reasons, campus faculty and staff

were prioritized in this effort and thus our work focuses on the experience of this population.

In the summer of 2021, our campus Information Technology Services (ITS) team enacted

a campaign to reach out to affected employees, inform them of this policy, and direct them to

online resources for updating their passwords.2 These resources included two self-service Web

portals: one for updating passwords after a valid login and one for (re)setting a password without

2We were not involved in the design or implementation of this password change campaign and are simply
studying its effects retrospectively.
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a valid login (requiring employee specific identification). As well, employees using “managed”

Windows or Mac devices were able to update their SSO password locally with a valid login.

Employees new passwords were required to be different from their previous password, to

be at least 12 characters in length, to not include their username as a substring, and to utilize

three of four character classes (uppercase, lowercase, numbers, symbol).3 Our work does not

concern the quality of the resulting passwords, but we document these requirements to the extent

that the additional burden may have caused some users to delay or fail to change their password

as directed.

The password update campaign consisted of three kinds of actions performed by ITS

staff: asynchronous reminder emails, synchronous login intercepts, and actively resetting non-

compliant users’ passwords to random strings (“password scrambling”). Initially, a campus-wide

email was sent to all employees on August 10th notifying them of the upcoming password update

requirement. After this initial email, there were two stages of correspondence. The first stage

consisted of a set of four email messages (we refer to them as communications) that were sent

to disjoint “waves” of users that were staggered in time. Waves were segregated based on the

first letter of a user’s last name: A–B, C–G, H–N, O–Z. Each subsequent wave increased in size

as the ITS team became increasingly confident about their ability to manage technical or user

issues that arose.

Each wave received the same set of four email messages, each of which was staggered

by one week, as shown in Table 3.1. For example, users in Wave 1 received their initial

communication on August 18th, a second on August 25th, a third on September 1st, and a

final communication on September 8th. If a user updated their password, they did not receive

subsequent communications.4

3This requirement, as well as a further filter against using “known compromised” passwords provided by
a third-party service, were enforced mechanically by rejecting new passwords that did not comply with these
requirements.

4Because communication lists were constructed by querying the Active Directory (AD) system for password
update information, updates were not strictly atomic. Thus, a user who updated their password after the second
communication list was constructed, but before it was sent, would still receive the reminder even though they had
already updated their password.
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Table 3.1. Dates for the email communications sent during each of the four waves.

Wave Comm #1 Comm #2 Comm #3 Comm #4

Wave 1 2021/08/18 2021/08/25 2021/09/01 2021/09/08
Wave 2 2021/08/25 2021/09/01 2021/09/08 2021/09/15
Wave 3 2021/09/01 2021/09/08 2021/09/15 2021/09/22
Wave 4 2021/09/08 2021/09/15 2021/09/22 2021/09/29

The first three email communications were very similar to each other, and the fourth

differed slightly. The first email served as the initial notification, informing users that they

needed to update their password, and that their deadline was four weeks from the initial email.

The second and third email reiterated the deadline and requirement to update the password.

The fourth email (“last wave communication”) did NOT mention any deadline, but instead

informed users that this was their final notification, and that they should “Avoid account access

complications and change your AD password now”.

The second stage of the campaign started roughly one month after the last communication

of Wave 4. During this second stage, users who had not updated their password received an

active notification (an “SSO intercept”) each time they logged into a campus service. These

intercept messages were initially rolled out to a small subset of users and gradually deployed

to all users who had not updated their password. As seen in Figure 3.1, the login intercept told

users that they were required to update their AD password by a certain date (and provided an

inline button that, if clicked, brought them to the password update portal). After the deadline

passed, this intercept became modal and would not allow a login without a password update.

Finally, two more email notifications were emailed to users, which we refer to as the

“Final” notifications and “Scramble” notifications. These notifications were sent in conjunction

with the later stages of the login intercept to further convince users to update their password. The

“Final” email communication told users that “Unless changed, your AD password will expire

on <Deadline>”, while the “Scramble” notifications informed users that “Your AD Account

password will be removed on <Deadline> and you will lose access to all AD-accessed university
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systems...”.

Any users who had not updated their password after receiving these final messages and

SSO intercepts had their account password “scrambled” (i.e., , set to a random value) by an ITS

administrator. Such users would thus be unable to login to the vast array of campus IT services

and would need to trigger the password reset mechanism themselves or with the help of the ITS

help desk to obtain a new valid password. We were given the list of users whose passwords had

been scrambled as well as the date and time at which this action was taken.

Our university has a number of closely-affiliated but semi-independent organizations,

such as separately endowed research institutes and a medical center, which have their own IT

infrastructure. A small subset of accounts in our data set reflect “secondary accounts” of users

who have a primary appointment at one of these sister organizations, but who happen to have an

account in main campus’s IT systems as a result of joint initiatives. As we discuss later (§ 3.5),

these users might not frequently check or use these secondary campus accounts, since their

day-to-day online activities could revolve around an account at their home organization.

3.3 Ethics

Our analysis does not expose any vulnerabilities, nor does it indirectly create harms by

virtue of its results. The benefits of our research include better understanding the dynamics

around mandatory password policy changes, how to do so more efficiently and, by generalization,

improving mass compliance with other changes in security policy. Our analysis is based on

secondary use of data already routinely logged by our institution’s IT services group and this data

is de-identified for our analysis. Further, we only pursue analyses of population aggregates and

do not present results about individual users (even de-identified). Our project has been reviewed

by our institutional review board (IRB) and considered exempt. Additionally, our work takes

place with the full knowledge of our institution’s CISO and with the associated IT staff (our work

is driven, in part, by helping this organization understand how to better manage their security
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communications).

3.4 Methodology

In this section, we discuss our university authentication process, the data sources we

used, and the set of accounts we focus on in this study.

3.4.1 Authentication into Campus Services

Our institution uses Active Directory (AD) for basic authentication and Duo for two-

factor authentication for all major systems. Thus, users accessing campus services ranging from

email to payroll first need to login using an Active Directory username and password, and then

authenticate via Duo (typically a phone-based app) to access their service. Our Duo deployment

supports a remembrance window of seven days which, if configured, reduces the two-factor

authentication requirement to once per week per device.

3.4.2 Data Sources

We conduct our analysis using four data sources from August 2021 to March 2022:

Splunk logs, email correspondence logs, Active Directory metadata, and Help Desk tickets. We

explain each of these data sources in further detail.

Splunk Logs. Our institution collects various logs of user activity and stores them in

Splunk, a third-party service for capturing, indexing, and querying system log information. For

this study we use Splunk-managed event logs from our campus’ Active Directory and Duo

deployments.

The Active Directory logs contain password update information—notably Windows

Event IDs 4724 (account password reset attempt) or 4723 (account password change attempt)

paired with 4738 (account changed)—as well as metadata about the password update itself (i.e.,

, who initiated the change). The event codes and metadata allow us to differentiate password

updates into four different semantic categories: a password change by a user via a campus
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self-service online password change portal, a password change by a user via the user’s campus-

administered machine (e.g., , via the Windows Sign-in/Password dialog), a password reset by a

user via the password change portal, and an administrative reset (e.g., , help desk, departmental

IT support).

The Duo logs contain every Duo authentication success and failure for users on campus.

For password updates initiated by the online password update portal, users must already be

authenticated via both Active Directory and Duo. For password resets initiated via the portal,

no authentication is necessary (although failed authentications appear in the logs if the user

attempted to authenticate but forgot their password).

Email Correspondence and Scrambled Accounts. The campus security team notified

users about the new password update requirements and deadlines via a series of email messages

(§ 3.2). These messages used Emma [22], an e-mail marketing service which incorporates a

tracking pixel into messages to identify when each email is delivered, opened, or bounced. This

team provided the Emma logs to us, as well as which accounts were ultimately scrambled and

when.

Active Directory Metadata. Each user profile in Active Directory has additional meta-

data, including their Organizational Unit (OU). This metadata indicates user roles and depart-

mental affiliations. We use this profile information to correlate behavior with user demographics

in our analysis. We have anonymized OU values unique to our institution where necessary to

support blind review.

Help Desk Tickets. Finally, we used aggregate statistics collected from logs of campus

Help Desk tickets to help understand the IT staff burdens created by the password update

campaign. As discussed in more detail in Section 3.6.1, our data consists of coded tickets (i.e.,

, tagged as related to password updates) from the period in question that are de-identified and

tagged with associated OU membership. This process produced 919 password update related

tickets submitted by 762 distinct users.
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Table 3.2. Distribution of the different kinds of users in our study.

Category Number of Users

Single Change Users 7925 (81.3%)
Multiple Change Users 1291 (12.2%)
Nonresponsive Users 528 (5.42%)

Total 9744 (100%)

3.4.3 User Population

Finally, for the purposes of our study, we focus specifically on active users who success-

fully received the password update correspondences. Concretely, we consider users that satisfy

the following two criteria:

1) Users successfully contacted. We only consider users who were successfully con-

tacted by the email notification campaign. We consider users “successfully contacted” if the

email tracking service indicates that they received (although not necessarily opened) all messages

in the notification campaign until they updated their password. This avoids confounding effects

caused by non-human accounts that do not have e-mail accounts or the minority of users who,

for one reason or another, have no working email point of contact.

2) Users are active. Like any large organization, ours has user accounts that are accessi-

ble but largely inactive (e.g., , alumni “email-for-life” accounts). Since we are interested in the

behavior of active users—those for whom password expiration will have a direct impact on their

activity—we restrict the account population to accounts that have had at least one successful

login authentication (both Active Directory and Duo two-factor) during the password update

campaign.

Table 3.2 summarizes the user population we consider in this study. Among 9,744 users,

7,925 (81.3%) of them updated their password exactly once during the password campaign

(“single change” users), 1,291 (13.2%) updated their password more than once (“multiple

change” users), and 528 (5.42%) did not update their password by the communicated deadline

(“nonresponsive” users, whose passwords were scrambled by the IT staff due to their failure
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to act in a timely fashion). We note that most users are “single change” users—changing their

password once during this campaign—with a smaller percentage deviating from this behavior

and incurring additional costs (either on individual users or the IT organization).

3.5 User Responsiveness

In this section we analyze how the users in our study responded to the password update

campaign. In particular, we explore the following research questions:

• RQ1: Were repetitive emails effective in prompting user change?

• RQ2: Were login intercepts effective in prompting user change?

• RQ3: In what ways did multiple change users react differently than single change users?

• RQ4: Which users utilized password reset more than a password change?

• RQ5: Were users who opened email more likely to update their password?

• RQ6: Which organizational units were slower in updating their passwords?

We focus on this set of questions when analyzing user responsiveness to understand

which actions are most effective for the organization (RQ1, RQ2, RQ3, RQ5), which update

mechanisms are utilized the most and thus should be embraced (RQ4), and why organizations

should use different mechanisms for certain employee groups to more effectively promote

password updates (RQ6).

3.5.1 Single Change Users

We begin by examining the behavior of single change users. Figure 3.2 shows the

password change behavior of these users over time. The left graph (a) shows four curves, each

corresponding to one of the communication waves. Each curve shows, on a daily granularity, the

remaining number of users in that wave who still need to change their password. The right graph
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(a) Number of users in each wave (b) Percentage of users in each wave

Figure 3.2. (a) The number of single change users without a password update in the different
waves over time, and (b) the same results showing the percentage of users in each wave. The
first four solid lines denote the beginning of the communication series for each wave. The
line at October 19, 2021 denotes the start of login intercept, while the line after November 8,
2021 denotes the start of final notifications, and the line at November 23, 2021 for scramble
notifications.

(b) shows the same results, but with each wave normalized to the number of users in that wave:

the curves show the percentage of users in each wave who have yet to change their password.

The solid vertical lines in the graph correspond to the start of various actions taken by campus

during the campaign, including when campus sent initial email communications to each wave

(first four solid vertical lines), intercepted logins (solid vertical line at October 19, 2021), and

final/scrambled notifications (last two solid vertical lines). For a subset of users who had not

yet updated their password, the IT staff began scrambling their passwords on November 16,

2021 prior to sending email notifications. Additionally, we note that each wave received four

communications, but the communications were staggered by a week and thus are overlapped.

We denote the trailing last communications in the final wave with dashed lines. For reference,

Table 3.1 shows the dates of each communication in the different waves.

From the timeline in Figure 3.2, we define periods of user activity based on user response

to the various notifications. Each wave begins with a “responsive” period that engages with

responsive users until seven days after the final communication for a given wave. Each wave then
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has an “idle” period between the email notifications and the first use of the login portal intercept.

Finally, each wave ends with an “intervention” period engaging with unresponsive users and

spanning the login intercepts, expiration warning email communications, and account scrambling.

The intervention period is the same for each wave (October 19th until December 15th), but

the responsive period and idle period are shifted by each wave start date. For example, the

responsive period for Wave 1 is August 18th to September 15th and the idle period is September

15th to October 19th, while for Wave 2 the responsive and idle periods are from August 25th to

September 22nd and September 22nd to October 19th, respectively. Combining the waves, 71.0%

of these users changed their password during the responsive period, 5.28% changed during the

idle period, and 23.7% changed during the intervention period.

RQ1: Repetitive emails are effective in prompting a majority of user updates with

diminishing returns. As seen in Figure 3.2 by the stairstep shape of the curves from August 25

to September 29, multiple email communications were necessary and effective for the majority of

users. An immediate question for an organization planning to use email notifications is how many

iterations to perform. We measure effectiveness of each iteration by quantifying the number

of users who initiated a password update within a week of a given communication. For our

campus, multiple communications was clearly impactful and the plan of four communications

was a good one. The first three communications resulted in a roughly uniform response from

users proportion to the size of the wave, roughly 15%.5 An interesting question is whether a fifth

communication would have induced a similar response as the previous four. Given the much

smaller response of the fourth communication (around 5% across each wave) and subsequent

email notifications, we speculate that a fifth email would only have further diminishing returns

and that the campus decision to change how it interacted with the remaining nonresponsive users

after the fourth communication was the right one.

Our results suggest that our organization clearly needed to be proactive throughout the

5An exception is the first communication of the first wave, which does not appear to have prompted any password
updates. Upon investigating, this apparent lack of response was due to a data collection error in that timeframe.
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campaign. The initial email communications were effective for roughly three-quarters of users.

Subsequently, very few remaining users changed their passwords during the long idle period,

even though these users had already received four email reminders. Not until campus activated

the login portal intercept reminder and sent the final warnings did the remaining users start to

react again.

RQ2: Login intercepts are an effective tool for user updates. While our organization

used login intercepts for well over a month (from October 19, 2021 to November 11, 2021),

they staggered their use for the different waves. Moreover, towards the end of the campaign

they continued displaying login intercepts in addition to sending a final round of email warnings

(note that the IT staff sent the first batch of final email warnings on November 9, 2021). To

more clearly assess the impact of login intercepts, we examine their impact on just users in the

first two waves, users who had the longest exposure and response to just the login intercepts

(before the final email warnings were sent). For this time period preceding November 9, 88% of

the remaining non-updated users in Wave 1 responded to the portal intercept and successfully

updated their password. For Wave 2, 51% of the remaining users updated their password during

the login intercept period (note that Wave 2 users had one fewer week in which to respond

compared to Wave 1 users). Email notifications are clearly effective for the majority of our

population, but require action out of context. The portal intercept, in contrast, happens exactly

as the user is in the process of logging in, and was successful in leading users to update their

password.

3.5.2 Multiple Change and Nonresponsive Users

Compared to single change users, multiple change users have more than one password

update during the campaign, suggesting these users experienced more friction with the password

update process.

Of the 1,291 multiple change users, 72.03% have two password changes, 18.20% have

three, and 9.76% have more than three. For simplicity, we focus on the 90.23% of multiple change
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Table 3.3. Breakdown of the first, second, and third password changes for multiple change users
across the different time periods of the campaign.

Responsive Idle Intervention

% First Change 57.25% 8.33% 34.33%
% Second Change 22.23% 12.79% 60.69%
% Third Change 18.30% 10.21% 64.68%

users that have two or three password changes since they capture the bulk of this population. For

each password update these users made, Table 3.3 shows which period during the campaign the

user made the update.

RQ3: Multiple change users are less responsive to email communications than sin-

gle change users. However, multiple change users have similar password update attempts

as nonresponsive users. Compared with the single change users, the multiple change users are

less responsive to the email communications: 71% of single change users update their password

during the responsive period, but only 57% of the multiple change users make their initial

password update during the period. Correspondingly, more multiple change users (34%) wait

until the intervention period than single change users (23%) before making an update.

The majority of the second and third password updates for the multiple change users

happen later in the intervention period (60% and 64%, respectively), rather than closely associated

with the first password update in the responsive period. We originally suspected that most users

who had multiple password updates had issues involving multiple devices. For instance, they

might first change their password on their laptop, but then soon after attempt to login via their

phone (e.g., which had the older password cached). At that point the most expedient action would

be to reset their password via their phone so that they could continue to login. This scenario

would lead to multiple password updates in quick succession, but the long duration between the

first and subsequent password updates for the multiple change users indicates this explanation

does not hold for most of them.

Two other situations could explain the behavior of multiple change users and their delayed
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subsequent password updates. The first is that the users were confused because they have multiple

accounts on our campus (e.g., , a faculty account on main campus and another account on the

health campus). For example, if a user has two accounts, changed the password on their first

account, and then received an intercept for their second account, they may not have paid attention

to the account targeted in the notification and instead re-initiated a password change on their first

account.

We explored this hypothesis by comparing the anonymized legal name attributed to each

user account and counting how many single change, multiple change, and nonresponsive users

have user accounts with the same legal name. Overall, there are less than 50 instances where two

different user accounts have the same legal name, indicating 1) the legal name attribute is not

correct, 2) most users do not have multiple accounts, or 3) their additional accounts are hosted

on separate IT infrastructure that we do not have access to (see note about various infrastructures

in § 3.2).

The second hypothesis is that users became confused about messaging and initiated

another password change: they forgot whether they changed their password, were reminded

about the password change out of band, and re-initiated a change. Given the granularity of our

data, we unfortunately could not explore this hypothesis further.

We finally compare multiple change and nonresponsive user reactions. Among the

nonresponsive users 68.62% had two changes, 29.20% had three changes, and the remaining

7.56% had over three changes, a distribution similar to the multiple change users. If we use

the number of changes as a proxy for how many issues a user faced (with a higher number of

changes approximating more issues), then the nonresponsive users experience no more issues

than multiple change users and simply encounter them in a later time period.

3.5.3 Password Update Mechanisms

We next investigate the different mechanisms that users selected to update their passwords,

providing insight into time and energy spent on these updates. Recall that users can change or
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Table 3.4. Password change mechanisms across the three different user populations. Note that
there are two ways to perform a reset, and thus Admin Reset is a subset of the Reset and Both
columns.

Category % Change % Reset % Both % Admin Reset

Single Change 92.72% 7.28% — 0.52%
Multiple Change 29.20% 13.90% 56.85% 23.86%
Nonresponsive 2.36% 77.12% 19.66% 27.22%

reset their password via a self-service Web portal, via their campus-managed work computer, or

by invoking the help of campus administrative staff. To minimize procedural costs, organizations

want to maximize the use of the first two methods and minimize the third.

RQ4: Multiple change and nonresponsive users utilize password resets more than

single change users. Table 3.4 summarizes the actions taken by the three responsiveness

categories of users in the study. Note that there are two ways for a user to execute a reset, and

thus “Admin Reset” is a subset of the “Reset” and “Both” columns. Single change users, as

desired, overwhelmingly perform their password change on their own: only 0.52% of these

users require administrator assistance with updating their password. In contrast, multiple change

and nonresponsive users require significant administrative help. Roughly a quarter of each user

category (23.86% of multiple change users, 27.22% of nonresponsive users) initiate a password

reset with the assistance of an administrator. To further reduce procedural costs, organizations

can focus on reducing circumstances that lead to users making multiple changes. Nonresponsive

users represent a difficult case since they generally have minimal interaction with campus already

(§ 3.5.5).

As a final observation, in addition to the self-service Web portal and IT help desk service,

our campus also allows users to change their password via the operating system of their work

machine. More than 22% of the single change users updated their password using their work

machine, and all of these updates were successful (the users were already logged in). Since this

method is both effective and low cost, organizations should continue to support it and encourage

its use.
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Figure 3.3. The percentage of users across different waves who update their password when
opening various communications. Note that the denominator is users who open a given commu-
nication.

3.5.4 User Interactions with Communications

Recall from Section 4.2 that the communications sent to users included an email tracking

mechanism that records whether and when users receive or open the email message. We use

these analytics to examine the relationship between user password update behavior and their

interaction with the email communications.

RQ5: Users who open email are more likely to act, and are more likely to act

quicker than their counterparts. Users in our organization who opened the email communi-

cations are strongly correlated with users who successfully update their password: 83.85% of

single change users open at least one of the email communications, 79.16% of multiple change

users do the same, but only 38.83% of nonresponsive users open any of the communications.
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Figure 3.4. Most popular OU distributions across single change, multiple change, and nonre-
sponsive users.

These results are another indication that the nonresponsive users have far less engagement with

the university than the rest of the user population.

Moreover, about 71% and 60% of single change and multiple change users, respectively,

reacted in the responsive period of the campaign, which is less than 10% lower than the percentage

of users who opened an email. This may be indicative that users who opened their email are

more likely to react, and users who do not open email need other interventions sooner.

The email campaign consisted of four waves of communications, and users stopped

receiving communications once they updated their password. We use the timestamps of user

password updates to infer which of the four communications they responded to, and how they

interacted with their last communication. For example, if a user received a communication on

Day 1, opened it on Day 3, and then changed their password after Day 3, we consider them

responsive to opening the email message. However, if the user changed their password on Day 1

or 2, we consider their responsiveness due to receiving the email.

Confirming expectations, users are more likely to update their password after opening

the email communication than just receiving it. Figure 3.3 shows the percentage of users who

update after opening their communication. The graph has four curves corresponding to the

waves of users, and each curve shows the percentage of users in that wave who have updated
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their password after opening an email communication.6 By the end of the communications all

waves have a 50–60% response rate. In contrast, less than 10% of users across all waves and

communications update their password after only receiving the email.

Users who open their last email communication also respond much more quickly than

users who do not. More than half of the users who open the communication update their password

within 24 hours of opening it, whereas more than half of the users who update just based on

receiving their last communication take multiple days to update. In short, users who open emails

are more responsive in aggregate and also are faster to update than users who only receive the

email.

Recall that the communications to the different waves of users are staggered in time:

users in Wave 4 receive their first communication three weeks after users in Wave 1. When

looking at various metrics, we noticed that users were increasingly more responsive in later

waves. For instance, between Wave 1 and Wave 4: users took less time to update their password

after receiving their last email communication (median time decreasing from 5 to 3 hours);

slightly more users updated within a day (increasing from 60% to 66%) and slightly more users

opened at least one email message (increasing from 84% to 87%).

The trends are slight, but we speculate that to the extent there is an effect, it could

be due in part to out of band communication about the password change (e.g., mentioning

in conversations among co-workers and friends). The longer the campaign lasts, the more

opportunity for such an out-of-band mechanism to contribute. However, the benefits over time

are modest at best and seem an ancillary benefit to a long campaign.

3.5.5 User Role

Next, we explore how the password update behavior of users correlates with their role on

campus. Recall that the account profiles for the users on our campus specify the Organizational

6Note that these results are different from Figure 3.2, which includes all user responsiveness regardless of email
open status.
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Units (OUs) that the user is associated with.

For the 50 largest OUs on campus, Figure 3.4 shows the percentage of single change,

multiple change, and nonresponsive users in each OU who update their password. For reference,

the “Overall Distribution” bars show the percentage of total users for each user group. Note that

users can have multiple OU labels and we count the users in all OUs that they are associated

with.

Using these values, we construct three distributions (one for each user responsiveness

category) and calculate the Z-Score of each OU, which characterizes how far the value deviates

from the mean. For each user responsiveness group (single change, multiple change, and

nonresponsive), we identify OUs that are either above or below 1.96 standard deviations from

the mean as outliers.7 Among these outlier OUs, users in Extension, Instructors, and Extension

Business OUs are over-represented in nonresponsive users, and under-represented in single

change users. These OUs are interesting because they correspond to users who can perform their

daily jobs without needing to interact with campus accounts or systems as often as other roles.

Focusing on only single change users, we again examine the 50 largest OUs, but this

time across the three time periods (Responsive, Idle, Intervention). Specifically, we investigate if

single change users in the intervention period differ from those in other periods. Using Z-Scores

to identify outliers, we see that users in the Building Services, Recreation, and Dining Services

OUs are over-represented in the intervention time period. Once again, a common thread among

many of these OUs is that they correspond to users more on the periphery of the campus: users

who may not need to interact with main campus systems regularly.

RQ6: Users in peripheral organizations take longer than their counterparts. Both

of these findings reinforce the point that users who take longer or have difficulty updating

their password are correlated with roles that have less online interaction with campus systems.

In this light, it is not surprising that email notifications are less effective or that such users

7Examining data that is above or below 1.96 standard deviations is considered common practice when using
Z-Scores.
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Figure 3.5. Ticket volume per day, normalized (divided) by the total number of users in each
wave notification group.

have more difficulty performing the update (e.g., , resulting in a disproportionate number of

password scrambles). While this finding may seem obvious, it is still important to understand

from an organizational standpoint, as this may change how the organization approaches these

departments in future campaigns. In particular, to improve the responsiveness of these kinds of

users, organizations may want to target these users differently: e.g., , targeting such users earlier,

or forgoing email reminders and using login intercepts from the start, or even using a different

notification mechanism such as text messages.

3.6 Help Ticket Workload

Although password update initiatives can improve the security of an organization, these

efforts generate extra work for users and the IT staff at the organization, particularly when

issues arise during the password update process. To better understand these associated costs, we

analyzed changes in the volume of help desk tickets regarding password and account changes

during the password update time period. In particular, we examine the following research

questions surrounding the costs of enterprise password update campaigns:

• RQ7: Did the password campaign increase the number of help desk tickets?
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• RQ8: What were the costs of different enterprise actions in terms of help desk ticket load?

• RQ9: Do users in different departments produce heavier help desk ticket loads?

3.6.1 Help Desk Ticket Data

Our university uses ServiceNow, a centralized ticketing service, to manage all help tickets

and requests generated by users. Users can submit help tickets via a standard web portal or

by emailing specific help aliases; additionally, users can call specific campus phone numbers

to speak with support staff, who then manually create a ticket on behalf of the user during the

assistance process. To identify help desk tickets related to the password update process, we

created aggregate statistics from the ticket database related to the password update roll-out.

Concretely, tickets that met the following criteria are involved in the analysis:

1. The ticket was assigned to the “Service Desk” team (which handles all password and

account related issues).

2. The ticket’s customer was a user from the 9,744 users in the population we investigate

(§ 4.2).

3. The ticket was created between August 9, 2021 and February 1, 2022 (i.e., , between

the start of the password reset notifications and approximately one month after the final

password reset notification).

4. The ticket satisfied the following keyword requirements: the ticket contained at least one

word from each of two lists — [“password”, “account”] and [“lock”,“reset”, “change”,

“update”, “sign in”] — and it also did not contain any “false positive” words identified

based on manual sampling (e.g., , “compromise”, “new”, etc.).

In total, this search yielded 919 help desk tickets filed by 762 distinct users. For the

remainder of this section, we refer to these 762 users as “ticket-filing users” and any password-

update related ticket they file simply as a “help ticket”. Over 85% of these users (653) filed only
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Table 3.5. Percentage of users with password help tickets one year apart.

Password Update Campaign Prior Year

All Waves 7.82% (762 / 9,744) 2.21% (215 / 9,744)
Wave 1 7.94% (78 / 983) 2.24% (22 / 983)
Wave 2 7.66% (174 / 2,272) 2.60% (59 / 2,272)
Wave 3 8.04% (237 / 2,948) 2.37% (70 / 2,948)
Wave 4 7.71% (273 / 3,541) 1.81% (64 / 3,541)

one help ticket during the update time frame, and 12% of users (93) submitted exactly 2 tickets.

Among the remaining 3% of users (16), the maximum number of tickets filed by any single user

was 12 tickets, and upon manual inspection it appeared that this user is an IT staff member who

created help desk tickets on behalf of users who called the support hotline.

3.6.2 Changes to Help Ticket Volume

Using the volume and timing of tickets, we investigated how much additional work our

institution’s IT staff encounters as a result of initiating an enterprise-wide password update.

RQ7: Password updates increase the overall ticket volume by a factor of 3–4×.

Table 3.5 shows the percentage of ticket-filing users during the password update time period

(second column) and the percentage of ticket-filing users from this same exact population during

the same time frame one year prior to the password change campaign (third column). We observe

a 3–4× increase in the proportion of ticket-filing users during the password update time period

(7.5–8%) when compared to the same set of users during the same time period in the prior

year (1.8–2.6%). The proportion of users who submit tickets, and the relative increase over the

preceding year, remains consistent across all wave groups.

RQ8: Actions lead to different ticket volumes. As described in Section 3.2, over the

course of the password update roll-out, campus IT staff employed multiple types of actions to

encourage users to update their password.

Figure 3.5 displays the total volume of tickets that users from different wave groups

submitted during each day, where the daily volume is normalized (divided) by the total number
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Table 3.6. Proportion of single change, multiple change, and nonresponsive users who file
exactly one ticket and multiple tickets.

User Responsiveness % w/ 1 Ticket % w/ 2+ Tickets

Single Change Users 5.6% 0.6%
Multiple Change Users 18.6% 3.8%
Nonresponsive Users 14.6% 2.3%

of users in each respective wave group. Figure 3.6 shows the cumulative fraction of tickets

submitted by all users over time. As marked by vertical dashed lines in both figures, two types of

actions led to noticeable increases in the volume of tickets.

First, we see large spikes in the proportion of users who submit tickets after each of

the first four dashed lines; these dates correspond to when the IT staff sent their fourth (“last”)

communication email to users in each of the waves. These notifications stated that users must

immediately change their passwords to “avoid account access complications”. As we observed in

Figure 3.2, this set of email messages galvanized a significant fraction of users into updating their

password, which likely accounts for the increase in help ticket volumes immediately following

these email notifications.

The last dashed line in Figure 3.5 corresponds to the date (Nov 16) when the IT staff

began to automatically scramble the passwords of any user who had not yet updated their

password. Unsurprisingly, this intervention led to a significant increase in the proportion of

users who filed help desk tickets. Among the 528 nonresponsive users, 77 users filed password

help tickets (14.6%); in contrast, only 7.6% (700) of the 9,216 single change and multiple

change users without a password scramble submitted a help desk ticket. Furthermore, of the 77

nonresponsive users, only 8 users submitted a ticket prior to having their password reset by the

IT team, which suggests that the vast majority of these users filed tickets as a result of the IT

team’s actions.

In contrast to these two actions, from October 19, 2021 to November 15, 2021, the IT staff

configured the university’s SSO login portal to display a browser interstitial message after every
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Figure 3.6. Cumulative fraction of password-update help tickets over time.
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successful login to users who had not updated their password; from November 9 to November

16, the IT staff also sent out an additional email notification and the SSO portal continued to

produce browser interstitial pop-ups. As seen in Figures 3.5 and 3.6, this institutional action

generated noticeably fewer tickets than both the earlier email message notifications and the

password scrambling: only 8% of tickets were submitted between October 19 and November 9

(the period where only active action was login intercept).

We hypothesize that the SSO intercepts created a lower ticket volume because they

presented a more concise message and direct, in-situ path to updating a user’s password. Namely,

whereas the email notifications contained a detailed description of the update roll-out and list of

instructions for users to complete, the SSO intercept message displayed a short message with a

link for the user to immediately update their password (as shown in Figure 3.1). Furthermore,

users are more likely to successfully update their password independently because they only saw

the SSO intercept message after successfully authenticating with their old password (which they

then can use to change their password).

3.6.3 Help Ticket User Demographics

Update Responsiveness and Help Ticket Volume. We next explore whether the single

change users’ apparent efficiency at successfully resetting their password correlated with needing

less help from IT staff members. As seen in Table 3.6, single change users in fact submit 3–6×

fewer tickets than users in other categories: only 5.6% (445 / 7,925) single change users submit

one help ticket, compared to 18.6% (240 / 1,291) multiple change users and 14.6% (77 / 528)

nonresponsive users.

RQ9: Help Tickets volume are non-uniform by Organizational Unit. We also in-

vestigated whether a user’s specific department (a proxy for job role and technical familiarity)

correlated with the likelihood of them requesting help. As discussed earlier in Section 4.2, our

institution uses Active Directory to manage information about users and their accounts, and each

user has an associated set of Organizational Unit (OU) affiliations (e.g., , Computer Science
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related help desk ticket during the password update period.

department, Staff Tech Support, etc.). Users can and often do have multiple OU affiliations as

a result of being affiliated with multiple departments or groups on campus. For our analysis, a

member of campus’s IT staff computed the set of OUs that each user in our dataset belonged to.

The 762 users who filed a password-reset related ticket span a total of 314 distinct OUs.

Figure 3.7 shows the proportion of each OU’s users that filed a password-related help ticket: for

each OU, this proportion equals the number of ticket-filing users affiliated with the OU divided

by the total number of users in our data set who had an affiliation with the OU (i.e., , if any of a

user’s OU affiliations match, then we count them as part of the OU). As seen by the right-skewed

distribution, users in several OUs submit help tickets at over twice the rate as the median OU

(8.19%).
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Table 3.7. Top 12 OUs with the highest proportion of active users (undergoing a password reset)
who filed a password-reset related ticket.

OU % of Notified OU Users

Teaching & Learning Commons 25.0%
Sponsored 24.4%
Academic Affairs 23.5%
Counseling 23.1%
IT Services 22.5%
Emeritus 21.7%
Provost (Div 1) 21.2%
Emeriti 20.6%
Provost (Div 2) 20.6%
Employment Community Outreach 20.0%
Copy Center 20.0%
Provost (Div 3) 20.0%

Table 3.7 shows the OUs with the highest proportion of users who submitted a help ticket

(again, with some modifications to the OU names to blind our organization). Among these OUs,

we note that the tickets submitted by users in IT Services correspond to members of the IT staff

submitting tickets on behalf of users who contacted help / support out-of-band (e.g., , via a phone

call to the help desk). A total of 301 OUs (not shown in Figure 3.7) had 0 affiliated users who

submitted a password-reset related ticket; of these, only 31 OUs (10.3%) have more than 10

users and span a variety of different parts of campus with no clear thematic grouping (e.g., , they

cover a variety of different academic departments and groups, such as postdocs, the campus

registrar’s OU, and OUs for technical institutes co-located and affiliated with campus).

Similarly, the OUs with the highest proportion of users who submit tickets lack easily

discernible patterns: on one hand, this set of OUs contains both users with looser present-

day affiliations to campus (e.g., , emeritus) as well as groups involved in day-to-day campus

interactions (e.g., , Academic Affairs, the Copy Center, and staff in various Provosts’ offices).

Based on this heterogeneous mix across both high and low ticket-filing OUs, it appears that

other underlying factors (beyond a user’s department affiliation or working ground) may be more

predictive in determining whether users will need help during the update process (e.g., , technical
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aptitude and familiarity).

3.7 Related Work

Password research is a rich subfield with influential work dating back to the 1970s [66].

However, much of this work can be categorized into three primary sub-areas:

Password Guessability and Cracking: Many studies have explored ways to quantify

password strength by developing and applying online and offline attacks to guess (crack) users

passwords [118, 10, 114, 63, 115, 20, 29, 47, 107, 64, 57]. Guiding users with UIs to create

stronger passwords less susceptible to cracking has also been examined [105], as has mnemonic

cracking [52]. As a result of some of this work, researchers have recommended using length

and/or mnemonic devices to reduce password guessability [74, 52].

User mental models and Password policies: Another important area of work focuses

on understanding user’s mental models about password policies and their impact on security [43,

41, 50, 89, 90, 87, 104, 106]. For example, studies have found that users report rarely changing

passwords unless asked [45]. Some studies have further shown that users are generally proactive

in changing their passwords when a deadline is provided, while others find that they postpone as

long as possible [72, 91, 5]. Much of the work in this sub-area has been used to motivate password

expiration policy updates [88, 30, 120, 15, 85, 40]. Notably, Florencio et al. summarizes and

synthesizes much of the relevant work in a SoK-style paper aimed towards conveying best

practices of password policies for system administrators [30].

Empirical analyses: Finally, a number of papers have conducted empirical measurement

studies to understand various aspects of the password lifecycle [5]. For example, studies have

documented that users do not change their passwords proactively after a notification of a password

breach, and when they do, the updated password is similar to the old one [7]. Moreover, others

have examined password update metrics at scale, and found strength meters were effective in

prompting users to produce higher entropy passwords [105]. There have also been a number
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of studies examining and quantifying password guessability and password reset policies of

university populations at scale [63, 72]. Most recently, a new system has been proposed to study

logging attempts at a university in real-time and securely [9].

Comparison to our Work: Despite this well-established body of research, relatively

little work has focused on the operational needs of enterprise administrators who must, despite

individual behavioral priorities, ensure that disparate users comply with password policies.

Moreover, prior efforts in this space have largely focused on small-scale or single factor studies.

Our research addresses this lack via a large-scale empirical analysis of the enterprise password

update process. Critically, we validate, at scale, key aspects of the interaction between user

behavior and the password update process. This includes a range of basic factors such as the

prevailing use of both self-administered update mechanisms [45], online password reset [72],

and the prevalence of ticket submission [91, 72] among others. Moreover, our dataset captures

all of these aspects together, allowing a fuller understanding of how these issues play holistically

during a mandatory update campaign. Most importantly, we have been able to analyze the

effectiveness of the most commonly deployed operational treatments for driving mass updates

(repeated e-mail notifications and interstitial Web intercepts) as well as the overhead incurred on

help desk resources when using these treatments. Together, these findings provide an empirical

basis for establishing best practices (including more aggressive, and hence more timely, efforts

employed in the campaign we studied).

Finally, while prior work has discussed the importance of a central management system

(like Active Directory) in easing the user experience of policy changes [30, 72], our work shows

that a range of user difficulties persist, some likely reflecting individual priorities and capabilities

but others reflecting anticipatable differences in organizational use of IT services.

Other Security Communications Outside the password literature, two other lines of

research offer related contributions. The first is around security communication—how the

content and modality of security information plays a role in how it is acted upon [17]. This

includes studies on the efficacy of both user interface elements such as phishing toolbars [18]
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and browser TLS security indicators [2, 25, 26, 81, 27] as well as email-based vulnerability

notifications [55, 95, 56, 14, 39, 60]. That said, we are unaware of experimental research

concerning the structure or timing of password update communications.

The other key line of research is around the user overhead and adoption issues around

new security technologies, notably two-factor authentication (2FA) [32, 16, 82, 1]. Notably,

both Abbot et al. and Reynolds et al. characterize the support costs for incorporating two-factor

authentication into their respective universities by analyzing related help desk tickets (similar to

the kinds of analysis we explore in our work on password changes).

3.8 Discussion

Organizational password updates are strenuous because they put the needs of the organiza-

tion (potentially increased security) at odds with the user population (time, energy, and technical

knowledge). For many users, security is a secondary or tertiary concern, and as the complexity

of an organization increases, so do potential pitfalls for a user. Moreover, large organizations are

routinely supported by modestly-staffed IT departments whose success is predicated on extensive

use of automation. Large-scale mandatory password changes have the potential, when combined

with confused or unmotivated users, to upend this calculus and overwhelm IT staff with large

numbers of support requests. However, in spite of these issues and the common nature of this

situation, we lack an empirical basis for establishing the best methods for prompting user updates

or for anticipating potential support costs.

In this work, we empirically deconstructed a password update campaign at our academic

institution aimed at employees and staff. From this analysis the key observations are that:

1. Single change users, who comply to email change requests in a timely manner, only

comprise 80% of our user population. This is a vast majority, but the remaining 20% is a

significant population that requires more focused outreach.

2. Email communications are effective, but have diminishing returns. We observed that the
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first three reminder emails prompted 15% of users to change their passwords, but the

fourth only elicited a response from an additional 5% of users. A significant aspect of this

issue appears to revolve around users who are less likely to engage with email. Indeed,

opening email remains a strong predictor of whether a user will update their password for

all reminders. Alternative mechanisms, or advance scheduling, may be appropriate for

users whose roles require less email engagement.

3. A proactive stance is needed. This campaign had an idle period of about a month between

the initial email communication and the login intercept and final/scramble notifications.

We observe very little user action during this idle period, suggesting that reminders create

a short attention window for this task and users are not “waiting” to change their password

later.

4. Help Desk costs are non-uniform. A small fraction of users induce most of the IT support

burden. Indeed, almost 40% of help desk tickets are driven by nonresponsive users (whose

passwords were scrambled) in spite of the fact that they comprise less than 3% of the user

population. Conversely, the IT support costs during the email campaign are quite modest

compared to the size of the population. Of particular note, the login intercept action does

not appear to trigger significant numbers of help desk tickets, in spite of the selection bias

in our data that prevents the most responsive users from being exposed to login intercepts.

Based on these overall results, we believe that login intercepts show promise as the most

expedient and least costly mechanism for prompting password updates. We observe that these

intercepts are effective at prompting password updates for users who are unresponsive to the

email campaign, the incur little cost in terms of IT support and, finally, they locate a password

change request in the midst of an authentication action—a context in which the user is already

prepared to enter their password—and in so doing removes the cognitive load of reading and

understanding documentation and deciding how and when to schedule a future password change.

While the intercept capability must be built and implemented, the cost afterwards appears to be
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quite low, with large returns in user efficacy and IT staff efficiency.

Finally, in this study, our organization valued cost in tandem with efficacy, and thus

implemented a longer password update campaign that was cognizant of the unknown burden that

might be placed on IT staff. However, every organization has different constraints and incentives

that define their operational logistics. For some organizations, in some situations, expediency

trumps all—however, for others cost may be a larger factor. We believe that this study provides

an initial step in uncovering the hidden factors of large scale organizational updates, and that

other organizations can use these results, even if their constraints differ, to design and implement

password change campaigns suited to their needs.

Chapter 3, in full, is currently being prepared for submission for publication of material.

Ariana Mirian, Grant Ho, Stefan Savage, Geoffrey M. Voelker. The dissertation author was the

primary investigator and author of this material.
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Chapter 4

Hack for Hire: Exploring the Emerging
Market for Account Hijacking

The last perspective that is useful to understand empirically is that of the attacker. In this

chapter, I characterize the commodity market for “Hack for Hire“ services which compromise

email accounts for payment. The results of this study provide insight into attacker behavior that

can directly improve defenses to protect users against this specific category of attacks.

4.1 Overview

It has long been understood that email accounts are the cornerstone upon which much of

online identity is built. They implicitly provide a root of trust when registering for new services

and serve as the backstop when the passwords for those services must be reset. As such, the

theft of email credentials can have an outsized impact—exposing their owners to fraud across a

panoply of online accounts.

Unsurprisingly, attackers have developed (and sell) a broad range of techniques for com-

promising email credentials, including exploiting password reuse, access token theft, password

reset fraud and phishing among others. While most of these attacks have a low success rate,

when applied automatically and at scale, they can be quite effective in harvesting thousands if

not millions of accounts [99]. In turn, email providers now deploy a broad range of defenses

to address such threats—including challenge questions to protect password reset actions, mail
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scanning to filter out clear phishing lures, and two-factor authentication mechanisms to protect

accounts against password theft [35, 34, 33]. Indeed, while few would claim that email account

theft is a solved problem, modern defenses have dramatically increased the costs incurred by

attackers and thus reduce the scale of such attacks.

However, while these defenses have been particularly valuable against large-scale attacks,

targeted attacks remain a more potent problem. Whereas attackers operating at scale expect to

extract small amounts of value from each of a large number of accounts, targeted attackers expect

to extract large amounts of value from a small number of accounts. This shift in economics in

turn drives an entirely different set of operational dynamics. Since targeted attackers focus on

specific email accounts, they can curate their attacks accordingly to be uniquely effective against

those individuals. Moreover, since such attackers are unconcerned with scale, they can afford

to be far nimbler in adapting to and evading the defenses used by a particular target. Indeed,

targeted email attacks—including via spear-phishing and malware—have been implicated in a

wide variety of high-profile data breaches against government, industry, NGOs and universities

alike [46, 36, 109, 42].

While such targeted attacks are typically regarded as the domain of sophisticated ad-

versaries with significant resources (e.g., state actors, or well-organized criminal groups with

specific domain knowledge), it is unclear whether that still remains the case. There is a long

history of new attack components being developed as vertically integrated capabilities within

individual groups and then evolving into commoditized retail service offerings over time (e.g.,

malware authoring and distribution, bulk account registration, AV testing, etc. [99]). This

transition to commoditization is commonly driven by both a broad demand for a given capability

and the ability for specialists to reduce the costs in offering it at scale.

In this chapter, we present the first characterization of the retail email account hacking

market. We identified dozens of underground “hack for hire” services offered online (with prices

ranging from $100 to $500 per account) that purport to provide targeted attacks to all buyers on

a retail basis. Using unique online buyer personas, we engaged directly with 27 such account
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hacking service providers and tasked them with compromising victim accounts of our choosing.

These victims in turn were “honey pot” Gmail accounts, operated in coordination with Google,

and allowed us to record key interactions with the victim as well as with other fabricated aspects

of their online persona that we created (e.g., business web servers, email addresses of friends or

partner). Along with longitudinal pricing data, our study provides a broad picture of how such

services operate—both in their interactions with buyers and the mechanisms they use (and do

not use) to compromise victims.

We confirm that such hack for hire services predominantly rely on social engineering via

targeted phishing email messages, though one service attempted to deploy a remote access trojan.

The attackers customized their phishing lures to incorporate details of our fabricated business

entities and associates, which they acquired either by scraping our victim persona’s website or

by requesting the details during negotiations with our buyer persona. We also found evidence

of re-usable email templates that spoofed sources of authority (Google, government agencies,

banks) to create a sense of urgency and to engage victims. To bypass two-factor authentication,

the most sophisticated attackers redirected our victim personas to a spoofed Google login page

that harvested both passwords as well as SMS codes, checking the validity of both in real time.

However, we found that two-factor authentication still proved an obstacle: attackers doubled

their price upon learning an account had 2FA enabled. Increasing protections also appear to

present a deterrent, with prices for Gmail accounts at one service steadily increasing from $125

in 2017 to $400 today.

As a whole, however, we find that the commercialized account hijacking ecosystem is

far from mature. Just five of the services we contacted delivered on their promise to attack our

victim personas. The others declined, saying they could not cover Gmail, or were outright scams.

We frequently encountered poor customer service, slow responses, and inaccurate advertisements

for pricing. Further, the current techniques for bypassing 2FA can be mitigated with the adoption

of U2F security keys. We surmise from our findings, including evidence about the volume of

real targets, that the commercial account hijacking market remains quite small and niche. With
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prices commonly in excess of $300, it does not yet threaten to make targeted attacks a mass

market threat.

4.2 Methodology

In this section we describe our methodology for creating realistic, but synthetic, victims

to use as targets, the infrastructure we used to monitor attacker activity, and the services we

engaged with to hack into our victim email accounts. We also discuss the associated legal and

ethical issues and how we addressed them in our work.

4.2.1 Victims

We created a unique victim persona to serve as the target of each negotiation with a hack

for hire service. We never re-used victim personas among services, allowing us to attribute any

attacks deployed against the persona back to the service we hired. In creating victim personas,

we spent considerable effort to achieve three goals:

1. Victim verisimilitude. We created synthetic victims that appeared sufficiently real that the

hacking services we hired would treat them no differently from other accounts that they

are typically hired to hack into.

2. Account non-attributability. We took explicit steps to prevent attackers from learning our

identities while we engaged with them as buyers, when they interacted with us as victims,

and even if they successfully gained access to a victim email account.

3. Range of attacker options. We did not know a priori what methods the hacking services

would use to gain access to victim email accounts. Since there are many possibilities,

including brute-force password attacks, phishing attacks on the victim, and malware-based

attacks on the victim’s computers, we created a sufficiently rich online presence to give

attackers the opportunity to employ a variety of different approaches.
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The remainder of this section details the steps we took to achieve these goals when

creating fictitious victims, the monitoring infrastructure we used to capture interactions with our

fake personas, and the selection of “hack for hire” services we engaged with.

Victim Identities.

Each victim profile consisted of an email address, a strong randomly-generated password,

and a name. While each of our victims ‘lived’ in the United States, in most cases we chose

popular first and last names for them in the native language of the hacking service, such as

“Natasha Belkin” when hiring a Russian-language service.1 The email address for the victim was

always a Gmail address related to the victim name to further reinforce that the email account was

related to the victim (e.g., natasha.r.belkin@gmail.com). We loaded each email account

with a subset of messages from the Enron email corpus to give the impression that the email

accounts were in use [23]. We changed names and domains in the Enron messages to match

those of our victim and the victim’s web site domain (described below), and also changed the

dates of the email messages to be in this year.

Each victim Gmail account used SMS-based 2-Factor Authentication (2FA) linked to a

unique phone number.2 As Gmail encourages users to enable some form of 2FA, and SMS-based

2FA is the most utilized form, configuring the accounts accordingly enabled us to explore whether

SMS-based 2FA was an obstacle for retail attackers who advertise on underground markets [3]

(in short, yes, as discussed in detail in Section 4.4.4).

Online Presence.

For each victim, we created a unique web site to enhance the fidelity of their online

identity. These sites also provided an opportunity for attackers to attempt to compromise

the web server as a component of targeting the associated victim (server attacks did not take

place). Each victim’s web site represented either a fictitious small business, a non-governmental

1These example profile details are from a profile that we created, but in the end did not need to use in the study.
2These phone numbers, acquired via prepaid SIM cards for AT&T’s cellular service, were also non-attributable

and included numbers in a range of California area codes.

60



organization (NGO), or a blog. The sites included content appropriate for its purported function,

but also explicitly provided contact information (name and email address) of the victim and

their associates (described shortly). We hosted each site on its own server (hosted via third-party

service providers unaffiliated with our group) named via a unique domain name. We purchased

these domain names at auction to ensure that each had an established registration history (at least

one year old) and the registration was privacy-protected to prevent post-sale attribution to us

(privacy protection is a common practice; one recent study showed that 20% of .com domains

are registered in this fashion [58]). The sites were configured to allow third-party crawling, and

we validated that their content had been incorporated into popular search engine indexes before

we contracted for any hacking services. Finally, we also established a passive Facebook profile

for each victim in roughly the style of Cristofaro et al. [19]. These profiles were marked ‘private’

except for the “About Me” section, which contained a link to the victim’s web site.3

Associate Identity.

In addition to the victim identity, we also created a unique identity of an associate to

the victim such as a spouse or co-worker. The goal with creating an associate was to determine

whether the hacking services would impersonate the associate when attacking the victim (and

some did, as detailed in Section 4.4.2) or whether they would use the associate email account as

a stepping stone for compromising the victim email account (they did not). Similar to victim

names, we chose common first and last names in the native language of the hacking service.

Each victim’s web site also listed the name and a Gmail address of the associate so that attackers

could readily discover the associate’s identity and email address if they tried (interestingly, most

did not try as discussed in Section 4.4.2). Finally, if the victim owned their company, we also

included a company email address on the site (only one attack used the company email address

in a phishing lure).

3None of the service providers we contracted with appeared to take advantage of the Facebook profile, either by
visiting the victim’s web site via this link or communicating with the victim via their Facebook page.
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Buyer Identity.

We interacted anonymously with each hack for hire service using a unique buyer persona.

When hiring the same service more than once for different victims, we used distinct buyer

personas so that each interaction started from scratch and was completely independent. In

this role, we solely interacted with the hacking services via email (exclusively using Gmail),

translating our messages into the native languages of the service when necessary.

Many hacking services requested additional information about the victim from our buyers,

such as names of associates, to be able to complete the contract. Since we made this information

available on the victim web sites, we resisted any additional requests for information to see if the

services would make the effort to discover this information themselves, or if services would be

unable to complete the contract without it (Section 4.4.1).

4.2.2 Monitoring Infrastructure

Email Monitoring.

For each Gmail account, we monitored activity on the account by using a modified

version of a custom Apps Script shared by Onaolapo et al. [71]. This script logged any activity

that occurs within the account, such as sending or deleting email messages, changing account

settings, and so on (Section 4.4.6 details what attackers did after gaining access to accounts).

The script then uploaded all logged activity to a service running in Google’s public cloud service

(Google App Engine) as another level-of-indirection to hide our infrastructure from potential

exposure to attackers. Since the script runs from within the Gmail account, it is possible in

principle for an attacker to discover the script and learn where the script is reporting activity to,

though only after a successful attack. We found no evidence that our scripts were detected.

Login Monitoring.

In addition to monitoring activity from within the accounts, the accounts were also

monitored for login activity by Google’s system-wide logging mechanisms. Google’s monitoring,

shared with us, reported on login attempts and whether they were successful, when attackers
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Table 4.1. We contacted 27 hacking services attempting to hire them to hack 34 different
victim Gmail accounts. We communicated with the services in the language in which they
advertised, translating when necessary. The prices were advertised in their native currency, and
we normalized them to USD for ease of comparison. (Yes†: for first-time customers.)

Service Price Lang Prepay Payment Respond Attack

A.1 $229 RU 50% Qiwi Yes Yes
A.2 $229 RU 50% Qiwi Yes Yes
A.3 $458 RU 50% Qiwi Yes Yes

B.1 $380 RU No
Webmoney,
Yandex Yes Yes

B.2 $380 RU No
Webmoney,
Yandex Yes Yes

C.1 $91 RU No Bitcoin Yes Yes
C.2 $91 RU No – Yes Yes
D.1 $76 RU No – Yes Yes
E.1 $122 RU No – Yes Yes

E.2 $122 RU No – Yes No
D.2 $76 RU No – Yes No

F $91 RU No – Yes No
G $91 RU No – Yes No
H.1 $152 RU No Webmoney Yes No
H.2 $152 RU No Webmoney Yes No
J – EN – – Yes No
K $200–300 EN Yes Bitcoin Yes No
L $152 RU No – Yes No
M $84 RU No – Yes No

N $69 RU No
Webmoney,
Yandex Yes No

O – RU No
Webmoney,
Yandex Yes No

P $305 RU No – Yes No
Q $46 RU Yes† – Yes No
R $100 EN No – No No
S $400–500 EN 50% – No No

T $95 or 113 EN No
Bitcoin,
Credit Card No No

U $98 RU No Webmoney No No

V $152 RU No
Webmoney,
Yandex,
Qiwi

No No

W $152 RU No – No No

X $152 RU No
Webmoney,
Yandex No No

Y $23 – $46 RU No – No No
Z $61 RU No – No No
AA $46 RU No – Yes No
BB – CN – – No No
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were presented with a 2FA challenge, and whether they were able to successfully respond to the

challenge (Section 4.4.4). These monitoring logs also include the infrastructure and devices used

to make login attempts, which Google used to identify other Gmail accounts attacked by these

services (Section 4.5.1).

Phone Monitoring.

As described earlier, each victim account was associated with a unique cell number (used

only for this purpose) which was configured in Gmail to be the contact number for SMS-based

2FA. To capture attacks against these phone numbers or notifications from Google (e.g., for

2FA challenges or notification of account resets) we logged each SMS message or phone call

received.

Web Site Monitoring.

To monitor activity on the web sites associated with the victims, we recorded HTTP

access logs (which included timestamp, client IP, user agent, referrer information, and path

requested). For completeness, we also recorded full packet traces of all incoming traffic to the

target server machines in case there was evidence of attacker activity outside of HTTP (e.g.,

attempts to compromise the site via SSH). Overall, we found no evidence of attackers targeting

our web sites.

4.2.3 Hacking Services

Recruitment.

We identified hacking services through several mechanisms: browsing popular under-

ground forums, searching for hacking services using Google search, and contacting the abuse

teams of several large Internet companies. We looked for services that specifically advertised

the ability to hack into Gmail accounts. While we preferred services that explicitly promised

the passwords of targeted accounts, we also engaged with services that could instead provide an

archive of the victim’s account. Figure 4.1 shows an example service advertisement (one we did

not purchase from).
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Figure 4.1. An online advertisement for Gmail hacking services. We remove any identifiable
information and translate the page from Russian to English.

When hiring these services, we followed their instructions for how to contact them.

Typically, interactions with the services consisted of a negotiation period, focused on a discussion

of what they would provide, their price, and a method of payment. The majority of the services

were non-English speaking. In these cases, we used a native speaker as a translator when needed.

We always asked whether they could obtain the password of the account in question as the

objective, and always offered to pay in Bitcoin. If the sellers did not want to use Bitcoin, we

used online conversion services to convert into their desired currency (the minority of cases).

Interestingly, only a handful of services advertised Bitcoin as a possible payment vector, though

many services were generally receptive towards using Bitcoin when we mentioned it.

Table 4.1 summarizes the characteristics of all services that we contacted, which we

anonymize so that our work does not advertise merchants or serve as a performance benchmark.

In total, we reached out to 27 different services and attempted to hire them to hack 34 unique

victim Gmail accounts. When a service successfully hacked into an account, we later hired them

again (via another unique buyer persona) with a different victim to see if their methods changed

65



over time (we denote different purchases from the same service by appending a number after the

letter used to name the service).

Service reliability.

Of the twenty-seven services engaged, ten refused to respond to our inquiries. Another

twelve responded to our initial request, but the interactions did not lead to any attempt on the

victim account. Of these twelve, nine refused up front to take the contract for various reasons,

such as claiming that they no longer hacked Gmail accounts contrary to their contemporary

advertisements. The remaining three appear to be pure scams (i.e., they were happy to take

payment, but did not perform any service in return). One service provided a web-based interface

for entering the target email address, which triggered an obviously fake progress bar followed

by a request for payment.4 Another service advertised payment on delivery, but after our initial

inquiry, explained that they required full prepayment for first-time customers. After payment,

they responded saying that they had attempted to get into the account but could not bypass the

2FA SMS code without further payment. They suggested that they could break into the mobile

carrier, intercept the SMS code, and thus break into the Gmail account. We paid them, and, after

following up a few times, heard nothing further from them. During this entire exchange, we did

not see a single login attempt on the victim’s Gmail account from the hacking service. The third

site similarly required pre-payment and performed no actions that we could discern.

Finally, five of the services made clear attempts (some successful, some unsuccessful) to

hack into eleven victim accounts. We focus on these services going forwards.

Pricing.

The cost for hiring the hacking services often varied significantly between the advertised

price and the final amount we paid. Table 4.2 shows a breakdown of the price differences during

engagement with the hacking services we successfully hired. The table shows the service, the

purported price for that service from their online advertisement, the initially agreed upon price

4We did not pay them since we would learn nothing more by paying.
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Table 4.2. The changes in negotiated prices when advertised, when initially hired, and when
finally successful at hacking into victim Gmail accounts. All prices were originally in rubles, but
are converted to USD for easier comparison.

Service Advertised Discussed Final

A.1 $230 $230 $307
A.2 $230 $230 - $307 Failed
A.3 $460 $460 $460
B.1 $383 $383 Failed
B.2 $383 $383 $383
C.1 $92 $102 $100
C.2 $92 – Failed
D.1 $77 $184 Failed
D.2 $77 $184 Failed
E.1 $123 $383 - $690 $383
E.2 $123 $690 Failed

for their services, and then any price increase that may have incurred during the attack period.

When services failed to hack into the account, they did not request payment. Several factors

influenced the changes in prices, in particular the use of 2FA on the accounts (Section 4.7).

As a rule, we always paid the services, even when they requested additional money, and

even when we strongly suspected that they might not be able to deliver when they asked for

payment up front.5 Our goal was to ultimately discover what each service would actually do

when paid.

4.3 Legal and Ethical Issues

Any methodology involving direct engagement with criminal entities is potentially

fraught with sensitivities, both legal and ethical. We discuss both here and how we addressed

them.

There are two legal issues at hand in this study: unauthorized access and the terms of

service for account creation and use. Obtaining unauthorized access to third-party email accounts

is unlawful activity in most countries and in the United States is covered under 18 USC 1030,

5The one exception to this rule is the aforementioned service whose automated web site immediately told us
they had hacked the site when all evidence was to the contrary.
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Table 4.3. Overview of attack scenarios per service. Lure emails include impersonating an
associate (A), bank (B), Google (G), government (V), or a stranger (S). In the event a service
indicated they could not succeed without additional information, we indicate what details they
requested. In one case (marked *), this was only for the second attempt.

Service Method Lure Inbox or
Spam

Promised
goods Requested Success

A.1 Phishing A, G, S Inbox Archive – Y

A.2 Phishing A, G, S Inbox Archive
Victim/associate name,
phone number

N

A.3 Phishing A, G, S Inbox Archive
Victim/associate name,
phone number

Y

B.1 Phishing B Inbox, Spam Password – N

B.2 Phishing A, G, V Inbox, Spam Password
Victim name,
associate name/email, phone number*

Y

C.1 Phishing G Inbox Password – Y
C.2 Phishing G Inbox, Spam Password – N

D.1 Malware V Spam Password Victim name and occupation N

E.1 Phishing G, V Inbox, Spam Password – Y

the Computer Fraud and Abuse Act (CFAA). Contracting for such services, as we did in this

study, could constitute aiding and abetting or conspiracy if the access was, in fact, unauthorized.

However, in this study, the email accounts in question are directly under our control (i.e., we

registered them), and since we are acting in coordination with the account provider (Google), our

involvement in any accesses was explicitly authorized. The other potential legal issue is that this

research could violate Google’s terms of service in a number of ways (e.g., creating fake Gmail

accounts). We addressed this issue by performing our study with Google’s explicit permission

(including a written agreement). Both our institution’s general counsel and Google’s legal staff

were appraised of the study, its goals, and the methods employed before the research began.

This study is not considered human subjects research by our Institutional Review Board

because, among other factors, it focuses on measuring organizational behaviors and not those of

individuals. Nevertheless, outside traditional human subjects protections, there are other ethical

considerations that informed our approach. First, by strictly using fictitious victims, associates

and web sites, we minimized the risk to any real person resulting from the account hacking
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contracted for in this study. Second, to avoid indirect harms resulting from implicitly advertising

for such services (at least the effective ones), we made the choice to anonymize the names of

each service. Finally, to minimize our financial contributions to a potentially criminal ecosystem,

we limited the number of purchases to those needed to establish that a service “worked” and, if

so, that its modus operandi was consistent over time.

4.4 Hack for Hire Playbook

Our study characterizes the operational methods that hack for hire services employ when

making a credible attempt to hijack our victim personas. We limit our analysis exclusively to the

five services where the attackers made a detectable attempt to gain access to our victim account.

We note that the ultimate “success” of these attacks is partially dependent on our experimental

protocol: in some cases, we supplied 2FA SMS codes to phishing attacks or installed a provided

executable, while in other cases, we avoided such actions to see if the attackers would adapt.

4.4.1 Attacks Overview

We present a high-level breakdown of each hack for hire service’s playbook in Table 4.3.

Four of the five services relied on phishing, while just one relied on malware. In all cases, attacks

began with an email message to our victim persona’s Gmail address. We never observed brute

force login attempts, communication with a victim’s Facebook account, or communication to our

associate personas of any kind.6 On average, attackers would send roughly 10 email messages

over the course of 1 to 25 days—effectively a persistent attack until success. All of the services

but one were able to bypass Gmail spam filtering (though to varying degrees of success) until at

least one of their messages appeared in our victim’s inbox. However, this outcome is expected:

since these are targeted attackers with more focused motivation, they have strong incentives

to adapt to phishing and spam defenses to ensure that their messages arrive in the victim’s

6In practice, a victim’s password may be exposed in a third-party data breach. Our use of synthetic identities
prevents this as a potential attack vector.
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Figure 4.2. An example Google lure mimicking a real warning that Gmail will send to users.
Identifying information removed and translated to English.

inbox. For example, attackers can create honeypot accounts of their own to test and modify

their techniques, thereby ensuring a higher success rate; unlike their high-volume counterparts,

targeted attackers only produce a modest number of examples and thus may pass “under the

radar” of defenses designed to recognize and adapt to new large-scale attacks.

4.4.2 Email Lures

Each email message contained a lure impersonating a trusted associate or other source

of authority to coerce prospective victims into clicking on a link. We observed five types of

lures: those impersonating an associate persona, a stranger, a bank, Google, or a government

authority. The associate lures tempted the user to click on an “image” for the victim’s associate

(using the personal connection as a sense of safety), while the Google, bank, and government

lures conveyed a sense of urgency to induce a user to click on the link. Figure 4.2 shows a

sample Google lure that mimics a real warning used by Google about new device sign-ins. Such

lures highlight the challenge of distinguishing authentic communication from service providers,

whereby attackers repurpose potentially common experiences to deceive victims into taking an

unsafe action.

70



Figure 4.3. Different types of lures used by services that attempted to access a victim account.
An ‘X’ marks when we clicked on a link in a message sent to a victim. Numbers on the right
denote the total number of emails sent by a service.

Attackers cycled through multiple lures over time in an apparent attempt to find any

message that would entice a victim into clicking on a link. Figure 4.3 shows the elapsed time

since attackers sent their first email message to our victim account, the type of lure they used for

each message, and when we clicked on the lure acting as a victim (potentially halting further

attempts). Each row corresponds to one attack on a victim, and the x-axis counts the number

of days since the service sent their first message to the victim. The numbers on the right y-axis

show the number of messages sent by the service to the victim. The most popular lure mimicked

Google, followed by associates and then lures from strangers.

Of the five services, two relied on personalized messages when communicating with

four victim personas. In three of these cases, the service asked for additional details upfront
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Table 4.4. For services that attempted to hack a victim account, we show whether Google was
used in the phishing URL, whether the phishing page used HTTPS, and the number of redirects
to the phishing page. We include separate rows for the services that sent multiple messages
(services B and E).

Service ‘google’
in URL? HTTPS # redirects to

phishing page

A.1 Yes Yes 2
A.2 Yes Yes 2
A.3 Yes Yes 2
B.1 Yes No 1
B.2.1 Yes No 1
B.2.2 Yes No 1
B.2.3 Yes Yes 2
C.1 No No 0
C.2 NA NA NA
D.1 NA NA NA
E.1.1 Yes Yes 1
E.1.2 Yes Yes 2

about the victim persona during negotiation. Only service A.1 was able to construct personal

lures without requesting assistance from the buyer, finding the details from the victim persona’s

website. The extent of personalization was limited, though, consisting either of mimicking the

victim persona’s company or their associate’s personal email address. No additional branding

was lifted from our web sites.

4.4.3 Phishing Landing Pages

All services but one relied on phishing as their attack vector. Once we clicked on the links

sent to the victim personas, we were redirected to a spoofed Google login page that requested

the credentials from the victim. Table 4.4 lists the different attack attempts and the degree to

which attackers tried to spoof a Google domain, use HTTPS, or mask URLs from a crawler

via multiple redirects. All services but one used “combo” domain name squatting [49] with the

keyword ’google’ in the URL, presumably to trick the victim into thinking that the URL was a

real Google subdomain. Services A.2 and B.2 used the same fully qualified domain name for the

phishing landing page, suggesting that they share a business relationship (i.e., they may both be
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value-added resellers for the same phishing page service). Long-lived, reused domains suggest

that they are valuable and perhaps relatively costly to acquire.

All but one service tried to obscure the URL to their phishing page with at least one layer

of redirection. (The exception was the link in the phishing message from C.2, which redirected

to an error page on a Russian hosting service indicating that the page had been taken down.) The

redirection URLs seemed to be one-time use URLs, since we were not able to visit them after

the attack executed and did not see repeat redirection URLs in any of the attacks. One-time use

URLs are attractive for attackers because they can greatly complicate investigating attacks after

the fact or sharing attack information among organizations.

Figure 4.4 shows an example page flow used by one hacking service. We always entered

the Gmail credentials of the victim to see how the hacking attempt would progress. After

collecting the password, all but one of the hacking services would redirect to a new screen which

asked for the 2FA code that the victim had just received on their phone from Google.

Six of the nine hacking attempts captured the password from the phishing page and then

immediately tried to use it to login to the victim’s account (as verified with our Gmail access

logging). Due to the similar behavior and speed at which these logins occurred, we believe that

most of these services used an automated tool, similar to Evilginx [24], for this step.

Moreover, three of five of these attacks captured the necessary information in one session

visiting the phishing pages. This sophistication suggests that attackers can readily adapt any

additional information requested by Google as a secondary factor. Since our study, Google

launched additional protections at login to prevent automated access attempts [94]. However,

hardware security keys remain the best protection mechanism against phishing for users.

4.4.4 Live Adaptation

Services B.2 and E.1 exhibited phishing attacks that adapted over time to overcome

obstacles. These services, once realizing that the account used 2FA, sent new phishing email

messages with a different structure than the ones they sent previously. Service E.1, for example,
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Figure 4.4. A service phishing flow, with identifiable information redacted. The flow is
purposefully designed to mimic Gmail to trick the user into trusting the site.

initially used a phishing attack that only captured the Gmail password. When the service

attempted to login, they were blocked by the 2FA prompt. The service then contacted our buyer

persona asking for the victim’s phone number. The victim’s email account subsequently received

more phishing messages in their inbox. Clicking on the link in the phishing messages led to a

page that requested the 2FA code that was sent to the victim’s phone. When we entered the 2FA

code into the phishing page, the service was able to successfully login. This behavior indicates

live testing of password validity, as the attackers were able to determine if the account had 2FA.

Service B.2 was similar to service E.1, but when they were blocked by the 2FA challenge

they switched to phishing messages that looked exactly like the messages from service A. Upon

collecting the password and the 2FA code that was sent to the phone number for the victim, the

service was able to login.

4.4.5 Malware Attachments

Service D was the only service that attempted to hijack our victim account using malware.

The attacker in this case sent just one email message to our victim persona—flagged as spam—

that contained a link to a rar archive download (Gmail forbids executable attachments). The

archive contained a sole executable file. We unpacked and ran the executable in an isolated
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environment, but to no effect. According to VirusTotal [110], it is a variant of TeamViewer (a

commercial tool for remote system access) which would have enabled the attacker to hijack any

existing web browsing sessions.

After no further visible activity, the service eventually contacted our buyer persona to

say that they could not gain access to our victim account. We decided to hire them again via a

different contract (and different buyer and victim personas) to see if the seller would adapt to

Gmail’s defenses. However, we observed no email messages from the attacker the second time

around, even in our spam folder. The seller eventually responded stating that they could not

gain access to our second persona’s account. While this malware vector proved unsuccessful,

the presence of remote access tools poses a significant risk for adaptation, as session hijacking

would enable an attacker to bypass any form of two-factor authentication.

4.4.6 Post Compromise

For those services that did obtain our victims’ credentials and 2FA codes, the attackers

proceeded to sign in to each account and immediately removed all Google email notifications

(both from the inbox and then trash) related to a new device sign-in. None changed the account

password. We also observed that services A, B, and E removed the 2FA authentication and the

recovery number from our victim accounts as well. Presumably they took these steps to regain

access to the account at a later time without having to phish an SMS code again, but we did not

see any service log back into the accounts after their initial login. However, these changes to the

account settings could alert a real victim that their account had been hijacked, a discovery which

the attackers are willing to risk.

Once accessed, all but one of the services abused a portability feature in Google services

(Takeout) to download our victim account’s email content and then provided this parcel to our

buyer persona. One advantage of this approach is that it acquires the contracted deliverable in

one step, thus removing risks associated with subsequent credentials changes, improvements

in defenses, or buyer repudiation. Only service C avoided logging into our victim account and
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only provided the buyer persona with a password.7 These findings highlight an emerging risk

with data portability and regulations around streamlining access to user data. While intended for

users, such capabilities also increase the ease with which a single account hijacking incident can

expose all of a user’s data to attackers. Since our study, Google has added additional step-up

verification on sensitive account actions.

4.5 Real Victims & Market Activity

Based on our findings from the hack for hire process, we returned to the forums of the

most successful attackers to understand their pricing for other services and how they attract

buyers. Additionally, we present an estimate of the number of real victims affected by these

services based on login traces from Google. Our findings suggest that the hack for hire market is

quite niche, with few merchants providing hijacking capabilities beyond a handful of providers.

4.5.1 Victims Over Time

Of the 27 initial services we contacted, only three—services A, E, and B—could suc-

cessfully login to our honeypot accounts. Google examined metadata associated with each login

attempt and found that all three services rely on an identical automation process for determining

password validity, bypassing any security check such as producing an SMS challenge, and down-

loading our honey account’s email history. Whereas the email messages from the services had

varied senders and delivery paths for each contracted campaign, this automation infrastructure

remained stable despite eight months between our successive purchases. This stability in turn

allowed Google to develop a signature allowing the retrospective analysis of all such login

attempts from the three services in aggregate.

Over a seven-month period from March 16 to October 15, 2018, Google identified 372

accounts targeted by services A, B, and E. Figure 4.5 shows a weekly breakdown of activity. On

7The service demanded additional payment to defeat the 2FA, which we paid, at which point they stopped
responding to our requests.
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an average week, these services attacked 13 targets, peaking at 35 distinct accounts per week.

We caution these estimates are likely only lower bounds on compromise attempts as we cannot

observe users who received a phishing URL, but did not click it (or otherwise did not enter their

password on the landing page). Despite these limitations, the volume of activity from these hack

for hire services is quite limited when compared to off-the-shelf phishing kits which impact over

12 million users a year [101]. Thus, we surmise that the targeted account hacking market is

likely small when compared to other hacking markets, e.g., for malware distribution [37]. While

the damage from these commercialized hacking services may be more potent, they are only

attractive to attackers with particular needs.

Apart from the volume of these attacks, we also examine the sophistication involved. As

part of its authentication process, Google may trigger a “challenge” for sign-in attempts from

previously unseen devices or network addresses [65]. All of the hack for hire attempts triggered

this detection. In 68% of cases, the attacker was forced to solve an SMS challenge, while in

19% of cases the attacker only had to supply a victim’s phone number. The remaining 13%

involved a scattering of other secondary forms of authentication. This layered authentication

approach provides better security when compared to passwords alone, with attackers only

correctly producing a valid SMS code for 34% of accounts and a valid phone number in 52%

of cases. These rates take into consideration repeated attacks: Google observed that attackers

would attempt to access each account a median of seven times before they either succeeded or

abandoned their efforts. As such, even though these attacks may be targeted, Google’s existing

account protections can still slow and sometimes stop attackers from gaining access to victim

accounts.

4.5.2 Alternate Services and Pricing

While our investigation focused on Google—due in large part to our ethical constraints

and abiding by Terms of Service requirements—the hack for hire services we engaged with

also purport to break into multiple mail providers (Yahoo, Mail.ru, Yandex), social networks
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Figure 4.5. Weekly target accounts retroactively associated with hack for hire services.

(Facebook, Instagram), and messaging apps (WhatsApp, ICQ, Viber). To provide a price

comparison between offerings, in preparation for our study we performed a weekly crawl of the

forum page or dedicated web site advertising each service starting in January 1, 2017. However,

as detailed previously in Section 4.4, only a fraction of the services are authentic, and just

three—services A, B, and C—had online prices that matched (or were close) to the final price

we paid. We treat these as trusted sources of pricing information. We also include services E and

D, but note their prices were higher than advertised. We exclude all other services as they failed

to attack any of our victim personas.

We present a breakdown of pricing information as of October 10, 2018 in Table 4.5 for

the five services that executed an attempt to access the accounts. Across all five services, Russian

mail provider hacking (i.e., Mail.ru, Rambler and Yandex) was the cheapest, while other mail

providers such as Gmail and Yahoo were more expensive. The cost of hacking a social media

account falls in the middle of these two extremes.

Some services increased their prices over time. For services B and C, prices on the
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Table 4.5. Purported prices to access various accounts, based on an October 10, 2018 snapshot.
All prices USD, converted from rubles. An ‘*’ indicates the service’s advertised price was lower
than the final payout requested.

Target Service A Service B Service C Service D* Service E*

Mail.ru $77 $77 $62 $54 $77
Rambler $152 $108 $77 $77 $108
Yandex $106 $108 $77 $77 $108
Gmail $384 $385 $92 $77 Negotiable
Yahoo $384 $231 $92 – –
Facebook $306 – – – –
Instagram $306 – – – $231

forums they advertise have been stable since we first began our monitoring. Only service A

provided dynamic pricing, with rates increasing as shown in Figure 4.6. Since 2017, Gmail

prices have steadily increased from $123 to $384, briefly peaking at $461 in February 2018. The

advertised rates for targeting Yahoo accounts has largely tracked this same rate, while Facebook

and Instagram were initially priced higher before settling at $307. We hypothesize that the

price differences between services and the change in prices for a service over time are likely

driven by both operational and economic factors. Thus, prices will naturally increase as the

market for a specific service shrinks (reducing the ability to amortize sunk costs on back-end

infrastructure for evading platform defenses) and also as specific services introduce more, or

more effective, protection mechanisms that need to be bypassed (increasing the transactional

cost for each hacking attempt).

4.5.3 Advertising & Other Buyers

As a final measure, we examined the forum advertisements each service used to attract

buyers. Here, we limit our analysis to the five successful hack for hire services. Across seven

underground forums, we identified two types of advertisements—pinned posts and banner ads—

which require paying forum operators. Services A, B, and E, the three services that were able to

bypass two-factor authentication, all had pinned posts on forums where this option was available.

Only service A paid for banner advertisements on all of these forums. Together, this suggests
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that the services are profitable enough to continue advertising via multiple outlets. Additionally,

these three services had verified accounts, indicating that a forum moderator had vetted the

service stated. Further, services A, B, D, and E all stated they could work with a “guarantor”, an

escrow service proxying for payment between service and buyer to avoid fraud risks. Generally,

feedback on the forum was positive, though we caution this may be biased due to the ability to

delete posts and the difficulty in distinguishing between legitimate customers and virtual “shills”.

We avoid using forum posts as a count of purchases as most negotiation activity occurs via

private messaging.

In addition to this qualitative search, we received an email advertisement from one of the

services for upcoming changes to the service, which was sent to 44 other buyers as well (exposing

their clientele’s email addresses). The message was an announcement that the service now had

a Telegram channel that was available (with a link to the channel), and to join the channel to

keep up to date with relevant news. The only response to that initial email message was another

customer exclaiming their excitement for this new development. Of the 44 email addresses that

were leaked, 23 were accounts with mail.ru or yandex.ru, 9 were Gmail addresses, and the

rest were various other providers, like Tutanota, Protonmail, or iCloud. We were unable to find

these buyers online, which indicates that they did not engage in forum postings, or used a burner

(one-purpose use) email address. However, the concentration of Russian mail providers suggests

that interest in the market may largely be geographically limited, potentially due to language

barriers or culturally-biased demands for account hacking.

4.6 Related Work

Phishing is a well studied, yet continuing concern in the security community. Sheng et

al. studied the demographic of people who are susceptible to phishing attacks, and found that

users 18–25 years of age are most likely to click on phishing messages [92]. Egleman et al.

studied the effectiveness of phishing warnings and found they can be successful in preventing
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Figure 4.6. Monthly price that Service A charges across email and social network account
providers. Over two years, the price per Gmail account increased from $123 to $384.

account hijacking [21]. Following this mode of thought, there are a variety of studies on effective

anti-phishing training as well as the creation of a content-based approach to detect phishing

sites [119, 93, 51]; in all of these studies, the percentage of users’ susceptible to phishing emails

dropped. Similarly, Zhang et al. evaluted anti-phishing tools, and found that many of them

are not effective on new URLs and have exploits of their own. Oest et al. also studied the

phishing ecosystem via an analysis of phishing kits, and developed a URL-based scheme to

detect phishing URLs [70].

Account hijacking threats represent a spectrum that ranges from financially motivated,

large-scale attacks to highly-targeted incidents motivated by political, personal, or financial

incentives. Thomas et al. identified billions of credentials stolen via data breaches and millions
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of credentials stolen by phishing kits and keyloggers, with phishing posing the largest hijacking

risk [101]. Once an account was accessed, hijackers searched for financial records or used the

account as a stepping stone to control connected online identities [71, 11]. While techniques such

as risk-aware authentication [65] or two-factor authentication help protect against unsophisticated

bulk attacks, the hack for hire outfits we studied were more dedicated, with attackers stealing

SMS two-factor codes as part of their phishing pages to bypass the additional layers of security.

Security keys would prevent this attack vector.

At the other end of the spectrum, Marczak et al. investigated government actors targeting

political dissidents [62]. The hijackers in these cases relied on exploits or social engineering to

have victims install commercial or off-the-shelf spyware to enable long-term monitoring of the

victim’s activities. Email was a common delivery mechanism, where attackers customized their

lures to the NGOs where employees worked or to the human rights topics they were involved

with [54, 42]. Given the risks involved here, researchers have focused on how to improve the

security posture of at-risk users [61]. Compared to our work, we found more generalized lures

that can work for any target (e.g., your account is running out of storage space or there was a

security incident), while phishing was the most popular technique for gaining one-off access to a

victim’s account. Pressure on the hack for hire playbook, or wider-scale adoption of security

keys, may cause them to move towards malware and thus mirror government attackers.

4.7 Discussion and Conclusion

When starting this study, we had very little knowledge of what to expect in terms

of attacker methods, behaviors, and ability. At a high level, we find that the commercial

account hijacking ecosystem is far from mature. When such attackers are successful, they can

be potentially devastating to individuals. Yet, as an overall market it is not poised to cause

widespread harm.

Retail account hijacking is a niche market. Many aspects of engaging with account
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hijackers strongly indicate that these services are a fledgling market:

1. Most telling is that only five of the 27 services we contacted were willing to take our

business, a third never responded to repeated requests as buyers, and some were outright

fraudulent.

2. Services have inconsistent and poor customer service. For example, three of the services

charged significantly higher prices than their advertised price, and two services changed

their initial prices while they were executing the hack. Moreover, customer service is slow

and inconsistent in their communication with the buyer, sometimes taking more than a day

to respond.

3. Attackers showed little initiative. Most attacks made no effort to gather information

independently about their victims. Of the nine attempts, only services A.1 and A.2

discovered additional information about the victim on their web sites, such as the name

of their associate. The others, including different contracts within service A, would not

attempt hacking the account without explicitly requesting additional information from the

buyer.

In contrast, studies on markets for CAPTCHA solving [67], Twitter spam [102], and

Google phone verified accounts [100] show that those services are quick to respond, and stable

in their services and pricing. This differentiation between other underground service offerings

and the retail hacking market suggests that account hacking may not be the main focus of these

attackers, and may simply be a “side hustle” — a method to gain opportunistic income in addition

to other activities they are more fully engaged in.

Services predominantly mount social engineering attacks using targeted phishing email

messages. All but one of the nine attacks used targeted email phishing to hack into our Gmail

accounts. The attackers customized their phishing messages using details that we made available
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about the businesses and associates of our fictitious victims. To prompt engagement with a

victim, the phishing messages created a sense of urgency by spoofing sources of authority.

These methods are a subset of those used in other targeted attack ecosystems. In particular,

in addition to targeted phishing (frequently much more tailored than any attacks mounted by

the services we studied), government-targeted attackers use malware and long-term monitoring

of victim behavior to gain access to the account, requiring much more overhead than phishing

alone [62]. Indeed, although these two classes of attackers are superficially similar in focusing on

individual users, they are distinct in most other respects including the nature of the populations

they target, their resource investment per target, their goals upon compromising an account, and

a far greater requirement for covert operations.

Two-factor authentication creates friction. Even though phishing can still be successful

with 2FA enabled, our results demonstrate that 2FA adds friction to attacks. Various services

said that they could not hack into the account without the victim’s phone number, had to adapt to

2FA challenges by sending new phishing messages to bypass them, and one renegotiated their

price (from $307 to $690) when they discovered that the account had 2FA protection. Based on

these results, we recommend major providers encourage or require their user base to use a 2FA

physical token

Minimal service differentiation. Even with a variety of services advertising in the account

hijacking market, they have remarkably little differentiation in their methods and infrastructure.

Four services sent very similar re-usable phishing email messages to their respective victims, and

all services that successfully hacked our accounts used identical automation tools for determining

password validity, bypassing security checks, and downloading victim data.

Gmail as a vantage point. Overall, our study indicates that the attack space against Gmail

is quite limited. Since we focused on hiring services to hack solely into Gmail accounts, it is

possible that the landscape of the commercialized hacking market would look much different

when deployed against native email services such as mail.ru or yandex.ru.

Chapter 4, in full, is a reprint of the material as it appears in The World Wide Web
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Conference 2019. Ariana Mirian, Joe DeBlasio, Stefan Savage, Geoffrey M. Voelker, and Kurt

Thomas. The dissertation author was the primary investigator and author of this material.
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Chapter 5

Conclusion

Security is an aspect that touches many users lives, and while important, it is infeasible

for a user to execute best security practices constantly. However, a user might not need to employ

all best practices in order to remain safe on the Internet. As such, in this disseration, I argued

that using large-scale measurement would allow for better prioritization of security practices.

I first explored a large-scale analysis of end user behavior from the perspective of a

network tap at UCSD’s campus, and related canonical security “best practices” to compromise. I

found that many relations are counterintuitive to popular beliefs. While this does not mean a

user should stop executing best practices, it does suggest that these best practices are not what a

user should prioritize, given limited time and energy.

Next, I examined how we can prioritize security processes from an organizational per-

spective. I determined which of UCSD’s organizational efforts to change user security behavior

were most effective in changing user behaviors, which helps the organization better prioritize

how to communicate similar future efforts.

Finally, I investigated this question from the attacker perspective. Using measurement, I

quantified the commodity market that provides hacking services for hire, which subsequently

supplied insight into defenses that would best protect against these types of attacks.

Using these three projects, I exemplify how empirical measurement of large-scale behav-

iors is an effective tool in prioritizing security practices from many different perspectives. This
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tool is one that can be used moving forward to continue to gain knowledge and insight into how

best to prioritize security pratices for all.
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Rainer Böhme, Tyler Moore, Wouter Joosen, and Michel van Eeten. Herding Vulnerable

96

https://security.googleblog.com/2018/10/announcing-some-security-treats-
to.html
https://suricata-ids.org/


Cats: A Statistical Approach to Disentangle Joint Responsibility for Web Security in
Shared Hosting. In Proceedings of the ACM Symposium on Information, Computer and
Communications Security (CCS), Dallas, TX, USA, November 2017.

[98] Wireshark The Wireshark Team. Wireshark Website. https://www.wireshark.org/, 2019.

[99] Kurt Thomas, Danny Yuxing Huang, David Wang, Elie Bursztein, Chris Grier, Tom
Holt, Christopher Kruegel, Damon McCoy, Stefan Savage, and Giovanni Vigna. Framing
Dependencies Introduced by Underground Commoditization. In Proceedings of the 2015
Workshop on the Economics of Information Security (WEIS), Delft, The Netherlands, June
2015.

[100] Kurt Thomas, Dmytro Iatskiv, Elie Bursztein, Tadek Pietraszek, Chris Grier, and Damon
McCoy. Dialing Back Abuse on Phone Verified Accounts. In Proceedings of the 2014
ACM Conference on Computer and Communications Security (CCS), pages 465–476,
Scottsdale, AZ, USA, November 2014.

[101] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik
Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, Daniel Margolis, Vern
Paxson, and Elie Bursztein. Data Breaches, Phishing, or Malware?: Understanding the
Risks of Stolen Credentials. In Proceedings of the 2017 ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, USA, October 2017.

[102] Kurt Thomas, Damon McCoy, Chris Grier, Alek Kolcz, and Vern Paxson. Trafficking
Fraudulent Accounts: The Role of the Underground Market in Twitter Spam and Abuse.
In Proceedings of the 22nd USENIX Security Symposium, Washington, DC, USA, August
2013.

[103] Update Google Chrome. Update Google Chrome. https://support.google.com/chrome/
answer/95414?co=GENIE.Platform%3DDesktop&hl=en, 2019.

[104] Blase Ur, Jonathan Bees, Sean M. Segreti, Lujo Bauer, Nicolas Christin, and Lorrie Faith
Cranor. Do users’ perceptions of password security match reality? In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, page 37483760,
New York, NY, USA, 2016. Association for Computing Machinery.

[105] Blase Ur, Patrick Gage Kelley, Saranga Komanduri, Joel Lee, Michael Maass, Michelle L.
Mazurek, Timothy Passaro, Richard Shay, Timothy Vidas, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. How Does Your Password Measure up? The Effect of Strength
Meters on Password Creation. In Proceedings of the USENIX Security Symposium,
Security’12, 2012.

[106] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo Bauer,
Nicolas Christin, and Lorrie Faith Cranor. ”i added ’!’ at the end to make it secure”:
Observing password creation in the lab. In Eleventh Symposium On Usable Privacy and
Security (SOUPS 2015), pages 123–140, Ottawa, July 2015. USENIX Association.

97

https://www.wireshark.org/
https://support.google.com/chrome/answer/95414?co=GENIE.Platform%3DDesktop&hl=en
https://support.google.com/chrome/answer/95414?co=GENIE.Platform%3DDesktop&hl=en


[107] Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga
Komanduri, Darya Kurilova, Michelle L. Mazurek, William Melicher, and Richard Shay.
Measuring Real-World accuracies and biases in modeling password guessability. In 24th
USENIX Security Symposium (USENIX Security 15), pages 463–481, Washington, D.C.,
August 2015. USENIX Association.

[108] Tom van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, and Wouter Joosen.
Large-Scale Security Analysis of the Web: Challenges and Findings. In Proceedings
of the International Conference on Trust and Trustworth Computing, Heraklion, Crete,
Greece, July 2014.

[109] Verizon. 2018 Data Beach Investigations Report. https://www.verizonenterprise.com/
resources/reports/rp DBIR 2018 Report en xg.pdf. Accessed: 2018-10-22.

[110] Virus Total. https://www.virustotal.com/#/home/upload. Accessed: 2018-10-22.

[111] Francesco Vitale, Joanna McGrenere, Aurélien Tabard, Michel Beaudouin-Lafon, and
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